WO2016178308A1 - 二次電池の充電率算出装置、及び蓄電池システム - Google Patents

二次電池の充電率算出装置、及び蓄電池システム Download PDF

Info

Publication number
WO2016178308A1
WO2016178308A1 PCT/JP2016/002163 JP2016002163W WO2016178308A1 WO 2016178308 A1 WO2016178308 A1 WO 2016178308A1 JP 2016002163 W JP2016002163 W JP 2016002163W WO 2016178308 A1 WO2016178308 A1 WO 2016178308A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
charging rate
secondary battery
charging
rate
Prior art date
Application number
PCT/JP2016/002163
Other languages
English (en)
French (fr)
Inventor
欣之介 板橋
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to US15/570,896 priority Critical patent/US20180292462A1/en
Publication of WO2016178308A1 publication Critical patent/WO2016178308A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a charging rate calculation device and a storage battery system that calculate the charging rate of a secondary battery used in, for example, a hybrid vehicle.
  • a method for estimating the charging rate using a current integration method (Coulomb count method) or an open-circuit voltage estimation method (sequential parameter method) is known (for example, Patent Document 1).
  • the current integration method the charge / discharge current of the secondary battery is detected in time series and the current is integrated to estimate the current integration method charging rate (ASOC: Absolute State State of Charge).
  • ASOC Absolute State State of Charge
  • the open-circuit voltage method charging rate (RSOC: Relative State of Charge) is estimated by estimating the open-circuit voltage of the battery using an equivalent circuit model of the battery.
  • V the measurement terminal voltage
  • I the measured charge / discharge current
  • R the estimated internal resistance of the battery.
  • the charge / discharge current I is relatively large, such as charging with a large current
  • the error contributes to the estimated internal resistance R, so there is room for improvement in the estimation accuracy of the open-circuit voltage value and the charging rate.
  • An object of the present invention made in view of such circumstances is to provide a charging rate calculation device and a storage battery system that improve the estimation accuracy of the charging rate of a secondary battery.
  • a charging rate calculation apparatus provides: A charge / discharge current detector for detecting a charge / discharge current value of the secondary battery; A terminal voltage detector for detecting a terminal voltage value of the secondary battery; A first estimation unit that accumulates the charge / discharge current values and estimates a first charging rate; A second estimation unit that estimates a second charging rate based on a relationship between an open-circuit voltage value of the secondary battery and a charging rate; A charge rate calculation unit for calculating a third charge rate based on the first charge rate and the second charge rate each weighted based on the charge / discharge current value; It is characterized by providing.
  • the charging rate calculation apparatus is:
  • the charging rate calculation unit is configured based on the first charging rate and the second charging rate that are respectively weighted according to a charging / discharging rate obtained by dividing the charging / discharging current value by a battery capacity of the secondary battery. It is preferable to calculate the charging rate.
  • the charging rate calculation apparatus is: It is preferable that the higher the charge / discharge rate is, the smaller the weighting for the second charge rate is.
  • the charging rate calculation apparatus is: The second estimation unit further estimates a full charge capacity of the secondary battery, The charging rate calculation unit preferably calculates a charge / discharge rate using the estimated full charge capacity as the battery capacity.
  • the storage battery system is: Lead acid battery, A secondary battery other than the lead storage battery, having a voltage value substantially equal to the voltage value of the lead storage battery and connected in parallel with the lead storage battery, A charge rate calculation device for calculating a charge rate of the secondary battery,
  • the charging rate calculation device includes: A charge / discharge current detector for detecting a charge / discharge current value of the secondary battery; A terminal voltage detector for detecting a terminal voltage value of the secondary battery; A first estimation unit that accumulates the charge / discharge current values and estimates a first charging rate; A second estimation unit that estimates a second charging rate based on a relationship between an open-circuit voltage value of the secondary battery and a charging rate; A charge rate calculation unit that calculates a third charge rate based on the first charge rate and the second charge rate, each weighted based on the charge / discharge current value.
  • the first weighting coefficient ⁇ and the second weighting coefficient ⁇ are based on the charge / discharge current value i (k) of the first secondary battery. It is determined. Then, the final third charging rate SOC3 (k) is calculated based on the weighted first charging rate ⁇ SOC1 (k) and the weighted second charging rate ⁇ SOC2 (k). As described above, the estimation accuracy of the second charging rate SOC2 (k) using the open-circuit voltage estimation method varies depending on the charge / discharge current value i (k). Therefore, the estimation accuracy of the charging rate of the first secondary battery is improved by performing the weighting based on the charging / discharging current value i (k) as described above.
  • the charge / discharge current value i (k) is divided by the battery capacity (design capacity DC or full charge capacity FCC (k)) of the first secondary battery. Weighting is performed according to the charged / discharge rate C (k). Therefore, for example, in the plurality of storage battery systems 10 each using the same type of secondary battery having different battery capacities as the first secondary battery, the first lookup table and the second lookup table can be shared, and the development cost can be shared. Is reduced.
  • the second charging rate SOC2 (k) multiplied by the second charging rate SOC2 (k) as the charging / discharging current value i (k) or the charging / discharging rate C (k) increases.
  • the weight coefficient ⁇ is determined to be small. For this reason, when the charge / discharge current value i (k) is relatively large, the contribution of the second charging rate SOC2 (k), which decreases the estimation accuracy as described above, becomes small. The estimation accuracy of the charging rate is further improved.
  • the charge / discharge rate C (k) is calculated using the estimated full charge capacity FCC (k) as the battery capacity. For this reason, compared with the case where design capacity DC is used, the estimation precision of charging / discharging rate C (k) improves, and the estimation precision of the charging rate of a 1st secondary battery further improves.
  • the first weighting factor ⁇ and the second weighting factor ⁇ are determined based on the charge / discharge current value i (k) of the first secondary battery.
  • the final third charging rate SOC3 (k) is calculated based on the weighted first charging rate ⁇ SOC1 (k) and the weighted second charging rate ⁇ SOC2 (k).
  • the estimation accuracy of the second charging rate SOC2 (k) using the open-circuit voltage estimation method varies depending on the charge / discharge current value i (k). Therefore, the estimation accuracy of the charging rate of the first secondary battery is improved by performing the weighting based on the charging / discharging current value i (k) as described above.
  • FIG. 1 It is a block diagram which shows schematic structure of the storage battery system which concerns on Embodiment 1 of this invention. It is a block diagram which shows schematic structure of the charging rate calculation apparatus of FIG. It is a block diagram which shows schematic structure of the charging rate calculation part of FIG. It is a figure which shows the relationship between the electric current or charging / discharging rate in a 1st look-up table, and a coefficient. It is a figure which shows the relationship between the electric current or charging / discharging rate in a 2nd look-up table, and a coefficient.
  • the storage battery system 10 is mounted on a vehicle such as a hybrid vehicle (HEV vehicle).
  • a vehicle such as a hybrid vehicle (HEV vehicle).
  • HEV vehicle hybrid vehicle
  • the storage battery system 10 includes an alternator 12, a starter 13, a first secondary battery 14, a charge rate calculation device 15, a second secondary battery 16, a load 17, a first switch 18, 2 switch 19, third switch 20, and control unit 21.
  • the alternator 12, the starter 13, the first secondary battery 14, the second secondary battery 16, and the load 17 are connected in parallel.
  • the alternator 12 is a generator and is mechanically connected to a vehicle engine.
  • the alternator 12 can generate electric power by driving the engine.
  • the power generated by the alternator 12 by driving the engine can be supplied to the first secondary battery 14, the second secondary battery 16, the load 17, and the vehicle auxiliary equipment by adjusting the output voltage with a regulator.
  • the alternator 12 can generate power by regeneration when the vehicle is decelerated.
  • the electric power regenerated by the alternator 12 can be used to charge the first secondary battery 14 and the second secondary battery 16.
  • the starter 13 includes a cell motor, for example, and receives power supply from at least one of the first secondary battery 14 and the second secondary battery 16 to start the engine of the vehicle.
  • the first secondary battery 14 is a secondary battery other than a lead storage battery, such as a lithium ion battery or a nickel metal hydride battery.
  • the output voltage of the first secondary battery 14 is substantially the same as the output voltage of the second secondary battery 16 and is, for example, 12V.
  • the output voltage of the first secondary battery 14 may be different from the output voltage of the second secondary battery 16.
  • the output voltage of the first secondary battery 14 is adjusted by the DC / DC converter so as to be substantially the same as the output voltage of the second secondary battery 16.
  • the first secondary battery 14 can supply electric power to the auxiliary machine including the starter 13, the load 17, the ECU, and the like while the engine drive is stopped (when idling is stopped).
  • the charging rate calculation device 15 calculates the charging rate of the first secondary battery 14. Details of the charging rate calculation device 15 will be described later.
  • the second secondary battery 16 is a lead storage battery having an output voltage of a nominal voltage of 12 V, for example, and can supply power to the load 17.
  • the load 17 is a load including an audio, an air conditioner, a navigation system, and the like provided in the vehicle, for example, and operates by consuming the supplied power.
  • the load 17 operates by receiving power supply from the first secondary battery 14 and the second secondary battery 16 while the engine drive is stopped, and the alternator 12 and the first secondary battery 14 while the engine is driven. And the power supply from the second secondary battery 16 operates.
  • the first switch 18 is a switch connected in series with the starter 13.
  • the first switch 18 connects or disconnects the starter 13 in parallel with other components.
  • the second switch 19 is a switch connected in series with the first secondary battery 14.
  • the second switch 19 connects or disconnects the first secondary battery 14 in parallel with other components.
  • the third switch 20 is a switch connected in series with the second secondary battery 16 and the load 17.
  • the third switch 20 connects or disconnects the second secondary battery 16 and the load 17 in parallel with other components.
  • the control unit 21 includes, for example, an ECU provided in the vehicle, and controls the entire operation of the storage battery system 10. For example, the control unit 21 controls the operations of the first switch 18, the second switch 19, and the third switch 20, respectively, and the alternator 12, the first secondary battery 14, and the second secondary battery. Power supply by 16 and charging of the first secondary battery 14 and the second secondary battery 16 are performed.
  • the charging rate calculation device 15 includes a charge / discharge current detection unit 22, a terminal voltage detection unit 23, a current integration method estimation unit (first estimation unit) 24, and an open-circuit voltage method estimation unit (second estimation unit) 25. And a charging rate calculation unit 26 and a delay element 27.
  • the charge / discharge current detection unit 22 includes, for example, a shunt resistor and detects the charge / discharge current value i (k) of the first secondary battery 14.
  • k indicates time in discrete time.
  • the charge / discharge current value i (k) is the absolute value of the charge / discharge current.
  • the detected charge / discharge current value i (k) is input as an input signal to the current integration method estimation unit 24, the open-circuit voltage method estimation unit 25, and the charge rate calculation unit 26, respectively.
  • the charging / discharging current detection unit 22 is not limited to the above-described configuration, and those having various structures and formats can be appropriately employed.
  • the terminal voltage detector 23 detects the terminal voltage value v (k) of the first secondary battery 14.
  • the detected terminal voltage value v (k) is input as an input signal to the current integration method estimation unit 24 and the open-circuit voltage method estimation unit 25, respectively.
  • the terminal voltage detection unit 23 those having various structures and formats can be appropriately adopted.
  • the charging rate corresponding to the terminal voltage value v (0) regarded as OCV (0) is estimated as the first charging rate SOC1 (0).
  • the first charging rate SOC1 (0) is input to the charging rate calculation unit 26 as an input signal.
  • the current integration method estimation unit 24 inputs from the charge / discharge current detection unit 22 to the previous value SOC3 (k ⁇ 1) of the third charging rate input from the delay element 27 as described later.
  • a value obtained by adding the charged and discharged current values i (k) is estimated as the first charging rate SOC1 (k).
  • the estimated first charging rate SOC1 (k) is input to the charging rate calculation unit 26 as an input signal.
  • the open-circuit voltage method estimation unit 25 estimates the open-circuit voltage method charging rate (second charging rate) SOC2 (k). Specifically, first, the open-circuit voltage method estimation unit 25 is based on the charge / discharge current value i (k) and the terminal voltage value v (k) input from the charge / discharge current detection unit 22 and the terminal voltage detection unit 23, respectively. For example, each parameter in the equivalent circuit model of the first secondary battery 14 such as a Foster type RC ladder circuit or a Cowell type RC ladder circuit is estimated.
  • the open-circuit voltage method estimation unit 25 uses an adaptive filter such as a Kalman filter or a least-squares method, and the like, the capacitance value C (k) of the capacitor, the internal resistance value R (k), and the open-circuit voltage value OCV (k). Is estimated.
  • the open-circuit voltage method estimation unit 25 uses an OCV-SOC look-up table that shows a relationship between the open-circuit voltage and the charging rate of the first secondary battery 14 obtained in advance by experiment or simulation, and uses the open-circuit voltage value OCV.
  • the charging rate corresponding to the value of (k) is estimated as the second charging rate SOC2 (k).
  • the estimated second charging rate SOC2 (k) is input to the charging rate calculation unit 26 as an input signal.
  • the open circuit voltage method estimation unit 25 further estimates the soundness SOH (k) based on the relationship between the internal resistance of the first secondary battery 14 and the soundness (SOH: State of Health). Specifically, the open-circuit voltage method estimation unit 25 uses an R-SOH look-up table that shows a relationship between the internal resistance and the soundness level of the first secondary battery 14 obtained in advance by experiment or simulation.
  • the soundness level corresponding to the internal resistance value R (k) is estimated as the soundness level SOH (k).
  • the soundness level SOH (k) is a parameter indicating the degree of deterioration of the battery.
  • the charge rate calculator 26 uses the first charge rate ⁇ SOC1 (k) and the second weight weighted using the first weighting factor ⁇ and the second weighting factor ⁇ based on the charge / discharge current value i (k), respectively. Based on the charging rate ⁇ SOC2 (k), a third charging rate SOC3 (k) is calculated. Preferably, the charging rate calculation unit 26 calculates the first weighting coefficient ⁇ and the second weighting coefficient ⁇ based on the charge / discharge current value i (k) and the battery capacity (design capacity DC or full charge capacity FCC (k)). Based on the weighted first charging rate ⁇ SOC1 (k) and second charging rate ⁇ SOC2 (k), the third charging rate SOC3 (k) is calculated. In the present embodiment, the third charging rate SOC3 (k) is determined as the charging rate of the first secondary battery 14 at time k. Details of the charging rate calculation unit 26 will be described later.
  • the delay element 27 inputs the previous value SOC3 (k ⁇ 1) of the third charging rate to the current integrating method estimating unit 24. .
  • the charging rate calculation unit 26 includes a first coefficient determination unit 28, a second coefficient determination unit 29, a first multiplier 30, a second multiplier 31, and an adder 32.
  • the first coefficient determination unit 28 determines a first weighting coefficient ⁇ to be multiplied by the first charging rate SOC1 (k) based on the charge / discharge current value i (k). Specifically, the first coefficient determination unit 28 calculates a coefficient corresponding to the charge / discharge current value i (k) using a predetermined first look-up table indicating the relationship between the current and the coefficient. The first weighting factor ⁇ is set. Preferably, the first coefficient determination unit 28, according to the charge / discharge rate C (k) obtained by dividing the charge / discharge current value i (k) by the battery capacity (design capacity DC or full charge capacity FCC (k)), A first weighting factor ⁇ is determined.
  • the first coefficient determination unit 28 uses the first look-up table that indicates the relationship between the charge / discharge rate and the coefficient to determine the coefficient corresponding to the charge / discharge rate C (k).
  • the weight coefficient ⁇ is set to 1. Details of the first lookup table will be described later.
  • the design capacity DC may be employed as the battery capacity, but it is desirable to employ the full charge capacity FCC (k).
  • the second coefficient determination unit 29 uses the second lookup table indicating the relationship between the charge / discharge rate and the coefficient, and sets the coefficient corresponding to the charge / discharge rate C (k). A weighting factor ⁇ of 2 is set.
  • FIG. 4 is a graph showing the relationship between the current or charge / discharge rate and the coefficient in the first lookup table.
  • the horizontal axis indicates the current or charge / discharge rate
  • the vertical axis indicates the coefficient.
  • the larger the current value or the charge / discharge rate the larger the value of the corresponding coefficient. That is, the larger the charging / discharging current value i (k) or the charging / discharging rate C (k), the larger the weight of the first charging rate SOC1 (k) estimated by the current integration method.
  • FIG. 5 is a graph showing the relationship between the current or charge / discharge rate and the coefficient in the second lookup table.
  • the horizontal axis indicates the current or charge / discharge rate
  • the vertical axis indicates the coefficient.
  • the larger the current value or the charge / discharge rate the smaller the value of the corresponding coefficient. That is, the larger the charging / discharging current value i (k) or the charging / discharging rate C (k), the smaller the weight of the second charging rate SOC2 (k) estimated by the open circuit voltage estimation method.
  • the first multiplier 30 shown in FIG. 3 calculates a weighted first charging rate ⁇ SOC1 (k) by multiplying the first charging rate SOC1 (k) by the determined first weighting factor ⁇ . To do.
  • the second multiplier 31 multiplies the second charging rate SOC2 (k) by the determined second weighting coefficient ⁇ to calculate a weighted second charging rate ⁇ SOC2 (k).
  • the adder 32 calculates the sum of the weighted first charging rate ⁇ SOC1 (k) and the weighted second charging rate ⁇ SOC2 (k), and adds the sum to the third charging rate SOC3 (k). Determine.
  • the charging rate calculation device 15 based on the charge / discharge current value i (k) of the first secondary battery 14, the first weighting factor ⁇ and the A weighting factor ⁇ of 2 is determined. Then, the final third charging rate SOC3 (k) is calculated based on the weighted first charging rate ⁇ SOC1 (k) and the weighted second charging rate ⁇ SOC2 (k). As described above, the estimation accuracy of the second charging rate SOC2 (k) using the open-circuit voltage estimation method varies depending on the charge / discharge current value i (k). Therefore, the estimation accuracy of the charging rate of the first secondary battery 14 is improved by performing the weighting based on the charge / discharge current value i (k) as described above.
  • the charging rate calculation device 15 the charge / discharge rate C obtained by dividing the charge / discharge current value i (k) by the battery capacity (design capacity DC or full charge capacity FCC (k)) of the first secondary battery 14. Weighting is performed according to (k). For this reason, for example, in the plurality of storage battery systems 10 each using the same type of secondary battery having different battery capacities as the first secondary battery 14, the first lookup table and the second lookup table can be shared and developed. Cost is reduced.
  • the charge rate calculation device 15 calculates the charge / discharge rate C (k) using the estimated full charge capacity FCC (k) as the battery capacity. For this reason, compared with the case where design capacity DC is used, the estimation precision of charging / discharging rate C (k) improves, and the estimation precision of the charging rate of the 1st secondary battery 14 further improves.
  • the storage battery system 10 mounted on the hybrid vehicle has been described, but the present invention is not limited to this.
  • the storage battery system 10 may be mounted on an electric vehicle (EV vehicle).
  • EV vehicle electric vehicle
  • the storage battery system 10 has been described with respect to the configuration including the first secondary battery such as a lithium ion battery and the second secondary battery that is a lead storage battery, but is not limited thereto.
  • the storage battery system 10 may further include another secondary battery having a battery capacity different from that of the first secondary battery or the second secondary battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

二次電池の充電率の推定精度を向上させる充電率算出装置、及び蓄電池システムを提供する。 二次電池14の充電率算出装置15は、二次電池14の充放電電流値を検出する充放電電流検出部22と、二次電池14の端子電圧値を検出する端子電圧検出部23と、充放電電流値を積算して第1の充電率を推定する第1の推定部24と、二次電池14の開放電圧値と充電率との関係に基づき第2の充電率を推定する第2の推定部25と、充放電電流値に基づきそれぞれ重み付けされた第1の充電率及び第2の充電率に基づいて、第3の充電率を算出する充電率算出部26と、を備える。

Description

二次電池の充電率算出装置、及び蓄電池システム 関連出願の相互参照
 本出願は、2015年5月1日に日本国に特許出願された特願2015-094388に基づく優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、例えばハイブリッド車等に用いる二次電池の充電率を算出する充電率算出装置、及び蓄電池システムに関する。
 従来から、充放電が可能な二次電池が、ハイブリッド車等の車両に採用されている。例えば車両の航続可能距離を把握するために、二次電池の充電率(SOC:State of Charge)を検出する必要がある。
 充電率は直接検出できないため、電流積算法(クーロン・カウント法)や開放電圧推定法(逐次パラメータ法)を用いて充電率を推定する手法が知られている(例えば、特許文献1)。電流積算法は、二次電池の充放電電流を時系列で検出し電流を積算することで電流積算法充電率(ASOC:Absolute State of Charge)を推定する。また、開放電圧推定法は、電池の等価回路モデルを用いて電池の開放電圧を推定することで開放電圧法充電率(RSOC:Relative State of Charge)を推定する。
特開2005-201743号公報
 しかしながら、電流積算法において、電流センサの誤差が蓄積するため、充電率の推定精度について改善の余地があった。また開放電圧推定法において、開放電圧OCVは、測定端子電圧をV、測定充放電電流をI、及び電池の推定内部抵抗をRとして、OCV=V+(I×R)で算出される。ここで、例えば大電流による充電等、充放電電流Iが比較的大きい場合、推定内部抵抗Rの誤差の寄与が大きくなるため、開放電圧値及び充電率の推定精度について改善の余地があった。
 かかる事情に鑑みてなされた本発明の目的は、二次電池の充電率の推定精度を向上させる充電率算出装置、及び蓄電池システムを提供することにある。
 上記課題を解決するために本発明の第1の観点に係る充電率算出装置は、
 二次電池の充放電電流値を検出する充放電電流検出部と、
 前記二次電池の端子電圧値を検出する端子電圧検出部と、
 前記充放電電流値を積算して第1の充電率を推定する第1の推定部と、
 前記二次電池の開放電圧値と充電率との関係に基づき第2の充電率を推定する第2の推定部と、
 前記充放電電流値に基づきそれぞれ重み付けされた前記第1の充電率及び前記第2の充電率に基づいて、第3の充電率を算出する充電率算出部と、
を備える
ことを特徴とする。
 また、本発明の第2の観点に係る充電率算出装置は、
 前記充電率算出部は、前記充放電電流値を前記二次電池の電池容量で除算した充放電レートに応じてそれぞれ重み付けされた前記第1の充電率及び前記第2の充電率に基づき第3の充電率を算出する
ことが好ましい。
 また、本発明の第3の観点に係る充電率算出装置は、
 前記充放電レートが大きい程、前記第2の充電率に対する重み付けが小さい
ことが好ましい。
 また、本発明の第4の観点に係る充電率算出装置は、
 前記第2の推定部は、更に前記二次電池の満充電容量を推定し、
 前記充電率算出部は、推定された前記満充電容量を前記電池容量として用いて充放電レートを算出する
ことが好ましい。
 また、本発明の第5の観点に係る蓄電池システムは、
 鉛蓄電池と、
 前記鉛蓄電池の電圧値と略等しい電圧値を有し前記鉛蓄電池と並列に接続された、鉛蓄電池以外の二次電池と、
 前記二次電池の充電率を算出する充電率算出装置と、を備え、
 前記充電率算出装置は、
  前記二次電池の充放電電流値を検出する充放電電流検出部と、
  前記二次電池の端子電圧値を検出する端子電圧検出部と、
  前記充放電電流値を積算して第1の充電率を推定する第1の推定部と、
  前記二次電池の開放電圧値と充電率との関係に基づき第2の充電率を推定する第2の推定部と、
  前記充放電電流値に基づきそれぞれ重み付けされた前記第1の充電率及び前記第2の充電率に基づいて、第3の充電率を算出する充電率算出部と、を含む
ことを特徴とする。
 本発明の第1の観点に係る充電率算出装置によれば、第1の二次電池の充放電電流値i(k)に基づいて、第1の重み係数α及び第2の重み係数βが決定される。そして、重み付けされた第1の充電率αSOC1(k)と重み付けされた第2の充電率βSOC2(k)に基づいて、最終的な第3の充電率SOC3(k)が算出される。上述したように、開放電圧推定法を用いた第2の充電率SOC2(k)の推定精度は、充放電電流値i(k)の値に応じて異なる。したがって、上述のように充放電電流値i(k)に基づく重み付けを行なうことによって、第1の二次電池の充電率の推定精度が向上する。
 本発明の第2の観点に係る充電率算出装置によれば、充放電電流値i(k)を第1の二次電池の電池容量(設計容量DC又は満充電容量FCC(k))で除算した充放電レートC(k)に応じて重み付けが行なわれる。このため、例えば電池容量が異なる同一種の二次電池を第1の二次電池としてそれぞれ用いる複数の蓄電池システム10において、第1のルックアップテーブル及び第2のルックアップテーブルを共用でき、開発コストが低減される。
 本発明の第3の観点に係る充電率算出装置によれば、充放電電流値i(k)又は充放電レートC(k)が大きい程、第2の充電率SOC2(k)に乗じる第2の重み係数βが小さくなるように定められる。このため、充放電電流値i(k)が比較的大きい場合、上述したように推定精度が減少する第2の充電率SOC2(k)の寄与度が小さくなるので、第1の二次電池の充電率の推定精度が更に向上する。
 本発明の第4の観点に係る充電率算出装置によれば、推定された満充電容量FCC(k)を電池容量として用いて充放電レートC(k)が算出される。このため、設計容量DCを用いる場合と比較して充放電レートC(k)の推定精度が向上し、第1の二次電池の充電率の推定精度が更に向上する。
 本発明の第5の観点に係る蓄電池システムによれば、第1の二次電池の充放電電流値i(k)に基づいて、第1の重み係数α及び第2の重み係数βが決定される。そして、重み付けされた第1の充電率αSOC1(k)と重み付けされた第2の充電率βSOC2(k)に基づいて、最終的な第3の充電率SOC3(k)が算出される。上述したように、開放電圧推定法を用いた第2の充電率SOC2(k)の推定精度は、充放電電流値i(k)の値に応じて異なる。したがって、上述のように充放電電流値i(k)に基づく重み付けを行なうことによって、第1の二次電池の充電率の推定精度が向上する。
本発明の実施の形態1に係る蓄電池システムの概略構成を示すブロック図である。 図1の充電率算出装置の概略構成を示すブロック図である。 図2の充電率算出部の概略構成を示すブロック図である。 第1のルックアップテーブルにおける電流又は充放電レートと係数との関係を示す図である。 第2のルックアップテーブルにおける電流又は充放電レートと係数との関係を示す図である。
 以下、本発明の実施の形態について説明する。
 はじめに図1を参照して、本発明の実施の形態に係る蓄電池システム10の概略構成について説明する。蓄電池システム10は、例えばハイブリッド車(HEV車)等の車両に搭載される。
 蓄電池システム10は、オルタネータ12と、スタータ13と、第1の二次電池14と、充電率算出装置15と、第2の二次電池16と、負荷17と、第1のスイッチ18と、第2のスイッチ19と、第3のスイッチ20と、制御部21と、を備える。オルタネータ12、スタータ13、第1の二次電池14、第2の二次電池16、及び負荷17は、並列に接続される。
 オルタネータ12は、発電機であって、車両のエンジンに機械的に接続される。オルタネータ12は、エンジンの駆動によって発電可能である。オルタネータ12がエンジンの駆動によって発電した電力は、レギュレータで出力電圧を調整されて、第1の二次電池14、第2の二次電池16、負荷17、及び車両の補機に供給され得る。またオルタネータ12は、車両の減速時等に回生によって発電可能である。オルタネータ12が回生発電した電力は、第1の二次電池14及び第2の二次電池16の充電に使用され得る。
 スタータ13は、例えばセルモータを含んで構成され、第1の二次電池14及び第2の二次電池16の少なくとも一方からの電力供給を受けて、車両のエンジンを始動させる。
 第1の二次電池14は、例えばリチウムイオン電池やニッケル水素電池等、鉛蓄電池以外の二次電池である。本実施形態において、第1の二次電池14の出力電圧は、第2の二次電池16の出力電圧と略同一であって、例えば12Vである。或いは、第1の二次電池14の出力電圧は、第2の二次電池16の出力電圧と異なってもよい。かかる場合、第1の二次電池14の出力電圧は、DC/DCコンバータによって、第2の二次電池16の出力電圧と略同一となるように調整される。また第1の二次電池14は、エンジン駆動の停止中(アイドリングの停止中)に、スタータ13を含む補機、負荷17、及びECU等に対して電力を供給可能である。
 充電率算出装置15は、第1の二次電池14の充電率を算出する。充電率算出装置15の詳細については後述する。
 第2の二次電池16は、例えば公称電圧12Vの出力電圧を有する鉛蓄電池であって、負荷17に対して電力を供給可能である。
 負荷17は、例えば車両に備えられたオーディオ、エアコン、及びナビゲーションシステム等を含む負荷であって、供給された電力を消費して動作する。負荷17は、エンジン駆動の停止中に第1の二次電池14、及び第2の二次電池16からの電力供給を受けて動作し、エンジン駆動中にオルタネータ12、第1の二次電池14、及び第2の二次電池16からの電力供給を受けて動作する。
 第1のスイッチ18は、スタータ13と直列に接続されるスイッチである。第1のスイッチ18は、スタータ13を他の構成要素と並列に接続し又は切り離す。
 第2のスイッチ19は、第1の二次電池14と直列に接続されるスイッチである。第2のスイッチ19は、第1の二次電池14を他の構成要素と並列に接続し又は切り離す。
 第3のスイッチ20は、第2の二次電池16及び負荷17と直列に接続されるスイッチである。第3のスイッチ20は、第2の二次電池16及び負荷17を他の構成要素と並列に接続し又は切り離す。
 制御部21は、例えば車両に備えられたECUを含んで構成され、蓄電池システム10の動作全体を制御する。例えば制御部21は、第1のスイッチ18、第2のスイッチ19、及び第3のスイッチ20の動作をそれぞれ制御して、オルタネータ12、第1の二次電池14、及び第2の二次電池16による電力供給、並びに第1の二次電池14及び第2の二次電池16の充電を行なう。
 次に図2を参照して、充電率算出装置15の詳細について説明する。充電率算出装置15は、充放電電流検出部22と、端子電圧検出部23と、電流積算法推定部(第1の推定部)24と、開放電圧法推定部(第2の推定部)25と、充電率算出部26と、遅延素子27と、を備える。
 充放電電流検出部22は、例えばシャント抵抗等を含んで構成され、第1の二次電池14の充放電電流値i(k)を検出する。ここでkは、離散時間における時刻を示す。また充放電電流値i(k)は、充放電電流の絶対値とする。検出された充放電電流値i(k)は、入力信号として、電流積算法推定部24、開放電圧法推定部25、及び充電率算出部26にそれぞれ入力される。充放電電流検出部22は、上記構成に限られず種々の構造・形式を有するものを適宜採用できる。
 端子電圧検出部23は、第1の二次電池14の端子電圧値v(k)を検出する。検出された端子電圧値v(k)は、入力信号として、電流積算法推定部24及び開放電圧法推定部25にそれぞれ入力される。端子電圧検出部23は、種々の構造・形式を有するものを適宜採用できる。
 電流積算法推定部24は、電流積算法充電率(第1の充電率)SOC1(k)を推定する。以下具体的に説明する。例えば車両(エンジン)の初回始動時を時刻k=0に定め、時刻k=0において第1の二次電池14の状態が安定しており且つ無負荷状態であるものとする。かかる場合、端子電圧検出部23から入力される端子電圧値v(0)は開放電圧値OCV(0)とみなすことができる。このため電流積算法推定部24は、予め実験又はシミュレーションで求められた、第1の二次電池14の開放電圧と充電率との関係を示すOCV-SOCルックアップテーブルを用いて、開放電圧値OCV(0)とみなした端子電圧値v(0)の値に対応する充電率を、第1の充電率SOC1(0)として推定する。第1の充電率SOC1(0)は、入力信号として、充電率算出部26に入力される。また、時刻k≧1において電流積算法推定部24は、後述するように遅延素子27から入力される第3の充電率の前回値SOC3(k-1)に、充放電電流検出部22から入力される充放電電流値i(k)を加算した値を、第1の充電率SOC1(k)として推定する。推定された第1の充電率SOC1(k)は、入力信号として、充電率算出部26に入力される。
 開放電圧法推定部25は、開放電圧法充電率(第2の充電率)SOC2(k)を推定する。具体的には、はじめに開放電圧法推定部25は、充放電電流検出部22及び端子電圧検出部23からそれぞれ入力される充放電電流値i(k)及び端子電圧値v(k)に基づいて、例えばフォスタ型RC梯子回路やカウエル型RC梯子回路等、第1の二次電池14の等価回路モデルにおける各パラメータを推定する。例えば、開放電圧法推定部25は、カルマンフィルタ等の適応フィルタ又は最小二乗法等を用いてコンデンサの静電容量値C(k)、内部抵抗値R(k)、及び開放電圧値OCV(k)を推定する。ここで開放電圧値OCV(k)は、例えばOCV(k)=v(k)+(i(k)×R(k))で算出される。そして開放電圧法推定部25は、予め実験又はシミュレーションで求められた、第1の二次電池14の開放電圧と充電率との関係を示すOCV-SOCルックアップテーブルを用いて、開放電圧値OCV(k)の値に対応する充電率を第2の充電率SOC2(k)として推定する。推定された第2の充電率SOC2(k)は、入力信号として、充電率算出部26に入力される。
 好適には開放電圧法推定部25は、更に第1の二次電池14の内部抵抗と健全度(SOH:State of Health)との関係に基づき健全度SOH(k)を推定する。具体的には、開放電圧法推定部25は、予め実験又はシミュレーションで求められた、第1の二次電池14の内部抵抗と健全度との関係を示すR-SOHルックアップテーブルを用いて、内部抵抗値R(k)に対応する健全度を健全度SOH(k)として推定する。ここで健全度SOH(k)は、電池の劣化具合を示すパラメータであって、設計容量をDC(定数)、満充電容量をFCC(k)として、SOH(k)=FCC(k)/DCで示される。推定された健全度SOH(k)、又は健全度SOH(k)に設計容量DCを乗じた満充電容量FCC(k)は、入力信号として、充電率算出部26に入力される。
 充電率算出部26は、充放電電流値i(k)に基づく第1の重み係数α及び第2の重み係数βを用いてそれぞれ重み付けされた第1の充電率αSOC1(k)及び第2の充電率βSOC2(k)に基づいて、第3の充電率SOC3(k)を算出する。好適には充電率算出部26は、充放電電流値i(k)及び電池容量(設計容量DC又は満充電容量FCC(k))に基づく第1の重み係数α及び第2の重み係数βを用いて重み付けされた第1の充電率αSOC1(k)及び第2の充電率βSOC2(k)に基づいて、第3の充電率SOC3(k)を算出する。本実施形態において、第3の充電率SOC3(k)は、時刻kにおける第1の二次電池14の充電率に定められる。充電率算出部26の詳細については後述する。
 遅延素子27は、充電率算出部26から第3の充電率SOC3(k)が入力されると、第3の充電率の前回値SOC3(k-1)を電流積算法推定部24に入力する。
 次に図3を参照して、充電率算出部26の詳細について説明する。充電率算出部26は、第1の係数決定部28と、第2の係数決定部29と、第1の乗算器30と、第2の乗算器31と、加算器32と、を備える。
 第1の係数決定部28は、充放電電流値i(k)に基づいて、第1の充電率SOC1(k)に乗じる第1の重み係数αを決定する。具体的には、第1の係数決定部28は、予め定められた、電流と係数との関係を示す第1のルックアップテーブルを用いて、充放電電流値i(k)に対応する係数を第1の重み係数αに定める。好適には第1の係数決定部28は、充放電電流値i(k)を電池容量(設計容量DC又は満充電容量FCC(k))で除した充放電レートC(k)に応じて、第1の重み係数αを決定する。充放電レートC(k)は、充放電電流値i(k)及び電池容量(設計容量DC又は満充電容量FCC(k))を用いて、C(k)=i(k)/DC又はC(k)=i(k)/FCC(k)で示される。かかる場合、第1の係数決定部28は、予め定められた、充放電レートと係数との関係を示す第1のルックアップテーブルを用いて、充放電レートC(k)に対応する係数を第1の重み係数αに定める。第1のルックアップテーブルの詳細については後述する。ここで電池容量として設計容量DCを採用してもよいが、満充電容量FCC(k)を採用することが望ましい。満充電容量FCC(k)は、健全度SOH(k)及び設計容量DCを用いて、FCC(k)=SOH(k)×DCで示される。
 第2の係数決定部29は、充放電電流値i(k)に基づいて、第2の充電率SOC2(k)に乗じる第2の重み係数βを決定する。具体的には、第2の係数決定部29は、予め定められた、電流と係数との関係を示す第2のルックアップテーブルを用いて、充放電電流値i(k)に対応する係数を第2の重み係数βに定める。好適には第2の係数決定部29は、充放電レートC(k)に応じて、第2の重み係数βを決定する。充放電レートC(k)は、上述したように、C(k)=i(k)/DC又はC(k)=i(k)/FCC(k)で示される。かかる場合、第2の係数決定部29は、予め定められた、充放電レートと係数との関係を示す第2のルックアップテーブルを用いて、充放電レートC(k)に対応する係数を第2の重み係数βに定める。ここで電池容量として設計容量DCを採用してもよいが、満充電容量FCC(k)を採用することが望ましい。満充電容量FCC(k)は、上述したように、FCC(k)=SOH(k)×DCで示される。
 ここで図4及び図5を参照して、第1のルックアップテーブル及び第2のルックアップテーブルについて説明する。
 図4は、第1のルックアップテーブルにおける電流又は充放電レートと係数との関係を示すグラフである。図4において、横軸は電流又は充放電レートを示し、縦軸は係数を示す。図示するように、第1のルックアップテーブルにおいて、電流値又は充放電レートが大きい程、対応する係数の値が大きい。すなわち、充放電電流値i(k)又は充放電レートC(k)が大きい程、電流積算法によって推定される第1の充電率SOC1(k)の重みが大きくなるように定められる。
 一方、図5は、第2のルックアップテーブルにおける電流又は充放電レートと係数との関係を示すグラフである。図5において、横軸は電流又は充放電レートを示し、縦軸は係数を示す。図示するように、第2のルックアップテーブルにおいて、電流値又は充放電レートが大きい程、対応する係数の値が小さい。すなわち、充放電電流値i(k)又は充放電レートC(k)が大きい程、開放電圧推定法によって推定される第2の充電率SOC2(k)の重みが小さくなるように定められる。
 また、第1のルックアップテーブル及び第2のルックアップテーブルにおいて、任意の電流値又は充放電レートに対してそれぞれ定まる係数の合計が1となるように、電流又は充放電レートと係数との関係が定められる。したがって、充放電電流値i(k)に対して定まる第1の重み係数αと第2の重み係数βとの和は、常に1である。
 図3に示す第1の乗算器30は、第1の充電率SOC1(k)に、決定された第1の重み係数αを乗じて、重み付けされた第1の充電率αSOC1(k)を算出する。
 第2の乗算器31は、第2の充電率SOC2(k)に、決定された第2の重み係数βを乗じて、重み付けされた第2の充電率βSOC2(k)を算出する。
 加算器32は、重み付けされた第1の充電率αSOC1(k)と重み付けされた第2の充電率βSOC2(k)との和を算出し、当該和を第3の充電率SOC3(k)に定める。
 このように、本発明の実施の形態1に係る充電率算出装置15によれば、第1の二次電池14の充放電電流値i(k)に基づいて、第1の重み係数α及び第2の重み係数βが決定される。そして、重み付けされた第1の充電率αSOC1(k)と重み付けされた第2の充電率βSOC2(k)に基づいて、最終的な第3の充電率SOC3(k)が算出される。上述したように、開放電圧推定法を用いた第2の充電率SOC2(k)の推定精度は、充放電電流値i(k)の値に応じて異なる。したがって、上述のように充放電電流値i(k)に基づく重み付けを行なうことによって、第1の二次電池14の充電率の推定精度が向上する。
 また、充電率算出装置15によれば、充放電電流値i(k)を第1の二次電池14の電池容量(設計容量DC又は満充電容量FCC(k))で除算した充放電レートC(k)に応じて重み付けが行なわれる。このため、例えば電池容量が異なる同一種の二次電池を第1の二次電池14としてそれぞれ用いる複数の蓄電池システム10において、第1のルックアップテーブル及び第2のルックアップテーブルを共用でき、開発コストが低減される。
 また、充電率算出装置15において、充放電電流値i(k)又は充放電レートC(k)が大きい程、第2の充電率SOC2(k)に乗じる第2の重み係数βが小さくなるように定められる。このため、充放電電流値i(k)が比較的大きい場合、上述したように推定精度が減少する第2の充電率SOC2(k)の寄与度が小さくなるので、第1の二次電池14の充電率の推定精度が更に向上する。
 また、充電率算出装置15において、推定された満充電容量FCC(k)を電池容量として用いて充放電レートC(k)が算出される。このため、設計容量DCを用いる場合と比較して充放電レートC(k)の推定精度が向上し、第1の二次電池14の充電率の推定精度が更に向上する。
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。したがって、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。
 また、上述した実施形態において、ハイブリッド車に搭載される蓄電池システム10について説明したが、これに限られない。例えば、蓄電池システム10は電気自動車(EV車)に搭載されてもよい。
 また、上述した実施形態において、蓄電池システム10はリチウムイオン電池等の第1の二次電池及び鉛蓄電池である第2の二次電池を備える構成について説明したが、これに限られない。例えば、蓄電池システム10は、第1の二次電池又は第2の二次電池とは電池容量が異なる他の二次電池を更に備えてもよい。
10  蓄電池システム
12  オルタネータ
13  スタータ
14  第1の二次電池
15  充電率算出装置
16  第2の二次電池
17  負荷
18  第1のスイッチ
19  第2のスイッチ
20  第3のスイッチ
21  制御部
22  充放電電流検出部
23  端子電圧検出部
24  電流積算法推定部
25  開放電圧法推定部
26  充電率算出部
27  遅延素子
28  第1の係数決定部
29  第2の係数決定部
30  第1の乗算器
31  第2の乗算器
32  加算器

Claims (6)

  1.  二次電池の充放電電流値を検出する充放電電流検出部と、
     前記二次電池の端子電圧値を検出する端子電圧検出部と、
     前記充放電電流値を積算して第1の充電率を推定する第1の推定部と、
     前記二次電池の開放電圧値と充電率との関係に基づき第2の充電率を推定する第2の推定部と、
     前記充放電電流値に基づきそれぞれ重み付けされた前記第1の充電率及び前記第2の充電率に基づいて、第3の充電率を算出する充電率算出部と、
    を備える、二次電池の充電率算出装置。
  2.  請求項1に記載の充電率算出装置であって、
     前記充電率算出部は、前記充放電電流値を前記二次電池の電池容量で除算した充放電レートに応じてそれぞれ重み付けされた前記第1の充電率及び前記第2の充電率に基づき第3の充電率を算出する、充電率算出装置。
  3.  請求項2に記載の充電率算出装置であって、
     前記充放電レートが大きい程、前記第2の充電率に対する重み付けが小さい、充電率算出装置。
  4.  請求項2に記載の充電率算出装置であって、
     前記第2の推定部は、更に前記二次電池の満充電容量を推定し、
     前記充電率算出部は、推定された前記満充電容量を前記電池容量として用いて充放電レートを算出する、充電率算出装置。
  5.  請求項3に記載の充電率算出装置であって、
     前記第2の推定部は、更に前記二次電池の満充電容量を推定し、
     前記充電率算出部は、推定された前記満充電容量を前記電池容量として用いて充放電レートを算出する、充電率算出装置。
  6.  鉛蓄電池と、
     前記鉛蓄電池の電圧値と略等しい電圧値を有し前記鉛蓄電池と並列に接続された、鉛蓄電池以外の二次電池と、
     前記二次電池の充電率を算出する充電率算出装置と、を備え、
     前記充電率算出装置は、
      前記二次電池の充放電電流値を検出する充放電電流検出部と、
      前記二次電池の端子電圧値を検出する端子電圧検出部と、
      前記充放電電流値を積算して第1の充電率を推定する第1の推定部と、
      前記二次電池の開放電圧値と充電率との関係に基づき第2の充電率を推定する第2の推定部と、
      前記充放電電流値に基づきそれぞれ重み付けされた前記第1の充電率及び前記第2の充電率に基づいて、第3の充電率を算出する充電率算出部と、を含む蓄電池システム。
PCT/JP2016/002163 2015-05-01 2016-04-22 二次電池の充電率算出装置、及び蓄電池システム WO2016178308A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/570,896 US20180292462A1 (en) 2015-05-01 2016-04-22 State of charge calculation apparatus for secondary battery and storage battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015094388A JP2016211924A (ja) 2015-05-01 2015-05-01 二次電池の充電率算出装置、及び蓄電池システム
JP2015-094388 2015-05-01

Publications (1)

Publication Number Publication Date
WO2016178308A1 true WO2016178308A1 (ja) 2016-11-10

Family

ID=57218146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002163 WO2016178308A1 (ja) 2015-05-01 2016-04-22 二次電池の充電率算出装置、及び蓄電池システム

Country Status (3)

Country Link
US (1) US20180292462A1 (ja)
JP (1) JP2016211924A (ja)
WO (1) WO2016178308A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776904B2 (ja) * 2017-01-13 2020-10-28 株式会社デンソー 電池パック及び電源システム
EP3447876A1 (de) * 2017-08-23 2019-02-27 Hilti Aktiengesellschaft Ermitteln der ladung eines akkumulators bei einem ladevorgang
JP6719853B1 (ja) * 2019-03-25 2020-07-08 マレリ株式会社 充電制御装置、充電制御方法および充電制御プログラム
JP7392305B2 (ja) * 2019-07-05 2023-12-06 スズキ株式会社 Soc推定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164417A (ja) * 2006-12-28 2008-07-17 Nissan Motor Co Ltd 二次電池の内部抵抗推定装置
JP2009005458A (ja) * 2007-06-20 2009-01-08 Toyota Motor Corp 車両用電源装置および車両用電源装置における蓄電装置の充電状態推定方法
JP2010019595A (ja) * 2008-07-08 2010-01-28 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
WO2013137141A1 (ja) * 2012-03-13 2013-09-19 日産自動車株式会社 バッテリの残存容量算出装置及びバッテリの残存容量算出方法
WO2014083856A1 (ja) * 2012-11-30 2014-06-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法
JP2014167457A (ja) * 2012-11-05 2014-09-11 Gs Yuasa Corp 状態推定装置、状態推定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583765B2 (ja) * 2004-01-14 2010-11-17 富士重工業株式会社 蓄電デバイスの残存容量演算装置
US7382110B2 (en) * 2004-04-23 2008-06-03 Sony Corporation Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
JP5287844B2 (ja) * 2010-12-27 2013-09-11 株式会社デンソー 二次電池の残存容量演算装置
WO2013125118A1 (ja) * 2012-02-22 2013-08-29 カルソニックカンセイ株式会社 パラメータ推定装置
JP6073901B2 (ja) * 2012-09-05 2017-02-01 三洋電機株式会社 車両用のバッテリシステムとこれを搭載する車両
US20150246650A1 (en) * 2012-10-29 2015-09-03 Sanyo Electric Co., Ltd. In-vehicle electrical equipment spare battery unit, power supply device for vehicle, and vehicle equipped with power supply device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164417A (ja) * 2006-12-28 2008-07-17 Nissan Motor Co Ltd 二次電池の内部抵抗推定装置
JP2009005458A (ja) * 2007-06-20 2009-01-08 Toyota Motor Corp 車両用電源装置および車両用電源装置における蓄電装置の充電状態推定方法
JP2010019595A (ja) * 2008-07-08 2010-01-28 Fuji Heavy Ind Ltd 蓄電デバイスの残存容量演算装置
WO2013137141A1 (ja) * 2012-03-13 2013-09-19 日産自動車株式会社 バッテリの残存容量算出装置及びバッテリの残存容量算出方法
JP2014167457A (ja) * 2012-11-05 2014-09-11 Gs Yuasa Corp 状態推定装置、状態推定方法
WO2014083856A1 (ja) * 2012-11-30 2014-06-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法

Also Published As

Publication number Publication date
US20180292462A1 (en) 2018-10-11
JP2016211924A (ja) 2016-12-15

Similar Documents

Publication Publication Date Title
US11124072B2 (en) Battery control device and electric motor vehicle system
JP5393837B2 (ja) バッテリの充電率推定装置
EP2700966B1 (en) Apparatus and method for estimating battery state
JP6182025B2 (ja) バッテリの健全度推定装置および健全度推定方法
US7202632B2 (en) Battery management apparatus
EP1555537B1 (en) Battery remaining capacity measuring apparatus
JP5419832B2 (ja) 電池容量算出装置および電池容量算出方法
JP6634854B2 (ja) 蓄電素子管理装置、蓄電素子管理方法、蓄電素子モジュール、蓄電素子管理プログラム及び移動体
US9428177B2 (en) Vehicle
JP6023312B2 (ja) 電池システム監視装置
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP5292375B2 (ja) バッテリの充電率推定装置
JP5329500B2 (ja) バッテリの充電率推定装置
JP2012047580A (ja) バッテリの充電率推定装置
JP6577990B2 (ja) 内部状態推定装置
WO2016178308A1 (ja) 二次電池の充電率算出装置、及び蓄電池システム
JP4810417B2 (ja) 蓄電デバイスの残存容量演算装置
CN115243928A (zh) 确定电动车辆中使用的电池的充电状态的方法
JP2018148720A (ja) バッテリ制御装置,プログラム
JP2006020401A (ja) ハイブリッド車のバッテリ管理システム
US11180051B2 (en) Display apparatus and vehicle including the same
JP2013096785A (ja) 電池劣化判定装置および電池劣化判定方法
JP2016213025A (ja) 蓄電池システム
JP2017120198A (ja) 二次電池の充電率算出装置
JP2018063186A (ja) バッテリのパラメータ推定装置及びパラメータ推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789446

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15570896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789446

Country of ref document: EP

Kind code of ref document: A1