WO2014083713A1 - 溶融Zn合金めっき鋼板の製造方法 - Google Patents

溶融Zn合金めっき鋼板の製造方法 Download PDF

Info

Publication number
WO2014083713A1
WO2014083713A1 PCT/JP2013/001312 JP2013001312W WO2014083713A1 WO 2014083713 A1 WO2014083713 A1 WO 2014083713A1 JP 2013001312 W JP2013001312 W JP 2013001312W WO 2014083713 A1 WO2014083713 A1 WO 2014083713A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
plating layer
dip
hot
steel sheet
Prior art date
Application number
PCT/JP2013/001312
Other languages
English (en)
French (fr)
Inventor
厚雄 清水
雅典 松野
山本 雅也
博文 武津
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020157012632A priority Critical patent/KR101572673B1/ko
Priority to AU2013350682A priority patent/AU2013350682B2/en
Priority to RU2015119973/02A priority patent/RU2590443C1/ru
Priority to PL13859545T priority patent/PL2927344T3/pl
Priority to MX2015003967A priority patent/MX344320B/es
Priority to ES13859545.9T priority patent/ES2663957T3/es
Priority to US14/349,334 priority patent/US10167542B2/en
Priority to CA2886690A priority patent/CA2886690C/en
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to BR112015010935-7A priority patent/BR112015010935B1/pt
Priority to EP13859545.9A priority patent/EP2927344B1/en
Priority to CN201380061100.9A priority patent/CN104838036B/zh
Priority to IN2452DEN2015 priority patent/IN2015DN02452A/en
Publication of WO2014083713A1 publication Critical patent/WO2014083713A1/ja
Priority to US14/748,279 priority patent/US10202676B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Definitions

  • the present invention relates to a method for producing a hot-dip Zn alloy-plated steel sheet having excellent blackening resistance.
  • a hot-dip Zn alloy plated steel sheet in which a hot-dip Zn alloy plated layer containing Al and Mg is formed on the surface of a base steel sheet is known.
  • the composition of the plated layer of the hot-dip Zn alloy-plated steel sheet for example, Al: 4.0-15.0% by mass, Mg: 1.0-4.0% by mass, Ti: 0.002-0.1% by mass, B: 0.001 to 0.045% by mass, balance: Zn and some containing inevitable impurities
  • This hot-dip Zn alloy-plated steel sheet has a plating layer composed of a metal structure in which [primary Al] and [Zn single phase] are mixed in a base of [Al / Zn / Zn 2 Mg ternary eutectic structure]. It has sufficient corrosion resistance and surface appearance as an industrial product.
  • the aforementioned hot-dip Zn alloy-plated steel sheet can be continuously manufactured by the following steps. First, after the base steel plate (steel strip) passed through the furnace is immersed in a molten Zn alloy plating bath containing Al and Mg, the molten metal adhered to the surface of the base steel plate, for example, by passing through a gas wiping device. Is adjusted to a predetermined amount. Next, the molten metal is cooled by passing the steel strip to which a predetermined amount of molten metal is attached through an air jet cooler and an air-water cooling region, and a molten Zn alloy plating layer is formed. Furthermore, the hot-dip Zn alloy-plated steel sheet is obtained by passing the steel strip on which the hot-dip Zn alloy plating layer is formed through the water quench zone and bringing cooling water into contact therewith.
  • a part of the plating layer surface may change black over time.
  • the black change on the surface of the plating layer occurred at the earliest 2 to 3 days after production, and sometimes occurred after 4 to 7 days depending on the production conditions, deteriorating the appearance of the hot-dip Zn alloy plated steel sheet.
  • Patent Document 1 a method of adjusting the temperature of the plating layer surface in the water quench zone has been proposed (see, for example, Patent Document 1).
  • the black change of the plating layer surface is prevented by making the temperature of the plating layer surface at the time of making it contact with cooling water in a water quench zone below 105 degreeC.
  • an easily oxidizable element (rare earth element, Y, Zr or Si) is added to the plating bath, and the temperature of the plating layer surface is set to 105 to 300 ° C. , Preventing the black change of the plating layer surface.
  • Patent Document 1 since it was necessary to cool the surface of the plating layer to a predetermined temperature before passing through the water quench zone, the production of the hot-dip Zn alloy-plated steel sheet may be limited. For example, in the case of a plated steel plate having a large plate thickness, it is necessary to slow down the feed rate of the plated steel plate to cool the plated steel plate to a predetermined temperature, and thus productivity has been reduced. Moreover, when an easily oxidizable element is blended in the plating bath, the easily oxidizable element is liable to become dross, and the concentration control of the easily oxidizable element is complicated, so that the manufacturing process becomes complicated.
  • An object of the present invention is to provide a method for producing a hot-dip Zn alloy-plated steel sheet, which can easily suppress the black change of the plating layer surface without reducing productivity and without complicated component management of the plating bath. Is to provide.
  • the present inventors have found that the above problem can be solved by adding a predetermined polyatomic ion at a predetermined concentration to the cooling water to be contacted after forming the molten Zn alloy plating layer.
  • the present invention has been completed.
  • this invention relates to the manufacturing method of the following hot dip Zn alloy plating steel plates.
  • a step of immersing a base steel plate in a hot-dip Zn alloy plating bath containing Al and Mg to form a hot-dip Zn alloy plating layer on the surface of the base steel plate, a polyatomic ion containing V 5+ , Si Contacting an aqueous solution containing one or more polyatomic ions selected from the group consisting of polyatomic ions containing 4+ and polyatomic ions containing Cr 6+ with the surface of the molten Zn alloy plating layer; And the aqueous solution contains 0.01 g / L or more of the polyatomic ions in terms of 1 or 2 or more atoms selected from the group consisting of V, Si and Cr.
  • the temperature of the surface of the molten Zn alloy plating layer when the aqueous solution is brought into contact with the surface of the molten Zn alloy plating layer is 100 ° C. or more and not more than the freezing point of the plating layer.
  • Method for producing a hot-dip Zn alloy-plated steel sheet [3]
  • the molten Zn alloy plating layer contains Al: 1.0 to 22.0 mass%, Mg: 0.1 to 10.0 mass%, the balance: Zn and inevitable impurities, [1] or [2 ]
  • a hot-dip Zn alloy-plated steel sheet excellent in blackening resistance can be easily produced with high productivity.
  • 1A and 1B are diagrams showing an example of a method for bringing a cooling aqueous solution into contact with the surface of a molten Zn alloy plating layer.
  • 2A and 2B are intensity profiles of chemical bond energy corresponding to 2p orbitals of Zn when water is used as cooling water, a water film is temporarily formed, and a molten Zn alloy plating layer is cooled.
  • 3A and 3B are intensity profiles of chemical bond energy corresponding to Al 2p orbits when water is used as cooling water, a water film is temporarily formed, and a molten Zn alloy plating layer is cooled.
  • 4A and 4B are strength profiles of chemical bond energy corresponding to 2p orbits of Mg when water is used as cooling water, a water film is temporarily formed, and a molten Zn alloy plating layer is cooled. It is an intensity
  • the method for producing a hot-dip Zn alloy-plated steel sheet (hereinafter also simply referred to as “plated steel sheet”) of the present invention is (1) a hot-dip Zn alloy plated layer (hereinafter simply referred to as “plated layer”) on the surface of the base steel sheet. ) And (2) a second step of bringing a cooling aqueous solution containing polyatomic ions into contact with the surface of the molten Zn alloy plating layer.
  • One feature of the manufacturing method of the present invention is to suppress black change of the plating layer by bringing a predetermined cooling aqueous solution into contact with the surface of the plating layer after forming the molten Zn alloy plating layer.
  • the base steel plate is immersed in a hot-dip Zn alloy plating bath containing Al and Mg to form a hot-dip Zn alloy plating layer on the surface of the base steel plate.
  • the kind of base steel plate is not particularly limited.
  • a steel plate made of low carbon steel, medium carbon steel, high carbon steel, alloy steel, or the like can be used as the base steel plate.
  • a steel sheet for deep drawing made of low carbon Ti-added steel, low carbon Nb-added steel, or the like is preferable as the base steel sheet.
  • the base steel plate is immersed in a molten Zn alloy plating bath containing Al and Mg, and a predetermined amount of molten metal is adhered to the surface of the base steel plate by using gas wiping or the like.
  • the composition of the plating bath for example, a plating bath containing Al: 1.0 to 22.0 mass%, Mg: 0.1 to 10.0 mass%, balance: Zn and inevitable impurities may be used. it can.
  • the plating bath may further contain Si: 0.001 to 2.0% by mass. Further, the plating bath may further contain Ti: 0.001 to 0.1% by mass and B: 0.001 to 0.045% by mass.
  • the black change of the plating layer can be suppressed by adding Si, but when a plated steel sheet is manufactured by the manufacturing method of the present invention, Si is not added. Also, the black change of the plating layer can be suppressed.
  • the molten metal adhering to the surface of the base steel sheet is cooled to solidify the molten metal, thereby obtaining a plated steel sheet in which a plating layer having the same composition as that of the plating bath is formed on the surface of the base steel sheet. be able to.
  • the hot-dip Zn alloy plating layer having the above composition contains [Al / Zn / Zn 2 Mg ternary eutectic structure].
  • each phase of Al, Zn, Zn 2 Mg is finely distributed in a lamellar shape. Even when this [Al / Zn / Zn 2 Mg ternary eutectic structure] appears on the surface of the plating layer, the phases of Al, Zn and Zn 2 Mg are finely distributed.
  • the ratio of the area occupied by the [Al / Zn / Zn 2 Mg ternary eutectic structure] in cross-sectional observation differs depending on the plating composition.
  • the composition of Al is 4% by mass
  • Mg is 3% by mass
  • the balance is Zn.
  • [Al / Zn / Zn 2 Mg ternary eutectic structure] shows an area ratio of about 80%, and the widest area in the cross section of the plating layer It becomes the phase which shows a rate.
  • the area ratio of the ternary eutectic structure of Al / Zn / Zn 2 Mg] is reduced, terpolymers of [Al / Zn / Zn 2 Mg A phase other than the crystal structure] may be maximized as the area ratio.
  • the molten Zn alloy plating layer having the above composition contains an Al phase, a Zn phase or a Zn 2 Mg phase as the primary crystal, in addition to [Al / Zn / Zn 2 Mg ternary eutectic structure]
  • an Mg 2 Si phase may be included.
  • an oxide film containing Al, Zn, and Mg is formed on the surface of the plating layer.
  • Si may be contained in the oxide film.
  • the adhesion amount of the molten Zn alloy plating layer is not particularly limited.
  • the adhesion amount of the molten Zn alloy plating layer is about 60 to 500 g / m 2 .
  • an aqueous solution (cooling aqueous solution) containing predetermined polyatomic ions is brought into contact with the surface of the molten Zn alloy plating layer.
  • the second step is preferably performed as a water quench (water cooling) step.
  • the temperature of the surface of the molten Zn alloy plating layer is about 100 ° C. or more and below the freezing point of the plating layer.
  • the polyatomic ions contained in the cooling aqueous solution are selected from the group consisting of polyatomic ions containing V 5+ , polyatomic ions containing Si 4+ , and polyatomic ions containing Cr 6+ . These polyatomic ions can suppress the black change of the plating layer surface. These polyatomic ions may be used alone or in combination of two or more.
  • the method for preparing the cooling aqueous solution containing polyatomic ions is not particularly limited.
  • a predetermined compound V compound, Si compound or Cr compound; hereinafter also referred to as “additive”
  • a dissolution accelerator Can be dissolved in water (solvent).
  • V compounds include acetylacetone vanadyl, vanadium acetylacetonate, vanadium oxysulfate, vanadium pentoxide, ammonium vanadate.
  • suitable Si compounds include sodium silicate.
  • suitable Cr compounds include ammonium chromate and potassium chromate.
  • the concentration of the polyatomic ion containing V 5+ , the polyatomic ion containing Si 4+ or the polyatomic ion containing Cr 6+ is preferably 0.01 g / L or more in terms of V, Si, and Cr.
  • the total concentration in terms of V, Si, and Cr may be 0.01 g / L or more.
  • the concentration of these polyatomic ions is less than 0.01 g / L in terms of V, Si, and Cr, there is a possibility that the black change on the plating layer surface cannot be sufficiently suppressed.
  • the blending amount of the dissolution accelerator is not particularly limited. For example, 90 to 130 parts by mass of a dissolution accelerator may be added to 100 parts by mass of the additive. When the blending amount of the dissolution accelerator is too small, the additive may not be sufficiently dissolved. On the other hand, if the blending amount of the dissolution accelerator is excessive, the effect is saturated, which is disadvantageous in terms of cost.
  • dissolution accelerator examples include 2-aminoethanol, tetraethylammonium hydroxide, ethylenediamine, 2,2'-iminodiethanol, and 1-amino-2-propanol.
  • the method for bringing the cooling aqueous solution into contact with the surface of the molten Zn alloy plating layer is not particularly limited.
  • Examples of the method of bringing the cooling aqueous solution into contact with the surface of the molten Zn alloy plating layer include a spray method and an immersion method.
  • FIG. 1 is a diagram showing an example of a method for bringing a cooling aqueous solution into contact with the surface of a molten Zn alloy plating layer.
  • FIG. 1A is a diagram illustrating an example of a method in which a cooling aqueous solution is brought into contact with the surface of a molten Zn alloy plating layer by a spray method.
  • FIG. 1B is a diagram illustrating an example of a method in which a cooling aqueous solution is brought into contact with the surface of a molten Zn alloy plating layer by an immersion method.
  • a cooling device 100 used for a spray system covers a plurality of spray nozzles 110, a squeeze roll 120 arranged on the downstream side in the feed direction of the steel strip S from the spray nozzles 110, and covers these. And a housing 130.
  • the spray nozzle 110 is arranged on both surfaces of the steel strip S.
  • the steel strip S is cooled inside the housing 130 while supplying an amount of cooling water from the spray nozzle 110 such that a water film is temporarily formed on the surface of the plating layer. Then, the cooling water is removed by the squeeze roll 120.
  • the cooling device 200 used in the dipping method includes a dipping cup 210 in which cooling water is stored, a dipping roll 220 disposed inside the dipping bowl 210, and a dipping roll 220. It has a squeezing roll 230 that is disposed downstream of the steel strip S in the feed direction and removes excess cooling water adhering to the steel strip S. After the steel strip S is put into the immersion tub 210, the direction is changed by the rotating immersion roll 220 while being in contact with the cooling water, and the steel strip S is pulled upward, and the cooling water is removed by the squeezing roll 230.
  • the manufacturing method of the present invention can suppress the problem that a part of the plated layer surface of the hot-dip Zn alloy-plated steel sheet turns black over time.
  • the mechanism that is supposed to suppress black change by the manufacturing method of the present invention will be explained.
  • the mechanism of black change suppression is not limited to these hypotheses.
  • “Temporarily forming a water film” refers to a state in which a water film in contact with the surface of the hot-dip Zn alloy-plated steel sheet is observed for 1 second or longer. At this time, the surface temperature of the hot-dip Zn alloy-plated steel sheet immediately before the water film was formed with cooling water was estimated to be about 160 ° C.
  • the produced hot-dip Zn alloy-plated steel sheet was stored indoors (room temperature 20 ° C., relative humidity 60%) for 1 week. And when the surface of the hot-dip Zn alloy-plated steel sheet after one week storage was observed with the naked eye, a dark part (blackened part) having no gloss compared with the surroundings was observed on the surface of the hot-dip Zn alloy-plated steel sheet.
  • FIG. 2A is an intensity profile of chemical bond energy corresponding to a 2p orbit of normal part Zn.
  • FIG. 2B is an intensity profile of chemical bond energy corresponding to Zn 2p orbit in the blackened portion.
  • FIG. 3A is an intensity profile of chemical bond energy corresponding to the 2p orbit of Al in the normal part.
  • FIG. 3B is an intensity profile of chemical bond energy corresponding to the 2p orbit of Al in the blackened portion.
  • FIG. 4A is an intensity profile of chemical bond energy corresponding to the normal portion Mg 2p orbit.
  • FIG. 4B is an intensity profile of chemical bond energy corresponding to the 2p orbit of Mg in the blackened portion.
  • the bonding state of Zn has an influence on the formation of the blackened portion, and it is suggested that the blackened portion may be formed due to the increase of the abundance ratio of Zn (OH) 2 . .
  • the present inventors made a hot-dip Zn alloy-plated steel sheet by bringing factory water (cooling water) into contact with the surface of the hot-dip Zn alloy plating layer without forming a water film with an air-water cooling device.
  • the produced hot-dip Zn alloy-plated steel sheet was stored indoors (room temperature 20 ° C., relative humidity 60%) for 1 week.
  • the surface gloss of the hot-dip Zn alloy-plated steel sheet was uniform, and formation of a dark part (blackened part) was not recognized.
  • the degree of gloss on the surface of the plating layer was almost the same as that of a normal part in a hot-dip Zn alloy-plated steel sheet produced by temporarily forming a water film.
  • FIG. 5 is an intensity profile of chemical bond energy corresponding to the 2p orbital of Zn. Note that the strength profiles of Al and Mg are omitted. As shown in FIG. 5, even when cooling water is contacted without forming a water film, a peak of about 1020 eV derived from metal Zn and a peak of 1022 eV derived from Zn (OH) 2 are observed. It was done. Moreover, it was found from the intensity ratio of Zn and Zn (OH) 2 that Zn was present more than Zn (OH) 2 . From this, it was estimated that the formation of Zn (OH) 2 was not promoted when the formation of a water film did not occur even when the cooling water contacted.
  • the present inventors have found that 1) Zn (OH) 2 is generated on the surface of the plating layer depending on the manufacturing conditions (for example, water quenching conditions) regarding the black change of the plating layer of the hot-dip Zn alloy-plated steel sheet. And 2) it was found that black changes are likely to occur in the region where Zn (OH) 2 was generated among the surfaces of the plating layer. Therefore, the present inventors have inferred the mechanism of the black change of the plating layer as follows.
  • Zn is partially eluted from the oxide film on the surface of the plating layer or the Zn phase of the plating layer.
  • Zn 2+ combines with OH ⁇ in the cooling water to become Zn (OH) 2 on the surface of the plating layer.
  • ZnO 1-X is the color center and is visually black.
  • the produced hot-dip Zn alloy-plated steel sheet was stored indoors (room temperature 20 ° C., relative humidity 60%) for 1 week.
  • room temperature 20 ° C., relative humidity 60% room temperature 20 ° C., relative humidity 60%
  • the surface gloss of the hot-dip Zn alloy-plated steel sheet was almost uniform, and formation of dark parts (blackened parts) was not recognized.
  • the glossiness of the steel sheet was almost the same as the normal part in the hot-dip Zn alloy-plated steel sheet produced by temporarily forming a water film using factory water.
  • FIG. 6 is an intensity profile of chemical bond energy corresponding to the 2p orbital of Zn in a normal part when a cooling aqueous solution containing V 5+ is used. Note that the strength profiles of Al and Mg are omitted. As shown in FIG. 6, even when a cooling aqueous solution containing V 5+ was used, a peak of about 1020 eV derived from metal Zn and a peak of about 1022 eV derived from Zn (OH) 2 were observed.
  • the above-described method for producing a hot-dip Zn alloy-plated steel sheet according to the present invention can be carried out, for example, in the following production line.
  • FIG. 7 is a schematic view of a part of a production line 300 for a hot-dip Zn alloy-plated steel sheet.
  • the production line 300 can continuously produce hot-dip Zn alloy-plated steel sheets by forming a plating layer on the surface of a base steel sheet (steel strip).
  • the production line 300 can also produce a chemical conversion treatment plated steel plate continuously by further forming a chemical conversion treatment film on the surface of a plating layer as needed.
  • the production line 300 includes a furnace 310, a plating bath 320, an air jet cooler 340, an air / water cooling zone 350, a water quench zone 360, a skin pass mill 370, and a tension labeler 380.
  • the steel strip S fed out from a feeding reel (not shown) is heated in the furnace 310 through a predetermined process.
  • the molten steel adheres to the front and back surfaces of the steel strip S by immersing the heated steel strip S in the plating bath 320.
  • excess molten metal is removed by a wiping device having the wiping nozzle 330, and a predetermined amount of molten metal is adhered to the surface of the steel strip S.
  • the steel strip S to which a predetermined amount of molten metal adheres is cooled to below the freezing point of the molten metal by the air jet cooler 340 and the air / water cooling zone 350.
  • the air jet cooler 340 is a facility for cooling the steel strip S by gas blowing.
  • the air-water cooling zone 350 is a facility intended to cool the steel strip S by spraying a mist-like fluid (for example, cooling water) and gas. Thereby, the molten metal is solidified and a molten Zn alloy plating layer is formed on the surface of the steel strip S.
  • a mist-like fluid for example, cooling water
  • the hot-dip Zn alloy plated steel sheet cooled to a predetermined temperature is further cooled in the water quench zone 360.
  • the water quench zone 360 is equipment for the purpose of cooling the steel strip S by contact with a large amount of cooling water compared to the air-water cooling zone 350, and the amount by which a water film is temporarily formed on the surface of the plating layer. Supply water.
  • the water quench zone 360 seven rows of 10 flat spray nozzles arranged at intervals of 150 mm in the width direction of the steel strip S are arranged in the feed direction of the base steel plate S.
  • one or more polyatomic ions selected from the group consisting of polyatomic ions containing V 5+ , polyatomic ions containing Si 4+ and polyatomic ions containing Cr 6+ are converted into atoms.
  • An aqueous solution containing 0.01 g / L or more in total is used as the cooling aqueous solution.
  • the steel strip S is cooled while supplying a quantity of cooling water that temporarily forms a water film on the surface of the plating layer.
  • the water temperature of the cooling aqueous solution is about 20 ° C.
  • the water pressure is about 2.5 kgf / cm 2
  • the amount of water is about 150 m 3 / h.
  • “Temporarily forming a water film” means a state in which water droplets in contact with the hot-dip Zn alloy-plated steel sheet are observed for about 1 second or longer.
  • the water-cooled hot-dip Zn alloy-plated steel sheet is temper-rolled by a skin pass mill 370, straightened by a tension leveler 380, and wound around a tension reel 390.
  • a predetermined chemical conversion treatment solution is applied by the roll coater 400 to the surface of the hot dip Zn alloy plated steel plate corrected by the tension leveler 380.
  • the hot-dip Zn alloy plated steel sheet that has been subjected to the chemical conversion treatment is dried and cooled in the drying zone 410 and the air cooling zone 420 and then wound around the tension reel 390.
  • the method for producing a hot-dip Zn alloy-plated steel sheet of the present invention is a hot-dip Zn alloy plating that is excellent in resistance to blackening by simply bringing an aqueous solution containing predetermined polyatomic ions into contact with the surface of the hot-dip Zn alloy plating layer.
  • a steel plate can be easily manufactured with high productivity.
  • Hot-dip Zn alloy-plated steel sheet was manufactured using the production line 300 shown in FIG.
  • a base steel plate (steel strip) S a hot-rolled steel strip having a thickness of 2.3 mm was prepared.
  • the base steel plate was plated with the plating bath composition and plating conditions shown in Table 1 to produce eight types of hot-dip Zn alloy plated steel plates having different plating layer compositions.
  • the composition of the plating bath and the composition of the plating layer are almost the same.
  • [Al / Zn / Zn 2 Mg ternary eutectic structure] was confirmed in any hot-dip Zn alloy-plated steel sheet in cross-sectional observation of the plated layer.
  • the cooling conditions in the air jet cooler 340 and the air / water cooling zone 350 are changed, and the temperature of the steel sheet (plating layer surface) immediately before passing through the water quench zone 360 is 100 ° C., 120 It adjusted so that it might become ° C, 160 ° C, 200 ° C or 250 ° C.
  • a header in which ten flat spray nozzles were arranged at intervals of 150 mm in the width direction was arranged in seven rows in the feed direction of the base steel plate S.
  • the cooling conditions in the water quench zone 360 were cooling water: water (pH 7.6, water temperature 20 ° C.), water pressure: 2.5 kgf / cm 2 , and water amount: 150 m 3 / h.
  • Optical conditions d / 8 ° method (double beam optical system) Field of view: 2 degree field of view Measurement method: Reflected light measurement Standard light: C Color system: CIELAB Measurement wavelength: 380 to 780 nm Measurement wavelength interval: 5 nm Spectrometer: Diffraction grating 1200 / mm Lighting: Halogen lamp (voltage 12V, power 50W, rated life 2000 hours) Measurement area: 7.25mm ⁇ Detection element: Photomultiplier tube (R928; Hamamatsu Photonics Co., Ltd.) Reflectance: 0-150% Measurement temperature: 23 ° C Standard plate: white
  • Evaluation Results Table 3 shows the relationship between the gloss deterioration promoting condition and the temperature of the steel plate (plating layer surface) immediately before cooling in the water quench zone 360 and the evaluation result of the degree of black change for each plated steel plate.
  • the test piece (plating Nos. 3, 5, and 7) on which the Si-containing plating layer was formed had a steel plate temperature of 250 ° C. immediately before cooling in the water quench zone 360. Even so, the blackening resistance was good.
  • the test piece (plating No. 1, 2, 4, 6, 8) in which the plating layer not containing Si was formed black change occurred when the steel plate temperature just before cooling in the water quench zone 360 was 120 ° C. or higher. occured.
  • Example 2 In Experiment 2, the blackening resistance of the molten Zn alloy plated layer when the molten Zn alloy plated steel sheet was cooled using a cooling aqueous solution containing polyatomic ions was examined. In this experiment, no. The blackening resistance when the gloss deterioration promotion treatment was performed under the condition 1 was examined.
  • the temperature of the steel sheet (plated layer surface) immediately before passing through the water quench zone 360 is changed to 100 ° C, 120 ° C, 160 ° C, 200 ° C by changing the cooling conditions in the air jet cooler 340. It adjusted so that it might become degreeC or 250 degreeC.
  • any one of the aqueous solutions shown in Table 4 was used as a cooling aqueous solution.
  • Each cooling aqueous solution was prepared by dissolving the additives shown in Table 4 in water at pH 7.6 and, if necessary, a dissolution accelerator at a predetermined ratio, and then adjusting the water temperature to 20 ° C.
  • each cooling aqueous solution supplied from the water quench zone 360 was water pressure: 2.5 kgf / cm 2 and water amount: 150 m 3 / h.
  • Table 6 shows the relationship between the concentration of the additive of the cooling aqueous solution used and the concentration of the additive. Each result is shown in the table of numbers shown in Table 6.
  • test piece No.” appearing in each table is defined by the following rules so that the contents of the experiment can be understood. That is, test piece No. Was ((Gloss degradation promoting condition No .; see Table 2)-(Plating No .; see Table 1)-(Concentration symbols of cooling aqueous solution No. and polyatomic ions; see Table 4 and Table 5)).
  • Al and Mg in the plating layer are within a predetermined concentration range, have a plating layer not containing Si, and contain V 5+ , Si 4+ or Cr 6+. Even in the case of using an aqueous solution containing atomic ions, the black change could not be sufficiently suppressed when the concentration of polyatomic ions was 0.001 g / L in terms of atoms.
  • water quenching is achieved by cooling with an aqueous solution containing polyatomic ions containing V 5+ , Si 4+ or Cr 6+ and having a polyatomic ion concentration of 0.01 g / L or more in terms of atoms. It can be seen that the black change can be sufficiently suppressed regardless of the steel plate temperature immediately before cooling in the zone 360.
  • Table 19 shows the relationship between the concentration of the additive of the cooling water solution used and the concentration of the additive. Each result is shown in the table of numbers shown in Table 19.
  • Tables 20 to 32 show the relationship between the type of cooling aqueous solution used and the temperature of the steel sheet (plating layer surface) immediately before cooling in the water quench zone 360 and the evaluation result of the degree of black change for each plated steel sheet.
  • the cooling aqueous solution is V 5+ , Si 4+ or Even when polyatomic ions containing Cr 6+ were included, the blackening resistance was poor when cooled using an aqueous solution having a polyatomic ion concentration of 0.001 g / L or more in terms of atoms.
  • Experiment 2 The gloss deterioration promoting process is performed under the condition of 1. In this case, if Al and Mg in the plating layer are within a predetermined concentration range and the plating layer contains Si, blackening resistance is prevented regardless of the steel plate temperature immediately before cooling in the water quench zone 360. Was good. On the other hand, Experiment 3 No. 1 more severe than No. 1. The gloss deterioration promoting treatment is performed under the condition of 2. In Experiment 3, a cooling aqueous solution containing polyatomic ions containing V 5+ , Si 4+ or Cr 6+ was used in the cooling aqueous solution even when the plating layer contained Si, and the concentration of polyatomic ions was 0 in terms of atoms.
  • Example 4 In Experiment 4, seven types of hot-dip Zn alloy-plated steel sheets with different plating layer compositions were produced by forming a plating layer on the base steel sheet with the plating bath composition (Nos. 1 to 7) and plating conditions shown in Table 1. did.
  • the water quench zone 360 was cooled using a cooling aqueous solution containing polyatomic ions containing one type of V 5+ , Si 4+ or Cr 6+ shown in Table 4. .
  • each test piece was subjected to chemical conversion treatment under the following chemical conversion treatment conditions A to C. Subsequently, as in Experiment 3, No. 2 in Table 2 was obtained. The blackening resistance in the case of the gloss deterioration accelerating treatment under the condition 2 was examined, and the degree of black change was evaluated.
  • Zinchrome 3387N (chromium concentration 10 g / L, Nippon Parkerizing Co., Ltd.) was used as the chemical conversion treatment liquid.
  • the chemical conversion treatment liquid was applied by a spray ringer roll method so that the chromium adhesion amount was 10 mg / m 2 .
  • the chemical conversion treatment condition B an aqueous solution containing magnesium phosphate 50 g / L, potassium titanium fluoride 10 g / L, and organic acid 3 g / L was used as the chemical conversion treatment liquid.
  • the chemical conversion treatment liquid was applied by a roll coating method so that the metal component adhesion amount was 50 mg / m 2 .
  • chemical conversion treatment condition C an aqueous solution containing 20 g / L of urethane resin, 3 g / L of ammonium dihydrogen phosphate, and 1 g / L of vanadium pentoxide was used as the chemical conversion treatment liquid.
  • the chemical conversion treatment liquid was applied by a roll coater and a method so that the dry film thickness was 2 ⁇ m.
  • Table 33 shows the relationship between the type of cooling aqueous solution used and the temperature of the steel plate (plating layer surface) just before cooling in the water quench zone 360 and the evaluation result of the degree of black change for each plated steel plate.
  • the “test piece No.” appearing in Table 33 was defined by the following rules so that the contents of the experiment could be understood. That is, test piece No. Is “(plating No .; see Table 1) ⁇ (cooling aqueous solution No. and concentration symbols of polyatomic ions; see Table 4 and Table 5)”.
  • test no As shown in FIGS. 6 and 7, even when each chemical conversion treatment is performed on a test piece containing Al and Mg in the plating layer and forming a plating layer containing Si, the concentration of polyatomic ions is atomic. When cooled using an aqueous solution of 0.01 g / L or more in terms of conversion, the blackening resistance was good.
  • Test No. As shown in FIG. 8, even when each chemical conversion treatment was performed on a test piece in which a plating layer containing Al and Mg and containing no Si was formed, the cooling aqueous solution was V 5+ , Si 4+ or In the cooling aqueous solution not containing any of Cr 6+ , black change could not be suppressed.
  • Test No. As shown in FIG. 9, even when Al and Mg in the plating layer are within a predetermined concentration range and each chemical conversion treatment is performed on the test piece on which the plating layer containing Si is formed, cooling is performed. In the cooling aqueous solution in which the aqueous solution does not contain any of V 5+ , Si 4+ or Cr 6+ , black change could not be suppressed.
  • the hot-dip Zn alloy-plated steel sheet obtained by the production method of the present invention has good blackening resistance regardless of the type of chemical conversion treatment.
  • Example 5 In Experiment 5, as a base steel plate (steel strip S), a plating layer was formed on a hot-rolled steel plate having a plate thickness of 2.3 mm with the plating bath composition (No. 9, 10) and plating conditions shown in Table 34, Two types of hot-dip Zn alloy-plated steel sheets having different plating layer compositions were produced.
  • the same cooling method as in Experiment 1 see paragraph 0068
  • Experiment 2 see paragraph 0079
  • Table 35 shows the evaluation result of the degree of black change of the hot-dip Zn alloy-plated steel sheet cooled under the same conditions as in Experiment 1.
  • test piece No. A-9 in which the plating layer containing no Si was formed in the plating layer, the steel plate surface temperature just before cooling in the water quench zone 360 was lowered to 100 ° C. If not, no.
  • the gloss deterioration accelerating treatment was performed under the condition 1, a black change occurred.
  • the test piece (test piece No. B-9) subjected to the gloss deterioration promotion test under the condition 2 exhibited a black change even when the steel sheet surface temperature was lowered to 100 ° C.
  • test piece No. A-10 in which the plating layer containing Si was formed on the plating layer had a No. 1 steel plate surface temperature of 250 ° C. immediately before cooling in the water quench zone 360.
  • the black change resistance was good without black change.
  • no. in the test piece (test piece No. B-10) subjected to the gloss deterioration acceleration test under the condition of 2 if the steel plate surface temperature immediately before cooling in the water quench zone 360 is not lowered to 120 ° C., the black change will occur. occured.
  • Table 36 shows the relationship between the concentration of the additive of the cooling aqueous solution used and the concentration of the additive. Each result is shown in the table of numbers shown in Table 36.
  • Tables 37 to 39 show the relationship between the type of the cooling aqueous solution used and the temperature of the steel plate (plating layer surface) immediately before cooling in the water quench zone 360 and the evaluation result of the degree of black change for each plated steel plate.
  • Table 40 shows the relationship between the concentration of the additive and the cooling water solution used. Each result is shown in the table of numbers shown in Table 40.
  • cooling is performed using a cooling aqueous solution containing polyatomic ions containing Al and Mg in the plating layer within a predetermined concentration range and containing V 5+ , Si 4+ or Cr 6+. Even when the concentration of polyatomic ions was less than 0.001 g / L in terms of atoms, the blackening resistance was not improved.
  • a test piece having a plating layer in which Al and Mg in the plating layer are within a predetermined concentration range and contains Ti contains V 5+ , Si 4+ or Cr 6+ .
  • concentration of polyatomic ions is 0.01 g / L in terms of atoms
  • the hot-dip Zn alloy-plated steel sheet obtained by the production method of the present invention is excellent in blackening resistance, it is useful as a plated steel sheet used for, for example, building roofing materials, exterior materials, home appliances, and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 基材鋼板をAlまたはMgを含む溶融Zn合金めっき浴に浸漬して、前記基材鋼板の表面に溶融Zn合金めっき層を形成する。次いで、V5+を含有する多原子イオン、Si4+を含有する多原子イオンおよびCr6+を含有する多原子イオンからなる群から選択される1または2以上の多原子イオンを含有する水溶液を、前記溶融合金めっき層の表面に接触させる。水溶液は、前記多原子イオンを、V、SiおよびCrからなる群から選択される1または2以上の原子換算で、0.01g/L以上含有する。

Description

溶融Zn合金めっき鋼板の製造方法
 本発明は、耐黒変性に優れる溶融Zn合金めっき鋼板の製造方法に関する。
 耐食性に優れるめっき鋼板として、基材鋼板の表面に、AlおよびMgを含む溶融Zn合金めっき層が形成された溶融Zn合金めっき鋼板が知られている。溶融Zn合金めっき鋼板のめっき層の組成としては、例えばAl:4.0~15.0質量%、Mg:1.0~4.0質量%、Ti:0.002~0.1質量%、B:0.001~0.045質量%、残部:Znおよび不可避不純物を含むものがある。この溶融Zn合金めっき鋼板は、[Al/Zn/ZnMgの三元共晶組織]の素地中に[初晶Al]および[Zn単相]が混在した金属組織からなるめっき層を有しており、工業製品として十分な耐食性と表面外観を有している。
 前述の溶融Zn合金めっき鋼板は、以下の工程により連続的に製造されうる。まず、炉を通した基材鋼板(鋼帯)をAlおよびMgを含有する溶融Zn合金めっき浴に浸漬した後、例えば、ガスワイピング装置に通すことで、基材鋼板の表面に付着した溶融金属を所定量となるように調整する。次いで、所定量の溶融金属が付着した鋼帯を、エアジェットクーラーおよび気水冷却領域に通すことで、溶融金属を冷却して、溶融Zn合金めっき層が形成される。さらに、溶融Zn合金めっき層が形成された鋼帯をウォータークエンチ帯域に通して、冷却水を接触させることにより、溶融Zn合金めっき鋼板を得る。
 しかしながら、このように製造された溶融Zn合金めっき鋼板は、経時的にめっき層表面の一部が黒変化してしまう場合があった。めっき層表面の黒変化は、早い場合では製造後2~3日後に発生し、製造条件によっては4~7日後に発生することもあり、溶融Zn合金めっき鋼板の美観を損ねていた。
 このような黒変化を防止する方法として、ウォータークエンチ帯域におけるめっき層表面の温度を調整する方法が提案されている(例えば、特許文献1参照)。特許文献1の発明では、ウォータークエンチ帯域で冷却水に接触させる際のめっき層表面の温度を105℃未満にすることで、めっき層表面の黒変化を防止している。また、めっき層表面の温度を105℃未満にする代わりに、めっき浴に易酸化元素(希土類元素、Y、ZrまたはSi)を配合するとともにめっき層表面の温度を105~300℃にすることでも、めっき層表面の黒変化を防止している。
特開2002-226958号公報
 特許文献1の発明では、ウォータークエンチ帯域に通す前にめっき層表面を所定の温度まで冷却する必要があったため、溶融Zn合金めっき鋼板の生産が制限される場合があった。たとえば、板厚が厚いめっき鋼板では、めっき鋼板の送り速度を遅くしてめっき鋼板を所定の温度まで冷却する必要があるため、生産性が低下してしまっていた。また、易酸化元素をめっき浴に配合する場合は、易酸化元素がドロスになりやすく、易酸化元素の濃度管理が煩雑であるため、製造工程が煩雑になるという問題があった。
 本発明の目的は、生産性を低下させることなく、かつ煩雑なめっき浴の成分管理を行うことなく、めっき層表面の黒変化を容易に抑制することができる、溶融Zn合金めっき鋼板の製造方法を提供することである。
 本発明者らは、溶融Zn合金めっき層を形成した後に接触させる冷却水に、所定の濃度で所定の多原子イオンを含有させることで、上記課題を解決することができることを見出し、さらに検討を加えて本発明を完成させた。
 すなわち、本発明は、以下の溶融Zn合金めっき鋼板の製造方法に関する。
 [1]基材鋼板をAlおよびMgを含む溶融Zn合金めっき浴に浸漬して、前記基材鋼板の表面に溶融Zn合金めっき層を形成する工程と、V5+を含有する多原子イオン、Si4+を含有する多原子イオンおよびCr6+を含有する多原子イオンからなる群から選択される1または2以上の多原子イオンを含有する水溶液を、前記溶融Zn合金めっき層の表面に接触させる工程と、を有し、前記水溶液は、前記多原子イオンを、V、SiおよびCrからなる群から選択される1または2以上の原子換算で、0.01g/L以上含有する、溶融Zn合金めっき鋼板の製造方法。
 [2]前記水溶液を前記溶融Zn合金めっき層の表面に接触させる時の、前記溶融Zn合金めっき層の表面の温度は、100℃以上、かつめっき層の凝固点以下である、[1]に記載の溶融Zn合金めっき鋼板の製造方法。
 [3]前記溶融Zn合金めっき層は、Al:1.0~22.0質量%、Mg:0.1~10.0質量%、残部:Znおよび不可避不純物を含む、[1]または[2]に記載の溶融Zn合金めっき鋼板の製造方法。
 [4]前記溶融Zn合金めっき層は、Si:0.001~2.0質量%をさらに含む、[3]に記載の溶融Zn合金めっき鋼板の製造方法。
 [5]前記溶融Zn合金めっき層は、Ti:0.001~0.1質量%をさらに含む、[3]または[4]に記載の溶融Zn合金めっき鋼板の製造方法。
 [6]前記溶融Zn合金めっき層は、B:0.001~0.045質量%をさらに含む、[3]~[5]のいずれか一項に記載の溶融Zn合金めっき鋼板の製造方法。
 本発明によれば、耐黒変性に優れる溶融Zn合金めっき鋼板を、高い生産性で容易に製造することができる。
図1A,Bは、冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の例を示す図である。 図2A,Bは、冷却水として水を使用し、一時的に水膜を形成させ、溶融Zn合金めっき層を冷却した場合のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 図3A,Bは、冷却水として水を使用し、一時的に水膜を形成させ、溶融Zn合金めっき層を冷却した場合のAlの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 図4A,Bは、冷却水として水を使用し、一時的に水膜を形成させ、溶融Zn合金めっき層を冷却した場合のMgの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 冷却水として水を使用し、水膜を形成させることなく、溶融Zn合金めっき層を冷却した場合のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 5+を含有する冷却水溶液を使用し、一時的に水膜を形成させ、溶融Zn合金めっき層を冷却した場合のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。 溶融Zn合金めっき鋼板の製造ラインの一部の構成を示す模式図である。
 本発明の溶融Zn合金めっき鋼板(以下、単に「めっき鋼板」ともいう。)の製造方法は、(1)基材鋼板の表面に溶融Zn合金めっき層(以下、単に「めっき層」ともいう。)を形成する第1工程と、(2)多原子イオンを含む冷却水溶液を溶融Zn合金めっき層の表面に接触させる第2工程と、を有する。本発明の製造方法は、溶融Zn合金めっき層を形成した後に、所定の冷却水溶液をめっき層表面に接触させることで、めっき層の黒変化を抑制することを特徴の一つとする。
 (1)第1工程
 第1工程では、基材鋼板をAlおよびMgを含む溶融Zn合金めっき浴に浸漬して、基材鋼板の表面に溶融Zn合金めっき層を形成する。
 [基材鋼板]
 基材鋼板の種類は、特に限定されない。たとえば、基材鋼板としては、低炭素鋼や中炭素鋼、高炭素鋼、合金鋼などからなる鋼板を使用することができる。良好なプレス成形性が必要とされる場合は、低炭素Ti添加鋼、低炭素Nb添加鋼などからなる深絞り用鋼板が基材鋼板として好ましい。また、P、Si、Mnなどを添加した高強度鋼板を用いてもよい。
 [めっき層の形成]
 まず、AlおよびMgを含む溶融Zn合金めっき浴に基材鋼板を浸漬し、ガスワイピングなどを用いることによって、所定量の溶融金属を基材鋼板の表面に付着させる。
 めっき浴の組成は、例えば、めっき浴として、Al:1.0~22.0質量%、Mg:0.1~10.0質量%、残部:Znおよび不可避不純物を含むものを使用することができる。また、めっき浴は、Si:0.001~2.0質量%をさらに含んでいてもよい。さらに、めっき浴は、Ti:0.001~0.1質量%、B:0.001~0.045質量%をさらに含んでいてもよい。特許文献1に記載されているように、Siを添加することでめっき層の黒変化を抑制することができるが、本発明の製造方法によりめっき鋼板を製造する場合は、Siを添加しなくてもめっき層の黒変化を抑制することができる。
 次いで、基材鋼板の表面に付着した溶融金属を冷却し、溶融金属を凝固させることで、基材鋼板の表面にめっき浴の成分組成とほぼ同じ組成のめっき層が形成されためっき鋼板を得ることができる。
 上記組成の溶融Zn合金めっき層は、[Al/Zn/ZnMgの三元共晶組織]を含む。溶融Zn合金めっき層の断面を観察すると、[Al/Zn/ZnMgの三元共晶組織]は、Al,Zn,ZnMgの各相がラメラ状に細かく分布している。この[Al/Zn/ZnMgの三元共晶組織]がめっき層表面に出現した場合でも、Al,Zn,ZnMgの各相が細かく分布している。
 特に図示しないが、断面観察において、この[Al/Zn/ZnMgの三元共晶組織]が占める面積の割合は、めっき組成によって異なる。Zn-Al-Mgの三元系においては、Alが4質量%、Mgが3質量%、残部がZnの組成付近が共晶組成である。このため、めっき組成がこの三元共晶組成に近い場合には、[Al/Zn/ZnMgの三元共晶組織]は80%ほどの面積率を示し、めっき層断面において最も広い面積率を示す相となる。しかし、めっき層の組成が3元共晶組成から離れるほど、[Al/Zn/ZnMgの三元共晶組織]の面積率は減少し、[Al/Zn/ZnMgの三元共晶組織]よりも他の相が面積率として最大となることもある。
 上記組成の溶融Zn合金めっき層は、[Al/Zn/ZnMgの三元共晶組織]以外に、めっき組成によって、初晶としてAl相、Zn相またはZnMg相を含んでいたり、めっき組成にSiが含まれるときはMgSi相を含んでいたりすることがある。
 また、めっき層の表面には、Al,Zn,Mgを含む酸化皮膜が形成されている。なお、めっき浴に所定量のSiが含有する場合には、酸化皮膜中にSiが含有されることがある。
 溶融Zn合金めっき層の付着量は、特に限定されない。たとえば、溶融Zn合金めっき層の付着量は、60~500g/m程度である。
 (2)第2工程
 第2工程では、所定の多原子イオンを含有する水溶液(冷却水溶液)を、溶融Zn合金めっき層の表面に接触させる。生産性の観点からは、第2工程は、ウォータークエンチ(水冷)工程として行われることが好ましい。この場合、冷却水溶液を溶融Zn合金めっき層の表面に接触させる時の、溶融Zn合金めっき層の表面の温度は、100℃以上、かつめっき層の凝固点以下程度である。
 冷却水溶液に含まれる多原子イオンは、V5+を含有する多原子イオン、Si4+を含有する多原子イオンおよびCr6+を含有する多原子イオンからなる群から選択される。これらの多原子イオンは、めっき層表面の黒変化を抑制することができる。これらの多原子イオンは、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 多原子イオンを含む冷却水溶液を調製する方法は、特に限定されない。たとえば、V5+を含有する多原子イオンを含む冷却水溶液を調製する場合は、所定の化合物(V化合物、Si化合物またはCr化合物;以下「添加剤」ともいう)と、必要に応じて溶解促進剤と、を水(溶媒)に溶解させればよい。好適なV化合物の例には、アセチルアセトンバナジル、バナジウムアセチルアセトネート、オキシ硫酸バナジウム、五酸化バナジウム、バナジン酸アンモニウムが含まれる。また、好適なSi化合物の例には、ケイ酸ナトリウムが含まれる。さらに、好適なCr化合物の例には、クロム酸アンモニウム、クロム酸カリウムが含まれる。
 上記V5+を含有する多原子イオン、Si4+を含有する多原子イオンまたはCr6+を含有する多原子イオンの濃度は、V、Si、Cr換算で0.01g/L以上であることが好ましい。2種以上の化合物を組み合わせて使用する場合は、V、Si、Cr換算での合計の濃度が0.01g/L以上であればよい。これらの多原子イオンの濃度がV、Si、Cr換算で0.01g/L未満の場合、めっき層表面の黒変化を十分に抑制できないおそれがある。
 また、溶解促進剤を配合する場合、溶解促進剤の配合量は、特に限定されない。たとえば、添加剤100質量部に対して、溶解促進剤90~130質量部を配合すればよい。溶解促進剤の配合量が過少量の場合、添加剤を十分に溶解させることができないことがある。一方、溶解促進剤の配合量が過剰量の場合、効果が飽和してしてしまい、費用的に不利である。
 溶解促進剤の例には、2-アミノエタノール、テトラエチルアンモニウムヒドロキシド、エチレンジアミン、2,2’-イミノジエタノール、1-アミノ-2-プロパノールが含まれる。
 冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法は、特に限定されない。冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の例には、スプレー方式、浸漬方式が含まれる。
 図1は、冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の例を示す図である。図1Aは、スプレー方式によって冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の一例を示す図である。図1Bは、浸漬方式によって冷却水溶液を溶融Zn合金めっき層の表面に接触させる方法の一例を示す図である。
 図1Aに示されるように、スプレー方式に使用される冷却装置100は、複数のスプレーノズル110と、スプレーノズル110より鋼帯Sの送り方向下流側に配置された絞りロール120と、これらを覆う筐体130とを有する。スプレーノズル110は、鋼帯Sの両面に配置されている。鋼帯Sは、筐体130の内部で、めっき層の表面に一時的に水膜が形成されるような量の冷却水がスプレーノズル110から供給されながら冷却される。そして、絞りロール120で冷却水が除去される。
 また、図1Bに示されるように、浸漬方式に使用される冷却装置200は、冷却水が貯留された浸漬漕210と、浸漬漕210の内部に配置された浸漬ロール220と、浸漬ロール220より鋼帯Sの送り方向下流側に配置され、鋼帯Sに付着した余分な冷却水を除去する絞りロール230とを有する。鋼帯Sは、浸漬漕210に投入された後、冷却水と接触しながら、回転する浸漬ロール220によって方向転換して上方へ向かって引き上げられ、絞りロール230で冷却水が除去される。
 本発明の製造方法により、溶融Zn合金めっき鋼板のめっき層表面の一部が経時的に黒変化してしまう不具合を抑制できる理由は定かではない。以下、溶融Zn合金めっき層における黒変化発生の推察されるメカニズムを説明した後に、本発明の製造方法による黒変化抑制の推察されるメカニズムを説明する。しかしながら、黒変化抑制のメカニズムは、これらの仮説に限定されるものではない。
 (黒変化発生のメカニズム)
 まず、めっき層表面の黒変化の発生および黒変化の抑制の推察されるメカニズムに至るまでの過程を説明する。本発明者らは、基材鋼板の表面に、Al:6質量%、Mg:3質量%、Si:0.024質量%、Ti:0.05質量%、B:0.003質量%およびZn:残部のめっき組成の溶融Zn合金めっき層を形成し、次いでスプレー方式のウォータークエンチ帯域により冷却水(工場内用水;pH7.6、20℃)による水膜を一時的に形成させることで、溶融Zn合金めっき鋼板を作製した。なお、「一時的に水膜が形成される」とは、目視で1秒以上、溶融Zn合金めっき鋼板の表面に接触している水膜が観察される状態をいう。このとき、冷却水により水膜が形成される直前の溶融Zn合金めっき鋼板の表面温度は、160℃程度と推測された。
 作製した溶融Zn合金めっき鋼板を室内(室温20℃、相対湿度60%)で1週間保管した。そして、1週間保管後の溶融Zn合金めっき鋼板の表面を目視により観察したところ、溶融Zn合金めっき鋼板の表面には、周囲と比較して光沢がない暗部(黒変部)が観察された。
 また、作製直後の溶融Zn合金めっき鋼板における無作為に選択した30箇所の部位について、XPS分析法(X-ray Photoelectoron Spectroscopy)により、Zn、AlおよびMgの化学結合状態を分析した。その後、分析を行った溶融Zn合金めっき鋼板を室内(室温20℃、相対湿度60%)で1週間保管した。そして、1週間保管後の溶融Zn合金めっき鋼板の表面を目視により観察したところ、溶融Zn合金めっき鋼板の一部において暗部(黒変部)の形成が観察された。そこで、暗部(黒変部)が形成された部位と、暗部の形成が認められなかった部位(通常部)に関して、溶融Zn合金めっき鋼板作製直後のXPS分析結果の比較を行った。
 図2~図4は、通常部と黒変部に関して、作製直後の溶融Zn合金めっき鋼板におけるXPS分析の結果を示すグラフである。図2Aは、通常部のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図2Bは、黒変部のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図3Aは、通常部のAlの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図3Bは、黒変部のAlの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図4Aは、通常部のMgの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図4Bは、黒変部のMgの2p軌道に対応する化学結合エネルギーの強度プロファイルである。
 図2Aに示されるように、通常部におけるZnの分析では、金属Znに由来する約1020eVのピークと、金属Znに由来するピークより強度の弱い、Zn(OH)に由来する約1022eVのピークとが観察された。この分析結果から、通常部において、Znは、金属Znとして存在するだけでなく水酸化物(Zn(OH))としても存在することがわかる。なお、ZnとZn(OH)の強度比から、通常部では、ZnがZn(OH)より多く存在していることがわかる。
 一方、図2Bに示されるように、黒変部におけるZnの分析でも、金属Znに由来する約1020eVのピークと、金属Znに由来するピークより強度の強い、Zn(OH)に由来する約1022eVのピークとが観察された。この分析結果から、黒変部において、Znは、通常部と同様に、金属Znとして存在するだけでなく水酸化物(Zn(OH))としても存在することがわかる。なお、ZnとZn(OH)の強度比から、黒変部では、Zn(OH)がZnより多く存在していることがわかる。
 図3Aおよび図3Bに示されるように、通常部および黒変部におけるAlの分析では、金属Alに由来する約72eVのピークと、金属Alに由来するピークより強度の弱い、Alに由来する約74eVのピークとがそれぞれ観察された。この分析結果から、通常部および黒変部において、Alは、金属Alおよび酸化物(Al)として存在することがわかる。なお、通常部および黒変部のいずれの場合であっても、AlがAlよりも多く、通常部および黒変部で存在比率に大きな変化はなかった。
 図4Aおよび図4Bに示されるように、通常部および黒変部におけるMgの分析では、金属Mg、Mg(OH)およびMgOに由来する約49~50eVのピークが観察された。この分析結果から、通常部および黒変部において、Mgは、金属Mg、酸化物(MgO)および水酸化物(Mg(OH))として存在することがわかる。なお、通常部および黒変部における金属Mg、Mg(OH)およびMgOの存在比率に大きな変化はなかった。
 これらの結果より、黒変部の形成にはZnの結合状態が影響を及ぼしており、Zn(OH)の存在比率の増加に起因して黒変部が形成される可能性が示唆された。
 次いで、本発明者らは、気水冷却装置により工場内用水(冷却水)を溶融Zn合金めっき層の表面に、水膜を形成させることなく接触させて、溶融Zn合金めっき鋼板を作製した。作製した溶融Zn合金めっき鋼板を室内(室温20℃、相対湿度60%)で1週間保管した。そして、1週間保管した溶融Zn合金めっき鋼板の表面を目視により観察したところ、溶融Zn合金めっき鋼板の表面光沢は均一であり、暗部(黒変部)の形成は認められなかった。また、めっき層表面の光沢の程度は、一時的に水膜を形成して作製した溶融Zn合金めっき鋼板における通常部とほぼ同等であった。
 次に、水膜を形成させることなく作製した直後の溶融Zn合金めっき鋼板を、XPS分析にて分析した。図5は、Znの2p軌道に対応する化学結合エネルギーの強度プロファイルである。なお、AlおよびMgの強度プロファイルは、省略する。図5に示されるように、水膜を形成させることなく、冷却水を接触させた場合でも、金属Znに由来する約1020eVのピークと、Zn(OH)に由来する1022eVのピークとが観察された。また、ZnおよびZn(OH)の強度比から、ZnがZn(OH)より多く存在していることがわかった。このことから、冷却水が接触した場合でも、水膜の形成が起こらない場合、Zn(OH)の生成は促進されないものと推定された。
 これらの結果より、Zn(OH)の生成には、冷却工程における水膜の形成が影響を及ぼしていることが示唆された。水膜が形成されない場合には、Zn(OH)が生成されにくいため、黒変化が抑制されると推察される。
 上述したように、本発明者らは、溶融Zn合金めっき鋼板のめっき層の黒変化について、1)製造条件(例えば、ウォータークエンチの条件)によってめっき層の表面にZn(OH)が生成されることがあること、および2)めっき層の表面のなかでも、Zn(OH)が生成された領域で黒変化が生じやすいこと、を見出した。そこで、本発明者らは、めっき層の黒変化の機構について、以下のように推察した。
 まず、高温(例えば160℃程度)のめっき層表面に冷却水が接触すると、めっき層表面の酸化皮膜またはめっき層のZn相から、Znが部分的に溶出する。
 Zn→Zn2++2e   …(1)
 Zn2+は、冷却水中のOHと結合してめっき層表面でZn(OH)となる。
 Zn2++2OH→Zn(OH)   …(2)
 そして、時間を経るとともに、めっき層表面のZn(OH)の一部は、脱水反応によりZnOとなる。
 Zn(OH)→ZnO+HO   …(3)
 次いで、ZnOの一部は、めっき層のAlやMgによってOが奪われて、ZnO1-Xとなる。このZnO1-Xが色中心となって、目視では黒色を呈する。
 (黒変化抑制のメカニズム)
 次いで、本発明者らは、工場内用水の代わりに、V5+を含有する多原子イオンを1.0g/Lの濃度で含有させた冷却水溶液を使用し、スプレー方式のウォータークエンチ帯域によりめっき層の表面に、一時的に水膜を形成させ、溶融Zn合金めっき鋼板を作製した。このとき、冷却水溶液に接触する直前の溶融Zn合金めっき鋼板の表面温度は、160℃程度と推定された。
 作製した溶融Zn合金めっき鋼板を室内(室温20℃、相対湿度60%)で1週間保管した。1週間保管したあとの溶融Zn合金めっき鋼板を目視により観察したところ、溶融Zn合金めっき鋼板の表面光沢は、ほぼ均一であり、暗部(黒変部)の形成は認められなかった。また、鋼板の光沢の程度は、工場内用水を用いて水膜を一時的に形成させて作製した溶融Zn合金めっき鋼板における通常部とほぼ同等であった。
 次に、V5+を含有する冷却水溶液を用いて、一時的に水膜を形成させて作製した直後の溶融Zn合金めっき鋼板を、XPS分析にて分析した。図6は、V5+を含有する冷却水溶液を使用した場合の通常部のZnの2p軌道に対応する化学結合エネルギーの強度プロファイルである。なお、AlおよびMgの強度プロファイルは、省略する。図6に示されるように、V5+を含有する冷却水溶液を使用した場合でも、金属Znに由来する約1020eVのピークと、Zn(OH)に由来する約1022eVのピークとが観察された。また、ZnとZn(OH)との強度比から、ZnがZn(OH)より多く存在していることがわかった。このことから、V5+を含有する冷却水溶液を使用した場合には、一時的な水膜が形成された場合であっても、Zn(OH)の生成は促進されないものと推定された。
 冷却水としてV5+、Si4+またはCr6+を含有する多原子イオンを含有する水溶液を用いた場合に考えられる黒変化抑制のメカニズムについて、V5+を例に挙げて説明する。たとえば、V5+を含有する多原子イオンを含む冷却水溶液を用いた場合、V5+が還元されて、めっき層表面の酸化皮膜と冷却水溶液との間に緻密な不動態皮膜を形成する。これにより、酸化皮膜からZnが冷却水溶液へ溶出することが抑制される。よって、Zn(OH)の生成が抑えられ、結果的にめっき層の黒変化が抑制される。
 前述した本発明の溶融Zn合金めっき鋼板の製造方法は、例えば、以下のような製造ラインで実施されうる。
 図7は、溶融Zn合金めっき鋼板の製造ライン300の一部の模式図である。製造ライン300は、基材鋼板(鋼帯)の表面にめっき層を形成して、溶融Zn合金めっき鋼板を連続的に製造することができる。また、製造ライン300は、必要に応じてめっき層の表面に化成処理皮膜をさらに形成して、化成処理めっき鋼板を連続的に製造することもできる。
 図7に示されるように、製造ライン300は、炉310、めっき浴320、エアジェットクーラー340、気水冷却帯域350、ウォータークエンチ帯域360、スキンパスミル370およびテンションラベラー380を有する。
 図外の繰り出しリールから繰り出された鋼帯Sは、所定の工程を経て炉310内で加熱される。加熱された鋼帯Sをめっき浴320に浸漬することで、溶融金属が鋼帯Sの表裏面に付着する。次いで、ワイピングノズル330を有するワイピング装置により過剰な溶融金属を取り除いて、所定量の溶融金属を鋼帯Sの表面に付着させる。
 所定量の溶融金属が付着した鋼帯Sは、エアジェットクーラー340や気水冷却帯域350により溶融金属の凝固点以下まで冷却される。エアジェットクーラー340は、気体の吹き付けによる鋼帯Sの冷却を目的とした設備である。また、気水冷却帯域350は、霧状にした流体(例えば、冷却水)および気体の吹き付けによる鋼帯Sの冷却を目的とした設備である。これにより、溶融金属が凝固し、溶融Zn合金めっき層が鋼帯Sの表面に形成される。なお、気水冷却帯域350によって鋼帯Sが冷却されるときに、めっき層の表面に水膜が形成されることはない。冷却後の温度は、特に限定されず、例えば100~250℃である。
 所定の温度まで冷却された溶融Zn合金めっき鋼板は、ウォータークエンチ帯域360でさらに冷却される。ウォータークエンチ帯域360は、気水冷却帯域350と比較して大量の冷却水の接触による鋼帯Sの冷却を目的とした設備であり、めっき層の表面に一時的に水膜が形成される量の水を供給する。たとえば、ウォータークエンチ帯域360には、フラットスプレーノズルを鋼帯Sの幅方向に150mm間隔で10本配置したヘッダーが、基材鋼板Sの送り方向に7列配置されている。ウォータークエンチ帯域360では、V5+を含有する多原子イオン、Si4+を含有する多原子イオンおよびCr6+を含有する多原子イオンからなる群から選択される1または2以上の多原子イオンを原子換算の合計量で0.01g/L以上含有する水溶液が冷却水溶液として使用される。鋼帯Sは、このウォータークエンチ帯域360の中で、めっき層の表面に一時的に水膜が形成されるような量の冷却水が供給されながら、冷却される。たとえば、冷却水溶液の水温は20℃程度であり、水圧は2.5kgf/cm程度であり、水量は150m/h程度である。なお、「一時的に水膜が形成される」とは、目視で約1秒以上、溶融Zn合金めっき鋼板と接触している水滴が観察される状態をいう。
 水冷された溶融Zn合金めっき鋼板は、スキンパスミル370で調質圧延され、テンションレベラー380で平坦に矯正された後、テンションリール390に巻き取られる。
 めっき層の表面にさらに化成処理皮膜を形成する場合は、テンションレベラー380で矯正された溶融Zn合金めっき鋼板の表面に、ロールコーター400で所定の化成処理液を塗布する。化成処理を施された溶融Zn合金めっき鋼板は、乾燥帯域410およびエア冷却帯域420で乾燥および冷却された後、テンションリール390に巻き取られる。
 以上のように、本発明の溶融Zn合金めっき鋼板の製造方法は、所定の多原子イオンを含有する水溶液を溶融Zn合金めっき層の表面に接触させるだけで、耐黒変性に優れる溶融Zn合金めっき鋼板を、高い生産性で容易に製造することができる。
 (実験1)
 実験1では、多原子イオンを含まない冷却水を用いて溶融Zn合金めっき鋼板を冷却した場合における、溶融Zn合金めっき層の耐黒変性について調べた。
 1.溶融Zn合金めっき鋼板の製造
 図7に示される製造ライン300を用いて、溶融Zn合金めっき鋼板を製造した。基材鋼板(鋼帯)Sとして、板厚2.3mmの熱延鋼帯を準備した。表1に示すめっき浴組成およびめっき条件で基材鋼板にめっきを施して、めっき層の組成が互いに異なる8種類の溶融Zn合金めっき鋼板を製造した。なお、めっき浴の組成とめっき層の組成はほぼ同一である。特に図示しないが、めっき層の断面観察では、いずれの溶融Zn合金めっき鋼板にも[Al/Zn/ZnMgの三元共晶組織]が確認された。
Figure JPOXMLDOC01-appb-T000001
 溶融Zn合金めっき鋼板を製造する際に、エアジェットクーラー340および気水冷却帯域350における冷却条件を変化させて、ウォータークエンチ帯域360に通す直前の鋼板(めっき層表面)の温度を100℃、120℃、160℃、200℃または250℃となるように調整した。ウォータークエンチ帯域360におけるスプレー装置は、フラットスプレーノズルを幅方向に150mm間隔で10本配置したヘッダーを、基材鋼板Sの送り方向に7列配置したものを使用した。ウォータークエンチ帯域360における冷却条件は、冷却水:水(pH7.6、水温20℃)、水圧:2.5kgf/cm、水量:150m/hとした。
 2.溶融Zn合金めっき鋼板の評価
 (1)光沢劣化促進処理
 製造した各溶融Zn合金めっき鋼板から試験片を切り出した。各試験片を恒温恒湿機(LHU-113;エスペック株式会社)内に置き、表2に示される各条件で光沢劣化の促進処理を行った。No.2の試験条件は、No.1より処理時間が長いため、No.1よりも厳しい試験条件である。
Figure JPOXMLDOC01-appb-T000002
 (2)黒変化度の測定
 各溶融Zn合金めっき鋼板について、光沢劣化促進処理の前後におけるめっき層表面の明度(L値)を測定した。めっき層表面の明度(L値)は、分光型色差計(TC-1800;有限会社東京電色)を用いて、JIS K 5600に準拠した分光反射測定法で測定した。測定条件を以下に示す。
 光学条件:d/8°法(ダブルビーム光学系)
 視野:2度視野
 測定方法:反射光測定
 標準光:C
 表色系:CIELAB
 測定波長:380~780nm
 測定波長間隔:5nm
 分光器:回折格子 1200/mm
 照明:ハロゲンランプ(電圧12V、電力50W、定格寿命2000時間)
 測定面積:7.25mmφ
 検出素子:光電子増倍管(R928;浜松ホトニクス株式会社)
 反射率:0-150%
 測定温度:23℃
 標準板:白色
 各めっき鋼板について、光沢劣化促進処理の前後のL値の差(ΔL)が0.5未満の場合は「○」、0.5以上であって3未満の場合は「△」、3以上の場合は「×」と評価した。なお、評価が「○」のめっき鋼板は、耐黒変性を有すると判断することができる。
 (3)評価結果
 各めっき鋼板について、光沢劣化促進条件およびウォータークエンチ帯域360で冷却する直前の鋼板(めっき層表面)の温度と、黒変化度の評価結果との関係を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 No.1の条件で光沢劣化促進処理を行った場合、Siを含有するめっき層を形成した試験片(めっきNo.3,5,7)では、ウォータークエンチ帯域360で冷却する直前の鋼板温度が250℃であっても耐黒変性は良好であった。一方、Siを含有しないめっき層を形成した試験片(めっきNo.1,2,4,6,8)では、ウォータークエンチ帯域360で冷却する直前の鋼板温度が120℃以上のときに黒変化が生じた。
 一方、No.2の条件で光沢劣化促進処理を行った場合、Siを含有するめっき層を形成した試験片でも、ウォータークエンチ帯域360で冷却する直前の鋼板温度が120℃以上のときに黒変化が生じた。また、Siを含有しないめっき層を形成した試験片では、ウォータークエンチ帯域360で冷却する直前の鋼板温度が100℃でも黒変化が生じた。
 以上の結果から、めっき層にSiを含有しない場合は、ウォータークエンチ帯域360で冷却する直前の鋼板温度を十分に低下させなければ、黒変化を防止できないことがわかる。また、過酷な条件下においては、めっき層にSiを含有しても、ウォータークエンチ帯域360で冷却する直前の鋼板温度を十分に低下させなければ、黒変化を完全に防止できないことがわかる。
 (実験2)
 実験2では、多原子イオンを含む冷却水溶液を用いて溶融Zn合金めっき鋼板を冷却した場合における、溶融Zn合金めっき層の耐黒変性について調べた。本実験では、No.1の条件で光沢劣化促進処理した場合の耐黒変性について調べた。
 1.溶融Zn合金めっき鋼板の製造
 実験1と同様に、表1に示すめっき浴組成およびめっき条件で基材鋼板にめっきを施して、めっき層の組成が互いに異なる8種類の溶融Zn合金めっき鋼板を製造した。
 溶融Zn合金めっき鋼板を製造する際に、エアジェットクーラー340における冷却条件を変化させて、ウォータークエンチ帯域360に通す直前の鋼板(めっき層表面)の温度を100℃、120℃、160℃、200℃または250℃となるように調整した。ウォータークエンチ帯域360では、表4に示されるいずれかの水溶液を冷却水溶液として使用した。各冷却水溶液は、pH7.6の水に表4に示される添加剤、必要に応じて溶解促進剤を所定の比率で溶解させた後、水温を20℃に調整することで調製した。ウォータークエンチ帯域360から供給した各冷却水溶液の条件は、水圧:2.5kgf/cm、水量:150m/hとした。なお、各水溶液における多原子イオンの濃度は、イオン種として示した原子換算で、表5に示す5種類を準備した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 2.溶融Zn合金めっき鋼板の評価
 (1)光沢劣化促進処理および黒変化度の測定
 各溶融Zn合金めっき鋼板に対して、表2に示したNo.1の条件で光沢劣化促進処理を行った。また、各溶融Zn合金めっき鋼板について、実験1と同様の手順で、光沢劣化促進処理の前後におけるめっき層表面の明度(L値)を測定した。
 評価を行った溶融Zn合金めっき鋼板のめっきNo.と、使用した冷却水溶液の添加物の濃度との関係を表6に示す。なお、表6に示した番号の表にそれぞれの結果を示す。
Figure JPOXMLDOC01-appb-T000006
 (2)評価結果
 各めっき鋼板について、使用した冷却水溶液の種類およびウォータークエンチ帯域360で冷却する直前の鋼板(めっき層表面)の温度と、黒変化度の評価結果との関係を、表7~表18に示す。
 なお、各表に登場する「試験片No.」は、実験内容がわかるように、以下の規則により規定されている。すなわち、試験片No.は、「(光沢劣化促進条件No.;表2参照)-(めっきNo.;表1参照)-(冷却水溶液No.および多原子イオンの濃度記号;表4および表5参照)」とした。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表7,表8,表11~表14、表16および表18に示されるように、めっき層中のAlおよびMgが所定の濃度の範囲内であって、Siを含有しないめっき層を形成した試験片では、V5+,Si4+またはCr6+を含有する多原子イオンを含み、かつ多原子イオンの濃度が原子換算で0.01g/L以上の水溶液を用いて冷却していれば、ウォータークエンチ帯域360で冷却する直前の鋼板温度に関わらず、耐黒変性が良好であった。
 また、表10に示されるように、めっき層中のAlおよびMgが所定の濃度の範囲内であり、かつSiを含有しないめっき層を有し、V5+,Si4+またはCr6+を含有する多原子イオンを含む水溶液を用いる場合であっても、多原子イオンの濃度が原子換算で0.001g/Lの場合は、黒変化を十分に抑制することができなかった。
 表9,表15および表17に示されるように、めっき層中のAlおよびMgが所定の濃度の範囲内であって、Siを含有するめっき層を形成した試験片では、添加物の有無およびウォータークエンチ帯域360で冷却する直前の鋼板温度に関わらず、耐黒変性が良好であった。
 以上の結果から、V5+,Si4+またはCr6+を含有する多原子イオンを含み、かつ多原子イオンの濃度が原子換算で0.01g/L以上の水溶液を用いて冷却することで、ウォータークエンチ帯域360で冷却する直前の鋼板温度に関わらず、黒変化を十分に抑制できることがわかる。
 表10~表14に示されるように、Mn2+、Ca2+、Mg2+、またはZn2+を含有する多原子イオンを含む水溶液を用いて冷却した試験片では、多原子イオンの濃度が原子換算で0.01g/L以上であれば、耐黒変性がある程度良好であった。
 (実験3)
 実験3では、実験2で製造した各溶融Zn合金めっき鋼板を、表2のNo.2の条件で光沢劣化促進処理した場合の耐黒変性について調べ、実験1と同様に評価した。
 評価を行った溶融Zn合金めっき鋼板のめっきNo.と、使用した冷却水溶液の添加物の濃度との関係を表19に示す。なお、表19に示した番号の表にそれぞれの結果を示す。
Figure JPOXMLDOC01-appb-T000019
 各めっき鋼板について、使用した冷却水溶液の種類およびウォータークエンチ帯域360で冷却する直前の鋼板(めっき層表面)の温度と、黒変化度の評価結果との関係を、表20~表32に示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 表20,表21,表24~表27,表29および表32に示されるように、めっき層中のAlおよびMgが所定の濃度の範囲内であって、Siを含有しないめっき層を形成した試験片において、V5+,Si4+またはCr6+を含有する多原子イオンを含み、かつ多原子イオンの濃度が原子換算で0.01g/L以上の水溶液を用いて冷却していれば、ウォータークエンチ帯域360で冷却する直前の鋼板温度に関わらず、耐黒変性が良好であった。
 一方、表23に示されるように、めっき層中のAlおよびMgが所定の濃度の範囲内であって、Siを含有しないめっき層を形成した試験片において、冷却水溶液がV5+,Si4+またはCr6+を含有する多原子イオンを含んでいても、多原子イオンの濃度が原子換算で0.001g/L以上の水溶液を用いて冷却した場合には、耐黒変性が不良であった。
 表22,表28,表30および表31に示されるように、めっき層中のAlおよびMgが所定の濃度の範囲内であって、Siを含有するめっき層を形成した試験片において、V5+,Si4+またはCr6+を含有する多原子イオンを含み、かつ多原子イオンの濃度が原子換算で0.01g/L以上の水溶液を用いて冷却していれば、ウォータークエンチ帯域360で冷却する直前の鋼板温度に関わらず、耐黒変性が良好であった。このとき、冷却水溶液がV5+,Si4+またはCr6+のいずれも含有しない場合には、耐黒変性が改善されなかった。
 前述の通り、実験2は、No.1の条件で光沢劣化促進処理している。この場合、めっき層中のAlおよびMgが所定の濃度の範囲内であって、かつめっき層がSiを含有していれば、ウォータークエンチ帯域360で冷却する直前の鋼板温度に関わらず耐黒変性は良好であった。一方、実験3は、No.1より過酷なNo.2の条件で光沢劣化促進処理している。実験3では、めっき層にSiを含有していても、冷却水溶液にV5+,Si4+またはCr6+を含有する多原子イオンを含む冷却水溶液を用い、かつ多原子イオンの濃度が原子換算で0.01g/L以上の条件で冷却しなければ、ウォータークエンチ帯域360で冷却する直前の鋼板温度に関わらず耐黒変を抑制することはできないことが明らかになった。すなわち、本発明の溶融Zn合金めっき鋼板の製造方法は、めっき層中のAlおよびMgが所定の濃度の範囲内であって、冷却水溶液にV5+,Si4+またはCr6+を含有する多原子イオンを含む冷却水溶液を用い、かつ多原子イオンの濃度が原子換算で0.01g/L以上の条件で冷却すれば、めっき層へのSiの含有または非含有に関わらず、またウォータークエンチ帯域360で冷却する直前の鋼板温度に関わらず耐黒変性を抑制することが可能な製造方法である。
 (実験4)
 実験4では、表1に示すめっき浴組成(No.1~7)およびめっき条件で基材鋼板にめっき層を形成して、めっき層の組成が互いに異なる7種類の溶融Zn合金めっき鋼板を製造した。溶融Zn合金めっき鋼板を製造する際には、ウォータークエンチ帯域360において、表4に示される1種類のV5+,Si4+またはCr6+を含有する多原子イオンを含む冷却水溶液を使用して冷却した。さらに、各試験片に、下記の化成処理条件A~Cの条件で化成処理を施した。続いて、実験3と同様に表2のNo.2の条件で光沢劣化促進処理した場合の耐黒変性について調べ、黒変化度を評価した。
 化成処理条件Aでは、化成処理液として、ジンクロム3387N(クロム濃度10g/L、日本パーカライジング株式会社)を使用した。化成処理液をスプレーリンガーロール方式で、クロム付着量が10mg/mとなるように塗布した。
 化成処理条件Bでは、化成処理液として、リン酸マグネシウム50g/L、フッ化チタンカリウム10g/L、有機酸3g/Lを含む水溶液を使用した。化成処理液をロールコート方式で、金属成分付着量が50mg/mとなるように塗布した。
 化成処理条件Cでは、化成処理液として、ウレタン樹脂20g/L、リン酸二水素アンモニウム3g/L、五酸化バナジウム1g/Lを含む水溶液を使用した。化成処理液をロールコーと方式で、乾燥膜厚が2μmとなるように塗布した。
 各めっき鋼板について、使用した冷却水溶液の種類およびウォータークエンチ帯域360で冷却する直前の鋼板(めっき層表面)の温度と、黒変化度の評価結果との関係を、表33に示す。なお、表33に登場する「試験片No.」は、実験内容がわかるように、以下の規則により規定した。すなわち、試験片No.は、「(めっきNo.;表1参照)-(冷却水溶液No.および多原子イオンの濃度記号;表4および表5参照)」とした。
Figure JPOXMLDOC01-appb-T000033
 表33の試験No.1~5に示されるように、めっき層にAlおよびMgを含み、Siを含有しないめっき層を形成した試験片に各化成処理を施した場合であっても、多原子イオンの濃度が原子換算で0.01g/L以上の水溶液を用いて冷却すれば、耐黒変性が良好であった。
 また、試験No.6,7に示されるように、めっき層中にAlおよびMgを含み、Siを含有するめっき層を形成した試験片に各化成処理を施した場合であっても、多原子イオンの濃度が原子換算で0.01g/L以上の水溶液を用いて冷却すれば、耐黒変性が良好であった。
 また、試験No.8に示されるように、めっき層中にAlおよびMgを含み、Siを含有しないめっき層を形成した試験片に各化成処理を施した場合であっても、冷却水溶液がV5+,Si4+またはCr6+のいずれも含有しない冷却水溶液では、黒変化を抑制できなかった。
 また、試験No.9に示されるように、めっき層中のAlおよびMgが所定の濃度の範囲内であって、Siを含有するめっき層を形成した試験片に各化成処理を施した場合であっても、冷却水溶液がV5+,Si4+またはCr6+のいずれも含有しない冷却水溶液では、黒変化を抑制できなかった。
 以上のように、本発明の製造方法により得られる溶融Zn合金めっき鋼板は、化成処理の種類によらず耐黒変性は良好であった。
 (実験5)
 実験5では、基材鋼板(鋼帯S)として、板厚2.3mmの熱延鋼板に、表34に示すめっき浴組成(No.9,10)およびめっき条件でめっき層を形成して、めっき層の組成が互いに異なる2種類の溶融Zn合金めっき鋼板を製造した。溶融Zn合金めっき鋼板を製造する際には、実験1(段落0068参照)および実験2(段落0079参照)と同じ冷却方法を適用した。続いて、実験1と同様に表2のNo.1およびNo.2の条件で光沢劣化促進処理した場合の耐黒変性について調べ、黒変化度を評価した。また、めっき層の断面観察では、いずれの溶融Zn合金めっき鋼板にも[Al/Zn/ZnMgの三元共晶組織]が確認された。
Figure JPOXMLDOC01-appb-T000034
 まず、実験1と同様な条件で冷却した溶融Zn合金めっき鋼板の黒変化度の評価結果を表35に示す。
Figure JPOXMLDOC01-appb-T000035
 表35に示されるように、めっき層にSiを含有しないめっき層を形成した試験片(試験片No.A-9)は、ウォータークエンチ帯域360で冷却する直前の鋼板表面温度を100℃まで低下させていなければ、No.1の条件で光沢劣化促進処理を実施すると黒変化を生じた。また、No.2の条件で光沢劣化促進試験を実施した試験片(試験片No.B-9)は、100℃まで鋼板表面温度を低下させていても黒変化を生じた。
 一方、めっき層にSiを含有するめっき層を形成した試験片(試験片No.A-10)は、ウォータークエンチ帯域360で冷却する直前の鋼板表面温度が250℃であっても、No.1の条件で光沢劣化促進処理を実施すれば、黒変化せずに耐黒変化性は良好であった。しかし、No.2の条件で光沢劣化促進試験を実施した試験片(試験片No.B-10)は、ウォータークエンチ帯域360で冷却する直前の鋼板表面温度を120℃まで低下させておかなければ、黒変化が生じた。
 (実験6)
 次に、実験5で製造した2種類の溶融Zn合金めっき鋼板を、実験2と同様な条件で冷却し、No.1の光沢劣化促進条件処理をした場合の耐黒変性について調べ、実験1と同様に評価した。
 評価を行った溶融Zn合金めっき鋼板のめっきNo.と、使用した冷却水溶液の添加物の濃度との関係を表36に示す。なお、表36に示した番号の表にそれぞれの結果を示す。
Figure JPOXMLDOC01-appb-T000036
 各めっき鋼板について、使用した冷却水溶液の種類およびウォータークエンチ帯域360で冷却する直前の鋼板(めっき層表面)の温度と、黒変化度の評価結果との関係を、表37~39に示す。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 表37に示されるように、V5+,Si4+またはCr6+を含有する多原子イオンを、原子換算で0.001g/L含む冷却水溶液を用いて冷却した試験片では、黒変化を抑制できなかった。
 また、表38に示されるように、V5+,Si4+またはCr6+を含有する多原子イオンの濃度が原子換算で0.01g/L含む冷却水溶液を用いて冷却すれば、ウォータークエンチ帯域360で冷却する直前のめっき鋼板表面温度に関わらず、耐黒変性が良好であった。
 一方、表39に示されるように、めっき層中のAlおよびMgが所定の濃度範囲内であり、かつSiを含有するめっき層を有し、V5+,Si4+またはCr6+を含有する多原子イオンを、原子換算で0.01g/L含む冷却水溶液を用いて冷却した試験片では、ウォータークエンチ帯域360で冷却する直前のめっき鋼板表面温度に関わらず、耐黒変性が良好であった。
 (実験7)
 次に、実験6と同様に2種類の溶融Zn合金めっき鋼板を製造し、実験3と同様にNo.2の光沢劣化促進条件処理をした場合の耐黒変性について調べ、実験1と同様に評価した。
 評価を行った溶融Zn合金めっき鋼板のめっきNo.と、使用した冷却水溶液の添加物の濃度との関係を表40に示す。なお、表40に示した番号の表にそれぞれの結果を示す。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
 表41および表43に示されるように、めっき層中のAlおよびMgが所定の濃度範囲内であり、かつV5+,Si4+またはCr6+を含有する多原子イオンを含む冷却水溶液を用いて冷却しても、多原子イオンの濃度が原子換算で0.001g/L未満では耐黒変性が改善されなかった。
 また、表42に示されるように、めっき層中のAlおよびMgが所定の濃度範囲内であり、かつTiを含有するめっき層を有する試験片では、V5+,Si4+またはCr6+を含有する多原子イオンを含む冷却水溶液を用い、かつ多原子イオンの濃度が原子換算で0.01g/Lであれば、ウォータークエンチ帯域360で冷却する直前のめっき鋼板表面温度に関わらず、耐黒変性は良好だった。
 また、表44に示されるように、めっき層中のAlおよびMgが所定の濃度範囲内であり、かつ、SiおよびTiを含有するめっき層を有する試験片では、V5+,Si4+またはCr6+を含有する多原子イオンを含む冷却水溶液を用い、かつ多原子イオンの濃度が原子換算で0.01g/Lであれば、ウォータークエンチ帯域360で冷却する直前のめっき鋼板表面温度に関わらず、耐黒変性は良好だった。なお、表42および表44において、V5+,Si4+またはCr6+のいずれも含有しない冷却水溶液を用いた試験片では、耐黒変性が改善されなかった。
 本発明の製造方法により得られる溶融Zn合金めっき鋼板は、耐黒変性に優れているため、例えば建築物の屋根材や外装材、家電製品、自動車などに使用されるめっき鋼板として有用である。
 本出願は、2012年11月27日出願の特願2012-258582および2013年2月4日出願の特願2013-019275に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 100,200 冷却装置
 110 スプレーノズル
 120,230 絞りロール
 130 筐体
 210 浸漬漕
 220 浸漬ロール
 300 製造ライン
 310 炉
 320 めっき浴
 330 ワイピングノズル
 340 エアジェットクーラー
 350 気水冷却帯域
 360 ウォータークエンチ帯域
 370 スキンパスミル
 380 テンションレベラー
 390 テンションリール
 400 ロールコーター
 410 乾燥帯域
 420 エア冷却帯域
 S 鋼帯

Claims (6)

  1.  基材鋼板をAlおよびMgを含む溶融Zn合金めっき浴に浸漬して、前記基材鋼板の表面に溶融Zn合金めっき層を形成する工程と、
     V5+を含有する多原子イオン、Si4+を含有する多原子イオンおよびCr6+を含有する多原子イオンからなる群から選択される1または2以上の多原子イオンを含有する水溶液を、前記溶融Zn合金めっき層の表面に接触させる工程と、を有し、
     前記水溶液は、前記多原子イオンを、V、SiおよびCrからなる群から選択される1または2以上の原子換算で、0.01g/L以上含有する、
     溶融Zn合金めっき鋼板の製造方法。
  2.  前記水溶液を前記溶融Zn合金めっき層の表面に接触させる時の、前記溶融Zn合金めっき層の表面の温度は、100℃以上、かつめっき層の凝固点以下である、請求項1に記載の溶融Zn合金めっき鋼板の製造方法。
  3.  前記溶融Zn合金めっき層は、Al:1.0~22.0質量%、Mg:0.1~10.0質量%、残部:Znおよび不可避不純物を含む、請求項1に記載の溶融Zn合金めっき鋼板の製造方法。
  4.  前記溶融Zn合金めっき層は、Si:0.001~2.0質量%をさらに含む、請求項3に記載の溶融Zn合金めっき鋼板の製造方法。
  5.  前記溶融Zn合金めっき層は、Ti:0.001~0.1質量%をさらに含む、請求項3または請求項4に記載の溶融Zn合金めっき鋼板の製造方法。
  6.  前記溶融Zn合金めっき層は、B:0.001~0.045質量%をさらに含む、請求項5に記載の溶融Zn合金めっき鋼板の製造方法。
PCT/JP2013/001312 2012-11-27 2013-03-04 溶融Zn合金めっき鋼板の製造方法 WO2014083713A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US14/349,334 US10167542B2 (en) 2012-11-27 2013-03-04 Method for producing hot-dip Zn alloy-plated steel sheet
RU2015119973/02A RU2590443C1 (ru) 2012-11-27 2013-03-04 Способ для производства покрытого расплавом цинкового сплава стального листа
PL13859545T PL2927344T3 (pl) 2012-11-27 2013-03-04 Sposób wytwarzania blachy stalowej powlekanej zanurzeniowo stopem Zn
MX2015003967A MX344320B (es) 2012-11-27 2013-03-04 Método para manufacturar lámina de acero chapada con aleación de zinc sumergida en caliente.
ES13859545.9T ES2663957T3 (es) 2012-11-27 2013-03-04 Procedimiento de fabricación de chapa de acero revestida con aleación de Zn por inmersión en caliente
KR1020157012632A KR101572673B1 (ko) 2012-11-27 2013-03-04 용융 Zn합금 도금 강판의 제조 방법
CA2886690A CA2886690C (en) 2012-11-27 2013-03-04 Method for manufacturing hot-dip zn alloy-plated steel sheet
AU2013350682A AU2013350682B2 (en) 2012-11-27 2013-03-04 Method for manufacturing hot-dip Zn alloy-plated steel sheet
BR112015010935-7A BR112015010935B1 (pt) 2012-11-27 2013-03-04 método para produzir chapa de aço banhada a liga de zn por imersão a quente
EP13859545.9A EP2927344B1 (en) 2012-11-27 2013-03-04 Method for manufacturing hot-dip zn alloy-plated steel sheet
CN201380061100.9A CN104838036B (zh) 2012-11-27 2013-03-04 熔融Zn合金镀层钢板的制造方法
IN2452DEN2015 IN2015DN02452A (ja) 2012-11-27 2013-03-04
US14/748,279 US10202676B2 (en) 2012-11-27 2015-06-24 Method for producing hot-dip Zn alloy-plated steel sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012258582 2012-11-27
JP2012-258582 2012-11-27
JP2013-019275 2013-02-04
JP2013019275A JP5356616B1 (ja) 2012-11-27 2013-02-04 溶融Zn合金めっき鋼板の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/349,334 A-371-Of-International US10167542B2 (en) 2012-11-27 2013-03-04 Method for producing hot-dip Zn alloy-plated steel sheet
US14/748,279 Continuation US10202676B2 (en) 2012-11-27 2015-06-24 Method for producing hot-dip Zn alloy-plated steel sheet

Publications (1)

Publication Number Publication Date
WO2014083713A1 true WO2014083713A1 (ja) 2014-06-05

Family

ID=49850235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001312 WO2014083713A1 (ja) 2012-11-27 2013-03-04 溶融Zn合金めっき鋼板の製造方法

Country Status (15)

Country Link
US (2) US10167542B2 (ja)
EP (1) EP2927344B1 (ja)
JP (2) JP5356616B1 (ja)
KR (1) KR101572673B1 (ja)
CN (1) CN104838036B (ja)
AU (1) AU2013350682B2 (ja)
BR (1) BR112015010935B1 (ja)
CA (1) CA2886690C (ja)
ES (1) ES2663957T3 (ja)
IN (1) IN2015DN02452A (ja)
MX (1) MX344320B (ja)
MY (1) MY170543A (ja)
PL (1) PL2927344T3 (ja)
RU (1) RU2590443C1 (ja)
WO (1) WO2014083713A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170260614A1 (en) * 2013-12-03 2017-09-14 Nisshin Steel Co., Ltd. Method of producing hot-dip zn alloy-plated steel sheet

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI653362B (zh) * 2012-10-17 2019-03-11 澳大利亞商布魯史寇普鋼鐵有限公司 金屬被覆鋼帶的製造方法
JP5356616B1 (ja) 2012-11-27 2013-12-04 日新製鋼株式会社 溶融Zn合金めっき鋼板の製造方法
JP6022433B2 (ja) * 2013-12-03 2016-11-09 日新製鋼株式会社 溶融Zn合金めっき鋼板の製造方法
JP6350663B2 (ja) * 2014-07-24 2018-07-04 新日鐵住金株式会社 鋼帯の冷却方法及び冷却設備
JP5989274B1 (ja) * 2015-03-31 2016-09-07 日新製鋼株式会社 吸放熱鋼板および吸放熱部材
KR101839740B1 (ko) * 2015-03-31 2018-03-16 닛신 세이코 가부시키가이샤 흡방열 강판 및 흡방열 부재
JP6760002B2 (ja) * 2016-11-16 2020-09-23 Jfeスチール株式会社 鋼板の冷却方法
US11555235B2 (en) * 2017-01-27 2023-01-17 Nippon Steel Corporation Metallic coated steel product
KR102031466B1 (ko) 2017-12-26 2019-10-11 주식회사 포스코 표면품질 및 내식성이 우수한 아연합금도금강재 및 그 제조방법
CN110004389B (zh) * 2019-03-20 2021-06-15 首钢集团有限公司 一种抗黑变锌铝镁镀层钢及其制备方法
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate
CN113621852B (zh) * 2021-07-13 2023-02-17 株洲冶炼集团股份有限公司 一种锌铝镁涂镀材料及其制备方法
CN113846256A (zh) * 2021-08-16 2021-12-28 株洲冶炼集团股份有限公司 一种高铝热镀锌多元合金
JPWO2023145822A1 (ja) * 2022-01-31 2023-08-03

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372887A (ja) * 1986-09-12 1988-04-02 Nisshin Steel Co Ltd 耐食性、耐加工性に優れた溶融めつき鋼板の製造方法
JPS63297576A (ja) * 1987-05-29 1988-12-05 Nisshin Steel Co Ltd 耐黒変性に優れた溶融めっき鋼板の製造方法
JPH06158257A (ja) * 1992-11-26 1994-06-07 Nippon Steel Corp 外観、耐経時黒変性、耐食性に優れる溶融Zn−Alめっき鋼板
JPH11279733A (ja) * 1998-03-31 1999-10-12 Nisshin Steel Co Ltd 黒変抵抗をもつ溶融亜鉛基めっき鋼板
JP2001329354A (ja) * 2000-03-16 2001-11-27 Nippon Steel Corp 化成処理性に優れた溶融亜鉛−アルミニウム合金めっき鋼板とその製造方法
JP2002226958A (ja) 2001-02-02 2002-08-14 Nisshin Steel Co Ltd 光沢保持性の良好な溶融Zn基めっき鋼板およびその製造法
JP4226063B1 (ja) * 2008-02-25 2009-02-18 シーケー金属株式会社 溶融亜鉛めっき処理品の生産方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125471A (en) * 1964-03-17 Commercially available sheet finishes
US2312066A (en) * 1939-11-30 1943-02-23 Batcheller Clements Method of coloring stainless steel
FR2043646A1 (ja) 1969-05-24 1971-02-19 Parker Ste Continentale
BE762838A (fr) 1971-02-11 1971-08-11 Centre Rech Metallurgique Procede et dispositif pour la fabrication de ronds a beton,
JPS5319974B2 (ja) * 1972-10-04 1978-06-23
US4270317A (en) * 1978-10-10 1981-06-02 Midland-Ross Corporation Apparatus used in the treatment of a continuous strip of metal and method of use thereof
US4282073A (en) * 1979-08-22 1981-08-04 Thomas Steel Strip Corporation Electro-co-deposition of corrosion resistant nickel/zinc alloys onto steel substrates
JPS602186B2 (ja) * 1980-12-24 1985-01-19 日本鋼管株式会社 塗装下地用表面処理鋼板
JPS5848657A (ja) * 1981-09-16 1983-03-22 Hitachi Ltd 溶融亜鉛メツキ鋼板のスパングル制御法
JPS6411983A (en) * 1987-07-03 1989-01-17 Nisshin Steel Co Ltd Hot dipped steel sheet having superior blackening resistance
JPH06336664A (ja) 1993-05-27 1994-12-06 Kobe Steel Ltd スポット溶接性に優れた亜鉛−アルミニウム系めっき 鋼板の製造方法
US20030209293A1 (en) * 2000-05-11 2003-11-13 Ryousuke Sako Metal surface treatment agent
DE10110833B4 (de) * 2001-03-06 2005-03-24 Chemetall Gmbh Verfahren zum Aufbringen eines Phosphatüberzuges und Verwendung der derart phosphatierten Metallteile
JP4078044B2 (ja) * 2001-06-26 2008-04-23 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
BE1014525A3 (fr) * 2001-12-04 2003-12-02 Ct Rech Metallurgiques Asbl Procede de revetement de surface metallique.
JP2004176092A (ja) * 2002-11-25 2004-06-24 Kobe Steel Ltd 溶接性および耐食性に優れた樹脂被覆溶融亜鉛系めっき鋼板並びにその製造方法
JP2005139518A (ja) 2003-11-07 2005-06-02 Jfe Steel Kk 化成処理金属帯の製造設備および製造方法
JP4804996B2 (ja) * 2006-04-07 2011-11-02 新日本製鐵株式会社 加工性、パウダリング性、摺動性の良好な合金化溶融亜鉛メッキ鋼板の製造方法
JP5088095B2 (ja) * 2006-12-13 2012-12-05 Jfeスチール株式会社 平板部耐食性、耐黒変性およびプレス成形後の外観と耐食性に優れた表面処理亜鉛系めっき鋼板、並びに亜鉛系めっき鋼板用水系表面処理液
JP5196916B2 (ja) * 2007-08-30 2013-05-15 日本パーカライジング株式会社 溶融めっき鋼材の表面改質処理方法、及び表面改質された溶融金属めっき鋼材
JP2009102688A (ja) * 2007-10-22 2009-05-14 Nisshin Steel Co Ltd 化成処理鋼板
WO2010021364A1 (ja) * 2008-08-22 2010-02-25 富士フイルム株式会社 平版印刷版の作製方法
JP5356616B1 (ja) * 2012-11-27 2013-12-04 日新製鋼株式会社 溶融Zn合金めっき鋼板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372887A (ja) * 1986-09-12 1988-04-02 Nisshin Steel Co Ltd 耐食性、耐加工性に優れた溶融めつき鋼板の製造方法
JPS63297576A (ja) * 1987-05-29 1988-12-05 Nisshin Steel Co Ltd 耐黒変性に優れた溶融めっき鋼板の製造方法
JPH06158257A (ja) * 1992-11-26 1994-06-07 Nippon Steel Corp 外観、耐経時黒変性、耐食性に優れる溶融Zn−Alめっき鋼板
JPH11279733A (ja) * 1998-03-31 1999-10-12 Nisshin Steel Co Ltd 黒変抵抗をもつ溶融亜鉛基めっき鋼板
JP2001329354A (ja) * 2000-03-16 2001-11-27 Nippon Steel Corp 化成処理性に優れた溶融亜鉛−アルミニウム合金めっき鋼板とその製造方法
JP2002226958A (ja) 2001-02-02 2002-08-14 Nisshin Steel Co Ltd 光沢保持性の良好な溶融Zn基めっき鋼板およびその製造法
JP4226063B1 (ja) * 2008-02-25 2009-02-18 シーケー金属株式会社 溶融亜鉛めっき処理品の生産方法
JP2009197297A (ja) * 2008-02-25 2009-09-03 Ck Metals Co Ltd 溶融亜鉛めっき処理品の生産方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170260614A1 (en) * 2013-12-03 2017-09-14 Nisshin Steel Co., Ltd. Method of producing hot-dip zn alloy-plated steel sheet
US10125414B2 (en) * 2013-12-03 2018-11-13 Nisshin Steel Co., Ltd. Method of producing hot-dip Zn alloy-plated steel sheet

Also Published As

Publication number Publication date
PL2927344T3 (pl) 2018-08-31
CA2886690C (en) 2015-08-25
KR20150061011A (ko) 2015-06-03
US10167542B2 (en) 2019-01-01
AU2013350682A1 (en) 2015-04-30
JP2014129588A (ja) 2014-07-10
AU2013350682B2 (en) 2015-06-04
IN2015DN02452A (ja) 2015-09-04
EP2927344A1 (en) 2015-10-07
BR112015010935B1 (pt) 2020-12-22
BR112015010935A2 (pt) 2017-07-11
KR101572673B1 (ko) 2015-11-27
US10202676B2 (en) 2019-02-12
ES2663957T3 (es) 2018-04-17
EP2927344A4 (en) 2016-10-26
EP2927344B1 (en) 2018-02-21
CN104838036A (zh) 2015-08-12
MX2015003967A (es) 2015-11-16
MX344320B (es) 2016-12-13
MY170543A (en) 2019-08-16
CN104838036B (zh) 2016-08-24
US20150259776A1 (en) 2015-09-17
CA2886690A1 (en) 2014-06-05
JP5450874B1 (ja) 2014-03-26
RU2590443C1 (ru) 2016-07-10
JP5356616B1 (ja) 2013-12-04
US20150292073A1 (en) 2015-10-15
JP2014129589A (ja) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5450874B1 (ja) 溶融Zn合金めっき鋼板の製造方法
US10125414B2 (en) Method of producing hot-dip Zn alloy-plated steel sheet
US20190040512A1 (en) Method of producing hot-dip zn-alloy-plated steel sheet
US10053753B2 (en) Aluminum-zinc plated steel sheet and method for producing the same
JP2018159107A (ja) 溶融Zn合金めっき鋼板の製造方法
JP2018159108A (ja) 溶融Zn合金めっき鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14349334

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/003967

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2886690

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013859545

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013350682

Country of ref document: AU

Date of ref document: 20130304

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157012632

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201503088

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015010935

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015119973

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015010935

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150513