WO2014077366A1 - 集電体、電極構造体、蓄電部品および集電体用組成物 - Google Patents

集電体、電極構造体、蓄電部品および集電体用組成物 Download PDF

Info

Publication number
WO2014077366A1
WO2014077366A1 PCT/JP2013/080931 JP2013080931W WO2014077366A1 WO 2014077366 A1 WO2014077366 A1 WO 2014077366A1 JP 2013080931 W JP2013080931 W JP 2013080931W WO 2014077366 A1 WO2014077366 A1 WO 2014077366A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
resin
polyolefin
emulsion particles
electrode structure
Prior art date
Application number
PCT/JP2013/080931
Other languages
English (en)
French (fr)
Inventor
聡平 斉藤
加藤 治
幸翁 本川
起郭 八重樫
片岡 次雄
光哉 井上
郷史 山部
泰正 盛島
貴和 伊藤
英和 原
恭宏 飯田
Original Assignee
株式会社Uacj
日本製箔株式会社
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj, 日本製箔株式会社, 古河電気工業株式会社 filed Critical 株式会社Uacj
Priority to EP13855595.8A priority Critical patent/EP2922124B1/en
Priority to JP2014547053A priority patent/JPWO2014077366A1/ja
Priority to CN201380060453.7A priority patent/CN104823313B/zh
Priority to US14/443,623 priority patent/US20160322641A1/en
Publication of WO2014077366A1 publication Critical patent/WO2014077366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a current collector, an electrode structure, a power storage component (including a nonaqueous electrolyte battery, an electric double layer capacitor, a lithium ion capacitor, etc.) and a current collector composition.
  • a power storage component including a nonaqueous electrolyte battery, an electric double layer capacitor, a lithium ion capacitor, etc.
  • Lithium ion batteries used in vehicles have high-speed charge / discharge characteristics (high-rate characteristics) during normal use, and a so-called shutdown function (PTC) that stops charge / discharge spontaneously and safely in the event of an accident such as a failure. Function) is required.
  • the former includes a technique for reducing the particle size of the active material and forming a conductive layer on the current collector, and the latter includes means for improving the safety of the battery by preventing the internal pressure from being increased by a safety valve and increasing the temperature.
  • a PTC Physical Temperature Coefficient
  • Patent Document 1 discloses a polyvinylidene fluoride having a conductive layer having a melting start temperature of 130 ° C. or higher and lower than 155 ° C. and a mass ratio of ⁇ crystal to ⁇ crystal ( ⁇ / ⁇ ) of 0.35 to 0.56. It is described that the resistance is increased when the temperature rises.
  • Patent Document 2 describes that a conductive layer containing a polyolefin-based crystalline thermoplastic resin having a melting point of 100 ° C. to 120 ° C. is used for the conductive layer, and the resistance is increased to 100 ⁇ cm or more when the temperature rises.
  • Patent Document 1 it depends on the crystalline state of the resin used for the conductive layer, and depends on the heating temperature during coating of the active material layer and the thermal history of the electrode in the drying process to remove moisture. In some cases, the crystal state changes and the resistance value hardly rises.
  • Patent Document 2 the so-called high rate characteristic of high-speed charge / discharge is not sufficient, and is unsuitable for high-speed charge / discharge in normal times.
  • the resin used is a thermoplastic resin
  • the resistance value increases due to the expansion of the electrode layer regardless of the presence or absence of the electrolytic solution, and the resin is further melted. Since it is in a state different from that before melting, it cannot be raised to 100 ° C. or higher during production, and the productivity may be significantly reduced.
  • the electrode layers of Patent Documents 1 and 2 can increase the resistance once after the PTC function is exhibited, and can exhibit the PTC function. However, if the temperature continues to rise, the resistance decreases on the contrary. The PTC function is difficult to maintain and has a safety problem.
  • the present invention has been made in view of the above circumstances, and when used in an electrode structure of a power storage component such as a nonaqueous electrolyte battery, an electric double layer capacitor, or a lithium ion capacitor, the temperature further increases after the PTC function is exhibited. It is an object of the present invention to provide a highly safe current collector, electrode structure, power storage component, and current collector composition that can stably maintain the PTC function even when it rises.
  • the present inventor has a structure in which the current collector has a structure having a conductive resin layer on at least one surface of a conductive base material.
  • a current collector obtained by using special polyolefin emulsion particles for the resin constituting the product and crosslinking (including curing, including the curing) the polyolefin emulsion particles with a crosslinking agent (including the curing agent, the same shall apply hereinafter).
  • the emulsion state is maintained even when the temperature rises after the PTC function is exhibited, and the PTC function is stably maintained.
  • the present inventors have made the present invention.
  • a current collector comprising a conductive substrate and a resin layer provided on at least one surface of the conductive substrate.
  • the resin layer is formed of a paste containing polyolefin emulsion particles, a conductive material, and a crosslinking agent.
  • the polyolefin emulsion particles contain a polyolefin resin in which both ends are modified with carboxylic acid or carboxylic anhydride.
  • an electrode structure comprising the above-described current collector and an active material layer or an electrode material layer formed on the resin layer of the current collector.
  • the temperature is increased after the PTC function is exhibited. Even when it rises, the state of the emulsion can be maintained and the PTC function can be maintained stably.
  • a power storage component using the above electrode structure is provided.
  • a current collector composition for obtaining a current collector by crosslinking after coating on a conductive substrate.
  • the current collector composition includes polyolefin emulsion particles, a conductive material, and a crosslinking agent.
  • the polyolefin emulsion particles contain a polyolefin resin in which both ends are modified with carboxylic acid or carboxylic anhydride.
  • the current collector since special polyolefin-based emulsion particles are used, the current collector is obtained after being applied to a conductive substrate and then crosslinked to obtain a current collector.
  • a power storage component such as a multilayer capacitor or a lithium ion capacitor, the emulsion state is maintained even when the temperature rises after the PTC function is exhibited, and the PTC function is stably maintained. You can continue.
  • the state of the emulsion can be maintained and the PTC function can be maintained stably.
  • FIG. 6 is a schematic view showing an internal state of a resin layer at a high temperature of an electrode structure when polyolefin emulsion particles are not crosslinked unlike FIG. 5.
  • FIG. 1 is a cross-sectional view showing the structure of the current collector of this embodiment.
  • the current collector 100 of this embodiment is a current collector 100 having a conductive resin layer 105 on at least one surface of a conductive base material 103.
  • FIG. 2 is a cross-sectional view showing the structure of the electrode structure formed using the current collector of the present embodiment.
  • an active material layer or an electrode material layer 115 is formed on the resin layer 105 of the current collector 100 of this embodiment, so that the battery for non-aqueous electrolytes such as lithium ion batteries can be used.
  • An electrode structure 117 suitable for a double layer capacitor or a lithium ion capacitor can be formed.
  • FIG. 3 is a schematic view showing the structure of polyolefin emulsion particles used in one embodiment of the present invention.
  • the polyolefin-based emulsion particles 125 used in the present embodiment are water-based emulsion particles, and contain a polyolefin-based resin 129 whose both ends are modified with carboxylic acid or carboxylic anhydride.
  • the hydrophobic part of the polyolefin resin 129 is distributed mainly in the center of the polyolefin emulsion particle 125.
  • the hydrophilic cross-linking groups 123 located at both ends of the polyolefin resin 129 are mainly exposed on the surface of the polyolefin emulsion particles 125.
  • These hydrophilic cross-linking groups 123 are introduced at both ends of the polyolefin resin 129 when modified with carboxylic acid or carboxylic anhydride. Since the crosslinkable group 123 (for example, carboxyl group) derived from carboxylic acid or carboxylic anhydride has high hydrophilicity, the orientation in which the crosslinkable group 123 appears outside the polyolefin emulsion particle 125 is stable.
  • a conductive material 121 such as carbon powder adheres to the surface of the polyolefin emulsion particles 125.
  • FIG. 4 is a schematic view showing the inside of the resin layer at room temperature of the electrode structure of one embodiment of the present invention.
  • the resin layer 105 of the current collector 100 of this embodiment includes polyolefin emulsion particles 125, a crosslinking agent 131, and a conductive material 121.
  • the conductive material 121 is distributed on the surface or gaps of the polyolefin-based emulsion particles 125 and is connected to each other to form a conduction path that penetrates the resin layer 105 to conduct current. That is, the polyolefin emulsion particles 125 as shown in FIG. 3 are distributed so as to overlap each other, the conductive material 121 forms a network, and conductivity is exhibited.
  • the crosslinking agent 131 is crosslinked with a carboxylic acid or carboxylic anhydride-derived crosslinking group 123 exposed on the surface of the polyolefin-based emulsion particles 125.
  • the cross-linking groups 123 such as carboxyl groups appearing on the surface of the polyolefin-based emulsion particles 125 are cross-linked by the cross-linking agent 131.
  • the cross-linking agent 131 cannot enter the polyolefin-based emulsion particles 125, the polyolefin-based resin 129 is used. Will not cure.
  • FIG. 5 is a schematic diagram showing an internal state of the resin layer at a high temperature of the electrode structure according to one embodiment of the present invention.
  • a polyolefin resin 129 modified with a carboxylic acid (or carboxylic anhydride) such as maleic acid is used as the polyolefin emulsion particle 125, and the polyolefin emulsion particle 125 is crosslinked with a crosslinking agent 131.
  • the polyolefin emulsion particles 125 were kept in an emulsion state and maintained the PTC function even when the temperature was further increased after the PTC was developed. That is, in this embodiment, the elastic modulus at high temperature of the resin layer 105 is increased, and the volume can be increased by expansion.
  • the resin layer 105 of the present embodiment exhibits a PTC function when an unexpected accident occurs.
  • the PTC function is increased by increasing the volume of the resin layer 105 due to the expansion of the polyolefin-based emulsion particles 125 and increasing the interval between the conductive materials 121 in the resin layer 105 (reducing the density of the conductive fine particles in the resin layer 105).
  • the synergistic effect of the polyolefin-based emulsion particles 125, the cross-linking agent 131, and the conductive material 121 does not impair the resistance, and the PTC function is stably maintained.
  • the crosslinkable group 123 exposed on the outer portion of the polyolefin emulsion particle 125 is cross-linked to increase the elasticity at high temperatures, thereby preventing melting of the polyolefin emulsion particles 125 and preventing a decrease in resistance. Can do.
  • FIG. 6 is a schematic view showing the inside of the resin layer at a high temperature of the electrode structure when the polyolefin emulsion particles are not crosslinked unlike FIG.
  • a polyolefin resin 129 such as polyethylene or polypropylene having a high coefficient of thermal expansion is used as the resin layer 105 having a PTC function without crosslinking will be described.
  • the resistance increases when the PTC function is exhibited, but the resistance may decrease conversely when the temperature is further increased.
  • the cause is that the PTC function is manifested by the melting of the polyolefin-based resin 129, but the polyolefin-based resin 129 and the conductive material 121 are re-aggregated by further melting, and the conductive material 121 locally re-forms the network. This is because the resistance decreases. That is, when the polyolefin emulsion particles 125 are not cross-linked, the polyolefin emulsion particles 125 melt at high temperatures, and the resistance decreases again due to the aggregation of the polyolefin resin 129 and the conductive material 121, or the resin is reduced by slight compression. The layer 105 moves, and the active material layer 115 is in direct contact with the conductive substrate 103. Such a problem is particularly noticeable when the resin layer 105 is a thin film.
  • the current collector 100 is obtained by applying a current collector composition to at least one surface of a conductive base material 103 and crosslinking and curing the current collector composition.
  • the conductive base material 103 known as various metal foils for a nonaqueous electrolyte battery, an electric double layer capacitor, or a lithium ion capacitor can be used.
  • various metal foils for positive electrode and negative electrode can be used, and for example, aluminum, aluminum alloy, copper, stainless steel, nickel and the like can be used. Among these, aluminum, an aluminum alloy, and copper are preferable from the balance between high conductivity and cost.
  • the thickness with the conductive substrate 103 is not particularly limited, but is preferably 5 ⁇ m or more and 50 ⁇ m or less. If the thickness is less than 5 ⁇ m, the strength of the foil is insufficient and it may be difficult to form the resin layer. On the other hand, if it exceeds 50 ⁇ m, other components, particularly the active material layer or the electrode layer, must be thinned, and in particular, a non-aqueous electrolyte battery, an electric double layer capacitor, a lithium ion capacitor, or other power storage component. In this case, the thickness of the active material layer has to be reduced, and the necessary capacity may not be obtained. In addition, the thickness of this electroconductive base material may be in the range of arbitrary two numerical values among 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 ⁇ m.
  • FIG. 3 is a schematic view showing the structure of polyolefin emulsion particles used in the present embodiment.
  • polyolefin emulsion particles 125 mainly composed of a polyolefin resin 129 in which both ends (molecular chain) are modified with a carboxylic acid having one or more carboxyl groups (or carboxylic anhydride) are used. That is, the resin component used for the resin layer 105 of the present embodiment includes the above-described polyolefin emulsion particles 125 and may be composed only of the polyolefin emulsion particles 125, or contains other resin components. There may be.
  • the polyolefin-based emulsion particles 125 used in the present embodiment are a polypropylene resin, a polyethylene resin, a polypropylene-polyethylene copolymer resin, or these modified with a carboxylic acid (or carboxylic anhydride) having one or more carboxyl groups at both ends.
  • a main component is particularly preferred.
  • Particularly preferred is a mixture of maleic acid-modified polypropylene resin, maleic acid-modified polyethylene resin, maleic acid-modified polyethylene-polypropylene block polymerization resin, maleic acid-modified polyethylene-polypropylene graft polymerization resin, maleic acid-modified polypropylene resin and maleic acid-modified polyethylene resin. Resin.
  • the cross-linking group 123 is not formed. Therefore, the cross-linking agent 131 does not cross-link, and the resistance decreases when the temperature is further increased after the PTC is developed. May not be preferable. Further, when the polyolefin resin 129 modified with a carboxylic acid (or carboxylic anhydride) having one or more carboxyl groups in the molecular chain is used instead of the terminal, even if it is made into an aqueous emulsion particle, The polyolefin-based resin 129 itself is cured, and the PTC function is not exhibited, which is not preferable.
  • both ends are modified with a carboxylic acid (or carboxylic anhydride) having one or more carboxyl groups. Even when a polyolefin-based resin is used, the conductive material 121 is not easily disconnected at the time of PTC expression, and resistance is hardly increased, which may not be preferable.
  • the polyolefin emulsion particles 125 used in the present embodiment have a core-shell structure in which the core particles contain the polyolefin resin 129 as a main component and the shell layer contains the conductive material 121. Even if the ratio with respect to the resin 129 is considerably lower than that of the prior art, sufficient conductivity can be obtained at room temperature. That is, by adopting such a core-shell structure, the ratio of the polyolefin-based resin 129 is relatively high with respect to the conductive material 121, which is effective in that high insulation can be expressed when the PTC function is exhibited. is there.
  • the carboxylic acid (or carboxylic anhydride) for modifying the polyolefin-based resin 129 used in the present embodiment is not particularly limited.
  • maleic acid, pyromellitic acid, citric acid, tartaric acid, oxalic acid, melittic acid It is preferable to use terephthalic acid, adipic acid, fumaric acid, itaconic acid, trimellitic acid, isophthalic acid and the like.
  • maleic acid for modification from the viewpoint of adhesion to metal Any of these acids may be an acid anhydride.
  • the conductive material 121 Since only the polyolefin emulsion particles 125 used for the resin layer 105 of the present embodiment have high insulation, the conductive material 121 must be blended in order to impart electronic conductivity.
  • the conductive material 121 used in the present embodiment known carbon powder, metal powder, and the like can be used. Among them, carbon powder is preferable.
  • carbon powder As the carbon powder, acetylene black, ketjen black, furnace black, carbon nanotube, carbon fiber, each graphite particle, and the like can be used, and these can also be used as a mixture.
  • the blending amount of the conductive material 121 of the present embodiment is not particularly limited. However, in order to exhibit a desired high safety PTC function, the PTC is used in a smaller amount than a normal carbon coat or a binder resin for an active material layer. It is preferable that the function can be exhibited and safety can be maintained. Specifically, the blending amount of the conductive material 121 is preferably 5 to 50 parts by weight, more preferably 7 to 45 parts by weight, and more preferably 10 to 40 parts by weight with respect to 100 parts by weight of the resin component of the polyolefin-based emulsion particles 125. Further preferred.
  • the volume specific resistance of the resin layer 105 increases, and the conductivity required for the current collector 100 may not be obtained. This is because if the amount exceeds 50 parts by mass, the conductive material 121 is not disconnected even during volume expansion, and a sufficient resistance value may not be obtained.
  • the conductive material 121 can be dispersed in the resin liquid by using a planetary mixer, a ball mill, a homogenizer, or the like.
  • the compounding quantity of this electrically conductive material 121 is in the range of arbitrary two numerical values among 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, and 50 parts by mass. It may be.
  • the crosslinking agent 131 used in the present embodiment is not particularly limited, but is an epoxy crosslinking agent having two or more crosslinking functional groups, a melamine crosslinking agent, an isocyanate crosslinking agent, a polyoxyalkylene crosslinking agent, a carbodiimide crosslinking. It is preferable that it is 1 or more types of crosslinking agents chosen from the group which consists of an agent.
  • the epoxy-based crosslinking agent used in this embodiment is a crosslinking agent having two or more epoxy groups in the molecule, and examples thereof include glycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, and the like.
  • a crosslinking agent having two or more melamine groups in the molecule can be used. It can be obtained by condensation reaction of melamine and formaldehyde to methylolate melamine (optionally further polynuclear by addition reaction), and then alkylate methylol group with alcohol (eg methyl alcohol or butyl alcohol) if necessary, Examples thereof include fully alkylated fully alkyl melamine, methylol type, and imino type melamine derivatives.
  • alcohol eg methyl alcohol or butyl alcohol
  • isocyanate-based crosslinking agent As the isocyanate-based crosslinking agent used in the present embodiment, a crosslinking agent having two or more isocyanate groups in the molecule can be used. Aromatic polyisocyanates, aliphatic polyisocyanates, alicyclic polyisocyanates and mixtures thereof can be used.
  • Examples include silylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane
  • polyoxyalkylene-based crosslinking agent As the polyoxyalkylene-based crosslinking agent used in the present embodiment, a polyoxyalkylene-based resin having two or more hydroxyl groups in the molecule can be used.
  • modified carboxylic acids such as sorbitan acid, oleic acid, lauric acid, palmitic acid, stearic acid, modified alkyl ethers, fatty acid esters, glycerin esters, copolymers, and the like.
  • the carbodiimide-based crosslinking agent used in the present embodiment is a substance having a functional group represented by —N ⁇ C ⁇ N—, and can react with a carboxyl group to crosslink a resin.
  • Specific examples include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, diisopropylcarbodiimide and the like.
  • the blending amount is not particularly limited, but the cross-linking agent 131 is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the resin component of the polyolefin-based emulsion particles 125. If it is 0.1 parts by mass or less, it is not preferable because it does not sufficiently crosslink and the resistance decreases after the development of PTC. On the other hand, if it exceeds 50 parts by mass, the ratio of the emulsion-type olefin resin decreases, which makes it difficult to increase the resistance at the time of temperature rise.
  • the compounding quantity of this crosslinking agent 131 is 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45. , May be within the range of any two numerical values of 50 parts by mass.
  • FIG. 1 is a cross-sectional view showing the structure of the current collector of this embodiment.
  • the current collector 100 of the present embodiment has a resin layer 105 using the current collector composition.
  • the resin layer 105 is used for a positive electrode, it is preferable to use the resin layer 105 having a PTC function provided on the conductive base material 103.
  • the resin layer 105 is particularly configured separately from the active material layer 115 so that the PTC function can be efficiently exhibited while maintaining the high rate characteristics of the PTC (shutdown function) and the battery.
  • the adhesiveness between the conductive base material 103 and the active material layer 115 can be improved, and it has a shutdown function and excellent high-speed charge / discharge characteristics. Can be used.
  • a method for forming the conductive resin layer 105 used in the present embodiment is not particularly limited, but a composition for a current collector is prepared by mixing polyolefin emulsion particles 125, a conductive material 121, and a cross-linking material 131 in water or an aqueous solution. It is preferable to apply the current collector composition (paste) onto the conductive substrate 103 after preparing the (paste).
  • a coating method a roll coater, a gravure coater, a slit die coater or the like can be used.
  • the coating amount of the current collector composition (paste) for forming the resin layer 105 is preferably 0.05 to 5 g / m 2 . If this coating amount is 0.05 g / m 2 or less, coating film unevenness may occur and the PTC function may not be expressed. On the other hand, when the coating amount is 5 g / m 2 or more, the capacity of the battery active material is reduced, and the battery characteristics may be deteriorated. In addition, this application amount may be within a range of two arbitrary numerical values among 0.05, 0.1, 0.25, 0.5, 1, 2.5, and 5 g / m 2 .
  • the resin composition 105 is formed by baking (crosslinking) the current collector composition (paste).
  • the baking temperature is not particularly limited, but is preferably 80 to 200 ° C., for example. When this baking temperature is less than 80 ° C., there is a problem that the curing is insufficient and the adhesion to the conductive substrate is insufficient. On the other hand, when the baking temperature exceeds 200 ° C., there is a problem that depending on the polyolefin resin used, the resin melts and emulsion particles are not formed.
  • this baking temperature may be in the range of arbitrary two numerical values among 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, and 200 ° C.
  • the baking time is not particularly limited, but is preferably 10 to 200 seconds, for example.
  • this baking time is less than 10 seconds, there is a problem that the curing is insufficient and the adhesiveness with the conductive substrate is insufficient.
  • this baking time exceeds 200 seconds, there is a problem that depending on the polyolefin resin used, the resin melts and emulsion particles are not formed.
  • this printing time second is within the range of any two values among 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, and 200 seconds. May be.
  • the amount of the cross-linking agent blended in the current collector composition paste or to change the type of the cross-linking agent. It is preferable to change the amount or type of these crosslinking agents and measure the gel fraction so that the gel fraction (crosslinked value) is 50 to 95%.
  • the gel fraction is less than 50%, the resin melts above the PTC expression temperature because the degree of crosslinking is low, and the conductive material aggregates due to re-aggregation due to melting, and the resistance decreases again (conducts conductivity) There is.
  • this gel fraction may be in the range of arbitrary two numerical values among 50, 55, 60, 65, 70, 75, 80, 85, 90, and 95%.
  • FIG. 2 is a cross-sectional view showing the structure of an electrode structure formed using the current collector of the present embodiment.
  • the electrode structure 117 of the present embodiment can be obtained.
  • the electrode structure 117 for a power storage component in which the electrode material layer 115 is formed the electrode structure 117 for a non-aqueous electrolyte battery, for example, a lithium ion secondary battery, using the electrode structure 117, a separator, and a non-aqueous electrolyte solution. (Including battery components) can be manufactured.
  • a member other than the current collector 100 can be a known non-aqueous battery member.
  • the active material layer 115 formed as the electrode structure 117 in the present embodiment may be proposed for a non-aqueous electrolyte battery.
  • the current collector 100 of this embodiment using aluminum as the positive electrode, LiCoO 2 , LiMnO 4 , LiNiO 2 or the like as the active material, carbon black such as acetylene black as the conductive material, and these as a binder
  • the positive electrode structure of this embodiment can be obtained by applying and drying a paste dispersed in a certain PVDF or water-dispersed PTFE.
  • the negative electrode structure 117 When the negative electrode structure 117 is used, for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material for the current collector 100 of the present embodiment using copper as the base material 103, and these are used as a thickener. After being dispersed in a certain CMC (carboxymethylcellulose), a paste mixed with a binder SBR (styrene butadiene rubber) is applied as an active material forming material and dried to obtain the negative electrode current collector of this embodiment. it can.
  • CMC carboxymethylcellulose
  • SBR styrene butadiene rubber
  • Power storage components (electric double layer capacitors, lithium ion capacitors, etc.)
  • an electric double layer capacitor or the like is safer than a secondary battery, but it is possible to apply the current collector 100 of this embodiment for the purpose of improving the high-rate characteristics.
  • the electric double layer capacitor, the lithium ion capacitor, and the like of the present embodiment are also used for power storage components such as the electric double layer capacitor and the lithium ion capacitor that require high-speed charge / discharge at a large current density. Adaptable.
  • the electrode structure 117 for the electricity storage component of the present embodiment is obtained by forming the electrode material layer 115 on the current collector 100 of the present embodiment, and an electric double layer is formed by using the electrode structure 117 and a separator, an electrolytic solution, or the like. Electric storage components such as capacitors and lithium ion capacitors can be manufactured.
  • members other than the current collector 100 can be members for known electric double layer capacitors or lithium ion capacitors.
  • the electrode material layer 115 can be composed of a positive electrode, a negative electrode, an electrode material, a conductive material, and a binder.
  • the power storage component can be obtained after forming the electrode material layer 115 on the resin layer 105 of the current collector 100 of the present embodiment to form the electrode structure 117.
  • the electrode material those conventionally used as electrode materials for electric double layer capacitors and lithium ion capacitors can be used.
  • carbon powder or carbon fiber such as activated carbon or graphite can be used.
  • the binder for example, PVDF (polyvinylidene fluoride), SBR, water-dispersed PTFE or the like can be used.
  • the electricity storage component of the present embodiment can constitute an electric double layer capacitor or a lithium ion capacitor by fixing the electrode structure 7 of the present embodiment with a separator interposed between them and allowing the electrolyte to penetrate into the separator.
  • a separator for example, a polyolefin microporous film, an electric double layer capacitor nonwoven fabric, or the like can be used.
  • the non-aqueous electrolyte is not particularly limited as long as it does not show side reactions such as decomposition in a voltage range used as an electric double layer capacitor or a lithium ion capacitor.
  • quaternary ammonium salts such as tetraethylammonium salt, triethylmethylammonium salt and tetrabutylammonium salt are used as cations, and hexafluorophosphate, tetrafluoroborate, perchlorate, etc. are used as anions. Can do.
  • aprotic solvents such as carbonates, esters, ethers, nitriles, sulfonic acids, and lactones
  • Example 1 As shown in Table 1, as an emulsion-based polyolefin resin (polyolefin-based emulsion particles), a resin liquid in which 100 parts by mass of an aqueous emulsion-type maleic acid-modified polypropylene resin and 0.1 parts by mass of glycerol polyglycidyl ether as a crosslinking agent are mixed. 25 parts by mass of acetylene black was added to the resin component (solid content of the resin, the same applies hereinafter), and dispersed in a ball mill for 8 hours to obtain a paint.
  • polyolefin resin polyolefin-based emulsion particles
  • a resin liquid in which 100 parts by mass of an aqueous emulsion-type maleic acid-modified polypropylene resin and 0.1 parts by mass of glycerol polyglycidyl ether as a crosslinking agent are mixed. 25 parts by mass of acetylene black was added to the resin component (solid content of
  • This paint was applied to one side of a 15 ⁇ m thick aluminum foil (JIS A1085) with a gravure coater so that the coating thickness was 2 ⁇ m (the coating weight was 2 g / m 2 ). ) was baked for 24 seconds so that it became 110 degreeC, and the collector electrode was produced.
  • the substrate, coating, and drying conditions are the same and will be omitted.
  • Examples 2 to 16> As emulsion-based polyolefin resins (polyolefin-based emulsion particles) shown in Table 1, (maleic acid-modified) polypropylene (PP) resin, (maleic acid-modified) polyethylene (PE) resin, (maleic acid-modified) polyethylene -Polypropylene (PE-PP) block polymerization resin, (maleic acid modified) polyethylene-polypropylene (PE-PP) graft polymerization resin, (maleic acid modified) polypropylene (PP) resin and (maleic acid modified) A mixed resin of polyethylene (PE) resin was blended in parts by mass shown in Table 1, and a current collector electrode was produced in the same procedure as in Example 1.
  • the used non-aqueous electrolyte is described in the following PTC function measurement method, so please refer to it.
  • ⁇ PTC function measurement method The current collector obtained as described above was cut into a shape having a rectangular part of 4 cm ⁇ 5 cm and a part (terminal part) drawn out in a strip shape having a width of 5 mm from one end of one long side thereof.
  • a test piece was prepared by removing the resin layer from the terminal portion and exposing the current collector surface. Two test pieces are cut out from each positive electrode sample so that the measurement target regions overlap (overlapping area 20 cm 2 ) and the terminal portions are arranged on one end side and the other end side of the long side of the measurement target region. Opposite contact was made. This was sealed with a non-aqueous electrolyte between two laminated films. At this time, the terminal portion was pulled out from the laminate film.
  • a non-aqueous electrolyte having a composition containing LiPF 6 at a concentration of 1.0 M in a mixed solvent containing EC and DEC at a volume ratio of 1: 1 was used.
  • the terminal portion is connected to an alternating current, and the region to be measured for sealing resistance is lightly sandwiched between two plate-shaped jigs (pressure of about 25 N / cm 2 ) and placed in a thermostatic chamber, while an alternating current of 1 kHz is flowing. Changes in resistance value were observed by heating at a heating rate of 5 ° C./min.
  • indicates that the maximum resistance value is 20 times or more of the resistance value at room temperature
  • indicates that the maximum resistance value is 5 times or more of the resistance value at room temperature
  • x indicates 5 times or less. If it is 5 times or more, it becomes possible to shut down suitably.
  • Gel fraction measurement was carried out in order to evaluate the crosslinked state.
  • the gel fraction measurement the ratio of the resin that is crosslinked and does not dissolve even when immersed in xylene is measured. Specifically, the gel fraction is determined by quantifying the amount of resin based on the calorific value or the endothermic amount of a characteristic peak (for example, a crystallization peak on the cooling side if PP) before and after immersion.
  • Measuring device DSC-60A manufactured by Shimadzu Corporation Measurement conditions: temperature increase 10 ° C / min, temperature decrease 10 ° C / min Measurement range 40 ° C to 200 ° C Sample amount: about 5mg Xylene immersion: 80 ° C. ⁇ 1 hour post-drying: 80 ° C.
  • a surfactant may be added to the above paint (paste).
  • the emulsion-based polyolefin resin polyolefin-based emulsion particles
  • the emulsion-based polyolefin resin polyolefin-based emulsion particles
  • Electrode structure 121 Conductive material 123: Crosslinking group 125: Polyolefin emulsion particles 129: Polyolefin resin 131: Crosslinking agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品の電極構造体に用いた場合に、PTC機能を発現した後に温度がさらに上昇した場合であってもPTC機能を安定的に維持し続けることができる、安全性の高い集電体、電極構造体、蓄電部品および集電体用組成物を提供する。 導電性基材103と、その導電性基材103の少なくとも片面に設けられている樹脂層105と、を備える集電体100が提供される。そして、その樹脂層105は、ポリオレフィン系エマルション粒子125と、導電材121と、架橋剤131と、を含むペーストをその導電性基材103上に塗装して架橋させたものである。また、そのポリオレフィン系エマルション粒子125は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂129を含有する。

Description

集電体、電極構造体、蓄電部品および集電体用組成物
 本発明は、集電体、電極構造体、蓄電部品(非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタ等を含む)および集電体用組成物に関する。
 車載等に用いられるリチウムイオン電池には、通常使用時には高速充放電特性(ハイレート特性)が、故障等の不慮の事故の際には、自発的かつ安全に充放電を停止する所謂シャットダウン機能(PTC機能)の付与が求められている。前者には活物質の小粒径化や集電体上へ導電層を形成する技術などがあり、後者には電池の安全性を向上させる手段として、安全弁による内圧上昇の防止や、温度上昇に伴い抵抗値が増加するPTC(Positive Temperature Coefficient)素子を組み込み、発熱時に電流を遮断する機構も設けることが行われている。電池のPTC機能としてはセパレータに付与することが知られており、高温で溶融してセパレータの微細孔が閉塞し、Liイオンを遮断することによって異常発熱時に電極反応を止めるように設計されているものが提案されている。しかし、セパレータによるシャットダウンが不完全でセパレータの融点よりさらに温度が上昇する場合や、外部温度の上昇によりセパレータが融解して内部短絡が発生する場合もある。このような場合、セパレータのシャットダウン機能はもはや期待できず、電池は熱暴走に至る。
 そこで、通常使用時は充放電特性の付与に用い、故障等の不慮の事故時に安全性を高めるための技術が提案されている。例えば、特許文献1には導電層に融解開始温度が130℃以上155℃未満であり、α晶とβ晶との質量比(α/β)が0.35~0.56であるポリフッ化ビニリデンを用い、温度上昇時に抵抗を上昇させることが記載されている。
 特許文献2には導電層に融点が100℃~120℃になるポリオレフィン系の結晶性熱可塑性樹脂を含んだ導電層を用い、温度上昇時に抵抗を100Ωcm以上にすることが記載されている。
特開2012-104422号公報 特開2001-357854号公報
 しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を残し、確実な安全性の付与に問題を有していた。
 第一に、特許文献1においては導電層に使用される樹脂の結晶状態に依存しており、活物質層塗工時の加熱温度や、水分を除くための乾燥工程などにおける電極の熱履歴により、結晶状態が変化し、抵抗値が上昇しにくい場合があった。
 第二に、特許文献2では高速充放電の所謂ハイレート特性が十分ではなく通常時での高速充放電に不向きであった。また、用いる樹脂が熱可塑性樹脂であるため、活物質塗工時等に100℃以上になると、電解液の有無に関わらず電極層の膨張によって抵抗値が上昇し、さらに樹脂が溶融した場合には溶融前と異なる状態となるため、生産時には100℃以上に上げることができず、生産性を著しく低下させる場合があった。
 更に、特許文献1,2の文献の電極層は、PTC機能発現後、一旦は抵抗が上昇し、PTC機能を発揮させることができるが、さらに昇温が続くと今度は逆に抵抗が低下してしまう場合があり、PTC機能の維持が困難で、安全性に問題を有するものであった。
 本発明は上記事情に鑑みてなされたものであり、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品の電極構造体に用いた場合に、PTC機能を発現した後に温度がさらに上昇した場合であってもPTC機能を安定的に維持し続けることができる、安全性の高い集電体、電極構造体、蓄電部品および集電体用組成物を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意検討を行った結果、集電体の構成を、導電性基材の少なくとも片面に導電性を有する樹脂層を有する構造とし、集電体用組成物を構成する樹脂に特殊なポリオレフィン系エマルション粒子を用い、このポリオレフィン系エマルション粒子を架橋剤(硬化剤を含む。以下同じ)によって架橋(硬化を含む。以下同じ)させることにより得られる集電体は、従来の集電体と異なり、リチウムイオン電池等の蓄電部品とした場合、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができることを知見し、本発明をなすに至った。
 従って、本発明によれば、導電性基材と、その導電性基材の少なくとも片面に設けられている樹脂層と、を備える集電体が提供される。そして、その樹脂層は、ポリオレフィン系エマルション粒子と、導電材と、架橋剤と、を含むペーストで形成されたものである。また、そのポリオレフィン系エマルション粒子は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂を含有する。
 この集電体によれば、特殊なポリオレフィン系エマルション粒子を用いているため、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品の電極構造体に用いた場合に、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
 また、本発明によれば、上記の集電体と、その集電体の樹脂層上に形成されている活物質層または電極材層と、を備える、電極構造体が提供される。
 この電極構造体によれば、上記の集電体を用いているため、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品に用いた場合に、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
 また、本発明によれば、上記の電極構造体を用いた、蓄電部品が提供される。
 この蓄電部品によれば、上記の電極構造体を用いているため、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
 また、本発明によれば、導電性基材に塗布した後に架橋して集電体を得るための集電体用組成物が提供される。この集電体用組成物は、ポリオレフィン系エマルション粒子と、導電材と、架橋剤と、を含む。また、そのポリオレフィン系エマルション粒子は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂を含有する。
 この集電体用組成物によれば、特殊なポリオレフィン系エマルション粒子を用いているため、導電性基材に塗布した後に架橋して集電体を得た上で、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの蓄電部品の電極構造体に用いた場合に、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
 本発明によれば、PTC機能を発現した後に温度が上昇した場合であってもエマルションの状態を保たせ、PTC機能を安定的に維持し続けることができる。
本発明の一実施形態の集電体の構造を示す断面図である。 本発明の一実施形態の電極構造体の構造を示す断面図である。 本発明の一実施形態で用いるポリオレフィン系エマルション粒子の構造を示す模式図である。 本発明の一実施形態の電極構造体の常温時における樹脂層の内部の様子を示す模式図である。 本発明の一実施形態の電極構造体の高温時における樹脂層の内部の様子を示す模式図である。 図5と異なってポリオレフィン系エマルション粒子が架橋していない場合の電極構造体の高温時における樹脂層の内部の様子を示す模式図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 <全体の構成>
 図1は、本実施形態の集電体の構造を示す断面図である。図1に示すように、本実施形態の集電体100は、導電性基材103の少なくとも片面に導電性を有する樹脂層105を有する集電体100である。
 図2は、本実施形態の集電体を用いて形成された電極構造体の構造を示す断面図である。図2に示すように、本実施形態の集電体100の樹脂層105上には、活物質層又は電極材層115を形成することによって、リチウムイオン電池等の非水電解質用電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用として好適な電極構造体117を形成することができる。
 <PTC機能を保持するメカニズム>
 図3は、本発明の一実施形態で用いるポリオレフィン系エマルション粒子の構造を示す模式図である。本実施形態で用いられるポリオレフィン系エマルション粒子125は、水系エマルション粒子であり、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂129を含有する。このポリオレフィン系樹脂129の疎水性部位は主にポリオレフィン系エマルション粒子125の中心部に分布している。一方、このポリオレフィン系樹脂129の両末端に位置している親水性の架橋基123は、主にポリオレフィン系エマルション粒子125の表面に露出している。これらの親水性の架橋基123は、カルボン酸または無水カルボン酸で修飾した際にポリオレフィン系樹脂129の両末端に導入されたものである。カルボン酸または無水カルボン酸に由来する架橋基123(例えばカルボキシル基など)は親水性が高いため、ポリオレフィン系エマルション粒子125の外側に架橋基123が出る配向が安定となる。そして、このポリオレフィン系エマルション粒子125の表面には、炭素粉末などの導電材121が付着している。
 図4は、本発明の一実施形態の電極構造体の常温時における樹脂層の内部の様子を示す模式図である。本実施形態の集電体100の樹脂層105はポリオレフィン系エマルション粒子125と架橋剤131と導電材121を含む。この導電材121は、通常使用時にはポリオレフィン系エマルション粒子125の表面または隙間に分布して互いにつながり合って樹脂層105を貫通する導通路を形成して電流を導通させている。すなわち、図3のようなポリオレフィン系エマルション粒子125が互いに重なりあうように分布して、導電材121がネットワークを形成し、導電性が発現する。また、この架橋剤131は、ポリオレフィン系エマルション粒子125の表面に露出しているカルボン酸または無水カルボン酸由来の架橋基123と架橋している。なお、ポリオレフィン系エマルション粒子125の表面に出ているカルボキシル基などの架橋基123を架橋剤131によって架橋させるが、ポリオレフィン系エマルション粒子125の内部へ架橋剤131は入り込めないため、ポリオレフィン系樹脂129が硬化することはない。
 図5は、本発明の一実施形態の電極構造体の高温時における樹脂層の内部の様子を示す模式図である。本実施形態では、ポリオレフィン系エマルション粒子125としてマレイン酸などのカルボン酸(または無水カルボン酸)によって変性されたポリオレフィン系樹脂129を用い、このポリオレフィン系エマルション粒子125を架橋剤131によって架橋することにより、PTC発現後のさらなる昇温時もポリオレフィン系エマルション粒子125がエマルションの状態を保ちPTC機能が保持されるようにした。つまり、本実施形態では、樹脂層105の高温時の弾性率を高め、かつ膨張による体積増加も可能にしている。
 そのため、本実施形態の樹脂層105は、不慮の事故が起こった際にPTC機能を発現する。PTC機能は樹脂層105の体積がポリオレフィン系エマルション粒子125の膨張により増加し、樹脂層105中の導電材121の間隔を広げる(樹脂層105中における導電性微粒子の密度を減少させる)ことにより抵抗を上げることによって付与することができる。すなわち、熱膨張によってポリオレフィン系エマルション粒子125内のポリオレフィン系樹脂129部分が膨張を開始し、表面の導電材121のネットワークを絶つことによって抵抗を上げる。そして、熱暴走等により樹脂層105の温度が更に上がる場合でも、ポリオレフィン系エマルション粒子125と架橋剤131と導電材121との相乗効果で、抵抗が損なわれず、PTC機能が安定的に保持されるものである。すなわち、ポリオレフィン系エマルション粒子125の外側部分に露出した架橋基123を架橋させていることによって、高温時の弾性を高めているため、ポリオレフィン系エマルション粒子125同士の融解を防ぎ、抵抗低下を防ぐことができる。
 これに対して、図6は、図5と異なってポリオレフィン系エマルション粒子が架橋していない場合の電極構造体の高温時における樹脂層の内部の様子を示す模式図である。PTC機能を有する樹脂層105として、熱膨張率の大きいポリエチレンやポリプロピレンなどのポリオレフィン系樹脂129を架橋せずに用いた場合について説明する。この樹脂層105では、PTC機能発現時に抵抗が上昇するが、さらに昇温すると逆に抵抗が低下する場合がある。その原因は、ポリオレフィン系樹脂129の融解によってPTC機能が発現するが、さらに融解が進むことによってポリオレフィン系樹脂129や導電材121が再凝集し、局所的に導電材121がネットワークを再形成することによって抵抗が低下するためである。すなわち、ポリオレフィン系エマルション粒子125同士が架橋していない場合、高温時にポリオレフィン系エマルション粒子125同士が融解し、ポリオレフィン系樹脂129や導電材121の凝集により再び抵抗が下がることや、わずかな圧縮によって樹脂層105が移動し、活物質層115が直接導電性基板103に接触することが起こる。このような問題は、特に樹脂層105が薄膜の場合に顕著である。
 <各要素の説明>
 (1.導電性基材)
 本実施形態の集電体100は導電性基材103の少なくとも片面に集電体用組成物を塗布し、架橋して硬化させたものである。導電性基材103としては、通常、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用の各種金属箔として知られる導電性基材103が使用可能である。具体的には、正極用、負極用の種々の金属箔を使用でき、例えば、アルミニウム、アルミニウム合金、銅、ステンレス、ニッケルなどが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム、アルミニウム合金、銅が好ましい。導電性基材103との厚さは特に制限されるものではないが、5μm以上、50μm以下であることが好ましい。厚さが5μmより薄いと箔の強度が不足して樹脂層の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層あるいは電極層を薄くせざるを得ず、特に非水電解質電池や、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電部品とした場合、活物質層の厚さを薄くせざるを得ず必要な容量が得られなくなる場合がある。なお、この導電性基材の厚さは、5、10、15、20、25、30、35、40、45、50μmのうち任意の2つの数値の範囲内であってもよい。
 (2.ポリオレフィン系エマルション粒子)
 図3は、本実施形態で用いるポリオレフィン系エマルション粒子の構造を示す模式図である。本実施形態では、(分子鎖の)両末端を一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)で修飾されているポリオレフィン系樹脂129を主成分とするポリオレフィン系エマルション粒子125を用いる。すなわち、本実施形態発明の樹脂層105に用いる樹脂成分は、上記のポリオレフィン系エマルション粒子125を含み、ポリオレフィン系エマルション粒子125のみからなるものであってもよく、その他の樹脂成分を含有するものであっても良い。
 本実施形態で用いるポリオレフィン系エマルション粒子125は、両末端を一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)で修飾されているポリプロピレン樹脂、ポリエチレン樹脂、ポリプロピレン-ポリエチレン共重合樹脂、またはこれらの混合樹脂を主成分とする。特に好ましいのは、マレイン酸変性ポリプロピレン樹脂、マレイン酸変性ポリエチレン樹脂、マレイン酸変性ポリエチレンーポリプロピレンブロック重合樹脂、マレイン酸変性ポリエチレンーポリプロピレングラフト重合樹脂、マレイン酸変性ポリプロピレン樹脂およびマレイン酸変性ポリエチレン樹脂の混合樹脂である。
 両末端に一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)を修飾されない場合には架橋基123が形成されないため、架橋剤131によって架橋されず、PTC発現後にさらに昇温すると抵抗が低下して好ましくない場合がある。また、末端ではなく、分子鎖内に一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)が修飾されたポリオレフィン系樹脂129を用いた場合には、たとえ水系のエマルション粒子にしたとしても、ポリオレフィン系樹脂129自体が硬化してしまい、PTC機能が発現せず、好ましくない場合がある。また、ポリオレフィン系エマルション粒子125でない(有機溶剤への)溶解型のポリオレフィン系樹脂を用いる場合には、たとえ両末端を一個以上のカルボキシル基を有するカルボン酸(または無水カルボン酸)で修飾されているポリオレフィン系樹脂を用いたとしても、PTC発現時に導電材121の繋がりが切れにくく、抵抗が増加しにくいため、好ましくない場合がある。
 また、本実施形態で用いるポリオレフィン系エマルション粒子125は、コア粒子がポリオレフィン系樹脂129を主成分としており、シェル層が導電材121を含有しているコアシェル構造を有するので、導電材121のポリオレフィン系樹脂129に対する割合を従来よりかなり低くしても常温で十分な導電性を得ることが可能である。すなわち、このようなコアシェル構造を採用することにより導電材121に対して相対的にポリオレフィン系樹脂129の割合が高くなり、PTC機能発現時に高い絶縁性を発現することが可能である点で有効である。
 本実施形態で用いるポリオレフィン系樹脂129を変性させるためのカルボン酸(または無水カルボン酸)としては、特に限定されないが、例えば、マレイン酸、ピロメリット酸、クエン酸、酒石酸、シュウ酸、メリト酸、テレフタル酸、アジピン酸、フマル酸、イタコン酸、トリメリット酸、イソフタル酸等を用いることが好ましい。特に、金属への付着性の面からはマレイン酸を用いて変性させることが好ましい。なお、これらの酸はいずれも酸無水物であってもよい。
 (3.導電材)
 本実施形態の樹脂層105に用いるポリオレフィン系エマルション粒子125のみでは絶縁性が高いので、電子伝導性を付与するために導電材121を配合しなければならない。本実施形態に用いる導電材121としては公知の炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ、カーボンファイバ、各黒鉛粒子などが使用可能であり、それらを混合して使用することも可能である。
 本実施形態の導電材121の配合量は、特に限定されないが、所望の安全性の高いPTC機能を発揮させるために、通常のカーボンコートや活物質層用のバインダ樹脂に比べて少ない量でPTC機能が発揮でき安全性を維持できることが好ましい。具体的には、ポリオレフィン系エマルション粒子125の樹脂成分100質量部に対して、導電材121の配合量は5~50質量部が好ましく、7~45質量部がさらに好ましく、10~40質量部がさらに好ましい。5質量部未満では樹脂層105の体積固有抵抗が高くなり、集電体100として必要な導電性が得られない場合がある。50質量部を超えると体積膨張時も導電材121の繋がりが切れず、十分な抵抗値が得られない場合があるためである。導電材121を樹脂液に分散するには、プラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。なお、この導電材121の配合量は、5、6、7、8,9,10、15、20、25、30、35、40、45、50質量部のうち任意の2つの数値の範囲内であってもよい。
 (4.架橋剤)
 本実施形態で用いる架橋剤131は、特に限定されないが、二個以上の架橋性官能基を有するエポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤、ポリオキシアルキレン系架橋剤、カルボジイミド系架橋剤からなる群から選ばれる1種以上の架橋剤であることが好ましい。
 (4-1.エポキシ系架橋剤)
 本実施形態に使用されるエポキシ系架橋剤は、分子内に二個以上のエポキシ基を有する架橋剤であり、グリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が例示される。
 (4-2.メラミン系架橋剤)
 本実施形態に使用されるメラミン系架橋剤は、分子内に二個以上のメラミン基を有する架橋剤が使用可能である。メラミンとホルムアルデヒドを縮合反応させてメラミンをメチロール化したり(場合によりさらに付加反応により多核化したり)、必要により次いでメチロール基をアルコール(例えばメチルアルコールやブチルアルコール)でアルキル化したりすることにより得られ、完全にアルキル化させた完全アルキル型メラミンや、メチロール型、イミノ型のメラミン誘導体等が例示される。
 (4-3.イソシアネート系架橋剤)
 本実施形態に使用されるイソシアネート系架橋剤は、分子内に二個以上のイソシアネート基を有する架橋剤が使用可能である。芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環族ポリイソシアネートやこれらの混合物を使用することができ、具体的には、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-と2,6-トリレンジイソシアネートの混合物、粗トリレンジイソシアネート、粗メチレンジフェニルジイソシアネート、4,4',4"-トリフェニルメチレントリイソシアネート、キシレンジイソシアネート、m-フェニレンジイソシアネート、ナフチレン-1,5-ジイソシアネート、4,4'-ビフェニレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、3,3'-ジメトキシ-ビフェニルジイソシアネート、3,3'-ジメチルジフェニルメタン-4,4'-ジイソシアネート、テトラメチルキシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4'-ジシクロヘキシルメタンジイソシアネート等或いはこれらの混合物が例示される。また、これらを原料として製造されるカルボジイミド架橋剤も使用可能である。
 (4-4.ポリオキシアルキレン系架橋剤)
 本実施形態に使用されるポリオキシアルキレン系架橋剤は、分子内に二個以上のヒドロキシル基を有するポリオキシアルキレン系樹脂が使用可能である。ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリエチレンオキサイド、ポリエチレングリコールグリセリルエーテル、ポリプロピレングリセリルエーテル、ポリプロピレンジグリセリルエーテル、ポリプロピレンソルビトールエーテル、ポリエチレングリコール-ポリプロピレングリコールブロックエーテル、ポリオキシテトラメチレン-ポリオキシエチレングリコールランダム共重合体、ポリテトラメチレングリコール、ポリオキシテトラメチレン-ポリオキシプロピレングリコールランダム共重合体等が例示される。また、これらのソルビタン酸やオレイン酸、ラウリル酸、パルミチン酸、ステアリン酸等のカルボキシル基変性やアルキルエーテル変性、脂肪酸エステル、グリセリンエステル型による変性体や共重合体などが例示される。
 (4-5.カルボジイミド系架橋剤)
 本実施形態に使用されるカルボジイミド系架橋剤は、-N=C=N-で表される官能基を有する物質であり、カルボキシル基と反応して、樹脂を架橋することができる。具体的には1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジイソプロピルカルボジイミドなどが例示される。
 (4-6.配合量)
 配合量は特に限定されないが、ポリオレフィン系エマルション粒子125の樹脂成分100質量部に対して、架橋剤131が0.1質量部~50質量部であることが好ましい。0.1質量部以下では十分に架橋せず、PTC発現後に抵抗低下が起き、好ましくない。また、50質量部超ではエマルション型オレフィン樹脂の比率が下がることにより、昇温時に抵抗が増加しにくくなり、好ましくない。なお、この架橋剤131の配合量は、0.1、0.2、0.3、0.4、0.5、1、5、10、15、20、25、30、35、40、45、50質量部のうち任意の2つの数値の範囲内であってもよい。
 (5.樹脂層)
 図1は、本実施形態の集電体の構造を示す断面図である。本実施形態の集電体100は、上記集電体用組成物を使用した樹脂層105を有する。この樹脂層105は正極用として使用する場合、導電性基材103上に設けられたPTC機能を有する樹脂層105とすることが好ましい。この際、この樹脂層105は特に活物質層115とは別に構成して、PTC(シャットダウン機能)と電池のハイレート特性を高く保持しつつPTC機能を効率よく発揮することができるようにすることが好ましい。即ち、導電性基材103と活物質層115との密着性を向上させることができ、シャットダウン機能と優れた高速充放電特性を兼ね備え、安全性に優れた非水電解質電池、蓄電部品として好適に使用することができる。
 本実施形態で用いる導電性を有する樹脂層105の形成方法は特に限定されないが、ポリオレフィン系エマルション粒子125と導電材121と架橋材131とを水または水溶液中に混合させて集電体用組成物(ペースト)を作製した上で、この集電体用組成物(ペースト)を導電性基材103上に塗工することが好ましい。塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能である。
 本実施形態の集電体100において、樹脂層105を形成するための集電体用組成物(ペースト)の塗布量は、0.05~5g/mであることが好ましい。この塗布量が0.05g/m以下では塗膜ムラが生じ、PTC機能が発現されない場合がある。また、この塗布量が5g/m以上では電池の活物質の容量が減るため、電池特性が悪化する場合がある。なお、この塗布量は、0.05、0.1、0.25、0.5、1、2.5、5g/mのうち任意の2つの数値の範囲内であってもよい。
 集電体用組成物(ペースト)を導電性基材103上に塗工した後は、焼付けを行って集電体用組成物(ペースト)を架橋(硬化)させて樹脂層105を形成する。焼付温度としては、特に限定するわけではないが、例えば、80~200℃であることが好ましい。この焼付温度が80℃未満だと硬化が不十分で導電性基材との密着性が不足するという問題がある。一方、この焼付温度が200℃を超えると使用するポリオレフィン系樹脂によっては樹脂が溶融し、エマルション粒子が形成されないという問題がある。なお、この焼付温度は、80、90、100、110、120、130、140、150、160、170、180、190、200℃のうち任意の2つの数値の範囲内であってもよい。
 また、焼付時間としては、特に限定するわけではないが、例えば、10~200秒であることが好ましい。この焼付時間が10秒未満だと硬化が不十分で導電性基材との密着性が不足するという問題がある。一方、この焼付時間が200秒を超えると使用するポリオレフィン系樹脂によっては樹脂が溶融し、エマルション粒子が形成されないという問題がある。なお、この焼付時間秒は、10、20、30、40、50、60、70、80、90、100、120、140、160、180、200秒のうち任意の2つの数値の範囲内であってもよい。
 また、この樹脂層105の架橋度を調節するためには、集電体用組成物(ペースト)に配合する架橋剤の量を変更するか、架橋剤の種類を変更することが好ましい。これらの架橋剤の量または種類を変更し、ゲル分率を測定して、ゲル分率(架橋している値)が50~95%になるようにすることが好ましい。ゲル分率が50%未満の場合には、架橋度が少ないためにPTC発現温度以上において樹脂が融解し、融解による再凝集によって導電材が凝集し、再び抵抗が下がる(導電性が出る)場合がある。一方、ゲル分率が95%超の場合には、架橋度が高すぎるために膨張しにくくなり、PTC機能が発現しない場合がある。そのために、樹脂層105の架橋度を適切に調節することが重要である。なお、このゲル分率は、50、55、60、65、70、75、80、85、90、95%のうち任意の2つの数値の範囲内であってもよい。
 (6.電極構造体)
 図2は、本実施形態の集電体を用いて形成された電極構造体の構造を示す断面図である。本実施形態の集電体100の樹脂層105上に活物質層115又は電極材層115を形成することによって、本実施形態の電極構造体117を得ることができる。電極材層115を形成した蓄電部品用の電極構造体117の場合、この電極構造117とセパレータ、非水電解質溶液を用いて非水電解質電池用、例えばリチウムイオン二次電池用の電極構造体117(電池用部品を含む)を製造することができる。本実施形態の非水電解質電池用電極構造体117及び非水電解質電池において集電体100以外の部材は、公知の非水電池用部材を用いることが可能である。
 ここで、本実施形態において電極構造体117として形成される活物質層115は、非水電解質電池用として提案されるものでよい。例えば、正極としてはアルミニウムを用いた本実施形態の集電体100に、活物質としてLiCoO、LiMnO、LiNiO等を用い、導電材としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFや水分散型PTFEに分散したペーストを塗工、乾燥させることにより、本実施形態の正極構造体を得ることができる。
 負極の電極構造体117とする場合に、基材103として銅を用いた本実施形態の集電体100に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMC(カルボキシメチルセルロース)に分散後、バインダであるSBR(スチレンブタジエンゴム)と混合したペーストを活物質形成用材料として塗工、乾燥させることにより、本実施形態の負極集電体を得ることができる。
 (7.蓄電部品)
 蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)
 一般に電気二重層キャパシタ等は二次電池に比較すると安全であるが、ハイレート特性向上の目的から、本実施形態の集電体100を適用することが可能である。本実施形態の電気二重層キャパシタ、リチウムイオンキャパシタ等は、本実施形態の集電体100を大電流密度での高速の充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本実施形態の蓄電部品用の電極構造体117は本実施形態の集電体100に電極材層115を形成することによって得られ、この電極構造体117とセパレータ、電解液等によって、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電部品を製造することができる。本実施形態の電極構造体117および蓄電部品において集電体100以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
 電極材層115は正極、負極、電極材、導電材、バインダよりなるものとすることができる。本実施形態においては、本実施形態の集電体100の樹脂層105上に上記の電極材層115を形成することによって電極構造体117とした後、蓄電部品を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。バインダとしては例えばPVDF(ポリフッ化ビニリデン)、SBR、水分散型PTFE等を用いることができる。また、本実施形態の蓄電部品は、本実施形態の電極構造体7にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。
 上記非水電解質としては、電気二重層キャパシタやリチウムイオンキャパシタとして使用される電圧範囲で分解などの副反応を示さないものであれば特に限定しない。例えば陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩、テトラブチルアンモニウム塩等の4級アンモニウム塩、陰イオンとしては六フッ化リン酸塩、四フッ化ほう酸塩、過塩素酸塩等を用いることができる。
 上記非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン酸類、ラクトン類等の非プロトン性溶媒を用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン等の非水溶媒から選択される一種または二種以上を用いることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 表1に示すように、エマルション系ポリオレフィン樹脂(ポリオレフィン系エマルション粒子)として、水系エマルション型マレイン酸変性ポリプロピレン樹脂を100質量部、架橋剤としてグリセロールポリグリシジルエーテルを0.1質量部を混合した樹脂液に樹脂成分(樹脂の固形分、以下に同じ)に対して25質量部のアセチレンブラックを配合し、ボールミルにて8時間分散し、塗料とした。この塗料を厚さ15μmのアルミニウム箔(JIS A1085)の片面にグラビアコーターにて塗膜厚さが2μm(塗膜重量としては2g/m)となるように塗布し、基材到達温度(PMT)が110℃となるように24秒焼付を行い、集電体電極を作製した。以下基材、塗工、乾燥条件は同様のため省略する。
 <実施例2~16>
 表1に示すエマルション系ポリオレフィン樹脂(ポリオレフィン系エマルション粒子)として、(マレイン酸変性された)ポリプロピレン(PP)樹脂、(マレイン酸変性された)ポリエチレン(PE)樹脂、(マレイン酸変性された)ポリエチレン-ポリプロピレン(PE-PP)ブロック重合樹脂、(マレイン酸変性された)ポリエチレン-ポリプロピレン(PE-PP)グラフト重合樹脂、(マレイン酸変性された)ポリプロピレン(PP)樹脂および(マレイン酸変性された)ポリエチレン(PE)樹脂の混合樹脂を表1の質量部にて配合し、実施例1と同様の手順にて集電体電極を作製した。
 (比較例1~5)
 表1に示す樹脂成分として(マレイン酸変性された)ポリプロピレン(PP)樹脂、PVDF(ポリフッ化ビニリデン)、(マレイン酸変性されていない)ポリプロピレン(PP)樹脂、(マレイン酸変性された)ポリエチレン(PE)樹脂を、エポキシ系架橋剤としてグリセロールポリグリシジルエーテル、メラミン系架橋剤としてヘキサメトキシメチロールメラミン、イソシアネート系架橋剤としてトリレンジイソシアネート、ポリオキシアルキレン系架橋剤としてポリエチレングリコール、カルボジイミド系架橋剤として1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、導電材としてアセチレンブラックを表1および表2の種類および質量部にて配合し、実施例1と同様の手順にて集電体電極を作製した。
 なお、いずれの実施例および比較例においても、使用した非水電解液については次のPTC機能測定方法に記載するので参照されたい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <PTC機能測定方法>
 上記により得られた集電体を、4cm×5cmの長方形部分と、その一方の長辺の一端から幅5mmの帯状に引き出された部分(端子部分)とを有する形状に切り出した。上記端子部分から樹脂層を除去して集電体表面を露出させたものを試験片とした。各正極サンプルから上記試験片2枚を切り出し、それらを上記測定対象領域が重なり(重なり面積20cm)かつ端子部分が該測定対象領域の長辺の一端側および他端側に配置されるように対向接触させた。これを非水電解液とともに、2枚のラミネートフィルムを挟んで密封した。このとき、上記端子部分はラミネートフィルムから外部に引き出されるようにした。非水電解液としてECとDECとを1:1の体積比で含む混合溶媒中に1.0Mの濃度でLiPFを含む組成のものを使用した。上記端子部分を交流電流に接続し、上記密封耐の測定対象領域を2枚の板状治具で軽く(約25N/cmの圧力)挟んで恒温槽に入れ、1kHzの交流電流を流しつつ5℃/分の昇温速度で加熱して抵抗値の変化を観測した。表2の◎は最大抵抗値が室温での抵抗値の20倍以上、○は最大抵抗値が室温での抵抗値の5倍以上、×は5倍以下を示す。5倍以上であれば好適にシャットダウンすることが可能となる。
 (1)ゲル分率測定方法
 架橋状態を評価するためゲル分率測定を実施した。ゲル分率測定として、樹脂の内、架橋されていて、キシレン浸漬しても溶解しない樹脂の割合を測定する。具体的には浸漬前後のDSC測定における特徴的なピーク(例えば、PPであれば降温側の結晶化ピーク)の発熱量あるいは吸熱量で樹脂量を定量することによりゲル分率を求める。
測定装置:島津製作所製 DSC-60A
測定条件:昇温10℃/分、降温10℃/分  測定範囲40℃~200℃
サンプル量:約5mg
キシレン浸漬:80℃×1時間
浸漬後乾燥:80℃真空乾燥15時間
PPを例とすれば、以下のように求める。
ゲル分率(%)=(浸漬後の樹脂量)/(浸漬前の樹脂量)×100
       =(浸漬後の降温側の結晶化ピークの発熱量)/(浸漬前の降温側の結晶化ピークの発熱量)×100
 (2)電池の作製
 (正極)前記方法にて作製した樹脂層を有する集電体に活物質ペースト(LiMn/AB/PVDF=89.5/5/5.5、溶媒NMP(N-メチル-2-ピロリドン))を塗布し、乾燥した。さらにプレスをかけて、厚さ60μmの活物質層を形成した。
 (負極)厚さ10μmの銅箔に活物質ペースト(MCMB(メソカーボンマイクロビーズ)/AB/PVDF=93/2/5、溶剤NMP)を塗布し、乾燥した。さらにプレスをかけて、厚さ40μmの活物質層を形成した。
 (3)円筒型リチウムイオン電池(φ18mm×軸方向長さ65mm)の作製
 これらの正極、負極、電解液(1M LiPF、EC(エチレンカーボネート)/MEC(メチルエチルカーボネート)=3/7)、セパレータ(厚さ25μm、微孔ポリエチレンフィルム)を捲回して、各極にリードを溶接して各極端子に接続し、ケースに挿入した。
 (4)過充電試験
 上記の電池を用い、4.2Vまで充電電圧1.5mA/cmで定電流定電圧充電後、満充電状態の電池にさらに250%充電になるまで5Aで充電し、発煙などがないかどうか電池の挙動を調査した。表2の○は変化なし、×は発煙、発火ありを示す。
 <結果の考察>
 表1および表2に示すように以下の結果を得た。
実施例1~16:PTC発現し、ゲル分率が好ましい範囲に入り、抵抗減少を改善できたため、過充電試験でも変化なし
比較例1:架橋剤がないため、PTC発現後、抵抗値低下により発煙
比較例2:PVDFを用いたため、PTC発現せず、発煙
比較例3:末端基のないオレフィンを用いたため、架橋剤を好ましい量配合しても、架橋せず、PTC機能発現後に抵抗低下し、発煙
比較例4、5:溶剤系オレフィンを用いたため、PTC機能が満足に発現せず、発煙
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 例えば、上記の塗料(ペースト)には界面活性剤を配合してもよい。界面活性剤を配合することによって、エマルション系ポリオレフィン樹脂(ポリオレフィン系エマルション粒子)を安定的に塗料(ペースト)中で分散させることが可能になる。
100:集電体
103:導電性基材
105:樹脂層(集電体用樹脂層)
115:活物質層又は電極材層
117:電極構造体
121:導電材
123:架橋基
125:ポリオレフィン系エマルション粒子
129:ポリオレフィン系樹脂
131:架橋剤

Claims (12)

  1.  導電性基材と、
     前記導電性基材の少なくとも片面に設けられている樹脂層と、
     を備える集電体であって、
     前記樹脂層が、
      ポリオレフィン系エマルション粒子と、
      導電材と、
      架橋剤と、
     を含むペーストで形成されたものであり、
     前記ポリオレフィン系エマルション粒子は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂を含有する、
     集電体。
  2.  前記ポリオレフィン系エマルション粒子が、両末端をカルボン酸または無水カルボン酸で修飾されているポリプロピレン樹脂、ポリエチレン樹脂、ポリプロピレン-ポリエチレン共重合樹脂からなる群から選ばれる1種以上の樹脂を含有する、
     請求項1に記載の集電体。
  3.  前記架橋剤が、エポキシ系架橋剤、メラミン系架橋剤、イソシアネート系架橋剤、ポリオキシアルキレン系架橋剤、カルボジイミド系架橋剤からなる群から選ばれる1種以上の架橋剤を含む、
     請求項1又は2に記載の集電体。
  4.  前記導電材が、炭素粉末または金属粉末を含む、
     請求項1~3のいずれかに記載の集電体。
  5.  前記導電性基材が、アルミニウム、アルミニウム合金、又は銅である、
     請求項1~4のいずれかに記載の集電体。
  6.  前記ペーストが、樹脂成分100質量部に対して5~50質量部の導電材を含有する、
     請求項1~5のいずれかに記載の集電体。
  7.  前記樹脂層のゲル分率が、50~95%である、
     請求項1~6のいずれかに記載の集電体。
  8.  前記ペーストの塗布量が、0.05~5g/mである、
     請求項1~7のいずれかに記載の集電体。
  9.  請求項1~8のいずれかに記載の集電体と、
     前記集電体の樹脂層上に形成されている活物質層または電極材層と、
     を備える、
     電極構造体。
  10.  請求項9記載の電極構造体を用いた、蓄電部品。
  11.  前記蓄電部品が、非水電解質電池、電気二重層キャパシタ、リチウムイオンキャパシタからなる群から選択される1種以上の蓄電部品である、
     請求項10に記載の蓄電部品。
  12.  導電性基材に塗布した後に架橋して集電体を得るための集電体用組成物であって、
     ポリオレフィン系エマルション粒子と、
      導電材と、
      架橋剤と、
     を含み、
     前記ポリオレフィン系エマルション粒子は、両末端をカルボン酸または無水カルボン酸で修飾されているポリオレフィン系樹脂を含有する、
     集電体用組成物。
PCT/JP2013/080931 2012-11-19 2013-11-15 集電体、電極構造体、蓄電部品および集電体用組成物 WO2014077366A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13855595.8A EP2922124B1 (en) 2012-11-19 2013-11-15 Collector, electrode structure, electricity storage component, and composition for collectors
JP2014547053A JPWO2014077366A1 (ja) 2012-11-19 2013-11-15 集電体、電極構造体、蓄電部品および集電体用組成物
CN201380060453.7A CN104823313B (zh) 2012-11-19 2013-11-15 集电体,电极结构体,蓄电部件,以及用于集电体的组合物
US14/443,623 US20160322641A1 (en) 2012-11-19 2013-11-15 Current collector, electrode structure, electrical storage device, and composition for current collectors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012253755 2012-11-19
JP2012-253755 2012-11-19

Publications (1)

Publication Number Publication Date
WO2014077366A1 true WO2014077366A1 (ja) 2014-05-22

Family

ID=50731275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080931 WO2014077366A1 (ja) 2012-11-19 2013-11-15 集電体、電極構造体、蓄電部品および集電体用組成物

Country Status (7)

Country Link
US (1) US20160322641A1 (ja)
EP (1) EP2922124B1 (ja)
JP (1) JPWO2014077366A1 (ja)
KR (1) KR20150087372A (ja)
CN (1) CN104823313B (ja)
TW (1) TW201444169A (ja)
WO (1) WO2014077366A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409681A (zh) * 2014-11-19 2015-03-11 上海航天电源技术有限责任公司 一种含ptc涂层的锂离子电池极片的制备方法
JP5939346B1 (ja) * 2015-03-30 2016-06-22 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
KR20160133242A (ko) * 2015-05-12 2016-11-22 주식회사 엘지화학 이중층 구조의 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2016194747A1 (ja) * 2015-06-04 2016-12-08 日産化学工業株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
WO2017145874A1 (ja) * 2016-02-24 2017-08-31 日産自動車株式会社 リチウムイオン二次電池用電極及びその製造方法
JP2017224463A (ja) * 2016-06-15 2017-12-21 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2017224562A (ja) * 2016-06-17 2017-12-21 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2017224407A (ja) * 2016-06-13 2017-12-21 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
JP2017224469A (ja) * 2016-06-15 2017-12-21 東洋インキScホールディングス株式会社 非水電解質二次電池用電極の下地層形成用導電性組成物、及びその用途
JP2017228344A (ja) * 2016-06-20 2017-12-28 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2018137221A (ja) * 2017-02-22 2018-08-30 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
WO2018162325A1 (en) 2017-03-06 2018-09-13 Lithium Energy and Power GmbH & Co. KG Energy storage device and method for producing the same
JP2018181524A (ja) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 積層電池
WO2019003721A1 (ja) * 2017-06-30 2019-01-03 株式会社村田製作所 リチウムイオン二次電池
CN110137426A (zh) * 2019-05-25 2019-08-16 珠海冠宇电池有限公司 一种含有ptc涂层极片的制备方法及锂离子电池
CN110291669A (zh) * 2017-02-10 2019-09-27 三井化学株式会社 集电体、电极及非水电解质二次电池

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627722B1 (en) 2013-09-16 2017-04-18 American Lithium Energy Corporation Positive temperature coefficient film, positive temperature coefficient electrode, positive temperature coefficient separator, and battery comprising the same
JP6851307B2 (ja) 2014-11-25 2021-03-31 アメリカン・リシアム・エナジー・コーポレイションAmerican Lithium Energy Corporation 内部電流リミッタと内部電流インターラプタを備えた充電式電池
US10396341B2 (en) 2014-11-25 2019-08-27 American Lithium Energy Corporation Rechargeable battery with internal current limiter and interrupter
US10020545B2 (en) * 2014-11-25 2018-07-10 American Lithium Energy Corporation Rechargeable battery with resistive layer for enhanced safety
KR102207426B1 (ko) * 2016-12-07 2021-01-26 주식회사 엘지화학 고분자가 가교된 ptc층을 포함하는 이차전지용 전극 및 이의 제조방법
CN106784603A (zh) * 2016-12-28 2017-05-31 珠海银隆新能源有限公司 一种集流体涂层的制备方法
CN108666499B (zh) * 2017-03-28 2022-04-15 荒川化学工业株式会社 用于锂离子电池的热交联型浆料、电极、隔膜、隔膜/电极积层体以及锂离子电池
US10818906B2 (en) 2017-05-01 2020-10-27 American Lithium Energy Corporation Negative thermal expansion current interrupter
WO2019023683A1 (en) 2017-07-28 2019-01-31 American Lithium Energy Corporation ANTI-CORROSION COATING FOR BATTERY CURRENT COLLECTOR
CN111164799A (zh) * 2017-09-29 2020-05-15 株式会社杰士汤浅国际 电极和蓄电元件
CN109755463B (zh) 2017-11-08 2020-12-29 宁德时代新能源科技股份有限公司 一种电极极片、电化学装置及安全涂层
CN109755466B (zh) 2017-11-08 2020-11-17 宁德时代新能源科技股份有限公司 一种正极极片、电化学装置及安全涂层
CN109755468B (zh) 2017-11-08 2021-01-12 宁德时代新能源科技股份有限公司 一种电极极片、电化学装置及安全涂层
CN109755462B (zh) 2017-11-08 2021-01-12 宁德时代新能源科技股份有限公司 一种正极极片、电化学装置及安全涂层
JP7004969B2 (ja) * 2017-11-10 2022-01-21 国立研究開発法人産業技術総合研究所 リチウムイオン二次電池用電極
JP7017127B2 (ja) * 2018-07-27 2022-02-08 トヨタ自動車株式会社 固体電池用電極の製造方法
CN111200107A (zh) 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN111200114B (zh) 2018-11-16 2021-06-08 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN111200160B (zh) 2018-11-16 2021-04-27 宁德时代新能源科技股份有限公司 一种电池
CN111200110A (zh) 2018-11-16 2020-05-26 宁德时代新能源科技股份有限公司 一种正极极片及电化学装置
CN115000344B (zh) * 2022-06-23 2023-06-13 惠州锂威新能源科技有限公司 一种锂离子电池极片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357854A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2002064004A (ja) * 2000-07-14 2002-02-28 Tokin Corp Ptc素子及びその製造方法
JP2002343606A (ja) * 2001-05-15 2002-11-29 Nec Tokin Corp 高分子ptc組成物及び高分子ptc素子
JP2009176599A (ja) * 2008-01-25 2009-08-06 Panasonic Corp 非水電解質二次電池
JP2010244788A (ja) * 2009-04-03 2010-10-28 Sharp Corp 非水系二次電池
JP2012104422A (ja) 2010-11-11 2012-05-31 Toyota Motor Corp 非水二次電池とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478676A (en) * 1994-08-02 1995-12-26 Rexam Graphics Current collector having a conductive primer layer
JP2001035640A (ja) * 1999-07-16 2001-02-09 Tokin Corp Ptc素子及びその製造方法
JP2001319689A (ja) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd リチウムポリマー二次電池
EP2922122A4 (en) * 2012-11-19 2016-06-29 Uacj Corp COLLECTOR, ELECTRODE STRUCTURE BODY AND ELECTRICAL MEMORY ELEMENT
US20160042878A1 (en) * 2013-03-29 2016-02-11 Uacj Corporation Current collector, electrode structure, battery and capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357854A (ja) 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd 非水系二次電池
JP2002064004A (ja) * 2000-07-14 2002-02-28 Tokin Corp Ptc素子及びその製造方法
JP2002343606A (ja) * 2001-05-15 2002-11-29 Nec Tokin Corp 高分子ptc組成物及び高分子ptc素子
JP2009176599A (ja) * 2008-01-25 2009-08-06 Panasonic Corp 非水電解質二次電池
JP2010244788A (ja) * 2009-04-03 2010-10-28 Sharp Corp 非水系二次電池
JP2012104422A (ja) 2010-11-11 2012-05-31 Toyota Motor Corp 非水二次電池とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2922124A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409681A (zh) * 2014-11-19 2015-03-11 上海航天电源技术有限责任公司 一种含ptc涂层的锂离子电池极片的制备方法
JP5939346B1 (ja) * 2015-03-30 2016-06-22 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
JP2016191037A (ja) * 2015-03-30 2016-11-10 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
KR20160133242A (ko) * 2015-05-12 2016-11-22 주식회사 엘지화학 이중층 구조의 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR102049438B1 (ko) * 2015-05-12 2019-11-28 주식회사 엘지화학 이중층 구조의 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
JP2018049847A (ja) * 2015-06-04 2018-03-29 日産化学工業株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
WO2016194747A1 (ja) * 2015-06-04 2016-12-08 日産化学工業株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
JP7035496B2 (ja) 2015-06-04 2022-03-15 日産化学株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
US11251435B2 (en) 2015-06-04 2022-02-15 Nissan Chemical Industries, Ltd. Undercoat foil for energy storage device electrode
JPWO2016194747A1 (ja) * 2015-06-04 2017-09-28 日産化学工業株式会社 エネルギー貯蔵デバイス電極用アンダーコート箔
US10700345B2 (en) 2016-02-24 2020-06-30 Nissan Motor Co., Ltd. Electrode for lithium ion secondary battery and production method therefor
WO2017145874A1 (ja) * 2016-02-24 2017-08-31 日産自動車株式会社 リチウムイオン二次電池用電極及びその製造方法
JP2017152383A (ja) * 2016-02-24 2017-08-31 日産自動車株式会社 リチウムイオン二次電池用電極及びその製造方法
JP2017224407A (ja) * 2016-06-13 2017-12-21 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
JP7055589B2 (ja) 2016-06-13 2022-04-18 東洋インキScホールディングス株式会社 導電性組成物、非水電解質二次電池用下地層付き集電体、非水電解質二次電池用電極、及び非水電解質二次電池
JP2017224469A (ja) * 2016-06-15 2017-12-21 東洋インキScホールディングス株式会社 非水電解質二次電池用電極の下地層形成用導電性組成物、及びその用途
JP2017224463A (ja) * 2016-06-15 2017-12-21 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2017224562A (ja) * 2016-06-17 2017-12-21 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP2017228344A (ja) * 2016-06-20 2017-12-28 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用下地付き集電体、蓄電デバイス用電極、及び蓄電デバイス
CN110291669B (zh) * 2017-02-10 2023-01-13 三井化学株式会社 集电体、电极及非水电解质二次电池
CN110291669A (zh) * 2017-02-10 2019-09-27 三井化学株式会社 集电体、电极及非水电解质二次电池
JP2018137221A (ja) * 2017-02-22 2018-08-30 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
JP7089374B2 (ja) 2017-02-22 2022-06-22 三洋化成工業株式会社 樹脂集電体、及び、リチウムイオン電池
WO2018162325A1 (en) 2017-03-06 2018-09-13 Lithium Energy and Power GmbH & Co. KG Energy storage device and method for producing the same
JP2018181524A (ja) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 積層電池
WO2019003721A1 (ja) * 2017-06-30 2019-01-03 株式会社村田製作所 リチウムイオン二次電池
CN110137426B (zh) * 2019-05-25 2022-02-15 珠海冠宇电池股份有限公司 一种含有ptc涂层极片的制备方法及锂离子电池
CN110137426A (zh) * 2019-05-25 2019-08-16 珠海冠宇电池有限公司 一种含有ptc涂层极片的制备方法及锂离子电池

Also Published As

Publication number Publication date
KR20150087372A (ko) 2015-07-29
TW201444169A (zh) 2014-11-16
EP2922124A4 (en) 2016-07-06
EP2922124A1 (en) 2015-09-23
CN104823313A (zh) 2015-08-05
CN104823313B (zh) 2018-02-09
US20160322641A1 (en) 2016-11-03
JPWO2014077366A1 (ja) 2017-01-05
EP2922124B1 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
WO2014077366A1 (ja) 集電体、電極構造体、蓄電部品および集電体用組成物
WO2014077367A1 (ja) 集電体、電極構造体および蓄電部品
KR101283487B1 (ko) 세퍼레이터, 그 제조방법 및 이를 구비한 전기화학소자
KR100802870B1 (ko) 권회형 비수계 이차전지 및 이것에 이용하는 전극판
WO2014046112A1 (ja) 集電体、電極構造体及び蓄電部品
US9508994B2 (en) Current collector, electrode structure, nonaqueous electrolyte battery and electrical storage device, and method for producing current collector
US10199623B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2014157405A1 (ja) 集電体、電極構造体、電池およびキャパシタ
KR20150036659A (ko) 집전체, 전극, 이차전지 및 커패시터
WO2015068017A1 (en) Method of producing nonaqueous secondary battery
US20160276673A1 (en) Current collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
US20230155165A1 (en) Lithium ion secondary battery
JP2015204221A (ja) 集電体、電極構造体及び蓄電部品
WO2013172257A1 (ja) 集電体、電極構造体、非水電解質電池及び蓄電部品、集電体の製造方法
JP6478112B2 (ja) 非水電解質二次電池の製造方法
JP2017054682A (ja) 集電体、電極構造体および蓄電部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547053

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14443623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013855595

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013855595

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157016350

Country of ref document: KR

Kind code of ref document: A