WO2014080726A1 - 親水性部材およびその製造方法 - Google Patents

親水性部材およびその製造方法 Download PDF

Info

Publication number
WO2014080726A1
WO2014080726A1 PCT/JP2013/079136 JP2013079136W WO2014080726A1 WO 2014080726 A1 WO2014080726 A1 WO 2014080726A1 JP 2013079136 W JP2013079136 W JP 2013079136W WO 2014080726 A1 WO2014080726 A1 WO 2014080726A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tio
sio
photocatalytic
hydrophilic member
Prior art date
Application number
PCT/JP2013/079136
Other languages
English (en)
French (fr)
Inventor
正俊 中村
俊吾 池野
伸也 ▲高柳▼
Original Assignee
株式会社 村上開明堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村上開明堂 filed Critical 株式会社 村上開明堂
Priority to DE112013005567.8T priority Critical patent/DE112013005567T5/de
Priority to CN201380060933.3A priority patent/CN104797416B/zh
Priority to US14/442,921 priority patent/US10042090B2/en
Publication of WO2014080726A1 publication Critical patent/WO2014080726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings

Definitions

  • the present invention relates to a hydrophilic member having a structure in which a TiO 2 (photocatalytic TiO 2 ) layer exhibiting a photocatalytic action and a porous SiO 2 layer are laminated on the surface of a substrate, and a method for producing the same.
  • the present invention allows the porous SiO 2 layer to be easily formed into a thin and uniform film thickness distribution covering the entire surface of the photocatalytic TiO 2 layer, and the durability performance of the porous SiO 2 layer can be enhanced. It is.
  • Patent Documents 1 and 2 There is one described in Patent Documents 1 and 2 as the hydrophilic member having a surface formed by laminating a photocatalyst TiO 2 layer and the porous SiO 2 layer on the structure of the substrate.
  • the hydrophilic members described in Patent Documents 1 and 2 ensure hydrophilicity by the porous SiO 2 layer on the outermost surface, and the organic matter adhering to the porous SiO 2 layer can be removed by the photocatalytic action of the lower photocatalytic TiO 2 layer. By decomposing, the hydrophilic property of the porous SiO 2 layer can be maintained over a long period of time.
  • the porous SiO 2 layer is thin and 50 nm or less (preferably It is necessary to form a film with a uniform film thickness distribution that covers the entire surface of the photocatalytic TiO 2 layer with a film thickness of 20 nm or less. However, it is not easy to form a porous SiO 2 layer on the photocatalytic TiO 2 layer in a thin and uniform film thickness distribution.
  • the present invention is intended to solve the above-mentioned problems. That is, the present invention is easily and thin porous SiO 2 layer Ooeru the entire surface of the photocatalytic TiO 2 layer can be formed to a uniform film thickness distribution, the photocatalytic TiO 2 layer is prevented from partially exposed with, moreover
  • An object of the present invention is to provide a hydrophilic member capable of enhancing the durability performance of the porous SiO 2 layer and a method for producing the same.
  • FIG. 2 shows the experimental results of measuring the hydrophilic recovery time for the hydrophilic member.
  • the hydrophilic member used in this experiment was formed by depositing a photocatalytic TiO 2 layer on the surface of a smooth substrate, and depositing SiO 2 vapor deposition molecules on it at a low gas pressure capable of stable flight. Two layers are formed to a film thickness of 50 nm or less. Samples with various density changes of the photocatalytic TiO 2 layer are prepared for this hydrophilic member, and the time until the hydrophilicity is restored by irradiation with ultraviolet rays from the state in which the organic matter adheres to the surface and the hydrophilicity is lost for each sample. (Hydrophilic recovery time) was measured.
  • the surface of the SiO 2 layer of each sample was contaminated with oil to lose the hydrophilicity of the surface, and then the surface was irradiated with ultraviolet rays at an intensity of 1 mW / cm 2 using a black light. went.
  • the restoration of hydrophilicity was determined by the fact that the water droplet contact angle decreased to the same extent as the initial value before contamination (5 degrees or less). Whether or not the flight of SiO 2 vapor deposition molecules is stable at the time of sample preparation can be determined by, for example, whether the current (emission current) value of the electron beam during vapor deposition or the vapor deposition rate is stable.
  • the vapor deposition rate can be measured, for example, as a differential value of the frequency of a quartz vibrator type film thickness meter.
  • the density of the photocatalytic TiO 2 layer of each sample can be adjusted by film formation conditions (base temperature, film formation speed, gas pressure, etc.), and the density can be measured by, for example, an oblique incidence X-ray diffraction method. According to FIG. 2, the lower the density of the photocatalytic TiO 2 layer, the shorter the hydrophilic recovery time. When the density exceeds 3.68 g / cm 3 , the hydrophilic recovery time increases abruptly, and the density reaches 3.75 g / cm 3.
  • the short hydrophilic recovery time means that the photocatalytic action of the photocatalytic TiO 2 layer easily reaches the surface of the SiO 2 layer because the SiO 2 layer is porous.
  • the long hydrophilic recovery time means that the photocatalytic action of the photocatalytic TiO 2 layer hardly reaches the surface of the SiO 2 layer because the SiO 2 layer is non-porous.
  • the photocatalytic TiO 2 layer which is a general density of the anatase crystal structure (preferably 3.72 g / cm 3 or less, more Even if the SiO 2 vapor deposition molecules are deposited on the photocatalytic TiO 2 layer at a low gas pressure capable of stable flight, the SiO 2 layer is preferably formed at a density of 3.68 g / cm 3 or less. It can be seen that a porous film can be formed. Since vapor deposition can be performed at a low gas pressure, the porous SiO 2 layer can be easily formed into a thin and uniform film thickness distribution without special measures in the film forming process.
  • a photocatalytic TiO 2 layer was formed to a density of 3.75 g / cm 3 or less, and SiO 2 vapor deposition molecules were deposited thereon at a low gas pressure capable of stable flight.
  • the SiO 2 layer was found to be porous. Further, if the thickness of the porous SiO 2 layer is 10 nm or more, the entire surface of the photocatalytic TiO 2 layer can be covered with the porous SiO 2 layer (that is, the photocatalytic TiO 2 layer can be prevented from being partially exposed). I understood it.
  • FIG. 3 shows a sample similar to that used in the experiment of FIG. 2 (with a photocatalytic TiO 2 layer formed on the surface of a smooth substrate and a low gas pressure that enables stable flight of SiO 2 vapor deposition molecules.
  • Experimental results of measuring the scratch load of the SiO 2 layer on a hydrophilic member having a SiO 2 layer deposited to a film thickness of 50 nm or less and samples having various photocatalytic TiO 2 layer densities) Indicates. This experiment was conducted by measuring the load by changing the weight of the weight using an iron bar instead of the pencil in the same procedure as the pencil hardness test.
  • SiO 2 layer thereon as the density of the photocatalytic TiO 2 layer is low is brittle deposition
  • SiO 2 layer as the density of the photocatalytic TiO 2 layer is increased it can be seen that the hard film formation.
  • FIG. 4 shows the experimental results of measuring the acid resistance performance of the SiO 2 layer for the same samples used in the experiments of FIGS.
  • This experiment was performed by dropping H 2 SO 4 having a normal concentration of 0.1 N on the surface of the SiO 2 layer and observing the surface condition after standing for 24 hours.
  • the density of the photocatalytic TiO 2 layer was less than 3.33 g / cm 3
  • the portion where H 2 SO 4 was dropped was fading compared to the surrounding color. This is because the SiO 2 layer and the photocatalytic TiO 2 layer are peeled off at the location, and the base material is exposed, so that the interference color between the SiO 2 layer and the photocatalytic TiO 2 layer is not generated.
  • the photocatalytic TiO 2 layer is formed at a density of 3.33 g / cm 3 or more (preferably 3.47 g / cm 3 or more, more preferably 3.54 g / cm 3 or more). By doing so, it can be seen that durability (scratch resistance performance, acid resistance performance) that can withstand practical use can be obtained.
  • the photocatalytic TiO 2 layer has a thickness of 3.33 to 3.75 g / cm 3 (preferably 3.47 to 3.72 g / cm 3 or less, more preferably 3.54 to 3.68 g / cm 3 ), the porous SiO 2 layer is easily formed into a uniform film thickness distribution that is thin and covers the entire surface of the photocatalytic TiO 2 layer, and the porous SiO 2 layer It can be seen that the durability performance of can be improved.
  • a photocatalytic TiO 2 layer is formed on the surface of the base material by 3.33 to 3.75 g / cm 3 (preferably 3.47 to 3.72 g / cm 3 or less, more preferably 3.54 to 3.68 g). / Cm 3 ), and a porous SiO 2 layer is formed as an outermost layer on the TiO 2 layer with a film thickness of 10 nm or more and 50 nm or less (preferably 15 nm or more and 20 nm or less), and the TiO 2 The film is formed so as to cover the entire surface of the two layers.
  • FIG. 4 is a chart showing experimental results obtained by measuring the acid resistance performance of the SiO 2 layer for the same samples used in the experiments of FIGS. 2 and 3.
  • FIG. It is a schematic diagram which shows an example of the vacuum evaporation system 18 which manufactures the hydrophilic member 10 of FIG.
  • hydrophilic member 10 forming a photocatalytic TiO 2 layer 14 on the smooth surface of the substrate 12 constituted by a porous SiO 2 layer 16 as the outermost layer on the photocatalyst TiO 2 layer 14 is deposited.
  • the porous SiO 2 layer 16 is formed in a uniform film thickness distribution that covers the entire surface of the photocatalytic TiO 2 layer.
  • the density of the photocatalytic TiO 2 layer 14 is 3.33 to 3.75 g / cm 3 (preferably 3.47 to 3.72 g / cm 3 or less, more preferably 3.54 to 3.68 g / cm 3 ).
  • the film thickness of the photocatalytic TiO 2 layer 14 is 50 to 500 nm.
  • the film thickness of the porous SiO 2 layer 16 is 10 nm or more and 50 nm or less (preferably 15 nm or more and 25 nm or less).
  • the hydrophilic member 10 can constitute, for example, a window for an automobile, a window glass for a building, and the like by configuring the base 12 with a transparent glass plate or a transparent resin plate. Further, the hydrophilic member 10 includes a base 12 made of a transparent glass plate or a transparent resin plate, and a reflective film is formed on the back surface of the base 12 so that, for example, a rear mirror type vehicle outer mirror, a bathroom mirror, etc. A back mirror can be constructed. Further, the hydrophilic member 10 includes a base plate 12 made of a glass plate or a resin plate, and a reflective film is formed between the base plate 12 and the photocatalytic TiO 2 layer 14. A surface mirror can be constructed.
  • the hydrophilic member 10 can comprise an antifogging optical element by constructing the substrate 12 with an optical element such as a lens. If substrate 12 is a glass plate, between the substrate 12 and the photocatalyst TiO 2 layer 14, the block of SiO 2 or the like for preventing the alkali ions in the substrate 12 is diffused into the photocatalyst TiO 2 layer 14 A layer (barrier layer) can also be provided separately.
  • the substrate 12 is made of a glass plate, and the photocatalytic TiO 2 layer 14 and the porous SiO 2 layer 16 are both formed by vapor deposition.
  • FIG. 1 An example of the vacuum evaporation apparatus 18 is shown in FIG.
  • the inside of the vacuum chamber 20 is evacuated by the diffusion pump 22 and the rotary pump 24.
  • a substrate holder 26 is disposed in the upper part of the vacuum chamber 20, and the glass plate 12 constituting the base material of the hydrophilic member 10 is held on the substrate holder 26 with the film formation surface facing downward.
  • the substrate holder 26 is heated by the heater 28, and the glass plate 12 is held at a desired temperature via the substrate holder 26.
  • a crucible 30 is disposed below the glass plate 12, and a vapor deposition material (deposition material for vapor deposition) 32 is accommodated therein.
  • Examples of the vapor deposition material 32 for forming the TiO 2 layer 14 include TiO 2 , Ti 2 O 3 , and Ti.
  • Examples of the vapor deposition material 32 for forming the SiO 2 layer 16 include SiO 2 and SiO.
  • the vapor deposition material 32 evaporates when irradiated with an electron beam 36 emitted from the hot cathode 34.
  • An oxygen gas 42 is introduced from the oxygen cylinder 40 as a reactive gas into the vacuum chamber 20.
  • the evaporated vapor deposition material 32 reacts with the oxygen gas 42 to generate TiO 2 or SiO 2 .
  • the generated TiO 2 or SiO 2 is deposited on the surface of the glass plate 12, and the TiO 2 layer 14 or the SiO 2 layer 16 is formed.
  • the film thickness at the time of film formation is monitored by the film thickness monitoring device 44, and the vapor deposition is stopped when the desired film thickness is reached.
  • the film quality of the deposited film varies depending on the temperature of the glass plate 12 in the vacuum chamber 20, the deposition rate, the partial pressure of the oxygen gas 42, and the like.
  • the photocatalytic TiO 2 layer 14 is formed at a density of 3.33 to 3.75 g / cm 3
  • the SiO 2 layer 16 is formed porous on the photocatalytic TiO 2 layer 14, and the porous SiO 2 layer If the film thickness of 16 is 10 nm or more, an example of film formation conditions for forming the porous SiO 2 layer 16 in a uniform film thickness distribution covering the entire surface of the photocatalytic TiO 2 layer is shown in the following table. Show.
  • Photocatalytic TiO 2 layer 14 Porous SiO 2 layer 16 Temperature of glass plate 12: 300 degrees Celsius 300 degrees Celsius Deposition rate: 0.5 nm / second 0.2 nm / second Partial pressure of oxygen gas 42: 0.016 Pa 0.016 Pa
  • the photocatalytic TiO 2 layer 14 is formed by the following procedure. (1) The glass plate 12 is held on the substrate holder 26, and, for example, Ti 2 O 3 is accommodated in the crucible 30 as the vapor deposition material 32, and the vacuum chamber 20 is closed. (2) The rotary pump 24 and the diffusion pump 22 are driven to evacuate the vacuum chamber 20. (3) The heater 28 is driven to heat the glass plate 12 to a predetermined temperature through the substrate holder 26. (4) An oxygen gas 42 is introduced from the oxygen cylinder 40 into the vacuum chamber 20.
  • the hot cathode 34 is driven to irradiate the Ti 2 O 3 as the vapor deposition material 32 with the electron beam 36 to evaporate Ti 2 O 3 .
  • the evaporated Ti 2 O 3 reacts with the oxygen gas 42 to produce TiO 2 .
  • the generated TiO 2 is deposited on the glass plate 12 to form a film.
  • the film formation is terminated when TiO 2 is deposited to about 100 nm.
  • the porous SiO 2 layer 16 is subsequently formed.
  • the porous SiO 2 layer 16 is formed by the following procedure. (1) For example, SiO 2 is accommodated in the crucible 30 as the vapor deposition material 32 and the vacuum chamber 20 is closed. (2) The rotary pump 24 and the diffusion pump 22 are driven to evacuate the vacuum chamber 20. (3) The heater 28 is driven to heat the glass plate 12 to a predetermined temperature through the substrate holder 26. (4) An oxygen gas 42 is introduced from the oxygen cylinder 40 into the vacuum chamber 20. (5) The hot cathode 34 is driven to irradiate the SiO 2 as the vapor deposition material 32 with the electron beam 36 to evaporate the SiO 2 . (6) The evaporated SiO 2 is deposited on the photocatalytic TiO 2 layer 14 of the glass plate 12 to form a film. (7) The film formation is terminated when about 15 nm is deposited.
  • the outermost surface of the hydrophilic member 10 formed by the above steps is composed only of the porous SiO 2 layer 16, the outermost surface is only the photocatalytic TiO 2 layer or the mixed layer of the photocatalytic TiO 2 and SiO 2. Compared with the case where it comprises, the effect excellent in the hardness of a surface and a hydrophilic maintenance performance is exhibited.
  • both layers or one of the layers is formed by another thin film forming method (for example, sputtering). Even when the film is formed, it is considered that the effect of the present invention can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

基材の表面に光触媒TiO2 層と多孔質SiO2 層を積層した構造を有する親水性部材において、簡便に多孔質SiO2 層を薄くかつ光触媒TiO2 層の全面を覆える均一な膜厚分布に形成でき、しかも該多孔質SiO2 層の耐久性能を高められるようにする。基材12の表面に光触媒TiO2 層(14)を3.33~3.75g/cm3(好ましくは3.47~3.72g/cm3 以下、より好ましくは3.54~3.68g/cm3)の密度に成膜する。光触媒TiO2 層(14)の上に最表層として多孔質SiO2 層(16)を、10nm以上、50nm以下(好ましくは15nm以上、20nm以下)の膜厚で、かつ該TiO2 層14の全面を覆える均一な膜厚分布に成膜する。

Description

親水性部材およびその製造方法
 この発明は基材の表面に光触媒作用を示すTiO2(光触媒TiO2)層と多孔質SiO2層を積層した構造を有する親水性部材およびその製造方法に関する。特に、この発明は簡便に多孔質SiO2層を薄くかつ光触媒TiO2層の全面を覆える均一な膜厚分布に形成でき、しかも該多孔質SiO2層の耐久性能を高められるようにしたものである。
 基材の表面に光触媒TiO2層と多孔質SiO2層を積層した構造を有する親水性部材として下記特許文献1、2に記載されたものがあった。特許文献1、2に記載された親水性部材は最表面の多孔質SiO2層によって親水性を確保するとともに、多孔質SiO2層に付着した有機物等を下層の光触媒TiO2層による光触媒作用で分解して、多孔質SiO2層の親水性を長期間にわたり維持できるようにしたものである。
特開平10-36144号公報 特開2000-53449号公報
 上記構造の親水性部材において親水性表面の各所で均一(つまり親水性表面の領域によるむらがなく)かつ良好な光触媒作用を得るためには、多孔質SiO2層を薄くかつ50nm以下(好ましくは20nm以下)の膜厚で光触媒TiO2層の全面を覆える均一な膜厚分布に成膜する必要がある。ところが光触媒TiO2層の上に多孔質SiO2層を薄くかつ均一な膜厚分布に成膜することは容易でなかった。すなわち光触媒TiO2層の上に、例えば真空蒸着法でSiO2層を多孔質に成膜するためには、SiO2層を非多孔質に成膜する場合よりも、蒸着雰囲気中のガス圧(酸素ガスの分圧)を高くしてSiO2を蒸着させる必要がある。しかし蒸着雰囲気中のガス圧を高くして蒸着を行うと、SiO2蒸着分子の飛行が不安定になる。このため、親水性表面の領域により膜厚分布にむらが生じ、光触媒TiO2層が部分的に露出してしまう。そこで従来はSiO2層を均一な膜厚分布に成膜するために、成膜工程を工夫(補正板の配置を工夫したり、一度に成膜する数を制限する等)する必要があった。
 この発明は上述の問題点を解決しようとするものである。すなわち、この発明は簡便に多孔質SiO2層を薄くかつ光触媒TiO2層の全面を覆える均一な膜厚分布に形成でき、もって光触媒TiO2層が部分的に露出するのを防止し、しかも該多孔質SiO2層の耐久性能を高められるようにした親水性部材およびその製造方法を提供しようとするものである。
 図2は親水性部材について親水性回復時間を測定した実験結果を示す。この実験で使用した親水性部材は、平滑な基材の表面に光触媒TiO2層を成膜し、その上にSiO2蒸着分子を安定した飛行が可能な低いガス圧にて蒸着させて、SiO2層を50nm以下の膜厚に成膜したものである。この親水性部材について光触媒TiO2層の密度を様々に変えたサンプルを用意し、各サンプルについて表面に有機物が付着して親水性が失われた状態から紫外線照射により親水性が回復するまでの時間(親水性回復時間)を測定した。この実験は、各サンプルのSiO2層の表面をオイルで汚染して該表面の親水性を失わせた後、ブラックライトを用いて1mW/cm2 の強度で紫外線を該表面に照射することにより行った。親水性が回復したことは、水滴接触角が汚染前の初期値(5度以下)と同程度に低下したことをもって判定した。なお、サンプル作成時にSiO2蒸着分子の飛行が安定しているかどうかは、例えば蒸着時の電子ビームの電流(エミッション電流)値または蒸着速度が安定しているかどうかで判定することができる。この場合、蒸着速度は例えば水晶振動子式膜厚計の振動数の微分値として計測することができる。また各サンプルの光触媒TiO2層の密度は成膜条件(基材の温度、成膜速度、ガス圧等)によって調整でき、該密度は例えば斜入射X線回折法で測定することができる。図2によれば、光触媒TiO2層の密度が低いほど親水性回復時間が短くなり、密度が3.68g/cm3を超えると急激に親水性回復時間が長くなり、密度が3.75g/cm3を超えると親水性回復時間が長くなりすぎて実用に耐えなくなることがわかる。親水性回復時間が短いということはSiO2層が多孔質であるため光触媒TiO2層による光触媒作用がSiO2層の表面にまで届きやすいということである。親水性回復時間が長いということはSiO2層が非多孔質であるため光触媒TiO2層による光触媒作用がSiO2層の表面に届きにくいということである。この実験結果によれば、光触媒TiO2層をアナターゼ結晶構造の一般的な密度である3.90g/cm3よりも低い3.75g/cm3以下(好ましくは3.72g/cm3以下、より好ましくは3.68g/cm3以下)の密度に形成することにより、該光触媒TiO2層の上にSiO2蒸着分子を安定した飛行が可能な低いガス圧にて蒸着させても、SiO2層を多孔質に成膜できることがわかる。低いガス圧にて蒸着できるので、成膜工程に特別な工夫を施すことなく簡便に多孔質SiO2層を薄く均一な膜厚分布に成膜することができる。発明者らの実験によれば、光触媒TiO2層を3.75g/cm3以下の密度に成膜し、その上にSiO2蒸着分子を安定した飛行が可能な低いガス圧にて蒸着させた場合に、SiO2層は多孔質に成膜されることがわかった。また、該多孔質SiO2層の膜厚が10nm以上あれば、光触媒TiO2層の全面を該多孔質SiO2層で覆える(すなわち光触媒TiO2層が部分的に露出するのを防止できる)ことがわかった。
 図3は、図2の実験で使用したのと同様のサンプル(平滑な基材の表面に光触媒TiO2層を成膜した上に、SiO2蒸着分子を安定した飛行が可能な低いガス圧にて蒸着させて、SiO2層を50nm以下の膜厚に成膜した親水性部材について、光触媒TiO2層の密度を様々に変えたサンプル)について、SiO2層の傷付き荷重を測定した実験結果を示す。この実験は、鉛筆硬度試験と同様な手順にて、鉛筆の代わりに鉄製の棒を用い、おもりの重さを変えて荷重を測定することにより行った。図3によれば、光触媒TiO2層の密度が低いほどその上のSiO2層は脆く成膜され、光触媒TiO2層の密度が高くなるにつれてSiO2層は硬く成膜されることがわかる。
 図4は、図2および図3の実験で使用したのと同様のサンプルについてSiO2層の耐酸性能を測定した実験結果を示す。この実験は規定度0.1Nの濃度のH2SO4をSiO2層の表面に滴下し、24時間放置した後の表面の状態を観察することにより行った。この実験によれば、光触媒TiO2層の密度が3.33g/cm3未満の場合はH2SO4を滴下した箇所がその周囲の色に比べて退色していた。これは、該箇所でSiO2層および光触媒TiO2層が剥離して基材が剥き出しになったため、SiO2層と光触媒TiO2層による干渉色が生じなくなったためである。これに対し光触媒TiO2層の密度が3.33g/cm3以上の場合はH2SO4を滴下した箇所で退色は生じず、SiO2層および光触媒TiO2層が剥離していないことがわかった。したがって、図4の実験結果によれば、光触媒TiO2層の密度が3.33g/cm3未満の場合は耐酸性能が低く、光触媒TiO2層の密度が3.33g/cm3以上の場合は耐酸性能が高いことがわかる。
 図3および図4の実験結果によれば、光触媒TiO2層を3.33g/cm3以上(好ましくは3.47g/cm3以上、より好ましくは3.54g/cm3以上)の密度に形成することにより、実用に耐える耐久性(耐傷付き性能、耐酸性能)が得られることがわかる。
 したがって図2~図4の実験結果によれば、光触媒TiO2層を3.33~3.75g/cm3(好ましくは3.47~3.72g/cm3以下、より好ましくは3.54~3.68g/cm3)の密度に形成することにより、簡便に多孔質SiO2層を薄くかつ光触媒TiO2層の全面を覆える均一な膜厚分布に形成し、しかも該多孔質SiO2層の耐久性能を高められることがわかる。
 そこでこの発明は、基材の表面に光触媒TiO2層を3.33~3.75g/cm3(好ましくは3.47~3.72g/cm3以下、より好ましくは3.54~3.68g/cm3)の密度に成膜し、該TiO2層の上に最表層として多孔質SiO2層を、10nm以上、50nm以下(好ましくは15nm以上、20nm以下)の膜厚で、かつ該TiO2層の全面を覆った状態に成膜するようにしている。これによれば光触媒TiO2層の上に多孔質SiO2層を薄く形成することができ、かつ光触媒TiO2層の全面を覆える均一な膜厚分布に形成することができるので、光触媒TiO2層による良好かつ均一な光触媒作用が得られる。また多孔質SiO2層の耐久性能が高められる。
この発明の親水性部材の実施の形態を示す模式断面図である。 親水性部材のサンプル(平滑な基材の表面に光触媒TiO2層を成膜した上に、SiO2蒸着分子を安定した飛行が可能な低いガス圧にて蒸着させて、SiO2層を50nm以下の膜厚に成膜した親水性部材について、光触媒TiO2層の密度を様々に変えたサンプル)について、表面に有機物が付着して親水性が失われた状態から紫外線照射により親水性が回復するまでの時間を測定した実験結果を示す図である。 図2の実験で使用したのと同様のサンプルについて、SiO2層の傷付き荷重を測定した実験結果を示す図である。 図2および図3の実験で使用したのと同様のサンプルについてSiO2層の耐酸性能を測定した実験結果を示す図表である。 図1の親水性部材10を製造する真空蒸着装置18の一例を示す模式図である。
 この発明の親水性部材の実施の形態を図1に模式断面図で示す。親水性部材10は、基材12の平滑な表面に光触媒TiO2層14を成膜し、光触媒TiO2層14の上に最表層として多孔質SiO2層16を成膜して構成される。多孔質SiO2層16は、光触媒TiO2層の全面を覆える均一な膜厚分布に成膜されている。光触媒TiO2層14の密度は3.33~3.75g/cm3(好ましくは3.47~3.72g/cm3以下、より好ましくは3.54~3.68g/cm3)である。光触媒TiO2層14の膜厚は50~500nmである。多孔質SiO2層16の膜厚は10nm以上、50nm以下(好ましくは15nm以上、25nm以下)である。
 親水性部材10は、基材12を透明ガラス板または透明樹脂板で構成することにより、例えば自動車用ウインドウ、建物用窓ガラス等を構成することができる。また親水性部材10は、基材12を透明ガラス板または透明樹脂板で構成し、基材12の裏面に反射膜を形成することにより、例えば裏面鏡式車両用アウタミラー、バスルーム用ミラー等の裏面鏡を構成することができる。また親水性部材10は、基材12をガラス板または樹脂板で構成し、基材12と光触媒TiO2層14の間に反射膜を形成することにより、例えば表面鏡式自動車用アウターミラー等の表面鏡を構成することができる。また親水性部材10は、基材12をレンズ等の光学素子で構成することにより、防曇性の光学素子を構成することができる。基材12がガラス板の場合は、基材12と光触媒TiO2層14の間に、基材12中のアルカリイオンが光触媒TiO2層14に拡散するのを防止するためのSiO2等のブロック層(バリア層)を別途配置することもできる。
 図1の親水性部材10の製造方法の一例について説明する。ここでは、基材12をガラス板で構成し、光触媒TiO2層14、多孔質SiO2層16をいずれも蒸着法で成膜するものとする。
 図5に真空蒸着装置18の一例を示す。真空槽20内は、拡散ポンプ22およびロータリポンプ24によって真空排気される。真空槽20内の上部には基板ホルダ26が配置され、基板ホルダ26に親水性部材10の基材を構成するガラス板12が成膜面を下方に向けて保持されている。基板ホルダ26はヒータ28で加熱され、ガラス板12は基板ホルダ26を介して所望の温度に保持される。ガラス板12の下方位置にはるつぼ30が配置され、その中に蒸着材(蒸着の出発物質)32が収容されている。TiO2層14を成膜する場合の蒸着材32としてはTiO2、Ti23、Ti等がある。SiO2層16を成膜する場合の蒸着材32としてはSiO2、SiO等がある。
 蒸着材32は熱陰極34から放射される電子ビーム36が照射されて蒸発する。酸素ボンベ40からは反応性ガスとして酸素ガス42が真空槽20内に導入される。蒸発した蒸着材32が酸素ガス42と反応してTiO2あるいはSiO2が生成される。該生成されたTiO2あるいはSiO2がガラス板12の表面に堆積して、TiO2層14あるいはSiO2層16が成膜される。成膜時の膜厚は膜厚監視装置44で監視され、所望の膜厚に達したところで蒸着が停止される。
 蒸着膜の膜質は、真空槽20内のガラス板12の温度、蒸着速度、酸素ガス42の分圧等によって変化する。光触媒TiO2層14を3.33~3.75g/cm3の密度に成膜し、光触媒TiO2層14の上にSiO2層16を多孔質に成膜し、かつ該多孔質SiO2層16の膜厚が10nm以上あれば、該多孔質SiO2層16を光触媒TiO2層の全面を覆える均一な膜厚分布に成膜することができるための成膜条件の一例を次表に示す。

            光触媒TiO 2 層14  多孔質SiO 2 層16 
 ガラス板12の温度:   摂氏300度      摂氏300度
 蒸着速度:       0.5nm/秒     0.2nm/秒
 酸素ガス42の分圧:  0.016Pa     0.016Pa
 図5の真空蒸着装置18による光触媒TiO2層14および多孔質SiO2層16の成膜手順の一例を以下説明する。光触媒TiO2層14の成膜は例えば次の手順で行われる。
(1)ガラス板12を基板ホルダ26に保持し、るつぼ30内に蒸着材32として例えばTi23を収容して真空槽20を閉じる。
(2)ロータリポンプ24および拡散ポンプ22を駆動して真空槽20内を真空引きする。
(3)ヒータ28を駆動して、基板ホルダ26を通してガラス板12を所定の温度に加熱する。
(4)酸素ボンベ40から酸素ガス42を真空槽20内に導入する。
(5)熱陰極34を駆動して、電子ビーム36を蒸着材32であるTi23に照射してTi23を蒸発させる。
(6)蒸発したTi23は酸素ガス42と反応してTiO2が生成される。該生成されたTiO2はガラス板12上に堆積して成膜される。
(7)TiO2が約100nm堆積したところで成膜を終了させる。
 光触媒TiO2層14の成膜が終了したら、引き続き多孔質SiO2層16の成膜を行う。多孔質SiO2層16の成膜は例えば次の手順で行われる。
(1)るつぼ30内に蒸着材32として例えばSiO2を収容して真空槽20を閉じる。
(2)ロータリポンプ24および拡散ポンプ22を駆動して真空槽20内を真空引きする。
(3)ヒータ28を駆動して、基板ホルダ26を通してガラス板12を所定の温度に加熱する。
(4)酸素ボンベ40から酸素ガス42を真空槽20内に導入する。
(5)熱陰極34を駆動して、電子ビーム36を蒸着材32であるSiO2に照射してSiO2を蒸発させる。
(6)蒸発したSiO2がガラス板12の光触媒TiO2層14上に堆積して成膜される。
(7)約15nm堆積したところで成膜を終了させる。
 以上の工程で作成された親水性部材10は、最表面が多孔質SiO2層16のみで構成されているので、最表面が光触媒TiO2層のみ、または光触媒TiO2とSiO2の混合層で構成される場合と比較して、表面の硬さおよび親水維持性能において優れた効果を発揮する。
 なお前記実施の形態では光触媒TiO2層および多孔質SiO2層を真空蒸着法で成膜した場合について説明したが、両層またはいずれか一方の層を他の薄膜形成方法(例えばスパッタリング)で成膜した場合も本願発明の効果が期待できると考えられる。
 10…親水性部材、12…基材、14…光触媒TiO2層、16…多孔質SiO2

Claims (7)

  1.  基材の表面に光触媒作用を示すTiO2層を3.33~3.75g/cm3の密度に成膜し、該TiO2層の上に最表層として多孔質SiO2層を、10nm以上、50nm以下の膜厚で、かつ該TiO2層の全面を覆った状態に成膜した構造を有する親水性部材。
  2.  前記TiO2層の密度が3.47~3.72g/cm3である請求項1に記載の親水性部材。
  3.  前記TiO2層の密度が3.54~3.68g/cm3である請求項2に記載の親水性部材。
  4.  前記多孔質SiO2層が15nm以上、20nm以下であることを特徴とする請求項1に記載の親水性部材。
  5.  前記多孔質SiO2層が15nm以上、20nm以下であることを特徴とする請求項2に記載の親水性部材。
  6.  前記多孔質SiO2層が15nm以上、20nm以下であることを特徴とする請求項3に記載の親水性部材。
  7.  基材の表面に光触媒作用を示すTiO2層を3.33~3.75g/cm3の密度に成膜する工程と、該TiO2層の上に最表層として多孔質SiO2層を、10nm以上、50nm以下の膜厚で、かつ該TiO2層の全面を覆った状態に成膜する工程とを有する親水性部材の製造方法。
PCT/JP2013/079136 2012-11-21 2013-10-28 親水性部材およびその製造方法 WO2014080726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013005567.8T DE112013005567T5 (de) 2012-11-21 2013-10-28 Hydrophiles Element und Verfahren zu dessen Herstellung
CN201380060933.3A CN104797416B (zh) 2012-11-21 2013-10-28 亲水性构件及其制造方法
US14/442,921 US10042090B2 (en) 2012-11-21 2013-10-28 Hydrophilic member and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012255257A JP5865237B2 (ja) 2012-11-21 2012-11-21 親水性部材およびその製造方法
JP2012-255257 2012-11-21

Publications (1)

Publication Number Publication Date
WO2014080726A1 true WO2014080726A1 (ja) 2014-05-30

Family

ID=50775913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079136 WO2014080726A1 (ja) 2012-11-21 2013-10-28 親水性部材およびその製造方法

Country Status (6)

Country Link
US (1) US10042090B2 (ja)
JP (1) JP5865237B2 (ja)
KR (1) KR20150086228A (ja)
CN (1) CN104797416B (ja)
DE (1) DE112013005567T5 (ja)
WO (1) WO2014080726A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463745B (zh) 2015-09-29 2019-12-06 富士胶片株式会社 亲水性多层膜及其制造方法和摄像系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036144A (ja) * 1996-07-26 1998-02-10 Murakami Corp 防曇素子
JP2000239047A (ja) * 1998-12-03 2000-09-05 Nippon Sheet Glass Co Ltd 親水性光触媒部材
JP2002201045A (ja) * 2000-12-27 2002-07-16 Toto Ltd 親水性薄膜
JP2003098307A (ja) * 2001-09-20 2003-04-03 Moriroku Co Ltd プラスチック光学基板への反射防止膜とその成膜方法
JP2004345223A (ja) * 2003-05-22 2004-12-09 Dainippon Printing Co Ltd 光学機能性フィルム、および画像表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2265150T3 (es) 1995-03-20 2007-02-01 Toto Ltd. Uso de un material que tiene una superficie ultrahidrofila y fotocatalitica.
JP2000053449A (ja) 1998-08-06 2000-02-22 Murakami Corp 防曇鏡およびその製造方法
US6193378B1 (en) * 1999-06-25 2001-02-27 Gentex Corporation Electrochromic device having a self-cleaning hydrophilic coating
JP2006257244A (ja) 2005-03-16 2006-09-28 Matsushita Electric Works Ltd 防曇防汚性材料及びその製造方法
US7842352B2 (en) 2006-08-09 2010-11-30 Massachusetts Institute Of Technology Nanoparticle coatings and methods of making
JP2009262049A (ja) * 2008-04-24 2009-11-12 Toshiba Corp 光触媒構造体およびその製造方法
CN102582137B (zh) 2012-01-13 2015-10-21 苏州力合光电薄膜科技有限公司 自清洁防雾元件及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036144A (ja) * 1996-07-26 1998-02-10 Murakami Corp 防曇素子
JP2000239047A (ja) * 1998-12-03 2000-09-05 Nippon Sheet Glass Co Ltd 親水性光触媒部材
JP2002201045A (ja) * 2000-12-27 2002-07-16 Toto Ltd 親水性薄膜
JP2003098307A (ja) * 2001-09-20 2003-04-03 Moriroku Co Ltd プラスチック光学基板への反射防止膜とその成膜方法
JP2004345223A (ja) * 2003-05-22 2004-12-09 Dainippon Printing Co Ltd 光学機能性フィルム、および画像表示装置

Also Published As

Publication number Publication date
US10042090B2 (en) 2018-08-07
JP5865237B2 (ja) 2016-02-17
CN104797416B (zh) 2016-07-06
DE112013005567T5 (de) 2015-08-20
US20150293268A1 (en) 2015-10-15
JP2014100871A (ja) 2014-06-05
CN104797416A (zh) 2015-07-22
KR20150086228A (ko) 2015-07-27

Similar Documents

Publication Publication Date Title
EP2438024B1 (fr) Procede de depot de couche mince
US20090011217A1 (en) Method for applying a porous glass layer
KR20080100415A (ko) 다이아몬드 상 탄소 층을 갖는 자기 지지 다층 필름
FR3005878A1 (fr) Procede d'obtention d'un substrat muni d'un revetement
JP4261353B2 (ja) 光触媒体、光触媒体の製造方法及び光触媒体の製造装置
EP2726640B1 (en) A method for producing a neutron detector component comprising a boron carbide layer for use in a neutron detecting device
JP5865237B2 (ja) 親水性部材およびその製造方法
EP2755927A1 (fr) Materiau photocatalytique et vitrage ou cellule photovoltaique comprenant ce materiau
EP2744760B1 (fr) Vitrage antireflet muni d'un revetement poreux et procédé de fabrication
WO2021261225A1 (ja) 親水性膜の製造方法、親水性膜及び光学部材
JP4847957B2 (ja) 光触媒性酸化チタン層を析出する方法
KR100718597B1 (ko) 친수성 박막의 형성방법
KR100974171B1 (ko) 투명산화물박막과 실리콘계화합물을 포함하는 투습방지막이구비된 기판 및 이의 제조방법
JP4042509B2 (ja) 可視光線応答型光触媒
JP2021133523A (ja) 超親水膜とその製造方法及び光学部材
Noguchi et al. Ion conductivity of Ta2O5 solid electrolyte thin film prepared by combination sputtering with radio frequency oxygen plasma irradiation
JP4625906B2 (ja) イオン照射を用いた光学式水素検出材料及びその製造方法
JP2023158648A (ja) 光学薄膜及びその製造方法
Ohsaki et al. Room temperature crystallization by RF plasma
JP3141721B2 (ja) 酸化チタン光触媒膜の製造方法
Arimitsu et al. Effects of vacuum ultraviolet light illumination and seeding on crystallization of sol–gel-derived titanium dioxide precursor films using plasma treatment
JP4520107B2 (ja) 透光性薄膜およびその製造方法
JP4693401B2 (ja) Ito透明導電膜の成膜方法およびito透明導電膜付きカラーフィルター基板
JP4837226B2 (ja) 光触媒体及び光触媒体の製造方法
JP2001098373A (ja) 酸化チタン薄膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006257

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14442921

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130055678

Country of ref document: DE

Ref document number: 112013005567

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856653

Country of ref document: EP

Kind code of ref document: A1