WO2024093963A1 - 电池寿命确定方法、装置、电子设备及存储介质 - Google Patents

电池寿命确定方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024093963A1
WO2024093963A1 PCT/CN2023/128121 CN2023128121W WO2024093963A1 WO 2024093963 A1 WO2024093963 A1 WO 2024093963A1 CN 2023128121 W CN2023128121 W CN 2023128121W WO 2024093963 A1 WO2024093963 A1 WO 2024093963A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycles
capacity
battery
tested
linear relationship
Prior art date
Application number
PCT/CN2023/128121
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
上海兰钧新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海兰钧新能源科技有限公司 filed Critical 上海兰钧新能源科技有限公司
Publication of WO2024093963A1 publication Critical patent/WO2024093963A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, for example, to a method, device, electronic device and storage medium for determining battery life.
  • the cycle life of a lithium-ion battery can be determined based on the linear relationship between the capacity retention rate and the number of battery cycles.
  • lithium-ion batteries may have abnormal lithium deposition during use, the capacity retention rate of lithium-ion batteries and the number of battery cycles may not necessarily satisfy a linear relationship. Determining the battery cycle life directly based on the linear relationship has low accuracy.
  • the present application provides a battery life determination method, device, electronic device and storage medium to improve the accuracy of battery life determination.
  • the present application provides a battery life determination method, the method comprising at least one linear judgment process and a life determination process;
  • a linear judgment process includes:
  • the life determination process includes: determining, according to the second linear relationship, a corresponding number of cycles when the capacity decay value of the battery to be tested reaches a capacity decay threshold, so as to determine the life of the battery to be tested.
  • determining the differential capacity curve and the capacity attenuation value of the battery to be tested when the number of cycles reaches different preset number of cycles includes:
  • the discharge data of the battery to be tested at different preset cycle numbers are obtained at each preset number of intervals forward; wherein the discharge data includes the capacity and discharge voltage of the battery to be tested;
  • the differential capacity curve and the capacity attenuation value of the battery to be tested when the cycle number reaches different preset cycle numbers are determined according to the discharge data.
  • the method further comprises:
  • determining whether the differential capacity peak value and the corresponding preset number of cycles satisfy a first linear relationship includes:
  • linear fitting is performed on each differential capacity peak value and the corresponding preset number of cycles to obtain a first function
  • determining whether the capacity decay value and the corresponding preset number of cycles satisfy a second linear relationship includes:
  • the method before determining the differential capacity curve and the capacity decay value of the battery to be tested when the number of cycles reaches different preset number of cycles, the method further includes:
  • the average value of at least two initial capacities is used as the standard capacity of the battery to be tested.
  • determining the capacity attenuation value of the battery to be tested when the number of cycles reaches different preset number of cycles includes:
  • the capacity attenuation value corresponding to each preset number of cycles is determined according to the difference between each current capacity and the standard capacity.
  • the present application provides a battery life determination device, the battery life determination device comprising:
  • a charge and discharge module configured to perform charge and discharge cycles on the battery to be tested
  • a differential capacity curve and capacity decay value determination module configured to determine a differential capacity curve and a capacity decay value of the battery to be tested when the number of cycles reaches different preset number of cycles;
  • a linearity determination module configured to determine whether a differential capacity peak value of the differential capacity curve and a corresponding preset number of cycles satisfy a first linear relationship, and whether the capacity attenuation value and the corresponding preset number of cycles satisfy a second linear relationship;
  • the life determination module is configured to determine the number of cycles corresponding to the case where the capacity decay value of the battery to be tested reaches a capacity decay threshold value, based on the second linear relationship, when the differential capacity peak value and the corresponding preset number of cycles satisfy a first linear relationship, and the capacity decay value and the corresponding preset number of cycles satisfy a second linear relationship, so as to determine the life of the battery to be tested.
  • the present application provides an electronic device, the electronic device comprising:
  • a memory communicatively coupled to the at least one processor
  • the memory stores a computer program that can be executed by the at least one processor, and the computer program is executed by the at least one processor so that the at least one processor can execute the battery life determination method described in any embodiment of the present application.
  • the present application provides a computer-readable storage medium, which stores computer instructions, and the computer instructions are used to enable a processor to implement the battery life determination method described in any embodiment of the present application when executed.
  • FIG1 is a flow chart of a method for determining battery life provided by an embodiment of the present application.
  • FIG2 is a flow chart of another method for determining battery life provided by an embodiment of the present application.
  • FIG3 is a first variation curve of the differential capacity peak value with respect to the cycle number
  • FIG4 is a first variation curve of the logarithm of the capacity decay value with respect to the logarithm of the cycle number
  • FIG5 is a second variation curve of the differential capacity peak value with respect to the cycle number
  • FIG6 is a second variation curve of the logarithm of the capacity decay value with respect to the logarithm of the cycle number
  • FIG7 is a flow chart of another method for determining battery life provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a battery life determination device provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of an electronic device that implements the battery life determination method according to an embodiment of the present application.
  • FIG. 1 is a flow chart of a method for determining battery life provided by an embodiment of the present application. As shown in FIG. 1 , the method for determining battery life includes:
  • the battery to be tested is, for example, a lithium-ion battery whose life span needs to be determined.
  • the life span of the battery to be tested is, for example, the cycle life of the battery to be tested, that is, the number of charge and discharge cycles that the battery to be tested can undergo.
  • One cycle includes a complete charge and discharge process.
  • the number of cycles and the discharge data of the battery to be tested can be recorded in real time, providing a basis for subsequently determining the life span of the battery to be tested.
  • the differential capacity curve is, for example, a curve showing the change of the differential capacity of the battery to be tested with respect to the discharge voltage of the battery to be tested.
  • the differential capacity of the battery to be tested is the differential of the capacity of the battery to be tested with respect to the discharge voltage.
  • the capacity attenuation value is, for example, a decrease in the capacity of the battery to be tested relative to the standard capacity.
  • the differential capacity of the battery to be tested can be determined according to the capacity and discharge voltage of the battery to be tested during the discharge process, thereby determining the differential capacity curve.
  • the capacity attenuation value of the battery to be tested is determined according to the capacity of the battery to be tested during the discharge process and the standard capacity of the battery to be tested.
  • step S130 determining whether the differential capacity peak value of the differential capacity curve and the corresponding preset number of cycles satisfy a first linear relationship, if so, executing step S140; if not, ending.
  • the differential capacity curve contains at least one characteristic peak, which indicates that the material of the battery to be tested has undergone a phase change.
  • the differential capacity peak value of the differential capacity curve is, for example, the peak value corresponding to the first characteristic peak, and the first characteristic peak is the characteristic peak corresponding to the minimum discharge voltage among all characteristic peaks.
  • differential capacity peak value and the corresponding preset number of cycles satisfy the first linear relationship, it indicates that the capacity change of the battery to be tested is normal, the state of the battery to be tested is normal, and the battery to be tested can continue to be judged. If the differential capacity peak value and the corresponding preset number of cycles do not satisfy the first linear relationship, it indicates that the capacity change of the battery to be tested is abnormal, and the determination of the charge, discharge and life of the battery to be tested is terminated.
  • judging whether the differential capacity peak value of the differential capacity curve and the corresponding preset number of cycles satisfy the first linear relationship may be judging whether the differential capacity peak value at the current preset number of cycles and the preset number of cycles satisfy the first linear relationship formed by the data points of the previous cycle.
  • step S140 determining whether the capacity attenuation value and the corresponding preset number of cycles satisfy a second linear relationship. If so, executing step S150; if not, returning to continue executing step S110.
  • determining whether the capacity decay value and the corresponding preset number of cycles satisfy the second linear relationship may be determining whether the capacity decay value at the current preset number of cycles and the preset number of cycles satisfy the second linear relationship formed by the data points of the previous cycle.
  • the capacity decay value and the corresponding preset number of cycles do not satisfy the second linear relationship, it indicates that the battery to be tested may have abnormal lithium deposition during the first round of charge and discharge cycles, and it is necessary to continue to charge and discharge the battery to be tested, and determine the differential capacity curve and capacity of the battery to be tested when the number of cycles reaches different preset numbers of cycles in the second round. Attenuation value.
  • the capacity attenuation value and the corresponding preset number of cycles still do not satisfy the second linear relationship, then continue to perform charge and discharge cycles on the battery to be tested; if after the second cycle, the differential capacity peak value of the differential capacity curve and the corresponding preset number of cycles satisfy the first linear relationship, and the capacity attenuation value and the corresponding preset number of cycles satisfy the second linear relationship, then according to the second linear relationship, in the second cycle, the capacity attenuation value and the preset number of cycles corresponding to the number of cycles of the battery to be tested reaching different preset numbers of cycles are fitted to determine the function of the capacity attenuation value and the preset number of cycles, so as to facilitate determining the life of the battery to be tested according to the function of the capacity attenuation value and the preset number of cycles.
  • the first cycle is cycled for example 200 times. If the capacity decay value and the preset number of cycles do not satisfy the second linear relationship, it means that the battery to be tested may have abnormal lithium deposition during the first round of charge and discharge cycles. Then the charge and discharge cycles are continued.
  • the second cycle is cycled for example 1000 times.
  • the preset number of cycles in the second cycle is, for example, 1000 times, 800 times, 600 times and 400 times.
  • the capacity decay value and the preset number of cycles of the differential capacity curve of the battery to be tested when it is cycled for 1000 times, 800 times, 600 times and 400 times satisfy the first linear relationship
  • the capacity decay value and the preset number of cycles satisfy the second linear relationship
  • the capacity decay value and the preset number of cycles of the battery to be tested when it is cycled for 1000 times, 800 times, 600 times and 400 times are fitted to determine the function of the capacity decay value and the preset number of cycles, so as to facilitate the determination of the life of the battery to be tested according to the function of the capacity decay value and the preset number of cycles.
  • the function of the capacity attenuation value and the preset number of cycles can be accurately determined after the battery to be tested has abnormal lithium deposition.
  • the life of the battery to be tested can be determined more accurately.
  • S150 Determine, based on the second linear relationship, the number of cycles corresponding to when the capacity decay value of the battery to be tested reaches a capacity decay threshold value, so as to determine the life of the battery to be tested.
  • the capacity decay threshold is, for example, the capacity decay value corresponding to 80% of the standard capacity, or the capacity decay value corresponding to 70% of the standard capacity. Different application scenarios have different requirements for batteries, and the capacity decay threshold may also be different. According to the second linear relationship, the capacity decay values and the preset number of cycles corresponding to different preset numbers of cycles are fitted to determine the function of the capacity decay value and the preset number of cycles, and the capacity decay threshold is substituted into the function of the capacity decay value and the preset number of cycles. The number of cycles obtained is the life of the battery to be tested.
  • Steps S110 to S140 are a linear judgment process
  • step S150 is a life determination process; when it is determined in the linear judgment process that the differential capacity peak value of the differential capacity curve and the corresponding preset number of cycles satisfy the first linear relationship, and the capacity decay value and the corresponding preset number of cycles do not satisfy the second linear relationship, the next linear judgment process is continued to be executed until the differential capacity peak value of the differential capacity curve and the corresponding preset number of cycles satisfy the first linear relationship, and the capacity decay value and the corresponding preset number of cycles satisfy the second linear relationship, the life determination process is executed to determine the life of the battery to be tested.
  • the technical solution of this embodiment is to set at least one linear judgment process.
  • the process of determining that the differential capacity peak value of the differential capacity curve and the corresponding preset number of cycles satisfy the first linear relationship, and the capacity attenuation value and the corresponding preset number of cycles do not satisfy the second linear relationship it means that the battery to be tested may have abnormal lithium deposition during the first round of charge and discharge cycles, and it is necessary to continue to charge and discharge the battery to be tested, and execute the next linear judgment process.
  • the differential capacity curve and capacity attenuation value under different preset number of cycles are determined, and the linear judgment is continued.
  • the linear judgment process is continued, and the battery to be tested is continued to be charged and discharged; if the differential capacity peak value of the differential capacity curve and the corresponding preset number of cycles satisfy the first linear relationship after the second round of cycles, and the capacity attenuation value and the corresponding preset number of cycles satisfy the second linear relationship, then according to the second linear relationship, the capacity attenuation value and the preset number of cycles corresponding to different preset numbers of cycles in the second round of cycles are fitted, and the function of the capacity attenuation value and the preset number of cycles is determined, and the capacity attenuation threshold is substituted into the function of the capacity attenuation value and the preset number of cycles, and the number of cycles obtained is the life of the battery to be tested.
  • the function of the capacity attenuation value and the preset number of cycles can be accurately determined after an abnormal situation occurs in the battery to be tested (such as abnormal lithium deposition).
  • an abnormal situation occurs in the battery to be tested (such as abnormal lithium deposition).
  • the life of the battery to be tested can be determined more accurately, thereby improving the accuracy of determining the battery life.
  • the technical solution of this embodiment does not need to set up a small current calibration test outside the charge and discharge cycle, which reduces the time required to determine the battery life.
  • FIG. 2 is a flow chart of another method for determining battery life provided in an embodiment of the present application.
  • the method for determining battery life includes:
  • the capacity decay value and the corresponding preset cycle number do not satisfy the second linear relationship, it means that the battery to be tested may have abnormal lithium deposition in the first round of charge and discharge cycles, and then the charge and discharge cycle is continued, and the second round of cycles is, for example, 1000 times, and the preset cycle number in the second round of cycles is, for example, 1000 times, 800 times, 600 times and 400 times.
  • the current number of cycles is counted forward from the current number of cycles when each cycle is completed.
  • the preset number of intervals is used to obtain multiple preset number of cycles in each round.
  • the differential capacity of the battery under test can be determined, thereby determining the differential capacity curve under different preset cycle times.
  • the capacity attenuation value of the battery under test under different preset cycle times is determined according to the capacity of the battery under test during discharge and the standard capacity of the battery under test.
  • the number of cycles is 200
  • the differential capacity curve and capacity attenuation value of the battery under test when the cycles reach 200, 150 and 100 are determined.
  • the differential capacity during one discharge may mutate, that is, the differential capacity of the battery to be tested may mutate, then the capacity of the battery to be tested may change significantly, and the material of the battery to be tested may undergo a significant phase change, thereby determining that the battery to be tested is abnormal, and no longer subjecting the battery to be tested to charge and discharge cycles and life determination.
  • step S260 determine whether the capacity attenuation value and the corresponding preset number of cycles satisfy a second linear relationship. If so, execute step S270; if not, return to continue executing step S210.
  • S270 Determine, based on the second linear relationship, the number of cycles corresponding to when the capacity decay value of the battery to be tested reaches a capacity decay threshold value, so as to determine the life of the battery to be tested.
  • determining whether the differential capacity peak value and the corresponding preset number of cycles satisfy a first linear relationship includes:
  • Step c1 According to the first linear relationship, linear fitting is performed on each differential capacity peak value and the corresponding preset number of cycles to obtain a first function.
  • Step c2 If the first fitting variance of the first function is within the first preset range, the micro- The peak value of the partial capacity and the corresponding preset number of cycles satisfy a first linear relationship.
  • the first fitting variance of the first function is within the first preset range, for example, the first fitting variance R 1 2 is greater than 0.95, it indicates that there is no overfitting and underfitting, thereby determining that the differential capacity peak value of the battery to be tested and the corresponding preset number of cycles satisfy the first linear relationship.
  • Table 1 is a first schematic table of differential capacity peak values and discharge voltages corresponding to preset cycle numbers
  • FIG. 3 is a first change curve of the differential capacity peak value with respect to the cycle number.
  • the differential capacity peak value and the corresponding preset cycle number in Table 1 are fitted according to the first linear relationship to obtain the first change curve of the differential capacity peak value with respect to the cycle number as shown in FIG. 3 .
  • Table 1 A first schematic table of differential capacity peak and discharge voltage corresponding to the preset cycle number
  • determining that the capacity decay value and the corresponding preset number of cycles satisfy a second linear relationship includes:
  • Step d1 According to the second linear relationship, linear fitting is performed on each capacity decay value and the corresponding preset number of cycles to obtain a second function.
  • Step d2 If the second fitting variance of the second function is within the first preset range, the capacity decay value and the corresponding preset number of cycles satisfy a second linear relationship.
  • the second fitting variance of the second function is within the first preset range, for example, the second fitting variance R 2 2 is greater than 0.95, it indicates that there is no overfitting and underfitting, thereby determining that the capacity attenuation value of the battery to be tested and the corresponding preset number of cycles satisfy the second linear relationship.
  • FIG4 is a first variation curve of the logarithm of the capacity decay value with respect to the logarithm of the cycle number
  • the capacity decay value and the corresponding preset number of cycles are fitted according to the second linear relationship to obtain a first variation curve of the logarithm of the capacity decay value with respect to the logarithm of the number of cycles as shown in Figure 4.
  • the second fitting variance R22 0.9973 , which is greater than 0.95, thereby determining that the capacity decay value and the corresponding preset number of cycles satisfy the second linear relationship.
  • Table 2 is a first schematic table of the calculated value of the capacity retention rate and the measured value of the capacity retention rate corresponding to the number of cycles.
  • the deviation between the calculated value of the capacity retention rate and the measured value of the capacity retention rate is small, and the calculated value of the capacity retention rate is very close to the measured value of the capacity retention rate, indicating that the first change curve of the differential capacity peak value with respect to the number of cycles shown in FIG3 and the first change curve of the logarithm of the capacity decay value with respect to the logarithm of the number of cycles shown in FIG4 are highly accurate.
  • Table 2 The first schematic table of the calculated and measured capacity retention rates corresponding to the number of cycles
  • the capacity decay value of the battery to be tested and the corresponding preset number of cycles may not satisfy the second linear relationship.
  • a larger preload force is introduced when the cycle reaches the 700th time to create a lithium deposition abnormality, and the differential capacity peak and discharge voltage corresponding to the preset number of cycles are obtained.
  • Table 3 is a second schematic table of the differential capacity peak and discharge voltage corresponding to the preset number of cycles
  • FIG5 is a second variation curve of the differential capacity peak with respect to the number of cycles
  • FIG6 is a second variation curve of the logarithm of the capacity decay value with respect to the logarithm of the number of cycles.
  • the differential capacity peak and the corresponding preset number of cycles in Table 3 are fitted according to the first linear relationship to obtain the second variation curve of the differential capacity peak with respect to the number of cycles as shown in FIG5, and the second variation curve of the logarithm of the capacity decay value with respect to the logarithm of the number of cycles as shown in FIG6 is obtained according to the capacity decay value corresponding to the preset number of cycles in Table 3.
  • Table 3 Second schematic table of differential capacity peak and discharge voltage corresponding to preset cycle number
  • the first cycle (the first 700 cycles)
  • the second cycle (the 700th to the 900th cycle)
  • the life of the battery to be tested can be determined based on the function of the capacity decay value and the number of cycles determined in the second cycle.
  • the segmented capacity retention rate calculation values when the number of cycles is 1000, 1100 and 1200 are calculated, and the differential capacity peak and the preset number of cycles in Table 3 are fitted into a one-piece curve, and the capacity attenuation value corresponding to the preset number of cycles in Table 3 and the preset number of cycles are fitted into a one-piece curve.
  • a single-type capacity retention rate calculation value is obtained, and compared with the measured data.
  • Table 4 is a second schematic table of the calculated capacity retention rate and the measured capacity retention rate corresponding to the cycle number.
  • the segmented deviation between the segmented capacity retention rate calculation value and the measured capacity retention rate value is small, and the single deviation between the single capacity retention rate calculation value and the measured capacity retention rate value is large, indicating that the second change curve of the differential capacity peak with respect to the number of cycles shown in FIG5 and the second change curve of the logarithm of the capacity attenuation value with respect to the logarithm of the number of cycles shown in FIG6 are more accurate, that is, the life of the battery to be tested calculated by the segmented curve is more accurate.
  • FIG. 7 is a flow chart of another method for determining battery life provided in an embodiment of the present application.
  • the method for determining battery life includes:
  • the initial at least two cycles refer to at least two cycles of the charge and discharge process starting from the battery to be tested, for example, obtaining the initial capacity of the battery to be tested during the initial three cycles, that is, obtaining the initial capacity of the battery to be tested during the first discharge, the initial capacity during the second discharge, and the initial capacity during the third discharge. Because the material performance of the battery to be tested is good when the battery to be tested just starts to be charged and discharged, the capacity attenuation of the battery to be tested can be ignored, so by obtaining the initial capacity of the battery to be tested during the initial at least two cycles, it is convenient to accurately determine the standard capacity of the battery to be tested.
  • S320 Taking an average value of at least two initial capacities as a standard capacity of the battery to be tested.
  • the average of the initial capacity of the battery under test in the first discharge, the initial capacity of the battery under test in the second discharge, and the initial capacity of the battery under test in the third discharge is taken as the standard capacity of the battery under test.
  • step S380 determine whether the capacity attenuation value and the corresponding preset number of cycles satisfy a second linear relationship. If so, execute step S390; if not, return to continue executing step S310.
  • S390 Determine, based on the second linear relationship, the number of cycles corresponding to when the capacity decay value of the battery to be tested reaches a capacity decay threshold value, so as to determine the life of the battery to be tested.
  • determining the capacity attenuation value of the battery to be tested at different preset cycle times includes:
  • Step e1 obtaining the current capacity of the battery to be tested when the number of cycles reaches different preset number of cycles.
  • the current capacity of the battery under test after the discharge process when the number of cycles reaches a preset number is obtained. For example, when the number of cycles is 200, the current capacity of the battery under test after the discharge process when the number of cycles reaches 200, 150 and 100 can be obtained.
  • Step e2 determining the capacity attenuation value corresponding to each preset number of cycles according to the difference between the current capacity and the standard capacity.
  • the capacity decay value corresponding to each preset number of cycles can be obtained by subtracting the current capacity corresponding to each preset number of cycles from the standard capacity.
  • the capacity decay value of the battery under test when it is cycled 200 times can be determined by subtracting the current capacity of the battery under test when it is cycled 200 times from the standard capacity.
  • FIG8 is a schematic diagram of the structure of a battery life determination device provided in an embodiment of the present application.
  • the battery life determination device includes: a charge and discharge module 410, a differential capacity curve and capacity decay value determination module 420, a linear judgment module 430 and a life determination module 440.
  • the charge and discharge module 410 is configured to perform charge and discharge cycles on the battery to be tested; the differential capacity curve and capacity decay value determination module 420 is configured to determine the differential capacity curve and capacity decay value of the battery to be tested when the number of cycles reaches different preset numbers of cycles; the linear judgment module 430 is configured to determine whether the differential capacity peak value of the differential capacity curve and the corresponding preset number of cycles satisfy a first linear relationship, and whether the capacity decay value and the corresponding preset number of cycles satisfy a second linear relationship; the life determination module 440 is configured to determine whether the differential capacity peak value and the corresponding preset number of cycles satisfy a first linear relationship.
  • the number of cycles corresponding to the case where the capacity decay value of the battery to be tested reaches the capacity decay threshold is determined according to the second linear relationship to determine the life of the battery to be tested.
  • the differential capacity curve and capacity decay value determination module 420 is configured to obtain discharge data of the battery to be tested under different preset numbers of cycles at intervals of a preset number of times forward from the current number of cycles when the cycle is completed; wherein the discharge data includes the capacity and discharge voltage of the battery to be tested; and determine the differential capacity curve and capacity decay value of the battery to be tested when the number of cycles reaches different preset numbers of cycles based on the discharge data.
  • the battery life determination device further comprises an abnormality determination module, configured to determine that the battery to be tested is abnormal when the differential capacity peak value and the corresponding preset number of cycles do not satisfy a first linear relationship.
  • the battery life determination device further comprises a standard capacity determination module, which is configured to obtain the initial capacity of the battery to be tested during at least two initial cycles; and use the average value of at least two initial capacities as the standard capacity of the battery to be tested.
  • a standard capacity determination module configured to obtain the initial capacity of the battery to be tested during at least two initial cycles; and use the average value of at least two initial capacities as the standard capacity of the battery to be tested.
  • the battery life determination device provided in the embodiments of the present application can execute the battery life determination method provided in any embodiment of the present application, and has the corresponding functional modules and effects of the execution method.
  • Fig. 9 shows a block diagram of an electronic device that can be used to implement an embodiment of the present application.
  • the electronic device 10 can be a digital computer in various forms, such as a laptop computer, a desktop computer, a workbench, a personal digital assistant, a server, a blade server, a mainframe computer, and other suitable computers.
  • the electronic device 10 can also represent a mobile device in various forms, such as a personal digital processor, a cellular phone, a smart phone, a wearable device (such as a helmet, glasses, a watch, etc.) and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are merely examples and are not intended to limit the implementation of the present application described and/or required herein.
  • the electronic device 10 includes at least one processor 11, and a memory connected to the at least one processor 11 in communication, such as a read-only memory (ROM) 12, a random access memory (RAM) 13, etc., wherein the memory stores a computer program that can be executed by at least one processor 11, and the processor 11 can perform a variety of appropriate actions and processes according to the computer program stored in the ROM 12 or the computer program loaded from the storage unit 18 to the RAM 13.
  • the RAM 13 a variety of programs and data required for the operation of the electronic device 10 can also be stored.
  • the processor 11, the ROM 12, and the RAM 13 are connected to each other through a bus 14.
  • An input/output (I/O) interface 15 is also connected to the bus 14.
  • the I/O interface 15 Multiple components in the electronic device 10 are connected to the I/O interface 15, including: an input unit 16, such as a keyboard, a mouse, etc.; an output unit 17, such as various types of displays, speakers, etc.; a storage unit 18, and a communication unit 19, such as a network card, a modem, a wireless communication transceiver, etc.
  • the communication unit 19 allows the electronic device 10 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.
  • the processor 11 may be a variety of general and/or special processing components with processing and computing capabilities. Some examples of the processor 11 include, but are not limited to, a central processing unit (CPU), a graphics processing unit (GPU), a variety of dedicated artificial intelligence (AI) computing chips, a variety of processors running machine learning model algorithms, a digital signal processor (DSP), and any appropriate processor, controller, microcontroller, etc.
  • the processor 11 performs the multiple methods and processes described above, such as a battery life determination method.
  • the battery life determination method may be implemented as a computer program, which is tangibly contained in a computer-readable storage medium, such as a storage unit 18.
  • a computer-readable storage medium such as a storage unit 18.
  • part or all of the computer program may be loaded and/or installed on the electronic device 10 via the ROM 12 and/or the communication unit 19.
  • the processor 11 may be configured to perform the battery life determination method in any other suitable manner (e.g., by means of firmware).
  • Implementations of the systems and techniques described above herein may be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips (SOCs), complex programmable logic devices (CPLDs), computer hardware, firmware, software, and/or combinations thereof.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • ASSPs application specific standard products
  • SOCs systems on chips
  • CPLDs complex programmable logic devices
  • the computer programs for implementing the methods of the present application may be written in one or more programming languages. These computer programs may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, so that when the computer programs are executed by the processor, the functions/operations specified in the flow chart and/or block diagram are implemented.
  • the computer programs may be executed entirely on the machine, partially on the machine, partially on the machine and partially on a remote machine as a stand-alone software package, or entirely on a remote machine or server.
  • a computer readable storage medium may be a tangible medium that may contain or store a computer program for use by or in conjunction with an instruction execution system, device, or apparatus.
  • a computer readable storage medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be a machine readable signal medium.
  • Machine readable storage media include electrical connections based on one or more lines, portable computer disks, hard disks, random access memories (RAM), read-only memories (ROM), erasable programmable read-only memories (EPROM) or flash memories, optical fibers, portable compact disk read-only memories (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • an electronic device 10 having: a display device (e.g., a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor) configured to display information to the user; and a keyboard and pointing device (e.g., a mouse or trackball) through which the user can provide input to the electronic device 10.
  • a display device e.g., a cathode ray tube (CRT) or a liquid crystal display (LCD) monitor
  • a keyboard and pointing device e.g., a mouse or trackball
  • Other types of devices may also be configured to provide interaction with a user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback), and input from the user may be received in any form (including acoustic input, voice input, or tactile input).
  • the systems and techniques described herein may be implemented in a computing system that includes backend components (e.g., a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes frontend components (e.g., a user computer with a graphical user interface or a web browser through which a user can interact with implementations of the systems and techniques described herein), or a computing system that includes any combination of such backend components, middleware components, or frontend components.
  • the components of the system may be interconnected by any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN), blockchain network, and the Internet.
  • a computing system may include a client and a server.
  • the client and the server are generally remote from each other and usually interact through a communication network.
  • the client-server relationship is created by running computer programs with a client-server relationship on the corresponding computers.
  • the server may be a cloud server, also known as a cloud computing server or cloud host, which is a host product in the cloud computing service system. It solves the defects of difficult management and weak business scalability in traditional physical hosts and virtual private servers (VPS) services.
  • VPN virtual private servers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池寿命确定方法、装置、电子设备及存储介质。该方法包括至少一次线性判断过程和寿命确定过程;一次线性判断过程包括:对待测电池进行充放电循环;确定待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值;在微分容量曲线的微分容量峰值和对应的预设循环次数满足第一线性关系,且容量衰减值和对应的预设循环次数不满足第二线性关系的情况下,执行下一线性判断过程;在微分容量峰值和对应的预设循环次数满足第一线性关系,且容量衰减值和对应的预设循环次数满足第二线性关系的情况下,根据第二线性关系,确定在待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定待测电池的寿命。

Description

电池寿命确定方法、装置、电子设备及存储介质
本申请要求在2022年10月31日提交中国专利局、申请号为202211346381.X的中国专利申请的优先权,上述申请的全部内容通过引用并入本文。
技术领域
本申请涉及电池技术领域,例如涉及一种电池寿命确定方法、装置、电子设备及存储介质。
背景技术
为了提高锂离子电池使用的安全性,需要确定锂离子电池的循环寿命,避免锂离子电池使用时超过其循环寿命而造成损坏。
确定锂离子电池的循环寿命时,可以根据容量保持率与电池循环次数的线性关系,确定锂离子电池的循环寿命。
但是,由于锂离子电池在使用时,可能存在析锂异常等情况,使得锂离子电池的容量保持率与电池循环次数不一定满足线性关系,直接根据线性关系确定电池的循环寿命,准确度较低。
发明内容
本申请提供了一种电池寿命确定方法、装置、电子设备及存储介质,以提高电池寿命确定的准确度。
本申请提供了一种电池寿命确定方法,所述方法包括至少一次线性判断过程和寿命确定过程;
一次线性判断过程包括:
对待测电池进行充放电循环;
确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值;
在所述微分容量曲线的微分容量峰值和对应的预设循环次数满足第一线性关系,且所述容量衰减值和对应的预设循环次数不满足第二线性关系的情况下,执行下一次线性判断过程;
在所述微分容量峰值和对应的预设循环次数满足所述第一线性关系,且所述容量衰减值和对应的预设循环次数满足所述第二线性关系的情况下,执行所述寿命确定过程;
所述寿命确定过程包括:根据所述第二线性关系,确定在所述待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定所述待测电池的寿命。
可选地,所述确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值,包括:
从循环完成时的当前循环次数,向前每间隔预设次数,获取不同预设循环次数下所述待测电池的放电数据;其中,所述放电数据包括所述待测电池的容量和放电电压;
根据所述放电数据确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值。
可选地,所述方法还包括:
在所述微分容量峰值和对应的预设循环次数不满足所述第一线性关系的情况下,确定所述待测电池异常。
可选地,判断所述微分容量峰值和对应的预设循环次数是否满足第一线性关系,包括:
根据所述第一线性关系,对每一微分容量峰值和对应的预设循环次数进行线性拟合,得到第一函数;
在所述第一函数的第一拟合方差在第一预设范围内的情况下,确定所述每一微分容量峰值和对应的预设循环次数满足所述第一线性关系。
可选地,判断所述容量衰减值和对应的预设循环次数是否满足第二线性关系,包括:
根据所述第二线性关系,对每一容量衰减值和对应的预设循环次数进行线性拟合,得到第二函数;
在所述第二函数的第二拟合方差在第一预设范围内的情况下,确定所述每一容量衰减值和对应的预设循环次数满足所述第二线性关系。
可选地,在确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值之前,还包括:
获取所述待测电池在初始至少两次循环时的初始容量;
将至少两个初始容量的平均值作为所述待测电池的标准容量。
可选地,确定所述待测电池在循环次数达到不同预设循环次数的情况下的容量衰减值,包括:
获取所述待测电池在循环次数达到不同预设循环次数下的当前容量;
根据每个当前容量与所述标准容量的差值确定每个预设循环次数对应的容量衰减值。
本申请提供了一种电池寿命确定装置,该电池寿命确定装置包括:
充放电模块,设置为对待测电池进行充放电循环;
微分容量曲线和容量衰减值确定模块,设置为确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值;
线性判断模块,设置为判断所述微分容量曲线的微分容量峰值和对应的预设循环次数是否满足第一线性关系,且所述容量衰减值和对应的预设循环次数是否满足第二线性关系;
寿命确定模块,设置为在所述微分容量峰值和对应的预设循环次数满足第一线性关系,且所述容量衰减值和对应的预设循环次数满足第二线性关系的情况下,根据所述第二线性关系,确定在所述待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定所述待测电池的寿命。
本申请提供了一种电子设备,所述电子设备包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;
其中,所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请任一实施例所述的电池寿命确定方法。
本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本申请任一实施例所述的电池寿命确定方法。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的一种电池寿命确定方法的流程图;
图2是本申请实施例提供的又一种电池寿命确定方法的流程图;
图3是微分容量峰值关于循环次数的第一变化曲线;
图4是容量衰减值的对数关于循环次数的对数的第一变化曲线;
图5是微分容量峰值关于循环次数的第二变化曲线;
图6是容量衰减值的对数关于循环次数的对数的第二变化曲线;
图7是本申请实施例提供的又一种电池寿命确定方法的流程图;
图8是本申请实施例提供的一种电池寿命确定装置的结构示意图;
图9是实现本申请实施例的电池寿命确定方法的电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,除了包含本申请实施例示出的一系列步骤或单元的过程、方法、系统、产品或设备,还可包括没有清楚地列出的这一系列步骤或单元的其它过程、方法、系统、产品或设备,或对于这些过程、方法、系统、产品或设备固有的其它步骤或单元。
图1是本申请实施例提供的一种电池寿命确定方法的流程图,如图1所示,该电池寿命确定方法包括:
S110、对待测电池进行充放电循环。
待测电池例如为需要确定寿命的锂离子电池,待测电池的寿命例如为待测电池的循环寿命,即待测电池可以进行充放电循环的次数。一次循环包括一次完整的充电和放电过程。在对待测电池进行充放电循环的过程中,可以实时记录循环次数和待测电池的放电数据,为后续确定待测电池的寿命提供基础。
S120、确定待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值。
微分容量曲线例如为待测电池的微分容量关于待测电池的放电电压的变化曲线,待测电池的微分容量为待测电池的容量对放电电压的微分。在待测电池的循环次数达到预设循环次数的情况下,根据待测电池放电过程中的容量和放电电压,可以确定待测电池的微分容量,从而确定微分容量曲线。容量衰减值例如为待测电池的容量相对于标准容量的减小值,在待测电池的循环次数达到 预设循环次数的情况下,根据待测电池放电过程中的容量和待测电池的标准容量确定待测电池的容量衰减值。
S130、判断微分容量曲线的微分容量峰值和对应的预设循环次数是否满足第一线性关系,若满足第一线性关系,则执行步骤S140;若不满足第一线性关系,则结束。
微分容量曲线中包含有至少一个特征峰,特征峰表示待测电池的材料发生相变,微分容量曲线的微分容量峰值例如为第一个特征峰对应的峰值,第一个特征峰为所有特征峰中最小放电电压对应的特征峰。第一线性关系例如为y1=a1x+b1,其中,y1为微分容量峰值,x为循环次数,a1为第一比例系数,b1为第一常数系数。若微分容量峰值和对应预设循环次数满足第一线性关系,则表明待测电池的容量变化正常,待测电池状态正常,可以继续对待测电池进行判断。若微分容量峰值和对应预设循环次数不满足第一线性关系,则表明待测电池的容量变化异常,结束对待测电池的充放电和寿命的确定。
本实施例中,判断微分容量曲线的微分容量峰值和对应的预设循环次数是否满足第一线性关系,可以是判断当前预设循环次数下的微分容量峰值和预设循环次数是否满足之前循环的数据点形成的第一线性关系。
S140、判断容量衰减值和对应的预设循环次数是否满足第二线性关系,若满足第二线性关系,执行步骤S150;若不满足线性关系,则返回继续执行步骤S110。
本实施例中,判断容量衰减值和对应的预设循环次数是否满足第二线性关系,可以是判断当前预设循环次数下的容量衰减值和预设循环次数是否满足之前循环的数据点形成的第二线性关系。
若判断容量衰减值和对应的预设循环次数不满足第二线性关系,则说明当前线性推导规律发生改变,需要进一步实测数据,更新以异常点为起始的新的线性规律。
第二线性关系例如为Lny2=a2Lnx+b2,其中,y2为容量衰减值,x为循环次数,a2为第二比例系数,b2为第二常数系数。若容量衰减值和对应的预设循环次数满足第二线性关系,则表明待测电池的容量衰减处于正常范围内。待测电池的容量衰减值和对应的预设循环次数满足第二线性关系,就可以根据第二线性关系和待测电池的容量衰减阈值确定待测电池的寿命。若容量衰减值和对应的预设循环次数不满足第二线性关系,则说明待测电池在第一轮充放电循环时可能出现析锂异常现象,需要继续对待测电池进行充放电循环,并确定第二轮循环中,待测电池在循环的次数达到不同预设循环次数时的微分容量曲线和容量 衰减值。若第二轮循环后,容量衰减值和对应的预设循环次数仍不满足第二线性关系,则继续对待测电池进行充放电循环;若第二轮循环后,微分容量曲线的微分容量峰值和对应的预设循环次数满足第一线性关系,容量衰减值和对应的预设循环次数满足第二线性关系,则根据第二线性关系,对第二轮循环中,待测电池在循环的次数达到不同预设循环次数对应的容量衰减值和预设循环次数进行拟合,确定容量衰减值和预设循环次数的函数,便于根据容量衰减值和预设循环次数的函数确定待测电池的寿命。
示例性的,第一轮循环例如循环了200次,若容量衰减值和预设循环次数不满足第二线性关系,则说明待测电池在第一轮充放电循环时可能出现析锂异常现象,则继续进行充放电循环,第二轮循环例如循环到1000次,则第二轮循环中的预设循环次数例如为1000次、800次、600次和400次。若待测电池循环1000次、800次、600次和400次时的微分容量曲线的微分容量峰值和预设循环次数满足第一线性关系,且容量衰减值和预设循环次数满足第二线性关系,则根据第二线性关系,将待测电池循环1000次、800次、600次和400次时的容量衰减值和预设循环次数进行拟合,确定容量衰减值和预设循环次数的函数,便于根据容量衰减值和预设循环次数的函数确定待测电池的寿命。
通过对待测电池的参数进行线性判断,可以在待测电池出现析锂异常后,准确确定容量衰减值和预设循环次数的函数,与直接将待测电池的参数代入线性关系确定电池寿命相比,可以更准确确定待测电池的寿命。
S150、根据第二线性关系,确定在待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定待测电池的寿命。
容量衰减阈值例如为容量衰减到标准容量的80%时对应的容量衰减值,也可以为容量衰减到标准容量的70%时对应的容量衰减值,不同应用场景对电池的要求不同,容量衰减阈值也可能不同。根据第二线性关系,对不同预设循环次数对应的容量衰减值和预设循环次数进行拟合,确定容量衰减值和预设循环次数的函数,将容量衰减阈值代入到容量衰减值和预设循环次数的函数,得出的循环次数,即为待测电池的寿命。
步骤S110-步骤S140为线性判断过程,步骤S150为寿命确定过程;当线性判断过程中判断微分容量曲线的微分容量峰值和对应的预设循环次数满足第一线性关系,且容量衰减值和对应的预设循环次数不满足第二线性关系时,继续执行下一个线性判断过程,直至微分容量曲线的微分容量峰值和对应的预设循环次数满足第一线性关系,且容量衰减值和对应的预设循环次数满足第二线性关系时,执行寿命确定过程,确定待测电池的寿命。
本实施例的技术方案,通过设置至少一次线性判断过程,当线性判断过程 中判断微分容量曲线的微分容量峰值和对应的预设循环次数满足第一线性关系,且容量衰减值和对应的预设循环次数不满足第二线性关系时,则说明待测电池在第一轮充放电循环时可能出现析锂异常现象,需要继续对待测电池进行充放电循环,执行下一线性判断过程。在第二轮循环中,确定不同预设循环次数下的微分容量曲线和容量衰减值,继续进行线性判断。若第二轮循环后,容量衰减值和对应的预设循环次数仍不满足第二线性关系,则继续执行线性判断过程,继续对待测电池进行充放电循环;若第二轮循环后,微分容量曲线的微分容量峰值和对应的预设循环次数满足第一线性关系,容量衰减值和对应的预设循环次数满足第二线性关系,则根据第二线性关系,对第二轮循环中,不同预设循环次数对应的容量衰减值和预设循环次数进行拟合,确定容量衰减值和预设循环次数的函数,将容量衰减阈值代入到容量衰减值和预设循环次数的函数,得出的循环次数,即为待测电池的寿命。通过对待测电池的参数进行线性判断,可以在待测电池出现异常情况(例如析锂异常)后,准确确定容量衰减值和预设循环次数的函数,与直接将待测电池的参数代入线性关系确定电池寿命相比,可以更准确确定待测电池的寿命,提高了电池寿命确定的准确度。
此外,本实施例的技术方案无需设置充放电循环之外的小电流校准测试,减小了电池寿命确定的时长。
图2是本申请实施例提供的又一种电池寿命确定方法的流程图,可选地,参考图2,该电池寿命确定方法包括:
S210、对待测电池进行充放电循环。
S220、从循环完成时的当前循环次数,向前每间隔预设次数,获取不同预设循环次数下待测电池的放电数据;其中,放电数据包括待测电池的容量和放电电压。
循环结束后,从循环完成时的当前循环次数,向前每间隔预设次数,得到多个预设循环次数。示例性的,待测电池充放电循环的次数例如为N次,N为大于0的正整数,从循环完成时的循环次数向前,选择多个预设循环次数,例如为N,N-m,N-2m……N-km;其中,k≥2,m≥10,N-km>0,示例性的,当N为200,m=50,k=2时,预设循环次数为200,150,100,则获取待测电池在循环至200次、150次和100次时的放电过程中的容量和放电电压。若容量衰减值和对应的预设循环次数不满足第二线性关系,则说明待测电池在第一轮充放电循环时可能出现析锂异常现象,则继续进行充放电循环,第二轮循环例如循环到1000次,则第二轮循环中的预设循环次数例如为1000次、800次、600次和400次。每一轮循环结束后,从每一轮循环完成时的当前循环次数,向前每 间隔预设次数,得到每一轮的多个预设循环次数。
S230、根据不同预设循环次数下的待测电池的放电数据确定待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值。
根据待测电池放电过程中的容量和放电电压,可以确定待测电池的微分容量,从而确定不同预设循环次数下的微分容量曲线。在待测电池的循环次数达到预设循环次数的情况下,根据待测电池放电过程中的容量和待测电池的标准容量确定待测电池在不同预设循环次数下的容量衰减值
示例性的,当循环次数为200次时,通过获取待测电池在循环至200次、150次和100次时的放电过程中的容量和放电电压,确定待测电池在循环次数达到200次、150次和100次时的微分容量曲线和容量衰减值。
S240、判断微分容量曲线的微分容量峰值和对应的预设循环次数是否满足第一线性关系,若不满足第一线性关系,则执行步骤S250;若满足第一线性关系,则执行步骤S260。
S250、确定待测电池异常。
若微分容量峰值和对应的预设循环次数不满足第一线性关系,则在一次放电时的微分容量可能发生突变,即待测电池的微分容量可能发生突变,则待测电池的容量可能发生较大变化,待测电池的材料可能发生较大的相变,从而确定待测电池异常,不再对待测电池进行充放电循环和寿命确定。
S260、判断容量衰减值和对应的预设循环次数是否满足第二线性关系,若满足第一线性关系,执行步骤S270;若不满足第一线性关系,则返回继续执行步骤S210。
S270、根据第二线性关系,确定在待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定待测电池的寿命。
可选地,判断微分容量峰值和对应的预设循环次数满足第一线性关系,包括:
步骤c1、根据第一线性关系,对每一微分容量峰值和对应的预设循环次数进行线性拟合,得到第一函数。
第一函数为微分容量峰值关于循环次数的函数。根据第一线性关系y1=a1x+b1,对微分容量峰值和对应的预设循环次数进行线性拟合,得到第一函数,便于确定微分容量峰值和对应的预设循环次数是否满足第一线性关系。
步骤c2、若第一函数的第一拟合方差在第一预设范围内,则待测电池的微 分容量峰值和对应的预设循环次数满足第一线性关系。
若第一函数的第一拟合方差在第一预设范围内,例如第一拟合方差R1 2大于0.95,则表明没有出现过渡拟合和欠拟合的情况,从而确定待测电池的微分容量峰值和对应的预设循环次数满足第一线性关系。
示例性的,表1为预设循环次数对应的微分容量峰值和放电电压的第一示意表,图3是微分容量峰值关于循环次数的第一变化曲线,根据第一线性关系对表1中的微分容量峰值和对应的预设循环次数进行拟合,得到如图3所示的微分容量峰值关于循环次数的第一变化曲线。
表1预设循环次数对应的微分容量峰值和放电电压的第一示意表
如图3所示,所有的数据点几乎均落在曲线上,且第一拟合方差R1 2=0.9957,大于0.95,从而确定微分容量峰值和对应的预设循环次数满足第一线性关系。
可选地,判断容量衰减值和对应的预设循环次数满足第二线性关系,包括:
步骤d1、根据第二线性关系,对每一容量衰减值和对应的预设循环次数进行线性拟合,得到第二函数。
第二函数为容量衰减值的对数关于循环次数的对数的函数。根据第二线性关系Lny2=a2Lnx+b2,对容量衰减阈值的对数和其对应的预设循环次数的对数进行线性拟合,得到第二函数,便于确定容量衰减阈值和对应的预设循环次数是否满足第二线性关系。
步骤d2、若第二函数的第二拟合方差在第一预设范围内,则容量衰减值和对应的预设循环次数满足第二线性关系。
若第二函数的第二拟合方差在第一预设范围内,例如第二拟合方差R2 2大于0.95,则表明没有出现过渡拟合和欠拟合的情况,从而确定待测电池的容量衰减值和对应的预设循环次数满足第二线性关系。
示例性的,图4是容量衰减值的对数关于循环次数的对数的第一变化曲线, 根据第二线性关系对容量衰减值和对应的预设循环次数进行拟合,得到如图4所示的容量衰减值的对数关于循环次数的对数的第一变化曲线。如图4所示,所有的点几乎均落在曲线上,且第二拟合方差R2 2=0.9973,大于0.95,从而确定容量衰减值和对应的预设循环次数满足第二线性关系。
此外,根据图3的微分容量峰值关于循环次数的第一变化曲线和图4的容量衰减值的对数关于循环次数的对数的第一变化曲线计算得到循环次数为500次、1000次和1200次时的待测电池的容量保持率,并和实测数据对比,表2为循环次数对应的容量保持率计算值和容量保持率实测值的第一示意表。如表2所示,容量保持率计算值和容量保持率实测值的偏差较小,容量保持率计算值与容量保持率实测值十分接近,则表明图3所示的微分容量峰值关于循环次数的第一变化曲线和图4所示的容量衰减值的对数关于循环次数的对数的第一变化曲线准确度较高。
表2循环次数对应的容量保持率计算值和容量保持率实测值的第一示意表
在另一种实施方式中,若待测电池出现异常,例如析锂异常,待测电池的容量衰减值和对应的预设循环次数可能不满足第二线性关系。在对待测电池进行充放电时,在循环至第700次的时候引入更大的预紧力,制造析锂异常,得到预设循环次数对应的微分容量峰值和放电电压。表3为预设循环次数对应的微分容量峰值和放电电压的第二示意表,图5是微分容量峰值关于循环次数的第二变化曲线,图6是容量衰减值的对数关于循环次数的对数的第二变化曲线,根据第一线性关系对表3中的微分容量峰值和对应的预设循环次数进行拟合,得到如图5所示的微分容量峰值关于循环次数的第二变化曲线,并根据表3中预设循环次数对应的容量衰减值得到如图6所示的容量衰减值的对数关于循环次数的对数的第二变化曲线。
表3预设循环次数对应的微分容量峰值和放电电压的第二示意表
如图5所示,在第一轮循环(前700次循环)中,所有的数据点几乎均落在第一段曲线上,且第一拟合方差R11 2=0.9931大于0.95,从而确定第一轮循环中,微分容量峰值和对应的预设循环次数满足第一线性关系。在第二轮循环(第700次至第900次循环)中,所有的数据点几乎均落在第二段曲线上,且第一拟合方差R12 2=0.9981大于0.95,从而确定第二轮循环中,微分容量峰值和对应的预设循环次数满足第一线性关系。如图6所示,在第一轮循环(前700次循环)中,所有的数据点几乎均落在第一段曲线上,且第二拟合方差R21 2=0.9978大于0.95,从而确定第一轮循环中,容量衰减值和对应的预设循环次数满足第二线性关系。在第二轮循环(第700次至第900次循环)中,所有的数据点几乎均落在第二段曲线上,且第二拟合方差R21 2=0.9926大于0.95,从而确定第二轮循环中,容量衰减值和对应的预设循环次数满足第二线性关系。因此,根据第二轮循环确定的容量衰减值和循环次数的函数,可以确定待测电池的寿命。
此外,根据图5的微分容量峰值关于循环次数的第二变化曲线和图6的容量衰减值的对数关于循环次数的对数的第二变化曲线中第二段曲线,计算得到循环次数为1000次、1100次和1200次时的分段式容量保持率计算值,并将表3中微分容量峰值和预设循环次数拟合为一段式的曲线,将表3中预设循环次数对应的容量衰减值和预设循环次数拟合为一段式的曲线,根据一段式的曲线,得到单一式容量保持率计算值,并和实测数据对比,表4为循环次数对应的容量保持率计算值和容量保持率实测值的第二示意表。
表4循环次数对应的容量保持率计算值和容量保持率实测值的第二示意表
如表4所示,分段式容量保持率计算值和容量保持率实测值的分段偏差较小,单一式容量保持率计算值和容量保持率实测值的单一偏差较大,则表明图5所示的微分容量峰值关于循环次数的第二变化曲线和图6所示的容量衰减值的对数关于循环次数的对数的第二变化曲线准确度较高,即通过分段曲线计算得到的待测电池的寿命更准确。
图7是本申请实施例提供的又一种电池寿命确定方法的流程图,可选地,参考图7,该电池寿命确定方法包括:
S310、获取待测电池在初始至少两次循环时的初始容量。
初始至少两次循环是指从待测电池开始充放电过程的至少两次循环,例如获取待测电池在初始三次循环时的初始容量,即获取待测电池在第一次放电时的初始容量、在第二次放电时的初始容量和在第三次放电时的初始容量。因为待测电池刚开始充放电时,待测电池的材料性能较好,待测电池的容量衰减可以忽略不计,所以通过获取待测电池在初始至少两次循环时的初始容量,便于准确确定待测电池的标准容量。
S320、将至少两个初始容量的平均值作为待测电池的标准容量。
示例性的,当获取待测电池在初始三次循环时的初始容量时,将待测电池在第一次放电时的初始容量、在第二次放电时的初始容量和在第三次放电时的初始容量的平均值作为待测电池的标准容量。
S330、对待测电池进行充放电循环。
S340、从循环完成时的当前循环次数,向前每间隔预设次数,获取不同预 设循环次数下待测电池的放电数据;其中,放电数据包括待测电池的容量和放电电压。
S350、根据不同预设循环次数下的待测电池的放电数据确定待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值。
S360、判断微分容量曲线的微分容量峰值和对应的预设循环次数是否满足第一线性关系,若不满足第一线性关系,则执行步骤S370;若满足第一线性关系,则执行步骤S380。
S370、确定待测电池异常。
S380、判断容量衰减值和对应的预设循环次数是否满足第二线性关系,若满足第二线性关系,执行步骤S390;若不满足第二线性关系,则返回继续执行步骤S310。
S390、根据第二线性关系,确定在待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定待测电池的寿命。
可选地,确定待测电池在不同预设循环次数下的容量衰减值,包括:
步骤e1、获取待测电池在循环次数达到不同预设循环次数下的当前容量。
获取待测电池在达到预设循环次数时的放电过程后的当前容量。示例性的,当循环次数为200次时,可以获取待测电池在循环至200次、150次和100次时的放电过程后的当前容量。
步骤e2、根据当前容量与标准容量的差值确定每个预设循环次数对应的容量衰减值。
将标准容量减去每个预设循环次数对应的当前容量,即可得到每个预设循环次数对应的容量衰减值。例如将标准容量减去待测电池循环200次时的当前容量,可以确定待测电池循环200次时的容量衰减值。
图8是本申请实施例提供的一种电池寿命确定装置的结构示意图,如图8所示,该电池寿命确定装置包括:充放电模块410、微分容量曲线和容量衰减值确定模块420、线性判断模块430及寿命确定模块440。充放电模块410设置为对待测电池进行充放电循环;微分容量曲线和容量衰减值确定模块420设置为确定待测电池在循环次数达到不同预设循环次数的情况小的微分容量曲线和容量衰减值;线性判断模块430设置为判断微分容量曲线的微分容量峰值和对应的预设循环次数是否满足第一线性关系,且容量衰减值和对应的预设循环次数是否满足第二线性关系;寿命确定模块440设置为在微分容量峰值和对应的预 设循环次数满足第一线性关系,且容量衰减值和对应的预设循环次数满足第二线性关系的情况下,根据第二线性关系,确定在待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定待测电池的寿命。
可选地,微分容量曲线和容量衰减值确定模块420是设置为从循环完成时的当前循环次数,向前每间隔预设次数,获取不同预设循环次数下待测电池的放电数据;其中,放电数据包括待测电池的容量和放电电压;根据放电数据确定待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值。
可选地,该电池寿命确定装置还包括异常确定模块,设置为在微分容量峰值和对应的预设循环次数不满足第一线性关系的情况下,确定待测电池异常。
可选地,该电池寿命确定装置还包括标准容量确定模块,设置为获取待测电池在初始至少两次循环时的初始容量;将至少两个初始容量的平均值作为待测电池的标准容量。
本申请实施例所提供的电池寿命确定装置可执行本申请任意实施例所提供的电池寿命确定方法,具备执行方法相应的功能模块和效果。
图9示出了可以用来实施本申请的实施例的电子设备的结构示意图。电子设备10可以为多种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备10还可以表示多种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备(如头盔、眼镜、手表等)和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图9所示,电子设备10包括至少一个处理器11,以及与至少一个处理器11通信连接的存储器,如只读存储器(Read-Only Memory,ROM)12、随机访问存储器(Random Access Memory,RAM)13等,其中,存储器存储有可被至少一个处理器11执行的计算机程序,处理器11可以根据存储在只读存储器(ROM)12中的计算机程序或者从存储单元18加载到随机访问存储器(RAM)13中的计算机程序,来执行多种适当的动作和处理。在RAM 13中,还可存储电子设备10操作所需的多种程序和数据。处理器11、ROM 12以及RAM 13通过总线14彼此相连。输入/输出(Input/Output,I/O)接口15也连接至总线14。
电子设备10中的多个部件连接至I/O接口15,包括:输入单元16,例如键盘、鼠标等;输出单元17,例如多种类型的显示器、扬声器等;存储单元18, 例如磁盘、光盘等;以及通信单元19,例如网卡、调制解调器、无线通信收发机等。通信单元19允许电子设备10通过诸如因特网的计算机网络和/或多种电信网络与其他设备交换信息/数据。
处理器11可以是多种具有处理和计算能力的通用和/或专用处理组件。处理器11的一些示例包括但不限于中央处理单元(Central Processing Unit,CPU)、图形处理单元(Graphic Processing Unit,GPU)、多种专用的人工智能(Artificial Intelligence,AI)计算芯片、多种运行机器学习模型算法的处理器、数字信号处理器(Digital Signal Processing,DSP)、以及任何适当的处理器、控制器、微控制器等。处理器11执行上文所描述的多个方法和处理,例如电池寿命确定方法。
在一些实施例中,电池寿命确定方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元18。在一些实施例中,计算机程序的部分或者全部可以经由ROM 12和/或通信单元19而被载入和/或安装到电子设备10上。当计算机程序加载到RAM 13并由处理器11执行时,可以执行上文描述的电池寿命确定方法的一个或多个步骤。备选地,在其他实施例中,处理器11可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行电池寿命确定方法。
本文中以上描述的系统和技术的实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Product,ASSP)、芯片上的系统(System on Chip,SOC)、复杂可编程逻辑设备(Complex Programmable Logic Device,CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的计算机程序可以采用一个或多个编程语言来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或快闪存储器、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在电子设备10上实施此处描述的系统和技术,该电子设备10具有:设置为向用户显示信息的显示装置(例如,阴极射线管(Cathode Ray Tube,CRT)或者液晶显示器(Liquid Crystal Display,LCD)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备10。其它种类的装置还可以设置为提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈),并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(Local Area Network,LAN)、广域网(Wide Area Network,WAN)、区块链网络和互联网。
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,解决了传统物理主机与虚拟专用服务器(Virtual Private Server,VPS)服务中,存在的管理难度大,业务扩展性弱的缺陷。
本申请中记载的步骤可以并行地执行也可以顺序地执行也可以不同的次序 执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。

Claims (10)

  1. 一种电池寿命确定方法,包括至少一次线性判断过程和寿命确定过程;
    一次线性判断过程包括:
    对待测电池进行充放电循环;
    确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值;
    在所述微分容量曲线的微分容量峰值和对应的预设循环次数满足第一线性关系,且所述容量衰减值和对应的预设循环次数不满足第二线性关系的情况下,执行下一次线性判断过程;
    在所述微分容量峰值和对应的预设循环次数满足所述第一线性关系,且所述容量衰减值和对应的预设循环次数满足所述第二线性关系的情况下,执行所述寿命确定过程;
    所述寿命确定过程包括:根据所述第二线性关系,确定在所述待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定所述待测电池的寿命。
  2. 根据权利要求1所述的方法,其中,所述确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值,包括:
    从循环完成时的当前循环次数,向前每间隔预设次数,获取不同预设循环次数下所述待测电池的放电数据;其中,所述放电数据包括所述待测电池的容量和放电电压;
    根据所述放电数据确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值。
  3. 根据权利要求1所述的方法,还包括:
    在所述微分容量峰值和对应的预设循环次数不满足所述第一线性关系的情况下,确定所述待测电池异常。
  4. 根据权利要求1所述的方法,其中,判断所述微分容量峰值和对应的预设循环次数是否满足第一线性关系,包括:
    根据所述第一线性关系,对每一微分容量峰值和对应的预设循环次数进行线性拟合,得到第一函数;
    在所述第一函数的第一拟合方差在第一预设范围内的情况下,确定所述每一微分容量峰值和对应的预设循环次数满足所述第一线性关系。
  5. 根据权利要求1所述的方法,其中,判断所述容量衰减值和对应的预设 循环次数是否满足第二线性关系,包括:
    根据所述第二线性关系,对每一容量衰减值和对应的预设循环次数进行线性拟合,得到第二函数;
    在所述第二函数的第二拟合方差在第一预设范围内的情况下,确定所述每一容量衰减值和对应的预设循环次数满足所述第二线性关系。
  6. 根据权利要求1所述的方法,其中,在确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值之前,还包括:
    获取所述待测电池在初始至少两次循环时的初始容量;
    将至少两个初始容量的平均值作为所述待测电池的标准容量。
  7. 根据权利要求6所述的方法,其中,确定所述待测电池在循环次数达到不同预设循环次数的情况下的容量衰减值,包括:
    获取所述待测电池在循环次数达到不同预设循环次数下的当前容量;
    根据每个当前容量与所述标准容量的差值确定每个预设循环次数对应的容量衰减值。
  8. 一种电池寿命确定装置,包括:
    充放电模块,设置为对待测电池进行充放电循环;
    微分容量曲线和容量衰减值确定模块,设置为确定所述待测电池在循环次数达到不同预设循环次数的情况下的微分容量曲线和容量衰减值;
    线性判断模块,设置为判断所述微分容量曲线的微分容量峰值和对应的预设循环次数是否满足第一线性关系,且所述容量衰减值和对应的预设循环次数是否满足第二线性关系;
    寿命确定模块,设置为在所述微分容量峰值和对应的预设循环次数满足第一线性关系,且所述容量衰减值和对应的预设循环次数满足第二线性关系的情况下,根据所述第二线性关系,确定在所述待测电池的容量衰减值达到容量衰减阈值的情况下对应的循环次数,以确定所述待测电池的寿命。
  9. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;
    其中,所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7中任一项所述的电池寿命确定方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-7中任一项所述的电池寿命确定方法。
PCT/CN2023/128121 2022-10-31 2023-10-31 电池寿命确定方法、装置、电子设备及存储介质 WO2024093963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211346381.XA CN115656858A (zh) 2022-10-31 2022-10-31 电池寿命确定方法、装置、电子设备及存储介质
CN202211346381.X 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093963A1 true WO2024093963A1 (zh) 2024-05-10

Family

ID=84992957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128121 WO2024093963A1 (zh) 2022-10-31 2023-10-31 电池寿命确定方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115656858A (zh)
WO (1) WO2024093963A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656858A (zh) * 2022-10-31 2023-01-31 上海兰钧新能源科技有限公司 电池寿命确定方法、装置、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228389A (ja) * 2016-06-21 2017-12-28 マツダ株式会社 リチウムイオン電池の診断装置
CN109001632A (zh) * 2018-04-28 2018-12-14 中国电力科学研究院有限公司 一种用于对补锂电池阶段寿命进行预测的方法及系统
CN110888079A (zh) * 2019-11-28 2020-03-17 中山大学 一种容量衰减分析方法、装置、电子设备和存储介质
US20200249278A1 (en) * 2017-10-24 2020-08-06 Gs Yuasa International Ltd. Estimation apparatus, estimation method, and computer program
CN113009351A (zh) * 2021-01-11 2021-06-22 珠海银隆电器有限公司 电池容量的确定方法及装置
US20220283234A1 (en) * 2019-08-23 2022-09-08 Lg Energy Solution, Ltd. Method for predicting soh of battery and battery pack employing same
CN115097332A (zh) * 2022-07-28 2022-09-23 杭州安影科技有限公司 单体电池的老化检测方法及系统
CN115656858A (zh) * 2022-10-31 2023-01-31 上海兰钧新能源科技有限公司 电池寿命确定方法、装置、电子设备及存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228389A (ja) * 2016-06-21 2017-12-28 マツダ株式会社 リチウムイオン電池の診断装置
US20200249278A1 (en) * 2017-10-24 2020-08-06 Gs Yuasa International Ltd. Estimation apparatus, estimation method, and computer program
CN109001632A (zh) * 2018-04-28 2018-12-14 中国电力科学研究院有限公司 一种用于对补锂电池阶段寿命进行预测的方法及系统
US20220283234A1 (en) * 2019-08-23 2022-09-08 Lg Energy Solution, Ltd. Method for predicting soh of battery and battery pack employing same
CN110888079A (zh) * 2019-11-28 2020-03-17 中山大学 一种容量衰减分析方法、装置、电子设备和存储介质
CN113009351A (zh) * 2021-01-11 2021-06-22 珠海银隆电器有限公司 电池容量的确定方法及装置
CN115097332A (zh) * 2022-07-28 2022-09-23 杭州安影科技有限公司 单体电池的老化检测方法及系统
CN115656858A (zh) * 2022-10-31 2023-01-31 上海兰钧新能源科技有限公司 电池寿命确定方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN115656858A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US20220099753A1 (en) Method For Predicting Service Life Of Retired Power Battery
US20210148988A1 (en) Method and apparatus for estimating battery state of health
WO2024093963A1 (zh) 电池寿命确定方法、装置、电子设备及存储介质
WO2021208079A1 (zh) 获取动力电池寿命数据的方法、装置、计算机设备及介质
TWI729606B (zh) 用於一邊緣運算網路的負載平衡裝置及方法
CN115221795A (zh) 容量预测模型的训练方法、预测方法、装置、设备及介质
CN115932634A (zh) 一种对电池健康状态评估的方法、装置、设备及存储介质
CN115718265A (zh) 电池直流电阻测试值的修正方法、电子设备及存储介质
WO2024120501A1 (zh) 电池剩余充电时间计算方法、装置、电子设备及存储介质
CN115372841A (zh) 一种锂离子电池单体热失控风险评价方法及装置
CN109991543B (zh) 一种电池包剩余电量的获取方法、装置及终端设备
CN114200315B (zh) 剩余充电时间的预测方法、装置、电子设备和存储介质
CN115754772A (zh) 一种电池容量衰减处理方法、装置、设备和存储介质
CN116125279A (zh) 一种电池健康状态的确定方法、装置、设备及存储介质
CN113779335A (zh) 信息生成方法、装置、电子设备和计算机可读介质
CN117706390B (zh) 一种电池荷电状态滚动优化估计方法及装置
CN115291111B (zh) 电池静置时间预测模型的训练方法以及静置时间预测方法
CN115511047B (zh) Softmax模型的量化方法、装置、设备及介质
WO2022174698A1 (zh) 新能源设备的健康状况测评方法、装置、介质及提示终端
CN116165565A (zh) 电池包老化值的确定方法、电子设备及可读存储介质
CN110362603B (zh) 一种特征冗余性分析方法、特征选择方法和相关装置
CN115128476A (zh) 一种锂离子电池预锂量估计方法、装置、设备及存储介质
CN115389944A (zh) 一种电池剩余电量精确度验证方法、系统、设备及存储介质
CN115622949A (zh) 一种流量调度方法、装置、设备和介质
CN116087807A (zh) 电池充电截止电压测试方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884893

Country of ref document: EP

Kind code of ref document: A1