WO2014083856A1 - 電池管理装置、電源装置およびsoc推定方法 - Google Patents

電池管理装置、電源装置およびsoc推定方法 Download PDF

Info

Publication number
WO2014083856A1
WO2014083856A1 PCT/JP2013/007000 JP2013007000W WO2014083856A1 WO 2014083856 A1 WO2014083856 A1 WO 2014083856A1 JP 2013007000 W JP2013007000 W JP 2013007000W WO 2014083856 A1 WO2014083856 A1 WO 2014083856A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery
value
soh
current
Prior art date
Application number
PCT/JP2013/007000
Other languages
English (en)
French (fr)
Inventor
裕 天明
睦彦 武田
真一 湯淺
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US14/647,134 priority Critical patent/US20150293183A1/en
Priority to JP2014549832A priority patent/JPWO2014083856A1/ja
Publication of WO2014083856A1 publication Critical patent/WO2014083856A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery management device that manages the state of a battery, a power supply device that includes the battery management device, and an SOC estimation method that estimates the SOC (State Of Charge) of the battery.
  • HEV Hybrid ; Electric Vehicle
  • PHEV Plug-in Hybrid Electric Vehicle
  • EV Electric ; Vehicle
  • Nickel metal hydride batteries and lithium ion batteries are mainly used as in-vehicle secondary batteries. In the future, the spread of lithium ion batteries with high energy density is expected to accelerate.
  • SOC estimation method include an OCV (Open Circuit) Voltage) method and a current integration method (also referred to as a Coulomb count method) (see, for example, Patent Document 1).
  • JP 63-208773 A Japanese Patent Laid-Open No. 6-342045
  • the current integration method cannot be used, but when the secondary battery is used (during charging / discharging), either the OCV method or the current integration method can be used.
  • the SOC value estimated by the OCV method tends to fluctuate.
  • the power consumption of an automobile equipped with a secondary battery varies due to acceleration and deceleration.
  • power consumption of a load connected to the large power storage system varies.
  • the SOC value estimated by the OCV method tends to fluctuate.
  • the current integration method the fluctuation is reduced, but the accuracy decreases due to the accumulation of errors of the current sensor (for example, Hall element).
  • the present invention has been made in view of such a situation, and an object thereof is to provide a technique for estimating the SOC with high accuracy.
  • a battery management device includes a current integration estimation unit that estimates the SOC of a battery by integrating values of current flowing in the battery, and at least a measured voltage value of the battery.
  • An SOC determination unit that adopts the SOC and uses the SOC estimated by the current integration estimation unit during charging / discharging of the battery as it is or corrected with the SOC estimated by the open-circuit voltage estimation unit, and the SOC estimation in parallel
  • an SOH estimation unit that estimates the SOH of the battery based on the SOC change value adopted by the SOC determination unit and the current integrated value in the period required for the change.
  • FIG. 1 is a diagram for explaining a power supply device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of the SOC determination process by the SOC determination unit.
  • FIG. 3 is a diagram showing the relationship between the discharge capacity and SOC during discharge.
  • FIG. 4 is a diagram showing a temperature correction table and a current correction table.
  • FIG. 5 is a flowchart for explaining SOC estimation processing by the battery management apparatus according to the embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a power supply apparatus 100 according to an embodiment of the present invention.
  • the power supply device 100 is mounted on a vehicle as a power source such as HEV, PHEV, and EV.
  • a power source such as HEV, PHEV, and EV.
  • EV is assumed.
  • Inverter 200 is provided between power supply device 100 and travel motor 300. During power running, the inverter 200 converts the DC power supplied from the power supply device 100 into AC power and supplies it to the traveling motor 300. Further, during regeneration, AC power supplied from the traveling motor 300 is converted into DC power and supplied to the power supply apparatus 100.
  • the charging plug 400 is connected to the power supply apparatus 100 via an AC-DC converter (not shown).
  • the charging plug 400 is connected to a general outlet installed in a home or office, and is normally charged from the commercial power supply (AC power supply) to the secondary battery 10 in the power supply apparatus 100. In addition, it is connected to the outlet of the quick charging stand and charged quickly.
  • ECU 500 electronically controls the entire vehicle.
  • ECU 500 controls inverter 200 based on various signals input from an accelerator pedal, power supply device 100, various auxiliary machines, and various sensors.
  • the ECU 500 controls the inverter 200 to supply electric power corresponding to the degree to the traveling motor 300.
  • control is performed so that the electric power generated by the traveling motor 300 is supplied to the power supply apparatus 100 using deceleration energy as an energy source.
  • the secondary battery 10 in the power supply apparatus 100 is charged / discharged through such external charging and powering / regenerative control of the inverter 200.
  • the ECU 500 is required to accurately recognize the SOC of the secondary battery 10. Further, in order to extend the EV travel distance, it is required to fully utilize the capacity of the secondary battery 10, and in order to realize this, it is important to accurately grasp the SOC.
  • the power supply device 100 includes a secondary battery 10 and a battery management device 20.
  • the secondary battery 10 is a battery for storing traveling energy.
  • the battery management device 20 manages the secondary battery 10. In this specification, it is assumed that a lithium ion battery is used as the secondary battery 10.
  • the secondary battery 10 includes a plurality of battery cells S1 to Sn connected in series or in parallel. The plus terminals and minus terminals of the plurality of battery cells S1 to Sn are connected to the DC side plus terminal and the DC side minus terminal of the inverter 200 via a contactor (not shown).
  • a Hall element 15 is inserted as a current detection element in a current path connecting the plurality of battery cells S1 to Sn and the inverter 200.
  • a shunt resistor may be used instead of the Hall element 15.
  • a thermistor Rt is installed as a temperature detection element in the stack in which the plurality of battery cells S1 to Sn are mounted.
  • the voltage detection circuit 30 detects the voltage of each of the battery cells S1 to Sn constituting the secondary battery 10. The voltage detection circuit 30 outputs each detected cell voltage value to the control unit 50.
  • the current detection circuit 40 detects the current flowing through the secondary battery 10 by detecting the output voltage of the Hall element 15.
  • the current detection circuit 40 outputs the detected current value of the secondary battery 10 to the control unit 50.
  • the current detection circuit 40 detects a current for each current path.
  • the temperature detection circuit 45 estimates the resistance value from the voltage across the thermistor Rt or the current value flowing through the thermistor Rt, and estimates the temperature from the estimated resistance value.
  • the temperature detection circuit 45 outputs the detected temperature value of the secondary battery 10 to the control unit 50.
  • the storage unit 60 holds a program executed by the control unit 50 and data used in the program.
  • the storage unit 60 includes an SOC-OCV table 61, a correction table 62, and an SOH / FCC holding unit 63.
  • the SOC-OCV table 61 is a table describing the relationship between the SOC of the battery cell constituting the secondary battery 10 and the OCV (open circuit voltage) of the battery cell. It is generated from the SOC and OCV data acquired when the battery cells are gradually charged from a state where the charging rate of the battery cells is 0% by a prior experiment or simulation.
  • the correction table 62 is a table describing correction coefficients used in the SOC correction process described later and / or the SOH (State Of Of Health) correction process described later.
  • SOH / FCC (FullFCharge Capacity) holding unit 63 temporarily holds SOH (deterioration degree) and / or FCC (full charge capacity).
  • the control unit 50 includes a current integration estimation unit 51, an open circuit voltage estimation unit 52, an SOC determination unit 53, an SOH estimation unit 54, an FCC update unit 55, and a communication unit 56.
  • the current integration estimation unit 51 estimates the SOC of the battery cell by integrating the value of the current flowing through the battery cells S1 to Sn detected by the current detection circuit 40. Specifically, the SOC is estimated using the following (Equation 1).
  • SOC SOC 0 ⁇ (Q / FCC) ⁇ 100 (Formula 1)
  • SOC 0 is the SOC before the start of charging / discharging
  • Q is the integrated current value
  • FCC is the full charge capacity. + Indicates charging and-indicates discharging.
  • the open circuit voltage estimation unit 52 estimates the OCV of the battery cells S1 to Sn from the value indicating the state of the battery cells S1 to Sn including at least the value of the measured voltage Vd of the battery cells S1 to Sn, and calculates the SOC corresponding to the OCV. Identify.
  • the current value I and the internal resistance value R are used in addition to the measured voltage value Vd as values indicating the states of the battery cells S1 to Sn.
  • the calculation formula of OCV is shown below (Formula 2).
  • OCV Vd ⁇ I ⁇ R (Formula 2)
  • an average current value for 10 seconds is used as the current value I.
  • the internal resistance value R may be specified with reference to map information obtained in advance, or may be estimated from an IV relationship between a current value and a voltage value detected during charging / discharging.
  • the above (Formula 2) is an example of the OCV estimation formula, and other estimation formulas may be used. For example, an estimation formula in which temperature correction is introduced may be used.
  • the open circuit voltage estimation unit 52 refers to the SOC-OCV table 61 and identifies the SOC corresponding to the calculated OCV. Specifically, open-circuit voltage estimating unit 52 refers to SOC-OCV table 61 and reads the SOC corresponding to the calculated OCV. When an OCV having the same value as the calculated OCV is not described in the SOC-OCV table 61, the open circuit voltage estimation unit 52 reads and calculates at least two SOCs corresponding to at least two OCVs adjacent to the calculated OCV. The SOC corresponding to the OCV is calculated by interpolation. For example, two SOCs corresponding to two OCVs before and after the calculated OCV are read and linear interpolation is performed.
  • the SOC determination unit 53 employs the SOC estimated by the open-circuit voltage estimation unit 52 when the secondary battery 10 is not charged / discharged. When the battery is not charged / discharged, no current flows through the secondary battery 10, so the SOC cannot be calculated by the current integration method. When the secondary battery 10 is being charged / discharged, the SOC determination unit 53 uses the SOC estimated by the current integration estimation unit 51 as it is, or the SOC corrected by the SOC estimated by the open-circuit voltage estimation unit 52. adopt.
  • the SOC value estimated by the OCV method is more likely to swing than the SOC value estimated by the current integration method. Since the integrated value of the current is used in the current integration method, the value is more stable than in the OCV method that is directly affected by the change in the current value. In a secondary battery for in-vehicle use, the current value is also irregular due to irregular changes in power consumption or irregular switching between charging and discharging. Especially in urban areas, traffic jams and signal waits frequently occur, so fluctuations in power consumption and switching between charging and discharging on the order of several seconds occur. Therefore, when the secondary battery 10 is used, the SOC estimated by the current integration method is basically adopted.
  • the SOC estimated by the current integration method may be used as it is.
  • an offset error due to manufacturing variations, temperature characteristics, etc. occurs in the current detection element.
  • Such offset errors are minor, but in the current integration method, the errors are accumulated over time. In the OCV method, the offset error is not accumulated.
  • the SOC determining unit 53 sets the former SOC value to the latter. Correction is made so as to approach the SOC value.
  • the SOC value calculated by the current integration method taking a stable value is adopted, and the SOC value is brought close to the SOC value calculated by the OCV method in order to reduce the influence of the accumulated error of the current detection element. . Thereby, the estimation accuracy of the SOC can be improved.
  • FIG. 2 is a diagram illustrating an example of the SOC determination process performed by the SOC determination unit 53.
  • the SOC estimation is performed periodically (for example, every 10 ms, every 1 s).
  • the upper part of FIG. 2 shows the transition of SOC estimated by the OCV method (indicated by a thin line) and the transition of SOC estimated by the current integration method (indicated by a thick line).
  • the SOC is estimated only by the OCV method, and the SOC is adopted. Thereafter, when discharge is started and the current value becomes negative, the SOC is estimated by both the OCV method and the current integration method. In the discharged state, the SOC estimated by the current integration method is basically adopted.
  • the SOC value estimated by the OCV method and the SOC value estimated by the current integration method deviate.
  • the deviation value ⁇ d exceeds the set value
  • a correction process for the SOC value estimated by the current integration method is activated.
  • the current value used for current integration is corrected.
  • the current value Iq added by the current integration method is calculated using the following (formula 3).
  • Id Id ⁇ ⁇ (Formula 3)
  • Id represents an actual measured value of current
  • represents a correction coefficient.
  • the correction coefficient ⁇ may be a fixed value or a fluctuation value that varies according to the deviation value ⁇ d.
  • a table describing the relationship between the deviation value ⁇ d and the correction coefficient ⁇ may be prepared as the correction table 62.
  • the value calculated based on the experiment or simulation by the designer can be used for the table describing the relationship between the set value and the correction coefficient ⁇ or ⁇ SOC and the correction coefficient ⁇ .
  • the SOC estimated by the current integration method does not change as indicated by the dotted line due to the activation of the correction processing, but approaches the SOC estimated by the OCV method (see arrow a). After that, when the discharge is finished and the current substantially stops flowing and the state continues for a certain period, the SOC estimation by the current integration method is stopped, and the SOC estimated by the OCV method is adopted (see arrow b). .
  • the SOH estimating unit 54 estimates the SOH of the battery cells S1 to Sn based on the change value of the SOC adopted by the SOC determination unit 53 and the current integrated value in the period required for the change.
  • SOH is a typical index indicating the degree of deterioration of a battery, and is used as a standard for battery replacement. For example, SOH can be estimated by the following (formula 4) and (formula 5).
  • SOH FCC / Cd ⁇ 100 (Formula 4)
  • FCC (Qt / ⁇ SOC) ⁇ 100 (Formula 5)
  • Cd represents an initial capacity (design capacity) of the battery
  • ⁇ SOC represents a change value of the SOC
  • Qt represents a section capacity (current integrated value) required for ⁇ SOC. That is, SOH is defined by the ratio of the full charge capacity FCC to the initial capacity Cd.
  • FIG. 3 is a diagram showing the relationship between the discharge capacity and SOC during discharge.
  • the SOC value decreases as the discharge capacity increases.
  • the SOC value increases as the charging capacity increases.
  • the SOH estimation unit 54 specifies the charge / discharge capacity in the section required for the change, and the above (formula 4) and (formula) 5) is used to estimate the SOH.
  • the charge / discharge capacity in that section can be specified by the integrated current value in that section.
  • the section capacity Qt may be corrected in order to increase the estimation accuracy of SOH. For example, temperature correction and / or current correction may be performed on the section capacity Qt calculated by time integration of the detected current value.
  • the SOH estimating unit 54 calculates the corrected section capacity Qt ′ using the following (Expression 6) and (Expression 7).
  • FIG. 4 shows a temperature correction table 62a and a current correction table 62b.
  • the temperature correction table 62a is a table describing the correspondence between the temperature value detected by the temperature detection circuit 45 and the temperature correction coefficient ⁇ t.
  • the current correction table 62b is a table describing the correspondence between the current value detected by the current detection circuit 40 and the current correction coefficient ⁇ i.
  • the SOH estimation unit 54 refers to the temperature correction table 62a based on the detected temperature value and identifies the temperature correction coefficient ⁇ t. Further, the current correction coefficient ⁇ i is specified by referring to the current correction table 62b based on the detected current value.
  • the order of multiplying the two correction coefficients by the section capacity Qt may be from either.
  • the SOH estimation unit 54 estimates the SOH, it updates the SOH held in the SOH / FCC holding unit 63 with the estimated new SOH. Specifically, the SOH currently held is overwritten with a new SOH.
  • the FCC is estimated during the calculation of the SOH estimation.
  • the SOH estimation unit 54 updates the FCC held in the SOH / FCC holding unit 63 with the FCC newly estimated along with the SOH estimation.
  • the current integration estimation unit 51 estimates the current SOC by adding a value obtained by normalizing the current integration value Q with the full charge capacity FCC to the SOC at the start of current integration. . Therefore, the accuracy of the SOC estimated by the current integration method is affected by the FCC.
  • the SOH estimation process is not frequently executed, and is at least less frequent than the SOC estimation. For example, the SOH estimation process is executed every day when the ignition switch is turned on.
  • the SOH estimation process is executed in parallel with the SOC estimation process during charging / discharging of the secondary battery 10. As a result, the FCC used in the SOC estimation by the current integration method can always be maintained in the latest state.
  • the SOH estimation process is triggered by a certain amount of SOC fluctuation as a trigger. That is, the SOH estimation unit 54 estimates SOH and FCC each time the SOC determined by the SOC determination unit 53 changes by a set value.
  • the FCC update unit 55 updates the FCC used in the SOC estimation process by the current integration method every time SOH is estimated by the SOH estimation unit 54.
  • the communication unit 56 transmits the SOC determined by the SOC determination unit 53 and the SOH estimated by the SOH estimation unit 54 to the ECU 500.
  • the battery management device 20 and the ECU 500 are connected by a network such as CAN (Controller
  • FIG. 5 is a flowchart for explaining the SOC estimation process by battery management apparatus 20 according to the embodiment of the present invention.
  • the SOC determination unit 53 determines whether or not the current value I of the secondary battery 10 is substantially 0 when the ignition switch is on (S10 is ON) (S20). If it is substantially 0 (Y in S20), the SOC estimation is executed only by the OCV method, and the SOC determination unit 53 adopts the SOC estimated by the OCV method as it is (S40). Then, the process proceeds to step S10.
  • the SOC is estimated by both the current integration method and the OCV method (S30).
  • the SOC determination unit 53 corrects the SOC estimated by the current integration method with the SOC estimated by the OCV method (S31).
  • the SOH estimating unit 54 estimates SOH and FCC (S33).
  • the SOH estimation unit 54 updates the SOH and FCC in the SOH / FCC holding unit 63 with the estimated SOH and FCC.
  • the FCC update unit 55 updates the FCC used in the SOC estimation by the current integration method with the estimated FCC (S34). Then, the process proceeds to step S10.
  • the SOC estimation process is not executed during the external charging period in which the secondary battery 10 is charged from the external AC power supply via the charging plug 400. Accordingly, the SOH estimation process is not executed.
  • external charging is constant current charging (CC charging) until reaching a set voltage, and is not running, so that it is not necessary to perform the SOC estimation process during the external charging period.
  • SOC and SOH are estimated.
  • the difference between the SOC at the start of charging and the SOC at the end of charging is used as the change value ⁇ SOC of the SOC used for SOH estimation.
  • the charging capacity from the start of charging to the end of charging is used as the section capacity Qt.
  • the SOH estimation process is executed in parallel with the SOC estimation process by the current integration method, and the FCC used in the current integration method is updated with the FCC corresponding to the SOH.
  • the accuracy of the SOC estimated by the current integration method can be improved as compared with the prior art.
  • the estimation accuracy can be further improved by correcting the SOC estimated by the current integration method with higher accuracy than the conventional method using the SOC estimated by the OCV method.
  • the power supply device mounted on the vehicle as the in-vehicle power source has been described, but the use of the power supply device is not limited to the vehicle.
  • the power supply device can also be used for a power storage system. When the power supply device is used in the power storage system, step 10 in FIG. 5 is not necessary.
  • the SOH estimation unit 54 estimates the FCC using the ratio between the SOC change value ⁇ SOC and the section capacity Qt. In this regard, there is a region where the ratio of SOC and capacity collapses in a region where the SOC is low. Therefore, the designer confirms the relationship between the SOC and capacity of the battery to be used in advance through experiments and simulations, and specifies the SOC region (for example, 30% to 90%) where the ratio of the SOC and capacity is stable.
  • the SOH estimating unit 54 estimates the SOH when the SOC value exists in the region, and skips the SOH estimation when it does not exist. According to this, the estimation accuracy of SOH can be improved.
  • a current integration estimation unit that estimates the SOC of the battery by integrating the value of the current flowing through the battery;
  • An open-circuit voltage estimation unit that estimates an open-circuit voltage value of the battery from a value indicating a state of the battery including at least a value of a measurement voltage of the battery, and specifies an SOC corresponding to the open-circuit voltage value;
  • the SOC estimated by the open-circuit voltage estimating unit during non-charging / discharging of the battery is employed, and the SOC estimated by the current integration estimating unit during charging / discharging of the battery is used as it is or the open-circuit voltage estimating unit
  • An SOC determination unit that corrects and employs the SOC estimated by In parallel with the estimation of the SOC, a change value of the SOC adopted by the SOC determination unit,
  • An SOH estimator for estimating the SOH of the battery based on an integrated current value in a period required for the change
  • a battery management device comprising
  • the SOH estimation unit estimates SOH every time the SOC adopted by the SOC determination unit changes by a set value, 3.
  • [Item 4] A battery for storing energy for driving or loading;
  • the battery management device according to any one of items 1 to 3, which manages the battery;
  • a power supply apparatus comprising: [Item 5] A step of estimating the SOC of the battery by integrating the value of the current flowing through the battery, and adding a value obtained by normalizing the current integrated value to the SOC at the start of current integration with the full charge capacity of the battery.
  • a current integration estimating step for estimating the current SOC An open-circuit voltage estimating step of estimating an open-circuit voltage value of the battery from a value indicating a state of the battery including at least a value of a measured voltage of the battery, and specifying an SOC corresponding to the open-circuit voltage value;
  • the SOC estimated by the open-circuit voltage estimating step during non-charging / discharging of the battery is adopted, and the SOC estimated by the current integration estimating step during charging / discharging of the battery is used as it is or the open-circuit voltage estimating step.
  • An SOC estimation method comprising: Note that any combination of the above-described components and a representation of the present invention converted between a method, an apparatus, a system, a recording medium, a computer program, etc. are also effective as an aspect of the present invention.
  • S1 Sn battery cell, 10 secondary battery, 15 Hall element, 20 battery management device, 30 voltage detection circuit, 40 current detection circuit, 45 temperature detection circuit, 50 control unit, 51 current integration estimation unit, 52 open circuit voltage estimation unit 53 SOC determining unit, 54 SOH estimating unit, 55 FCC updating unit, 56 communication unit, 60 storage unit, 61 SOC-OCV table, 62 correction table, 63 SOH / FCC holding unit, 100 power supply device, 200 inverter, 300 running Motor, 400 charging plug, 500 ECU.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電流積算推定部(51)は、電池に流れる電流の値を積算することにより電池のSOCを推定する。開放電圧推定部(52)は、電池の測定電圧の値を少なくとも含む電池の状態を示す値から電池の開放電圧値を推定し、その開放電圧値に対応するSOCを特定する。SOC決定部(53)は、電池の非充放電中にて開放電圧推定部(52)により推定されたSOCを採用し、電池の充放電中にて電流積算推定部(51)により推定されたSOCをそのまま、又は開放電圧推定部(52)により推定されたSOCで補正して採用することでSOCを高精度に推定する。SOH推定部(54)は、SOCの推定と並行して、SOC決定部(53)により採用されるSOCの変化値と、その変化に要した期間における電流積算値をもとに電池のSOHを推定する。

Description

電池管理装置、電源装置およびSOC推定方法
 本発明は、電池の状態を管理する電池管理装置、その電池管理装置を備える電源装置および電池のSOC(State Of Charge)を推定するSOC推定方法に関する。
 近年、ハイブリッド車(HEV;Hybrid Electric Vehicle)、プラグインハイブリッド車(PHEV;Plug-in Hybrid Electric Vehicle)、電気自動車(EV;Electric Vehicle)が普及してきている。これらの車にはキーデバイスとして二次電池が搭載される。車載用二次電池としては主に、ニッケル水素電池およびリチウムイオン電池が普及している。今後、エネルギー密度が高いリチウムイオン電池の普及が加速すると予想される。
 車載用二次電池や大型蓄電システムは、ノートパソコンや携帯電話などと比較し、厳格な安全管理および電池容量の有効活用が求められる。その前提として高精度なSOC(充電率)推定が求められる。SOC推定方法の代表的なものにOCV(Open Circuit Voltage)法、電流積算法(クーロンカウント法ともいう)がある(例えば、特許文献1参照)。
特開昭63-208773号公報 特開平6-342045号公報
 二次電池が使用されていないときは電流積算法を用いることができないが、二次電池が使用されているとき(充放電中)は、OCV法と電流積算法のいずれも使用できる。二次電池の使用中においてOCV法により推定されるSOCの値は揺らぐ傾向がある。例えば、二次電池が搭載された自動車は、加速・減速によって消費電力が変動する。また、大型蓄電システムでは、大型蓄電システムに接続される負荷の消費電力が変動する。消費電力の変動を十分に把握できないような場合、OCV法により推定されるSOCの値は揺らぐ傾向にある。また、回生ブレーキを搭載した車両では、走行による放電と回生ブレーキによる充電が頻繁に切り替わるため、その傾向が強くなる。一方、電流積算法ではその揺らぎは小さくなるが、電流センサ(例えば、ホール素子)の誤差が累積していくことによる精度低下が発生する。
 本発明はこうした状況に鑑みなされたものであり、その目的は、SOCを高精度に推定する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の電池管理装置は、電池に流れる電流の値を積算することにより電池のSOCを推定する電流積算推定部と、電池の測定電圧の値を少なくとも含む電池の状態を示す値から電池の開放電圧値を推定し、その開放電圧値に対応するSOCを特定する開放電圧推定部と、電池の非充放電中にて開放電圧推定部により推定されたSOCを採用し、電池の充放電中にて電流積算推定部により推定されたSOCをそのまま、又は開放電圧推定部により推定されたSOCで補正して採用するSOC決定部と、SOCの推定と並行して、SOC決定部により採用されるSOCの変化値と、その変化に要した期間における電流積算値をもとに電池のSOHを推定するSOH推定部と、を備える。
図1は本発明の実施の形態に係る電源装置を説明するための図である。 図2はSOC決定部によるSOC決定処理の一例を示す図である。 図3は放電時の放電容量とSOCの関係を示す図である。 図4は温度補正テーブル及び電流補正テーブルを示す図である。 図5は本発明の実施の形態に係る電池管理装置によるSOC推定処理を説明するためのフローチャートである。
 図1は、本発明の実施の形態に係る電源装置100を説明するための図である。本明細書では電源装置100を、HEV、PHEV、EVなどの動力源として車両に搭載する例を想定する。本実施の形態ではEVを想定する。
 走行用モータ300には一般的に、三相交流同期モータが使用される。インバータ200は電源装置100と走行用モータ300との間に設けられる。インバータ200は力行時、電源装置100から供給される直流電力を交流電力に変換して走行用モータ300に供給する。また回生時、走行用モータ300から供給される交流電力を直流電力に変換して電源装置100に供給する。
 充電プラグ400は、図示しないAC-DCコンバータを介して電源装置100に接続される。充電プラグ400は、家庭やオフィスに設置された一般的なコンセントに接続されて、商用電源(AC電源)から電源装置100内の二次電池10にノーマル充電される。また急速充電スタンドのコンセントに接続されて急速充電される。
 ECU(Electronic Control Unit)500は車両全体を電子制御する。ECU500はアクセルペダル、電源装置100、各種の補機、各種のセンサから入力される各種の信号をもとにインバータ200を制御する。基本動作として、ECU500はアクセルペダルが踏み込まれると、その程度に応じた電力を走行用モータ300に供給するようインバータ200を制御する。またアクセルペダルが離されると、減速エネルギーをエネルギー源として走行用モータ300により発電される電力を電源装置100に供給するよう制御する。
 このような外部充電およびインバータ200の力行/回生制御を通じて電源装置100内の二次電池10は充放電される。過充電および過放電を回避するため、ECU500が二次電池10のSOCを正確に認識することが求められる。またEVの走行距離を延ばすには二次電池10の容量を十分に活用することが求められ、それを実現するにはSOCの正確な把握が重要となる。
 電源装置100は、二次電池10および電池管理装置20を備える。二次電池10は走行用のエネルギーを蓄えるための電池である。電池管理装置20は二次電池10を管理する。本明細書では二次電池10としてリチウムイオン電池を使用することを想定する。二次電池10は複数の電池セルS1~Snが直列接続や並列接続されて構成される。複数の電池セルS1~Snのプラス端子およびマイナス端子は、図示しないコンタクタを介してインバータ200の直流側プラス端子および直流側マイナス端子にそれぞれ接続される。
 複数の電池セルS1~Snとインバータ200を繋ぐ電流路には電流検出素子としてホール素子15が挿入される。なおホール素子15の代わりにシャント抵抗を用いてもよい。また複数の電池セルS1~Snが搭載されるスタック内には温度検出素子としてサーミスタRtが設置される。
 電圧検出回路30は、二次電池10を構成する各電池セルS1~Snのそれぞれの電圧を検出する。電圧検出回路30は検出した各セル電圧値を制御部50に出力する。
 電流検出回路40は、ホール素子15の出力電圧を検出することにより二次電池10に流れる電流を検出する。電流検出回路40は検出した二次電池10の電流値を制御部50に出力する。なお二次電池10が複数の電池セルの直並列回路で構成される場合、電流検出回路40は電流路ごとに電流を検出する。
 温度検出回路45は、サーミスタRtの両端電圧またはサーミスタRtに流れる電流値から抵抗値を推定し、推定した抵抗値から温度を推定する。温度検出回路45は検出した二次電池10の温度値を制御部50に出力する。
 記憶部60は、制御部50で実行されるプログラム、及び当該プログラムで使用されるデータを保持する。記憶部60はSOC-OCVテーブル61、補正テーブル62、SOH/FCC保持部63を含む。SOC-OCVテーブル61は、二次電池10を構成する電池セルのSOCと、電池セルのOCV(開放電圧)との関係を記述したテーブルである。事前の実験またはシミュレーションにより、電池セルの充電率が0%の状態から徐々に充電していく際に取得されるSOCとOCVのデータから生成される。
 補正テーブル62は後述するSOC補正処理および/または後述するSOH(State Of Health)補正処理により使用される補正係数を記述したテーブルである。SOH/FCC(Full Charge Capacity)保持部63はSOH(劣化度)および/またはFCC(満充電容量)を一時保持する。
 制御部50は、電流積算推定部51、開放電圧推定部52、SOC決定部53、SOH推定部54、FCC更新部55、通信部56を含む。
 電流積算推定部51は、電流検出回路40により検出される電池セルS1~Snに流れる電流の値を積算することにより電池セルのSOCを推定する。具体的には下記(式1)を用いてSOCを推定する。
 SOC=SOC±(Q/FCC)×100 …(式1)
 SOCは充電/放電開始前のSOC、Qは電流積算値、FCCは満充電容量をそれぞれ示す。+は充電、-は放電を示す。
 開放電圧推定部52は、電池セルS1~Snの測定電圧Vdの値を少なくとも含む電池セルS1~Snの状態を示す値から電池セルS1~SnのOCVを推定し、そのOCVに対応するSOCを特定する。本実施の形態では電池セルS1~Snの状態を示す値として測定電圧値Vdに加えて電流値Iおよび内部抵抗値Rを使用する。OCVの算出式について下記(式2)に示す。
 OCV=Vd±I×R …(式2)
 電流値Iには例えば、10秒間の平均電流値を使用する。内部抵抗値Rは事前に求めておいたマップ情報を参照して特定してもよいし、充放電中に検出される電流値と電圧値とのI-V関係から推定してもよい。なお上記(式2)はOCV推定式の一例であり、その他の推定式を用いてもよい。例えば、温度補正が導入された推定式を用いてもよい。
 開放電圧推定部52は、SOC-OCVテーブル61を参照して、算出したOCVに対応するSOCを特定する。具体的には開放電圧推定部52は、SOC-OCVテーブル61を参照して、算出したOCVに対応するSOCを読み出す。算出したOCVと同じ値のOCVがSOC-OCVテーブル61に記述されていない場合、開放電圧推定部52は、算出したOCVに隣接する少なくとも二つのOCVに対応する少なくとも二つのSOCを読み出して、算出したOCVに対応するSOCを補間により算出する。例えば、算出したOCVの前後の二つのOCVに対応する二つのSOCを読み出して線形補間する。
 SOC決定部53は、二次電池10が充放電してないときは開放電圧推定部52により推定されたSOCを採用する。充放電していないときは二次電池10に電流が流れないため電流積算法によりSOCを算出することはできない。SOC決定部53は、二次電池10が充放電しているときは電流積算推定部51により推定されたSOCをそのまま、又はそのSOCを開放電圧推定部52により推定されたSOCで補正したSOCを採用する。
 OCV法により推定されるSOCの値は、電流積算法により推定されるSOCの値より振れやすい性質がある。電流積算法では電流の積分値が用いられるため、電流値の変化の影響をダイレクトに受けるOCV法より値が安定する。車載用途の二次電池では、消費電力の不規則な変化や、充電と放電が不規則に切り替わるなどの理由により、電流の値も不規則である。特に都市部では渋滞や信号待ちが頻繁に発生するため、消費電力の変動や、充電と放電が数秒オーダで切り替わることが発生する。従って二次電池10が使用されているときは基本的に電流積算法により推定されるSOCを採用する。
 電流検出素子の特性が理想的であれば電流積算法により推定されるSOCをそのまま使用すればよいが、通常、電流検出素子には製造ばらつきや温度特性などに起因するオフセット誤差が発生する。このようなオフセット誤差は軽微なものであるが、電流積算法では時間経過とともにその誤差が累積されていく。OCV法ではオフセット誤差は累積されない。
 SOC決定部53は、電流積算推定部51により推定されたSOCの値と開放電圧推定部52により推定されたSOCの値との乖離が設定値を超えた場合、前者のSOCの値を後者のSOCの値に近づけるように補正する。原則として安定した値をとる電流積算法により算出されたSOCの値を採用し、電流検出素子の累積誤差の影響を緩和すべく、そのSOCの値をOCV法により算出されたSOCの値に近づける。これによりSOCの推定精度を向上させることができる。
 図2は、SOC決定部53によるSOC決定処理の一例を示す図である。車両のイグニッションスイッチがオンの状態ではSOC推定が定期的(例えば、10ms毎、1s毎)に実行される。図2の上部にはOCV法により推定されるSOCの推移(細線で示す)、電流積算法により推定されるSOCの推移(太線で示す)を描いており、図2の下部には電流の推移を描いている。
 電流が流れていない状態ではOCV法のみによりSOCが推定され、そのSOCが採用される。その後、放電が開始され電流値が負になるとOCV法と電流積算法の両方でSOCが推定される。放電状態では基本的に電流積算法により推定されたSOCが採用される。
 時間経過とともにOCV法により推定されるSOCの値と電流積算法により推定されるSOCの値とが乖離してくる。その乖離値Δdが設定値を超えると、電流積算法により推定されたSOCの値に対する補正処理が発動する。具体的には電流積算に用いられる電流値を補正する。例えば、下記(式3)を用いて電流積算法にて加算される電流値Iqを算出する。
 Iq=Id×α …(式3)
 Idは電流の実測値、αは補正係数をそれぞれ示す。補正係数αは固定値であってもよいし、乖離値Δdに応じて変動する変動値であってもよい。また乖離値Δdと補正係数αとの関係を記述したテーブルを補正テーブル62として用意しておいてもよい。なお上述の設定値、及び補正係数αまたはΔSOCと補正係数αとの関係を記述したテーブルには、設計者による実験またはシミュレーションにもとづき算出された値を用いることができる。
 図2では当該補正処理の発動により電流積算法により推定されるSOCが点線のように推移せず、OCV法により推定されるSOCのほうに近づいている(矢印a参照)。その後、放電が終了し電流が実質的に流れなくなり、その状態が一定期間継続すると電流積算法によるSOC推定が停止し、OCV法により推定されるSOCが採用されるようになる(矢印b参照)。
 その後、充電が開始され電流値が正になると電流積算法によるSOC推定が再開され、再びOCV法と電流積算法の両方でSOCが推定されるようになる。充電状態では基本的に電流積算法により推定されたSOCが採用される。充電の場合も放電の場合と同様に、上述の補正処理が発動する。
 図1に戻る。SOH推定部54は、SOC決定部53により採用されるSOCの変化値と、その変化に要した期間における電流積算値をもとに電池セルS1~SnのSOHを推定する。SOHは電池の劣化度を示す代表的な指標であり、電池交換の目安などに利用される。例えば、SOHは下記(式4)、(式5)により推定できる。
 SOH=FCC/Cd×100 …(式4)
 FCC=(Qt/ΔSOC)×100 …(式5)
 Cdは電池の初期容量(設計容量)、ΔSOCはSOCの変化値、QtはΔSOCに要した区間容量(電流積算値)をそれぞれ示す。即ち、SOHは初期容量Cdに対する満充電容量FCCの割合で定義される。
 図3は、放電時の放電容量とSOCの関係を示す図である。放電時は放電容量が大きくなるに従ってSOCの値が低下する。充電時はこの逆で充電容量が大きくなるに従ってSOCの値が上昇する。SOH推定部54は、SOC決定部53により採用されるSOCが設定値(例えば、10%)変化すると、その変化に要した区間における充電/放電容量を特定し、上記(式4)、(式5)を用いてSOHを推定する。その区間における充電/放電容量は、当該区間における電流積算値により特定できる。
 SOHの推定精度を上げるために区間容量Qtを補正してもよい。例えば、検出された電流値の時間積分により算出された区間容量Qtに対して温度補正及び/又は電流補正を施してもよい。SOH推定部54は、補正後の区間容量Qt’を下記(式6)、(式7)を用いて算出する。
 Qt’=Qt×αt …(式6)
 Qt’=Qt×αi …(式7)
 αtは温度補正係数を、αiは電流補正係数をそれぞれ示す。
 図4は、温度補正テーブル62a及び電流補正テーブル62bを示す。温度補正テーブル62aは、温度検出回路45により検出される温度値と温度補正係数αtの対応関係を記述したテーブルである。電流補正テーブル62bは、電流検出回路40により検出される電流値と電流補正係数αiの対応関係を記述したテーブルである。
 SOH推定部54は、検出された温度値をもとに温度補正テーブル62aを参照して温度補正係数αtを特定する。また検出された電流値をもとに電流補正テーブル62bを参照して電流補正係数αiを特定する。二つの補正係数を区間容量Qtに掛ける順番はどちらからでもよい。
 SOH推定部54はSOHを推定すると、推定した新たなSOHでSOH/FCC保持部63に保持されているSOHを更新する。具体的には、新たなSOHで現在保持されているSOHを上書きする。
 図1に戻る。上記(式4)、(式5)に示すようにSOH推定の演算途中でFCCが推定される。SOH推定部54は、SOH推定に伴い新たに推定されるFCCにより、SOH/FCC保持部63に保持されているFCCを更新する。
 上記(式1)に示したように、電流積算推定部51は、電流積算開始時点のSOCに、電流積算値Qを満充電容量FCCで正規化した値を加算して現在のSOCを推定する。従って電流積算法により推定されるSOCの精度は、FCCの影響を受ける。通常、SOH推定処理は頻繁に実行されるものではなく、少なくともSOC推定よりも頻度が低くなる。例えば、SOH推定処理はイグニッションスイッチがオンされたとき毎、一日毎に実行される。
 しかしながら、車両走行中の二次電池10の充放電によっても厳密には電池セルS1~Snは劣化しているため、SOHは上昇し、FCCは低下している。これに対して本実施の形態では二次電池10の充放電中にSOC推定処理と並行してSOH推定処理を実行する。これにより、電流積算法によるSOC推定で使用されるFCCを常に最新の状態に維持できる。
 本実施の形態では一定量のSOC変動をトリガとして、SOH推定処理が発動される。即ち、SOH推定部54は、SOC決定部53により決定されるSOCが設定値分、変化するたびにSOH、FCCを推定する。FCC更新部55は、SOH推定部54によりSOHが推定されるたびに、電流積算法によるSOC推定処理で使用されるFCCを更新する。
 通信部56は、SOC決定部53により決定されたSOC及びSOH推定部54により推定されたSOHをECU500に送信する。電池管理装置20とECU500間はCAN(Controller Area Network)などのネットワークにより接続される。
 図5は、本発明の実施の形態に係る電池管理装置20によるSOC推定処理を説明するためのフローチャートである。SOC決定部53はイグニッションスイッチがオン状態において(S10のON)、二次電池10の電流値Iが実質0であるか否か判定する(S20)。実質0の場合は(S20のY)、OCV法のみによりSOC推定が実行され、SOC決定部53はOCV法により推定されたSOCをそのまま採用する(S40)。その後、ステップS10に遷移する。
 二次電池10の電流値Iが実質0でない場合(即ち、充放電中)(S20のN)。電流積算法およびOCV法の両方でSOCが推定される(S30)。SOC決定部53は電流積算法により推定されたSOCを、OCV法で推定されたSOCで補正する(S31)。
 SOCの変化値ΔSOCが設定値に到達した場合(S32のY)、SOH推定部54はSOH、FCCを推定する(S33)。SOH推定部54は、推定されたSOH、FCCでSOH/FCC保持部63内のSOH、FCCを更新する。またFCC更新部55は、推定されたFCCで、電流積算法によるSOC推定で使用されるFCCを更新する(S34)。その後、ステップS10に遷移する。
 SOCの変化値ΔSOCが設定値に到達していない場合(S32のN)、ステップS33、S34をスキップする。イグニッションスイッチがオフ状態になると(S10のOFF)、電池管理装置20はSOC推定処理を終了する。
 なお外部のAC電源から充電プラグ400を介して二次電池10に充電される外部充電期間はSOC推定処理は実行されない。従ってSOH推定処理も実行されない。通常、外部充電は設定電圧に到達するまでは定電流充電(CC充電)され、走行中でもないため、外部充電期間中にSOC推定処理を実行する必要性は低い。充電終了時にSOC及びSOHが推定される。その場合、SOH推定に使用されるSOCの変化値ΔSOCには、充電開始時のSOCと充電終了時のSOCの差分が用いられる。また区間容量Qtには、充電開始時から充電終了時までの充電容量が用いられる。
 以上説明したように本実施の形態によれば、電流積算法によりSOC推定処理と並行してSOH推定処理を実行し、そのSOHに対応するFCCで電流積算法で使用されるFCCを更新する。これにより、電流積算法により推定されるSOCの精度を従来より向上させることができる。また、従来より高精度な電流積算法により推定されるSOCを、OCV法により推定されるSOCを用いて補正することにより、更に推定精度を向上させることができる。
 以上、本発明を実施の形態をもとに説明した。こられ実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上述の本発明の実施の形態では、車載用の動力源として車両に搭載される電源装置について説明したが、電源装置の用途は車両用に限定されない。電源装置は、蓄電システムにも用いることが可能である。電源装置を蓄電システムに用いる場合、図5のステップ10は、不要である。
 上述の実施の形態においてSOH推定部54は、SOCの変化値ΔSOCと区間容量Qtの比を用いてFCCを推定した。この点、SOCが低い領域ではSOCと容量の比が崩れる領域がある。そこで設計者は、使用する電池のSOCと容量の関係を実験やシミュレーションにより予め確認し、SOCと容量の比が安定しているSOCの領域(例えば、30%~90%)を特定する。SOH推定部54は、SOCの値がその領域に存在する場合はSOHを推定し、存在しない場合はSOH推定をスキップする。これによれば、SOHの推定精度を向上させることができる。
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 電池に流れる電流の値を積算することにより前記電池のSOCを推定する電流積算推定部と、
 前記電池の測定電圧の値を少なくとも含む前記電池の状態を示す値から前記電池の開放電圧値を推定し、その開放電圧値に対応するSOCを特定する開放電圧推定部と、
 前記電池の非充放電中にて前記開放電圧推定部により推定されたSOCを採用し、前記電池の充放電中にて前記電流積算推定部により推定されたSOCをそのまま、又は前記開放電圧推定部により推定されたSOCで補正して採用するSOC決定部と、
 前記SOCの推定と並行して、前記SOC決定部により採用されるSOCの変化値と、
その変化に要した期間における電流積算値をもとに前記電池のSOHを推定するSOH推定部と、
 を備えることを特徴とする電池管理装置。
[項目2]
 前記SOH推定部によるSOH推定に伴い新たに推定される満充電容量により、前記電流積算推定部によるSOC推定で使用される満充電容量を更新する満充電容量更新部を、さらに備え、
 前記電流積算推定部は、電流積算開始時点のSOCに、電流積算値を前記満充電容量で正規化した値を加算して現在のSOCを推定することを特徴とする項目1に記載の電池管理装置。
[項目3]
 前記SOH推定部は、前記SOC決定部により採用されるSOCが設定値分、変化するたびにSOHを推定し、
 前記満充電容量更新部は、前記SOH推定部によりSOHが推定されるたびに、前記電流積算推定部によるSOC推定で使用される満充電容量を更新することを特徴とする項目2に記載の電池管理装置。
[項目4]
 走行用または負荷用のエネルギーを蓄えるための電池と、
 前記電池を管理する項目1から3のいずれかに記載の電池管理装置と、
 を備えることを特徴とする電源装置。
[項目5]
 電池に流れる電流の値を積算することにより前記電池のSOCを推定するステップであって、電流積算開始時点のSOCに、電流積算値を前記電池の満充電容量で正規化した値を加算して現在のSOCを推定する電流積算推定ステップと、
 前記電池の測定電圧の値を少なくとも含む前記電池の状態を示す値から前記電池の開放電圧値を推定し、その開放電圧値に対応するSOCを特定する開放電圧推定ステップと、
 前記電池の非充放電中にて前記開放電圧推定ステップにより推定されたSOCを採用し、前記電池の充放電中にて前記電流積算推定ステップにより推定されたSOCをそのまま、又は前記開放電圧推定ステップにより推定されたSOCで補正して採用するSOC決定ステップと、
 採用されるSOCの変化値と、その期間における電流積算値をもとに前記電池のSOHを推定するSOH推定ステップと、
 推定されたSOHをもとに前記満充電容量を更新する満充電容量更新ステップと、
 を備えることを特徴とするSOC推定方法。
なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラム等の間で変換したものもまた、本発明の態様として有効である。
 S1,Sn 電池セル、 10 二次電池、 15 ホール素子、 20 電池管理装置、 30 電圧検出回路、 40 電流検出回路、 45 温度検出回路、 50 制御部、 51 電流積算推定部、 52 開放電圧推定部、 53 SOC決定部、 54 SOH推定部、 55 FCC更新部、 56 通信部、 60 記憶部、 61 SOC-OCVテーブル、 62 補正テーブル、 63 SOH/FCC保持部、 100 電源装置、 200 インバータ、 300 走行用モータ、 400 充電プラグ、 500 ECU。

Claims (5)

  1.  電池に流れる電流の値を積算することにより前記電池のSOC(State Of Charge)を推定する電流積算推定部と、
     前記電池の測定電圧の値を少なくとも含む前記電池の状態を示す値から前記電池の開放電圧値を推定し、その開放電圧値に対応するSOCを特定する開放電圧推定部と、
     前記電池の非充放電中にて前記開放電圧推定部により推定されたSOCを採用し、前記電池の充放電中にて前記電流積算推定部により推定されたSOCをそのまま、又は前記開放電圧推定部により推定されたSOCで補正して採用するSOC決定部と、
     前記SOCの推定と並行して、前記SOC決定部により採用されるSOCの変化値と、
    その変化に要した期間における電流積算値をもとに前記電池のSOH(State Of Health)を推定するSOH推定部と、
     を備えることを特徴とする電池管理装置。
  2.  前記SOH推定部によるSOH推定に伴い新たに推定される満充電容量により、前記電流積算推定部によるSOC推定で使用される満充電容量を更新する満充電容量更新部を、
    さらに備え、
     前記電流積算推定部は、電流積算開始時点のSOCに、電流積算値を前記満充電容量で正規化した値を加算して現在のSOCを推定することを特徴とする請求項1に記載の電池管理装置。
  3.  前記SOH推定部は、前記SOC決定部により採用されるSOCが設定値分、変化するたびにSOHを推定し、
     前記満充電容量更新部は、前記SOH推定部によりSOHが推定されるたびに、前記電流積算推定部によるSOC推定で使用される満充電容量を更新することを特徴とする請求項2に記載の電池管理装置。
  4.  走行用または負荷用のエネルギーを蓄えるための電池と、
     前記電池を管理する請求項1から3のいずれかに記載の電池管理装置と、
     を備えることを特徴とする電源装置。
  5.  電池に流れる電流の値を積算することにより前記電池のSOC(State Of Charge)を推定するステップであって、電流積算開始時点のSOCに、電流積算値を前記電池の満充電容量で正規化した値を加算して現在のSOCを推定する電流積算推定ステップと、
     前記電池の測定電圧の値を少なくとも含む前記電池の状態を示す値から前記電池の開放電圧値を推定し、その開放電圧値に対応するSOCを特定する開放電圧推定ステップと、
     前記電池の非充放電中にて前記開放電圧推定ステップにより推定されたSOCを採用し、前記電池の充放電中にて前記電流積算推定ステップにより推定されたSOCをそのまま、又は前記開放電圧推定ステップにより推定されたSOCで補正して採用するSOC決定ステップと、
     採用されるSOCの変化値と、その期間における電流積算値をもとに前記電池のSOH(State Of Health)を推定するSOH推定ステップと、
     推定されたSOHをもとに前記満充電容量を更新する満充電容量更新ステップと、
     を備えることを特徴とするSOC推定方法。
PCT/JP2013/007000 2012-11-30 2013-11-28 電池管理装置、電源装置およびsoc推定方法 WO2014083856A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/647,134 US20150293183A1 (en) 2012-11-30 2013-11-28 Battery management device, power supply, and soc estimation method
JP2014549832A JPWO2014083856A1 (ja) 2012-11-30 2013-11-28 電池管理装置、電源装置およびsoc推定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012262597 2012-11-30
JP2012-262597 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083856A1 true WO2014083856A1 (ja) 2014-06-05

Family

ID=50827516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007000 WO2014083856A1 (ja) 2012-11-30 2013-11-28 電池管理装置、電源装置およびsoc推定方法

Country Status (3)

Country Link
US (1) US20150293183A1 (ja)
JP (1) JPWO2014083856A1 (ja)
WO (1) WO2014083856A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137358A (zh) * 2015-08-27 2015-12-09 张家港莫特普数据科技有限公司 基于大数据自学习机制的动力电池的soc/soh预测方法
WO2016178308A1 (ja) * 2015-05-01 2016-11-10 カルソニックカンセイ株式会社 二次電池の充電率算出装置、及び蓄電池システム
CN106662621A (zh) * 2014-07-17 2017-05-10 日立汽车系统株式会社 电池状态检测装置、二次电池系统、程序产品和电池状态检测方法
KR20170068283A (ko) * 2015-12-09 2017-06-19 엘지이노텍 주식회사 배터리 충전상태 추정 장치 및 그 방법
CN108474824A (zh) * 2016-01-15 2018-08-31 株式会社杰士汤浅国际 蓄电元件管理装置、蓄电元件模块、车辆及蓄电元件管理方法
WO2018192069A1 (zh) * 2017-04-18 2018-10-25 华为技术有限公司 电池健康状态的估计方法及装置
JP2018170815A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 蓄電システム
JP2018169238A (ja) * 2017-03-29 2018-11-01 日本電気株式会社 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
EP3264119A4 (en) * 2015-02-19 2019-01-02 Kabushiki Kaisha Toshiba, Inc. Electricity storage system, electricity storage control method, and electricity storage control program
WO2019064820A1 (ja) * 2017-09-29 2019-04-04 本田技研工業株式会社 電池容量推定装置、方法及びプログラム
KR20190037985A (ko) * 2017-09-29 2019-04-08 주식회사 엘지화학 배터리 팩의 soh를 산출하는 장치 및 방법
CN110058177A (zh) * 2019-05-06 2019-07-26 奇瑞新能源汽车技术有限公司 一种动力电池电量soc修正方法
CN110579718A (zh) * 2019-09-03 2019-12-17 北京海博思创科技有限公司 电池和电池包的健康度soh获取方法及装置
JP2020508629A (ja) * 2017-10-11 2020-03-19 エルジー・ケム・リミテッド バッテリーの容量の推定装置及び方法、これを備えるバッテリーの管理装置及び方法
WO2020090949A1 (ja) * 2018-10-31 2020-05-07 株式会社Gsユアサ 蓄電素子評価装置、コンピュータプログラム、蓄電素子評価方法、学習方法及び生成方法
CN113002363A (zh) * 2021-03-03 2021-06-22 一汽解放汽车有限公司 一种电池荷电量的修正方法、装置、车辆及介质
US11196271B2 (en) * 2018-10-09 2021-12-07 Toyota Jidosha Kabushiki Kaisha Full-charge-capacity estimating device for power supply device
JP2022098121A (ja) * 2020-12-21 2022-07-01 矢崎総業株式会社 バッテリ制御装置
WO2022249943A1 (ja) * 2021-05-28 2022-12-01 株式会社Gsユアサ 推定装置、蓄電装置、推定方法
JP7392305B2 (ja) 2019-07-05 2023-12-06 スズキ株式会社 Soc推定装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006450B1 (fr) * 2013-06-04 2015-05-22 Renault Sa Procede pour estimer l'etat de sante d'une cellule electrochimique de stockage d'energie electrique
KR20150024561A (ko) * 2013-08-27 2015-03-09 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
KR101619620B1 (ko) * 2014-10-17 2016-05-10 현대자동차주식회사 잔존용량 산출 장치 및 방법
WO2016132813A1 (ja) * 2015-02-19 2016-08-25 三菱電機株式会社 電池状態推定装置
JP6414336B2 (ja) * 2015-08-26 2018-11-07 日産自動車株式会社 劣化度推定装置及び劣化度推定方法
US10705147B2 (en) * 2015-12-17 2020-07-07 Rohm Co., Ltd. Remaining capacity detection circuit of rechargeable battery, electronic apparatus using the same, automobile, and detecting method for state of charge
TWI581542B (zh) * 2016-03-01 2017-05-01 財團法人工業技術研究院 電池管理系統及應用其之電池系統
FR3050278B1 (fr) * 2016-04-15 2018-03-30 Saft Procede de determination de la valeur de parametres relatifs a l’etat d’un accumulateur d’une batterie, batterie et systeme de gestion electronique d’une batterie
KR101846913B1 (ko) * 2016-11-01 2018-04-09 현대자동차 주식회사 하이브리드 차량의 배터리 충전 제어 장치 및 충전 제어 방법
CN106340689A (zh) * 2016-11-21 2017-01-18 上海航天电源技术有限责任公司 一种电池组系统容量自学习的方法
US11307261B2 (en) * 2017-03-31 2022-04-19 Mitsubishi Electric Corporation Rechargeable battery state estimation device
CN107271906B (zh) * 2017-05-31 2019-10-18 宁德时代新能源科技股份有限公司 电池包健康度估算方法和装置
JP6577990B2 (ja) * 2017-11-14 2019-09-18 本田技研工業株式会社 内部状態推定装置
US11502530B2 (en) * 2017-12-26 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Battery management device, battery system, and vehicle power supply system for managing battery state of charge level when in non-use state
KR102525676B1 (ko) 2018-02-20 2023-04-24 에스케이온 주식회사 배터리 관리 시스템
CN109061483A (zh) * 2018-06-28 2018-12-21 珠海格力电器股份有限公司 电池健康状态的检测方法、装置、存储介质和处理器
CN110850296A (zh) * 2018-08-01 2020-02-28 北京京东尚科信息技术有限公司 一种评估电池健康度的方法和装置
CN110879364B (zh) * 2018-08-27 2022-03-18 比亚迪股份有限公司 一种修正电池荷电状态soc显示的方法、装置、电子设备
KR102497448B1 (ko) 2019-02-14 2023-02-08 주식회사 엘지에너지솔루션 배터리 셀 이상 판단 장치 및 방법
CN110988690B (zh) * 2019-04-25 2021-03-09 宁德时代新能源科技股份有限公司 电池健康状态修正方法、装置、管理系统以及存储介质
CN110281811B (zh) * 2019-04-29 2023-04-07 山东沂星电动汽车有限公司 一种电动汽车的电池的限流保护方法及系统
EP3736587B1 (en) * 2019-05-08 2023-11-01 Tata Consultancy Services Limited A method and a system for estimation of remaining useful life in lithium based batteries
CN110112807B (zh) * 2019-05-29 2022-05-10 东北电力大学 一种储能系统多电池组并联功率分配方法
EP3754352A1 (en) 2019-06-17 2020-12-23 Volvo Car Corporation Method and system for improving battery capacity estimations
CN112485677A (zh) 2019-09-12 2021-03-12 东莞新能德科技有限公司 电池容量更新方法及装置、电子装置以及存储介质
US20220221524A1 (en) * 2019-09-25 2022-07-14 Exicom Tele-Systems Limited System and method for managing a battery pack
FR3104728B1 (fr) * 2019-12-11 2021-12-10 Electricite De France Diagnostic de systèmes de stockage d’énergie en opération
CN112952225B (zh) * 2019-12-11 2023-05-23 中车时代电动汽车股份有限公司 一种电池系统的soc修正方法及其装置
KR20210074004A (ko) * 2019-12-11 2021-06-21 주식회사 엘지에너지솔루션 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
US11581748B2 (en) 2020-04-13 2023-02-14 Semiconductor Components Industries, Llc Methods and apparatus for a battery
US20220228558A1 (en) * 2021-01-19 2022-07-21 General Electric Renovables Espana, S.L. Systems and methods for operating a power generating asset
CN113009348B (zh) * 2021-04-01 2024-03-12 浙江吉利控股集团有限公司 一种提高动力电池soc估算精度的方法及其装置
US20220381848A1 (en) * 2021-06-01 2022-12-01 Guangzhou Automobile Group Co., Ltd. Method and system for detecting vehicle battery cell imbalance
CN116819346B (zh) * 2023-08-29 2023-11-07 深圳凌奈智控有限公司 电池soc估算方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243813A (ja) * 2001-02-16 2002-08-28 Nissan Motor Co Ltd 二次電池の電池容量劣化演算装置
JP2012177588A (ja) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd 充電率推定装置、充電率推定方法、及びプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970841B1 (ko) * 2008-08-08 2010-07-16 주식회사 엘지화학 배터리 전압 거동을 이용한 배터리 용량 퇴화 추정 장치 및방법
JP5771909B2 (ja) * 2010-06-08 2015-09-02 日産自動車株式会社 二次電池の充電容量推定装置
JP4845066B1 (ja) * 2010-08-18 2011-12-28 古河電気工業株式会社 蓄電デバイスの状態検知方法及びその装置
JP5419832B2 (ja) * 2010-09-07 2014-02-19 カルソニックカンセイ株式会社 電池容量算出装置および電池容量算出方法
US8452556B2 (en) * 2010-09-22 2013-05-28 GM Global Technology Operations LLC Method and apparatus for estimating SOC of a battery
JP5472048B2 (ja) * 2010-11-10 2014-04-16 株式会社デンソー 車載2次電池の状態定量化装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243813A (ja) * 2001-02-16 2002-08-28 Nissan Motor Co Ltd 二次電池の電池容量劣化演算装置
JP2012177588A (ja) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd 充電率推定装置、充電率推定方法、及びプログラム

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662621A (zh) * 2014-07-17 2017-05-10 日立汽车系统株式会社 电池状态检测装置、二次电池系统、程序产品和电池状态检测方法
CN106662621B (zh) * 2014-07-17 2020-09-15 日本汽车能源株式会社 电池状态检测装置、二次电池系统、程序产品和电池状态检测方法
US10725111B2 (en) 2014-07-17 2020-07-28 Vehicle Energy Japan Inc. Battery state detection device, secondary battery system, program product, and battery state detection method
EP3264119A4 (en) * 2015-02-19 2019-01-02 Kabushiki Kaisha Toshiba, Inc. Electricity storage system, electricity storage control method, and electricity storage control program
WO2016178308A1 (ja) * 2015-05-01 2016-11-10 カルソニックカンセイ株式会社 二次電池の充電率算出装置、及び蓄電池システム
CN105137358A (zh) * 2015-08-27 2015-12-09 张家港莫特普数据科技有限公司 基于大数据自学习机制的动力电池的soc/soh预测方法
CN105137358B (zh) * 2015-08-27 2018-06-26 张家港莫特普数据科技有限公司 基于大数据自学习机制的动力电池的soc/soh预测方法
KR20170068283A (ko) * 2015-12-09 2017-06-19 엘지이노텍 주식회사 배터리 충전상태 추정 장치 및 그 방법
KR102616824B1 (ko) * 2015-12-09 2023-12-21 엘지이노텍 주식회사 배터리 충전상태 추정 장치 및 그 방법
CN108474824A (zh) * 2016-01-15 2018-08-31 株式会社杰士汤浅国际 蓄电元件管理装置、蓄电元件模块、车辆及蓄电元件管理方法
JP2018170815A (ja) * 2017-03-29 2018-11-01 Tdk株式会社 蓄電システム
JP2018169238A (ja) * 2017-03-29 2018-11-01 日本電気株式会社 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
WO2018192069A1 (zh) * 2017-04-18 2018-10-25 华为技术有限公司 电池健康状态的估计方法及装置
CN108732500A (zh) * 2017-04-18 2018-11-02 华为技术有限公司 电池健康状态的估计方法及装置
US10948548B2 (en) 2017-04-18 2021-03-16 Huawei Technologies Co., Ltd. Method and apparatus for estimating battery state of health
CN108732500B (zh) * 2017-04-18 2019-11-15 华为技术有限公司 电池健康状态的估计方法及装置
KR20190037985A (ko) * 2017-09-29 2019-04-08 주식회사 엘지화학 배터리 팩의 soh를 산출하는 장치 및 방법
JP7045544B2 (ja) 2017-09-29 2022-04-01 エルジー エナジー ソリューション リミテッド バッテリーパックのsohを算出する装置及び方法
JP2019066216A (ja) * 2017-09-29 2019-04-25 本田技研工業株式会社 電池容量推定装置、方法及びプログラム
JP2020528551A (ja) * 2017-09-29 2020-09-24 エルジー・ケム・リミテッド バッテリーパックのsohを算出する装置及び方法
KR102179684B1 (ko) * 2017-09-29 2020-11-17 주식회사 엘지화학 배터리 팩의 soh를 산출하는 장치 및 방법
US10852358B2 (en) 2017-09-29 2020-12-01 Honda Motor Co., Ltd. Battery capacity estimation device, method and program
WO2019064820A1 (ja) * 2017-09-29 2019-04-04 本田技研工業株式会社 電池容量推定装置、方法及びプログラム
JP2020508629A (ja) * 2017-10-11 2020-03-19 エルジー・ケム・リミテッド バッテリーの容量の推定装置及び方法、これを備えるバッテリーの管理装置及び方法
US11391779B2 (en) 2017-10-11 2022-07-19 Lg Energy Solution, Ltd. Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
JP7041800B2 (ja) 2017-10-11 2022-03-25 エルジー エナジー ソリューション リミテッド バッテリーの容量の推定装置及び方法、これを備えるバッテリーの管理装置及び方法
US11196271B2 (en) * 2018-10-09 2021-12-07 Toyota Jidosha Kabushiki Kaisha Full-charge-capacity estimating device for power supply device
JPWO2020090949A1 (ja) * 2018-10-31 2021-10-14 株式会社Gsユアサ 蓄電素子評価装置、コンピュータプログラム、蓄電素子評価方法、学習方法及び生成方法
EP3875976A4 (en) * 2018-10-31 2022-01-05 GS Yuasa International Ltd. DEVICE FOR EVALUATING AN ELECTRICITY STORAGE ELEMENT, COMPUTER PROGRAM, METHOD FOR EVALUATING AN ELECTRICITY STORAGE ELEMENT, LEARNING METHOD, AND GENERATING METHOD
WO2020090949A1 (ja) * 2018-10-31 2020-05-07 株式会社Gsユアサ 蓄電素子評価装置、コンピュータプログラム、蓄電素子評価方法、学習方法及び生成方法
JP7380585B2 (ja) 2018-10-31 2023-11-15 株式会社Gsユアサ 蓄電素子評価装置、コンピュータプログラム、蓄電素子評価方法、学習方法及び生成方法
CN110058177A (zh) * 2019-05-06 2019-07-26 奇瑞新能源汽车技术有限公司 一种动力电池电量soc修正方法
JP7392305B2 (ja) 2019-07-05 2023-12-06 スズキ株式会社 Soc推定装置
CN110579718A (zh) * 2019-09-03 2019-12-17 北京海博思创科技有限公司 电池和电池包的健康度soh获取方法及装置
JP2022098121A (ja) * 2020-12-21 2022-07-01 矢崎総業株式会社 バッテリ制御装置
JP7344192B2 (ja) 2020-12-21 2023-09-13 矢崎総業株式会社 バッテリ制御装置
CN113002363A (zh) * 2021-03-03 2021-06-22 一汽解放汽车有限公司 一种电池荷电量的修正方法、装置、车辆及介质
WO2022249943A1 (ja) * 2021-05-28 2022-12-01 株式会社Gsユアサ 推定装置、蓄電装置、推定方法

Also Published As

Publication number Publication date
US20150293183A1 (en) 2015-10-15
JPWO2014083856A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2014083856A1 (ja) 電池管理装置、電源装置およびsoc推定方法
JP6572448B2 (ja) 電池状態推定装置、および電源装置
JP5621818B2 (ja) 蓄電システムおよび均等化方法
US9272635B2 (en) Power storage system and method of calculating full charge capacity
WO2016147572A1 (ja) 電池管理装置、および電源装置
US20140225571A1 (en) Control device and control method for nonaqueous secondary battery
US8947051B2 (en) Storage capacity management system
US20160190658A1 (en) Battery-state estimation device
JP2015121444A (ja) 蓄電システム
JP2009071986A (ja) 車載バッテリの劣化度演算装置
JP6107142B2 (ja) 電源制御装置、電源モデル更新方法、プログラム、媒体
JP6316754B2 (ja) 電池管理装置および電源装置
JP5862478B2 (ja) 蓄電システムおよび制御方法
JP2014107032A (ja) 電池システムおよび、リチウムイオン二次電池の内部抵抗の推定方法
US11180051B2 (en) Display apparatus and vehicle including the same
CN112829635A (zh) 电动车辆电池中的析锂检测和缓解
JP2004325263A (ja) 電池の自己放電量検出装置
JP2015095917A (ja) 車両
JP5975925B2 (ja) 電池制御装置、蓄電装置
JP5772615B2 (ja) 蓄電システム
JP5724866B2 (ja) 監視システムおよび監視方法
JP2020061823A (ja) 二次電池制御装置
JP6095239B2 (ja) 蓄電器管理装置及び蓄電器管理方法
JP5288140B2 (ja) 蓄電器制御装置
JP2021064993A (ja) 充電状態表示装置及び充電状態表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549832

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14647134

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858171

Country of ref document: EP

Kind code of ref document: A1