WO2014083611A1 - クレーン運転支援装置 - Google Patents

クレーン運転支援装置 Download PDF

Info

Publication number
WO2014083611A1
WO2014083611A1 PCT/JP2012/080617 JP2012080617W WO2014083611A1 WO 2014083611 A1 WO2014083611 A1 WO 2014083611A1 JP 2012080617 W JP2012080617 W JP 2012080617W WO 2014083611 A1 WO2014083611 A1 WO 2014083611A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
crane
object height
moving body
distribution data
Prior art date
Application number
PCT/JP2012/080617
Other languages
English (en)
French (fr)
Inventor
理博 鈴木
中村 大介
賢次 貴島
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2012/080617 priority Critical patent/WO2014083611A1/ja
Priority to JP2014549664A priority patent/JP5983762B2/ja
Priority to ES12889121.5T priority patent/ES2634684T3/es
Priority to EP12889121.5A priority patent/EP2927178B1/en
Priority to KR1020157013823A priority patent/KR101733331B1/ko
Priority to US14/441,653 priority patent/US9352939B2/en
Priority to CN201280077300.9A priority patent/CN104812692B/zh
Publication of WO2014083611A1 publication Critical patent/WO2014083611A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/04Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track
    • B66C15/045Safety gear for preventing collisions, e.g. between cranes or trolleys operating on the same track electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • B66C13/23Circuits for controlling the lowering of the load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects

Definitions

  • the present invention relates to a crane operation support device that supports the operation of a crane having a movable body that is movable in a horizontal direction by suspending a container.
  • a two-dimensional laser sensor having a fan-shaped detection range is attached to a moving body at a location where the lower edge of a container suspended by a container hanging tool can be seen
  • Control means that scans the transverse movement direction by the sensor and controls the movement position of the container on the basis of the position data of the lower edge of the suspended container and the position data of the upper edge of the placed container.
  • a container collision prevention device is disclosed.
  • the conventional technology disclosed in the above publication has the following problems.
  • containers are stacked as high as possible to accommodate as many containers as possible.
  • a blind spot of a scanning distance measuring instrument such as a two-dimensional laser sensor is generated by a highly stacked container, and the top edge of the placed container may not be detected.
  • automatic deceleration of the descending or traversing container or container suspension may not be performed properly.
  • the automatic deceleration is started from the front more than necessary, and the time required for the movement of the container or the container hanging tool becomes long, and the operation efficiency may be lowered.
  • the present invention has been made to solve the above-described problems, and provides a crane operation support device capable of suppressing a decrease in operation efficiency even when a blind spot occurs in a scanning distance measuring instrument.
  • the purpose is to do.
  • a crane operation support device is a crane operation support device that supports the operation of a crane having a movable body that is movable in a horizontal direction by suspending a container.
  • the height of the object below the moving range of the moving object Object height distribution data creating means for creating object height distribution data, which is data representing the distribution, and the object height distribution data creating means adds the blind spot of the scanning distance measuring instrument to the created object height distribution data.
  • the object height in the blind spot range is determined based on the object height data at the furthest point from the scanning distance measuring instrument. Sano Day It is intended to retouch.
  • the crane operation support apparatus According to the crane operation support apparatus according to the present invention, it is possible to suppress a decrease in operation efficiency even when a blind spot occurs in the scanning distance measuring instrument.
  • FIG. 1 is a perspective view showing a crane to which the crane operation support device according to the first embodiment of the present invention is applied.
  • FIG. 2 is a front view of the crane shown in FIG.
  • FIG. 3 is a block diagram illustrating a crane control system to which the crane operation support device according to the first embodiment of the present invention is applied.
  • FIG. 4 is a diagram for explaining automatic deceleration and correction of object height distribution data to be described later.
  • FIG. 5 is a front view of the crane shown in FIG.
  • FIG. 6 is a front view of the crane shown in FIG.
  • FIG. 7 is a diagram for explaining the modification of the object height distribution data.
  • FIG. 8 is a block diagram illustrating a crane control system to which the crane operation support device according to the second embodiment of the present invention is applied.
  • FIG. 8 is a block diagram illustrating a crane control system to which the crane operation support device according to the second embodiment of the present invention is applied.
  • FIG. 9 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the third embodiment of the present invention is applied.
  • FIG. 10 is a diagram for explaining a method for detecting the height dimension of a container in the third embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the fourth embodiment of the present invention is applied.
  • FIG. 12 is a block diagram showing a crane control system to which the crane operation support apparatus according to the fifth embodiment of the present invention is applied.
  • FIG. 13 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the sixth embodiment of the present invention is applied.
  • FIG. 14 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the seventh embodiment of the present invention is applied.
  • FIG. 15 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the eighth embodiment of the present invention is applied.
  • FIG. 16 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the ninth embodiment of the present invention is applied.
  • FIG. 17 is a block diagram showing a crane control system to which the crane operation support apparatus according to the tenth embodiment of the present invention is applied.
  • FIG. 1 is a perspective view showing a crane to which the crane operation support device according to the first embodiment of the present invention is applied.
  • FIG. 2 is a front view of the crane 100 shown in FIG.
  • the crane 100 in this embodiment is used in a container yard that accumulates and stores rectangular parallelepiped containers 108.
  • a container 108R when referring to the container 108 suspended from the crane 100, it is referred to as a container 108R.
  • a container 108Q When referring to a container placed in the container yard, it is referred to as a container 108Q.
  • containers 108Q are arranged in a plurality of rows (5 rows in the configuration shown) and stacked in a plurality of rows (4 rows in the configuration shown) in the container yard. Can do.
  • the container 108 is loaded on the loading platform 110 of the truck 107 and is carried into the container yard or is carried out from the container yard.
  • a lane in which the truck 107 can travel is provided in parallel to the row direction of the container 108Q (that is, the longitudinal direction of the container 108Q) adjacent to the space where the container 108Q is placed.
  • the crane 100 includes a gate-shaped frame 101 that straddles the traveling lane of the container 108Q and the truck 107 collected in the container yard, a plurality of traveling wheels 102 that allow the frame 101 to move in the row direction of the container 108Q, And a movable body 103 that is movable in the horizontal direction along the cross beam.
  • the moving body 103 can move linearly in a direction perpendicular to the row direction of the containers 108Q above the containers 108Q collected in the container yard.
  • lateral direction a direction parallel to the moving direction of the moving body 103
  • the movement in the horizontal direction is referred to as “transverse”.
  • the moving body 103 is provided with a cab 111, a take-up drum 112 driven by the hoisting motor 8, and a scanning distance measuring device 109.
  • a container suspension 105 such as a spreader that can grasp and release the container 108 is suspended from the take-up drum 112 via a wire rope 104.
  • the winding drum 112 can raise the container suspension 105 by winding the wire rope 104, and can lower the container suspension 105 by feeding the wire rope 104.
  • the cab 111 is disposed at a position that does not overlap vertically above the container suspension 105.
  • the scanning distance measuring instrument 109 is disposed at a position that does not overlap vertically above the container suspension 105.
  • the cab 111 and the scanning distance measuring device 109 are disposed on opposite sides of the container suspension 105 with a position vertically above it.
  • the crane operator operates the crane 100 by operating the operation device of the operation desk 1 provided in the cab 111. That is, the crane operator first drives the traveling wheel 102 to travel the frame 101 to the target position and stops.
  • the container suspension 105 is wound up to the regular upper limit position without holding the container 108R.
  • the position of the moving body 103 with respect to the frame 101 is arbitrary.
  • the container 108 carried by the truck 107 is grasped by the container lifting tool 105, lifted by driving the take-up drum 112, and then moved along with the moving body 103.
  • the moving body 103 is stopped at the target position, and the container 108R is lowered together with the container suspension 105 by letting out the wire rope 104 to be landed.
  • the operation of loading the container 108 carried by the truck 107 at the designated location is performed.
  • the crane operator lifts and conveys the designated one out of the stored containers 108, and sends it to the empty truck 107. Work to load.
  • the scanning distance measuring device 109 irradiates the object with a measurement electromagnetic wave such as laser light or microwave, and measures the distance to the object by detecting a phase difference from the reflected wave. It is possible. In addition, the scanning distance measuring instrument 109 sequentially measures while rotating the measurement electromagnetic wave irradiation direction, so that the measurement electromagnetic wave irradiation angle and the distance measurement value corresponding to the angle are measured for each measurement point. Output is possible. As shown in FIG. 2, the scanning distance measuring device 109 scans the irradiation direction of the measurement electromagnetic wave in a vertical plane parallel to the lateral direction, so that an object (e.g. The distance and angle between the container 108Q, the loading platform 110 of the truck 107, the ground, and the like) can be measured.
  • an object e.g. The distance and angle between the container 108Q, the loading platform 110 of the truck 107, the ground, and the like
  • FIG. 3 is a block diagram showing a crane control system to which the crane operation support device according to the first embodiment of the present invention is applied.
  • the crane 100 of the present embodiment includes an operation desk 1 provided with an operation device operated by a crane operator, a crane drive control device 2, an operation support control device 3, and a winding drum 112. , A lifting speed detector 13 for detecting the lifting speed of the container suspension 105, a traversing motor 9 for traversing the moving body 103, and a traversing speed detector 14 for detecting the traversing speed of the moving body 103. And.
  • the auxiliary machines that are not related to the description of the present invention are not shown.
  • the crane drive control device 2 includes a master controller that generates an auxiliary machine command signal and a speed reference signal from the operation signal and the auxiliary machine signal, and a power converter that drives the hoisting motor 8 and the traversing electric motor 9.
  • the driving support control device 3 includes a hanging tool data separation calculation unit 4, an object height distribution data creation unit 5, a deceleration determination unit 6, a necessary distance calculation unit 7, and a speed position conversion unit 12.
  • the speed position conversion means 12 calculates the height position of the container suspension 105 based on the lifting speed detected by the lifting speed detector 13. Further, the speed position conversion means 12 calculates the position of the moving body 103 based on the traversing speed of the moving body 103 detected by the traversing speed detector 14. Instead of the speed position conversion means 12, a height position detector 13a for detecting the height position of the container suspension 105 and a moving body position detector 14a for detecting the position of the moving body 103 are provided. Also good.
  • the scanning distance measuring device 109 transmits measurement information including an angle and a distance measurement value corresponding to the angle to the driving support control device 3.
  • An example of measurement information by the scanning distance measuring device 109 is schematically represented by a thick line in FIG.
  • the hanging tool data separation calculation means 4 of the driving support control device 3 recognizes a part corresponding to the container hanging tool 105 and the suspended container 108R in the measurement information transmitted from the scanning distance measuring device 109, and this part. Isolate.
  • the object height distribution data creation means 5 is based on the measurement information from which portions corresponding to the container suspension 105 and the suspended container 108R are removed, for example, an object below the movement range of the moving body 103, for example, the container 108Q.
  • Object height distribution data which is data representing the height distribution of the loading platform 110, the ground, etc.
  • the object height distribution data creating means 5 creates the object height distribution data by connecting each point measured by the scanning distance measuring device 109 with a line, for example.
  • the scanning distance measuring device 109 sequentially performs measurement while the moving body 103 is moving.
  • the object height distribution data creation unit 5 creates object height distribution data corresponding to the position of the moving body 103.
  • the deceleration determination means 6 and the necessary distance calculation means 7 constitute an automatic deceleration means.
  • the deceleration determination means 6 is based on the object height distribution data and the distance value required for deceleration calculated by the necessary distance calculation means 7.
  • the crane drive control device 2 is controlled so as to automatically reduce the descending speed of the container 108R. And issue a descending deceleration command.
  • the deceleration determination means 6 calculates the object height distribution data and the distance required for deceleration calculated by the necessary distance calculation means 7. Based on the value, the descending deceleration command is sent to the crane drive control device 2 so that the descending speed of the container hanging unit 105 is automatically decelerated before the container hanging unit 105 collides with an object below the vertical direction. Put out.
  • the deceleration determination means 6 is necessary for deceleration calculated by the object height distribution data and the necessary distance calculation means 7. Based on the distance value, the crane drive control device automatically decelerates the traversing speed of the moving body 103 before the container 108R collides with an object ahead of the traveling direction, such as the container 108Q. A traverse deceleration command is issued to 2.
  • the deceleration determination unit 6 performs the deceleration calculated by the object height distribution data and the necessary distance calculation unit 7.
  • the crane drive control device 2 is instructed to automatically reduce the traversing speed of the container suspension 105 before the container suspension 105 collides with an object ahead of its traveling direction. In response, a traverse deceleration command is issued.
  • the mobile body 103 is suspended and lowered. Or it can prevent reliably that the container 108R or the container suspension 105 which is traversing collides with an object at high speed. As a result, it is possible to reliably prevent the containers 108R and 108Q and the loads therein, the loading platform 110 of the truck 107, the driver of the truck 107, and the like from being damaged, and these can be reliably protected. In particular, it is possible to reliably prevent an accident in which the container 108R suspended by the moving body 103 collides with the container 108Q stacked high at a high speed and the container 108Q stacked high collapses. High safety is obtained.
  • FIG. 4 is a diagram for explaining automatic deceleration and modification of object height distribution data described later.
  • the object height distribution data is expressed using coordinates composed of a position X in the horizontal direction and a height position H.
  • the current speed is Vt
  • the creep speed after completion of deceleration is VL
  • the moving distance from the start of deceleration to completion is YL
  • the deceleration time required from the current speed Vt to stop is T
  • the deceleration time required from the speed Vt to the creep speed VL is TL
  • the deceleration is A.
  • the creep speed VL is a low speed at which there is no damage even when the container 108R or the container suspension 105 reaches or touches the container 108Q, the loading platform 110, the ground, or the like.
  • the distance YL required for deceleration can be obtained by the following equation. The following equation is common to descending and traversing. Here, for the sake of simplicity, it is assumed that the deceleration A is constant. However, in actual control, the deceleration A is gradually changed at the start and end of deceleration. Also good.
  • TL T ⁇ (Vt ⁇ VL) / Vt (1)
  • YL (Vt ⁇ VL) ⁇ TL + A ⁇ TL / 2 (2)
  • the necessary distance calculation means 7 calculates the distance YL required for deceleration based on the above formulas (1) and (2), and gives it to the deceleration determination means 6.
  • the height of the object vertically below the container 108R or the container suspension 105 is Hp
  • the height of the lower surface of the container suspension 105 is Hs
  • the height of the suspended container 108R is Ch
  • the margin distance is Yh.
  • the deceleration determination means 6 issues a downward deceleration command to the crane drive control device 2 when the following equation is established based on the object height distribution data.
  • D in the above equation (3) is calculated by the following equation when the container suspension 105 suspends the container 108R.
  • D Hs ⁇ Ch (4)
  • D in the above equation (3) is obtained by the following equation.
  • D Hs (5)
  • the deceleration is completed when the lower surface of the descending container 108R or the container suspension 105 is at a position above the object height Hp vertically below the margin distance Yh, and the descending speed is reduced. It becomes equal to the creep speed VL. For this reason, the deceleration can be reliably completed before the lower surface of the container 108R or the container suspension 105 collides with the object.
  • the necessary distance calculation means 7 calculates the distance XL necessary for deceleration by performing the same calculation as the above formulas (1) and (2), and gives it to the deceleration determination means 6. .
  • the position of the right side surface of the container 108R or the container suspension 105 in FIG. 4 is Xa
  • the position of the left side surface of the container 108R or the container suspension 105 in FIG. 4 is Xb
  • the margin distance is Xh.
  • the deceleration determination means 6 determines a position Xp that is in front of the moving direction of the moving body 103 and that the object height H is equal to or higher than the height D of the lower surface of the container 108R or the container suspension 105. Ask. When the moving body 103 is traversing in the right direction in FIG. 4, the deceleration determination means 6 issues a traverse deceleration command to the crane drive control device 2 when the following equation is satisfied. Xa + XL + Xh ⁇ Xp (6)
  • the deceleration determination means 6 issues a traverse deceleration command to the crane drive control device 2 when the following equation is established. Xb-XL-Xh ⁇ Xp (7)
  • the deceleration is completed when the side surface of the traversing container 108R or the container suspension 105 is at a position closer to the position Xp of the object that may collide by the marginal distance Xh.
  • the speed becomes equal to the creep speed VL. For this reason, the deceleration can be reliably completed before the side surface of the container 108R or the container suspension 105 collides with the object.
  • FIG. 5 is a front view of the crane 100 shown in FIG. FIG. 5 shows a case where the moving body 103 traverses from position A to position B.
  • the position A is a home position of the moving body 103, that is, a position when the crane operator gets into the cab 111. Further, the position A is a position where the container suspension 105 is vertically above the leftmost row of container storage places in FIG.
  • the position B is a position where the container hanging tool 105 is vertically above the traveling lane of the truck 107. That is, the position B is a position when the container 108 is loaded on the truck 107 or when the container 108 is lifted from the truck 107.
  • Object height distribution data created based on information measured by the scanning distance measuring device 109 while the moving body 103 traverses from the position A to the position B is schematically represented by a thick line in FIG.
  • the height distribution of the object can be detected appropriately.
  • FIG. 6 is a front view of the crane 100 shown in FIG.
  • the traveling wheel 102 is driven and the frame 101 is moved to the target position while the moving body 103 is at the position B
  • the container 108 ⁇ / b> R carried by the truck 107 is lifted, and the moving body 103 is
  • the position C is a position where the container suspension 105 is vertically above the container storage area in the second row from the left side in FIG.
  • the object height distribution data created based on the information measured by the scanning distance measuring device 109 while the moving body 103 traverses from the position B to the position C is schematically represented by a thick line in FIG.
  • a hatched triangular range in FIG. 6 is a blind spot of the scanning distance measuring device 109. Such a blind spot occurs because the scanning distance measuring device 109 does not reach a position vertically above the position where the container 108R is suspended.
  • the above-described triangular slope is recognized as the object height, so that when the vehicle is lowered or traversed automatically, it collides with the triangular slope. It is controlled so that the deceleration is completed before.
  • the width of the container 108 is standardized by ISO (International Organization for Standardization) and is constant, the container 108 does not actually exist in the triangle range described above. Accordingly, in the range of the blind spot, automatic deceleration is started from the front more than necessary. As a result, the time required for lowering or traversing the container 108R or the container suspension 105 becomes longer, and the operation efficiency is lowered.
  • the object height data in the blind spot range is converted as follows. I decided to fix it.
  • the object height distribution data creation means 5 is based on the object height data of the point farthest from the scanning distance measuring device 109 in the virtual container existence range that overlaps the blind angle range. Correct the object height data.
  • the range of the blind spot occurs in the container storage area in the second column from the left side, and therefore, the range indicated by the thin broken line is a virtual container existence range CT having an overlap with the range of the blind spot. Therefore, in the case of FIG.
  • the object height data of the point farthest from the scanning distance measuring device 109 in the virtual container existence range CT that overlaps the blind spot range is the height of the point Pd. is there.
  • the object height distribution data creation means 5 when a blind spot is generated in the created object height distribution data, the object height data in the range of the blind spot is equal to the object height of the farthest point Pd. Adjust to be consistent with the value.
  • a thick broken line S in the upper graph of FIG. 4 is a line indicating data on the object height in the range of the blind spot before the correction.
  • the object height distribution data creation unit 5 corrects the object height data line S in the blind spot range by rewriting the lines Hn and Xn.
  • the lower graph of FIG. 4 shows the object height distribution data after modification.
  • the object height data in the range of the blind spot is corrected so as to be equal to the object height of the farthest point Pd.
  • the object height distribution data creating means 5 stores the object height distribution data thus corrected in the memory.
  • the deceleration determination means 6 determines a position for starting deceleration based on the stored object distribution data after modification, and issues a deceleration command to the crane drive control device 2.
  • the corrected object height distribution data the range of the triangle that has become a blind spot is removed. For this reason, by performing automatic deceleration based on the corrected object height distribution data, it is possible to avoid starting automatic deceleration more than necessary. For this reason, operational efficiency can be improved.
  • there is a distance unmeasured area on the left side but this area is sequentially detected when the position of the moving body 103 traverses to the left, so there is no danger of colliding with an object.
  • the traversing direction of the moving body 103 may be determined, and the object height distribution data may be modified when the moving body 103 traverses in the left direction in FIG. Further, it is determined whether or not the position of the container suspension 105 is vertically above the range where the container 108Q is placed in the container yard, and the position of the container suspension 105 is above the range where the container 108Q is placed in the container yard. If it is determined, the object height distribution data may be modified.
  • FIG. 7 is a diagram for explaining the modification of the object height distribution data.
  • the modification of the object height distribution data by the object height distribution data creating means 5 will be further described with reference to FIG.
  • the sum of the width Wa of the container 108 and the width Wb of the gap between the containers is determined from the position of the side surface of the container 108Q in the next row of the container place where the blind spot of the scanning distance measuring device 109 has occurred.
  • a position that is separated by a distance corresponding to may be set as the boundary of the virtual container existence range CT1.
  • a position separated by the width Wa of the container 108 from the position of the side surface of the container 108Q in the adjacent row may be set as the boundary of the virtual container existence range CT2.
  • the object height data at the point farthest from the scanning distance measuring device 109 is the height of the point Pd1. Therefore, when the virtual container existence range CT1 is set, the line S of the object height data before the correction of the blind spot range is corrected to the line Hn1, which is a line having a height equal to the object height of the point Pd1. Is done.
  • the object height data of the point farthest from the scanning distance measuring device 109 is the height of the point Pd2. Therefore, when the virtual container existence range CT2 is set, the line S of the object height data before the correction of the blind spot range is corrected to the line Hn2, which is a line having a height equal to the object height of the point Pd2. Is done.
  • the container 108 ⁇ / b> Q is placed in one stage in the blind spot range of the scanning distance measuring device 109.
  • the scanning distance measuring instrument 109 cannot measure the upper surface of the container 108Q in the blind spot range at all.
  • the object height distribution in the blind spot range is obtained. Data can be modified. For this reason, it can suppress as much as possible that automatic deceleration starts from the front more than necessary, and can improve operational efficiency.
  • the object height of the point farthest from the scanning distance measuring device 109 in the virtual container existence range having an overlap with the range of the blind spot is obtained.
  • it may be modified so as to be unified at a position slightly higher than the object height of the farthest point in order to have a margin on the safer side.
  • only one scanning distance measuring device 109 is installed on the moving body 103.
  • the object height distribution data in the blind spot range can be appropriately corrected. For this reason, since it is not necessary to provide a plurality of scanning distance measuring instruments 109 in order to prevent the blind spot of the scanning distance measuring instrument 109 from being generated, the cost can be reduced.
  • a plurality of scanning distance measuring devices 109 may be installed on the moving body 103.
  • the control for performing automatic deceleration based on the object height distribution data is performed.
  • the automatic deceleration control is not necessarily performed. Operation may be supported by imaging and presenting it to the crane operator. In that case, when the blind spot of the scanning distance measuring device 109 is generated and the object height distribution data is corrected, the object height distribution data before and after correction may be presented to the crane operator together. good.
  • FIG. 8 is a block diagram illustrating a crane control system to which the crane operation support device according to the second embodiment of the present invention is applied.
  • the driving support control device 3 according to the second embodiment further includes a container height dimension setting unit 15a in addition to the same configuration as that of the first embodiment.
  • a plurality of types of containers 108 having different height dimensions Ch may be mixed and accumulated.
  • the value of the largest height dimension among the plurality of types of containers 108 can be set by the container height dimension setting means 15a.
  • the maximum value of the container height dimension set by the container height dimension setting means 15a can be input from the operation desk 1 by, for example, the crane operator.
  • the deceleration determination means 6 uses the maximum value of the container height dimension set by the container height dimension setting means 15a as Ch when performing the calculation of the equation (4) described in the first embodiment.
  • the position of the lower surface of the container 108R suspended from the moving body 103 is calculated.
  • the container 108R suspended by the moving body 103 has the maximum height dimension, and the start position of the automatic deceleration of descending and traversing is determined. Is done. For this reason, no matter what kind of container 108R is suspended by the moving body 103, the automatic deceleration of descending and traversing can be performed safely.
  • FIG. 9 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the third embodiment of the present invention is applied.
  • the driving support control device 3 according to the third embodiment further includes a container height dimension detecting unit 15 b in addition to the same configuration as that of the first embodiment.
  • the container height dimension detecting means 15b detects the height dimension Ch of the container 108R based on information obtained by measuring the position of the lower end of the container 108R suspended by the moving body 103 by the scanning distance measuring device 109.
  • FIG. 10 is a diagram for explaining a method of detecting the height dimension Ch of the container 108R in the third embodiment.
  • the container height dimension detecting unit 15 b is configured to detect the height of the lower end of the container 108 ⁇ / b> R based on information obtained by measuring the position of the lower end of the container 108 ⁇ / b> R lifted by the moving body 103 by the scanning distance measuring device 109.
  • the deceleration determination means 6 is suspended from the moving body 103 by using the container height dimension Ch detected by the container height dimension detection means 15b when performing the calculation of the equation (4) described in the first embodiment.
  • the position of the lower surface of the container 108R is calculated.
  • the height Ch of the container 108R on which the moving body 103 is suspended is automatically detected, the position of the lower surface of the container 108R is calculated, and the lowering is performed.
  • the starting position of the automatic deceleration of the traversing can be determined. This makes it possible to optimize the automatic deceleration start position regardless of the height of the container 108R that the moving body 103 suspends. Therefore, high safety can be obtained and operational efficiency can be improved. Can be further improved.
  • FIG. 11 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the fourth embodiment of the present invention is applied.
  • the driving support control device 3 according to the fourth embodiment further includes a container height dimension setting unit 15 a in addition to the same configuration as that of the first embodiment.
  • the operation desk 1 is provided with a selection switch 1 a as a selection unit that allows the crane operator to select information on the height dimension Ch of the container 108.
  • the crane operator operates the selection switch 1a to select information on the height dimension Ch of the container 108R according to the type of the container 108R suspended by the moving body 103.
  • the container height dimension setting means 15a receives the signal from the selection switch 1a, and sets the height dimension Ch of the container 108R selected by the crane operator.
  • the deceleration determination means 6 uses the container height dimension Ch set by the container height dimension setting means 15a when calculating the equation (4) described in the first embodiment, thereby allowing the moving body 103 to The position of the lower surface of the suspended container 108R is calculated.
  • the fourth embodiment by performing such control, information on the height dimension Ch of the container 108R on which the moving body 103 is suspended is received from the crane operator, and the lower surface of the container 108R is based on the information. Can be calculated and the starting position of the automatic deceleration of descending and traversing can be determined. Thereby, no matter what kind of container 108R is suspended by the moving body 103, the start position of automatic deceleration can be optimized, so that high safety is obtained and operational efficiency is further improved. be able to.
  • FIG. 12 is a block diagram showing a crane control system to which the crane operation support apparatus according to the fifth embodiment of the present invention is applied.
  • the driving support control device 3 according to the fifth embodiment further includes a container height dimension setting unit 15a in addition to the same configuration as that of the first embodiment.
  • the crane control system can receive the container transportation instruction information sent from the yard control system 16 which is the host system via the transmission device.
  • the yard supervision system 16 is a system that supervises the work of the entire container yard, and performs planning, instructions, and the like related to loading and unloading of the container 108, arrangement, storage, loading and unloading onto a container ship, and the like.
  • the container transport instruction information sent from the yard control system 16 includes information on the height dimension Ch of the container 108.
  • the container height dimension setting unit 15 a sets the height dimension Ch of the container 108 based on the container transportation instruction information transmitted from the yard management system 16.
  • the deceleration determination means 6 uses the container height dimension Ch set by the container height dimension setting means 15a when calculating the equation (4) described in the first embodiment, thereby allowing the moving body 103 to The position of the lower surface of the suspended container 108R is calculated.
  • information on the height dimension Ch of the container 108R on which the moving body 103 is suspended is received from the yard control system 16, and the container is based on the information.
  • the position of the lower surface of 108R can be calculated and the starting position of the automatic deceleration of descending and traversing can be determined. Thereby, no matter what kind of container 108R is suspended by the moving body 103, the start position of automatic deceleration can be optimized, so that high safety is obtained and operational efficiency is further improved. be able to.
  • FIG. 13 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the sixth embodiment of the present invention is applied.
  • the operation desk 1 in addition to the same configuration as that of the first embodiment, the operation desk 1 further includes a notification unit 17.
  • the operation desk 1 can receive a signal from the object height distribution data creation means 5.
  • the object height distribution data creating unit 5 transmits the information to the operation desk 1. .
  • the notifying means 17 indicates that the blind spot of the scanning distance measuring device 109 has been generated and the object height distribution data has been corrected, for example, the lamp Inform the crane operator by lighting, sound, sound, image, or a combination of these.
  • the crane operator can be alerted in this way, safety can be further improved.
  • FIG. 14 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the seventh embodiment of the present invention is applied.
  • the seventh embodiment further includes a notification unit 18 in the operation desk 1 in addition to the same configuration as the first embodiment.
  • the operation desk 1 can receive a signal from the deceleration determination means 6.
  • the deceleration determination means 6 transmits the information to the operation desk 1 when executing the downward or traverse automatic deceleration.
  • the notifying unit 18 indicates that the automatic deceleration of descending or traversing is being executed based on the information received from the deceleration determining unit 6 by, for example, lighting of a lamp, sound, sound, image, or a combination thereof. , Inform the crane operator. Thereby, in this Embodiment 7, when automatic deceleration is performed, the crane operator can know that immediately.
  • FIG. 15 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the eighth embodiment of the present invention is applied.
  • the deceleration determination means 6 when the moving body 103 is traversing, the deceleration determination means 6 is connected to the crane drive control device 2 before the container 108R or the container suspension 105 collides with an object.
  • a traverse deceleration command is issued to reduce the traversing speed of the moving body 103 to the creep speed.
  • the deceleration determination means 6 when the moving body 103 advances at the creep speed and reaches the position where the container 108R or the container suspension 105 hits the object, the deceleration determination means 6 Then, a traverse stop command is issued, and the traversing of the moving body 103 is automatically stopped.
  • by performing such control it is possible to allow a delay in the operation of stopping the traversing of the moving body 103 by the crane operator, and it is possible to further improve safety.
  • FIG. 16 is a block diagram illustrating a crane control system to which the crane operation support apparatus according to the ninth embodiment of the present invention is applied.
  • the ninth embodiment further includes a landing detection unit 20 that can detect that the container 108R suspended from the moving body 103 has landed.
  • the landing detection means 20 is provided on the container suspension 105.
  • the landing detection means 20 can detect a change in the size of the gap between the lower surface of the container suspension 105 and the upper surface of the container 108R.
  • the landing detection means 20 can detect the landing of the container 108R by detecting that the gap is reduced when the container 108R is landed.
  • the deceleration determination means 6 is provided to the crane drive control device 2 when the container 108R is lowered before the container 108R collides with an object, that is, before landing.
  • a descending deceleration command is issued, and the descending speed of the container 108R is decelerated to the creep speed.
  • the deceleration determination means 6 is the crane drive control device.
  • a descent stop command is issued to No. 2, and the feeding of the wire rope 104 is automatically stopped. According to the ninth embodiment, by performing such control, it is possible to allow a delay in the operation of stopping the descending of the container 108R by the crane operator, and it is possible to further improve the safety.
  • FIG. 17 is a block diagram showing a crane control system to which the crane operation support apparatus according to the tenth embodiment of the present invention is applied.
  • a descending deceleration command or a transverse deceleration command issued from the deceleration determination means 6 to the crane drive control device 2 is selectively used.
  • a deceleration command invalidating means 21 that can be invalidated and an operation switch 1b provided on the operation desk 1 are provided.
  • the function of performing automatic deceleration in the downward direction or automatic deceleration in the transverse direction may be felt troublesome.
  • the crane operator operates the operation switch 1b to either one of the function of performing automatic deceleration in the downward direction or the function of performing automatic deceleration in the transverse direction. Or both can be disabled.
  • the deceleration command invalidating means 21 is based on a signal from the operation switch 1b, and is selected from a descending deceleration command and a traverse deceleration command issued from the deceleration determining means 6 to the crane drive control device 2 according to the selection of the crane operator. Disable one or both.
  • one or both of the function of performing automatic deceleration in the descending direction and the function of performing automatic deceleration in the traversing direction are disabled according to the preference of the crane operator. be able to. For this reason, it can respond to the various preferences of the crane operator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

 本発明は、走査型距離計測器に死角が発生する場合であっても操業効率の低下を抑制することのできるクレーン運転支援装置を提供することを目的とする。 本発明のクレーン運転支援装置は、コンテナを吊って水平方向に移動可能な移動体の移動範囲の下方にある物体との間の距離および角度を計測可能な走査型距離計測器と、走査型距離計測器により計測された情報に基づいて、移動体の移動範囲の下方にある物体の高さの分布を表すデータである物体高さ分布データを作成する物体高さ分布データ作成手段とを備える。物体高さ分布データ作成手段は、作成した物体高さ分布データに走査型距離計測器の死角が発生している場合には、死角の範囲との重なりを持つ仮想のコンテナ存在範囲の中で走査型距離計測器から最も遠い点の物体高さのデータに基づいて、死角の範囲の物体高さのデータを修整する。

Description

クレーン運転支援装置
 本発明は、コンテナを吊って水平方向に移動可能な移動体を有するクレーンの運転を支援するクレーン運転支援装置に関する。
 コンテナを吊って横行するトロリーのような移動体を有する港湾クレーン設備等において、移動体に吊られて下降または横行しているコンテナまたはコンテナ吊具と接触するおそれのある物体との衝突を回避すること、衝撃の少ない着床を行うこと、あるいは物体への横方向の激突による段積みコンテナ崩れを防止することを目的として、物体の位置をセンサにより検出し、下降または横行の速度を自動で減速させる技術が知られている。
 日本特開2005-104665号公報には、コンテナ吊具で吊られたコンテナの下縁部を見通しできる個所に横行移動方向に向けて扇形の検出範囲を有する二次元レーザセンサを移動体に取り付け、当該センサにより横行移動方向を走査し、吊られているコンテナの下縁部の位置データと、置かれているコンテナの上面エッジの位置データとに基づき、コンテナの移動位置の制御をなす制御手段を設けたコンテナ衝突防止装置が開示されている。
日本特開2005-104665号公報
 上記公報に開示された従来の技術では、次のような問題がある。コンテナヤードでは、なるべく多数のコンテナを収容するために、コンテナが、可能な限り高く積み重ねて置かれる。このため、高く積まれたコンテナによって、二次元レーザセンサ等の走査型距離計測器の死角が発生し、置かれているコンテナの上面エッジを検出できない場合がある。そのような死角が発生すると、下降または横行しているコンテナまたはコンテナ吊具の自動減速を適切に実行することができない場合がある。また、必要以上に手前から自動減速が開始されてしまい、コンテナまたはコンテナ吊具の移動に要する時間が長くなり、操業効率が低下する場合がある。
 本発明は、上述のような課題を解決するためになされたもので、走査型距離計測器に死角が発生する場合であっても操業効率の低下を抑制することのできるクレーン運転支援装置を提供することを目的とする。
 本発明に係るクレーン運転支援装置は、コンテナを吊って水平方向に移動可能な移動体を有するクレーンの運転を支援するクレーン運転支援装置であって、移動体に設置され、移動体の移動範囲の下方にある物体との間の距離および角度を計測可能な走査型距離計測器と、走査型距離計測器により計測された情報に基づいて、移動体の移動範囲の下方にある物体の高さの分布を表すデータである物体高さ分布データを作成する物体高さ分布データ作成手段と、を備え、物体高さ分布データ作成手段は、作成した物体高さ分布データに走査型距離計測器の死角が発生している場合には、死角の範囲との重なりを持つ仮想のコンテナ存在範囲の中で走査型距離計測器から最も遠い点の物体高さのデータに基づいて、死角の範囲の物体高さのデータを修整するものである。
 本発明に係るクレーン運転支援装置によれば、走査型距離計測器に死角が発生する場合であっても操業効率の低下を抑制することが可能となる。
図1は、本発明の実施の形態1のクレーン運転支援装置を適用したクレーンを示す斜視図である。 図2は、図1に示すクレーンの正面図である。 図3は、本発明の実施の形態1のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図4は、自動減速および後述する物体高さ分布データの修整について説明するための図である。 図5は、図1に示すクレーンの正面図である。 図6は、図1に示すクレーンの正面図である。 図7は、物体高さ分布データの修整について説明するための図である。 図8は、本発明の実施の形態2のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図9は、本発明の実施の形態3のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図10は、本発明の実施の形態3において、コンテナの高さ寸法を検出する方法を説明するための図である。 図11は、本発明の実施の形態4のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図12は、本発明の実施の形態5のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図13は、本発明の実施の形態6のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図14は、本発明の実施の形態7のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図15は、本発明の実施の形態8のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図16は、本発明の実施の形態9のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。 図17は、本発明の実施の形態10のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。なお、本発明は、以降に示す各実施の形態のあらゆる組み合わせを含むものとする。
実施の形態1.
 図1は、本発明の実施の形態1のクレーン運転支援装置を適用したクレーンを示す斜視図である。図2は、図1に示すクレーン100の正面図である。本実施形態におけるクレーン100は、直方体形状のコンテナ108を集積して保管するコンテナヤードにおいて使用される。以下の説明では、クレーン100に吊られているコンテナ108を指す場合にはコンテナ108Rと称し、コンテナヤードに置かれているコンテナを指す場合にはコンテナ108Qと称し、特に区別しない場合にはコンテナ108と総称する。
 図1および図2に示すように、コンテナヤードには、コンテナ108Qを、複数列(図示の構成では5列)に並べ、且つ、複数段(図示の構成では4段)に積み重ねて、置くことができる。コンテナ108は、トラック107の荷台110に積まれて、コンテナヤードに搬入され、あるいは、コンテナヤードから搬出される。コンテナヤードには、トラック107が走行可能な車線が、コンテナ108Qが置かれるスペースに隣接して、コンテナ108Qの列方向(すなわち、コンテナ108Qの長手方向)に平行に設けられている。
 クレーン100は、コンテナヤードに集積されたコンテナ108Qおよびトラック107の走行車線を跨ぐ門型のフレーム101と、フレーム101をコンテナ108Qの列方向に移動可能にする複数の走行車輪102と、フレーム101の横桁に沿って水平方向に移動可能な移動体103とを備えている。移動体103は、コンテナヤードに集積されたコンテナ108Qの上方において、コンテナ108Qの列方向に直交する方向に直線的に移動可能になっている。以下の説明では、移動体103の移動方向に平行な方向を「横方向」と称する。また、横方向への移動を「横行」と称する。
 移動体103には、運転室111と、巻き上げ電動機8により駆動される巻き取りドラム112と、走査型距離計測器109とが設置されている。巻き取りドラム112からは、コンテナ108を掴んだり放したりすることのできるスプレッダのようなコンテナ吊具105が、ワイヤーロープ104を介して吊り下げられている。巻き取りドラム112は、ワイヤーロープ104を巻き取ることによりコンテナ吊具105を上昇させ、ワイヤーロープ104を繰り出すことによりコンテナ吊具105を下降させることができる。運転室111は、コンテナ吊具105の鉛直上方に重ならない位置に配置されている。走査型距離計測器109は、コンテナ吊具105の鉛直上方に重ならない位置に配置されている。本実施形態では、運転室111と走査型距離計測器109とは、コンテナ吊具105の鉛直上方の位置を挟んで、互いに反対側に配置されている。
 クレーン運転士は、運転室111内に設けられた操作デスク1の操作機器を操作して、クレーン100を運転する。すなわち、クレーン運転士は、まず、走行車輪102を駆動して、目的の位置までフレーム101を走行させ、停止する。なお、フレーム101の走行時には、コンテナ吊具105は、コンテナ108Rを掴んでいない状態で、常用上限位置に巻き上げられている。また、フレーム101の走行時には、フレーム101に対する移動体103の位置は、任意である。フレーム101を停止した後、トラック107が運んできたコンテナ108を、コンテナ吊具105で掴み、巻き取りドラム112を駆動して吊り上げた後、移動体103とともに横行させる。そして、移動体103を目的の位置に停止し、ワイヤーロープ104を繰り出すことによりコンテナ吊具105とともにコンテナ108Rを下降させて着床させる。このようにして、トラック107が運んできたコンテナ108を、指示された場所に積む作業を行う。逆に、コンテナヤードからコンテナ108を搬出する指示が与えられた場合には、クレーン運転士は、保管されているコンテナ108の中から、指示されたものを吊り上げて運搬し、空のトラック107に積む作業を行う。
 走査型距離計測器109は、例えばレーザー光またはマイクロ波のような計測用電磁波を対象物に照射し、その反射波との位相差などを検出することにより、対象物との間の距離を計測可能なものである。また、走査型距離計測器109は、計測用電磁波の照射方向を回転させながら逐次計測を行うことにより、計測点ごとに、計測用電磁波の照射角度と、その角度に対応した距離計測値とを出力可能である。図2に示すように、走査型距離計測器109は、横方向に平行な鉛直面内で計測用電磁波の照射方向を走査することにより、移動体103の移動範囲の下方にある物体(例えば、置かれたコンテナ108Q、トラック107の荷台110、地面等)との間の距離および角度を計測可能になっている。
 図3は、本発明の実施の形態1のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。図3に示すように、本実施形態のクレーン100は、クレーン運転士が操作する操作機器が設けられた操作デスク1と、クレーン駆動制御装置2と、運転支援制御装置3と、巻き取りドラム112を駆動する巻き上げ電動機8と、コンテナ吊具105の昇降速度を検出する昇降速度検出器13と、移動体103を横行させる横行電動機9と、移動体103の横行速度を検出する横行速度検出器14とを備えている。なお、図3では、本発明の説明に関係の無い補機類については図示を省略している。
 クレーン駆動制御装置2は、操作信号および補機信号から補機指令信号および速度基準信号を生成する主幹コントローラと、巻き上げ電動機8および横行電動機9を駆動する電力変換装置とを有している。
 運転支援制御装置3は、吊具データ分離計算手段4と、物体高さ分布データ作成手段5と、減速判定手段6と、必要距離計算手段7と、速度位置変換手段12とを備えている。速度位置変換手段12は、昇降速度検出器13により検出された昇降速度に基づいてコンテナ吊具105の高さ位置を計算する。また、速度位置変換手段12は、横行速度検出器14により検出された移動体103の横行速度に基づいて移動体103の位置を計算する。なお、速度位置変換手段12に代えて、コンテナ吊具105の高さ位置を検出する高さ位置検出器13aと、移動体103の位置を検出する移動体位置検出器14aとを設けるようにしても良い。
 走査型距離計測器109は、角度と、その角度に対応した距離計測値とからなる計測情報を運転支援制御装置3に送信する。走査型距離計測器109による計測情報の一例を、図2中の太線で模式的に表す。運転支援制御装置3の吊具データ分離計算手段4は、走査型距離計測器109から送信された計測情報のうち、コンテナ吊具105および吊られたコンテナ108Rに対応する部分を認識し、当該部分を分離する。物体高さ分布データ作成手段5は、コンテナ吊具105および吊られたコンテナ108Rに対応する部分が除かれた計測情報に基づいて、移動体103の移動範囲の下方にある物体、例えば、コンテナ108Q、荷台110、地面等の高さの分布を表すデータである物体高さ分布データを作成する。物体高さ分布データ作成手段5は、例えば、走査型距離計測器109により計測された各点を線で結ぶようにして、物体高さ分布データを作成する。走査型距離計測器109は、移動体103の移動中にも計測を逐次行う。物体高さ分布データ作成手段5は、移動体103の位置に対応した物体高さ分布データを作成する。
 本実施形態では、減速判定手段6および必要距離計算手段7により、自動減速手段が構成される。移動体103に吊られたコンテナ108Rが下降している場合に、減速判定手段6は、物体高さ分布データと、必要距離計算手段7により計算される、減速に必要な距離の値とに基づいて、コンテナ108Rが、その鉛直下方にある物体、例えば、コンテナ108Q、荷台110、地面等に衝突する前に、コンテナ108Rの下降速度を自動的に減速させるように、クレーン駆動制御装置2に対して下降減速指令を出す。また、コンテナ108を掴んでいないコンテナ吊具105が下降している場合には、減速判定手段6は、物体高さ分布データと、必要距離計算手段7により計算される、減速に必要な距離の値とに基づいて、コンテナ吊具105が、その鉛直下方にある物体に衝突する前にコンテナ吊具105の下降速度を自動的に減速させるように、クレーン駆動制御装置2に対して下降減速指令を出す。
 また、移動体103に吊られたコンテナ108Rが移動体103とともに横行している場合に、減速判定手段6は、物体高さ分布データと、必要距離計算手段7により計算される、減速に必要な距離の値とに基づいて、コンテナ108Rが、その進行方向の先にある物体、例えばコンテナ108Q等に衝突する前に、移動体103の横行速度を自動的に減速させるように、クレーン駆動制御装置2に対して横行減速指令を出す。また、コンテナ108を掴んでいないコンテナ吊具105が移動体103とともに横行している場合には、減速判定手段6は、物体高さ分布データと、必要距離計算手段7により計算される、減速に必要な距離の値とに基づいて、コンテナ吊具105がその進行方向の先にある物体に衝突する前にコンテナ吊具105の横行速度を自動的に減速させるように、クレーン駆動制御装置2に対して横行減速指令を出す。
 本実施形態によれば、上記のような自動減速を行うことができるため、クレーン運転士が目測を誤ったり減速の操作をし遅れたりした場合であっても、移動体103に吊られて下降あるいは横行しているコンテナ108Rまたはコンテナ吊具105が、高速で物体に衝突することを確実に防止することができる。これにより、コンテナ108R,108Qおよびその中の荷物、トラック107の荷台110、あるいはトラック107の運転手などにダメージを与えることを確実に防止することができ、これらを確実に保護することができる。特に、移動体103に吊られて横行しているコンテナ108Rが、高く積み重ねられたコンテナ108Qに高速で衝突し、高く積み重ねられたコンテナ108Qが倒れるような事故を確実に防止することができるので、高い安全性が得られる。
 図4は、自動減速および後述する物体高さ分布データの修整について説明するための図である。図4に示すように、本実施形態では、物体高さ分布データを、横方向の位置Xと、高さ位置Hとからなる座標を用いて表す。また、現在の速度をVtとし、減速完了後の速度であるクリープ速度をVLとし、減速の開始から完了までの移動距離をYLとし、現在速度Vtから停止までに要する減速時間をTとし、現在速度Vtからクリープ速度VLまでに要する減速時間をTLとし、減速度をAとする。クリープ速度VLは、コンテナ108Rまたはコンテナ吊具105がコンテナ108Q、荷台110、地面等に着床または当たった場合でもダメージがないような、低い速度である。減速に必要な距離YLは、次式により求めることができる。次式は、下降と横行とに共通である。また、ここでは、説明を簡略化するために減速度Aが一定であると仮定しているが、実際の制御においては、減速の開始時および終了時に減速度Aが徐々に変化するようにしても良い。
  TL=T・(Vt-VL)/Vt   ・・・(1)
  YL=(Vt-VL)・TL+A・TL/2   ・・・(2)
 必要距離計算手段7は、上記式(1)および(2)に基づいて、減速に必要な距離YLを計算し、減速判定手段6に与える。コンテナ108Rまたはコンテナ吊具105の鉛直下方にある物体の高さをHpとし、コンテナ吊具105の下面の高さをHsとし、吊られたコンテナ108Rの高さ寸法をChとし、余裕距離をYhとする。下降自動減速を行う場合には、減速判定手段6は、物体高さ分布データに基づいて、次式が成立した時点で、クレーン駆動制御装置2に対して下降減速指令を出す。
  D-YL-Yh≦Hp   ・・・(3)
 ただし、上記(3)式中のDは、コンテナ吊具105がコンテナ108Rを吊っている場合には、次式により計算する。
  D=Hs-Ch   ・・・(4)
 コンテナ吊具105がコンテナ108Rを吊っていない場合には、上記(3)式中のDは、次式により求める。
  D=Hs   ・・・(5)
 以上の制御により、下降しているコンテナ108Rまたはコンテナ吊具105の下面が、その鉛直下方の物体高さHpに対して余裕距離Yhだけ上の位置にあるときに減速が完了し、下降速度がクリープ速度VLに等しくなる。このため、コンテナ108Rまたはコンテナ吊具105の下面が物体に衝突する前に、減速を確実に完了することができる。
 また、移動体103の横行時には、必要距離計算手段7は、上記式(1)および(2)と同様の計算を行うことにより、減速に必要な距離XLを計算し、減速判定手段6に与える。コンテナ108Rまたはコンテナ吊具105の図4中で右側の側面の位置をXaとし、コンテナ108Rまたはコンテナ吊具105の図4中で左側の側面の位置をXbとし、余裕距離をXhとする。減速判定手段6は、物体高さ分布データに基づいて、移動体103の進行方向の前方であって物体高さHがコンテナ108Rまたはコンテナ吊具105の下面の高さD以上になる位置Xpを求める。移動体103が図4中の右方向に横行している場合には、減速判定手段6は、次式が成立した時点で、クレーン駆動制御装置2に対して横行減速指令を出す。
  Xa+XL+Xh≧Xp   ・・・(6)
 また、移動体103が図4中の左方向に横行している場合には、減速判定手段6は、次式が成立した時点で、クレーン駆動制御装置2に対して横行減速指令を出す。
  Xb-XL-Xh≦Xp   ・・・(7)
 以上の制御により、横行しているコンテナ108Rまたはコンテナ吊具105の側面が、衝突する可能性のある物体の位置Xpに対して余裕距離Xhだけ手前の位置にあるときに減速が完了し、横行速度がクリープ速度VLに等しくなる。このため、コンテナ108Rまたはコンテナ吊具105の側面が物体に衝突する前に、減速を確実に完了することができる。
 なお、クリープ速度VLで移動中に、クレーン運転士が移動方向を逆方向に転換する操作を行った場合には、衝突のおそれはないので、クレーン駆動制御装置2は、減速状態を解除し、通常の移動速度に制御することが好ましい。
 図5は、図1に示すクレーン100の正面図である。図5には、移動体103が位置Aから位置Bへ横行する場合が示されている。位置Aは、移動体103のホームポジション、すなわちクレーン運転士が運転室111に乗り込むときの位置である。また、位置Aは、コンテナ吊具105が、図5中で最も左側の列のコンテナ置き場の鉛直上方になる位置である。位置Bは、コンテナ吊具105が、トラック107の走行車線の鉛直上方になる位置である。すなわち、位置Bは、トラック107にコンテナ108を積むとき、またはトラック107からコンテナ108を吊り上げるときの位置である。移動体103が位置Aから位置Bへ横行する間に走査型距離計測器109により計測された情報に基づいて作成される物体高さ分布データを、図5中の太線で模式的に表す。図5に示す場合においては、走査型距離計測器109の死角が生じないので、物体の高さの分布を適切に検出することができる。
 図6は、図1に示すクレーン100の正面図である。図6には、移動体103が位置Bにある状態で走行車輪102を駆動してフレーム101を目的の位置まで移動した後、トラック107で運ばれてきたコンテナ108Rを吊り上げて、移動体103が位置Bから位置Cへ横行し、コンテナ108Rを吊り降ろす場合が示されている。位置Cは、コンテナ吊具105が、図6中で左側から2列目のコンテナ置き場の鉛直上方になる位置である。移動体103が位置Bから位置Cへ横行する間に走査型距離計測器109により計測された情報に基づいて作成される物体高さ分布データを、図6中の太線で模式的に表す。図6に示す場合においては、図6中で斜線を付した三角形の範囲が、走査型距離計測器109の死角になる。このような死角は、走査型距離計測器109が、コンテナ108Rを吊り降ろす位置の鉛直上方に達しないために発生する。
 このようにして走査型距離計測器109の死角が発生すると、上述した三角形の斜面が物体高さとして認識されるため、下降または横行の自動減速を行う場合には、この三角形の斜面に衝突する前に減速が完了するように制御される。しかしながら、コンテナ108の幅は、ISO(International Organization for Standardization)により規格化されていて一定であるので、実際には、上述した三角形の範囲にコンテナ108が存在することはない。したがって、死角の範囲では、必要以上に手前から自動減速が開始されてしまうことになる。その結果、コンテナ108Rまたはコンテナ吊具105の下降または横行に要する時間が長くなり、操業効率が低下する。
 このような点を改善するため、本実施形態では、物体高さ分布データに走査型距離計測器109の死角が発生した場合には、以下のようにして、死角の範囲の物体高さデータを修整することにした。物体高さ分布データ作成手段5は、死角の範囲との重なりを持つ仮想のコンテナ存在範囲の中で走査型距離計測器109から最も遠い点の物体高さのデータに基づいて、死角の範囲の物体高さデータを修整する。図6中では、死角の範囲は、左側から2列目のコンテナ置き場に発生しているため、細い破線で示す範囲が、死角の範囲との重なりを持つ仮想のコンテナ存在範囲CTである。したがって、図6の場合では、死角の範囲との重なりを持つ仮想のコンテナ存在範囲CTの中で走査型距離計測器109から最も遠い点の物体高さのデータとは、点Pdの高さである。物体高さ分布データ作成手段5は、作成した物体高さ分布データに死角が発生している場合には、死角の範囲の物体高さのデータを、この最も遠い点Pdの物体高さに等しい値に統一するように修整する。
 図4を参照して、物体高さ分布データの修整について更に説明する。図4の上のグラフの中の太い破線Sは、修整前の、死角の範囲の物体高さのデータを示すラインである。物体高さ分布データ作成手段5は、死角が発生した場合には、死角の範囲の物体高さデータのラインSを、ラインHnおよびXnに書き直すようにして修整する。図4の下のグラフは、修整後の物体高さ分布データを示す。修整後の物体高さ分布データでは、死角の範囲の物体高さのデータが、上記最も遠い点Pdの物体高さに等しくなるように修整されている。物体高さ分布データ作成手段5は、このようにして修整した物体高さ分布データをメモリに格納する。減速判定手段6は、その格納された、修整後の物体分布データに基づいて、減速を開始する位置を決定し、クレーン駆動制御装置2に対して減速指令を出す。修整後の物体高さ分布データでは、死角になった三角形の範囲が除去されている。このため、修整後の物体高さ分布データに基づいて自動減速を行うことにより、必要以上に手前から自動減速が開始されてしまうことを回避することができる。このため、操業効率を向上することができる。なお、図4のグラフにおいて、左側に、距離未計測域があるが、この領域は、移動体103の位置が左に横行した場合に逐次検出されるので、物体と衝突する危険は無い。
 本実施形態では、図6に示すように、移動体103が図6中の左方向に横行した場合に、走査型距離計測器109の死角が発生する可能性がある。このため、移動体103の横行方向を判定し、移動体103が図6中の左方向に横行した場合に、物体高さ分布データの修整を行うようにしてもよい。また、コンテナ吊具105の位置が、コンテナヤードのコンテナ108Qを置く範囲の鉛直上方にあるかどうかを判定し、コンテナ吊具105の位置が、コンテナヤードのコンテナ108Qを置く範囲の鉛直上方にあると判定された場合に、物体高さ分布データの修整を行うようにしてもよい。
 図7は、物体高さ分布データの修整について説明するための図である。以下、図7を参照して、物体高さ分布データ作成手段5による物体高さ分布データの修整について更に説明する。図7に示すように、走査型距離計測器109の死角が発生したコンテナ置き場の隣の列のコンテナ108Qの側面の位置から、コンテナ108の幅Waと、コンテナ間の隙間の幅Wbとの和に相当する距離だけ離れた位置を、仮想のコンテナ存在範囲CT1の境界として設定すれば良い。または、より安全側に余裕を持つために、隣の列のコンテナ108Qの側面の位置から、コンテナ108の幅Waだけ離れた位置を、仮想のコンテナ存在範囲CT2の境界として設定しても良い。仮想のコンテナ存在範囲CT1を設定した場合には、その中で走査型距離計測器109から最も遠い点の物体高さのデータは、点Pd1の高さである。したがって、仮想のコンテナ存在範囲CT1を設定した場合には、死角の範囲の修整前の物体高さデータのラインSは、点Pd1の物体高さに等しい高さのラインである、ラインHn1に修整される。一方、仮想のコンテナ存在範囲CT2を設定した場合には、その中で走査型距離計測器109から最も遠い点の物体高さのデータは、点Pd2の高さである。したがって、仮想のコンテナ存在範囲CT2を設定した場合には、死角の範囲の修整前の物体高さデータのラインSは、点Pd2の物体高さに等しい高さのラインである、ラインHn2に修整される。
 図7に示す例では、走査型距離計測器109の死角の範囲には、コンテナ108Qが1段に置かれている。そして、走査型距離計測器109は、死角の範囲のコンテナ108Qの上面を全く計測できていない。本実施形態によれば、この図7に示す例のように、死角の範囲のコンテナ108Qの上面を走査型距離計測器109が全く計測できない場合であっても、死角の範囲の物体高さ分布データを修整することができる。このため、自動減速が必要以上に手前から開始されてしまうことを可能な限り抑制し、操業効率を向上することができる。
 以上の説明では、死角の範囲の物体高さのデータを修整する場合に、死角の範囲との重なりを持つ仮想のコンテナ存在範囲の中で走査型距離計測器109から最も遠い点の物体高さに等しい値に統一するように修整しているが、より安全側に余裕を持つために、この最も遠い点の物体高さよりやや高い位置に統一するように修整しても良い。
 本実施形態では、移動体103に走査型距離計測器109を1個だけ設置している。上述したように、本実施形態によれば、走査型距離計測器109の死角が発生した場合であっても、死角の範囲の物体高さ分布データを適切に修整することができる。このため、走査型距離計測器109の死角が発生することを防止するために複数の走査型距離計測器109を設ける必要がないので、コストダウンが図れる。ただし、本発明では、移動体103に複数の走査型距離計測器109を設置してもよい。
 また、本実施形態では、物体高さ分布データに基づいて自動減速を行う制御をしているが、本発明では、必ずしも自動減速の制御を行わなくても良く、例えば、物体高さ分布データを画像化してクレーン運転士に提示することによって運転を支援しても良い。その場合において、走査型距離計測器109の死角が発生して物体高さ分布データを修整した場合には、修整前および修整後の物体高さ分布データを併せてクレーン運転士に提示しても良い。
実施の形態2.
 次に、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図8は、本発明の実施の形態2のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。図8に示すように、本実施の形態2における運転支援制御装置3は、実施の形態1と同様の構成に加えて、コンテナ高さ寸法設定手段15aを更に備えている。
 コンテナヤードでは、高さ寸法Chの異なる複数種類のコンテナ108が混在して集積される場合がある。本実施の形態2では、そのような場合において、複数種類のコンテナ108のうちで高さ寸法が最も大きいものの値を、コンテナ高さ寸法設定手段15aにて設定可能になっている。コンテナ高さ寸法設定手段15aにて設定するコンテナ高さ寸法の最大値は、例えば、クレーン運転士が操作デスク1から入力可能にされている。減速判定手段6は、実施の形態1で説明した式(4)の計算を行う場合に、コンテナ高さ寸法設定手段15aにて設定されたコンテナ高さ寸法の最大値をChとして用いることにより、移動体103に吊られたコンテナ108Rの下面の位置を計算する。本実施の形態2によれば、このような制御を行うことにより、移動体103に吊られたコンテナ108Rが、最大の高さ寸法を有するものとして、下降および横行の自動減速の開始位置が決定される。このため、移動体103がどの種類のコンテナ108Rを吊っている場合であっても、下降および横行の自動減速を安全に行うことができる。
実施の形態3.
 次に、本発明の実施の形態3について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図9は、本発明の実施の形態3のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。図9に示すように、本実施の形態3における運転支援制御装置3は、実施の形態1と同様の構成に加えて、コンテナ高さ寸法検出手段15bを更に備えている。
 コンテナ高さ寸法検出手段15bは、移動体103により吊り上げられたコンテナ108Rの下端の位置を走査型距離計測器109により計測した情報に基づいて、コンテナ108Rの高さ寸法Chを検出する。図10は、本実施の形態3において、コンテナ108Rの高さ寸法Chを検出する方法を説明するための図である。図10に示すように、コンテナ高さ寸法検出手段15bは、移動体103により吊り上げられたコンテナ108Rの下端の位置を走査型距離計測器109により計測した情報に基づいて、コンテナ108Rの下端の高さHcを計算し、その値と、既知であるコンテナ吊具105の下面の高さHsとに基づき、コンテナ108Rの高さ寸法Chを次式により計算する。
  Hs-Hc=Ch   ・・・(8)
 減速判定手段6は、実施の形態1で説明した式(4)の計算を行う場合に、コンテナ高さ寸法検出手段15bにより検出されたコンテナ高さ寸法Chを用いることにより、移動体103に吊られたコンテナ108Rの下面の位置を計算する。本実施の形態3によれば、このような制御を行うことにより、移動体103が吊っているコンテナ108Rの高さ寸法Chを自動的に検出してコンテナ108Rの下面の位置を計算し、下降および横行の自動減速の開始位置を決定することができる。これにより、移動体103がどのような高さ寸法のコンテナ108Rを吊っている場合であっても、自動減速の開始位置を最適にすることができるため、高い安全性が得られるとともに、操業効率を更に向上することができる。
実施の形態4.
 次に、本発明の実施の形態4について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図11は、本発明の実施の形態4のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。図11に示すように、本実施の形態4における運転支援制御装置3は、実施の形態1と同様の構成に加えて、コンテナ高さ寸法設定手段15aを更に備えている。また、操作デスク1には、クレーン運転士がコンテナ108の高さ寸法Chの情報を選択可能な選択手段としての選択スイッチ1aが設けられている。
 本実施の形態4では、クレーン運転士は、選択スイッチ1aを操作することにより、移動体103で吊るコンテナ108Rの種類に応じて、コンテナ108Rの高さ寸法Chの情報を選択する。コンテナ高さ寸法設定手段15aは、選択スイッチ1aからの信号を受信し、クレーン運転士が選択したコンテナ108Rの高さ寸法Chを設定する。減速判定手段6は、実施の形態1で説明した式(4)の計算を行う場合に、コンテナ高さ寸法設定手段15aにて設定されたコンテナ高さ寸法Chを用いることにより、移動体103に吊られたコンテナ108Rの下面の位置を計算する。本実施の形態4によれば、このような制御を行うことにより、移動体103が吊っているコンテナ108Rの高さ寸法Chの情報をクレーン運転士から受け取り、その情報に基づいてコンテナ108Rの下面の位置を計算し、下降および横行の自動減速の開始位置を決定することができる。これにより、移動体103がどの種類のコンテナ108Rを吊っている場合であっても、自動減速の開始位置を最適にすることができるため、高い安全性が得られるとともに、操業効率を更に向上することができる。
実施の形態5.
 次に、本発明の実施の形態5について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図12は、本発明の実施の形態5のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。図12に示すように、本実施の形態5における運転支援制御装置3は、実施の形態1と同様の構成に加えて、コンテナ高さ寸法設定手段15aを更に備えている。
 本実施の形態5のクレーン制御システムは、上位システムであるヤード統括システム16から伝送装置を介して送られるコンテナ運搬指示情報を受信可能になっている。ヤード統括システム16は、コンテナヤード全体の作業を統括するシステムであり、コンテナ108の搬入および搬出、配置、保管、コンテナ船への積み下ろしなどに関する計画、指示などを行う。本実施の形態5では、ヤード統括システム16から送られるコンテナ運搬指示情報に、コンテナ108の高さ寸法Chの情報が含まれている。コンテナ高さ寸法設定手段15aは、ヤード統括システム16から送信されたコンテナ運搬指示情報に基づいて、コンテナ108の高さ寸法Chを設定する。減速判定手段6は、実施の形態1で説明した式(4)の計算を行う場合に、コンテナ高さ寸法設定手段15aにて設定されたコンテナ高さ寸法Chを用いることにより、移動体103に吊られたコンテナ108Rの下面の位置を計算する。本実施の形態5によれば、このような制御を行うことにより、移動体103が吊っているコンテナ108Rの高さ寸法Chの情報を、ヤード統括システム16から受信し、その情報に基づいてコンテナ108Rの下面の位置を計算し、下降および横行の自動減速の開始位置を決定することができる。これにより、移動体103がどの種類のコンテナ108Rを吊っている場合であっても、自動減速の開始位置を最適にすることができるため、高い安全性が得られるとともに、操業効率を更に向上することができる。
実施の形態6.
 次に、本発明の実施の形態6について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図13は、本発明の実施の形態6のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。図13に示すように、本実施の形態6は、実施の形態1と同様の構成に加えて、操作デスク1に、報知手段17を更に備えている。また、操作デスク1は、物体高さ分布データ作成手段5から信号を受信可能になっている。本実施の形態6では、物体高さ分布データ作成手段5は、走査型距離計測器109の死角が発生し、物体高さ分布データを修整した場合には、その情報を操作デスク1に送信する。そして、報知手段17は、物体高さ分布データ作成手段5から受信した情報に基づいて、走査型距離計測器109の死角が発生し、物体高さ分布データが修整されたことを、例えばランプの点灯、音、音声、画像、またはこれらの組み合わせなどにより、クレーン運転士に知らせる。本実施の形態6では、このようにしてクレーン運転士に注意を促すことができるので、安全性を更に高めることができる。
実施の形態7.
 次に、本発明の実施の形態7について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図14は、本発明の実施の形態7のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。図14に示すように、本実施の形態7は、実施の形態1と同様の構成に加えて、操作デスク1に、報知手段18を更に備えている。また、操作デスク1は、減速判定手段6から信号を受信可能になっている。本実施の形態7では、減速判定手段6は、下降または横行の自動減速を実行する場合には、その情報を操作デスク1に送信する。そして、報知手段18は、減速判定手段6から受信した情報に基づいて、下降または横行の自動減速が実行されていることを、例えばランプの点灯、音、音声、画像、またはこれらの組み合わせなどにより、クレーン運転士に知らせる。これにより、本実施の形態7では、自動減速が実行されたときにクレーン運転士がそのことを即座に知ることができる。
実施の形態8.
 次に、本発明の実施の形態8について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図15は、本発明の実施の形態8のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。
 本実施の形態8では、減速判定手段6は、実施の形態1と同様に、移動体103の横行時には、コンテナ108Rまたはコンテナ吊具105が物体に衝突する前に、クレーン駆動制御装置2に対して横行減速指令を出し、移動体103の横行速度をクリープ速度まで減速させる。更に、本実施の形態8では、移動体103がクリープ速度で進みながら、コンテナ108Rまたはコンテナ吊具105が物体に当たる位置まで到達した場合には、減速判定手段6は、クレーン駆動制御装置2に対して横行停止指令を出し、移動体103の横行を自動的に停止させる。本実施の形態8によれば、このような制御を行うことにより、クレーン運転士による移動体103の横行を停止させる操作の遅れを許容することができ、安全性を更に向上することができる。
実施の形態9.
 次に、本発明の実施の形態9について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図16は、本発明の実施の形態9のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。本実施の形態9は、実施の形態1と同様の構成に加えて、移動体103に吊られたコンテナ108Rが着床したことを検知可能な着床検知手段20を更に備えている。着床検知手段20は、コンテナ吊具105に設けられている。着床検知手段20は、コンテナ吊具105の下面とコンテナ108Rの上面との間の隙間の大きさの変化を検出可能になっている。着床検知手段20は、コンテナ108Rが着床したときに当該隙間が縮小することを検出することにより、コンテナ108Rの着床を検知することができる。
 本実施の形態9では、減速判定手段6は、実施の形態1と同様に、コンテナ108Rの下降時には、コンテナ108Rが、物体に衝突する前、すなわち着床する前に、クレーン駆動制御装置2に対して下降減速指令を出し、コンテナ108Rの下降速度をクリープ速度まで減速させる。更に、本実施の形態9では、コンテナ108Rがクリープ速度で下降しながら、コンテナ108Rが着床したことが着床検知手段20により検知された場合には、減速判定手段6は、クレーン駆動制御装置2に対して下降停止指令を出し、ワイヤーロープ104の繰り出しを自動的に停止させる。本実施の形態9によれば、このような制御を行うことにより、クレーン運転士によるコンテナ108Rの下降を停止させる操作の遅れを許容することができ、安全性を更に向上することができる。
実施の形態10.
 次に、本発明の実施の形態10について説明するが、上述した実施の形態1との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図17は、本発明の実施の形態10のクレーン運転支援装置を適用したクレーン制御システムを示すブロック図である。図17に示すように、本実施の形態10は、実施の形態1と同様の構成に加えて、減速判定手段6からクレーン駆動制御装置2へ出される下降減速指令または横行減速指令を選択的に無効にすることのできる減速指令無効化手段21と、操作デスク1に設けられた操作スイッチ1bとを備えている。
 クレーン運転士の好みによっては、下降方向の自動減速、あるいは横行方向の自動減速を行う機能が煩わしいと感じる場合もある。本実施の形態10では、そのような場合に、クレーン運転士は、操作スイッチ1bを操作することにより、下降方向の自動減速を行う機能と、横行方向の自動減速を行う機能との何れか一方または両方を無効にすることができる。減速指令無効化手段21は、操作スイッチ1bからの信号に基づき、クレーン運転士の選択に応じて、減速判定手段6からクレーン駆動制御装置2へ出される下降減速指令および横行減速指令のうちの何れか一方または両方を無効にする。このような本実施の形態10によれば、クレーン運転士の好みに応じて、下降方向の自動減速を行う機能と、横行方向の自動減速を行う機能との何れか一方または両方を無効にすることができる。このため、クレーン運転士の多様な好みに応じることができる。
1 操作デスク、1a 選択スイッチ、1b 操作スイッチ、2 クレーン駆動制御装置、3 運転支援制御装置、4 吊具データ分離計算手段、5 物体高さ分布データ作成手段、6 減速判定手段、7 必要距離計算手段、8 巻き上げ電動機、9 横行電動機、12 速度位置変換手段、13 昇降速度検出器、13a 高さ位置検出器、14 横行速度検出器、14a 移動体位置検出器、15a コンテナ高さ寸法設定手段、15b コンテナ高さ寸法検出手段、16 ヤード統括システム、17,18 報知手段、20 着床検知手段、21 減速指令無効化手段、100 クレーン、101 フレーム、102 走行車輪、103 移動体、104 ワイヤーロープ、105 コンテナ吊具、107 トラック、108,108Q,108R コンテナ、109 走査型距離計測器、110 荷台、111 運転室、112 巻き取りドラム

Claims (8)

  1.  コンテナを吊って水平方向に移動可能な移動体を有するクレーンの運転を支援するクレーン運転支援装置であって、
     前記移動体に設置され、前記移動体の移動範囲の下方にある物体との間の距離および角度を計測可能な走査型距離計測器と、
     前記走査型距離計測器により計測された情報に基づいて、前記移動体の移動範囲の下方にある物体の高さの分布を表すデータである物体高さ分布データを作成する物体高さ分布データ作成手段と、
     を備え、
     前記物体高さ分布データ作成手段は、作成した物体高さ分布データに前記走査型距離計測器の死角が発生している場合には、前記死角の範囲との重なりを持つ仮想のコンテナ存在範囲の中で前記走査型距離計測器から最も遠い点の物体高さのデータに基づいて、前記死角の範囲の物体高さのデータを修整するクレーン運転支援装置。
  2.  前記物体高さ分布データ作成手段は、前記死角の範囲の物体高さのデータを、前記最も遠い点の物体高さに等しい値に統一するように修整する請求項1記載のクレーン運転支援装置。
  3.  前記物体高さ分布データに基づいて、前記移動体に吊られて下降しているコンテナまたはコンテナ吊具が物体に衝突する前に、その下降速度を減速させる自動減速手段を更に備える請求項1または2記載のクレーン運転支援装置。
  4.  前記物体高さ分布データに基づいて、前記移動体とともに移動しているコンテナまたはコンテナ吊具が物体に衝突する前に、前記移動体の移動速度を減速させる自動減速手段を更に備える請求項1または2記載のクレーン運転支援装置。
  5.  コンテナの高さ寸法の最大値を設定するコンテナ高さ寸法設定手段を更に備え、
     前記自動減速手段は、前記移動体に吊られているコンテナの下面の位置を、前記コンテナ高さ寸法設定手段により設定された情報に基づいて計算することにより、減速を開始する位置を決定する請求項3または4記載のクレーン運転支援装置。
  6.  前記移動体に吊られたコンテナの下端の位置を前記走査型距離計測器により計測した情報に基づいて当該コンテナの高さ寸法を検出するコンテナ高さ寸法検出手段を更に備え、
     前記自動減速手段は、前記移動体に吊られたコンテナの下面の位置を、前記コンテナ高さ寸法検出手段により検出された情報に基づいて計算することにより、減速を開始する位置を決定する請求項3または4記載のクレーン運転支援装置。
  7.  コンテナの高さ寸法の情報をクレーン運転士が選択可能な選択手段を更に備え、
     前記自動減速手段は、前記移動体に吊られたコンテナの下面の位置を、前記選択手段にて選択された情報に基づいて計算することにより、減速を開始する位置を決定する請求項3または4記載のクレーン運転支援装置。
  8.  コンテナの運搬指示を行う上位システムから、コンテナの高さ寸法の情報を受信する受信手段を更に備え、
     前記自動減速手段は、前記移動体に吊られたコンテナの下面の位置を、前記受信手段が受信した情報に基づいて計算することにより、減速を開始する位置を決定する請求項3または4記載のクレーン運転支援装置。
PCT/JP2012/080617 2012-11-27 2012-11-27 クレーン運転支援装置 WO2014083611A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2012/080617 WO2014083611A1 (ja) 2012-11-27 2012-11-27 クレーン運転支援装置
JP2014549664A JP5983762B2 (ja) 2012-11-27 2012-11-27 クレーン運転支援装置
ES12889121.5T ES2634684T3 (es) 2012-11-27 2012-11-27 Dispositivo de ayuda al funcionamiento de una grúa
EP12889121.5A EP2927178B1 (en) 2012-11-27 2012-11-27 Crane operation assistance device
KR1020157013823A KR101733331B1 (ko) 2012-11-27 2012-11-27 크레인 운전 지원 장치
US14/441,653 US9352939B2 (en) 2012-11-27 2012-11-27 Crane operation assistance system
CN201280077300.9A CN104812692B (zh) 2012-11-27 2012-11-27 起重机运行辅助装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080617 WO2014083611A1 (ja) 2012-11-27 2012-11-27 クレーン運転支援装置

Publications (1)

Publication Number Publication Date
WO2014083611A1 true WO2014083611A1 (ja) 2014-06-05

Family

ID=50827287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080617 WO2014083611A1 (ja) 2012-11-27 2012-11-27 クレーン運転支援装置

Country Status (7)

Country Link
US (1) US9352939B2 (ja)
EP (1) EP2927178B1 (ja)
JP (1) JP5983762B2 (ja)
KR (1) KR101733331B1 (ja)
CN (1) CN104812692B (ja)
ES (1) ES2634684T3 (ja)
WO (1) WO2014083611A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501811A (zh) * 2016-12-01 2017-03-15 上海电机学院 一种集卡防吊起的装置
JP2019182611A (ja) * 2018-04-12 2019-10-24 東芝三菱電機産業システム株式会社 クレーンの安全運転支援装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083611A1 (ja) * 2012-11-27 2014-06-05 東芝三菱電機産業システム株式会社 クレーン運転支援装置
JP6632208B2 (ja) * 2015-03-24 2020-01-22 キヤノン株式会社 情報処理装置、情報処理方法、プログラム
CN106066157A (zh) * 2016-05-24 2016-11-02 扬州市东宇环保设备有限公司 一种起重机高度检测报警方法
CN109415190B (zh) * 2016-07-04 2021-07-02 西门子股份公司 用于避免起重机的碰撞的方法和系统
DE102016219522A1 (de) * 2016-10-07 2018-04-26 Siemens Aktiengesellschaft Verfahren und Anordnung zum Platzieren von stapelbaren Lagerungsvorrichtungen
DE102016119839A1 (de) * 2016-10-18 2018-04-19 Terex Mhps Gmbh Verfahren zum automatischen Positionieren eines Portalhubstaplers für Container und Portalhubstapler dafür
DE102017112661A1 (de) 2017-06-08 2018-12-13 Konecranes Global Corporation Automatisch geführtes Portalhubgerät für Container und Verfahren zum Betrieb eines solchen Portalhubgeräts
JP6672530B2 (ja) * 2017-07-05 2020-03-25 住友重機械搬送システム株式会社 クレーン装置
JP7013627B2 (ja) * 2018-01-25 2022-02-01 株式会社日立プラントメカニクス クレーン作業エリア登録装置
CN109019345B (zh) * 2018-08-06 2020-01-07 武汉港迪智能技术有限公司 一种铁路龙门吊集装箱货场的列车定位方法
JP7084093B2 (ja) * 2019-03-13 2022-06-14 東芝三菱電機産業システム株式会社 衝突防止装置
EP3733586A1 (de) * 2019-04-30 2020-11-04 Siemens Aktiengesellschaft Verfahren zur kollisionsfreien bewegung einer last mit einem kran
JP7130901B2 (ja) * 2019-09-30 2022-09-06 株式会社日立プラントメカニクス クレーンにおける衝突防止装置
AU2022258326A1 (en) 2021-04-12 2023-11-23 Structural Services, Inc. Systems and methods for assisting a crane operator
CN112978579B (zh) * 2021-05-13 2021-07-23 新乡职业技术学院 一种具有防碰撞控制系统的起重机
CN117088150B (zh) * 2023-10-20 2024-01-12 龙合智能装备制造有限公司 一种托盘垛装货物的自动装车设备及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169079A (ja) * 1998-12-04 2000-06-20 Mitsubishi Heavy Ind Ltd コンテナ船上コンテナ積み荷位置測定装置
JP2003026388A (ja) * 2001-07-16 2003-01-29 Tcm Corp 橋型クレーン装置
JP2003146579A (ja) * 2001-11-16 2003-05-21 Mitsubishi Heavy Ind Ltd クレーン制御装置及び制御方法
JP2005104665A (ja) 2003-09-30 2005-04-21 Mitsui Eng & Shipbuild Co Ltd コンテナ衝突防止方法および装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753357A (en) * 1985-12-27 1988-06-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Container crane
US5343739A (en) * 1993-08-06 1994-09-06 Curry John R Gantry crane collision avoidance device
JPH10185556A (ja) * 1996-12-25 1998-07-14 Nikon Corp アンテナ高測定装置及びアンテナ高測定方法
SE513174C2 (sv) * 1998-10-22 2000-07-24 Abb Ab Förfarande för hantering av containrar samt anordning för utförande av förfarandet
JP2002104771A (ja) * 2000-07-25 2002-04-10 Inst Of Physical & Chemical Res コンテナ位置検出装置
DE10251910B4 (de) * 2002-11-07 2013-03-14 Siemens Aktiengesellschaft Containerkran
CN102186761B (zh) * 2008-10-20 2013-06-19 株式会社日本工程 集装箱位置测定方法以及集装箱位置测定装置
FI121402B (fi) * 2009-04-15 2010-10-29 Konecranes Oyj Järjestelmä kontinkäsittelykoneen tunnistamiseen ja/tai sijainnin määrittämiseen
WO2014083611A1 (ja) * 2012-11-27 2014-06-05 東芝三菱電機産業システム株式会社 クレーン運転支援装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169079A (ja) * 1998-12-04 2000-06-20 Mitsubishi Heavy Ind Ltd コンテナ船上コンテナ積み荷位置測定装置
JP2003026388A (ja) * 2001-07-16 2003-01-29 Tcm Corp 橋型クレーン装置
JP2003146579A (ja) * 2001-11-16 2003-05-21 Mitsubishi Heavy Ind Ltd クレーン制御装置及び制御方法
JP2005104665A (ja) 2003-09-30 2005-04-21 Mitsui Eng & Shipbuild Co Ltd コンテナ衝突防止方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927178A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501811A (zh) * 2016-12-01 2017-03-15 上海电机学院 一种集卡防吊起的装置
JP2019182611A (ja) * 2018-04-12 2019-10-24 東芝三菱電機産業システム株式会社 クレーンの安全運転支援装置

Also Published As

Publication number Publication date
EP2927178A1 (en) 2015-10-07
JPWO2014083611A1 (ja) 2017-01-05
ES2634684T3 (es) 2017-09-28
KR20150079827A (ko) 2015-07-08
US9352939B2 (en) 2016-05-31
KR101733331B1 (ko) 2017-05-08
EP2927178B1 (en) 2017-05-03
US20150307330A1 (en) 2015-10-29
CN104812692B (zh) 2016-09-21
EP2927178A4 (en) 2016-07-27
CN104812692A (zh) 2015-07-29
JP5983762B2 (ja) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5983762B2 (ja) クレーン運転支援装置
EP1695936B1 (en) Apparatus for avoiding collision when lowering container
JP4295591B2 (ja) コンテナ衝突防止方法および装置
JP4140015B2 (ja) 移動体の走行装置
JP3150636B2 (ja) クレーンの巻き下げ衝突防止装置
KR20110050650A (ko) 물품 수납 설비와 그 작동 방법
JP2014144836A (ja) コンテナクレーン
JP2008265984A (ja) クレーン制御システム装置
JP7084093B2 (ja) 衝突防止装置
KR101505254B1 (ko) 크레인의 이동 제어 방법 및 크레인의 이동 제어 장치
JP4959664B2 (ja) クレーン及びクレーンによるコンテナの吊り下ろし方法
JP7017835B2 (ja) 貨物の衝突防止装置
KR20130117219A (ko) 상하층 천장크레인 작업간섭 방지장치
KR101362421B1 (ko) 크레인의 이동 제어장치 및 크레인의 이동 제어방법
JP2007254086A (ja) ツインスプレッダの位置検出装置
JP4534152B2 (ja) 物品収納設備
JPH11322271A (ja) トランスファークレーンのスプレッダ位置制御方法及び制御装置
KR20110008567A (ko) 레이저 스캐너를 이용한 크레인 동작 제어시스템 및 제어방법
CN114650962A (zh) 起重机和起重机控制方法
JP2005533733A (ja) コンテナクレーンの運転方法
KR101044916B1 (ko) 크레인을 이용한 선적 및 하역 방법
JP3148510U (ja) 自動倉庫システム
JP2023134973A (ja) 荷役機械のブーム衝突防止装置
JP2002160891A (ja) クレーンの吊具高さ制御方法および吊具高さ制御装置
JP2023092714A (ja) 貨物の衝突防止装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549664

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012889121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14441653

Country of ref document: US

Ref document number: 2012889121

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157013823

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201503750

Country of ref document: ID