WO2018192069A1 - 电池健康状态的估计方法及装置 - Google Patents

电池健康状态的估计方法及装置 Download PDF

Info

Publication number
WO2018192069A1
WO2018192069A1 PCT/CN2017/087564 CN2017087564W WO2018192069A1 WO 2018192069 A1 WO2018192069 A1 WO 2018192069A1 CN 2017087564 W CN2017087564 W CN 2017087564W WO 2018192069 A1 WO2018192069 A1 WO 2018192069A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery
capacity
dsoc
preset
Prior art date
Application number
PCT/CN2017/087564
Other languages
English (en)
French (fr)
Inventor
高科杰
刘中孝
张剑波
李哲
吴志伟
刘祖齐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17906402.7A priority Critical patent/EP3614157B1/en
Priority to EP20190656.7A priority patent/EP3809148B1/en
Priority to BR112019021863-7A priority patent/BR112019021863B1/pt
Priority to JP2019556632A priority patent/JP2020517920A/ja
Publication of WO2018192069A1 publication Critical patent/WO2018192069A1/zh
Priority to US16/657,651 priority patent/US10948548B2/en
Priority to US17/160,003 priority patent/US20210148988A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery management technologies, and in particular, to a method and an apparatus for estimating a state of health (SOH) of a battery.
  • SOH state of health
  • the SOH of the battery is an important parameter for evaluating the battery management system, so how to estimate the SOH of the battery has become a hot spot in the industry.
  • the percentage of the battery's retained capacity after aging and the capacity of the battery in the new battery state is defined as the SOH of the battery.
  • SOH the percentage of the battery's retained capacity after aging and the capacity of the battery in the new battery state
  • the embodiment of the present application provides a method and a device for estimating a battery SOH, which solves the problem that the evaluation of the battery SOH is difficult to be realized due to the need to determine the holding capacity after the aging of the battery based on the full charge of the battery during the evaluation of the battery SOH.
  • the embodiment of the present application provides the following technical solutions:
  • an embodiment of the present application provides a method for estimating a battery health state SOH, the method comprising: acquiring a local charging or discharging capacity of a target battery in a SOC interval of each SOC of the plurality of state of charge SOC, wherein The SOC interval of each SOC is an interval in which each SOC is a starting SOC and dSOC is a length; when it is determined that the number of preset battery capacities is M, each of the preset battery capacities is respectively calculated according to steps S1-S3.
  • the overall dV/dSOC data deviation wherein, M is a positive integer; S1, according to the mth preset battery capacity and the local charging or discharging capacity on the SOC interval of each SOC, respectively calculating each SOC at the mth preset First dV/dSOC data under battery capacity; wherein m is a positive integer less than or equal to M; S2, calculating second dV/dSOC data corresponding to each SOC according to a characteristic function of pre-stored dV-dSOC, wherein, the characteristic function of the dV-dSOC is obtained by charging or discharging the target battery by a preset current in a new battery state, the preset current is not greater than 1/20Q BOL , and Q BOL indicates that the target battery is in a new battery state.
  • the target battery when the target battery is maintained after the aging, it is estimated based on the local charging or discharging capacity on the SOC interval of each SOC.
  • the parameters are not required to be obtained by performing a full charge or full discharge test as in the prior art, the implementation conditions are simple and flexible.
  • this scheme does not need to rely on historical data, it is more robust.
  • acquiring the local charging or discharging capacity of the target battery in the SOC interval of each SOC of the plurality of SOCs includes: acquiring the target battery in each of the plurality of SOCs according to the following first preset formula
  • the local charging or discharging capacity on the SOC interval of the SOC, the first preset formula includes: Where SOC n represents the nth SOC; SOC partial charge SOC of the n-section or the discharge capacity; coulombic efficiency [eta] for the target cell, 0 ⁇ 1; SOC n -t start SOC represents the starting time of the interval of the n-SOC; SOC n - Terminating the termination time of the SOC interval indicating the SOC n ; A random current indicating the SOC interval of the SOC n . Based on this scheme, the local charging or discharging capacity of the target battery over the SOC interval of each of the plurality of SOCs can be acquired.
  • the first dV/dSOC data of each SOC at the mth preset battery capacity is respectively calculated according to the mth preset battery capacity and the local charging or discharging capacity on the SOC interval of each SOC.
  • the method includes: calculating, according to the mth preset battery capacity and the local charging or discharging capacity on the SOC interval of each SOC, in combination with the second preset formula, respectively calculating the first dV/ of each SOC at the mth preset battery capacity.
  • the second preset formula includes: Wherein, Q m represents the mth preset battery capacity; SOC n represents the nth SOC; g 1 (SOC n ) represents the first dV/dSOC data of the SOC n at the mth preset battery capacity; V represents the voltage; q represents the local charging or discharging capacity; Indicates that the SOC n corresponds to Based on the scheme, the first dV/dSOC data of each SOC at the mth preset battery capacity can be calculated.
  • the terminal voltage V at the initial timing of the battery can be regarded as the open circuit voltage OCV as the initial timing of the target battery, and since the OCV-SOC curve is linear in a short time, it can be obtained that dq is proportional to dOCV in a short time, and thus
  • the second preset formula specifically includes: Wherein, SOC n -t start SOC represents the starting time of the interval of the n-SOC; SOC n -t termination SOC represents the end time of the interval of the n-SOC; An open circuit voltage OCV indicating the start of SOC n -t; An OCV indicating the termination of SOC n -t, Indicates the partial discharge capacity of the SOC section of the SOC n .
  • the characteristic function of the dV-dSOC includes: Where SOC n represents the nth SOC; SOC n is an independent variable of the characteristic function of dV-dSOC, g 0 (SOC n ) represents the second dV/dSOC data corresponding to the SOC n ; j represents the order, a 0 , a j and b j are coefficients of each item; sin() represents a sine function; cos() represents a cosine function; ⁇ represents a frequency.
  • the characteristic function of dV-dSOC provided by this scheme is a sixth-order Fourier function.
  • the feature function of the dV-dSOC when the feature function of the dV-dSOC is fitted by the fitting tool, the feature function is based on the sixth-order Fourier function.
  • the feature function may include, but is not limited to, a polynomial function, a Fourier function, an exponential function, and the like, which is not specifically limited in this embodiment of the present application.
  • the mth overall dV/ of the plurality of SOCs is calculated according to the first dV/dSOC data of each SOC at the mth preset battery capacity and the second dV/dSOC data corresponding to each SOC.
  • the dSOC data deviation includes: calculating, according to the first dV/dSOC data of each SOC at the mth preset battery capacity and the second dV/dSOC data corresponding to each SOC, in combination with the third preset formula, calculating the plurality of SOCs
  • the mth overall dV/dSOC data deviation, the third preset formula includes: Where N represents the number of SOCs, N is a positive integer not less than 2; SOC n represents the nth SOC; g 0 (SOC n ) represents the second dV/dSOC data corresponding to the SOC n ; g 1 (SOC n ) indicates that the preset first n-SOC in the battery capacity dV / dSOC data of m; G m represents the m-th overall SOC plurality of dV / dSOC data skew. Based on this scheme, the mth overall dV/dSOC data deviation of a plurality
  • an embodiment of the present application provides an apparatus for estimating a battery SOH, and the apparatus for estimating an SOH of the battery has a function of implementing the behavior of the method embodiment.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present application provides an apparatus for estimating a battery SOH, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus.
  • the processor executes the computer-executed instruction stored in the memory to cause the estimating means of the battery SOH to perform the switching method as in any one of the above first aspects.
  • an embodiment of the present application provides a computer readable storage medium, configured to store computer software instructions used by the base station, when executed on a computer, to enable the computer to perform any one of the foregoing first aspects.
  • an embodiment of the present application provides a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the estimation method of the battery SOH of any of the above first aspects.
  • an embodiment of the present application discloses a method for estimating a battery health state SOH, where the method includes:
  • N state of charge SOC of the target battery in N states wherein the SOC is a ratio of a remaining capacity of the target battery to a full charge capacity thereof; and charging and discharging capacity according to the target battery in the nth state of charge SOC And calculating, by the mth preset capacity of the battery, first dV/dSOC data of each SOC in the nth state of charge; wherein N represents the number of SOCs, and N is a positive value of not less than 2 An integer; wherein n is a positive integer less than or equal to N, m is a positive integer from 1 to M, and M is a predetermined number of capacities; and each of the SOCs is separately calculated according to a characteristic function of dV/dSOC-SOC Corresponding second dV/dSOC data, wherein the characteristic function of the dV/dSOC-SOC is obtained by charging or discharging a predetermined current in the initial battery state of the target battery, the preset current is not more
  • calculating the SOH of the target battery according to the retention capacity of the target battery after aging includes: dividing the retention capacity of the target battery after aging by the target battery The holding capacity in the new battery state is described to obtain the SOH of the target battery.
  • the method further includes: acquiring a local charging or discharging capacity of the target battery in a SOC interval of each SOC in the nth state of charge SOC, wherein The SOC interval of each SOC is a section in which each SOC is a starting SOC and dSOC is a length; and a charging/discharging capacity in the section in the nth state of charge SOC is a partial charging or discharging capacity in the section.
  • acquiring a local charging or discharging capacity of the target battery in a SOC interval of each SOC in the nth state of charge SOC includes:
  • the local charging or discharging capacity of the target battery in the SOC interval of each SOC of the plurality of SOCs is acquired according to the following first preset formula, where the first preset formula includes:
  • SOC n represents the nth SOC; a local charging or discharging capacity indicating a SOC interval of the SOC n ; ⁇ is a coulombic efficiency of the target battery, 0 ⁇ ⁇ ⁇ 1; SOC n - t starting represents a starting time of a SOC interval of the SOC n ; SOC n -t terminates indicating a termination time of the SOC interval of the SOC n ; A random current indicating the SOC interval of the SOC n .
  • the calculating, according to the charge and discharge capacity of the target battery in the nth state of charge SOC and the mth preset capacity of the battery, respectively calculating the SOC in the nth state of charge The first dV/dSOC data, including:
  • the second preset formula includes:
  • Q m represents the mth preset battery capacity
  • SOC n represents the nth SOC
  • g 1 (SOC n ) represents the first dV/dSOC data of the SOC n at the mth preset battery capacity
  • q represents local charging or discharging capacity
  • the second preset formula specifically includes:
  • SOC n -t starting interval represents the start time of SOC of the n-SOC
  • SOC n -t termination SOC represents the end time interval of the n-SOC
  • An open circuit voltage OCV indicating the start of SOC n -t
  • An OCV indicating the termination of SOC n -t
  • a partial discharge capacity indicating an SOC interval of the SOC n .
  • the characteristic function of the dV/dSOC-SOC includes:
  • SOC n represents an nth SOC; said SOC n is an independent variable of a characteristic function of said dV/dSOC-SOC, and g 0 (SOC n ) represents second dV/dSOC data corresponding to said SOC n ; Representing the order, a 0 , a j and b j are the coefficients of the items; sin() represents the sine function; cos() represents the cosine function; ⁇ represents the frequency.
  • the mth overall dV/dSOC data deviation of the SOC, the third preset formula includes:
  • N represents the number of SOCs, N is a positive integer not less than 2;
  • SOC n represents the nth SOC;
  • g 0 (SOC n ) represents the second dV/dSOC data corresponding to the SOC n ;
  • g 1 (SOC n) denotes the n-SOC at preset first battery capacity dV / dSOC of the m-th data;
  • G m represents the m-th overall SOC plurality of dV / dSOC data skew.
  • an embodiment of the present invention provides an apparatus for estimating a battery health state SOH, where the apparatus includes: an acquisition module and a calculation module;
  • the acquiring module acquires N charging states SOC of the target battery in N states, where the SOC is a ratio of a remaining capacity of the target battery to a full charging capacity thereof;
  • the calculating module is configured to calculate, according to the charge and discharge capacity of the target battery in the nth state of charge SOC and the mth preset capacity of the battery, respectively, each of the SOCs in the nth state of charge First dV/dSOC data; wherein N represents the number of SOCs, N is a positive integer not less than 2; wherein n is a positive integer less than or equal to N, m is a positive integer from 1 to M, and M is The number of preset capacities;
  • the SOH of the target battery is calculated according to the retention capacity of the target battery after aging.
  • the calculating module is specifically configured to divide a retention capacity of the target battery after aging by a retention capacity of the target battery in the new battery state to obtain an SOH of the target battery.
  • the acquiring module is further configured to acquire a local charging or discharging capacity of the target battery in a SOC interval of each SOC in the nth state of charge SOC, wherein the SOC of each SOC The interval is a section in which each of the SOCs is a starting SOC, and dSOC is a length; and a charge/discharge capacity of the nth state of charge SOC is a partial charge or discharge capacity in the section.
  • the obtaining module is specifically configured to:
  • the local charging or discharging capacity of the target battery in the SOC interval of each SOC of the plurality of SOCs is acquired according to the following first preset formula, where the first preset formula includes:
  • SOC n represents the nth SOC; a local charging or discharging capacity indicating a SOC interval of the SOC n ; ⁇ is a coulombic efficiency of the target battery, 0 ⁇ ⁇ ⁇ 1; SOC n - t starting represents a starting time of a SOC interval of the SOC n ; SOC n -t terminates indicating a termination time of the SOC interval of the SOC n ; A random current indicating the SOC interval of the SOC n .
  • the calculating module is specifically configured to:
  • the second preset formula includes:
  • Q m represents the mth preset battery capacity
  • SOC n represents the nth SOC
  • g 1 (SOC n ) represents the first dV/dSOC data of the SOC n at the mth preset battery capacity
  • q represents local charging or discharging capacity
  • the second preset formula specifically includes:
  • SOC n -t starting interval represents the start time of SOC of the n-SOC
  • SOC n -t termination SOC represents the end time interval of the n-SOC
  • An open circuit voltage OCV indicating the start of SOC n -t
  • An OCV indicating the termination of SOC n -t
  • a partial discharge capacity indicating an SOC interval of the SOC n .
  • the characteristic function of the dV/dSOC-SOC includes:
  • SOC n represents an nth SOC; said SOC n is an independent variable of a characteristic function of said dV/dSOC-SOC, and g 0 (SOC n ) represents second dV/dSOC data corresponding to said SOC n ; Representing the order, a 0 , a j and b j are the coefficients of the items; sin() represents the sine function; cos() represents the cosine function; ⁇ represents the frequency.
  • the calculating module is specifically configured to:
  • the mth overall dV/dSOC data deviation of the SOC, the third preset formula includes:
  • N represents the number of SOCs, N is a positive integer not less than 2;
  • SOC n represents the nth SOC;
  • g 0 (SOC n ) represents the second dV/dSOC data corresponding to the SOC n ;
  • g 1 (SOC n) denotes the n-SOC at preset first battery capacity dV / dSOC of the m-th data;
  • G m represents the m-th overall SOC plurality of dV / dSOC data skew.
  • an embodiment of the present application discloses an apparatus for estimating a battery health state SOH, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor and the save A memory is coupled through the bus, the processor executing the computer-executable instructions stored by the memory to cause the apparatus to perform the method of estimating a battery SOH as described in the sixth aspect when the apparatus is in operation.
  • the embodiment of the present application provides a computer readable storage medium, configured to store computer software instructions used by the base station, when executed on a computer, to enable the computer to perform any one of the foregoing sixth aspects.
  • the embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the estimation method of the battery SOH of any of the above sixth aspects.
  • FIG. 1 is a schematic structural diagram of an estimation system of a battery SOH according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of hardware of an apparatus for estimating a battery SOH according to an embodiment of the present application
  • FIG. 3 is a schematic flow chart of a method for estimating a battery SOH according to an embodiment of the present application
  • FIG. 4 is a voltage-capacity curve diagram of charging or discharging a target battery by a preset current in a new battery state and different aging degrees according to an embodiment of the present application;
  • FIG. 5 is a Vt-SOC graph of charging or discharging by a preset current in a new battery state and different aging degrees of the target battery corresponding to FIG. 4 according to an embodiment of the present application;
  • FIG. 6 is a characteristic curve of a dV-dSOC of a target battery that is charged or discharged by a preset current in a new battery state and a different degree of aging according to an embodiment of the present application;
  • FIG. 7 is a schematic diagram of comparison between a fitting curve and an actual curve provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for estimating a battery SOH according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of another apparatus for estimating a battery SOH according to an embodiment of the present application.
  • Retention Capacity The capacity of the battery to be fully charged or fully discharged after the battery has been in use for a period of time or for a long period of time.
  • Aging refers to the phenomenon that the battery capacity is naturally attenuated when the battery is used for a period of time or for a long time.
  • the aging of the battery usually consists of two parts, one part is the aging during the cycle (ie cycle life), and the other part is the aging during the rest period (ie calendar life).
  • the aging during the cycle means that the number of charge and discharge cycles of the battery decreases correspondingly with the increase of the number of charge and discharge cycles, and the total number of charge and discharge cycles of the battery is measurable and measurable, and the holding capacity of each charge and discharge is attenuated.
  • Aging in the process of shelving means that the battery retains capacity to decay with time as the battery is not charged or discharged.
  • the aging involved in the embodiment of the present application is not limited to what kind of aging, and is uniformly described herein, and details are not described herein again.
  • Beginning of life specifically refers to the state of the battery that maintains a capacity of one hundred percent.
  • SOH The percentage of the holding capacity after aging of the battery and the capacity of the battery in the new battery state is defined as the SOH of the battery.
  • SOC State of Charge
  • Open Circuit Voltage The terminal voltage of the battery in the open state is called the open circuit voltage.
  • Battery polarization The polarization of the battery is due to the flow of current, and the actual electrode potential deviates from the equilibrium electrode potential after breaking the static state.
  • an estimation system 10 for a battery SOH provided by an embodiment of the present application.
  • the battery SOH estimation system 10 includes a battery 20, a battery detecting device 21, a charge and discharge executing device 22, an absolute time unit 23, a controller 24 memory chip 25, and an evaluation device 26 for the battery SOH.
  • the battery detecting device 21 is configured to upload the data detected in real time to the controller.
  • the battery detecting device 23 comprises three parts: a battery voltage sampling component, a current sampling unit and a temperature sampling component.
  • the battery voltage sampling component includes a sampling chip and a connection harness; the current sampling unit includes a temperature sampling chip and a temperature sensor.
  • the charge and discharge actuator 22 is configured to perform charging and discharging of the battery.
  • An absolute time unit 23 for transmitting the absolute time provided by the high frequency crystal oscillator to the controller 24 in real time.
  • the controller 24 is configured to control the sampling and receiving absolute time of the battery, and package the sampling data and the absolute time into the memory chip 25; and control the charging and discharging current and state of the battery through the charging and discharging executing device 22.
  • the memory chip 25 is configured to pre-store dV/dSOC-SOC information of the new battery, and store the collected valid battery data in real time and store it in a specific format.
  • the battery SOH estimating device 26 is configured to perform an orderly storing and reading operation on the data in the memory chip 25; and performing estimation of the battery SOH according to the read data, and the specific implementation may refer to the following method embodiment, This will not be repeated here.
  • the estimation system 10 of the battery SOH may further include a power supply, a safety protection device, an insulation device, and the like, which are not specifically limited in the embodiment of the present application.
  • FIG. 2 is a schematic diagram showing the hardware structure of a battery SOH estimating apparatus 26 according to an embodiment of the present application.
  • the battery SOH estimating apparatus 26 includes at least one processor 2601, a communication bus 2602, a memory 2603, and at least one communication. Interface 2604.
  • the processor 2601 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 2602 can include a path for communicating information between the components described above.
  • Communication interface 2604 using any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc. .
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the memory 2603 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • Dynamic storage device also can be electrically erasable programmable read-only memory (EEPROM), read-only optical disk (Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used for carrying Or any other medium having a desired program code in the form of an instruction or data structure and accessible by a computer, but is not limited thereto.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 2603 is configured to store application code for executing the solution of the present application, and is controlled by the processor 2601 to execute.
  • the processor 2601 is configured to execute the application code stored in the memory 2603, thereby implementing the estimation method of the battery SOH provided by the embodiment of the present application.
  • the processor 2601 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • the battery SOH estimation device 26 can include a plurality of processors, such as the processor 2601 and the processor 2608 of FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the battery SOH estimation device 26 may also include an output device 2605 and an input device 2606.
  • Output device 2605 is in communication with processor 2601 and can display information in a variety of ways.
  • the output device 2605 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • Input device 2606 is in communication with processor 2601 and can accept user input in a variety of ways.
  • input device 2606 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • a method for estimating a battery SOH includes the following steps:
  • the estimating device of the battery SOH acquires a local charging or discharging capacity of the target battery over a SOC interval of each SOC of the plurality of SOCs.
  • the SOC interval of each SOC is a section in which each SOC is a starting SOC and dSOC is a length.
  • the estimating device of the battery SOH determines that the number of the preset battery capacities is M
  • the overall dV/dSOC data deviation corresponding to each preset battery capacity is calculated according to steps S1-S3, where M is a positive integer.
  • the S1, battery SOH estimating means calculates the first dV/dSOC data of each SOC at the mth preset battery capacity according to the mth preset battery capacity and the local charging or discharging capacity on the SOC interval of each SOC.
  • n is a positive integer less than or equal to M
  • the estimating means of the battery SOH calculates the second dV/dSOC data corresponding to each SOC according to a characteristic function of the dV-dSOC stored in advance.
  • the characteristic function of dV-dSOC is obtained by charging or discharging the target battery by a preset current in a new battery state, the preset current is not greater than 1/20Q BOL , and Q BOL indicates the holding capacity of the target battery in the new battery state.
  • the estimating device of the battery SOH calculates the mth overall dV/dSOC of the plurality of SOCs according to the first dV/dSOC data of each SOC at the mth preset battery capacity and the second dV/dSOC data corresponding to each SOC. Data deviation.
  • the battery SOH estimating means determines a minimum overall dV/dSOC data deviation from all of the overall dV/dSOC data deviations.
  • the estimating device of the battery SOH determines the preset battery capacity corresponding to the minimum overall dV/dSOC data deviation as the holding capacity after the target battery is aged.
  • the estimating device of the battery SOH divides the holding capacity of the target battery after aging by the holding capacity of the target battery in the new battery state to obtain the SOH of the target battery.
  • step S301
  • the SOC interval of each SOC is an interval in which each SOC is a starting SOC and dSOC is a length.
  • the SOC interval of the first SOC is the interval in which the first SOC is the starting SOC and the dSOC is the length.
  • the dSOC of each SOC may be the same or different, which is not specifically limited in this embodiment of the present application.
  • the first SOC is recorded as SOC 1
  • the second SOC is recorded as SOC 2
  • the nth SOC is recorded as SOC n , which is uniformly described herein. Narration.
  • the estimating device of the battery SOH acquires the local charging or discharging capacity of the target battery in the SOC interval of each SOC of the plurality of SOCs, and specifically includes: the estimating device of the battery SOH is combined with the formula (1), and the target battery is obtained.
  • the partial charge or discharge capacity over the SOC interval of each of the plurality of SOCs, the formula (1) is as follows:
  • SOC n represents the nth SOC; Indicates the local charging or discharging capacity of the SOC interval of SOC n ; ⁇ is the coulombic efficiency of the target battery, 0 ⁇ ⁇ ⁇ 1, ⁇ can be given according to the type of battery, and in the lithium ion battery, ⁇ can be taken as 1; other types of batteries the lead-acid batteries, nickel metal hydride, nickel cadmium battery or the like, preferably a number between 0.9 and 1 depending on the type ⁇ ; SOC n -t start indicates the start time of the n-SOC SOC section; SOC n -t termination represents SOC The end time of the SOC interval of n ; A random current indicating the SOC interval of SOC n .
  • the battery detecting device 21 in FIG. 1 can uniformly write the collected data in the form of an array of structures.
  • the memory chip 25 In the memory chip 25.
  • the structure contains several array elements, such as voltage, current, temperature, absolute time and initial SOC, which can be characterized as Data(k) ⁇ V[], I[], Temp[], Time[], SOC[] ⁇ , k is a natural number from 0 to K, representing K structure data.
  • the estimating means of the battery SOH can read the above-described structure data from the memory chip 25, and further acquire the local charging capacity of the target battery in the SOC section of each SOC of the plurality of SOCs in combination with the formula (1).
  • the battery detecting device 21 in FIG. 1 may take the collected data in the form of an array of structures when the target battery is approximately open steady state.
  • the unified brush is written in the memory chip 25.
  • the structure contains several array elements, such as voltage, current, temperature, absolute time and initial SOC, which can be characterized as Data(k) ⁇ V[], I[], Temp[], Time[], SOC[] ⁇ , k is a natural number from 0 to K, representing K structure data.
  • the apparatus for estimating the battery SOH can read the above-described structure data from the memory chip 25, and further acquire the partial discharge capacity of the target battery in the SOC section of each of the plurality of SOCs in accordance with the formula (1).
  • the current of the target battery is ⁇ I ⁇ value, and continues for ⁇ minutes, or the target battery is left open for more than 15 minutes, and the target battery is considered to be approximately open circuit stable.
  • the values of ⁇ and ⁇ are determined according to the characteristics of the target battery. Generally, ⁇ is 2A and ⁇ is taken for 5 to 10 minutes.
  • the estimating means of the battery SOH can read the K structural data on the SOC interval of the SOC 1 from the memory chip 25, and acquire the local charging or discharging in the SOC interval of the SOC 1 according to the formula (1).
  • the capacity is:
  • the size of K depends on the absolute time t, the absolute time t starts from the beginning of the algorithm, and the absolute time of the data is recorded; the termination of the absolute time t is the end of the algorithm, and the estimation of the SOH is started. At absolute moments, the time difference between the start of t and the end of t is generally no more than one month.
  • the size of K cannot exceed the preset upper limit value.
  • the preset upper limit value is 100, which means that the recorded data is up to one hundred times.
  • the preset upper limit value may be determined by the size of the memory chip 25. When the storage permission is satisfied, the preset upper limit value is larger, and the larger the amount of data participating in the estimation, the higher the estimation accuracy.
  • the estimating device of the battery SOH calculates the first dV/dSOC of each SOC at the mth preset battery capacity according to the mth preset battery capacity and the local charging or discharging capacity on the SOC interval of each SOC.
  • the data may specifically include: estimating means of the battery SOH according to the mth preset battery capacity and the local charging or discharging capacity on the SOC interval of each SOC, and calculating each SOC in the mth preset battery according to formula (2)
  • the first dV/dSOC data under capacity, formula (2) is as follows:
  • Q m represents the mth preset battery capacity
  • SOC n represents the nth SOC
  • g 1 (SOC n ) represents the first dV/dSOC data of the SOC n at the mth preset battery capacity
  • V represents the voltage
  • the estimating means of the battery SOH can read K structural data on the SOC interval of the SOC n from the memory chip 25, since the V-SOC curve is linear in a short time, the estimation of the battery SOH
  • the device may calculate the first dV/dSOC data of the SOC n at the mth preset battery capacity according to formula (2):
  • SOC n -t start indicates the start time of the n-SOC SOC section
  • SOC n -t termination SOC represents the end time of interval n-SOC
  • a voltage indicating the termination of SOC n -t a voltage indicating the termination of SOC n -t
  • Representing the Kth voltage on the SOC interval of SOC n Indicates the initial voltage on the SOC interval of SOC n .
  • the battery polarization may be considered to disappear, and the initial moment of the target battery
  • the terminal voltage V can be regarded as the open circuit voltage OCV of the initial timing of the target battery, and since the OCV-SOC curve is linear in a short time, it can be obtained that dq is proportional to dOCV in a short time, and therefore, when the target battery When working in the discharge state, the above formula (2) can be evolved into the following formula (3):
  • the estimating device of the battery SOH may be determined according to the initial SOC and the ending SOC of the SOC interval of the SOC n , and the corresponding relationship between the SOC and the OCV stored in advance. with This embodiment of the present application does not specifically limit this.
  • the first dV/dSOC data under battery capacity is:
  • Representing the Kth OCV on the SOC interval of SOC n Indicates the initial OCV over the SOC interval of SOC n . It can be determined according to the correspondence between SOC n [K] and the pre-stored SOC and OCV, It can be determined according to the correspondence between SOC n [0] and the pre-stored SOC and OCV.
  • N-SOC [K] represents the K-th SOC SOC section on the n-SOC;
  • SOC n [0] represents the initial SOC of n-SOC SOC section.
  • the estimating means of the battery SOH respectively calculates the second dV/dSOC data corresponding to each SOC according to the characteristic function of the dV-dSOC stored in advance, specifically, the estimating means of the battery SOH brings each SOC into the pre-stored dV.
  • the characteristic function of the -dSOC obtains the second dV/dSOC data corresponding to each SOC.
  • the pre-stored dV-dSOC feature function can be obtained as follows:
  • step one the target battery is charged or discharged by a preset current in a new battery state to obtain a voltage-capacity curve.
  • the preset current is not greater than 1/20Q BOL , for example, the preset current is 1/25Q BOL .
  • VQ Voltage- capacity, VQ
  • the present embodiment provides the battery voltage to apply to certain embodiments by charging or discharging the battery a predetermined current in the new state and different degrees of aging.
  • curve 1 is a VQ graph of the target battery being charged or discharged by a preset current in a new battery state.
  • Curve 2; the curve 2 is the VQ line diagram of the target battery charging or discharging by the preset current under the aging degree of 400 cycles;
  • the curve 3 is the VQ curve of the target battery charging or discharging by the preset current under the aging degree of 1000 cycles.
  • Curve 4 is a VQ graph of the target battery being charged or discharged by a preset current at an aging degree of 2000 cycles. It can be seen from Fig. 4 that as the degree of aging increases, that is, the number of cycles increases, the capacity that the target battery can release gradually decreases, and the VQ curve shifts significantly at the end of the discharge.
  • step two the voltage-capacity curve is converted into a voltage-charge state (V-SOC) curve.
  • the charge/discharge capacity of the target battery is converted into the ratio of the remaining capacity of the target battery to the full charge capacity according to the definition of the SOC, and a V-SOC curve is obtained.
  • a V-SOC graph of the target battery corresponding to FIG. 4 is charged or discharged by a preset current in a new battery state and a different degree of aging.
  • the V-SOC curve at different degrees of aging is normalized when charged or discharged by a preset current.
  • the embodiment of the present application is based on this normalization characteristic to estimate the battery SOH.
  • Step 3 Obtain a characteristic curve of the dV-dSOC of the target battery according to the V-SOC curve.
  • the characteristic curve of the dV-dSOC of the target battery charged or discharged by the preset current in the new battery state and different degrees of aging can be as shown in FIG. 6.
  • step four the points on the characteristic curve of the dV-dSOC are extracted and fitted to obtain a characteristic function of the dV-dSOC in the new state of the target battery.
  • the points on the interval segment with the highest degree of normalization of the curve in FIG. 6 may be selected for fitting, for example, a point between 0 and 0.7 of the SOC interval segment is selected for fitting.
  • the target battery Since the Vt-SOC curve at different degrees of aging is normalized when charging or discharging by a preset current, the target battery is passed through a preset current in a new battery state when charging or discharging by a preset current.
  • the characteristic function of the dV-dSOC in the new state of the standard battery obtained by charging or discharging can also be regarded as the characteristic function of the dV-dSOC of the target battery under different aging degrees.
  • dV-dSOC the characteristic function of dV-dSOC can be as shown in formula (4):
  • the characteristic function is a sixth-order Fourier function
  • SOC n is an independent variable of a characteristic function of dV-dSOC
  • g 0 (SOC n ) represents second dV/dSOC data corresponding to SOC n
  • j represents an order
  • a 0 , a j and b j are the coefficients of the items obtained by the fitting tool
  • sin() represents the sine function
  • cos() represents the cosine function
  • represents the frequency.
  • FIG. 7 is a schematic diagram comparing the curve corresponding to the characteristic function of dV-dSOC and the characteristic curve of the original dV-dSOC shown in the fitted formula (4), and the two are basically consistent.
  • the feature function of the dV-dSOC when the feature function of the dV-dSOC is fitted by using a fitting tool, the feature function is a sixth-order Fourier function as an example.
  • the feature function may include, but is not limited to, a polynomial function, a Fourier function, an exponential function, and the like, which is not specifically limited in this embodiment of the present application.
  • the estimating means of the battery SOH calculates the mth overall dV of the plurality of SOCs according to the first dV/dSOC data of each SOC at the mth preset battery capacity and the second dV/dSOC data corresponding to each SOC.
  • /dSOC data deviation specifically comprising: the first SV/dSOC data of the battery SOH according to the SOC at the mth preset battery capacity and the second dV/dSOC data corresponding to each SOC, combined with the formula (5) , calculating the mth overall dV/dSOC data deviation of the plurality of SOCs, and the formula (5) includes:
  • N represents the number of SOCs
  • N is a positive integer not less than 2
  • G m represents the mth overall dV/dSOC data deviation of the plurality of SOCs.
  • g 1 SOC
  • g 0 SOC
  • formula (5) can be obtained as follows: (6):
  • G m is related to Q m .
  • Table 1 gives a set of mappings between G m and Q m as follows:
  • Q EOL represents the full charge capacity when the target battery end of life (EOL);
  • Q BOL represents the full charge capacity of the target battery new battery state.
  • step S303
  • the estimation device of the battery SOH may determine the minimum overall dV/dSOC data deviation from all the overall dV/dSOC data deviations by sorting; or may determine the minimum from all the overall dV/dSOC data deviations by other means.
  • the overall dV/dSOC data deviation is not specifically limited in the embodiment of the present application.
  • step S304
  • the estimating device of the battery SOH determines the preset battery capacity corresponding to the minimum overall dV/dSOC data deviation as the holding capacity after the target battery is aged.
  • the characteristic function of the dV-dSOC in the new state of the standard battery obtained by charging or discharging the target battery under the new battery state can also be regarded as the dV of the target battery under different aging degrees.
  • the characteristic function of dSOC, therefore the minimum overall dV/dSOC data deviation corresponds to the estimated battery capacity that is theoretically closest to the estimated capacity value of the true hold capacity.
  • step S305
  • the SOH of the target battery can be obtained by dividing the retention capacity of the target battery after aging by the retention capacity of the target battery under the new battery state.
  • the estimating device of the battery SOH acquires the local charging or discharging capacity of the target battery in the SOC interval of each SOC of the plurality of SOCs, and further according to the mth preset battery capacity and each Calculating the first dV/dSOC data of each SOC at the mth preset battery capacity, respectively, for the local charging or discharging capacity on the SOC interval of the SOC; respectively calculating each SOC according to the characteristic function of the pre-stored dV-dSOC Corresponding second dV/dSOC data, the characteristic function of the dV-dSOC is obtained by charging or discharging the target battery by a preset current in a new battery state, the preset current is not greater than 1/20Q BOL , and Q BOL represents the target battery.
  • the holding capacity in the new battery state calculating the mth overall dV of the plurality of SOCs based on the first dV/dSOC data of each SOC at the mth preset battery capacity and the second dV/dSOC data corresponding to each SOC /dSOC data deviation; then determine the smallest overall dV/dSOC data deviation from all the overall dV/dSOC data deviations, and determine the preset battery capacity corresponding to the minimum overall dV/dSOC data deviation as the target battery after aging Guarantee Capacity; finalization target battery SOH based on the retention capacity of the target cell aging.
  • the target battery when the target battery is maintained after the aging, it is estimated based on the local charging or discharging capacity on the SOC interval of each SOC.
  • the implementation condition is relatively simple and flexible.
  • this scheme since this scheme does not need to rely on historical data, it is more robust.
  • the estimation device action of the battery SOH in the above steps S301-S305 can be performed by the processor 2601 in the estimation device 26 of the battery SOH shown in FIG. 2, by calling the application code stored in the memory 2603, which is used in the embodiment of the present application. No restrictions are imposed.
  • the solution provided by the embodiment of the present application is mainly described from the perspective of the method for estimating the battery SOH by the estimating device of the battery SOH.
  • the above-mentioned battery SOH estimating device includes a hardware structure and/or a software module corresponding to each function in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software, in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module of the battery SOH according to the above method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 8 shows a possible structural diagram of the estimating device 80 for the battery SOH involved in the above embodiment.
  • the battery SOH estimation device 80 includes an acquisition module 801, a calculation module 802, and a determination module 803.
  • the obtaining module 801 for supporting the battery SOH performs the step S301 in FIG. 3;
  • the calculating module 802 for supporting the battery SOH performs the steps S302 and S305 in FIG. 3;
  • the determining module 803 is used to support
  • the estimating means 80 of the battery SOH performs steps S303 and S304 in Fig. 3 .
  • FIG. 9 shows a possible structural diagram of the estimating device 90 of the battery SOH involved in the above embodiment.
  • the battery SOH estimating device 90 includes a processing module 901.
  • the estimation module 80 for processing the battery SOH by the processing module 901 performs steps S301 to S305 in FIG.
  • the estimating device of the battery SOH is presented in a form of dividing each functional module corresponding to each function, or the estimating device of the battery SOH is presented in a form of dividing each functional module in an integrated manner.
  • a “module” herein may refer to an Application-Specific Integrated Circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC Application-Specific Integrated Circuit
  • the estimating means 80 of the battery SOH or the estimating means 90 of the battery SOH may take the form shown in FIG.
  • the obtaining module 801, the calculating module 802, and the determining module 803 can be executed by calling the application code stored in the memory 2603 by the processor 2601.
  • This embodiment of the present application does not impose any limitation.
  • the processing module 901 in FIG. 9 may be implemented by the processor 2601 and the memory 2603 of FIG. 2.
  • the processing module 901 may be executed by calling the application code stored in the memory 2603 by the processor 2601. The embodiment of the present application does not impose any limitation on this.
  • the device for estimating the battery SOH provided by the embodiment of the present application can be used to perform the above-mentioned switching method. Therefore, the technical effects of the present invention can be referred to the foregoing method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer The program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池SOH的估计方法及装置。该方法包括:获取目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量(S301);根据第m预设电池容量和每个SOC的SOC区间上的局部充电或放电容量,分别计算每个SOC在该第m预设电池容量下的第一dV/dSOC数据;根据预先存储的dV-dSOC的特征函数,分别计算每个SOC对应的第二dV/dSOC数据;根据每个SOC在该第m预设电池容量下的第一dV/dSOC数据和每个SOC对应的第二dV/dSOC数据,计算多个SOC的第m总体dV/dSOC数据偏差(S302);从M个预设电池容量对应的所有的总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差(S303);将最小的总体dV/dSOC数据偏差对应的预设电池容量确定为目标电池老化后的保持容量(S304);将目标电池老化后的保持容量除以目标电池在新电池状态下的保持容量,以得到目标电池的SOH(S305)。

Description

电池健康状态的估计方法及装置 技术领域
本申请涉及电池管理技术领域,尤其涉及电池健康状态(state of health,SOH)的估计方法及装置。
背景技术
随着社会的发展,电池在各种移动或者固定的设备中得到越来越广泛的应用。而电池的SOH是评估电池管理系统的重要参数,因此如何估计电池的SOH成为行业研究的热点。
在目前的一些电池SOH的评估方法中,将电池老化后的保持容量与电池在新电池状态下的容量的百分比定义为电池的SOH。其中,在确定电池老化后的保持容量时,通常需要进行一次满充或满放测试才能得到该参数。然而,一方面,基于安全使用考虑,电池一般无法进行满充满放;另一方面,在电池组中由于单体之间的差异,更无法保证每个电池都进行满充满放。因此,上述确定电池老化后的保持容量的实现条件比较苛刻,进而导致电池SOH的评估难以实现。
发明内容
本申请实施例提供电池SOH的估计方法及装置,解决了目前在电池SOH的评估时由于需要基于电池的满充满放来确定池老化后的保持容量而导致的电池SOH的评估难以实现的问题。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,本申请实施例提供一种电池健康状态SOH的估计方法,该方法包括:获取目标电池在多个荷电状态SOC中每个SOC的SOC区间上的局部充电或放电容量,其中,每个SOC的SOC区间是以每个SOC为起始SOC,dSOC为长度的区间;当确定预设电池容量的个数为M个时,按照步骤S1-S3分别计算每个预设电池容量对应的总体dV/dSOC数据偏差;其中,M为正整数;S1、根据第m预设电池容量和每个SOC的SOC区间上的局部充电或放电容量,分别计算每个SOC在该第m预设电池容量下的第一dV/dSOC数据;其中,m为小于或等于M的正整数;S2、根据预先存储的dV-dSOC的特征函数,分别计算每个SOC对应的第二dV/dSOC数据,其中,该dV-dSOC的特征函数是将该目标电池在新电池状态下通过预设电流充电或者放电得到的,该预设电流不大于1/20QBOL,QBOL表示该目标电池在新电池状态时的保持容量;S3、根据每个SOC在该第m预设电池容量下的第一dV/dSOC数据和每个SOC对应的第二dV/dSOC数据,计算多个SOC的第m总体dV/dSOC数据偏差;从所有的总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差;将该最小的总体dV/dSOC数据偏差对应的预设电池容量确定为该目标电池老化后的保持容量;将该目标电池老化后的保持容量除以该目标电池在该新电池状态下的保持容量,以得到该目标电池的SOH。也就是说,本方案中,在目标电池老化后的保持容量时,是基于每个SOC的SOC区间上的局部充电或放电容量进行估计的。这样,一方面,由于并不像现有技术一样,需要进行一次满充或满放测试才能 得到该参数,因此,实现条件较为简单和灵活。另一方面,由于该方案不需要依赖于历史数据,因此更具有鲁棒性。
在一种可能的设计中,获取目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,包括:结合如下第一预设公式,获取该目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,该第一预设公式包括:
Figure PCTCN2017087564-appb-000001
其中,SOCn表示第n个SOC;
Figure PCTCN2017087564-appb-000002
表示该SOCn的SOC区间的局部充电或放电容量;η为该目标电池的库仑效率,0<η≤1;SOCn-t起始表示该SOCn的SOC区间的起始时刻;SOCn-t终止表示该SOCn的SOC区间的终止时刻;
Figure PCTCN2017087564-appb-000003
表示该SOCn的SOC区间的随机电流。基于该方案,可以获取目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量。
在一种可能的设计中,根据第m预设电池容量和每个SOC的SOC区间上的局部充电或放电容量,分别计算每个SOC在第m预设电池容量下的第一dV/dSOC数据,包括:根据第m预设电池容量和每个SOC的SOC区间上的局部充电或放电容量,结合第二预设公式,分别计算每个SOC在第m预设电池容量下的第一dV/dSOC数据,该第二预设公式包括:
Figure PCTCN2017087564-appb-000004
其中,Qm表示第m预设电池容量;SOCn表示第n个SOC;g1(SOCn)表示该SOCn在第m预设电池容量下的第一dV/dSOC数据;V表示电压;q表示局部充电或放电容量;
Figure PCTCN2017087564-appb-000005
表示该SOCn对应的
Figure PCTCN2017087564-appb-000006
基于该方案,可以计算出每个SOC在第m预设电池容量下的第一dV/dSOC数据。
在一种可能的设计中,考虑到当目标电池工作在放电状态时,当目标电池稳定静置一段时间后,或者工况保持非常小电流一段时间后,可认为电池极化消失,此时目标电池的初始时刻的端电压V可视作为目标电池的初始时刻的开路电压OCV,并且由于在短时间内OCV-SOC曲线是线性的,可以得到在短时间内dq与dOCV是成正比的,因此,当目标电池工作在放电状态时,上述第二预设公式具体包括:
Figure PCTCN2017087564-appb-000007
其中,SOCn-t起始表示该SOCn的SOC区间的起始时刻;SOCn-t终止表示该SOCn的SOC区间的终止时刻;
Figure PCTCN2017087564-appb-000008
表示SOCn-t起始的开路电压OCV;
Figure PCTCN2017087564-appb-000009
表示SOCn-t终止的OCV,
Figure PCTCN2017087564-appb-000010
表示该SOCn的SOC区间的局部放电容量。
在一种可能的设计中,该dV-dSOC的特征函数,包括:
Figure PCTCN2017087564-appb-000011
其中,SOCn表示第n个SOC;SOCn是dV-dSOC的特征函数的自变量,g0(SOCn)表示该SOCn对应的第二dV/dSOC数据;j代表阶数,a0,aj和bj是各项的系数;sin()表示正弦函数;cos()表示余弦函数;ω表示频率。该方案提供的dV-dSOC的特征函数是一个六阶傅里叶函数。也就是说,本申请实施例在利用拟合工具拟合dV-dSOC的特征函数时以该特征函数为六阶傅立叶函数为基础进行拟合。当然,实际中特征函数还可以包含但不仅限于多项式函数、傅立叶函数、指数函数等,本申请实施例对此不作具体限定。
在一种可能的设计中,根据每个SOC在第m预设电池容量下的第一dV/dSOC数据和每个SOC对应的第二dV/dSOC数据,计算多个SOC的第m总体dV/dSOC数据偏差,包括:根据每个SOC在第m预设电池容量下的第一dV/dSOC数据和每个SOC对应的第二dV/dSOC数据,结合第三预设公式,计算多个SOC的第m总体dV/dSOC数据偏差,该第三预设公式包括:
Figure PCTCN2017087564-appb-000012
其中,N表示SOC的个数,N为不小于2的正整数;SOCn表示第n个SOC;g0(SOCn)表示该SOCn对应的第二dV/dSOC数据;g1(SOCn)表示该SOCn在第m预设电池容量下的第一dV/dSOC数据;Gm表示该多个SOC的第m总体dV/dSOC数据偏差。基于该方案,可以计算多个SOC的第m总体dV/dSOC数据偏差。
第二方面,本申请实施例提供一种电池SOH的估计装置,该电池SOH的估计装置具有实现上述方法实施例行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,本申请实施例提供一种电池SOH的估计装置,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该电池SOH的估计装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该电池SOH的估计装置执行如上述第一方面任意一项的切换方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述基站所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的电池SOH的估计方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的电池SOH的估计方法。
其中,第二方面至第四方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第六方面,本申请实施例公开了一种电池健康状态SOH的估计方法,所述方法包括:
获取目标电池在N个状态的N个荷电状态SOC,所述SOC为所述目标电池的剩余容量与其满充电容量的比值;根据所述目标电池在第n个荷电状态SOC下充放电容量和电池的第m预设容量,分别计算所述每个SOC在所述第n个荷电状态下的第一dV/dSOC数据;其中,N表示SOC的个数,N为不小于2的正整数;其中,n为小于或等于N的正整数,m为从1到M的正整数,M为预设容量的个数;根据dV/dSOC-SOC的特征函数,分别计算所述每个SOC对应的第二dV/dSOC数据,其中,所述dV/dSOC-SOC的特征函数是将所述目标电池初始电池状态下通过预设电流充电或者放电获得,所述预设电流不大于1/20QBOL,QBOL表示所述目标电池在所述初始电池状态时的保持容量;根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,计算获得所述多个SOC的第m总体dV/dSOC数据偏差;从M个总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差;将所述最小的总体dV/dSOC数据偏差对应的预设电池容量确定为所述目标电池老化后的保持容量;根据所述目标电 池老化后的保持容量计算得到所述目标电池的SOH。这样,一方面,由于并不像现有技术一样,需要进行一次满充或满放测试才能得到该参数,因此,实现条件较为简单和灵活。另一方面,由于该方案不需要依赖于历史数据,因此更具有鲁棒性。
结合第六方面,需要指出的是,所述根据所述目标电池老化后的保持容量计算得到所述目标电池的SOH包括:将所述目标电池老化后的保持容量除以所述目标电池在所述新电池状态下的保持容量,以得到所述目标电池的SOH。
结合第六方面,在一种可能的设计中,所述方法还包括:获取所述目标电池在第n个荷电状态SOC中每个SOC的SOC区间上的局部充电或放电容量,其中,所述每个SOC的SOC区间是以所述每个SOC为起始SOC,dSOC为长度的区间;所述第n个荷电状态SOC下充放电容量在所述区间的局部充电或放电容量。
具体的,获取所述目标电池在第n个荷电状态SOC中每个SOC的SOC区间上的局部充电或放电容量,包括:
结合如下第一预设公式,获取所述目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,所述第一预设公式包括:
Figure PCTCN2017087564-appb-000013
其中,SOCn表示第n个SOC;
Figure PCTCN2017087564-appb-000014
表示所述SOCn的SOC区间的局部充电或放电容量;η为所述目标电池的库仑效率,0<η≤1;SOCn-t起始表示所述SOCn的SOC区间的起始时刻;SOCn-t终止表示所述SOCn的SOC区间的终止时刻;
Figure PCTCN2017087564-appb-000015
表示所述SOCn的SOC区间的随机电流。
结合第六方面,所述根据所述目标电池在第n个荷电状态SOC下充放电容量和电池的第m预设容量,分别计算所述每个SOC在所述第n个荷电状态下的第一dV/dSOC数据,包括:
根据第m预设电池容量和所述每个SOC的SOC区间上的局部充电或放电容量,结合第二预设公式,分别计算所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据,所述第二预设公式包括:
Figure PCTCN2017087564-appb-000016
其中,Qm表示第m预设电池容量;SOCn表示第n个SOC;g1(SOCn)表示所述SOCn在所述第m预设电池容量下的第一dV/dSOC数据;V表示电压;q表示局部充电或放电容量;
Figure PCTCN2017087564-appb-000017
表示所述SOCn对应的
Figure PCTCN2017087564-appb-000018
其中,当所述目标电池工作在放电状态时,所述第二预设公式具体包括:
Figure PCTCN2017087564-appb-000019
其中,SOCn-t起始表示所述SOCn的SOC区间的起始时刻;SOCn-t终止表示所述SOCn的SOC区间的终止时刻;
Figure PCTCN2017087564-appb-000020
表示SOCn-t起始的开路电压OCV;
Figure PCTCN2017087564-appb-000021
表示SOCn-t终止的OCV,
Figure PCTCN2017087564-appb-000022
表示所述SOCn的SOC区间的局部放电容量。
另外,需要指出的是,所述dV/dSOC-SOC的特征函数,包括:
Figure PCTCN2017087564-appb-000023
其中,SOCn表示第n个SOC; 所述SOCn是所述dV/dSOC-SOC的特征函数的自变量,g0(SOCn)表示所述SOCn对应的第二dV/dSOC数据;j代表阶数,a0,aj和bj是各项的系数;sin()表示正弦函数;cos()表示余弦函数;ω表示频率。
结合第六方面,需要指出的是,所述根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,计算所述多个SOC的第m总体dV/dSOC数据偏差,包括:
根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,结合第三预设公式,计算所述多个SOC的第m总体dV/dSOC数据偏差,所述第三预设公式包括:
Figure PCTCN2017087564-appb-000024
其中,N表示SOC的个数,N为不小于2的正整数;SOCn表示第n个SOC;g0(SOCn)表示所述SOCn对应的第二dV/dSOC数据;g1(SOCn)表示所述SOCn在所述第m预设电池容量下的第一dV/dSOC数据;Gm表示所述多个SOC的第m总体dV/dSOC数据偏差。
第七方面,本发明实施例公开了一种电池健康状态SOH的估计装置,所述装置包括:获取模块、计算模块;
所述获取模块,获取目标电池在N个状态的N个荷电状态SOC,所述SOC为所述目标电池的剩余容量与其满充电容量的比值;
所述计算模块,用于根据所述目标电池在第n个荷电状态SOC下充放电容量和电池的第m预设容量,分别计算所述每个SOC在所述第n个荷电状态下的第一dV/dSOC数据;其中,N表示SOC的个数,N为不小于2的正整数;其中,n为小于或等于N的正整数,m为从1到M的正整数,M为预设容量的个数;
根据dV/dSOC-SOC的特征函数,分别计算所述每个SOC对应的第二dV/dSOC数据,其中,所述dV/dSOC-SOC的特征函数是将所述目标电池初始电池状态下通过预设电流充电或者放电获得,所述预设电流不大于1/20QBOL,QBOL表示所述目标电池在所述初始电池状态时的保持容量;
根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,计算获得所述多个SOC的第m总体dV/dSOC数据偏差;
从M个总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差;
将所述最小的总体dV/dSOC数据偏差对应的预设电池容量确定为所述目标电池老化后的保持容量;
根据所述目标电池老化后的保持容量计算得到所述目标电池的SOH。
可选的,所述计算模块,具体用于将所述目标电池老化后的保持容量除以所述目标电池在所述新电池状态下的保持容量,以得到所述目标电池的SOH。
结合第七方面,所述获取模块,还用于获取所述目标电池在第n个荷电状态SOC中每个SOC的SOC区间上的局部充电或放电容量,其中,所述每个SOC的SOC区间是以所述每个SOC为起始SOC,dSOC为长度的区间;所述第n个荷电状态SOC下充放电容量在所述区间的局部充电或放电容量。
结合第七方面,可选的,所述获取模块具体用于:
结合如下第一预设公式,获取所述目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,所述第一预设公式包括:
Figure PCTCN2017087564-appb-000025
其中,SOCn表示第n个SOC;
Figure PCTCN2017087564-appb-000026
表示所述SOCn的SOC区间的局部充电或放电容量;η为所述目标电池的库仑效率,0<η≤1;SOCn-t起始表示所述SOCn的SOC区间的起始时刻;SOCn-t终止表示所述SOCn的SOC区间的终止时刻;
Figure PCTCN2017087564-appb-000027
表示所述SOCn的SOC区间的随机电流。
结合第七方面,可选的,所述计算模块具体用于:
根据第m预设电池容量和所述每个SOC的SOC区间上的局部充电或放电容量,结合第二预设公式,分别计算所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据,所述第二预设公式包括:
Figure PCTCN2017087564-appb-000028
其中,Qm表示第m预设电池容量;SOCn表示第n个SOC;g1(SOCn)表示所述SOCn在所述第m预设电池容量下的第一dV/dSOC数据;V表示电压;q表示局部充电或放电容量;
Figure PCTCN2017087564-appb-000029
表示所述SOCn对应的
Figure PCTCN2017087564-appb-000030
需要指出的是,当所述目标电池工作在放电状态时,所述第二预设公式具体包括:
Figure PCTCN2017087564-appb-000031
其中,SOCn-t起始表示所述SOCn的SOC区间的起始时刻;SOCn-t终止表示所述SOCn的SOC区间的终止时刻;
Figure PCTCN2017087564-appb-000032
表示SOCn-t起始的开路电压OCV;
Figure PCTCN2017087564-appb-000033
表示SOCn-t终止的OCV,
Figure PCTCN2017087564-appb-000034
表示所述SOCn的SOC区间的局部放电容量。
结合第七方面,需要指出的是,所述dV/dSOC-SOC的特征函数,包括:
Figure PCTCN2017087564-appb-000035
其中,SOCn表示第n个SOC;所述SOCn是所述dV/dSOC-SOC的特征函数的自变量,g0(SOCn)表示所述SOCn对应的第二dV/dSOC数据;j代表阶数,a0,aj和bj是各项的系数;sin()表示正弦函数;cos()表示余弦函数;ω表示频率。
结合第七方面,可选的,所述计算模块具体用于:
根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,结合第三预设公式,计算所述多个SOC的第m总体dV/dSOC数据偏差,所述第三预设公式包括:
Figure PCTCN2017087564-appb-000036
其中,N表示SOC的个数,N为不小于2的正整数;SOCn表示第n个SOC;g0(SOCn)表示所述SOCn对应的第二dV/dSOC数据;g1(SOCn)表示所述SOCn在所述第m预设电池容量下的第一dV/dSOC数据;Gm表示所述多个SOC的第m总体dV/dSOC数据偏差。
第八方面,本申请实施例公开了一种电池健康状态SOH的估计装置,包括:处理器、存储器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存 储器通过所述总线连接,当所述装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置执行如第六方面所述的电池SOH的估计方法。
第九方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述基站所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第六方面中任意一项的电池SOH的估计方法。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第六方面中任意一项的电池SOH的估计方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的电池SOH的估计系统的架构示意图;
图2为本申请实施例提供的电池SOH的估计装置的硬件结构示意图;
图3为本申请实施例提供的电池SOH的估计方法的流程示意图;
图4为本申请实施例提供的目标电池在新电池状态和不同老化程度下通过预设电流充电或者放电的电压-容量曲线图;
图5为本申请实施例提供的图4对应的目标电池在新电池状态和不同老化程度下通过预设电流充电或者放电的Vt-SOC曲线图;
图6为本申请实施例提供的目标电池在新电池状态和不同老化程度下通过预设电流充电或者放电的dV-dSOC的特征曲线;
图7为本申请实施例提供的拟合曲线与实际曲线的对比示意图;
图8为本申请实施例提供的一种电池SOH的估计装置的结构示意图;
图9为本申请实施例提供的另一种电池SOH的估计装置的结构示意图。
具体实施方式
为了便于理解本申请实施例的技术方案,首先给出几个关键术语的解释如下:
保持容量(Retention Capacity):电池使用一段时间或长期搁置后,电池满充或满放的电容量。
老化(Aging):指电池使用一段时间或长期搁置,电池容量发生自然衰减的现象。具体的,电池的老化通常包含两部分,一部分是循环过程中的老化(即循环寿命cycle life),另一部分是搁置过程中的老化(即日历寿命calendar life)。其中,循环过程中的老化指电池随着充放电次数的增加,电池剩余可充放电次数相应减少,电池总的充放电次数是可测量可估计的,同时每次充放电的保持容量发生衰减。搁置过程中的老化是指电池在没有充放电情况下,随着时间的增加,电池保持容量发生衰减。本申请实施例中所涉及的老化不限定是何种形式的老化,在此进行统一说明,以下不再赘述。
新电池状态(Beginning of life,BOL):具体是指保持容量为百分之百的电池状态。
SOH:将电池老化后的保持容量与电池在新电池状态下的容量的百分比定义为电池的SOH。
荷电状态(State of Charge,SOC):SOC为电池的剩余容量与其满充电容量的比值,常用百分数表示。
开路电压(Open Circuit Voltage,OCV):电池在开路状态下的端电压称为开路电压。
电池极化:电池极化就是由于电流的流动,而打破静止状态后,实际电极电位偏离了平衡电极电位的现象。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或多于两个。
如图1所示,为本申请实施例提供的电池SOH的估计系统10。该电池SOH的估计系统10包括电池20、电池检测装置21、充放电执行装置22、绝对时间单元23、控制器24存储芯片25和电池SOH的估计装置26。
其中,电池检测装置21,用于将实时检测的数据上传到控制器。电池检测装置23包含三部分,分别为:电池电压采样组件、电流采样单元和温度采样组件。电池电压采样组件包含采样芯片和连接线束;电流采样单元包含温度采样芯片和温度传感器。
充放电执行装置22,用于执行电池的充放电。
绝对时间单元23,用于将由高频晶振提供的绝对时间实时发送到控制器24。
控制器24,用于控制电池的采样和接收绝对时间,并将采样数据和绝对时间打包存放到存储芯片25中;以及,通过充放电执行装置22控制电池的充放电电流和状态。
存储芯片25,用于预先存储新电池的dV/dSOC-SOC信息,以及实时存储采集到的有效电池数据并按特定格式存储。
电池SOH的估计装置26,用于对存储芯片25中的数据进行有序的存储和读取操作;以及,根据读取的数据进行电池SOH的估计,具体实现可参考下述方法实施例,在此不再赘述。
虽然未示出,电池SOH的估计系统10还可能包括供电电源、安全保护装置和绝缘装置等,本申请实施例对此不作具体限定。
如图2所示,为本申请实施例提供的一种电池SOH的估计装置26的硬件结构示意图,该电池SOH的估计装置26包括至少一个处理器2601,通信总线2602,存储器2603以及至少一个通信接口2604。
处理器2601可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线2602可包括一通路,在上述组件之间传送信息。
通信接口2604,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
存储器2603可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact  Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器2603用于存储执行本申请方案的应用程序代码,并由处理器2601来控制执行。处理器2601用于执行存储器2603中存储的应用程序代码,从而实现本申请实施例提供的电池SOH的估计方法。
在具体实现中,作为一种实施例,处理器2601可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,电池SOH的估计装置26可以包括多个处理器,例如图2中的处理器2601和处理器2608。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,电池SOH的估计装置26还可以包括输出设备2605和输入设备2606。输出设备2605和处理器2601通信,可以以多种方式来显示信息。例如,输出设备2605可以是液晶显示器(Liquid Crystal Display,LCD),发光二级管(Light Emitting Diode,LED)显示设备,阴极射线管(Cathode Ray Tube,CRT)显示设备,或投影仪(projector)等。输入设备2606和处理器2601通信,可以以多种方式接受用户的输入。例如,输入设备2606可以是鼠标、键盘、触摸屏设备或传感设备等。
如图3所示,为本申请实施例提供的电池SOH的估计方法,该方法包括如下步骤:
S301、电池SOH的估计装置获取目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量。
其中,每个SOC的SOC区间是以每个SOC为起始SOC,dSOC为长度的区间。
S302、当电池SOH的估计装置确定预设电池容量的个数为M个时,按照步骤S1-S3分别计算每个预设电池容量对应的总体dV/dSOC数据偏差,其中,M为正整数。
S1、电池SOH的估计装置根据第m预设电池容量和每个SOC的SOC区间上的局部充电或放电容量,分别计算每个SOC在第m预设电池容量下的第一dV/dSOC数据。
其中,m为小于或等于M的正整数;
S2、电池SOH的估计装置根据预先存储的dV-dSOC的特征函数,分别计算每个SOC对应的第二dV/dSOC数据。
其中,dV-dSOC的特征函数是将目标电池在新电池状态下通过预设电流充电或者放电得到的,预设电流不大于1/20QBOL,QBOL表示目标电池在新电池状态时的保持容量。
S3、电池SOH的估计装置根据每个SOC在第m预设电池容量下的第一dV/dSOC数据和每个SOC对应的第二dV/dSOC数据,计算多个SOC的第m总体dV/dSOC数据偏差。
S303、电池SOH的估计装置从所有的总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差。
S304、电池SOH的估计装置将最小的总体dV/dSOC数据偏差对应的预设电池容量确定为目标电池老化后的保持容量。
S305、电池SOH的估计装置将目标电池老化后的保持容量除以目标电池在新电池状态下的保持容量,以得到目标电池的SOH。
其中,在步骤S301中:
每个SOC的SOC区间是以每个SOC为起始SOC,dSOC为长度的区间。比如,第一个SOC的SOC区间是以第一个SOC为起始SOC,dSOC为长度的区间。其中,每个SOC的dSOC可以相同,也可以不同,本申请实施例对此不作具体限定。
需要说明的是,为了方便表示,本申请实施例将第一个SOC记作SOC1,第二个SOC记作SOC2,第n个SOC记作SOCn,在此进行统一说明,以下不再赘述。
可选的,电池SOH的估计装置获取目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,具体可以包括:电池SOH的估计装置结合公式(1),获取目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,公式(1)如下:
Figure PCTCN2017087564-appb-000037
其中,SOCn表示第n个SOC;
Figure PCTCN2017087564-appb-000038
表示SOCn的SOC区间的局部充电或放电容量;η为目标电池的库仑效率,0<η≤1,η可根据电池的类型给定,在锂离子电池中,η可取为1;其他类型电池如铅酸蓄电池、镍氢、镍镉电池等,根据类型不同η可取0.9~1之间的数值;SOCn-t起始表示SOCn的SOC区间的起始时刻;SOCn-t终止表示SOCn的SOC区间的终止时刻;
Figure PCTCN2017087564-appb-000039
表示SOCn的SOC区间的随机电流。
示例性的,当目标电池工作在充电状态时,对于每个SOC的SOC区间,在目标电池的充电电流小于预设值时,比如在大电流充电过程中,控制充电初始阶段的电流和充电结束段的电流,使得电流小于1/20QBOL时,或者控制整个充电过程的电流小于1/20QBOL,图1中的电池检测装置21可以将采集到的数据以结构体数组的形式统一刷写入存储芯片25中。该结构体包含若干个数组元素,比如电压、电流、温度、绝对时间和初始SOC,具体可以表征为Data(k){V[],I[],Temp[],Time[],SOC[]},k为0到K的自然数,代表K个结构体数据。其中,记录频率按采样频率记录,记录时长为Δt=t终止-t起始。进而,电池SOH的估计装置可以从存储芯片25中读取上述结构体数据,进而结合公式(1),获取目标电池在多个SOC中每个SOC的SOC区间上的局部充电容量。
示例性的,当目标电池工作在放电状态时,对于每个SOC的SOC区间,在目标电池近似开路稳定状态时,图1中的电池检测装置21可以将采集到的数据以结构体数组的形式统一刷写入存储芯片25中。该结构体包含若干个数组元素,比如电压、电流、温度、绝对时间和初始SOC,具体可以表征为Data(k){V[],I[],Temp[],Time[],SOC[]},k为0到K的自然数,代表K个结构体数据。其中,记录频率按采样频率记录,记录时长为Δt=t终止-t起始。进而,电池SOH的估计装置可以从存储芯片25中读取上述结构体数据,进而结合公式(1),获取目标电池在多个SOC中每个SOC的SOC区间上的局部放电容量。其中,本申请实施例中,目标电池的电流-β<I<β值,并持续γ分钟,或者目标电池经过大于15分钟的开路搁置,认为目标电池达到近似开路稳定状态。β和γ的取值根据目标电池的特性而定,一般β取2A,γ取5~10分钟。
比如,对于SOC1,电池SOH的估计装置可以从存储芯片25中读取SOC1的SOC区间 上的K个结构体数据,根据公式(1),获取SOC1的SOC区间上的局部充电或放电容量为:
Figure PCTCN2017087564-appb-000040
需要说明的是,本申请实施例中,一方面,K的大小取决于绝对时间t,绝对时间t起始为算法开始,记录数据的绝对时刻;绝对时间t终止是算法结束,开始估算SOH的绝对时刻,在t起始和t终止之间的时间差一般不超过1个月。另一方面,K的大小不能超过预设的上限值,比如预设的上限值为100,即表示记录数据最多一百次。其中,预设的上限值可由存储芯片25的大小决定,在满足存储许可的情况下,预设的上限值越大,参与估计的数据量越大,估计精度越高。
其中,在步骤S302的S1中:
可选的,电池SOH的估计装置根据第m预设电池容量和每个SOC的SOC区间上的局部充电或放电容量,分别计算每个SOC在第m预设电池容量下的第一dV/dSOC数据,具体可以包括:电池SOH的估计装置根据第m预设电池容量和每个SOC的SOC区间上的局部充电或放电容量,结合公式(2),分别计算每个SOC在第m预设电池容量下的第一dV/dSOC数据,公式(2)如下:
Figure PCTCN2017087564-appb-000041
其中,Qm表示第m预设电池容量;SOCn表示第n个SOC;g1(SOCn)表示SOCn在第m预设电池容量下的第一dV/dSOC数据;V表示电压;q表示局部充电或放电容量;
Figure PCTCN2017087564-appb-000042
表示SOCn对应的
Figure PCTCN2017087564-appb-000043
示例性的,假设电池SOH的估计装置可以从存储芯片25中读取SOCn的SOC区间上的K个结构体数据,由于在短时间内V-SOC曲线是线性的,因此,电池SOH的估计装置可以根据公式(2),计算SOCn在第m预设电池容量下的第一dV/dSOC数据为:
Figure PCTCN2017087564-appb-000044
其中,SOCn-t起始表示SOCn的SOC区间的起始时刻;SOCn-t终止表示SOCn的SOC区间的终止时刻;
Figure PCTCN2017087564-appb-000045
表示SOCn-t终止的电压;
Figure PCTCN2017087564-appb-000046
表示SOCn-t终止的电压;
Figure PCTCN2017087564-appb-000047
表示SOCn的SOC区间上的第K个电压;
Figure PCTCN2017087564-appb-000048
表示SOCn的SOC区间上的初始电压。
可选的,考虑到当目标电池工作在放电状态时,当目标电池稳定静置一段时间后,或者工况保持非常小电流一段时间后,可认为电池极化消失,此时目标电池的初始时刻的端电压V可视作为目标电池的初始时刻的开路电压OCV,并且由于在短时间内OCV-SOC曲线是线性的,可以得到在短时间内dq与dOCV是成正比的,因此,当目标电池工作在放电状态时,上述公式(2)可以演变为如下公式(3):
Figure PCTCN2017087564-appb-000049
其中,
Figure PCTCN2017087564-appb-000050
表示SOCn-t起始的OCV;
Figure PCTCN2017087564-appb-000051
表示SOCn-t终止的OCV;
Figure PCTCN2017087564-appb-000052
表示 SOCn的SOC区间的局部放电容量。
可选的,电池SOH的估计装置可以根据SOCn的SOC区间的起始SOC和终止SOC,结合预先存储的SOC与OCV的对应关系,确定
Figure PCTCN2017087564-appb-000053
Figure PCTCN2017087564-appb-000054
本申请实施例对此不作具体限定。
示例性的,假设电池SOH的估计装置可以从存储芯片25中读取SOCn的SOC区间上的K个结构体数据,则电池SOH的估计装置可以根据公式(3),计算在第m预设电池容量下的第一dV/dSOC数据为:
Figure PCTCN2017087564-appb-000055
其中,
Figure PCTCN2017087564-appb-000056
表示SOCn的SOC区间上的第K个OCV;
Figure PCTCN2017087564-appb-000057
表示SOCn的SOC区间上的初始OCV。
Figure PCTCN2017087564-appb-000058
可以根据SOCn[K]和预先存储的SOC与OCV的对应关系确定,
Figure PCTCN2017087564-appb-000059
可以根据SOCn[0]和预先存储的SOC与OCV的对应关系确定。SOCn[K]表示SOCn的SOC区间上的第K个SOC;SOCn[0]表示SOCn的SOC区间上的初始SOC。
其中,在步骤S302的S2中:
电池SOH的估计装置根据预先存储的dV-dSOC的特征函数,分别计算每个SOC对应的第二dV/dSOC数据,具体是指,电池SOH的估计装置将每个SOC分别带入预先存储的dV-dSOC的特征函数,得到每个SOC对应的第二dV/dSOC数据。
可选的,预先存储的dV-dSOC的特征函数可以通过如下方式获得:
步骤一,将目标电池在新电池状态下通过预设电流充电或者放电,以得到电压-容量曲线。
其中,该预设电流不大于1/20QBOL,比如该预设电流为1/25QBOL
示例性的,如图4所示,为本申请实施例提供的目标电池在新电池状态和不同老化程度下通过预设电流充电或者放电的电压-容量(Voltage-capacity,V-Q)曲线图。其中,曲线1为目标电池在新电池状态下通过预设电流充电或者放电的V-Q曲线图。曲线图;曲线2为目标电池在老化程度为400循环下通过预设电流充电或者放电的V-Q线图;曲线3为目标电池在老化程度为1000循环下通过预设电流充电或者放电的V-Q曲线图;曲线4为目标电池在老化程度为2000循环下通过预设电流充电或者放电的V-Q曲线图。由图4可以看出,随着老化程度的增加,即循环次数的增加,目标电池所能释放的容量逐渐减少,V-Q曲线在放电末端发生明显偏移。
需要说明的是,因为小电流条件下的电压和OCV非常接近,因此本申请实施例中的电压-容量曲线与现有的OCV-容量非常接近,在此进行统一说明,以下不再赘述。
步骤二,将电压-容量曲线转换成电压-荷电状态(V-SOC)曲线。
根据步骤一获得的电压-容量曲线,根据SOC的定义,将目标电池的充放电容量转化为目标电池的剩余容量与其充满电容量的比值,得到V-SOC曲线。
示例性的,如图5所示,为图4对应的目标电池在新电池状态和不同老化程度下通过预设电流充电或者放电的V-SOC曲线图。由图5可以看出,在通过预设电流充电或者放电时,不同老化程度下的V-SOC曲线呈归一化的特性。本申请实施例就是基于这种归一化特性进行电池SOH的估计。
步骤三,根据V-SOC曲线,获取目标电池的dV-dSOC的特征曲线。
示例性的,目标电池在新电池状态和不同老化程度下通过预设电流充电或者放电的dV-dSOC的特征曲线可以如图6所示。
步骤四,提取dV-dSOC的特征曲线上的点进行拟合,以得到目标电池新状态下的dV-dSOC的特征函数。
示例性的,可以选取图6中曲线归一化程度最高的区间段上的点进行拟合,比如选取SOC区间段0~0.7之间的点进行拟合。
由于在通过预设电流充电或者放电时,不同老化程度下的Vt-SOC曲线呈归一化的特性,因此在通过预设电流充电或者放电时,将目标电池在新电池状态下通过预设电流充电或者放电得到的标电池新状态下的dV-dSOC的特征函数,也可以视作目标电池在不同老化程度下的dV-dSOC的特征函数。
示例性的,dV-dSOC的特征函数可以如公式(4)所示:
Figure PCTCN2017087564-appb-000060
其中,该特征函数是一个六阶傅里叶函数,SOCn是dV-dSOC的特征函数的自变量,g0(SOCn)表示SOCn对应的第二dV/dSOC数据;j代表阶数,a0,aj和bj是各项的系数,是通过拟合工具获得的;sin()表示正弦函数;cos()表示余弦函数;ω表示频率。
其中,图7为拟合出的公式(4)所示的dV-dSOC的特征函数对应的曲线与原dV-dSOC的特征曲线的对比示意图,二者基本吻合。
可选的,本申请实施例在利用拟合工具拟合dV-dSOC的特征函数时以该特征函数为六阶傅立叶函数为例进行拟合。当然,实际中特征函数还可以包含但不仅限于多项式函数、傅立叶函数、指数函数等,本申请实施例对此不作具体限定。
其中,在步骤S302的S3中:
可选的,电池SOH的估计装置根据每个SOC在第m预设电池容量下的第一dV/dSOC数据和每个SOC对应的第二dV/dSOC数据,计算多个SOC的第m总体dV/dSOC数据偏差,具体包括:电池SOH的估计装置根据每个SOC在第m预设电池容量下的第一dV/dSOC数据和每个SOC对应的第二dV/dSOC数据,结合公式(5),计算多个SOC的第m总体dV/dSOC数据偏差,公式(5)包括:
Figure PCTCN2017087564-appb-000061
其中,N表示SOC的个数,N为不小于2的正整数;Gm表示多个SOC的第m总体dV/dSOC数据偏差。
示例性的,g1(SOC)可以如公式(2)所示,g0(SOC)可以如公式(4)所示,带入公式(5)可得如下公式(6):
Figure PCTCN2017087564-appb-000062
可以看出,Gm与Qm相关。表一给出了Gm与Qm的一组映射关系,如下所示:
表一
Figure PCTCN2017087564-appb-000063
Figure PCTCN2017087564-appb-000064
其中,QEOL表示目标电池寿命终止(End of life,EOL)时的满充满放容量;QBOL表示目标电池新电池状态时的满充满放容量。
其中,在步骤S303中:
电池SOH的估计装置可以通过排序的方式,从所有的总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差;也可以通过其他方式,,从所有的总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差,本申请实施例对此不作具体限定。
其中,在步骤S304中:
电池SOH的估计装置将最小的总体dV/dSOC数据偏差对应的预设电池容量确定为目标电池老化后的保持容量。因为由上述描述可知,将目标电池在新电池状态下通过预设电流充电或者放电得到的标电池新状态下的dV-dSOC的特征函数,也可以视作目标电池在不同老化程度下的dV-dSOC的特征函数,因此最小的总体dV/dSOC数据偏差对应的预设电池容量理论上最接近真实保持容量的估算容量值。
其中,在步骤S305中:
根据SOH的定义,将目标电池老化后的保持容量除以目标电池在新电池状态下的保持容量,即可得到目标电池的SOH。
本申请实施例提供的电池SOH的估计方法中,电池SOH的估计装置获取目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,进而根据第m预设电池容量和每个SOC的SOC区间上的局部充电或放电容量,分别计算每个SOC在第m预设电池容量下的第一dV/dSOC数据;根据预先存储的dV-dSOC的特征函数,分别计算每个SOC对应的第二dV/dSOC数据,该dV-dSOC的特征函数是将目标电池在新电池状态下通过预设电流充电或者放电得到的,预设电流不大于1/20QBOL,QBOL表示目标电池在新电池状态时的保持容量;根据每个SOC在第m预设电池容量下的第一dV/dSOC数据和每个SOC对应的第二dV/dSOC数据,计算多个SOC的第m总体dV/dSOC数据偏差;然后从所有的总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差,并将该最小的总体dV/dSOC数据偏差对应的预设电池容量确定为目标电池老化后的保持容量;最后基于该目标电池老化后的保持容量确定目标电池的SOH。也就是说,本方案中,在目标电池老化后的保持容量时,是基于每个SOC的SOC区间上的局部充电或放电容量进行估计的。这样,一方面,由于并不像现有技术一样,需要进行一次满充或满放测试才能得到该参数,因此,实现条件较为简单和灵活。另一方面,由于该方案不需要依赖于历史数据,因此更具有鲁棒性。
其中,上述步骤S301-S305中电池SOH的估计装置动作可以由图2所示的电池SOH的估计装置26中的处理器2601调用存储器2603中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
上述主要从电池SOH的估计装置执行电池SOH的估计方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述电池SOH的估计装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识 到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电池SOH的估计装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用对应各个功能划分各个功能模块的情况下,图8示出了上述实施例中所涉及的电池SOH的估计装置80的一种可能的结构示意图。该电池SOH的估计装置80包括获取模块801、计算模块802和确定模块803。其中,获取模块801用于支持电池SOH的估计装置80执行图3中的步骤S301;计算模块802用于支持电池SOH的估计装置80执行图3中的步骤S302和S305;确定模块803用于支持电池SOH的估计装置80执行图3中的步骤S303和S304。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
以采用集成的方式划分各个功能模块的情况下,图9示出了上述实施例中所涉及的电池SOH的估计装置90的一种可能的结构示意图。如图9所示,该电池SOH的估计装置90包括处理模块901。其中,处理模块901用于支持电池SOH的估计装置80执行图3中的步骤S301至S305。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,该电池SOH的估计装置以对应各个功能划分各个功能模块的形式来呈现,或者,该电池SOH的估计装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到电池SOH的估计装置80或者电池SOH的估计装置90可以采用图2所示的形式。比如,图8中的获取模块801、计算模块802和确定模块803可以通过图2的处理器2601和存储器2603来实现。具体的,获取模块801、计算模块802和确定模块803可以通过由处理器2601来调用存储器2603中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图9中的处理模块901可以通过图2的处理器2601和存储器2603来实现,具体的,处理模块901可以通过由处理器2601来调用存储器2603中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的电池SOH的估计装置可用于执行上述的切换方法,因此其所能获得的技术效果可参考上述方法实施例,本申请实施例在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机 程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (17)

  1. 一种电池健康状态SOH的估计方法,其特征在于,所述方法包括:
    获取目标电池在N个状态的N个荷电状态SOC,所述SOC为所述目标电池的剩余容量与其满充电容量的比值;
    根据所述目标电池在第n个荷电状态SOC下充放电容量和电池的第m预设容量,分别计算所述每个SOC在所述第n个荷电状态下的第一dV/dSOC数据;其中,N表示SOC的个数,N为不小于2的正整数;其中,n为小于或等于N的正整数,m为从1到M的正整数,M为预设容量的个数;
    根据dV/dSOC-SOC的特征函数,分别计算所述每个SOC对应的第二dV/dSOC数据,其中,所述dV/dSOC-SOC的特征函数是将所述目标电池初始电池状态下通过预设电流充电或者放电获得,所述预设电流不大于1/20QBOL,QBOL表示所述目标电池在所述初始电池状态时的保持容量;
    根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,计算获得所述多个SOC的第m总体dV/dSOC数据偏差;
    从M个总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差;
    将所述最小的总体dV/dSOC数据偏差对应的预设电池容量确定为所述目标电池老化后的保持容量;
    根据所述目标电池老化后的保持容量计算得到所述目标电池的SOH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述目标电池在第n个荷电状态SOC中每个SOC的SOC区间上的局部充电或放电容量,其中,所述每个SOC的SOC区间是以所述每个SOC为起始SOC,dSOC为长度的区间;所述第n个荷电状态SOC下充放电容量在所述区间的局部充电或放电容量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述目标电池老化后的保持容量计算得到所述目标电池的SOH包括:将所述目标电池老化后的保持容量除以所述目标电池在所述新电池状态下的保持容量,以得到所述目标电池的SOH。
  4. 根据权利要求2所述的方法,其特征在于,获取所述目标电池在第n个荷电状态SOC中每个SOC的SOC区间上的局部充电或放电容量,包括:
    结合如下第一预设公式,获取所述目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,所述第一预设公式包括:
    Figure PCTCN2017087564-appb-100001
    其中,SOCn表示第n个SOC;
    Figure PCTCN2017087564-appb-100002
    表示所述SOCn的SOC区间的局部充电或放电容量;η为所述目标电池的库仑效率,0<η≤1;SOCn-t起始表示所述SOCn的SOC区间的起始时刻;SOCn-t终止表示所述SOCn的SOC区间的终止时刻;
    Figure PCTCN2017087564-appb-100003
    表示所述SOCn的SOC区间的随机电流。
  5. 根据权利要求1-4所述的方法,其特征在于,所述根据所述目标电池在第n个荷电状态SOC下充放电容量和电池的第m预设容量,分别计算所述每个SOC在所述第n个荷电状态下的第一dV/dSOC数据,包括:
    根据第m预设电池容量和所述每个SOC的SOC区间上的局部充电或放电容量,结 合第二预设公式,分别计算所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据,所述第二预设公式包括:
    Figure PCTCN2017087564-appb-100004
    其中,Qm表示第m预设电池容量;SOCn表示第n个SOC;g1(SOCn)表示所述SOCn在所述第m预设电池容量下的第一dV/dSOC数据;V表示电压;q表示局部充电或放电容量;
    Figure PCTCN2017087564-appb-100005
    表示所述SOCn对应的
    Figure PCTCN2017087564-appb-100006
  6. 根据权利要求5所述的方法,其特征在于,当所述目标电池工作在放电状态时,所述第二预设公式具体包括:
    Figure PCTCN2017087564-appb-100007
    其中,SOCn-t起始表示所述SOCn的SOC区间的起始时刻;SOCn-t终止表示所述SOCn的SOC区间的终止时刻;
    Figure PCTCN2017087564-appb-100008
    表示SOCn-t起始的开路电压OCV;
    Figure PCTCN2017087564-appb-100009
    表示SOCn-t终止的OCV,
    Figure PCTCN2017087564-appb-100010
    表示所述SOCn的SOC区间的局部放电容量。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述dV/dSOC-SOC的特征函数,包括:
    Figure PCTCN2017087564-appb-100011
    其中,SOCn表示第n个SOC;所述SOCn是所述dV/dSOC-SOC的特征函数的自变量,g0(SOCn)表示所述SOCn对应的第二dV/dSOC数据;j代表阶数,a0,aj和bj是各项的系数;sin()表示正弦函数;cos()表示余弦函数;ω表示频率。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,计算所述多个SOC的第m总体dV/dSOC数据偏差,包括:
    根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,结合第三预设公式,计算所述多个SOC的第m总体dV/dSOC数据偏差,所述第三预设公式包括:
    Figure PCTCN2017087564-appb-100012
    其中,N表示SOC的个数,N为不小于2的正整数;SOCn表示第n个SOC;g0(SOCn)表示所述SOCn对应的第二dV/dSOC数据;g1(SOCn)表示所述SOCn在所述第m预设电池容量下的第一dV/dSOC数据;Gm表示所述多个SOC的第m总体dV/dSOC数据偏差。
  9. 一种电池健康状态SOH的估计装置,其特征在于,所述装置包括:获取模块、计算模块;
    所述获取模块,获取目标电池在N个状态的N个荷电状态SOC,所述SOC为所述目标电池的剩余容量与其满充电容量的比值;
    所述计算模块,用于根据所述目标电池在第n个荷电状态SOC下充放电容量和电池的第m预设容量,分别计算所述每个SOC在所述第n个荷电状态下的第一dV/dSOC数据;其中,N表示SOC的个数,N为不小于2的正整数;其中,n为小于或等于N的正整数,m为从1到M的正整数,M为预设容量的个数;
    根据dV/dSOC-SOC的特征函数,分别计算所述每个SOC对应的第二dV/dSOC数据, 其中,所述dV/dSOC-SOC的特征函数是将所述目标电池初始电池状态下通过预设电流充电或者放电获得,所述预设电流不大于1/20QBOL,QBOL表示所述目标电池在所述初始电池状态时的保持容量;
    根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,计算获得所述多个SOC的第m总体dV/dSOC数据偏差;
    从M个总体dV/dSOC数据偏差中确定最小的总体dV/dSOC数据偏差;
    将所述最小的总体dV/dSOC数据偏差对应的预设电池容量确定为所述目标电池老化后的保持容量;
    根据所述目标电池老化后的保持容量计算得到所述目标电池的SOH。
  10. 根据权利要求9所述的装置,其特征在于,所述获取模块,还用于获取所述目标电池在第n个荷电状态SOC中每个SOC的SOC区间上的局部充电或放电容量,其中,所述每个SOC的SOC区间是以所述每个SOC为起始SOC,dSOC为长度的区间;所述第n个荷电状态SOC下充放电容量在所述区间的局部充电或放电容量。
  11. 根据权利要求9所述的装置,其特征在于,所述计算模块,具体用于将所述目标电池老化后的保持容量除以所述目标电池在所述新电池状态下的保持容量,以得到所述目标电池的SOH。
  12. 根据权利要求9所述的装置,其特征在于,所述获取模块具体用于:
    结合如下第一预设公式,获取所述目标电池在多个SOC中每个SOC的SOC区间上的局部充电或放电容量,所述第一预设公式包括:
    Figure PCTCN2017087564-appb-100013
    其中,SOCn表示第n个SOC;
    Figure PCTCN2017087564-appb-100014
    表示所述SOCn的SOC区间的局部充电或放电容量;η为所述目标电池的库仑效率,0<η≤1;SOCn-t起始表示所述SOCn的SOC区间的起始时刻;SOCn-t终止表示所述SOCn的SOC区间的终止时刻;
    Figure PCTCN2017087564-appb-100015
    表示所述SOCn的SOC区间的随机电流。
  13. 根据权利要求9或10所述的装置,其特征在于,所述计算模块具体用于:
    根据第m预设电池容量和所述每个SOC的SOC区间上的局部充电或放电容量,结合第二预设公式,分别计算所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据,所述第二预设公式包括:
    Figure PCTCN2017087564-appb-100016
    其中,Qm表示第m预设电池容量;SOCn表示第n个SOC;g1(SOCn)表示所述SOCn在所述第m预设电池容量下的第一dV/dSOC数据;V表示电压;q表示局部充电或放电容量;
    Figure PCTCN2017087564-appb-100017
    表示所述SOCn对应的
    Figure PCTCN2017087564-appb-100018
  14. 根据权利要求13所述的装置,其特征在于,当所述目标电池工作在放电状态时,所述第二预设公式具体包括:
    Figure PCTCN2017087564-appb-100019
    其中,SOCn-t起始表示所述SOCn的SOC区间的起始时刻;SOCn-t终止表示所述SOCn的SOC区间的终止时刻;
    Figure PCTCN2017087564-appb-100020
    表示SOCn-t起始的开路电压OCV;
    Figure PCTCN2017087564-appb-100021
    表示SOCn-t终止的OCV,
    Figure PCTCN2017087564-appb-100022
    表示所述SOCn的SOC 区间的局部放电容量。
  15. 根据权利要求9-14任一项所述的装置,其特征在于,所述dV/dSOC-SOC的特征函数,包括:
    Figure PCTCN2017087564-appb-100023
    其中,SOCn表示第n个SOC;所述SOCn是所述dV/dSOC-SOC的特征函数的自变量,g0(SOCn)表示所述SOCn对应的第二dV/dSOC数据;j代表阶数,a0,aj和bj是各项的系数;sin()表示正弦函数;cos()表示余弦函数;ω表示频率。
  16. 根据权利要求9-14任一项所述的装置,其特征在于,所述计算模块具体用于:
    根据所述每个SOC在所述第m预设电池容量下的第一dV/dSOC数据和所述每个SOC对应的第二dV/dSOC数据,结合第三预设公式,计算所述多个SOC的第m总体dV/dSOC数据偏差,所述第三预设公式包括:
    Figure PCTCN2017087564-appb-100024
    其中,N表示SOC的个数,N为不小于2的正整数;SOCn表示第n个SOC;g0(SOCn)表示所述SOCn对应的第二dV/dSOC数据;g1(SOCn)表示所述SOCn在所述第m预设电池容量下的第一dV/dSOC数据;Gm表示所述多个SOC的第m总体dV/dSOC数据偏差。
  17. 一种电池健康状态SOH的估计装置,其特征在于,包括:处理器、存储器、总线和通信接口;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接,当所述装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述装置执行如权利要求1-8中任意一项所述的电池SOH的估计方法。
PCT/CN2017/087564 2017-04-18 2017-06-08 电池健康状态的估计方法及装置 WO2018192069A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17906402.7A EP3614157B1 (en) 2017-04-18 2017-06-08 Method and device for estimating state of health of battery
EP20190656.7A EP3809148B1 (en) 2017-04-18 2017-06-08 Method and apparatus for estimating battery state of health
BR112019021863-7A BR112019021863B1 (pt) 2017-04-18 2017-06-08 Método e aparelho para estimar o estado de saúde da bateria
JP2019556632A JP2020517920A (ja) 2017-04-18 2017-06-08 バッテリ健康状態を推定するための方法および装置
US16/657,651 US10948548B2 (en) 2017-04-18 2019-10-18 Method and apparatus for estimating battery state of health
US17/160,003 US20210148988A1 (en) 2017-04-18 2021-01-27 Method and apparatus for estimating battery state of health

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710254759.6A CN108732500B (zh) 2017-04-18 2017-04-18 电池健康状态的估计方法及装置
CN201710254759.6 2017-04-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/657,651 Continuation US10948548B2 (en) 2017-04-18 2019-10-18 Method and apparatus for estimating battery state of health

Publications (1)

Publication Number Publication Date
WO2018192069A1 true WO2018192069A1 (zh) 2018-10-25

Family

ID=63856224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087564 WO2018192069A1 (zh) 2017-04-18 2017-06-08 电池健康状态的估计方法及装置

Country Status (5)

Country Link
US (2) US10948548B2 (zh)
EP (2) EP3809148B1 (zh)
JP (1) JP2020517920A (zh)
CN (2) CN108732500B (zh)
WO (1) WO2018192069A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346725A (zh) * 2019-08-07 2019-10-18 优必爱信息技术(北京)有限公司 一种电池健康度评估模型的构建方法、评估方法和装置
CN111551865A (zh) * 2019-02-08 2020-08-18 英飞凌科技股份有限公司 用于监测电池单元的单元阻抗测量的可靠性的设备和方法
CN114035049A (zh) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 Soh精度的计算方法、装置和电子设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091541A (ko) 2017-02-07 2018-08-16 삼성전자주식회사 배터리 충전 방법 및 장치
EP3579007B1 (en) * 2018-06-07 2022-08-17 Rolls-Royce Deutschland Ltd & Co KG Method and apparatus for estimating a state of charge of a battery
CN110045296B (zh) * 2019-04-12 2021-02-26 奇瑞新能源汽车股份有限公司 一种电动汽车电池循环寿命估算系统及方法
CN110901470A (zh) * 2019-11-29 2020-03-24 安徽江淮汽车集团股份有限公司 电动汽车电池寿命预测方法、装置、设备及存储介质
TWI733383B (zh) * 2020-03-19 2021-07-11 新普科技股份有限公司 電池老化評估方法
CN112305433B (zh) * 2020-03-30 2023-01-13 宁德时代新能源科技股份有限公司 电池性能参数的估算方法、装置、设备和介质
CN111693882B (zh) * 2020-06-30 2022-09-06 厦门金龙联合汽车工业有限公司 一种换电电池健康状态的评价方法
CN111856308B (zh) * 2020-07-13 2023-04-28 深圳蓝信电气有限公司 一种电源设备蓄电池定期在线活化核容方法
CN112098867B (zh) * 2020-08-17 2023-05-05 广东美的白色家电技术创新中心有限公司 电池剩余容量、容量显示信息的确定方法及设备、介质
CN112083345B (zh) * 2020-08-27 2023-10-31 欣旺达动力科技股份有限公司 电池状态检测方法、装置及存储介质
CN112098869B (zh) * 2020-09-15 2021-09-14 合肥工业大学 一种基于大数据的自适应电动汽车soc估计方法
DE102020214389A1 (de) 2020-11-17 2022-05-19 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Bestimmung eines Alterungszustands einer Gerätebatterie unbekannten Typs für ein batteriebetriebenes elektrisches Gerät
CN112946507B (zh) * 2021-02-01 2023-10-27 中国电力科学研究院有限公司 储能电池健康状态在线检测方法、系统、设备和存储介质
CN113097582B (zh) * 2021-03-30 2022-07-12 阳光储能技术有限公司 一种电池单体soh值的估算方法及装置
CN113311336A (zh) * 2021-05-11 2021-08-27 东软睿驰汽车技术(沈阳)有限公司 电池电芯级容量的评估方法、装置和电子设备
CN115480179A (zh) 2021-05-31 2022-12-16 北京小米移动软件有限公司 一种电池健康度的预测方法、装置及存储介质
CN113359051A (zh) * 2021-06-08 2021-09-07 北京车和家信息技术有限公司 电池模组健康状态的评估方法、装置、设备、介质和车辆
CN113866655A (zh) * 2021-09-27 2021-12-31 北京理工新源信息科技有限公司 融合车联网运行数据与测试数据的动力电池容量评估方法
KR102424165B1 (ko) * 2021-10-21 2022-07-25 에스케이온 주식회사 배터리의 soh 추정 방법
CN114889491A (zh) * 2022-05-05 2022-08-12 中国第一汽车股份有限公司 混合电池的控制方法、装置、存储介质及电子装置
WO2024082104A1 (zh) * 2022-10-17 2024-04-25 宁德时代新能源科技股份有限公司 电池异常识别方法及装置、电子设备和存储介质
CN116540108B (zh) * 2023-07-06 2023-12-15 广汽埃安新能源汽车股份有限公司 一种电芯容量衰减预警方法、装置、存储介质及设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324902B2 (en) * 2003-02-18 2008-01-29 General Motors Corporation Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health
CN102520361A (zh) * 2011-12-05 2012-06-27 惠州市亿能电子有限公司 一种电池组soh值评估方法
US20120310561A1 (en) * 2011-05-31 2012-12-06 Caterpillar Inc. Methods and systems for estimating battery health
CN102866361A (zh) * 2012-08-31 2013-01-09 惠州市亿能电子有限公司 一种电池组soh在线估算方法
CN103197257A (zh) * 2013-04-03 2013-07-10 华为技术有限公司 电池健康状态检测方法及装置
CN103728563A (zh) * 2013-12-17 2014-04-16 惠州市亿能电子有限公司 一种电池健康状态的测算方法
WO2014083856A1 (ja) * 2012-11-30 2014-06-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法
CN104597404A (zh) * 2014-12-19 2015-05-06 深圳市科陆电子科技股份有限公司 电池实际容量、soc以及soh的自动标定方法
CN104635163A (zh) * 2015-01-21 2015-05-20 广州市香港科大霍英东研究院 一种电动车电池组soh在线估算预警方法
CN105548900A (zh) * 2016-01-07 2016-05-04 北京北交新能科技有限公司 一种轨道交通用动力电池健康状态评估方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631540A (en) * 1994-11-23 1997-05-20 Lucent Technologies Inc. Method and apparatus for predicting the remaining capacity and reserve time of a battery on discharge
CN102253343B (zh) * 2011-04-21 2013-04-03 北京世纪瑞尔技术股份有限公司 一种蓄电池的健康度与荷电状态的估算方法
JP2013083612A (ja) * 2011-10-12 2013-05-09 Mitsumi Electric Co Ltd 電池状態計測方法及び電池状態計測装置
WO2013057784A1 (ja) * 2011-10-18 2013-04-25 日立ビークルエナジー株式会社 電池制御装置、二次電池システム
CN102540096B (zh) * 2012-01-17 2014-07-23 浙江大学 一种用于磷酸铁锂动力电池剩余容量估算自修正的方法
JP2014196995A (ja) * 2013-03-08 2014-10-16 ローム株式会社 限界電流式ガスセンサ、限界電流式ガスセンサの製造方法、およびセンサネットワークシステム
US9411019B2 (en) * 2013-12-16 2016-08-09 Automotive Research & Testing Center Method and system for estimating state of health of battery set
US20150349385A1 (en) * 2014-04-01 2015-12-03 Medtronic, Inc. Method and System for Predicting Useful Life of a Rechargeable Battery
JP6295858B2 (ja) * 2014-07-02 2018-03-20 日産自動車株式会社 バッテリ管理装置
US10459034B2 (en) * 2014-12-26 2019-10-29 Samsung Electronics Co., Ltd. Method and apparatus for estimating state of health (SOH) of battery
US10386418B2 (en) * 2015-02-19 2019-08-20 Mitsubishi Electric Corporation Battery state estimation device
DE102015110183A1 (de) * 2015-06-24 2016-12-29 Phoenix Contact Gmbh & Co. Kg Messanordnung zum Erkennen einer Fehlfunktion in einer Energiespeicheranordnung
WO2017010475A1 (ja) * 2015-07-13 2017-01-19 三菱電機株式会社 リチウムイオン電池の充電状態推定方法およびリチウムイオン電池の充電状態推定装置
CN106371018B (zh) * 2015-07-21 2019-05-24 上汽通用汽车有限公司 基于电池端电压估计的车辆动力电池故障诊断方法及设备
US9840161B2 (en) * 2016-03-10 2017-12-12 Ford Global Technologies, Llc Circuit and method for detection of battery cell degradation events

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324902B2 (en) * 2003-02-18 2008-01-29 General Motors Corporation Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health
US20120310561A1 (en) * 2011-05-31 2012-12-06 Caterpillar Inc. Methods and systems for estimating battery health
CN102520361A (zh) * 2011-12-05 2012-06-27 惠州市亿能电子有限公司 一种电池组soh值评估方法
CN102866361A (zh) * 2012-08-31 2013-01-09 惠州市亿能电子有限公司 一种电池组soh在线估算方法
WO2014083856A1 (ja) * 2012-11-30 2014-06-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法
CN103197257A (zh) * 2013-04-03 2013-07-10 华为技术有限公司 电池健康状态检测方法及装置
CN103728563A (zh) * 2013-12-17 2014-04-16 惠州市亿能电子有限公司 一种电池健康状态的测算方法
CN104597404A (zh) * 2014-12-19 2015-05-06 深圳市科陆电子科技股份有限公司 电池实际容量、soc以及soh的自动标定方法
CN104635163A (zh) * 2015-01-21 2015-05-20 广州市香港科大霍英东研究院 一种电动车电池组soh在线估算预警方法
CN105548900A (zh) * 2016-01-07 2016-05-04 北京北交新能科技有限公司 一种轨道交通用动力电池健康状态评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614157A4 *
ZHU, QIANG ET AL.: "A Review of SOH Estimation Algorithms for Powered Lithium Batteries for Electric Vehicles", 17TH CHINESE CONFERENCE ON SYSTEM SIMULATION TECHNOLOGY & APPLICATION, 5 August 2016 (2016-08-05), pages 61 - 65, XP009517002 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551865A (zh) * 2019-02-08 2020-08-18 英飞凌科技股份有限公司 用于监测电池单元的单元阻抗测量的可靠性的设备和方法
CN111551865B (zh) * 2019-02-08 2024-04-05 英飞凌科技股份有限公司 用于监测电池单元的单元阻抗测量的可靠性的设备和方法
CN110346725A (zh) * 2019-08-07 2019-10-18 优必爱信息技术(北京)有限公司 一种电池健康度评估模型的构建方法、评估方法和装置
CN114035049A (zh) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 Soh精度的计算方法、装置和电子设备

Also Published As

Publication number Publication date
CN108732500B (zh) 2019-11-15
EP3614157A1 (en) 2020-02-26
BR112019021863A2 (pt) 2020-05-26
US10948548B2 (en) 2021-03-16
CN110927605A (zh) 2020-03-27
EP3614157A4 (en) 2020-02-26
EP3809148A1 (en) 2021-04-21
US20210148988A1 (en) 2021-05-20
EP3809148B1 (en) 2022-05-04
US20200049774A1 (en) 2020-02-13
CN110927605B (zh) 2021-02-23
CN108732500A (zh) 2018-11-02
JP2020517920A (ja) 2020-06-18
EP3614157B1 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2018192069A1 (zh) 电池健康状态的估计方法及装置
US11408942B2 (en) Method for predicting service life of retired power battery
US10459034B2 (en) Method and apparatus for estimating state of health (SOH) of battery
WO2019144646A1 (zh) 电池的电量状态估算方法、装置及电子设备
TWI496087B (zh) 具多重中央處理單元之電子裝置及其效能管理方法
WO2015143992A1 (zh) 一种充电剩余时间计算方法、装置及移动设备
US11476695B2 (en) Electronic device and method for adjusting charge cycle or discharge cycle of battery
WO2019052146A1 (zh) 一种电池电量预估方法和装置、无人机
US20210119464A1 (en) Method and apparatus controlling charging of battery based on diffusion characteristics of material included in the battery
WO2019140956A1 (zh) 电量计量精度检测方法、其装置及计算机存储介质
CN112818535B (zh) 建立电热仿真模型及获得电热仿真值的方法和装置
US8429430B2 (en) Information processor, computer readable recording medium which records data evacuation program, and data evacuation method
WO2024093963A1 (zh) 电池寿命确定方法、装置、电子设备及存储介质
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置
KR102196668B1 (ko) 배터리 충전 상태 추정 장치 및 방법
US20140019790A1 (en) Monitoring a battery in an electronic device
CN109541492B (zh) 电源的剩余电量确定方法、装置、设备及可读存储介质
KR101342529B1 (ko) 전력 저장 장치의 제어기, 제어 방법 및 컴퓨터로 판독가능한 기록 매체
BR112019021863B1 (pt) Método e aparelho para estimar o estado de saúde da bateria
WO2023197685A1 (zh) 充电方法、装置、电子设备和计算机可读存储介质
CN111487541B (zh) 判断电量状态的方法及其电子装置
JPWO2020003402A1 (ja) 判定装置、判定方法及びプログラム
JP2018044928A (ja) 検出装置、検出方法、蓄電システムおよびプログラム
CN118011263A (zh) 移动电源的测试方法、装置、计算机设备和存储介质
TWI614512B (zh) 相應於溫度的電池電量的計量方法及其電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019021863

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017906402

Country of ref document: EP

Effective date: 20191118

ENP Entry into the national phase

Ref document number: 112019021863

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191017