WO2021244085A1 - Soc值显示方法、显示装置及储能系统 - Google Patents

Soc值显示方法、显示装置及储能系统 Download PDF

Info

Publication number
WO2021244085A1
WO2021244085A1 PCT/CN2021/078739 CN2021078739W WO2021244085A1 WO 2021244085 A1 WO2021244085 A1 WO 2021244085A1 CN 2021078739 W CN2021078739 W CN 2021078739W WO 2021244085 A1 WO2021244085 A1 WO 2021244085A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc value
value
stored
actual
energy storage
Prior art date
Application number
PCT/CN2021/078739
Other languages
English (en)
French (fr)
Inventor
曾云洪
陈伟文
杨玉兵
樊廷峰
张洪旭
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021244085A1 publication Critical patent/WO2021244085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of energy storage equipment, and in particular to a method and device for displaying an SOC value, and an energy storage system.
  • BMS Battery Management System
  • BMS Battery Management System
  • BMS Battery Management System
  • BMS is an important link connecting power batteries, electric vehicles, energy storage systems and other equipment. Therefore, BMS is required to have data collection, battery cell balancing, protection and alarm, communication, charge and discharge control , Data storage and other functions.
  • BMS is a control system that protects the safety of power batteries. It can monitor the status of power batteries at all times, and take necessary measures to alleviate the inconsistency of battery packs, and provide guarantees for the safe use of new energy vehicles, energy storage and other tools or equipment.
  • SOC Battery State of Charge
  • a SOC value display method which is applied to an energy storage system, and the method includes: obtaining an actual SOC value and storing the SOC value, wherein the stored SOC value is the energy storage system The SOC value saved after the most recent charge and discharge is completed or before the most recent power-off; the SOC value is adjusted and displayed according to the comparison result of the actual SOC value and the stored SOC value.
  • the obtaining the actual SOC value includes: determining the actual SOC value according to usage time, external environmental parameters, and the internal state of the energy storage system.
  • adjusting the displayed SOC value according to a comparison result of the actual SOC value and the stored SOC value includes: in a case where the actual SOC value is equal to the stored SOC value, controlling the displayed SOC value to maintain Current value; in the case that the actual SOC value is greater than the stored SOC value, adjust the displayed SOC value according to the interval in which the absolute value of the energy storage system current is located; when the actual SOC value is less than the stored SOC value In the case of the SOC value, the displayed SOC value is adjusted according to the interval in which the absolute value of the energy storage system current is located, wherein different intervals correspond to different adjustment strategies.
  • adjusting the displayed SOC value according to the interval in which the absolute value of the energy storage system current is located includes: When the absolute value of the current is equal to zero, the displayed SOC value is controlled to maintain the current value; when the absolute value of the energy storage system current is greater than zero and less than or equal to the preset threshold, the displayed SOC value is adjusted Is the stored SOC value; in the case where the absolute value of the energy storage system current is greater than the preset threshold value, the display SOC value is controlled according to the charging and discharging state of the energy storage system, wherein the The charging and discharging state includes a charging state or a discharging state.
  • controlling the displayed SOC value according to the charging and discharging state of the energy storage system includes: when the energy storage system is in a discharging state, adjusting the displayed SOC value to the stored SOC value; when the energy storage system is in a charging state, the stored SOC value is controlled to rise to be equal to the actual SOC value, and then the displayed SOC value is adjusted to the stored SOC value.
  • controlling the storage SOC value to increase to be equal to the actual SOC value includes: determining an adjustment step size according to the current energy storage system current; and gradually increasing the storage SOC value according to the adjustment step size To be equal to the actual SOC value.
  • adjusting the displayed SOC value according to the interval in which the absolute value of the energy storage system current is located includes: When the absolute value of the current is equal to zero, the displayed SOC value is controlled to maintain the current value; when the absolute value of the energy storage system current is greater than zero and less than or equal to the preset threshold, the displayed SOC value is adjusted Is the stored SOC value; in the case where the absolute value of the energy storage system current is greater than the preset threshold value, the display SOC value is controlled according to the charging and discharging state of the energy storage system, wherein the The charging and discharging state includes a charging state or a discharging state.
  • controlling the displayed SOC value according to the charging and discharging state of the energy storage system includes: when the energy storage system is in a charging state, adjusting the displayed SOC value to the Store the SOC value; when the energy storage system is in a discharging state, control the stored SOC value to decrease to be equal to the actual SOC value, and then adjust the displayed SOC value to the stored SOC value.
  • controlling the storage SOC value to be reduced to be equal to the actual SOC value includes: determining an adjustment step size according to the current energy storage system current; and gradually reducing the storage SOC value to It is equal to the actual SOC value.
  • the actual SOC value exceeds a first preset value; when the actual SOC value exceeds the first preset value, the actual SOC value is controlled, Both the stored SOC value and the displayed SOC value are equal to the first limit SOC value, wherein the first preset value is less than the first limit SOC value.
  • the discharging state it is determined whether the actual SOC value is lower than a second preset value; if the actual SOC value is lower than the second preset value, the actual SOC value is controlled , Both the stored SOC value and the displayed SOC value are equal to the second limit SOC value; wherein the second preset value is greater than the second limit SOC value.
  • an SOC value display device for realizing the above SOC value display method.
  • the device includes: an acquisition module for acquiring the actual SOC value and storing the SOC value; wherein the storage
  • the SOC value is the SOC value saved after the most recent charge and discharge of the energy storage system is completed or before the most recent power-off; the control module is used to adjust and display the SOC value according to the actual SOC value and the stored SOC value.
  • an SOC value display device including: a memory configured to store instructions; a processor coupled to the memory, and the processor is configured to execute the foregoing method based on instructions stored in the memory.
  • an energy storage system including the above-mentioned SOC value display device.
  • a computer-readable storage medium wherein the computer-readable storage medium stores computer instructions, wherein the instructions are executed by a processor to implement the above-mentioned SOC value display method.
  • FIG. 1 is a schematic flowchart of a method for displaying SOC values according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for displaying SOC values according to another embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a SOC value display device according to an embodiment of the present disclosure
  • Fig. 4 is a schematic structural diagram of a control module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an SOC value display device according to another embodiment of the present disclosure.
  • first, second, etc. may be used to describe preset values in the embodiments of the present disclosure, these preset thresholds should not be limited to these terms. These terms are only used to distinguish different preset values.
  • the first preset value may also be referred to as the second preset value, and similarly, the second preset value may also be referred to as the first preset value.
  • the words “if” and “if” as used herein can be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
  • the phrase “if determined” or “if detected (statement or event)” can be interpreted as “when determined” or “in response to determination” or “when detected (statement or event) )” or “in response to detection (statement or event)”.
  • the present disclosure provides a SOC value display solution, which can improve the accuracy of the SOC value display.
  • Fig. 1 is a flowchart of a method for displaying a SOC value according to an embodiment of the present disclosure. As shown in Fig. 1, the method includes:
  • step S101 the actual SOC value and the stored SOC value are acquired.
  • the stored SOC value is the SOC value saved after the most recent charge and discharge of the energy storage system is completed or before the most recent power-off.
  • the current SOC value is saved as the stored SOC value, or before each power-off, the SOC value at the moment before the power-off is saved as the stored SOC value.
  • the actual SOC value changes according to the use time of the energy storage system, external environmental parameters (such as temperature), and the internal state of the system (such as voltage change conditions, battery internal electrochemical changes). Therefore, the storage SOC value is only available for each charge or After the discharge is completed, or before each power-off, the change occurs, and the actual SOC value changes in real time.
  • step S102 the displayed SOC value is adjusted according to the comparison result of the actual SOC value and the stored SOC value.
  • the actual SOC value is determined by the use time of the energy storage system, external environmental parameters (such as temperature), and the internal state of the system (such as voltage change status, internal electrochemical change status of the battery).
  • the estimation of the actual SOC value of the battery is non-linear.
  • the commonly used methods mainly include the discharge experiment method, the open circuit voltage method, the ampere-hour integration method, the Kalman filter method, and the neural network method.
  • the Kalman filter method is used to estimate the actual SOC value.
  • Kalman filter algorithm is a kind of minimum variance estimation using time-domain state space theory. It belongs to the category of statistical estimation. Macroscopically, it is to reduce and eliminate the influence of noise on the observation signal as much as possible. Its core is the optimal estimation, that is, the input of the system.
  • the basic principle of the algorithm is: the state space model of noise and signal is used as the algorithm model. During measurement, the observation value at the current moment and the estimated value at the previous moment are used to update the estimation of the state variables.
  • the essence of the Kalman filter algorithm for predicting the battery SOC value is the ampere-hour integration method, and at the same time, the measured voltage value is used to correct the value obtained by the preliminary prediction.
  • the advantage of the Kalman filter method is that it is suitable for computer to perform real-time calculation and processing of data, has a wide range of applications, can be used in non-linear systems, and has a good effect on the SOC value prediction of non-linear systems.
  • the real-time changing actual SOC value and the stored SOC value are introduced, and the displayed SOC value can be adjusted by comparing the actual SOC value and the stored SOC value.
  • the displayed SOC value can be corrected in real time to avoid the actual
  • the SOC value has a sudden change due to external environmental parameters, or the estimation result is inaccurate due to an estimation strategy problem, which causes the displayed SOC value to be inaccurate. This improves the accuracy of the SOC value display and improves the user experience.
  • the above step S102 includes: if the actual SOC value is equal to the stored SOC value, indicating that the estimation of the actual SOC value is accurate and there is no sudden change, controlling the display SOC value to maintain the current value.
  • the actual SOC value is greater than the stored SOC value, it indicates that the actual SOC value may have a sudden change. It is necessary to further judge based on the system current, that is, adjust the display SOC value according to the interval in which the absolute value of the system current is located. Among them, different intervals correspond to different adjustment strategies. In the same way, if the actual SOC value is less than the stored SOC value, it indicates that the actual SOC value may have a sudden change. It needs to be further judged according to the system current, and the displayed SOC value needs to be adjusted according to the interval of the absolute value of the system current. Among them, different intervals correspond to different adjustment strategies.
  • adjusting the display SOC value according to the interval in which the absolute value of the system current is located includes: if the absolute value of the system current is equal to zero, it means that there is no current in the system, and there is no discharge. If there is no charging, the control displays the SOC value to maintain the current value. If the absolute value of the system current is greater than zero and less than or equal to the preset threshold, it indicates that there is current in the energy storage system, and the current is small, and small current charging and discharging are taking place, then the displayed SOC value will be adjusted to the stored SOC value.
  • the charging and discharging state includes a charging state or a discharging state.
  • controlling the display of the SOC value according to the charging and discharging state of the system includes:
  • the actual SOC value is greater than the stored SOC value
  • the system is in a discharge state, it indicates that the SOC value is likely to have a sudden change or inaccurate estimation.
  • the reason is: the actual SOC value is greater than the stored SOC value. If the actual SOC value is accurate, the system power should be increased, but the current system is in a discharging state, and the power should be decreased. The two contradictory. Therefore, at this time The actual SOC value is likely to be inaccurate, and the displayed SOC value needs to be adjusted to the stored SOC value, which does not change with the actual SOC value. If the system is in a charging state, the power should increase. The actual SOC value is greater than the stored SOC value, which also indicates that the power has increased.
  • the actual SOC value change is consistent with the charging and discharging state of the system, indicating the current actual If the SOC value is accurate, control the stored SOC value to increase to be equal to the actual SOC value, and then adjust the displayed SOC value to the stored SOC value.
  • the storage SOC value In the process of controlling the storage SOC value to be equal to the actual SOC value, in order to avoid the sudden change of the SOC value, it is necessary to determine the adjustment step size according to the current system current, and gradually increase the storage SOC value to the same value according to the determined adjustment step size.
  • the actual SOC value is equal.
  • the above steps provide a correction strategy for displaying SOC when the actual SOC value is greater than the stored SOC value.
  • the actual SOC value is less than the stored SOC value. If the actual SOC value is less than the stored SOC value, it will be based on the system current
  • the range of the absolute value is adjusted to display the SOC value including: if the absolute value of the system current is equal to zero, indicating that there is no current in the system, and neither discharging nor charging, then controlling the display SOC value to maintain the current value.
  • the absolute value of the system current is greater than zero and less than or equal to the preset threshold, it indicates that there is current in the energy storage system, and the current is small, and small current charging and discharging are taking place, then the displayed SOC value will be adjusted to the stored SOC value. If the absolute value of the system current is greater than the preset threshold, it means that the current charging and discharging current of the system is relatively large, and it is necessary to further determine the charging and discharging state of the system to control the display SOC value.
  • the actual SOC value is less than the stored SOC value
  • the system is in a state of charge, it indicates that the SOC value is likely to have a sudden change or inaccurate estimation.
  • the reason is: the actual SOC value is less than the stored SOC value. If the actual SOC value is accurate, the system power should be reduced, but the current system is in a discharging state, and the power should be increased. The two are contradictory. Therefore, at this time The actual SOC value is likely to be inaccurate.
  • the displayed SOC value needs to be adjusted to the stored SOC value, and does not change with the actual SOC value; if the system is in a discharge state, the power should be reduced, and the actual SOC value is less than the stored SOC value, which also indicates The power is reduced. Therefore, the actual SOC value change is consistent with the charging and discharging state of the system, indicating that the current actual SOC value is accurate, then the control storage SOC value is reduced to the actual SOC value, and then it will be displayed The SOC value is adjusted to the stored SOC value.
  • the adjustment step size needs to be determined according to the current system current, and the SOC value is stored according to the determined adjustment step size Gradually reduce to equal to the actual SOC value.
  • the actual SOC value exceeds the first preset value, such as 95%, in the charging state; if so, Then control the actual SOC value, the stored SOC value, and the displayed SOC value to be equal to the first limit SOC value, such as 100%, that is to say, when the battery is charged to 95%, it will show that it has been fully charged and will not recharge to avoid overcharging. .
  • the above-mentioned first preset value is smaller than the first limit SOC value.
  • the electric energy in order to protect the healthy operation of the energy storage system, the electric energy cannot be discharged during discharging. Therefore, it can be judged whether the actual SOC value is lower than the second preset value, such as 5%, in the discharging state; if If yes, the actual SOC value, the stored SOC value, and the displayed SOC value are all equal to the second limit SOC value, such as 0%, which means that when the power is discharged to 5%, it is displayed as discharged and no longer discharged .
  • the aforementioned second preset value is greater than the second limit SOC value.
  • 4 SOC values are calculated in each estimation cycle, which are the displayed SOC value, the stored SOC value in EE (Electrically-Erasable Programmable Read-Only Memory, electrically erasable programmable read-only memory), and the actual SOC value and limit SOC value.
  • the displayed SOC value refers to the externally output SOC value in the energy storage system, which is used to intuitively face customers and feedback the latest battery system operation and remaining capacity in real time.
  • the actual SOC value refers to the internally calculated SOC value in the energy storage system, which is used for program-oriented algorithm and real-time adjustment and estimation of the latest battery system operation and remaining capacity.
  • Stored SOC value Record the SOC value saved during the last charge and discharge process or before the energy storage system is powered off recently, and the function is to prevent sudden changes in the SOC value.
  • the limit SOC value is: under the limit of the battery system, in order to protect the normal use of the battery cell, the mandatory correction SOC value is adopted.
  • the biggest feature and difference between the displayed SOC value and the actual SOC value is: the displayed SOC value is customer-oriented. The customer does not care about the actual chemical reactions and changes in the internal battery system (such as battery module temperature changes, voltage changes, internal electrochemical changes in the battery, etc.).
  • the customer’s focus is on the remaining power and remaining use time of the battery system, so it is displayed
  • SOC value more emphasis should be placed on issues such as customer experience, virtual power issues, and sudden changes in the SOC value.
  • the actual SOC value is algorithm-oriented. Therefore, the estimated SOC value may be adjusted in real time with time, external environmental factors or changes in the internal state of the battery. The actual SOC value should pay more attention to the actual use of the battery cell and the overall battery system. condition.
  • the actual estimated SOC value will have a sudden change, and the direction, range and size of the sudden change are unknown, so it needs to be stored
  • the SOC value is compared, and the SOC value correction strategy under different conditions is carried out according to the difference between the two and the current system itself.
  • Fig. 2 is a flowchart of a method for displaying a SOC value according to another embodiment of the present disclosure. As shown in Fig. 2, the method includes:
  • step S2 the control displays that the SOC value still maintains the original value.
  • step S3-1 the control displays that the SOC value still maintains the original value.
  • step S3-3 it is judged that the current state is a discharging state or a discharging state; if it is a discharging state, step S3-4 is executed, and if it is a charging state, step S3-5 is executed.
  • the actual SOC value should gradually decrease, but the actual SOC value has increased on the basis of the last stored SOC value, indicating that the actual SOC value does not match the increase or decrease of electric energy.
  • the actual SOC value The value is not accurate, therefore, the displayed SOC value should still remain equal to the original stored SOC value.
  • the actual SOC value should gradually increase.
  • the actual situation is that the current actual SOC value does increase on the basis of the last stored SOC value, indicating that the actual SOC value is accurate. Therefore, increase the stored SOC value To be equal to the actual SOC value, and make the displayed SOC value equal to the increased stored SOC value.
  • step S4-1 the control displays that the SOC value still maintains the original value.
  • step S4-3 it is judged that the current state is a discharging state or a discharging state; if it is a charging state, step S4-4 is executed, and if it is a discharging state, step S4-5 is executed.
  • the actual SOC value should gradually increase, but the actual SOC value has decreased on the basis of the last stored SOC value, indicating that the actual SOC value does not match the increase or decrease of electric energy.
  • the SOC value is not accurate, therefore, the displayed SOC value should still remain equal to the original stored SOC value.
  • the actual SOC value should gradually decrease.
  • the actual situation is that the current actual SOC value does decrease on the basis of the last stored SOC value, indicating that the actual SOC value is accurate. Therefore, reduce the storage
  • the SOC value is equal to the actual SOC value, and the displayed SOC value is equal to the reduced stored SOC value.
  • step S5 the current charging and discharging state is judged. If it is a charging state, step S6 is executed, and if it is a discharging state, step S7 is executed.
  • the correction strategy between various SOC values follows the principle that the change direction of the SOC value is consistent with the increase or decrease of the electric quantity. Under normal conditions or when there is current, it is judged whether the SOC value is allowed to be corrected according to the direction of the current. It can effectively avoid the situation that the SOC value drops in the charging state, the SOC value rises in the discharging state, the sudden change of the SOC value, and the SOC value differs from the actual use on the customer display terminal, which seriously affects the use of the product.
  • FIG. 3 is a schematic structural diagram of a SOC value display device according to an embodiment of the present disclosure. As shown in FIG. 3, the device includes:
  • the acquiring module 10 is used to acquire the actual SOC value and the stored SOC value; wherein the stored SOC value is the SOC value saved after the most recent charge and discharge of the energy storage system is completed, or before the most recent power-off. For example, after each charge or discharge is completed, the current SOC value is saved as the stored SOC value, or before each power-off, the SOC value at the moment before the power-off is saved as the stored SOC value.
  • the control module 20 is used to adjust the displayed SOC value according to the actual SOC value and the stored SOC value.
  • the real-time changing actual SOC value and the stored SOC value are obtained through the acquisition module, and the actual SOC value is compared with the stored SOC value through the control module, and the displayed SOC value can be adjusted in real time. Revise the displayed SOC value to avoid sudden changes in the actual SOC value due to external environmental parameters, or inaccurate estimation results due to estimation strategy problems, resulting in inaccurate displayed SOC values, improve the accuracy of the SOC value display, and improve user experience.
  • Fig. 4 is a schematic structural diagram of a control module according to an embodiment of the present disclosure.
  • the control module 20 specifically includes a first A control unit 201, a second control unit 202, and a third control unit 203.
  • the first control unit 201 is configured to control the display SOC value to maintain the current value when the actual SOC value is equal to the stored SOC value.
  • the actual SOC value is equal to the stored SOC value, indicating that the estimation of the actual SOC value is accurate and there is no sudden change, so the control shows that the SOC value maintains the current value.
  • the second control unit 202 is configured to adjust the display SOC value according to the interval in which the absolute value of the system current is located when the actual SOC value is greater than the stored SOC value.
  • the actual SOC value is greater than the stored SOC value, indicating that the actual SOC value may have a sudden change. It needs to be further judged according to the system current, that is, the SOC value is adjusted according to the interval in which the absolute value of the system current is located; among them, different intervals correspond to different adjustment strategies .
  • the third control unit 203 is configured to adjust the display SOC value according to the interval in which the absolute value of the system current is located when the actual SOC value is less than the stored SOC value. If the actual SOC value is less than the stored SOC value, it indicates that the actual SOC value may have a sudden change. It needs to be further judged based on the system current, and the displayed SOC value needs to be adjusted according to the interval in which the absolute value of the system current is located.
  • the second control unit 202 includes a first control subunit 202-1, a second control subunit 202-2, and a third control subunit 202-3.
  • the first control subunit 202-1 is used to control the display SOC value to maintain the current value when the absolute value of the system current is equal to zero;
  • the second control subunit 202-2 is used to control when the absolute value of the system current is greater than zero and less than or equal to When the threshold is preset, the displayed SOC value is adjusted to the stored SOC value;
  • the third control subunit 202-3 is used to control the display of the SOC value according to the charging and discharging state of the system when the absolute value of the system current is greater than the preset threshold ,
  • the state of charge and discharge includes a state of charge or a state of discharge.
  • the third control sub-unit 202-3 determines when the actual SOC value is greater than the stored SOC value, and the absolute value of the system current is greater than The preset threshold value, and the system is in the state of discharging, adjust the display SOC value to the stored SOC value; when the actual SOC value is greater than the stored SOC value, the absolute value of the system current is greater than the preset threshold value, and the system is in the charging state, control the stored SOC The value is increased to be equal to the actual SOC value, and the displayed SOC value is adjusted to the stored SOC value.
  • the actual SOC value is greater than the stored SOC value
  • the system power should be increased, but if the current system is in a discharging state, the power should be decreased.
  • the two are contradictory. Therefore, this The actual SOC value at the time is likely to be inaccurate, and the displayed SOC value needs to be adjusted to the stored SOC value; if the system is in the charging state, the power should be increased.
  • the actual SOC value is greater than the stored SOC value, which also indicates that the power has increased, so ,
  • the change of the actual SOC value is consistent with the charging and discharging state of the system, indicating that the current actual SOC value is accurate, then control the stored SOC value to be equal to the actual SOC value, and adjust the displayed SOC value to Store the SOC value.
  • the second control unit 202 further includes a first determining subunit 202-4 inside.
  • a first determining subunit 202-4 In the process of controlling the stored SOC value to be equal to the actual SOC value, in order to avoid the sudden change of the SOC value, it is necessary to determine the adjustment step size according to the current system current.
  • the first determining subunit 202-4 is used to determine the adjustment step size according to the current system current
  • the third control subunit 202-3 is also used to gradually increase the stored SOC value to be equal to the actual SOC value according to the determined adjustment step size .
  • the third control unit 203 includes a fourth control sub-unit 203-1, a fifth control sub-unit 203-2, and a sixth control sub-unit 203-3.
  • the fourth control subunit 203-1 is used for controlling the display SOC value to maintain the current value when the absolute value of the system current is equal to zero;
  • the fifth control subunit 203-2 is used for When the absolute value of the system current is greater than zero and less than or equal to the preset threshold, the displayed SOC value is adjusted to the stored SOC value;
  • the sixth control subunit 203-3 is used when the absolute value of the system current is greater than the preset threshold , According to the charging and discharging state of the system, the SOC value is controlled and displayed.
  • the sixth control subunit 203-3 is specifically configured to display the SOC when the absolute value of the system current is greater than the preset threshold when the actual SOC value is less than the stored SOC value. The value is adjusted to the stored SOC value.
  • the control stored SOC value is reduced to be equal to the actual SOC value, and The displayed SOC value is adjusted to the stored SOC value.
  • the actual SOC value is less than the stored SOC value. If the actual SOC value is accurate, the system power should be reduced, but the current system is in a discharging state, and the power should be increased. The two are contradictory. Therefore, the actual SOC value at this time It is likely to be inaccurate. It is necessary to control the display SOC value to maintain the current value without adjusting it; if the system is in a discharging state, the power should be reduced. The actual SOC value is less than the stored SOC value, which also indicates that the power is reduced.
  • the control storage SOC value is reduced to equal to the actual SOC value, and the displayed SOC value is adjusted to the storage SOC value .
  • the third control unit 203 in the process of controlling the stored SOC value and reducing it to be equal to the actual SOC value, in order to avoid sudden changes in the SOC value, the adjustment step size needs to be determined according to the current system current. Therefore, the third control unit 203 also includes The second determining subunit 203-4 is used to determine the adjustment step size according to the current system current, and the sixth control subunit 203-3 is also used to gradually increase the stored SOC value to be equal to the actual SOC value according to the determined adjustment step size .
  • the above-mentioned control module 20 further includes a fourth control unit 204 for determining the actual SOC value in the charging state Whether it exceeds the first preset value, such as 95%; if so, the actual SOC value, the stored SOC value, and the displayed SOC value are all equal to the first limit SOC value, such as 100%, that is, when the battery is charged to 95% In the future, it will show that it has been fully charged and will not recharge to avoid overcharging.
  • the above-mentioned first preset value is smaller than the first limit SOC value.
  • the above-mentioned control module 20 further includes a fifth control unit 205 for determining the actual SOC value in the discharging state. Is it lower than the second preset value, such as 5%; if it is, the actual SOC value of the control, the stored SOC value and the displayed SOC value are all equal to the second limit SOC value, such as 0%, which means that when the power is still left At 5%, it is displayed as exhausted and no longer discharges.
  • the aforementioned second preset value is greater than the second limit SOC value.
  • FIG. 5 is a schematic structural diagram of an SOC value display device according to another embodiment of the present disclosure. As shown in FIG. 5, the SOC value display device includes a memory 51 and a processor 52.
  • the memory 51 is configured to store instructions
  • the processor 52 is coupled to the memory 51, and the processor 52 is configured to execute the method involved in any one of the embodiments in FIG. 1 or FIG. 2 based on the instructions stored in the memory.
  • the SOC value display device also includes a communication interface 53 for information exchange with other devices.
  • the SOC value display device also includes a bus 54 through which the processor 52, the communication interface 53, and the memory 51 communicate with each other.
  • the memory 51 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), for example, at least one magnetic disk memory.
  • the memory 51 may also be a memory array.
  • the memory 51 may also be divided into blocks, and the blocks may be combined into a virtual volume according to certain rules.
  • processor 52 may be a central processing unit CPU, or may be an application specific integrated circuit ASIC, or configured to implement one or more integrated circuits of the embodiments of the present disclosure.
  • the present disclosure also relates to a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, the method involved in any one of the embodiments in FIG. 1 or FIG. 2 is implemented.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic A disc, an optical disc, etc., include a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

SOC值显示方法、显示装置及储能系统,储能系统包括显示装置,显示装置包括存储器(51)、处理器(52),处理器(52)用于执行SOC值显示方法:获取实际SOC值和存储SOC值,存储SOC值为储能系统最近一次充放电完成后或者最近一次下电前保存的SOC值(S101);根据实际SOC值和存储SOC值的比较结果调整显示SOC值(S102)。

Description

[根据细则37.2由ISA制定的发明名称] SOC值显示方法、显示装置及储能系统
相关申请的交叉引用
本公开是以CN申请号为202010500749.8,申请日为2020年6月4日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及储能设备技术领域,具体而言,涉及一种SOC值显示方法、装置及储能系统。
背景技术
电池管理系统(Battery Management System,简称:BMS)是连接动力电池和电动汽车、储能系统等设备的重要纽带,因此要求BMS应具备数据采集、电芯均衡、保护与告警、通信、充放电控制、数据存储等功能。BMS为一套保护动力电池使用安全的控制系统,能够时刻监控动力电池的使用状态,并通过必要措施缓解电池组的不一致性,为新能源车辆、储能等工具或设备使用安全提供保障。
电池荷电状态(State of Charge,简称:SOC)的评估是BMS设计与开发的前提条件,系统中电池保护、状态估计、性能最优化等功能都会受到SOC的影响,因此SOC在电池管理系统占有重要地位。SOC作为动力电池组重要表征参数之一,对保障电池组的安全使用尤为重要。在线精准估算SOC是电池管理系统的研究重点,对电动汽车的发展具有重要现实意义。
发明内容
根据本公开实施例的第一方面,提供一种SOC值显示方法,应用于储能系统,该方法包括:获取实际SOC值和存储SOC值,其中,所述存储SOC值为所述储能系统最近一次充放电完成后或者最近一次下电前保存的SOC值;根据所述实际SOC值和所述存储SOC值的比较结果调整显示SOC值。
在一些实施例中,所述获取实际SOC值包括:根据使用时间、外界环境参数以及所述储能系统内部状态确定所述实际SOC值。
在一些实施例中,根据所述实际SOC值和所述存储SOC值的比较结果调整显示SOC 值包括:在所述实际SOC值等于所述存储SOC值的情况下,控制所述显示SOC值保持当前值;在所述实际SOC值大于所述存储SOC值的情况下,根据所述储能系统电流的绝对值所处的区间调整所述显示SOC值;在所述实际SOC值小于所述存储SOC值的情况下,则根据所述储能系统电流的绝对值所处的区间调整所述显示SOC值,其中,不同的区间对应不同的调整策略。
在一些实施例中,在所述实际SOC值大于所述存储SOC值的情况下,根据所述储能系统电流的绝对值所处的区间调整所述显示SOC值包括:在所述储能系统电流的绝对值等于零的情况下,控制所述显示SOC值保持当前值;在所述储能系统电流的绝对值大于零,且小于或等于预设阈值的情况下,将所述显示SOC值调整为所述存储SOC值;在所述储能系统电流的绝对值大于所述预设阈值的情况下,根据所述储能系统所处的充放电状态控制所述显示SOC值,其中,所述充放电状态包括充电状态或放电状态。
在一些实施例中,根据所述储能系统所处的充放电状态控制所述显示SOC值包括:在所述储能系统处于放电状态的情况下,将所述显示SOC值调整为所述存储SOC值;在所述储能系统处于充电状态,则控制所述存储SOC值升高至与实际SOC值相等,之后将所述显示SOC值调整为所述存储SOC值。
在一些实施例中,控制所述存储SOC值升高至与实际SOC值相等包括:根据当前所述储能系统电流确定调整步长;根据所述调整步长将所述存储SOC值逐步升高至与实际SOC值相等。
在一些实施例中,在所述实际SOC值小于所述存储SOC值的情况下,根据所述储能系统电流的绝对值所处的区间调整所述显示SOC值包括:在所述储能系统电流的绝对值等于零的情况下,控制所述显示SOC值保持当前值;在所述储能系统电流的绝对值大于零,且小于或等于预设阈值的情况下,将所述显示SOC值调整为所述存储SOC值;在所述储能系统电流的绝对值大于所述预设阈值的情况下,根据所述储能系统所处的充放电状态控制所述显示SOC值,其中,所述充放电状态包括充电状态或放电状态。
在一些实施例中,根据所述储能系统所处的充放电状态控制所述显示SOC值,包括:在所述储能系统处于充电状态的情况下,将所述显示SOC值调整为所述存储SOC值;在所述储能系统处于放电状态的情况下,控制所述存储SOC值降低至与实际SOC值相等,之后将所述显示SOC值调整为所述存储SOC值。
在一些实施例中,控制所述存储SOC值降低至与实际SOC值相等,包括:根据当前所述储能系统电流确定调整步长;根据所述调整步长将所述存储SOC值逐步降低至与实际SOC值相等。
在一些实施例中,在充电状态下,判断所述实际SOC值是否超过第一预设值;在所述实际SOC值超过所述第一预设值的情况下,控制所述实际SOC值、存储SOC值以及显示SOC值均等于第一极限SOC值,其中,所述第一预设值小于所述第一极限SOC值。
在一些实施例中,在放电状态下,判断所述实际SOC值是否低于第二预设值;如果在所述实际SOC值低于第二预设值的情况下,控制所述实际SOC值、存储SOC值以及显示SOC值均等于第二极限SOC值;其中,所述第二预设值大于所述第二极限SOC值。
根据本公开实施例的第二方面,提供一种SOC值显示装置,用于实现上述SOC值显示方法,该装置包括:获取模块,用于获取实际SOC值和存储SOC值;其中,所述存储SOC值为储能系统最近一次充放电完成后或者最近一次下电前保存的SOC值;控制模块,用于根据所述实际SOC值和所述存储SOC值调整显示SOC值。
根据本公开实施例的第三方面,提供一种SOC值显示装置,包括:存储器,被配置为存储指令;处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现上述方法。
根据本公开实施例的第四方面,提供一种储能系统,包括上述SOC值显示装置。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机指令,其中,所述指令被处理器执行时实现上述SOC值显示方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1为根据本公开一个实施例的SOC值显示方法的流程示意图;
图2为根据本公开另一实施例的SOC值显示方法的流程示意图;
图3为根据本公开一个实施例的SOC值显示装置的结构示意图;
图4根据本公开一个实施例的控制模块的结构示意图;
图5为根据本公开另一个实施例的SOC值显示装置的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本公开实施例中可能采用术语第一、第二等来描述预设值,但这些预设阈值不应限于这些术语。这些术语仅用来将不同预设值区分开。例如,在不脱离本公开实施例范围的情况下,第一预设值也可以被称为第二预设值,类似地,第二预设值也可以被称为第一预设值。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他 性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
发明人注意到,客户在储能柜的日常使用的最关心的就是显示屏上直接向用户展示的SOC剩余容量,但目前行业内SOC估算的相关技术仍存在不足,且不同的电芯内部化学变化也较复杂,所以在一些特殊的场合下,SOC值会因外界环境大幅度变化而突变,或者由于SOC估算策略问题导致“虚电”现象,导致显示的电池SOC与实际情况不符。
据此,本公开提供一种SOC值显示方案,能够提高SOC值显示的准确性。
图1为根据本公开一个实施例的SOC值显示方法的流程图,如图1所示,该方法包括:
在步骤S101,获取实际SOC值和存储SOC值。存储SOC值为储能系统最近一次充放电完成后或者最近一次下电前保存的SOC值。
例如,在每一次充电或者放电完成后,保存当前的SOC值,作为存储SOC值,或者,在每次下电前,保存下电前一时刻的SOC值,作为存储SOC值。实际SOC值是根据储能系统的使用时间、外界环境参数(例如温度)以及系统内部状态(例如电压变化状况、电池内部电化学变化状况)变化的,因此,存储SOC值只有在每一次充电或者放电完成后,或者每次下电前,才发生变化,而实际SOC值则是实时变化的。
在步骤S102,根据实际SOC值和存储SOC值的比较结果,调整显示SOC值。
在本实施例中,通过储能系统的使用时间、外界环境参数(例如温度)以及系统内部状态(例如电压变化状况、电池内部电化学变化状况)确定实际SOC值。电池的实际SOC值估算是非线性的,目前常用的方法重要有放电实验法、开路电压法、安时积分法、卡尔曼滤波法、神经网络法等。
在本实施例中,采用卡尔曼滤波法进行实际SOC值的估算。卡尔曼滤波算法是利用时域状态空间理论的一种最小方差估计,属于统计估计的范畴,宏观上就是尽可能减少和消除噪声对观测信号的影响,其核心是最优估计,即系统的输入量在预估基础上对状态变量进行的有效修正。该算法的基本原理是:将噪声与信号的状态空间模型作为算法模型,在测量时,应用当前时刻的观测值与上一时刻的估计值,对状态变量的估算进行更新。卡尔曼滤波算法对电池SOC值进行预测的实质是安时积分法,同时 用测量的电压值来对初步预测得到的值进行修正。卡尔曼滤波法的优点是适合计算机对数据进行实时运算处理,应用范围广,可以用于非线性系统,对非线性系统的SOC值预测具有较好的效果。
在上述实施例提供的SOC值显示方法中,引入实时变化的实际SOC值以及存储SOC值,通过比较实际SOC值和存储SOC值,调整显示SOC值,能够实时对显示SOC值进行修正,避免实际SOC值由于外界环境参数引起突变,或者,由于估算策略问题导致估算结果不准,致使显示的SOC值不准确的问题,提高SOC值显示的准确性,提高用户体验。
针对不同情况,采取不同的SOC修正策略。在一些实施例中,上述步骤S102包括:如果实际SOC值等于存储SOC值,表明实际SOC值的估算准确,并且没有发生突变,则控制显示SOC值保持当前值。
如果实际SOC值大于存储SOC值,表明实际SOC值有可能发生突变,需要根据系统电流进一步判断,即根据系统电流的绝对值所处的区间调整显示SOC值。其中,不同的区间对应不同的调整策略。同理,如果实际SOC值小于存储SOC值,表明实际SOC值有可能发生突变,需要根据系统电流进一步判断,也需要根据系统电流的绝对值所处的区间调整显示SOC值。其中,不同的区间对应不同的调整策略。
在一些实施例中,如果实际SOC值大于存储SOC值,则根据系统电流的绝对值所处的区间调整显示SOC值包括:如果系统电流的绝对值等于零,说明系统中不存在电流,既没有放电也没有充电,则控制显示SOC值保持当前值。如果系统电流的绝对值大于零,且小于或等于预设阈值,表明储能系统中有电流,且电流较小,正在发生小电流的充放电,则将显示SOC值调整为存储SOC值。如果系统电流的绝对值大于预设阈值,说明当前系统的充放电电流较大,需要进一步判断系统所处的充放电状态,根据系统所处的充放电状态控制显示SOC值。充放电状态包括充电状态或放电状态。
在一些实施例中,为了根据系统所处的充放电状态确定实际SOC值是否发生突变或者估算不准,根据系统所处的充放电状态控制显示SOC值包括:
在实际SOC值大于存储SOC值的情况下,如果系统处于放电状态,则表明SOC值很可能出现突变或者估算不准。原因是:实际SOC值大于存储SOC值,如果实际SOC值准确的话,系统电量是应该是增加的,但是当前的系统处于放电状态,电量应该是减少的,二者相矛盾,因此,此时的实际SOC值很可能是不准确的,需将显示SOC值调整为存储SOC值,不随实际SOC值发生变化。如果系统处于充电状态,电量应是增 加的,实际SOC值大于存储SOC值,也表明电量增加了,因此,该实际SOC值的变化情况与系统所处的充放电状态是吻合的,表明当前实际SOC值是准确的,则控制存储SOC值升高至与实际SOC值相等,之后将显示SOC值调整为存储SOC值。
在控制存储SOC值升高至与实际SOC值相等的过程中,为了避免SOC值的突变,因此需要根据当前系统电流确定调整步长,根据确定的调整步长将存储SOC值逐步升高至与实际SOC值相等。
上述步骤提供了实际SOC值大于存储SOC值时,显示SOC的修正策略,除上述情形外,还存在实际SOC值小于存储SOC值的情况,如果实际SOC值小于存储SOC值,则根据系统电流的绝对值所处的区间调整显示SOC值包括:如果系统电流的绝对值等于零,说明系统中不存在电流,既没有放电也没有充电,则控制显示SOC值保持当前值。如果系统电流的绝对值大于零,且小于或等于预设阈值,表明储能系统中有电流,且电流较小,正在发生小电流的充放电,则将显示SOC值调整为存储SOC值。如果系统电流的绝对值大于预设阈值,说明当前系统的充放电电流较大,需要进一步判断系统所处的充放电状态控制显示SOC值。
在实际SOC值小于存储SOC值的情况下,如果系统处于充电状态,则表明SOC值很可能出现突变或者估算不准。原因是:实际SOC值小于存储SOC值,如果实际SOC值准确的话,系统电量是应该是减少的,但是当前的系统处于放电状态,电量应该是增加的,二者相矛盾,因此,此时的实际SOC值很可能是不准确的,需将显示SOC值调整为存储SOC值,不随实际SOC值发生变化;如果系统处于放电状态,电量应是减少的,实际SOC值小于存储SOC值,也表明电量减少了,因此,该实际SOC值的变化情况与系统所处的充放电状态是吻合的,表明当前实际SOC值是准确的,则控制存储SOC值降低至与实际SOC值相等,之后将显示SOC值调整为存储SOC值。
在一些实施例中,在控制存储SOC值升高至与实际SOC值相等的过程中,为了避免SOC值的突变,需要根据当前系统电流确定调整步长,根据确定的调整步长将存储SOC值逐步降低至与实际SOC值相等。
在一些实施例中,为了保护储能系统健康运行,在充电时,不能充到过满,因此可以在充电状态下,判断实际SOC值是否超过第一预设值,例如95%;如果是,则控制实际SOC值、存储SOC值以及显示SOC值均等于第一极限SOC值,例如100%,也就是说,当电量充到95%以后,就显示已充满,不再续充,避免过充。上述第一预设值小于第一极限SOC值。
在一些实施例中,为了保护储能系统健康运行,在放电时,也不能将电能放尽,因此可以在放电状态下,判断实际SOC值是否低于第二预设值,例如5%;如果是,则控制实际SOC值、存储SOC值以及显示SOC值均等于第二极限SOC值,例如0%,也就是说当电量放到还剩余5%时,就显示为已放尽,不再放电。上述第二预设值大于第二极限SOC值。
在一些实施例中,每个估算周期计算4个SOC值,分别是显示SOC值、EE(Electrically-Erasable Programmable Read-Only Memory,电可擦除可编程只读存储器)中的存储SOC值、实际SOC值和极限SOC值,其中,显示SOC值为:在储能系统中指对外输出的SOC值,用于直观的面向客户并实时反馈最新的电池系统的运行情况和剩余容量。实际SOC值为:在储能系统中指对内计算得SOC值,用于面向程序算法并实时调整估算最新的电池系统的运行情况和剩余容量。存储SOC值为:记录最近一次充放电过程中或者最近储能系统下电前保存的SOC值,作用是防止SOC值突变。极限SOC值为:电池系统极限情况下,为了保护电芯能够正常使用而采取的强制修正SOC值,显示SOC值和实际SOC值两者最大的特点和区别是:显示SOC值是面向客户的,客户并不会理会内部电池系统的实际化学反应和变化(例如电池模组温度变化、电压变化、电池内部电化学变化等),客户关心的重点是电池系统剩余电量和剩余使用时间,因此在显示SOC值的估算时,应更加着重考虑客户使用体验、虚电问题、SOC值突变等问题。而实际SOC值则是面向算法程序的,因此估算的SOC值可能会随时间、外界环境因素或电池内部状态的改变而实时调整,实际SOC值应更加着重考虑电芯实际使用情况及电池系统整体情况。
当出现特殊情况,如电芯长期静置、电芯内部异常、外界环境温度骤变等,实际估算的SOC值会产生突变,且突变的方向、范围和大小都是未知的,因此需与存储SOC值进行比对,根据两者差值和当前系统自身情况进行不同情况下的SOC值修正策略。
图2为根据本公开另一实施例的SOC值显示方法流程图,如图2所示,该方法包括:
在步骤S1,判断实际SOC值与存储SOC值的大小关系。如果实际SOC值=存储SOC值,则执行步骤S2;如果实际SOC值>存储SOC值,则执行步骤S3,如果实际SOC值<存储SOC值,则执行步骤S4。
在步骤S2,控制显示SOC值仍保持原有值。
在步骤S3,判断电流绝对值的范围,如果电流绝对值=0,则执行步骤S3-1;如 果0A<电流绝对值≤1A,则执行步骤S3-2,如果电流绝对值>1A,则执行步骤S3-3。
在步骤S3-1,控制显示SOC值仍保持原有值。
在步骤S3-2,调整显示SOC值=存储SOC值。
在步骤S3-3,判断当前状态为放电状态或者放电状态;如果是放电状态,则执行步骤S3-4,如果是充电状态,则执行步骤S3-5。
在S3-4,控制显示SOC值=存储SOC值。
如果当前是放电状态,那么实际SOC值应该逐渐减小,但是,实际SOC值,却在上一次存储的存储SOC值的基础上增加了,表明实际SOC值与电能的增减情况不符,实际SOC值不准确,因此,显示SOC值仍应保持与原有存储SOC值相等。
在步骤S3-5,根据配置设定的步长分步提升存储SOC值,直至存储SOC值=实际SOC值后,调整显示SOC值等于提升后的存储SOC值。
如果当前是充电状态,那么实际SOC值应该逐渐增加,实际情况是当前实际SOC值确实在上一次存储的存储SOC值的基础上增加了,表明实际SOC值是准确的,因此,提升存储SOC值至与实际SOC值相等,并令显示SOC值等于提升后的存储SOC值。
在步骤S4,判断电流绝对值的范围,如果电流绝对值=0,则执行步骤S4-1;如果0A<电流绝对值≤1A,则执行步骤S4-2,如果电流绝对值>1A,则执行步骤S4-3。
在步骤S4-1,控制显示SOC值仍保持原有值。
在步骤S4-2,调整显示SOC值=存储SOC值。
在步骤S4-3,判断当前状态为放电状态或者放电状态;如果是充电状态,则执行步骤S4-4,如果是放电状态,则执行步骤S4-5。
在步骤S4-4,控制显示SOC值=存储SOC值。
如果当前是充电状态,那么实际SOC值应该逐渐增大,但是,实际SOC值,却在上一次存储的存储SOC值的基础上减小了,表明实际SOC值与电能的增减情况不符,实际SOC值不准确,因此,显示SOC值仍应保持与原有存储SOC值相等。
在步骤S4-5,根据配置设定的步长分步降低存储SOC值,直至存储SOC值=实际SOC值后,调整显示SOC值等于降低后的存储SOC值。
如果当前是放电状态,那么实际SOC值应该逐渐减小,实际情况是当前实际SOC值确实在上一次存储的存储SOC值的基础上减小了,表明实际SOC值是准确的,因此,降低存储SOC值至与实际SOC值相等,并令显示SOC值等于降低后的存储SOC值。
在步骤S5,判断当前的充放电状态,如果是充电状态,则执行步骤S6,如果是 放电状态,则执行步骤S7。
在步骤S6,在实际SOC值升高到超过95%时,调整显示SOC值=存储SOC值=实际SOC值=100%。
在步骤S7,在实际SOC值降低到低于5%时,调整显示SOC值=存储SOC值=实际SOC值=0%。
各种SOC值之间的修正策略,遵循着△SOC值变化方向与电量增减情况相符合的原则,在正常情况下或者有电流的情况下,根据电流的方向判断是否允许修正SOC值,从而有效的避免客户显示端出现充电状态下SOC值下降、放电状态下SOC值上升、SOC值突变、SOC值与实际使用差异较大等严重影响产品使用的情况。
图3为根据本公开一个实施例的SOC值显示装置的结构示意图,如图3所示,该装置包括:
获取模块10,用于获取实际SOC值和存储SOC值;其中,存储SOC值为储能系统最近一次充放电完成后,或者,最近一次下电前保存的SOC值。例如,在每一次充电或者放电完成后,保存当前的SOC值,作为存储SOC值,或者,在每次下电前,保存下电前一时刻的SOC值,作为存储SOC值。
控制模块20,用于根据实际SOC值和存储SOC值,调整显示SOC值。
在本实施例上述实施例提供的SOC值显示装置中,通过获取模块获取实时变化的实际SOC值以及存储SOC值,通过控制模块比较实际SOC值和存储SOC值,调整显示SOC值,能够实时对显示SOC值进行修正,避免实际SOC值由于外界环境参数引起突变,或者,估算策略问题导致估算结果不准,致使显示的SOC值不准确的问题,提高SOC值显示的准确性,提高用户体验。
图4为根据本公开一个实施例的控制模块的结构示意图,为了进一步实现针对不同情况,采取不同的SOC修正策略,在上述实施例的基础上,如图4所示,控制模块20具体包括第一控制单元201、第二控制单元202和第三控制单元203。
第一控制单元201,用于在实际SOC值等于存储SOC值时,控制显示SOC值保持当前值。实际SOC值等于存储SOC值,表明实际SOC值的估算准确,并且没有发生突变,因此控制显示SOC值保持当前值。
第二控制单元202,用于在实际SOC值大于存储SOC值时,根据系统电流的绝对值所处的区间调整显示SOC值。实际SOC值大于存储SOC值,表明实际SOC值有可能发生突变,需要根据系统电流进一步判断,即根据系统电流的绝对值所处的区间调整 显示SOC值;其中,不同的区间对应不同的调整策略。
第三控制单元203,用于在实际SOC值小于存储SOC值时,根据系统电流的绝对值所处的区间调整显示SOC值。如果实际SOC值小于存储SOC值,表明实际SOC值有可能发生突变,需要根据系统电流进一步判断,也需要根据系统电流的绝对值所处的区间调整显示SOC值。
中一些实施例中,第二控制单元202包括第一控制子单元202-1、第二控制子单元202-2和第三控制子单元202-3。
第一控制子单元202-1,用于在系统电流的绝对值等于零,控制显示SOC值保持当前值;第二控制子单元202-2用于在系统电流的绝对值大于零,且小于或等于预设阈值时,将显示SOC值调整为存储SOC值;第三控制子单元202-3,用于在系统电流的绝对值大于预设阈值时,根据系统所处的充放电状态控制显示SOC值,其中,充放电状态包括充电状态或放电状态。
在一些实施例中,为了根据系统所处的充放电状态确定实际SOC值是否发生突变或者估算不准,第三控制子单元202-3在实际SOC值大于存储SOC值,系统电流的绝对值大于预设阈值,且系统处于放电状态时,将显示SOC值调整为存储SOC值;在实际SOC值大于存储SOC值,系统电流的绝对值大于预设阈值,且系统处于充电状态时,控制存储SOC值升高至与实际SOC值相等,并将显示SOC值调整为存储SOC值。
在实际SOC值大于存储SOC值的情况下,如果实际SOC值准确的话,系统电量是应该是增加的,但是如果当前的系统处于放电状态,电量应该是减少的,二者相矛盾,因此,此时的实际SOC值很可能是不准确的,需将显示SOC值调整为存储SOC值;如果系统处于充电状态,电量应是增加的,实际SOC值大于存储SOC值,也表明电量增加了,因此,该实际SOC值的变化情况与系统所处的充放电状态是吻合的,表明当前实际SOC值是准确的,则控制存储SOC值升高至与实际SOC值相等,并将显示SOC值调整为存储SOC值。
在一些实施例中,第二控制单元202内部还包括第一确定子单元202-4。在控制存储SOC值升高至与实际SOC值相等的过程中,为了避免SOC值的突变,需要根据当前系统电流确定调整步长。第一确定子单元202-4,用于根据当前系统电流确定调整步长,第三控制子单元202-3还用于根据确定的调整步长将存储SOC值逐步升高至与实际SOC值相等。
在一些实施例中,第三控制单元203包括第四控制子单元203-1、第五控制子单 元203-2和第六控制子单元203-3。对于实际SOC值小于存储SOC值的情况,第四控制子单元203-1,用于在系统电流的绝对值等于零时,控制显示SOC值保持当前值;第五控制子单元203-2,用于在系统电流的绝对值大于零,且小于或等于预设阈值时,将显示SOC值调整为存储SOC值;第六控制子单元203-3,用于在系统电流的绝对值大于预设阈值时,根据系统所处的充放电状态控制显示SOC值。
在一些实施例中,第六控制子单元203-3具体用于,在实际SOC值小于存储SOC值的情况下,系统电流的绝对值大于预设阈值,且系统处于充电状态时,将显示SOC值调整为存储SOC值,在实际SOC值小于存储SOC值的情况下,系统电流的绝对值大于预设阈值,且系统处于放电状态时,控制存储SOC值降低至与实际SOC值相等,并将显示SOC值调整为存储SOC值。
实际SOC值小于存储SOC值,如果实际SOC值准确的话,系统电量是应该是减少的,但是当前的系统处于放电状态,电量应该是增加的,二者相矛盾,因此,此时的实际SOC值很可能是不准确的,需控制显示SOC值保持当前值,不对其进行调整;如果系统处于放电状态,电量应是减少的,实际SOC值小于存储SOC值,也表明电量减少了,因此,该实际SOC值的变化情况与系统所处的充放电状态是吻合的,表明当前实际SOC值是准确的,则控制存储SOC值降低至与实际SOC值相等,并将显示SOC值调整为存储SOC值。
在一些实施例中,在控制存储SOC值及降低至与实际SOC值相等的过程中,为了避免SOC值的突变,需要根据当前系统电流确定调整步长,因此,第三控制单元203内部还包括第二确定子单元203-4,用于根据当前系统电流确定调整步长,第六控制子单元203-3还用于根据确定的调整步长将存储SOC值逐步升高至与实际SOC值相等。
在一些实施例中,为了保护储能系统健康运行,在充电时,不能充到过满,因此,上述控制模块20还包括,第四控制单元204,用于在充电状态下,判断实际SOC值是否超过第一预设值,例如95%;如果是,则控制实际SOC值、存储SOC值以及显示SOC值均等于第一极限SOC值,例如100%,也就是说,当电量充到95%以后,就显示已充满,不再续充,避免过充。上述第一预设值小于第一极限SOC值。
在一些实施例中,为了保护储能系统健康运行,在放电时,也不能将电能放尽,因此上述控制模块20还包括,第五控制单元205,用于在放电状态下,判断实际SOC值是否低于第二预设值,例如5%;如果是,则控制实际SOC值、存储SOC值以及显示SOC值均等于第二极限SOC值,例如0%,也就是说当电量放到还剩余5%时,就显示为 已放尽,不再放电。上述第二预设值大于第二极限SOC值。
图5为根据本公开另一个实施例的SOC值显示装置的结构示意图。如图5所示,SOC值显示装置包括存储器51和处理器52。
存储器51用于存储指令,处理器52耦合到存储器51,处理器52被配置为基于存储器存储的指令执行实现如图1或图2中任一实施例涉及的方法。
如图5所示,该SOC值显示装置还包括通信接口53,用于与其它设备进行信息交互。同时,该SOC值显示装置还包括总线54,处理器52、通信接口53、以及存储器51通过总线54完成相互间的通信。
存储器51可以包含高速RAM存储器,也可还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器51也可以是存储器阵列。存储器51还可能被分块,并且块可按一定的规则组合成虚拟卷。
此外,处理器52可以是一个中央处理器CPU,或者可以是专用集成电路ASIC,或是被配置成实施本公开实施例的一个或多个集成电路。
本公开同时还涉及一种计算机可读存储介质,其中计算机可读存储介质存储有计算机指令,指令被处理器执行时实现如图1或图2中任一实施例涉及的方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (15)

  1. 一种荷电状态SOC值显示方法,应用于储能系统,其中,所述方法包括:
    获取实际SOC值和存储SOC值,其中,所述存储SOC值为所述储能系统最近一次充放电完成后或者最近一次下电前保存的SOC值;
    根据所述实际SOC值和所述存储SOC值的比较结果调整显示SOC值。
  2. 根据权利要求1所述的显示方法,其中,所述获取实际SOC值包括:
    根据使用时间、外界环境参数以及所述储能系统内部状态确定所述实际SOC值。
  3. 根据权利要求1所述的显示方法,其中,根据所述实际SOC值和所述存储SOC值的比较结果调整显示SOC值包括:
    在所述实际SOC值等于所述存储SOC值的情况下,控制所述显示SOC值保持当前值;
    在所述实际SOC值大于所述存储SOC值的情况下,根据所述储能系统电流的绝对值所处的区间调整所述显示SOC值;
    在所述实际SOC值小于所述存储SOC值的情况下,则根据所述储能系统电流的绝对值所处的区间调整所述显示SOC值,其中,不同的区间对应不同的调整策略。
  4. 根据权利要求3所述的显示方法,其中,在所述实际SOC值大于所述存储SOC值的情况下,根据所述储能系统电流的绝对值所处的区间调整所述显示SOC值包括:
    在所述储能系统电流的绝对值等于零的情况下,控制所述显示SOC值保持当前值;
    在所述储能系统电流的绝对值大于零,且小于或等于预设阈值的情况下,将所述显示SOC值调整为所述存储SOC值;
    在所述储能系统电流的绝对值大于所述预设阈值的情况下,根据所述储能系统所处的充放电状态控制所述显示SOC值,其中,所述充放电状态包括充电状态或放电状态。
  5. 根据权利要求4所述的显示方法,其中,根据所述储能系统所处的充放电状态控制所述显示SOC值包括:
    在所述储能系统处于放电状态的情况下,将所述显示SOC值调整为所述存储SOC值;
    在所述储能系统处于充电状态,则控制所述存储SOC值升高至与实际SOC值相等,之后将所述显示SOC值调整为所述存储SOC值。
  6. 根据权利要求5所述的显示方法,其中,控制所述存储SOC值升高至与实际SOC值相等包括:
    根据当前所述储能系统电流确定调整步长;
    根据所述调整步长将所述存储SOC值逐步升高至与实际SOC值相等。
  7. 根据权利要求3所述的显示方法,其中,在所述实际SOC值小于所述存储SOC值的情况下,根据所述储能系统电流的绝对值所处的区间调整所述显示SOC值包括:
    在所述储能系统电流的绝对值等于零的情况下,控制所述显示SOC值保持当前值;
    在所述储能系统电流的绝对值大于零,且小于或等于预设阈值的情况下,将所述显示SOC值调整为所述存储SOC值;
    在所述储能系统电流的绝对值大于所述预设阈值的情况下,根据所述储能系统所处的充放电状态控制所述显示SOC值,其中,所述充放电状态包括充电状态或放电状态。
  8. 根据权利要求7所述的显示方法,其中,根据所述储能系统所处的充放电状态控制所述显示SOC值,包括:
    在所述储能系统处于充电状态的情况下,将所述显示SOC值调整为所述存储SOC值;
    在所述储能系统处于放电状态的情况下,控制所述存储SOC值降低至与实际SOC值相等,之后将所述显示SOC值调整为所述存储SOC值。
  9. 根据权利要求8所述的显示方法,其中,控制所述存储SOC值降低至与实际SOC值相等,包括:
    根据当前所述储能系统电流确定调整步长;
    根据所述调整步长将所述存储SOC值逐步降低至与实际SOC值相等。
  10. 根据权利要求1所述的显示方法,还包括:
    在充电状态下,判断所述实际SOC值是否超过第一预设值;
    在所述实际SOC值超过所述第一预设值的情况下,控制所述实际SOC值、存储SOC值以及显示SOC值均等于第一极限SOC值,其中,所述第一预设值小于所述第一极限SOC值。
  11. 根据权利要求1所述的显示方法,还包括:
    在放电状态下,判断所述实际SOC值是否低于第二预设值;
    如果在所述实际SOC值低于第二预设值的情况下,控制所述实际SOC值、存储SOC值以及显示SOC值均等于第二极限SOC值;其中,所述第二预设值大于所述第二极限SOC值。
  12. 一种荷电状态SOC值显示装置,用于实现权利要求1至11中任一项所述的SOC值显示方法,其中,所述装置包括:
    获取模块,用于获取实际SOC值和存储SOC值;其中,所述存储SOC值为储能系统最近一次充放电完成后或者最近一次下电前保存的SOC值;
    控制模块,用于根据所述实际SOC值和所述存储SOC值调整显示SOC值。
  13. 一种荷电状态SOC值显示装置,包括:
    存储器,被配置为存储指令;
    处理器,耦合到存储器,处理器被配置为基于存储器存储的指令执行实现如权利要求1至11中任一项所述的方法。
  14. 一种储能系统,包括如权利要求12或13所述的SOC值显示装置。
  15. 一种计算机可读存储介质,其中,计算机可读存储介质存储有计算机指令,其中,所述指令被处理器执行时实现如权利要求1至11中任一项所述的SOC值显示方法。
PCT/CN2021/078739 2020-06-04 2021-03-02 Soc值显示方法、显示装置及储能系统 WO2021244085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010500749.8 2020-06-04
CN202010500749.8A CN111781507B (zh) 2020-06-04 2020-06-04 一种soc值显示方法、装置及储能系统

Publications (1)

Publication Number Publication Date
WO2021244085A1 true WO2021244085A1 (zh) 2021-12-09

Family

ID=72753951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078739 WO2021244085A1 (zh) 2020-06-04 2021-03-02 Soc值显示方法、显示装置及储能系统

Country Status (2)

Country Link
CN (1) CN111781507B (zh)
WO (1) WO2021244085A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001003A (zh) * 2022-08-05 2022-09-02 深圳国瑞协创储能技术有限公司 电池储能系统充放电控制方法、装置、设备及存储介质
CN115923589A (zh) * 2022-11-30 2023-04-07 章鱼博士智能技术(上海)有限公司 一种电池荷电状态修正方法及装置
WO2024087061A1 (zh) * 2022-10-26 2024-05-02 深圳市正浩创新科技股份有限公司 电子设备控制方法、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781507B (zh) * 2020-06-04 2022-05-10 珠海格力电器股份有限公司 一种soc值显示方法、装置及储能系统
CN112433156A (zh) * 2020-11-18 2021-03-02 深圳市科信通信技术股份有限公司 Soc估算方法
CN114035070A (zh) * 2021-11-05 2022-02-11 一汽解放汽车有限公司 一种动力电池soc显示方法、装置、计算机设备和存储介质
CN115113049A (zh) * 2021-12-24 2022-09-27 长城汽车股份有限公司 确定电池soc初始值的方法及相关装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175485A (en) * 1990-09-19 1992-12-29 Gold Star Co., Ltd. Apparatus for controlling charging of a storage battery
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置
US20090132186A1 (en) * 2007-11-15 2009-05-21 Broadcom Corporation Method and system for reporting battery status based on current estimation
CN102778652A (zh) * 2011-05-13 2012-11-14 通用汽车环球科技运作有限责任公司 利用置信度值来确定蓄电池的充电状态的系统和方法
EP2535729A1 (en) * 2011-06-16 2012-12-19 ST-Ericsson SA Battery charge determination
US20130138370A1 (en) * 2011-11-30 2013-05-30 Silicon Works Co., Ltd. Battery state-of-charge estimation method and battery management system
CN103901347A (zh) * 2012-12-28 2014-07-02 华为终端有限公司 一种显示电池电量的方法和终端
CN106603861A (zh) * 2016-12-30 2017-04-26 广东欧珀移动通信有限公司 电量显示方法、装置及终端
CN107571747A (zh) * 2017-07-07 2018-01-12 宝沃汽车(中国)有限公司 Soc的平滑控制方法、装置、电池管理系统及车辆
CN109061481A (zh) * 2018-06-28 2018-12-21 奇瑞汽车股份有限公司 电池的荷电状态确定方法、装置及存储介质
CN111781507A (zh) * 2020-06-04 2020-10-16 珠海格力电器股份有限公司 一种soc值显示方法、装置及储能系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217649A (zh) * 2013-03-28 2013-07-24 广东欧珀移动通信有限公司 一种电量显示的方法、装置和移动设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175485A (en) * 1990-09-19 1992-12-29 Gold Star Co., Ltd. Apparatus for controlling charging of a storage battery
US20090132186A1 (en) * 2007-11-15 2009-05-21 Broadcom Corporation Method and system for reporting battery status based on current estimation
CN101303397A (zh) * 2008-06-25 2008-11-12 河北工业大学 锂离子电池组剩余电能计算方法及装置
CN102778652A (zh) * 2011-05-13 2012-11-14 通用汽车环球科技运作有限责任公司 利用置信度值来确定蓄电池的充电状态的系统和方法
EP2535729A1 (en) * 2011-06-16 2012-12-19 ST-Ericsson SA Battery charge determination
US20130138370A1 (en) * 2011-11-30 2013-05-30 Silicon Works Co., Ltd. Battery state-of-charge estimation method and battery management system
CN103901347A (zh) * 2012-12-28 2014-07-02 华为终端有限公司 一种显示电池电量的方法和终端
CN106603861A (zh) * 2016-12-30 2017-04-26 广东欧珀移动通信有限公司 电量显示方法、装置及终端
CN107571747A (zh) * 2017-07-07 2018-01-12 宝沃汽车(中国)有限公司 Soc的平滑控制方法、装置、电池管理系统及车辆
CN109061481A (zh) * 2018-06-28 2018-12-21 奇瑞汽车股份有限公司 电池的荷电状态确定方法、装置及存储介质
CN111781507A (zh) * 2020-06-04 2020-10-16 珠海格力电器股份有限公司 一种soc值显示方法、装置及储能系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001003A (zh) * 2022-08-05 2022-09-02 深圳国瑞协创储能技术有限公司 电池储能系统充放电控制方法、装置、设备及存储介质
CN115001003B (zh) * 2022-08-05 2022-10-21 深圳国瑞协创储能技术有限公司 电池储能系统充放电控制方法、装置、设备及存储介质
WO2024087061A1 (zh) * 2022-10-26 2024-05-02 深圳市正浩创新科技股份有限公司 电子设备控制方法、电子设备及存储介质
CN115923589A (zh) * 2022-11-30 2023-04-07 章鱼博士智能技术(上海)有限公司 一种电池荷电状态修正方法及装置

Also Published As

Publication number Publication date
CN111781507A (zh) 2020-10-16
CN111781507B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2021244085A1 (zh) Soc值显示方法、显示装置及储能系统
US10811886B2 (en) Charge control apparatus capable of high speed cell balancing and energy saving and method thereof
US10978896B2 (en) High efficiency power storage adapter
JP6664013B2 (ja) バッテリー管理装置及び方法
US8319479B2 (en) Method of estimating battery recharge time and related device
US7663374B2 (en) Electrical apparatus, computer system, intelligent battery, battery diagnosis method, batter-state display method, and program
US10928880B2 (en) Power storage adapter for communicating battery data with a portable information handling system
EP3611526B1 (en) Battery capacity monitor
JP2003092836A (ja) 電気機器、コンピュータ装置、インテリジェント電池、総容量補正方法、劣化量認識方法、およびプログラム
CN115102266B (zh) 一种电池系统的控制方法、电池系统、离网供电系统
CN108061863A (zh) 检测电池的方法及装置、计算机可读存储介质、电池管理系统
CN112858938B (zh) 电量计算方法、装置、存储介质及电子设备
US20190094937A1 (en) Power delivery based on temperature and other factors in a power storage adapter
US20190074708A1 (en) Efficient charging of multiple portable information handling systems based on learned charging characteristics
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置
CN110323806A (zh) 充电控制方法和装置、电子设备、计算机可读存储介质
JP3405525B2 (ja) 電池パック制御装置
CN113612295B (zh) 一种应急储能电池电能管理方法、装置及介质
CN113741674A (zh) 笔记本电脑功耗控制方法、系统、终端及存储介质
CN111130177B (zh) 一种bbu的管理方法、系统及装置
CN110303941B (zh) 一种电池均衡方法、系统、设备以及介质
CN116114137A (zh) 电子设备控制方法、电子设备及存储介质
CN113507154B (zh) 充电方法、装置、充电机和电子设备
CN113690960A (zh) 一种锂电池管理方法、装置及相关组件
WO2019176269A1 (ja) 電子機器、充電制御方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817313

Country of ref document: EP

Kind code of ref document: A1