WO2023197685A1 - 充电方法、装置、电子设备和计算机可读存储介质 - Google Patents

充电方法、装置、电子设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2023197685A1
WO2023197685A1 PCT/CN2022/142587 CN2022142587W WO2023197685A1 WO 2023197685 A1 WO2023197685 A1 WO 2023197685A1 CN 2022142587 W CN2022142587 W CN 2022142587W WO 2023197685 A1 WO2023197685 A1 WO 2023197685A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
stage
power
voltage
Prior art date
Application number
PCT/CN2022/142587
Other languages
English (en)
French (fr)
Inventor
谢红斌
纪策
田晨
林尚波
李志杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023197685A1 publication Critical patent/WO2023197685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of charging technology, and in particular to a charging method, device, electronic equipment and computer-readable storage medium.
  • Embodiments of the present application provide a charging method, device, electronic device, and computer-readable storage medium, which can improve battery charging efficiency.
  • a charging method which method includes:
  • the target charge cut-off power is the power when the battery reaches the target charge cut-off voltage after the first stage of charging is performed on the battery under the condition that the battery is not aged.
  • a charging device which device includes:
  • a monitoring module used to monitor the battery power of the battery during the first stage of charging the battery
  • the first switching module is used to switch to the second stage of charging if the battery power reaches the target charging cut-off power
  • the target charge cut-off power is the power when the battery reaches the target charge cut-off voltage after the first stage of charging is performed on the battery under the condition that the battery is not aged.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the steps as described in the first aspect. steps of the method described.
  • a fourth aspect provides a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a fifth aspect provides a computer program product, including a computer program that implements the steps of the method described in the first aspect when executed by a processor.
  • the target charge cut-off level is when the battery is not aged. , the battery is charged in the first stage, and the amount of electricity when the battery reaches the target charging cut-off voltage, because under normal circumstances, charging methods such as constant current and constant voltage charging or stepped charging all charge at the target charging cut-off voltage (for example, under constant current and constant voltage charging).
  • the target charging cut-off voltage can be the maximum cut-off voltage of the battery.
  • the target charging cut-off voltage can be the switching voltage of the current charging stage) and the charging stage is switched when it is reached, that is, switching from the first stage of charging. to the second stage of charging.
  • the internal resistance of the battery will generate an increasing floating pressure during the charging process, resulting in a shortened time for the battery to reach the target charging cut-off voltage, which results in the first stage of charging.
  • the time is shortened, and since the charging current of the first stage of charging (for example, it can be the rated maximum current of the battery) is usually greater than the charging current of the second stage of charging, this is equivalent to shortening the charging time of large current, resulting in a reduction in charging efficiency, and
  • the power when the battery reaches the target charging cut-off voltage during the first stage of charging is obtained as the target charging cut-off power. In this way, during the actual charging process of the battery, the The target charge cut-off power replaces the target charge cut-off voltage as the basis for switching charging stages.
  • the measurement of battery power is not affected by the floating pressure generated by the battery's internal resistance, it can avoid shortening the charging time of the first stage of charging due to battery aging, that is, This avoids shortening the charging time using larger current charging and improves the charging efficiency of battery charging.
  • Figure 1 is a schematic diagram of charging current and charging voltage changing with time in an exemplary constant current and constant voltage charging method
  • Figure 2 is a schematic diagram showing the changes of charging current and charging voltage over time in an exemplary stepped charging method
  • Figure 3 is a schematic diagram of the internal structure of an electronic device in one embodiment
  • Figure 4 is a flow chart of a charging method in one embodiment
  • Figure 5 is a flow chart of switching charging stages in another embodiment
  • Figure 6 is a flow chart of a charging method in another embodiment
  • Figure 7 is a flow chart for monitoring battery power of a battery in another embodiment
  • Figure 8 is a flow chart of a charging method in another embodiment
  • Figure 9 is a structural block diagram of a charging device in one embodiment.
  • the so-called constant current and constant voltage charging method refers to: first charging the battery with a certain constant charging current, and after the battery voltage reaches the preset cut-off voltage, the cut-off voltage is maintained. Keep charging the battery until it is fully charged.
  • FIG. 1 is a schematic diagram illustrating changes in charging current and charging voltage over time in an exemplary constant current and constant voltage charging method.
  • 1C that is, a current that is 1 times the battery capacity, assuming the battery capacity is 3000mAh, then the current that is 1 times the battery capacity is 3A
  • the battery is charged with a constant charging current.
  • 0.02C that is, a current that is 0.02 times the battery capacity.
  • the current that is 0.02 times the battery capacity is 60mA).
  • the charging current of the battery is adjusted by monitoring the battery voltage of the battery.
  • FIG. 2 is a schematic diagram showing the change of charging current and charging voltage over time in an exemplary stepped charging method.
  • first charge the battery to 4.2V with a charging current of 3C then switch to charging the battery to 4.4V using a charging current of 2C, and so on, continuously charging according to the
  • the battery's battery voltage adjusts the battery's charging current. Due to continuous charging with high current, the temperature of the battery will rise very seriously, which will not only affect the service life of the battery, but also greatly increase the risk of battery safety problems. Therefore, the charging current will be continuously reduced during the charging process.
  • charging methods such as constant current and constant voltage charging or stepped charging monitor the battery voltage of the battery during the charging process, and when the battery voltage reaches the target charging cut-off voltage (for example, constant current and constant voltage charging)
  • the target charging cut-off voltage can be the maximum cut-off voltage of the battery 4.2V as mentioned above.
  • the target charging cut-off voltage can be the switching voltage of each charging stage, as mentioned in 4.2 above. V, 4.4V, etc.) to switch the charging stage.
  • the battery voltage of the battery is composed of the battery's open circuit voltage and the battery's floating pressure.
  • the open circuit voltage refers to the voltage that the battery can output to the outside as a power supply component, that is, the actual voltage of the battery.
  • the stepped charging method it is preset to first charge the battery with a charging current of 4A, and then switch to charging the battery with a charging current of 3A when the battery voltage increases to 4.2V; for new batteries , the internal resistance of the battery is assumed to be 30m ⁇ .
  • the floating voltage of the battery is 0.12V
  • the floating voltage of the battery rises to 0.24V
  • the charging time in the constant current charging stage will also be reduced. Since the charging current in the constant current charging stage is greater than the charging current in the constant voltage charging stage, this will lead to High-current charging shortens the time even more, resulting in an increase in the overall charging time of the battery.
  • embodiments of the present application provide a charging method.
  • the battery power of the battery is monitored. If the battery power reaches the target charging cut-off power, the battery is switched to the second stage of charging, where, The target charge cut-off capacity is the capacity when the battery reaches the target charge cut-off voltage during the first stage of charging when the battery is not aged. In this way, when the battery is not aged, the first stage of charging of the battery is obtained.
  • the power when the battery reaches the target charging cut-off voltage is used as the target charging cut-off power. In this way, during the actual charging process of the battery, the target charging cut-off power is used instead of the target charging cut-off voltage as the basis for switching charging stages.
  • the influence of the floating voltage generated by the internal resistance of the battery can prevent the aging of the battery from shortening the charging time of the first stage of charging, that is, avoiding shortening the charging time of charging with a larger current, and improving the charging efficiency of the battery.
  • the charging method provided by the embodiment of the present application can be applied to electronic equipment.
  • the electronic equipment can be provided with a battery and a charging control chip.
  • the battery can be a lithium battery.
  • the charging control chip can be used to control the electronic equipment to perform charging for the battery. Charge.
  • the electronic device can be a laptop, a smartphone, a tablet, a wearable device, a smart speaker, a drone, an e-book, a sweeping robot, an electric toothbrush, a rechargeable wireless mouse, an electric vehicle, etc.
  • FIG. 3 is a schematic diagram of an exemplary internal structure of an electronic device.
  • the electronic device includes a processor, a memory, an input/output interface, a communication interface, a display unit and an input device.
  • the processor, memory and input/output interface are connected through the system bus, and the communication interface, display unit and input device are connected to the system bus through the input/output interface.
  • the processor of the electronic device is used to provide computing and control capabilities.
  • the memory of the electronic device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems and computer programs. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the input/output interface of this electronic device is used to exchange information between the processor and external devices.
  • the communication interface of the electronic device is used for wired or wireless communication with external terminals.
  • the wireless mode can be implemented through WIFI, mobile cellular network, NFC (Near Field Communication) or other technologies.
  • the computer program when executed by the processor, implements a charging method.
  • the display unit of the electronic device is used to form a visually visible picture, and may be a display screen, a projection device or a virtual reality imaging device.
  • the display screen can be a liquid crystal display screen or an electronic ink display screen.
  • the input device of the electronic device can be a touch layer covered on the display screen, or it can be a button, trackball or touch pad provided on the casing of the electronic device, or it can be External keyboard, trackpad or mouse, etc.
  • FIG. 3 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the electronic equipment to which the solution of the present application is applied.
  • Specific electronic devices can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • FIG 4 shows a flow chart of a charging method provided by an embodiment of the present application.
  • This charging method can be applied to the electronic device described above.
  • the charging method may include the following steps:
  • Step 401 During the first stage of charging the battery, the electronic device monitors the battery power of the battery.
  • the first stage of charging can be constant current charging, or it can be any charging stage before constant voltage charging.
  • it can be variable constant current charging.
  • the variable constant current charging stage can mean that the charging current gradually decreases during this charging stage. .
  • the electronic device During the first stage of charging the battery, the electronic device periodically monitors the battery power.
  • the monitoring period can be set during implementation, for example, it can be one second, two seconds, or five seconds.
  • Step 402 If the battery power reaches the target charging cut-off power, the electronic device switches to the second stage of charging.
  • the electronic device After the electronic device obtains the battery power of the battery, it compares the battery power with the target charging cut-off power.
  • the target charge cut-off capacity is the capacity when the battery reaches the target charge cut-off voltage when the battery is charged in the first stage without aging.
  • the fact that the battery has not aged may mean that the total number of charging times of the battery is less than or equal to the preset charging number threshold.
  • the preset charging number threshold is a small value that can be set by oneself during implementation, and of course can also be zero.
  • the first stage of charging is performed on the battery, such as constant current charging of the battery.
  • the target charging cut-off voltage may be, for example, the maximum cut-off voltage of the battery in the constant current and constant voltage charging method.
  • the target charging cut-off voltage may also be the switching voltage corresponding to the current charging stage (i.e., the first stage of charging) in the stepped charging method.
  • the target charging cut-off amount can be used as a basis for switching charging stages.
  • the target charge cut-off voltage can also be obtained by performing the first stage of charging on some batteries among multiple batteries (the number of some batteries is greater than one and less than the total number of multiple batteries), and is obtained when all the batteries reach the target charge cut-off voltage.
  • the average or median of the multiple battery levels is used as the target charge cut-off level.
  • the electronic device After the electronic device compares the current battery power of the battery with the target charge cut-off power, if the battery power reaches the target charge cut-off power, the electronic device switches to the second stage of charging.
  • the second stage of charging is constant voltage charging, that is, the current charging method is constant current and constant voltage charging.
  • the charging current of the second stage of charging is gradually decreasing, and the charging current of the first stage of charging is greater than the maximum charging current of the second stage of charging.
  • the charging current of the first stage of charging can be, for example, a battery rated maximum current.
  • the embodiment of the present application uses the target charging cut-off power instead of the target charging cut-off voltage in the traditional technology (that is, the maximum cut-off voltage of the battery) as the basis for switching the charging stage. Since the measurement of battery power is not accurate, Affected by the floating pressure generated by the internal resistance of the battery, it can prevent the aging of the battery from shortening the charging time of the first stage of charging (i.e. constant current charging), that is, avoiding shortening the charging time of using high current charging, and improving the charging time of the battery. efficiency.
  • both the first stage of charging and the second stage of charging may be charging stages before constant voltage charging, and the charging current of the first stage of charging is greater than the charging current of the second stage of charging.
  • the first stage of charging and the second stage of charging are both constant current charging.
  • the current charging method is stepped charging.
  • the charging current of the first stage of charging is greater than the charging current of the second stage of charging.
  • the first stage of charging is variable constant current charging as described above, and the second stage of charging is constant current charging.
  • the charging current of the first stage of charging is gradually decreasing, and the minimum charging current of the first stage of charging is greater than the charging current of the second stage of charging.
  • the target charging cut-off power is used instead of the target charging cut-off voltage in the traditional technology (that is, the switching voltage corresponding to the current charging stage) as the basis for switching the charging stage. Since the battery power is measured It is not affected by the floating pressure generated by the internal resistance of the battery, thereby avoiding the shortening of the charging time of the first stage of charging due to battery aging, that is, avoiding shortening the charging time of charging with a larger current, and improving the charging efficiency of the battery.
  • the above embodiments monitor the battery power of the battery during the first stage of charging the battery. If the battery power reaches the target charge cut-off level, the battery is switched to the second stage of charging.
  • the target charge cut-off level is when the battery is not aged.
  • charging methods such as constant current and constant voltage charging or stepped charging all charge at the target charging cut-off voltage (for example, at In the constant current and constant voltage charging method, the target charging cut-off voltage can be the maximum cut-off voltage of the battery. In the stepped charging method, the target charging cut-off voltage can be the switching voltage of the current charging stage).
  • the charging stage When the charging stage is reached, the charging stage is switched, that is, from the first The first-stage charging switches to the second-stage charging.
  • the internal resistance of the battery will generate an increasing floating pressure during the charging process, resulting in a shortened time for the battery to reach the target charging cut-off voltage, which results in the first-stage charging.
  • the charging time of charging is shortened, and since the charging current of the first stage of charging (for example, it can be the rated maximum current of the battery) is usually greater than the charging current of the second stage of charging, this is equivalent to shortening the charging time of large current, resulting in charging efficiency Reduced, and in the embodiment of the present application, when the battery is not aged, the power when the battery reaches the target charging cut-off voltage during the first stage of charging is obtained as the target charging cut-off power. In this way, during the actual charging process of the battery , using the target charge cut-off power instead of the target charge cut-off voltage as the basis for switching charging stages.
  • the measurement of battery power is not affected by the floating pressure generated by the battery's internal resistance, it can avoid the aging of the battery causing the charging time of the first stage of charging. Shortening, that is, avoiding shortening the charging time using larger current charging, improves the charging efficiency of battery charging.
  • the first stage of charging and the second stage of charging are both charging stages before constant voltage charging, and the first stage of charging is The charging current is greater than that of the second stage of charging.
  • both the first stage charging and the second stage charging are constant current charging.
  • the charging method also includes step 501:
  • Step 501 During the first stage of charging or the second stage of charging, the electronic device detects whether the battery voltage of the battery reaches a preset cut-off voltage.
  • the preset cut-off voltage may be the maximum cut-off voltage of the battery, which is the maximum battery voltage at which the battery can operate normally.
  • the maximum cut-off voltage may be set taking into account factors such as battery life and safety.
  • the float pressure of the battery will increase, so the time it takes for the battery to reach the preset cut-off voltage during charging will shorten.
  • the battery voltage reaches the preset cut-off voltage.
  • the battery voltage may be charged to 90% of the battery capacity. The preset cut-off voltage has been reached. At this time, if the battery is not switched to constant voltage charging, the battery voltage will exceed the preset cut-off voltage, causing damage to the battery.
  • the electronic device can monitor the battery voltage of the battery in real time and detect whether the battery voltage of the battery reaches the preset cut-off voltage.
  • Step 502 If the battery voltage reaches the preset cut-off voltage, the electronic device switches to the third stage of charging.
  • the third stage of charging is constant voltage charging, and the charging voltage of the third stage of charging is a preset cut-off voltage.
  • the electronic device switches to the constant voltage charging stage using the preset cut-off voltage as the charging voltage. The battery is charged until it is fully charged.
  • the preset cut-off voltage can be set by itself during implementation.
  • it can be the above-mentioned maximum cut-off voltage, or it can be a voltage value that fluctuates near the above-mentioned maximum cut-off voltage.
  • it can exceed the maximum cut-off voltage.
  • it can be determined by the user based on the battery life, battery safety and other related factors. There is no restriction on the specific method of determining the preset cut-off voltage.
  • the electronic device continues the current charging stage. For example, during the first stage of charging, the electronic device detects whether the battery voltage reaches the preset cut-off voltage. If the battery voltage does not reach the preset cut-off voltage and the battery power does not reach the above-mentioned target charging cut-off power, the electronic device Continue with the first stage of charging.
  • the above embodiment detects whether the battery voltage reaches the preset cut-off voltage during the charging process of the battery, and directly switches to constant voltage charging when the battery voltage reaches the preset cut-off voltage, thereby avoiding charging the battery beyond the maximum cut-off voltage of the battery. , thereby improving charging safety and extending battery life.
  • this embodiment relates to a process of how an electronic device determines a target charging cutoff power level.
  • the charging method also includes step 600:
  • Step 600 The electronic device searches the preset mapping relationship table to obtain the target charging cut-off amount based on the charging current corresponding to the first stage of charging.
  • a mapping relationship table may be preset in the electronic device, and the mapping relationship table stores the corresponding relationships between different charging currents and charging cut-off amounts. If an electronic device needs to obtain the target charging cut-off amount corresponding to the first stage of charging, it first determines the charging current corresponding to the first stage of charging, and then searches the mapping relationship table to obtain the charging cut-off amount corresponding to the charging current as the target charging cut-off amount. .
  • mapping table The corresponding relationships between different charging currents and charge cut-off capacities stored in the above mapping table are measured when the battery is not aged. For example, when the battery just leaves the factory, it can be regarded as the battery has not aged. Taking the stepped charging method as an example, the battery is fully charged using the stepped charging method, and the corresponding relationship between the charging current and the charging cut-off capacity of each charging stage is recorded. stored in this mapping table.
  • the above mapping relationship table is then generated. In this way, during the charging process of the above-mentioned multiple batteries with the same parameters, the mapping relationship table can be used to search for the charging cutoff capacity.
  • the number of some batteries is greater than one and less than the total number of multiple batteries
  • the performance of each battery at different charging times without aging of the batteries.
  • the corresponding relationship between the charging current of each stage and the charge cutoff capacity For the charging current of each charging stage, the average or median of the measured charge cutoff capacity of each battery is used as the charge cutoff capacity corresponding to the charging current.
  • the above embodiment measures the charging current of each charging stage and the charging cut-off amount to generate a mapping relationship table when the battery is not aged.
  • the electronic device can calculate the corresponding charging current based on the current charging stage.
  • the corresponding target charging cut-off power can be conveniently and quickly found in the mapping relationship table to switch the charging stage.
  • the implementation difficulty is low and it is easy to promote.
  • this embodiment relates to a process of how an electronic device monitors the battery power of a battery. As shown in Figure 7, the process includes:
  • Step 701 The electronic device obtains the initial power of the battery before the first stage of charging, and obtains the newly added power of the battery during the first stage of charging.
  • the initial power is the remaining power of the electronic device before charging, and the electronic device can read the initial power in the preset storage location of the electronic device. , assuming that the initial power is represented by SOC0.
  • the initial power is the battery power of the electronic device at the end of the adjacent charging stage before the first stage of charging.
  • the initial power is calculated by the electronic device. Obtained, the calculation method is similar to the method shown in step 701 and step 702, please refer to the implementation described below.
  • the electronic device first reads the initial charge SOC0 of the battery in the preset storage location of the electronic device. Then, the electronic device calculates the newly added charge of the battery during the first stage of charging.
  • the electronic device can use the following formula 1 to calculate the new capacity ⁇ Q of the battery during the first stage of charging:
  • i is the charging current of the first stage of charging
  • t is the charging time of the first stage of charging
  • the electronic device divides the newly added capacity ⁇ Q by the total battery capacity Qmax to obtain the newly added power of the battery during the first stage of charging: ⁇ Q/Qmax.
  • the total battery capacity of the battery is constantly changing as the battery ages. For example, if the battery is not aged, the total battery capacity is assumed to be 4000mAh. After the battery ages, the total battery capacity will decrease, for example, it will drop to 3500mAh. In the embodiment of the present application, when the electronic device obtains the newly added power, it always reads the latest total battery capacity of the battery. The electronic device can read the latest total battery capacity in the preset storage location of the electronic device.
  • Step 702 The electronic device adds the initial power and the newly added power to obtain the battery power.
  • the electronic device can calculate the battery power SOC through the following formula 2:
  • the electronic device can quickly calculate the battery power of the battery during the first stage of charging through the above implementation method.
  • the calculation method is simple, the calculation amount is small, and the computing resources of the electronic device are saved.
  • this embodiment relates to an exemplary implementation of the charging method in the embodiment of the present application when the number of batteries is multiple.
  • the electronic device can perform the following step 801 to implement the process of step 401:
  • Step 801 During the first stage of charging multiple batteries, the electronic device monitors the battery power of each battery.
  • Multiple batteries can be connected in series to form a battery core.
  • the battery core formed by multiple batteries connected in series is usually used in scenarios with large power requirements.
  • a battery core formed by multiple batteries connected in series can be used as a power supply battery for electric vehicles.
  • the electronic device may perform the following step 802 to implement the process of step 402:
  • Step 802 The electronic device determines the target battery power from the battery power of each battery. If the target battery power reaches the target charging cut-off power, it switches to the second stage of charging.
  • the electronic device selects a target battery power from the battery power of each battery as a benchmark to switch the charging stage.
  • the target battery power is the maximum battery power among the battery power of each battery, that is, the electronic device reads the maximum battery power of each battery and switches the charging stage according to the maximum battery power.
  • the target battery power is the battery power of the battery with the smallest capacity among the batteries.
  • the total capacity of the battery is the smallest, that is, the battery is the easiest to be fully charged.
  • the charging stage is performed based on the battery power of the battery with the smallest total capacity. Switching can improve the charging safety of the battery.
  • a charging method which method includes the following steps:
  • step A1 during the first stage of charging the battery, the electronic device obtains the initial power of the battery before the start of the first stage of charging, and obtains the newly added power of the battery during the first stage of charging.
  • step A2 the electronic device adds the initial power and the newly added power to obtain the battery power.
  • Step A4 According to the charging current corresponding to the first stage of charging, the electronic device searches the preset mapping relationship table to obtain the target charging cut-off power corresponding to the charging current.
  • the mapping relationship table stores the corresponding relationships between different charging currents and charging cut-off electric quantities.
  • Step A5 if the battery power reaches the target charging cut-off power, the electronic device switches to the second stage of charging.
  • the target charge cut-off power is the power when the battery reaches the target charge cut-off voltage after the first stage of charging is carried out on the battery without aging.
  • the first stage of charging is constant current charging
  • the second stage of charging is constant voltage charging
  • both the first stage charging and the second stage charging are charging stages before constant voltage charging, and the charging current of the first stage charging is greater than the charging current of the second stage charging.
  • Step A6 During the first stage of charging or the second stage of charging, it is detected whether the battery voltage of the battery reaches the preset cut-off voltage. If the battery voltage reaches the preset cut-off voltage, the electronic device switches to the third stage of charging.
  • the third stage of charging is constant voltage charging, and the charging voltage of the third stage of charging is a preset cut-off voltage.
  • the electronic device can monitor the battery power of each battery during the first stage of charging the multiple batteries, and determine the target battery from the battery power of each battery. If the target battery power reaches the target charging cut-off power, it will switch to the second stage of charging.
  • the target battery power is the battery power with the largest capacity among the batteries, or the target battery power is the battery power with the smallest capacity among the batteries.
  • the charging method provided by the embodiment of the present application switches the charging stage according to the battery power. Since the measurement of the battery power is not affected by the floating pressure generated by the battery due to aging, this can ensure that the charging speed of the battery does not slow down as the battery ages, improving Charging efficiency.
  • embodiments of the present application also provide a charging device for implementing the above-mentioned charging method.
  • the solution to the problem provided by this device is similar to the solution recorded in the above method. Therefore, for the specific limitations in one or more charging device embodiments provided below, please refer to the above limitations on the charging method. Herein No longer.
  • a charging device including:
  • Monitoring module 901 is used to monitor the battery power of the battery during the first stage of charging the battery
  • the first switching module 902 is used to switch to the second stage of charging if the battery power reaches the target charging cut-off power
  • the target charge cut-off power is the power when the battery reaches the target charge cut-off voltage after the first stage of charging is performed on the battery under the condition that the battery is not aged.
  • the first stage of charging is constant current charging
  • the second stage of charging is constant voltage charging
  • the first stage of charging and the second stage of charging are both charging stages before constant voltage charging, and the charging current of the first stage of charging is greater than the charging current of the second stage of charging.
  • the device further includes:
  • a detection module configured to detect whether the battery voltage of the battery reaches a preset cut-off voltage during the first stage of charging or the second stage of charging;
  • the second switching module is used to switch to the third stage of charging if the battery voltage reaches the preset cut-off voltage.
  • the third stage of charging is constant voltage charging, and the charging voltage of the third stage of charging is The preset cut-off voltage.
  • the device further includes:
  • a search module configured to search and obtain the target charging cut-off power in a preset mapping table according to the charging current corresponding to the first stage of charging.
  • the mapping table stores different charging currents and charging cut-off power. corresponding relationship.
  • the monitoring module 901 is specifically configured to obtain the initial power of the battery before the start of the first stage of charging, and to obtain the newly added capacity of the battery during the first stage of charging. Electricity quantity; Add the initial electric quantity and the newly added electric quantity to obtain the battery electric quantity.
  • the monitoring module 901 is specifically configured to monitor the battery power of each battery during the first stage of charging multiple batteries;
  • the first switching module 902 is specifically configured to determine the target battery power from the battery power of each battery. If the target battery power reaches the target charging cut-off power, switch to the second stage of charging.
  • the target battery capacity is the largest battery capacity among the battery capacities of each of the batteries.
  • the target battery capacity is the battery capacity of the battery with the smallest capacity among the batteries.
  • Each module in the above charging device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • an electronic device in one embodiment, includes a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the following steps:
  • the target charge cut-off power is the power when the battery reaches the target charge cut-off voltage after the first stage of charging is performed on the battery under the condition that the battery is not aged.
  • the first stage of charging is constant current charging
  • the second stage of charging is constant voltage charging
  • the first stage of charging and the second stage of charging are both charging stages before constant voltage charging, and the charging current of the first stage of charging is greater than the charging current of the second stage of charging.
  • the processor also implements the following steps when executing the computer program:
  • the first stage of charging or the second stage of charging detect whether the battery voltage of the battery reaches a preset cut-off voltage
  • the battery voltage reaches the preset cut-off voltage, it switches to the third stage of charging.
  • the third stage of charging is constant voltage charging, and the charging voltage of the third stage of charging is the preset cut-off voltage.
  • the processor also implements the following steps when executing the computer program:
  • the target charging cut-off power is obtained by searching in a preset mapping relationship table.
  • the mapping relationship table stores the corresponding relationships between different charging currents and charging cut-off power.
  • the processor also implements the following steps when executing the computer program:
  • the initial power and the newly added power are added to obtain the battery power.
  • the number of batteries is multiple, and the processor also implements the following steps when executing the computer program:
  • the processor also performs the following steps when executing the computer program:
  • the target battery power is determined from the battery power of each battery. If the target battery power reaches the target charging cut-off power, switch to the second stage of charging.
  • the target battery capacity is the largest battery capacity among the battery capacities of each of the batteries.
  • the target battery capacity is the battery capacity of the battery with the smallest capacity among the batteries.
  • An embodiment of the present application also provides a computer-readable storage medium.
  • One or more non-volatile computer-readable storage media containing computer-executable instructions that, when executed by one or more processors, cause the processors to perform the following steps:
  • the target charge cut-off power is the power when the battery reaches the target charge cut-off voltage after the first stage of charging is performed on the battery under the condition that the battery is not aged.
  • the first stage of charging is constant current charging
  • the second stage of charging is constant voltage charging
  • the first stage of charging and the second stage of charging are both charging stages before constant voltage charging, and the charging current of the first stage of charging is greater than the charging current of the second stage of charging.
  • processors when executed by one or more processors, the processors are caused to further perform the following steps:
  • the first stage of charging or the second stage of charging detect whether the battery voltage of the battery reaches a preset cut-off voltage
  • the battery voltage reaches the preset cut-off voltage, it switches to the third stage of charging.
  • the third stage of charging is constant voltage charging, and the charging voltage of the third stage of charging is the preset cut-off voltage.
  • processors when executed by one or more processors, the processors are caused to further perform the following steps:
  • the target charging cut-off power is obtained by searching in a preset mapping relationship table.
  • the mapping relationship table stores the corresponding relationships between different charging currents and charging cut-off power.
  • processors when executed by one or more processors, the processors are caused to further perform the following steps:
  • the initial power and the newly added power are added to obtain the battery power.
  • the number of batteries is multiple, and when the computer-executable instructions are executed by one or more processors, the processors also perform the following steps:
  • processors When the computer-executable instructions are executed by one or more processors, the processors are caused to also perform the following steps:
  • the target battery power is determined from the battery power of each battery. If the target battery power reaches the target charging cut-off power, switch to the second stage of charging.
  • the target battery capacity is the largest battery capacity among the battery capacities of each of the batteries.
  • the target battery capacity is the battery capacity of the battery with the smallest capacity among the batteries.
  • An embodiment of the present application also provides a computer program product containing instructions that, when run on a computer, causes the computer to perform the above charging method.
  • the computer program can be stored in a non-volatile computer-readable storage.
  • the computer program when executed, may include the processes of the above method embodiments.
  • Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory, FRAM), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory, etc.
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • the databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto.
  • the processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及一种充电方法、装置、电子设备和计算机可读存储介质。包括:在对电池进行第一阶段充电的过程中,监测电池的电池电量;若电池电量达到目标充电截止电量,则切换至第二阶段充电;目标充电截止电量是在电池未老化的情况下,对电池进行第一阶段充电,电池达到目标充电截止电压时的电量。本方法能够提升电池充电效率。

Description

充电方法、装置、电子设备和计算机可读存储介质
本申请要求于2022年04月13日提交中华人民共和国国家知识产权局、申请号为2022103839643、发明名称为“充电方法、装置、电子设备和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及充电技术领域,特别是涉及一种充电方法、装置、电子设备和计算机可读存储介质。
背景技术
随着电子设备功能的不断丰富,电子设备的耗电量大幅增加,其电池的充电频率也随之增加,用户对电池的充电速度也具有越来越高的要求。
相关的充电技术中,常见的如恒流恒压充电、阶梯式充电等充电方式,通常使用较大电流将电池充至某一电压后,再切换至恒压或较小电流继续对电池充电,其中,恒压阶段的充电电流也小于切换前的较大电流。
但是,随着电池的老化,上述充电方式的充电速度越来越慢,导致电池的充电效率低下。
发明内容
本申请实施例提供了一种充电方法、装置、电子设备和计算机可读存储介质,可以提升电池的充电效率。
第一方面,提供了一种充电方法,所述方法包括:
在对电池进行第一阶段充电的过程中,监测所述电池的电池电量;
若所述电池电量达到目标充电截止电量,则切换至第二阶段充电;
其中,所述目标充电截止电量是在所述电池未老化的情况下,对所述电池进行所述第一阶段充电,所述电池达到目标充电截止电压时的电量。
第二方面,提供了一种充电装置,所述装置包括:
监测模块,用于在对电池进行第一阶段充电的过程中,监测所述电池的电池电量;
第一切换模块,用于若所述电池电量达到目标充电截止电量,则切换至第二阶段充电;
其中,所述目标充电截止电量是在所述电池未老化的情况下,对所述电池进行所述第一阶段充电,所述电池达到目标充电截止电压时的电量。
第三方面,提供了一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如上述第一方面所述的方法的步骤。
第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的方法的步骤。
第五方面,提供了一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述的方法的步骤。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过在对电池进行第一阶段充电的过程中,监测电池的电池电量,若电池电量达到目标充电截止电量,则切换至第二阶段充电,其中,目标充电截止电量是在电池未老化的情况下,对电池进行第一阶段充电,电池达到目标充电截止电压时的电量,由于通常情况下,恒流恒压充电或阶梯式充电等充电方式均是在目标充电截止电压(例如,在恒流恒压充电方式中该目标充电截止电压可以是电池的最大截止电压,在阶梯式充电方式中该目标充电截止电压可以是当前充电阶段的切换电压)到达时切换充电阶段,即从第一阶段充电切换至第二阶段充电,但是,随着电池的老化,电池内阻在充电过程中会产生越来越大的浮压,导致电池达到目标充电截止电压的时间缩短,即导致第一阶段充电的充电时间缩短,而由于第一阶段充电的充电电流(例如可以是电池的额定最大电流)通常大于第二阶段充电的充电电流,这就相当于缩短了大电流的充电时间,导致充电效率降低,而本申请实施例中,在电池未老化的情况下,获取对电池进行第一阶段充电时电池达到目标充电截止电压时的电量作为目标充电截止电量,这样,在电池实际的充电过程中,以该目标充电截止电量代替目标充电截止电压作为切换充电阶段的依据,由于电池电量的衡量不受电池内阻产生的浮压的影响,从而可以避免电池的老化造成第一阶段充电的充电时间缩短,即避免缩短使用较大电流充电的充电时间,提升了电池充电的充电效率。
附图说明
图1为一种示例性地恒流恒压充电方式中充电电流和充电电压随时间变化的示意图;
图2为一种示例性地阶梯式充电方式中充电电流和充电电压随时间变化的示意图;
图3为一个实施例中电子设备的内部结构示意图;
图4为一个实施例中充电方法的流程图;
图5为另一个实施例中切换充电阶段的流程图;
图6为另一个实施例中充电方法的流程图;
图7为另一个实施例中监测电池的电池电量的流程图;
图8为另一个实施例中充电方法的流程图;
图9为一个实施例中充电装置的结构框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
随着电子设备功能的不断丰富,电子设备的耗电量大幅增加,其电池的充电频率也随之增加,用户对电池的充电速度也具有越来越高的要求。
相关的充电技术中,常见的如恒流恒压充电、阶梯式充电等充电方式,通常使用较大电流将电池充至某一电压后,再切换至恒压或较小电流继续对电池充电,其中,恒压阶段的充电电流也小于切换前的较大电流。
以恒流恒压充电方式为例,所谓恒流恒压充电方式指的是:先以某一恒定的充电电流对电池进行充电,在电池电压达到预设的截止电压后,再保持该截止电压不变对电池进行充电,直至充满。
示例性地,参见图1,图1为一种示例性地恒流恒压充电方式中充电电流和充电电压随时间变化的示意图。例如,在基于恒流恒压充电方式对电池进行充电的过程中,可以先以1C(即1倍于电池容量的电流,假设电池容量为3000mAh,则1倍于电池容量的电流为3A)的恒定充电电流对电池进行充电,在电池电压达到最大截止电压4.2V时,再以4.2V的恒定充电电压对电池进行充电,直至充电电流降低至截止电流0.02C(即0.02倍于电池容量的电流,假设电池容量为3000mAh,则0.02倍于电池容量的电流为60mA)为止。
以阶梯式充电方式为例,电池在充电过程中,电池的充电电流是通过监测电池的电池电压来调整的。
示例性地,请参见图2,图2为一种示例性地阶梯式充电方式中充电电流和充电电压随时间变化的示意图。例如,在基于阶梯式充电方式对电池进行充电过程中,首先用3C的充电电流将电池充电至4.2V,再切换至使用2C的充电电流将电池充电至4.4V,以此类推,不断地根据电池的电池电压调整电池的充电电流。由于持续以大电流进行充电,电池的温度会上升的非常严重,这不但会影响电池的使用寿命,也大大增加了电池安全问题发 生的风险,因此在充电过程中会不断的降低充电电流。
其他相关的充电技术在此不再一一列出。通过上文描述并结合图示可知,恒流恒压充电或阶梯式充电等充电方式均是在充电过程中,监测电池的电池电压,并在电池电压达到目标充电截止电压(例如,恒流恒压充电方式中该目标充电截止电压可以是上文所述的电池的最大截止电压4.2V,在阶梯式充电方式中该目标充电截止电压可以是各个充电阶段的切换电压,如上文所述的4.2V、4.4V等)时切换充电阶段。其中,电池的电池电压由电池的开路电压和电池的浮压组成,开路电压指的是电池作为电能提供元件所能向外部输出的电压,即电池的实际电压,电池的浮压指的是在有电流通过电池时,由电池的内阻所产生的电压,例如,在以大小为4A的充电电流对电池充电时,通过电池的电流即为4A,电池的内阻为30mΩ,则电池的浮压为4A*0.03Ω=0.12V。
但是,随着电池的老化,电池内阻在充电过程中会产生越来越大的浮压,导致电池的充电速度越来越慢。以下,通过举例对随着电池的老化,电池的充电速度会越来越慢的原因进行说明。
示例性地,比如在阶梯式充电方式中,预先设定首先以4A的充电电流对电池充电,当电池的电压增加到4.2V再切换至使用3A的充电电流对电池充电;对于新电池来说,电池内阻假设为30mΩ,以4A电流对电池充电时电池的浮压则为0.12V,则电池的开路电压为4.2-0.12=4.08V;但是,当电池老化后,电池内阻假设增加至60mΩ,此时以4A电流对电池充电时电池的浮压则上升为0.24V,则电池的开路电压减小为4.2-0.24=3.96V。可以看出,相较于电池未老化而言,电池在老化后,受电池的浮压的影响,由4A的充电电流切换到3A的充电电流的条件已经由开路电路4.08V降低到3.96V,由于充电电流未变(均是4A),因此,电池老化后达到开路电压(3.96V)的时间比电池未老化时达到开路电压(4.08V)的时间要快,导致会提前从4A的充电电流切换至3A的充电电流充电,这就缩短了大电流4A的充电时间,增加了小电流3A的充电时间,且随着电池老化程度的增加,电池的浮压会更大,导致大电流缩短的时间更多,从而导致电池整体的充电时间增加。
类似地,在恒流恒压充电方式中,随着电池的老化,同样会减小恒流充电阶段的充电时间,由于恒流充电阶段的充电电流大于恒压充电阶段的充电电流,这会导致大电流充电缩短的时间更多,从而导致电池整体的充电时间增加。
鉴于此,本申请实施例提供一种充电方法,在对电池进行第一阶段充电的过程中,监测电池的电池电量,若电池电量达到目标充电截止电量,则切换至第二阶段充电,其中, 目标充电截止电量是在电池未老化的情况下,对电池进行第一阶段充电,电池达到目标充电截止电压时的电量,这样,在电池未老化的情况下,获取对电池进行第一阶段充电时电池达到目标充电截止电压时的电量作为目标充电截止电量,这样,在电池实际的充电过程中,以该目标充电截止电量代替目标充电截止电压作为切换充电阶段的依据,由于电池电量的衡量不受电池内阻产生的浮压的影响,从而可以避免电池的老化造成第一阶段充电的充电时间缩短,即避免缩短使用较大电流充电的充电时间,提升了电池充电的充电效率。
本申请实施例提供的充电方法可以应用于电子设备中,其中,该电子设备可以设置有电池以及充电控制芯片,该电池可以为锂电池,该充电控制芯片可以用于控制电子设备为该电池进行充电。可选的,该电子设备可以为笔记本电脑、智能手机、平板电脑、可穿戴设备、智能音箱、无人机、电子书、扫地机器人、电动牙刷、可充电无线鼠标以及电动车辆,等等。
请参考图3,其为电子设备的一种示例性的内部结构示意图。如图3所示,该电子设备包括处理器、存储器、输入/输出接口、通信接口、显示单元和输入装置。其中,处理器、存储器和输入/输出接口通过系统总线连接,通信接口、显示单元和输入装置通过输入/输出接口连接到系统总线。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的输入/输出接口用于处理器与外部设备之间交换信息。该电子设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、移动蜂窝网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种充电方法。该电子设备的显示单元用于形成视觉可见的画面,可以是显示屏、投影装置或虚拟现实成像装置。显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图3中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
请参考图4,其示出了本申请实施例提供的一种充电方法的流程图,该充电方法可以 应用于上文所述的电子设备中。如图4所示,该充电方法可以包括以下步骤:
步骤401,电子设备在对电池进行第一阶段充电的过程中,监测电池的电池电量。
其中,第一阶段充电可以是恒流充电,也可以是恒压充电前的任意充电阶段,例如可以是变恒流充电,变恒流充电阶段可以是指在该充电阶段内充电电流逐渐减小。
电子设备在对电池进行第一阶段充电的过程中,周期性地监测电池的电池电量,监测周期可以在实施时自行设置,例如可以是一秒、两秒或者五秒等。
电子设备每监测一次电池的电池电量,则可以得到电池当前最新的电池电量。该电池电量是指电池当前的实际容量占电池总容量的百分比,例如,电池当前的实际容量为1000mAh,电池总容量为4000mAh,则电池当前的电池电量为1000mAh/4000mAh=25%。
步骤402,若电池电量达到目标充电截止电量,电子设备则切换至第二阶段充电。
电子设备获取到电池的电池电量之后,则将该电池电量与目标充电截止电量进行大小比较。
其中,目标充电截止电量是在电池未老化的情况下,对电池进行第一阶段充电,电池所达到目标充电截止电压时的电量。电池未老化可以是指电池的总充电次数小于或等于预设充电次数阈值,该预设充电次数阈值为一个较小值,在实施时可自行设置,当然也可以为零。
例如,电池刚出厂时可以视作电池未老化的情况,对电池进行第一阶段充电,例如对电池进行恒流充电,在电池达到目标充电截止电压时记录此时的电池电量,即得到目标充电截止电量。其中,目标充电截止电压例如可以是恒流恒压充电方式中电池的最大截止电压,目标充电截止电压还可以是阶梯式充电方式中当前充电阶段(即第一阶段充电)对应的切换电压。
需要说明的是,为了降低实施难度,针对具有相同参数(例如相同的电池容量、相同的电池材质、相同的电池工艺等)的多个电池,可以仅对其中的一个电池,在该电池未老化的情况下对其进行第一阶段充电,在该电池达到目标充电截止电压时记录此时的电池电量,得到目标充电截止电量。这样,上述具有相同参数的多个电池在充电过程中,均可使用该目标充电截止电量作为切换充电阶段的依据。当然,目标充电截止电量也可以是对多个电池中的部分电池(部分电池的数量大于一个且小于多个电池的总数量)进行第一阶段充电,在部分电池均达到目标充电截止电压时得到多个电池电量,将该多个电池电量的平均值或中位数作为目标充电截止电量。
电子设备将电池当前的电池电量与目标充电截止电量进行大小比较之后,若该电池电量达到目标充电截止电量,电子设备则切换至第二阶段充电。
在一种可能的实施方式中,在第一阶段充电为恒流充电的情况下,第二阶段充电为恒压充电,即当前的充电方式为恒流恒压充电。在恒流恒压充电方式中,第二阶段充电的充电电流在逐渐减小,且第一阶段充电的充电电流大于第二阶段充电的最大充电电流,第一阶段充电的充电电流例如可以是电池的额定最大电流。
这样,本申请实施例在恒流恒压充电方式中,以目标充电截止电量代替传统技术中的目标充电截止电压(即电池的最大截止电压)作为切换充电阶段的依据,由于电池电量的衡量不受电池内阻产生的浮压的影响,从而可以避免电池的老化造成第一阶段充电(即恒流充电)的充电时间缩短,即避免缩短使用大电流充电的充电时间,提升了电池充电的充电效率。
在另一种可能的实施方式中,第一阶段充电和第二阶段充电可以均为恒压充电前的充电阶段,且第一阶段充电的充电电流大于第二阶段充电的充电电流。
例如,第一阶段充电和第二阶段充电均为恒流充电,第一阶段充电和第二阶段充电之后还可以存在恒压充电的阶段,即当前的充电方式为阶梯式充电,在该充电方式中,第一阶段充电的充电电流大于第二阶段充电的充电电流。
例如,第一阶段充电为上文所述的变恒流充电,第二阶段充电为恒流充电,第一阶段充电和第二阶段充电之后还可以存在恒压充电的阶段,在该种充电方式中,第一阶段充电的充电电流在逐渐减小,且第一阶段充电的最小充电电流大于第二阶段充电的充电电流。可选地,第一阶段充电之前还可以存在脉冲电流激活充电阶段,脉冲电流激活充电阶段的目的是为了激活电池,以进一步提升充电效率。
这样,本申请实施例在电池实际的充电过程中,以目标充电截止电量代替传统技术中的目标充电截止电压(即当前充电阶段对应的切换电压)作为切换充电阶段的依据,由于电池电量的衡量不受电池内阻产生的浮压的影响,从而可以避免电池的老化造成第一阶段充电的充电时间缩短,即避免缩短使用较大电流充电的充电时间,提升了电池充电的充电效率。
上述实施例通过在对电池进行第一阶段充电的过程中,监测电池的电池电量,若电池电量达到目标充电截止电量,则切换至第二阶段充电,其中,目标充电截止电量是在电池未老化的情况下,对电池进行第一阶段充电,电池达到目标充电截止电压时的电量,由于 通常情况下,恒流恒压充电或阶梯式充电等充电方式均是在目标充电截止电压(例如,在恒流恒压充电方式中该目标充电截止电压可以是电池的最大截止电压,在阶梯式充电方式中该目标充电截止电压可以是当前充电阶段的切换电压)到达时切换充电阶段,即从第一阶段充电切换至第二阶段充电,但是,随着电池的老化,电池内阻在充电过程中会产生越来越大的浮压,导致电池达到目标充电截止电压的时间缩短,即导致第一阶段充电的充电时间缩短,而由于第一阶段充电的充电电流(例如可以是电池的额定最大电流)通常大于第二阶段充电的充电电流,这就相当于缩短了大电流的充电时间,导致充电效率降低,而本申请实施例中,在电池未老化的情况下,获取对电池进行第一阶段充电时电池达到目标充电截止电压时的电量作为目标充电截止电量,这样,在电池实际的充电过程中,以该目标充电截止电量代替目标充电截止电压作为切换充电阶段的依据,由于电池电量的衡量不受电池内阻产生的浮压的影响,从而可以避免电池的老化造成第一阶段充电的充电时间缩短,即避免缩短使用较大电流充电的充电时间,提升了电池充电的充电效率。
下面,将对本申请实施例充电方法另一种可能的实施方式进行介绍,在该实施方式中,第一阶段充电和第二阶段充电均为恒压充电前的充电阶段,且第一阶段充电的充电电流大于第二阶段充电的充电电流。例如,第一阶段充电和第二阶段充电均为恒流充电。在图4所示实施例的基础上,参见图5,该充电方法还包括步骤501:
步骤501,在第一阶段充电或第二阶段充电的过程中,电子设备检测电池的电池电压是否达到预设截止电压。
该预设截止电压可以是电池的最大截止电压,该最大截止电压是电池能够正常工作的最大电池电压,该最大截止电压可以是考虑到电池的寿命、安全性等因素设定的。
如上文所述,随着电池的老化,电池的浮压会增大,因此,电池在充电过程中达到预设截止电压的时间会缩短。例如,在电池未老化的情况下,假设充电至电池电量100%时,电池的电池电压正好达到预设截止电压,但是,在电池老化后,可能充电至电池电量90%时,电池的电池电压已经达到预设截止电压,此时,若不切换至恒压充电,则电池电压会超出该预设截止电压,对电池造成损坏。
鉴于此,本申请实施例中,在第一阶段充电或第二阶段充电的过程中,电子设备可以实时监测电池的电池电压,并检测电池的电池电压是否达到该预设截止电压。
步骤502,若电池电压达到预设截止电压,电子设备则切换至第三阶段充电。
其中,第三阶段充电为恒压充电,且第三阶段充电的充电电压为预设截止电压。
若电池当前的电池电压已经达到预设截止电压,则表征电池的电池电压已经达到设定的最大截止电压了,因此,电子设备则切换至以预设截止电压作为充电电压的恒压充电阶段对电池进行充电,直至充满。
需要说明的是,预设截止电压在实施时可以自行设置,例如,可以是上述的最大截止电压,也可以是在上述最大截止电压的数值附近波动的一个电压值,如可以超过该最大截止电压,还可以是用户基于电池的寿命、电池安全性以及其他相关因素自行确定的,在此对预设截止电压的具体确定方式不做限制。
进一步地,若电池电压未达到预设截止电压,且电池电量也未达到当前充电阶段对应的充电截止电量,电子设备则继续当前的充电阶段。例如,电子设备在第一阶段充电的过程中,检测电池的电池电压是否达到预设截止电压,若电池电压未达到预设截止电压,且电池电量也未达到上述目标充电截止电量,电子设备则继续第一阶段充电。
上述实施例通过在电池的充电过程中检测电池的电池电压是否达到预设截止电压,在电池电压达到预设截止电压时则直接切换至恒压充电,避免了超过电池的最大截止电压对电池充电,从而提升了充电安全性以及延长了电池寿命。
在一个实施例中,基于图4所示的实施例,参见图6,本实施例涉及的是电子设备如何确定目标充电截止电量的过程。如图6所示,该充电方法还包括步骤600:
步骤600,电子设备根据第一阶段充电对应的充电电流,在预设的映射关系表中查找得到目标充电截止电量。
本申请实施例中,电子设备中可以预置映射关系表,该映射关系表中存储有不同的充电电流与充电截止电量的对应关系。电子设备若需要获取第一阶段充电对应的目标充电截止电量,则先确定第一阶段充电对应的充电电流,而后,在映射关系表中查找得到该充电电流对应的充电截止电量作为目标充电截止电量。
上述映射关系表中存储的不同的充电电流与充电截止电量的对应关系是在电池未老化的情况下测量得到的。示例性地,电池刚出厂时可以视作电池未老化的情况,以阶梯式充电方式为例,使用阶梯式充电方式对电池进行充满,并记录各个充电阶段的充电电流与充电截止电量的对应关系存储于该映射关系表中。
如上文所述,为了降低实施难度,针对具有相同参数(例如相同的电池容量、相同的 电池材质、相同的电池工艺等)的多个电池,可以仅对其中的一个电池,在该电池未老化的情况下测量其在不同的充电阶段的充电电流与充电截止电量的对应关系,然后生成上述映射关系表。这样,上述具有相同参数的多个电池在充电过程中,均可使用该映射关系表进行充电截止电量的查找。
当然,也可以针对具有相同参数的多个电池中的部分电池(部分电池的数量大于一个且小于多个电池的总数量),在该部分电池均未老化的情况下测量各个电池在不同的充电阶段的充电电流与充电截止电量的对应关系,对于每个充电阶段的充电电流,将测量的各个电池的充电截止电量的平均值或中位数作为该充电电流对应的充电截止电量。
这样,上述实施例在电池未老化的情况下测量各个充电阶段的充电电流与充电截止电量生成映射关系表,在实际的充电过程中,电子设备则可以基于当前的充电阶段对应的充电电流在该映射关系表中方便、快速地查找得到相应的目标充电截止电量,来进行充电阶段的切换,实施难度低,易于推广。
在一个实施例中,基于图4所示的实施例,参见图7,本实施例涉及的是电子设备如何监测电池的电池电量的过程。如图7所示,该过程包括:
步骤701,电子设备获取电池在第一阶段充电开始前的初始电量,并获取电池在第一阶段充电的过程中的新增电量。
若第一阶段充电为电池本次充电过程中的第一个充电阶段,则该初始电量为电子设备在充电前的剩余电量,电子设备可以在电子设备的预设存储位置读取到该初始电量,假设初始电量采用SOC0表示。
若第一阶段充电不是电池本次充电过程中的第一个充电阶段,则该初始电量为第一阶段充电之前相邻的充电阶段结束时电子设备的电池电量,该初始电量是由电子设备计算得到的,计算方式与步骤701和步骤702所示的方式类似,请参见下文描述的实施方式。
以下,以第一阶段充电为电池本次充电过程中的第一个充电阶段为例,对电子设备监测第一阶段充电的过程中电池的电池电量的过程进行介绍。
电子设备首先在电子设备的预设存储位置读取电池的初始电量SOC0,接着,电子设备计算电池在第一阶段充电的过程中的新增电量。
示例性地,电子设备可以利用如下公式1计算电池在第一阶段充电的过程中的新增容量△Q:
△Q=∫idt                                         公式1
其中,i为第一阶段充电的充电电流,t为第一阶段充电的充电时长。
接着,电子设备利用该新增容量△Q除以电池总容量Qmax,则得到电池在第一阶段充电的过程中的新增电量:△Q/Qmax。
需要说明的是,电池的电池总容量随着电池的老化是在不断变化的,例如,电池未老化的情况下电池总容量假设为4000mAh,电池老化后电池总容量会下降,例如下降为3500mAh。本申请实施例中,电子设备获取新增电量时均是读取电池最新的电池总容量,电子设备可以在电子设备的预设存储位置读取到该最新的电池总容量。
步骤702,电子设备将初始电量与新增电量相加,得到电池电量。
这样,电子设备可以通过如下公式2计算得到电池电量SOC:
SOC=SOC0+△Q/Qmax                                    公式2
这样,电子设备通过上述实施方式可以快速计算得到第一阶段充电的过程中电池的电池电量,计算方式简单,计算量小,节约电子设备的计算资源。
在一个实施例中,基于图4所示的实施例,本实施例涉及的是在电池的数量为多个的情况下,本申请实施例充电方法一种示例性地实施方式。请参见图8,电子设备可以执行如下步骤801实现步骤401的过程:
步骤801,电子设备在对多个电池进行第一阶段充电的过程中,监测各电池的电池电量。
多个电池可以串联形成电芯,多个电池串联形成的电芯通常用于电量需求大的场景下,例如,多个电池串联形成的电芯可以作为电动车辆的供电电池。
其中,电子设备监测每个电池的电池电量的方式,可以参见上述实施例的描述,在此不再赘述。
对应地,电子设备可以执行如下步骤802实现步骤402的过程:
步骤802,电子设备从各电池的电池电量中确定目标电池电量,若目标电池电量达到目标充电截止电量,则切换至第二阶段充电。
由于各个电池个体之间存在差异,因此在切换充电阶段时各个电池的电池电量不一定相等,因此,电子设备从各电池的电池电量中选择一个目标电池电量作为基准进行充电阶段的切换。
在一种可能的实施方式中,目标电池电量为各电池的电池电量中最大的电池电量,即电子设备读取各个电池的电池电量中的最大值,根据最大的电池电量进行充电阶段的切换。
可以理解的是,基于相同的充电电流以及相同的充电时间,某个电池的电池电量最大,则表征该电池的总容量最小,即该电池最容易充满,为了避免对该电池过充造成的电池损坏,因此,以各个电池的电池电量中的最大值为基准进行充电阶段的切换,可以提升电池的充电安全性。
在另一种可能的实施方式中,目标电池电量为各电池中容量最小的电池的电池电量。
与上述实施方式的原因类似,电池的总容量最小,即该电池最容易充满,为了避免对该电池过充造成的电池损坏,因此,以该总容量最小的电池的电池电量为基准进行充电阶段的切换,可以提升电池的充电安全性。
在一个实施例中,提供一种充电方法,该方法包括如下步骤:
步骤A1,电子设备在对电池进行第一阶段充电的过程中,获取电池在第一阶段充电开始前的初始电量,并获取电池在第一阶段充电的过程中的新增电量。
步骤A2,电子设备将初始电量与新增电量相加,得到电池电量。
步骤A4,电子设备根据第一阶段充电对应的充电电流,在预设的映射关系表中查找得到该充电电流对应的目标充电截止电量。
其中,映射关系表中存储有不同的充电电流与充电截止电量的对应关系。
步骤A5,若电池电量达到目标充电截止电量,电子设备则切换至第二阶段充电。
其中,目标充电截止电量是在电池未老化的情况下,对电池进行第一阶段充电,电池达到目标充电截止电压时的电量。
可选地,第一阶段充电为恒流充电,第二阶段充电为恒压充电。
可选地,第一阶段充电和第二阶段充电均为恒压充电前的充电阶段,且第一阶段充电的充电电流大于第二阶段充电的充电电流。
步骤A6,在第一阶段充电或第二阶段充电的过程中,检测电池的电池电压是否达到预设截止电压,若电池电压达到预设截止电压,电子设备则切换至第三阶段充电。
其中,第三阶段充电为恒压充电,且第三阶段充电的充电电压为预设截止电压。
可选地,在电池的数量为多个的情况下,电子设备可以在对多个电池进行第一阶段充电的过程中,监测各电池的电池电量,并从各电池的电池电量中确定目标电池电量,若目 标电池电量达到目标充电截止电量,则切换至第二阶段充电。
其中,目标电池电量为各电池的电池电量中最大的电池电量,或者,目标电池电量为各电池中容量最小的电池的电池电量。
本申请实施例提供的充电方法,根据电池电量进行充电阶段的切换,由于电池电量的衡量不受电池由于老化产生的浮压的影响,这样可以保证电池的充电速度不随电池老化而变慢,提升充电效率。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的充电方法的充电装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个充电装置实施例中的具体限定可以参见上文中对于充电方法的限定,在此不再赘述。
在一个实施例中,如图9所示,提供了一种充电装置,包括:
监测模块901,用于在对电池进行第一阶段充电的过程中,监测所述电池的电池电量;
第一切换模块902,用于若所述电池电量达到目标充电截止电量,则切换至第二阶段充电;
其中,所述目标充电截止电量是在所述电池未老化的情况下,对所述电池进行所述第一阶段充电,所述电池达到目标充电截止电压时的电量。
在其中一个实施例中,所述第一阶段充电为恒流充电,所述第二阶段充电为恒压充电。
在其中一个实施例中,所述第一阶段充电和所述第二阶段充电均为恒压充电前的充电阶段,且所述第一阶段充电的充电电流大于所述第二阶段充电的充电电流。
在其中一个实施例中,所述装置还包括:
检测模块,用于在所述第一阶段充电或所述第二阶段充电的过程中,检测所述电池的电池电压是否达到预设截止电压;
第二切换模块,用于若所述电池电压达到所述预设截止电压,则切换至第三阶段充电,所述第三阶段充电为恒压充电,且所述第三阶段充电的充电电压为所述预设截止电压。
在其中一个实施例中,所述装置还包括:
查找模块,用于根据所述第一阶段充电对应的充电电流,在预设的映射关系表中查找得到所述目标充电截止电量,所述映射关系表中存储有不同的充电电流与充电截止电量的对应关系。
在其中一个实施例中,所述监测模块901具体用于获取所述电池在所述第一阶段充电开始前的初始电量,并获取所述电池在所述第一阶段充电的过程中的新增电量;将所述初始电量与所述新增电量相加,得到所述电池电量。
在其中一个实施例中,所述电池的数量为多个,所述监测模块901具体用于在对多个所述电池进行第一阶段充电的过程中,监测各所述电池的电池电量;
所述第一切换模块902具体用于从各所述电池的电池电量中确定目标电池电量,若所述目标电池电量达到所述目标充电截止电量,则切换至所述第二阶段充电。
在其中一个实施例中,所述目标电池电量为各所述电池的电池电量中最大的电池电量。
在其中一个实施例中,所述目标电池电量为各所述电池中容量最小的电池的电池电量。
上述充电装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在本申请的一个实施例中,提供了一种电子设备,该电子设备包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
在对电池进行第一阶段充电的过程中,监测所述电池的电池电量;
若所述电池电量达到目标充电截止电量,则切换至第二阶段充电;
其中,所述目标充电截止电量是在所述电池未老化的情况下,对所述电池进行所述第一阶段充电,所述电池达到目标充电截止电压时的电量。
在其中一个实施例中,所述第一阶段充电为恒流充电,所述第二阶段充电为恒压充电。
在其中一个实施例中,所述第一阶段充电和所述第二阶段充电均为恒压充电前的充电阶段,且所述第一阶段充电的充电电流大于所述第二阶段充电的充电电流。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:
在所述第一阶段充电或所述第二阶段充电的过程中,检测所述电池的电池电压是否达到预设截止电压;
若所述电池电压达到所述预设截止电压,则切换至第三阶段充电,所述第三阶段充电为恒压充电,且所述第三阶段充电的充电电压为所述预设截止电压。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:
根据所述第一阶段充电对应的充电电流,在预设的映射关系表中查找得到所述目标充电截止电量,所述映射关系表中存储有不同的充电电流与充电截止电量的对应关系。
在其中一个实施例中,该处理器执行计算机程序时还实现以下步骤:
获取所述电池在所述第一阶段充电开始前的初始电量,并获取所述电池在所述第一阶段充电的过程中的新增电量;
将所述初始电量与所述新增电量相加,得到所述电池电量。
在其中一个实施例中,所述电池的数量为多个,该处理器执行计算机程序时还实现以下步骤:
在对多个所述电池进行第一阶段充电的过程中,监测各所述电池的电池电量;
该处理器执行计算机程序时还实现以下步骤:
从各所述电池的电池电量中确定目标电池电量,若所述目标电池电量达到所述目标充电截止电量,则切换至所述第二阶段充电。
在其中一个实施例中,所述目标电池电量为各所述电池的电池电量中最大的电池电量。
在其中一个实施例中,所述目标电池电量为各所述电池中容量最小的电池的电池电量。
本申请实施例提供的电子设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行如下步骤:
在对电池进行第一阶段充电的过程中,监测所述电池的电池电量;
若所述电池电量达到目标充电截止电量,则切换至第二阶段充电;
其中,所述目标充电截止电量是在所述电池未老化的情况下,对所述电池进行所述第一阶段充电,所述电池达到目标充电截止电压时的电量。
在其中一个实施例中,所述第一阶段充电为恒流充电,所述第二阶段充电为恒压充电。
在其中一个实施例中,所述第一阶段充电和所述第二阶段充电均为恒压充电前的充电阶段,且所述第一阶段充电的充电电流大于所述第二阶段充电的充电电流。
在其中一个实施例中,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器还执行如下步骤:
在所述第一阶段充电或所述第二阶段充电的过程中,检测所述电池的电池电压是否达到预设截止电压;
若所述电池电压达到所述预设截止电压,则切换至第三阶段充电,所述第三阶段充电为恒压充电,且所述第三阶段充电的充电电压为所述预设截止电压。
在其中一个实施例中,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器还执行如下步骤:
根据所述第一阶段充电对应的充电电流,在预设的映射关系表中查找得到所述目标充电截止电量,所述映射关系表中存储有不同的充电电流与充电截止电量的对应关系。
在其中一个实施例中,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器还执行如下步骤:
获取所述电池在所述第一阶段充电开始前的初始电量,并获取所述电池在所述第一阶段充电的过程中的新增电量;
将所述初始电量与所述新增电量相加,得到所述电池电量。
在其中一个实施例中,所述电池的数量为多个,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器还执行如下步骤:
在对多个所述电池进行第一阶段充电的过程中,监测各所述电池的电池电量;
当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器还执行如下步骤:
从各所述电池的电池电量中确定目标电池电量,若所述目标电池电量达到所述目标充电截止电量,则切换至所述第二阶段充电。
在其中一个实施例中,所述目标电池电量为各所述电池的电池电量中最大的电池电量。
在其中一个实施例中,所述目标电池电量为各所述电池中容量最小的电池的电池电量。
本实施例提供的计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述充电方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种充电方法,其中,包括:
    在对电池进行第一阶段充电的过程中,监测所述电池的电池电量;
    若所述电池电量达到目标充电截止电量,则切换至第二阶段充电;
    其中,所述目标充电截止电量是在所述电池未老化的情况下,对所述电池进行所述第一阶段充电,所述电池达到目标充电截止电压时的电量。
  2. 根据权利要求1所述的方法,其中,所述第一阶段充电为恒流充电,所述第二阶段充电为恒压充电。
  3. 根据权利要求1所述的方法,其中,所述第一阶段充电和所述第二阶段充电均为恒压充电前的充电阶段,且所述第一阶段充电的充电电流大于所述第二阶段充电的充电电流。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    在所述第一阶段充电或所述第二阶段充电的过程中,检测所述电池的电池电压是否达到预设截止电压;
    若所述电池电压达到所述预设截止电压,则切换至第三阶段充电,所述第三阶段充电为恒压充电,且所述第三阶段充电的充电电压为所述预设截止电压。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    根据所述第一阶段充电对应的充电电流,在预设的映射关系表中查找得到所述目标充电截止电量,所述映射关系表中存储有不同的充电电流与充电截止电量的对应关系。
  6. 根据权利要求1所述的方法,其中,所述监测所述电池的电池电量,包括:
    获取所述电池在所述第一阶段充电开始前的初始电量,并获取所述电池在所述第一阶段充电的过程中的新增电量;
    将所述初始电量与所述新增电量相加,得到所述电池电量。
  7. 根据权利要求1所述的方法,其中,所述电池的数量为多个,所述在对电池进行第一阶段充电的过程中,监测所述电池的电池电量,包括:
    在对多个所述电池进行第一阶段充电的过程中,监测各所述电池的电池电量;
    所述若所述电池电量达到目标充电截止电量,则切换至第二阶段充电,包括:
    从各所述电池的电池电量中确定目标电池电量,若所述目标电池电量达到所述目标充电截止电量,则切换至所述第二阶段充电。
  8. 根据权利要求7所述的方法,其中,所述目标电池电量为各所述电池的电池电量中最大的电池电量。
  9. 根据权利要求7所述的方法,其中,所述目标电池电量为各所述电池中容量最小的电池的电池电量。
  10. 一种充电装置,其中,包括:
    监测模块,用于在对电池进行第一阶段充电的过程中,监测所述电池的电池电量;
    第一切换模块,用于若所述电池电量达到目标充电截止电量,则切换至第二阶段充电;
    其中,所述目标充电截止电量是在所述电池未老化的情况下,对所述电池进行所述第一阶段充电,所述电池达到目标充电截止电压时的电量。
  11. 根据权利要求10所述的装置,其中,所述第一阶段充电为恒流充电,所述第二阶段充电为恒压充电。
  12. 根据权利要求10所述的装置,其中,所述第一阶段充电和所述第二阶段充电均为恒压充电前的充电阶段,且所述第一阶段充电的充电电流大于所述第二阶段充电的充电电流。
  13. 根据权利要求12所述的装置,其中,所述装置还包括:
    检测模块,用于在所述第一阶段充电或所述第二阶段充电的过程中,检测所述电池的电池电压是否达到预设截止电压;
    第二切换模块,用于若所述电池电压达到所述预设截止电压,则切换至第三阶段充电,所述第三阶段充电为恒压充电,且所述第三阶段充电的充电电压为所述预设截止电压。
  14. 根据权利要求10所述的装置,其中,所述装置还包括:
    查找模块,用于根据所述第一阶段充电对应的充电电流,在预设的映射关系表中查找得到所述目标充电截止电量,所述映射关系表中存储有不同的充电电流与充电截止电量的对应关系。
  15. 根据权利要求10所述的装置,其中,所述监测模块具体用于获取所述电池在所述第一阶段充电开始前的初始电量,并获取所述电池在所述第一阶段充电的过程中的新增电量;将所述初始电量与所述新增电量相加,得到所述电池电量。
  16. 根据权利要求10所述的装置,其中,所述电池的数量为多个,所述监测模块具体用于在对多个所述电池进行第一阶段充电的过程中,监测各所述电池的电池电量;
    所述第一切换模块具体用于从各所述电池的电池电量中确定目标电池电量,若所述目 标电池电量达到所述目标充电截止电量,则切换至所述第二阶段充电。
  17. 根据权利要求16所述的装置,其中,所述目标电池电量为各所述电池的电池电量中最大的电池电量。
  18. 一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,其中,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至9中任一项所述的方法的步骤。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至9中任一项所述的方法的步骤。
  20. 一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述的方法的步骤。
PCT/CN2022/142587 2022-04-13 2022-12-28 充电方法、装置、电子设备和计算机可读存储介质 WO2023197685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210383964.3A CN116961149A (zh) 2022-04-13 2022-04-13 充电方法、装置、电子设备和计算机可读存储介质
CN202210383964.3 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023197685A1 true WO2023197685A1 (zh) 2023-10-19

Family

ID=88328770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142587 WO2023197685A1 (zh) 2022-04-13 2022-12-28 充电方法、装置、电子设备和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116961149A (zh)
WO (1) WO2023197685A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729790A (zh) * 2019-10-28 2020-01-24 Oppo广东移动通信有限公司 充电方法、装置、计算机设备与存储介质
CN111416412A (zh) * 2020-04-20 2020-07-14 Oppo广东移动通信有限公司 一种充电控制方法、装置及终端设备
CN113437375A (zh) * 2021-07-27 2021-09-24 中船重工远舟(北京)科技有限公司 一种快速充电的方法、装置、电子设备及存储介质
CN113544929A (zh) * 2019-05-06 2021-10-22 Oppo广东移动通信有限公司 充电方法和充电装置
US20210391742A1 (en) * 2019-10-21 2021-12-16 Ningde Amperex Technology Limited Charging method, electronic apparatus, and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544929A (zh) * 2019-05-06 2021-10-22 Oppo广东移动通信有限公司 充电方法和充电装置
US20210391742A1 (en) * 2019-10-21 2021-12-16 Ningde Amperex Technology Limited Charging method, electronic apparatus, and storage medium
CN110729790A (zh) * 2019-10-28 2020-01-24 Oppo广东移动通信有限公司 充电方法、装置、计算机设备与存储介质
CN111416412A (zh) * 2020-04-20 2020-07-14 Oppo广东移动通信有限公司 一种充电控制方法、装置及终端设备
CN113437375A (zh) * 2021-07-27 2021-09-24 中船重工远舟(北京)科技有限公司 一种快速充电的方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN116961149A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
TWI419390B (zh) 電池裝置之剩餘容量與剩餘使用時間的估算方法
KR101635924B1 (ko) 휴대용 전자 디바이스 내의 배터리 모니터링
WO2018192069A1 (zh) 电池健康状态的估计方法及装置
EP2851700B1 (en) Method and terminal for displaying capacity of battery
CN112051504B (zh) 电池容量的预测方法、装置、终端及计算机可读存储介质
WO2021244085A1 (zh) Soc值显示方法、显示装置及储能系统
CN112858938B (zh) 电量计算方法、装置、存储介质及电子设备
JP6991591B2 (ja) バッテリの充電状態の予測方法
JP6041040B2 (ja) 蓄電池、蓄電池の制御方法、制御装置及び制御方法
JP7463008B2 (ja) 電池セル診断装置および方法
JP7326237B2 (ja) 複数の電池に関する判定装置、蓄電システム、判定方法及び判定プログラム
CN111521945B (zh) 电池健康状态检测方法、装置、电子设备及存储介质
CN103460063B (zh) 电池电压测量
EP3711136A1 (en) Battery state estimation
WO2023044874A1 (zh) 确定显示荷电状态的方法、装置和电池管理芯片
WO2021169162A1 (zh) 电池备电单元监测方法、装置、服务器及可读存储介质
US20170254853A1 (en) Information processing device, information processing method, and recording medium
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置
WO2023197685A1 (zh) 充电方法、装置、电子设备和计算机可读存储介质
US20140159643A1 (en) Systems and Methods for Controlling Battery Charging
US20140019790A1 (en) Monitoring a battery in an electronic device
CN116299006A (zh) 电池包的健康状况预测方法、装置、设备和存储介质
US20220326308A1 (en) State-of-charge cut-off control method, apparatus and system, and storage medium
CN115800418A (zh) 电池控制方法、储能系统、装置、计算机设备和存储介质
WO2018068329A1 (zh) 一种电量值计算方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937311

Country of ref document: EP

Kind code of ref document: A1