WO2014073039A1 - 発光ダイオード用基板 - Google Patents

発光ダイオード用基板 Download PDF

Info

Publication number
WO2014073039A1
WO2014073039A1 PCT/JP2012/078752 JP2012078752W WO2014073039A1 WO 2014073039 A1 WO2014073039 A1 WO 2014073039A1 JP 2012078752 W JP2012078752 W JP 2012078752W WO 2014073039 A1 WO2014073039 A1 WO 2014073039A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thickness
insulating layer
surface conductor
emitting diode
Prior art date
Application number
PCT/JP2012/078752
Other languages
English (en)
French (fr)
Inventor
信介 矢野
谷 信
中西 宏和
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2014545472A priority Critical patent/JP6125528B2/ja
Priority to PCT/JP2012/078752 priority patent/WO2014073039A1/ja
Priority to EP12888036.6A priority patent/EP2919287B1/en
Publication of WO2014073039A1 publication Critical patent/WO2014073039A1/ja
Priority to US14/701,792 priority patent/US9408295B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/062Means for thermal insulation, e.g. for protection of parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10416Metallic blocks or heatsinks completely inserted in a PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1126Firing, i.e. heating a powder or paste above the melting temperature of at least one of its constituents

Definitions

  • the present invention relates to a light emitting diode substrate. More specifically, the present invention relates to a light emitting diode substrate that can exhibit high heat dissipation by realizing low thermal resistance as a whole substrate.
  • LEDs Light emitting diodes
  • Such technology include, for example, insulation on the surface of a metal substrate containing a metal having high thermal conductivity (for example, metals such as aluminum, copper, silver, and tungsten, and alloys of these metals).
  • a structure heat slug type in which a layer is formed and a conductive pattern for electrical connection with the LED is formed on the surface of the insulating layer is used as a wiring board, or for electrical connection with the LED.
  • a substrate including a metal substrate having a high thermal conductivity has a lower thermal resistance as a whole compared to a substrate not including such a metal substrate. Can be radiated more efficiently.
  • the insulating layer formed on the surface of the metal base is generally made of a dielectric material such as resin or ceramic as a main material, and these dielectric materials are compared with the metal base, Has lower thermal conductivity.
  • the relatively low thermal conductivity of such an insulating layer becomes a bottleneck in the heat conduction between the conductor pattern and the metal substrate. That is, when the heat resistance of the substrate is further improved by further reducing the thermal resistance of the entire substrate, the relatively low thermal conductivity of the insulating layer may become an obstacle.
  • the obstacle in the further improvement of the heat dissipation of the substrate due to the relatively low thermal conductivity of the insulating layer as described above can be reduced by, for example, reducing the thickness of the insulating layer (for example, (See Patent Document 2).
  • the thermal resistance of the entire substrate is reduced by reducing the thickness of the insulating layer, the insulation reliability of the substrate may be lowered.
  • the thickness of the insulating layer is reduced, it becomes difficult to ensure electrical insulation between the conductor pattern and the metal substrate, for example, causing an electrical short circuit between the conductor patterns via the metal substrate. There is a fear.
  • the thickness of the insulating layer is large, but as the thickness of the insulating layer increases, due to the relatively low thermal conductivity of the insulating layer, The thermal resistance of the entire substrate increases, and the heat dissipation performance of the entire substrate decreases.
  • the dielectric material for example, resin, ceramic, etc.
  • the material eg, metal, etc.
  • the conductor pattern have a dimensional change method (hereinafter referred to as “ May be referred to as “thermal expansion and contraction behavior”).
  • the insulating layer For example, cracks may occur in the substrate, which may cause problems such as a decrease in the reliability (high humidity reliability) of the substrate in a high humidity environment. Further, such a concern becomes more prominent as the thickness of the metal substrate is larger. Furthermore, such a concern becomes more prominent when a substrate is manufactured by employing ceramic as a dielectric material constituting the insulating layer and simultaneously firing the insulating layer together with the metal substrate and the conductor pattern.
  • the present invention provides a light emitting diode substrate capable of exhibiting high heat dissipation by realizing a low thermal resistance as a whole substrate without degrading the insulation reliability and high humidity reliability of the substrate. Is one purpose.
  • a metal substrate An insulating layer made of a dielectric material mainly comprising ceramic disposed on at least one surface of the metal substrate; A surface conductor that is at least partially embedded and at least partially exposed in the insulating layer on the surface of the insulating layer opposite the metal substrate; Comprising A substrate for a light emitting diode, A thickness (Tm) in a thickness direction defined as a direction perpendicular to the at least one surface of the metal substrate is 100 ⁇ m or more; The thickness (Tc) in the thickness direction of the surface conductor is 20 ⁇ m or more and 100 ⁇ m or less, A light emitting diode substrate in which the thickness (Ti) in the thickness direction of the insulating layer and the thickness (Tc) in the thickness direction of the surface conductor satisfy the relationship represented by the following expression (1): Achieved.
  • the light emitting diode substrate according to the present invention can exhibit high heat dissipation by realizing a low thermal resistance as a whole without reducing the insulating reliability and high humidity reliability of the substrate. As a result, without lowering the insulation reliability and high humidity reliability of the package including the LED, it is possible to suppress the LED temperature from rising due to the heat generated by the light emission of the LED and the LED energy efficiency from being lowered. .
  • the present invention provides a light emitting diode substrate capable of exhibiting high heat dissipation by realizing low thermal resistance as a whole substrate without degrading the insulation reliability and high humidity reliability of the substrate.
  • One purpose is to provide it.
  • the present inventor has obtained a thickness of a surface conductor for electrical connection with a light emitting diode (LED) in a light emitting diode substrate including a metal substrate having a thickness of a predetermined value or more.
  • the insulation reliability of the substrate and the high reliability of the substrate can be achieved by satisfying a predetermined relationship between the thickness of the insulating layer that electrically insulates the metal substrate and the surface conductor and the thickness of the surface conductor.
  • the present inventors have found that high heat dissipation can be achieved by realizing a low thermal resistance as a whole substrate without deteriorating the humidity reliability, and have come up with the present invention.
  • the first embodiment of the present invention is: A metal substrate; An insulating layer made of a dielectric material mainly comprising ceramic disposed on at least one surface of the metal substrate; A surface conductor that is at least partially embedded and at least partially exposed in the insulating layer on the surface of the insulating layer opposite the metal substrate; Comprising A substrate for a light emitting diode, A thickness (Tm) in a thickness direction defined as a direction perpendicular to the at least one surface of the metal substrate is 100 ⁇ m or more; The thickness (Tc) in the thickness direction of the surface conductor is 20 ⁇ m or more and 100 ⁇ m or less, A light emitting diode substrate in which the thickness (Ti) in the thickness direction of the insulating layer and the thickness (Tc) in the thickness direction of the surface conductor satisfy a relationship represented by the following expression (1): is there.
  • the light-emitting diode substrate is A metal substrate; An insulating layer made of a dielectric material mainly comprising ceramic disposed on at least one surface of the metal substrate; A surface conductor that is at least partially embedded and at least partially exposed in the insulating layer on the surface of the insulating layer opposite the metal substrate; Comprising This is a light emitting diode substrate.
  • the metal substrate may be made of any material as long as it has a higher thermal conductivity than the insulating layer.
  • a metal substrate comprising a metal having a high thermal conductivity (for example, metals such as aluminum, copper, silver, and tungsten, and alloys of these metals). Can do.
  • substrate may be comprised with the material widely used in the said technical field as a material which comprises a heat slag or a heat spreader, for example. Further, ceramic powder having high thermal conductivity may be mixed with the metal base material.
  • Ceramic powder examples include aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), alumina (Al 2 O 3 ), copper oxide (CuO), and spinel compounds. Can do.
  • the insulating layer is mainly composed of a dielectric material containing ceramic. Such a ceramic can be appropriately selected from various ceramics widely used in the technical field as a dielectric material constituting the base material of the wiring board, for example.
  • the insulating layer is disposed on at least one surface of the metal base as described above. That is, the insulating layer may be laminated so as to cover at least a part of one or more specific surfaces of the metal substrate. Alternatively, the metal substrate may be embedded in the insulating layer. In other words, the insulating layer is interposed between the metal base and the surface conductor so as to electrically insulate the metal base and the surface conductor. As long as these requirements are satisfied, any surface of the metal substrate or a part thereof may be exposed on any surface of the substrate.
  • the surface conductor is preferably made of a good conductor having a small electric resistance. Such a good conductor can also be appropriately selected from various conductor materials widely used in the technical field as a conductor material constituting the electric circuit of the circuit board.
  • the surface conductor is disposed on the surface of the insulating layer opposite to the metal base so as to be at least partially embedded in the insulating layer and at least partially exposed. Thereby, when mounting LED on the said board
  • the surface electrode is at least partially embedded in the insulating layer, for example, in the mounting process of the package including the LED and the temperature change of the substrate in the operation period after the package including the LED is completed. Accordingly, even when stress acts on the surface conductors connecting the substrates and the LED elements due to the difference in thermal expansion and contraction behavior, problems such as separation of the surface conductors from the substrate may occur. Can be reduced.
  • the surface electrode is electrically connected to another conductor pattern for electrically connecting the substrate on which the LED is mounted and another wiring substrate constituting the package including the LED. It may be connected.
  • the surface electrode is electrically connected to an electrode disposed on the surface of the substrate opposite to the surface electrode, for example, via a via electrode disposed so as to penetrate the substrate. It may be connected.
  • the substrate may be manufactured by any technique as long as the structure as described above can be formed.
  • a specific method for manufacturing a substrate having the above-described structure is, for example, as a method for manufacturing a wiring substrate that employs a base material made of a dielectric material mainly containing ceramics. It can select suitably from the various methods currently used widely. Specific examples of such a method include so-called “doctor blade method” and “gel cast method”.
  • a slurry is prepared by mixing a raw material powder containing a sintering aid such as a dielectric material and glass, an organic binder, a plasticizer, and a solvent.
  • the slurry thus obtained is formed into a sheet-like molded body (green sheet) having a desired thickness using a doctor blade molding machine, and the green sheet is punched out to a desired size.
  • vias through holes
  • a conductive pattern is disposed by printing a paste containing a conductive material such as silver on the surface of the green sheet (and in the vias), for example, by a method such as screen printing.
  • a plurality of green sheets thus obtained are accurately stacked, and the above-mentioned substrate is manufactured by firing a molded body obtained by laminating and integrating by heating and pressing. Rukoto can.
  • a conductor pattern is disposed on the surface of a protective substrate in the form of a film or a thin plate by a printing method such as a screen printing method, and the conductor pattern is disposed.
  • a dielectric material slurry is injected into the unexposed portion, and a required number of dielectric material sheets embedded with a conductive pattern obtained by solidifying the slurry are laminated, and the conductive pattern is formed on the surface electrode and / or Or the said board
  • substrate can be manufactured by baking the molded object obtained by comprising as an inner layer electrode.
  • the protective base material it is desirable to use resin films, such as a polyethylene terephthalate (PET) film and a polyethylene naphthalate (PEN) film, and also film forms, such as a glass plate, paper, and a metal, besides a resin film Alternatively, various plate-like materials can be used. However, it is preferable to use a protective substrate having flexibility from the viewpoint of ease of peeling operation.
  • resin films such as a polyethylene terephthalate (PET) film and a polyethylene naphthalate (PEN) film
  • film forms such as a glass plate, paper, and a metal
  • various plate-like materials can be used.
  • a release agent or the like may be applied to the surface of the protective substrate for the purpose of easily peeling the sheet of dielectric material from the protective substrate.
  • Such release agents include, for example, various chemicals known in the art as release agents. More specifically, as such a release agent, a known silicone release agent, fluorine release agent, or the like can be used.
  • the conductor pattern includes, as a main component, a conductor paste containing at least one metal selected from gold, silver, copper, and the like and a thermosetting resin precursor, for example, by a method such as screen printing. It is desirable to be disposed by forming on the surface of the protective substrate.
  • a thermosetting resin precursor a phenol resin, a resol resin, a urethane resin, an epoxy resin, a melamine resin, or the like can be used. Of these, phenol resins and resol resins are particularly preferable. After printing such a conductor paste on the surface of the protective substrate, a conductor pattern can be obtained by curing the binder contained in the conductor paste.
  • the dielectric material slurry examples include a slurry containing a resin, a ceramic powder, a glass powder, and a solvent.
  • the resin functions as a so-called “binder”, and for example, a thermosetting resin such as a phenol resin, a resole resin, or a polyurethane resin, or a polyurethane precursor including a polyol and a polyisocyanate is used. be able to.
  • the thermosetting resin precursor which comprises a polyol and polyisocyanate is especially preferable.
  • an oxide ceramic or a non-oxide ceramic may be used.
  • the glass powder those made of various oxides can be used.
  • ZnO zinc oxide
  • barium oxide (BaO) barium oxide
  • B 2 O 3 boron oxide
  • silicon oxide (SiO 2 ) silicon oxide
  • magnesium oxide (MgO) magnesium oxide
  • Al 2 O 3 calcium oxide
  • a glass composed of a plurality of types of components appropriately selected from (CaO) and alkali metal oxides is used. Moreover, you may use these materials individually by 1 type or in combination of 2 or more types. Further, the particle diameter of the ceramic powder and the glass powder is not particularly limited as long as the slurry can be prepared.
  • the solvent is not particularly limited as long as it dissolves the resin as the binder (and a dispersant when used).
  • Specific examples of the solvent include two or more ester bonds in the molecule, such as polybasic acid ester (for example, dimethyl glutarate), polyhydric alcohol acid ester (for example, triacetin (glyceryl triacetate)), and the like.
  • polybasic acid ester for example, dimethyl glutarate
  • polyhydric alcohol acid ester for example, triacetin (glyceryl triacetate)
  • the solvent which has can be mentioned.
  • the slurry of the dielectric material may contain a dispersant in addition to the above-mentioned resin, ceramic powder, and solvent.
  • a dispersant include, for example, polycarboxylic acid copolymers and polycarboxylates.
  • the molded body thus obtained is fired (simultaneously fired) in a predetermined environment at a predetermined temperature for a predetermined period of time, whereby a fired body of the molded body is obtained.
  • the “gel cast method” as described above may be referred to as “gel slurry casting method” or the like (see, for example, Patent Document 3). Incorporated into the description).
  • a conductive pattern obtained by injecting a slurry of dielectric material into a portion of the protective base material on which the conductive pattern is disposed on the surface where the conductive pattern is not disposed and solidifying the slurry.
  • a dispenser method for example, a dispenser method, a spin coating method, or the like may be employed.
  • a so-called “gel paste method” can be adopted.
  • a base (a base having a conductor pattern formed on the surface) is placed between a pair of guide plates, a ceramic slurry is applied on the base, and the conductor pattern is coated with the ceramic slurry.
  • a method may be employed in which the jig is slid on (cut off) the upper surfaces of the pair of guide plates to remove excess ceramic slurry.
  • the thickness of the ceramic slurry can be easily adjusted (see, for example, Patent Document 4). (Incorporated herein by reference)
  • the metal substrate is included as one of the components constituting the light emitting diode substrate according to this embodiment.
  • the metal substrate includes, for example, a metal having a high thermal conductivity (for example, a metal such as aluminum, copper, silver, and tungsten, and an alloy of these metals).
  • substrate can transmit efficiently the heat
  • the thickness of the metal base (a dimension in a direction perpendicular to the main surface of the substrate) is large. Therefore, it is desirable that the metal substrate included in the light emitting diode substrate according to this embodiment also has a large thickness (a dimension in a direction perpendicular to the main surface of the substrate).
  • the thickness of the metal base is desirably 100 ⁇ m or more.
  • the thickness (Tm) in the thickness direction defined as the direction orthogonal to the at least one surface of the metal base is 100 ⁇ m or more.
  • the heat generated with the light emission of the LED is efficiently transmitted and diffused in the substrate, for example, through the main surface of the substrate opposite to the side where the LED is disposed, etc.
  • the heat can be efficiently radiated to the outside.
  • the thickness (Tm) of the metal substrate is 150 ⁇ m or more.
  • the metal base that efficiently conducts the heat generated with the light emission of the LED within the substrate, and the electrical connection between the substrate and the LED. It is desirable that the thickness of the insulating layer for electrically insulating the surface conductor that establishes the electrical connection is large. However, as the thickness of the insulating layer increases, the thermal resistance of the entire substrate increases due to the relatively low thermal conductivity of the insulating layer, and the heat dissipation of the entire substrate decreases.
  • the thermal expansion and contraction behavior of the dielectric material constituting the insulating layer in the present embodiment, the dielectric material mainly comprising ceramic
  • the material constituting the metal substrate and the surface conductor for example, metal
  • Etc. cracks in the insulating layer accompanying the temperature change of the substrate in the manufacturing process of the substrate, the mounting process of the package including the LED, and the operation period after the completion of the package including the LED, etc.
  • Etc. there is a possibility of causing problems such as a decrease in reliability (high humidity reliability) of the substrate in a high humidity environment. Further, such a concern becomes more prominent as the thickness of the metal substrate is larger.
  • the inventor of the present invention has developed a surface conductor for electrical connection with a light emitting diode (LED) in a light emitting diode substrate having a metal substrate having a thickness of a predetermined value or more.
  • the insulation reliability of the substrate and the thickness of the insulating layer for electrically insulating the metal substrate and the surface conductor and the thickness of the surface conductor satisfy the predetermined relationship by keeping the thickness within a predetermined range. It has been found that high heat dissipation can be achieved by realizing low thermal resistance as a whole substrate without deteriorating high humidity reliability.
  • the thickness (Tc) of the surface conductor in the light emitting diode substrate according to this embodiment including a metal substrate having a thickness of 100 ⁇ m or more is, for example, solderability with the LED, adhesive strength with the substrate, etc. From the viewpoint of the above, there is naturally a lower limit (for example, 5 ⁇ m). However, the present inventor has found that the effect of reducing the thermal resistance of the entire substrate appears more prominently when the thickness (Tc) of the surface conductor is 20 ⁇ m or more. More preferably, the thickness (Tc) of the surface conductor in the light emitting diode substrate according to the present embodiment is 30 ⁇ m or more.
  • the thickness (Tc) of the surface conductor in the light emitting diode substrate according to this embodiment is 100 ⁇ m or less. Thereby, the increase of the above concerns can be suppressed. More preferably, the thickness (Tc) of the surface conductor in the light emitting diode substrate according to the present embodiment is 75 ⁇ m or less.
  • the thickness (Tc) in the thickness direction of the surface conductor is 20 ⁇ m or more and 100 ⁇ m or less.
  • the obstacle in further improving the heat dissipation of the substrate due to the relatively low thermal conductivity of the insulating layer can be reduced by reducing the thickness (Ti) of the insulating layer.
  • the thermal resistance of the entire substrate is reduced by reducing the thickness (Ti) of the insulating layer, the insulation reliability of the substrate may be lowered.
  • the thickness (Ti) of the insulating layer is reduced, it is difficult to ensure electrical insulation between the surface conductor and the metal substrate.
  • the thickness (Ti) of the insulating layer naturally has a lower limit.
  • the greater the thickness (Ti) of the insulating layer the greater the thermal resistance of the entire substrate, so there is an upper limit for the thickness (Ti) of the insulating layer.
  • the present inventor has determined that the lower limit value and the upper limit value of the thickness (Ti) of the insulating layer as described above are not independently determined independently of other components, but these lower limits. It was found that the value and the upper limit value have a specific relationship with the thickness (Tc) of the surface conductor.
  • the thickness (Ti) in the thickness direction of the insulating layer and the thickness (Tc) in the thickness direction of the surface conductor are as follows. The relationship represented by the following expression (1) is satisfied.
  • the insulating layer thickness (Ti) and the surface conductor thickness (Tc) are configured such that the above relational expression is satisfied, whereby the insulating reliability and high humidity reliability of the substrate are achieved.
  • High heat dissipation can be exhibited by realizing a low thermal resistance as a whole substrate without reducing the performance.
  • the temperature of the LED rises due to the heat generated by the light emission of the LED without reducing the insulation reliability and high humidity reliability of the package including the LED. It can suppress that energy efficiency of this falls.
  • the surface conductor included in the light emitting diode substrate according to this embodiment is at least partially embedded in the insulating layer on the surface of the insulating layer opposite to the metal base, and at least partially. It is partially exposed.
  • the surface conductor is at least partially embedded in the insulating layer. For example, after the packaging process including the LED and the package including the LED are completed.
  • the surface conductor is the substrate It is possible to reduce the possibility of problems such as detachment from the surface.
  • the surface conductor is sufficiently deeply embedded in the insulating layer.
  • the thickness of the portion embedded in the insulating layer of the surface conductor is sufficiently large.
  • the maximum value of the thickness of the portion embedded in the insulating layer of the surface conductor is 10 ⁇ m or more.
  • the second embodiment of the present invention provides: A substrate for a light emitting diode according to the first embodiment of the present invention, comprising: The maximum value (Tbmax) of the thickness (Tb) in the thickness direction of the portion embedded in the insulating layer of the surface conductor is 10 ⁇ m or more. This is a light emitting diode substrate.
  • the maximum value (Tbmax) of the thickness (Tb) in the thickness direction of the portion embedded in the insulating layer of the surface conductor is 10 ⁇ m or more.
  • the surface conductor included in the light emitting diode substrate according to the present embodiment is buried in the insulating layer at a depth of 10 ⁇ m or more.
  • the surface conductor included in the light emitting diode substrate according to this embodiment is more than half (1/2) the thickness (Tc) of the surface conductor and is buried in the insulating layer. desirable.
  • the third embodiment of the present invention A light-emitting diode substrate according to the second embodiment of the present invention,
  • the maximum value (Tbmax) of the thickness (Tbmax) in the thickness direction of the portion embedded in the insulating layer of the surface conductor is 1 ⁇ 2 or more of the thickness (Tc) in the thickness direction of the surface conductor. This is a light emitting diode substrate.
  • the maximum value (Tbmax) of the thickness (Tb) in the thickness direction of the portion embedded in the insulating layer of the surface conductor is equal to that of the surface conductor. It is 1/2 or more of the thickness (Tc) in the thickness direction. In other words, more than half of the surface conductor provided in the light emitting diode substrate according to the present embodiment is buried in the insulating layer in the thickness direction.
  • the two electrodes (anode electrode or cathode electrode) of the LED may be arranged one on each of different surfaces (for example, surfaces facing each other) of the LED element. Both two electrodes on the same surface of the device may be disposed.
  • the surface conductor included in the light emitting diode substrate according to the present embodiment needs to be configured so that electrical connection can be established separately with each of the two electrodes (anode electrode or cathode electrode) of the LED. There is. Therefore, the surface conductor with which the light emitting diode substrate according to this embodiment is provided may be divided into at least two regions.
  • the fourth embodiment of the present invention is A light-emitting diode substrate according to any one of the first to third embodiments of the present invention,
  • the surface conductor is divided into at least two or more regions; This is a light emitting diode substrate.
  • the surface conductor is divided into at least two or more regions. Thereby, for example, even when both of the two electrodes (anode electrode or cathode electrode) of the LED are disposed on the same surface of the LED element as described above, the electric power is separately separated from each of the two electrodes. Connection can be established.
  • the surface conductor divided into at least two or more regions included in the light emitting diode substrate according to this embodiment establishes an electrical connection separately from each of the two electrodes of the LED.
  • two or more regions of the surface conductor divided into at least two or more regions included in the light emitting diode substrate according to the present embodiment are either of the two electrodes of the LED. It should be noted that this does not exclude usage patterns that are electrically connected to one side.
  • the surface conductor is divided into at least two regions. Therefore, for example, in order to improve the insulation reliability between these two or more regions, the gap between these two or more regions may be filled with an insulating material (dielectric material). .
  • the fifth embodiment of the present invention A light-emitting diode substrate according to the fourth embodiment of the present invention, Between the at least two regions of the surface conductor is filled with a dielectric material, This is a light emitting diode substrate.
  • the space between the at least two regions of the surface conductor is filled with a dielectric material.
  • regions can be improved, for example.
  • the dielectric material filled between these two or more regions is not particularly limited, and various dielectric materials widely used in the technical field as a filling material depending on the usage environment of the substrate. It can be appropriately selected from materials. Or the said dielectric material may be the same material as the dielectric material which comprises the insulating layer with which the board
  • the substrate according to the light emitting diode according to the present invention including the various embodiments described so far is a substrate.
  • High heat dissipation can be exhibited by realizing a low thermal resistance as a whole substrate without lowering the insulation reliability and high humidity reliability.
  • the insulation reliability and high humidity reliability of the package including the LED it is possible to suppress the LED temperature from rising due to the heat generated by the light emission of the LED and the LED energy efficiency from being lowered. .
  • FIG. 1 is a schematic view showing an example of a method for manufacturing a light emitting diode substrate according to one embodiment of the present invention, as described above.
  • a gel sheet in which a surface conductor having a predetermined thickness was embedded was prepared by a gel paste method.
  • a protective base material having a conductor pattern formed on the surface is placed between a pair of guide plates (not shown), and a ceramic paste (paste-like) is placed on the protective base material.
  • a ceramic paste paste-like
  • a gel sheet with a conductive pattern embedded therein was prepared.
  • one main surface of the surface conductor is exposed on the one main surface of the gel sheet so that the surface conductor surface and the gel sheet surface are present in the same plane (that is, It was configured so that it would be “same”.
  • step S12 a via hole for arranging a via conductor to be used later for electrically connecting the front surface conductor and the back surface conductor was formed by punching. Furthermore, in step S13, the via paste formed as described above was filled with a conductive paste by a printing method.
  • the gel sheet thus obtained is referred to as a “surface side gel sheet”.
  • step S21 a green sheet of dielectric material was punched to form a through hole and a via hole for disposing a metal substrate and a via conductor.
  • step S22 the through hole and the via hole were filled with a metal base material (for example, a mixture of copper powder and aluminum nitride powder, silver, etc.) and a conductor paste, respectively.
  • a back conductor for connecting the substrate to a printed circuit board or the like is connected to the main conductor (back surface) of the green sheet with the via conductor.
  • a printing method for example, a screen printing method.
  • the green sheet thus obtained is referred to as a “back side green sheet”.
  • step S31 the front surface of the surface side gel sheet is exposed so that the main surface of the back surface side green sheet on which the back surface conductor is not formed is in contact with the main surface.
  • the side gel sheet and the back side green sheet were laminated. Note that it is necessary that via conductors exposed on the opposing main surfaces of the front surface side gel sheet and the back surface side green sheet contact each other in an electrically conductive state during the lamination. Therefore, the via conductor formed in steps S21 and S22 and the via conductor extending from the surface conductor formed in steps S12 and S13 are formed when the front surface side gel sheet and the rear surface side green sheet are laminated. The via conductors are disposed at the same position on the projection plane parallel to the main surface of the substrate.
  • a substrate for a light-emitting diode according to one embodiment of the present invention can be manufactured that is configured to lie in a plane (that is, to be “planar”).
  • a plane that is, to be “planar”.
  • FIG. 4 The structure shown in FIG. 4 can be mentioned.
  • the substrate manufactured by the method for manufacturing a light emitting diode substrate using the gel paste method has an exposed surface of the surface conductor and a main surface of the substrate as described above. It is not limited to a substrate configured to exist on the same plane, but a substrate configured such that a surface conductor protrudes from the main surface of the substrate as described later is a substrate for a light emitting diode substrate using a gel paste method. Needless to say, it can be manufactured by a manufacturing method.
  • FIG. 2 is a schematic view showing an example of a method for manufacturing a light emitting diode substrate according to another embodiment of the present invention, as described above. As shown in FIG. 2, in the manufacturing method according to this example, a gel sheet in which a surface conductor was partially embedded was prepared using a gel sheet formed by a gel slurry casting method.
  • a gel sheet is prepared by a gel slurry casting method.
  • step S42 the gel sheet is punched to electrically connect the front conductor and the rear conductor later.
  • a via hole for arranging the via conductor to be used was formed.
  • step S43 a conductor paste was filled into the via hole formed as described above by a printing method.
  • step S44 the conductor paste to be the surface conductor so as to be connected to the via conductor on one main surface of the gel sheet having the via hole filled with the conductor paste to be the via conductor as described above.
  • the gel sheet thus obtained is referred to as a “surface side gel sheet”.
  • step S51 the dielectric material gel sheet produced by the gel slurry casting method was punched to form a through hole and a via hole for disposing the metal substrate and the via conductor.
  • step S52 the through hole and the via hole were filled with a metal base material (for example, a mixture of copper powder and aluminum nitride powder, silver, etc.) and a conductor paste, respectively.
  • step S53 the back conductor for connecting the substrate to a printed circuit board or the like is printed on one main surface (back surface) of the gel sheet so as to be connected to the via conductor. It arranged by the method (for example, screen printing method etc.).
  • the gel sheet thus obtained is referred to as a “back side gel sheet”.
  • step S61 the front surface side so that the main surface of the surface side gel sheet on which the surface conductor is not exposed and the main surface of the back surface side gel sheet on which the back surface conductor is not formed are in contact.
  • the gel sheet and the back side gel sheet were laminated.
  • the surface conductor formed in step S44 is buried in the gel sheet due to the pressure at the time of lamination in step S61, and the shape collapses, so that the original shape (rectangle) is not obtained.
  • the lamination pressure was released, a part of the surface conductor buried in the gel sheet protruded from the surface of the gel sheet, and the shape shown in step S61 was obtained.
  • the via conductors exposed on the opposing main surfaces of the front surface side gel sheet and the back surface side gel sheet must be in contact with each other while being electrically conductive. Therefore, the via conductor formed in steps S51 to S52 and the via conductor extending from the surface conductor formed in steps S42 and S43 are formed when the front surface side gel sheet and the back surface side gel sheet are stacked.
  • the via conductors are arranged at positions where they can be electrically connected to each other (specifically, these via conductors are arranged at the same position on the projection plane parallel to the main surface of the substrate).
  • the surface of the insulating layer on the side opposite to the metal substrate is Another implementation of the present invention wherein the conductor is configured to be at least partially embedded in the insulating layer and at least partially exposed (ie, the surface conductor protrudes from the major surface of the substrate).
  • the light emitting diode substrate according to the embodiment can be manufactured.
  • the surface conductor is configured to be at least partially embedded in the insulating layer and at least partially exposed.
  • the structure shown in FIG. 5 can be mentioned.
  • the substrate manufactured by the method for manufacturing a light emitting diode substrate using the gel slurry casting method has a surface conductor embedded at least partially in the insulating layer as described above. And is not limited to a substrate configured to be at least partially exposed so that the exposed surface of the surface conductor and the main surface of the substrate are in the same plane as described above (ie, Needless to say, it is also possible to manufacture a substrate configured to be “smooth” by a method for manufacturing a substrate for a light emitting diode using a gel slurry casting method.
  • the surface conductor is divided into two regions, and each region is partially embedded and partially exposed on the surface of the substrate. Therefore, in the portion exposed from the surface of the substrate, a gap (gap) is generated between the two regions of the surface conductor.
  • the gap can be filled with a dielectric material to improve the insulation reliability between the two regions of the surface conductor.
  • the dielectric material filled between these two regions is not particularly limited, and various materials widely used in the technical field as the filling material or the like depending on the usage environment of the substrate. It can be suitably selected from the inside. Or the said dielectric material may be the same material as the dielectric material which comprises the insulating layer with which the board
  • a plating process may be performed after a baking process and the surface process of a surface conductor and a back surface conductor may be given.
  • the above is merely an example, and the method for manufacturing a light emitting diode substrate according to the present invention should not be construed as being limited to the above.
  • FIG. 3 is a schematic diagram showing an example of the configuration of the light emitting diode substrate according to one embodiment of the present invention, as described above. As shown in FIG. 3, the “thickness” of each constituent member constituting the light emitting diode substrate according to the present embodiment is the direction in which the metal base, the insulating layer, and the surface conductor are laminated (that is, these constituent members).
  • the “thickness direction” in the light emitting diode substrate according to the present embodiment is defined as a direction orthogonal to the surface of the metal substrate serving as an interface between the insulating layer on which the surface conductor is laminated and the metal substrate.
  • the metal substrate is made of a material mainly composed of silver (Ag), the thickness thereof is constant at 200 ⁇ m, and the dimension is 1 in accordance with the dimension of the LED (1.2 mm square). .5 mm square.
  • substrate was 3.5 mm square and the space
  • a surface conductor having a thickness that satisfies the requirements of the present invention a surface conductor having a dimension of 1.7 mm square was disposed at a position facing the metal substrate in the thickness direction of the substrate.
  • a via conductor for electrically connecting the surface conductor and the back surface conductor is used.
  • an in-plane conductor that electrically connects the via conductor and the surface conductor was further disposed at a position where the metal substrate does not exist.
  • the thickness (Tc) of the surface conductor and the thickness (Ti) of the insulating layer are variously changed as shown in Tables 1 and 2 below, and various types of substrates for light emitting diodes are obtained.
  • the sample for evaluation is manufactured, and the thickness (Tc) of the surface conductor with respect to the electrical insulation (presence of electrical short circuit) as a whole substrate, the occurrence of cracks in the insulating layer after the heat cycle, and the magnitude of the thermal resistance And the influence of the thickness (Ti) of the insulating layer was investigated. The results of such evaluation will be described in detail below.
  • each of the various samples for evaluation of the light-emitting diode substrate manufactured as described above was held at ⁇ 40 ° C. for 30 minutes, and then ⁇ 40 After heating to 150 ° C. over 5 minutes, holding at 150 ° C. for 30 minutes, and then cooling to 150 ° C. to ⁇ 40 ° C.
  • the substrate was exposed to the molten solder for 500 times. After the surface conductor containing copper (Cu), silver (Ag), etc. was dissolved and the surface conductor was removed, the presence or absence of cracks in the insulating layer was examined by a red check inspection. Furthermore, the magnitude of the thermal resistance was measured according to a test method for an electronic circuit board for high-brightness LEDs of JPCA (Japan Electronic Circuits Association).
  • the thickness (Tc) of the surface conductor is within the preferred range (20 ⁇ m or more and 100 ⁇ m or less) in the present invention, the electrical insulation and cracking associated with the heat cycle are observed. It can be seen that the thickness (Ti) of the insulating layer needs to be within a specific range in order for both occurrences to be good. However, if the thickness (Ti) of the insulating layer is simply within a specific range, good evaluation results cannot be obtained, and the upper limit value and lower limit value of the preferred range of the thickness (Ti) of the insulating layer are It was observed that the thickness varied corresponding to the thickness (Tc) of the surface conductor.
  • the thickness (Ti) of the insulating layer is the same 42 ⁇ m, the thickness (Tc) of the surface conductor is 20 ⁇ m (Example 1P-5), whereas it is determined as “good”, whereas the surface conductor When the thickness (Tc) of the film was 100 ⁇ m (Comparative Example 1P-8), generation of cracks associated with the heat cycle was observed.
  • the substrate having a metal substrate thickness (Tm) of 100 ⁇ m or more.
  • Tm metal substrate thickness
  • the absolute value of the thermal resistance of the entire substrate is greatly influenced by the thickness (Ti) of the insulating layer provided in the substrate
  • the group in which the thickness (Ti) of the insulating layer is constant at 6 ⁇ m. (Hereinafter referred to as “1Q group”) and a group in which the thickness (Ti) of the insulating layer is constant at 38 ⁇ m (hereinafter referred to as “1R group”)
  • various surface conductors are used.
  • the thermal resistance at the thickness (Tc) was examined.
  • the lower limit of the surface conductor thickness (Tc) is 5 ⁇ m from the viewpoint of solderability with the LED, adhesive strength with the substrate, etc., and the thickness of the surface conductor in each group (Tc) The relative value (percentage) of the thermal resistance was compared based on samples (Comparative Example 1Q-1 and Comparative Example 1R-1) having a thickness of 5 ⁇ m.
  • the thickness (Tc) of the surface conductor is the same when the thickness (Ti) of the insulating layer is 6 ⁇ m and 40 ⁇ m (that is, in both the 1Q group and the 1R group). It was recognized that the thermal resistance of the entire substrate was lowered with the increase of. This is because the heat transferred to the inside of the surface conductor through the electrical connection portion with the LED (ie, the outer surface of the surface conductor) passes through the inside of the surface conductor and is interposed between the metal substrate and the surface conductor. It is considered that, when conducting to the insulating layer, the larger the thickness (Tc) of the surface conductor, the easier it is to conduct deeper in the thickness direction of the substrate.
  • the thickness (Tc) of the surface conductor is 20 ⁇ m or more in order to effectively reduce the thermal resistance of the entire substrate without reducing the reliability of the substrate.
  • FIG. 4 is a schematic diagram showing an example of the configuration of the light emitting diode substrate according to another embodiment of the present invention as described above. The structure of the light emitting diode substrate according to the embodiment shown in FIG.
  • the material of the metal base is a mixture of copper (Cu) powder and aluminum nitride (AlN) powder, and the dimensions are the dimensions of the LED (1.2 mm square).
  • the size of a surface conductor having a thickness that is significantly larger than 2.0 mm square and having a thickness that satisfies the requirements of the present invention is also 2.5 mm square that is significantly larger than the LED dimensions (1.2 mm square), 3 except that the via conductor is disposed at a position where the metal substrate does not exist (in the projection onto the plane parallel to the main surface) and the via conductor is electrically connected directly to the front conductor and the rear conductor. It is the same as that of the structure of the board
  • the thickness (Tc) of the surface conductor and the thickness (Ti) of the insulating layer are variously changed as shown in Tables 3 and 4 below, and various types of substrates for light emitting diodes are obtained.
  • the sample for evaluation is manufactured, and the thickness (Tc) of the surface conductor with respect to the electrical insulation (presence of electrical short circuit) as a whole substrate, the occurrence of cracks in the insulating layer after the heat cycle, and the magnitude of the thermal resistance And the influence of the thickness (Ti) of the insulating layer was investigated. The results of such evaluation will be described in detail below. However, measurement methods and evaluation criteria for various evaluation items, heat cycle conditions, and the like are the same as those in “2. Evaluation of various evaluation sample substrates (1)”.
  • the thickness (Tc) of the surface conductor is within the preferred range (20 ⁇ m or more and 100 ⁇ m or less) in the present invention, the electrical insulation and cracking associated with the heat cycle are observed. It can be seen that the thickness (Ti) of the insulating layer needs to be within a specific range in order for both occurrences to be good. However, if the thickness (Ti) of the insulating layer is simply within a specific range, good evaluation results cannot be obtained, and the upper limit value and lower limit value of the preferred range of the thickness (Ti) of the insulating layer are It was observed that the thickness varied corresponding to the thickness (Tc) of the surface conductor.
  • the thickness (Ti) of the insulating layer is the same 42 ⁇ m, the thickness (Tc) of the surface conductor is 20 ⁇ m (Example 2P-5), whereas it is determined as “good”, whereas the surface conductor When the thickness (Tc) of the film was 100 ⁇ m (Comparative Example 2P-8), generation of cracks associated with the heat cycle was observed.
  • the substrate having a metal substrate thickness (Tm) of 100 ⁇ m or more.
  • Tm metal substrate thickness
  • the absolute value of the thermal resistance of the entire substrate is greatly influenced by the thickness (Ti) of the insulating layer provided on the substrate.
  • 2Q group A group in which the thickness (Ti) of the insulating layer is constant at 6 ⁇ m
  • 2Q group a group in which the thickness (Ti) of the insulating layer is constant at 38 ⁇ m
  • the thermal resistance at various surface conductor thicknesses (Tc) was examined for each group (referred to as "2R group”).
  • the thickness (Tc) of the surface conductor is the same when the thickness (Ti) of the insulating layer is 6 ⁇ m or 40 ⁇ m (that is, in both the 2Q group and the 2R group). It was recognized that the thermal resistance of the entire substrate was lowered with the increase of. This is because the heat transferred to the inside of the surface conductor through the electrical connection portion with the LED (ie, the outer surface of the surface conductor) passes through the inside of the surface conductor and is interposed between the metal substrate and the surface conductor. When conducting to the insulating layer, the larger the thickness (Tc) of the surface conductor, the easier it is to conduct deeper in the thickness direction of the substrate.
  • the heat transferred to the inside of the surface conductor through the electrical connection portion (that is, the outer surface of the surface conductor) is diffused to a larger area in a plane parallel to the main surface of the substrate. This is considered to be because the influence of the relatively high thermal resistance of the insulating layer on the thermal resistance of the entire substrate is reduced when the heat is conducted to the metal substrate through the insulating layer.
  • the thickness (Tc) of the surface conductor is 20 ⁇ m or more in order to effectively reduce the thermal resistance of the entire substrate without reducing the reliability of the substrate. And it was confirmed again that it is desirable that it is 100 ⁇ m or less.
  • the thickness of the surface conductor for electrical connection with the light emitting diode (LED) is predetermined. (Specifically, 20 ⁇ m or more and 100 ⁇ m or less), and the thickness of the insulating layer that electrically insulates the metal substrate and the surface conductor and the thickness of the surface conductor (specifically, According to the light emitting diode substrate according to the present invention configured to satisfy the relationship expressed by the formula (1), the overall substrate is low without deteriorating the insulation reliability and high humidity reliability of the substrate. It was confirmed that high heat dissipation can be exhibited by realizing thermal resistance.
  • FIG. 6 is a schematic diagram showing an example of the configuration of the LED package including the light emitting diode substrate according to one embodiment of the present invention as described above.
  • the LED package including the light emitting diode substrate according to the present embodiment heat generated along with the light emission of the LED is conducted to the printed circuit board through the light emitting diode substrate.
  • the light emitting diode substrate according to the present embodiment has a configuration that satisfies the provisions of the present invention as described above, and therefore has a lower thermal resistance and a higher resistance than the related art. Reliability (reduction of cracking due to exposure to repeated temperature changes) can be exhibited. As a result, the LED package shown in FIG. 6 can exhibit excellent energy efficiency and reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる発光ダイオード用基板を提供する。 【解決手段】所定値以上の厚みを有する金属基体を備える発光ダイオード用基板において、発光ダイオード(LED)との電気的接続のための表面導体の厚みを所定の範囲に収め、且つ金属基体と表面導体とを電気的に絶縁する絶縁層の厚み及び表面導体の厚みとが所定の関係を満たすように構成する。

Description

発光ダイオード用基板
 本発明は、発光ダイオード用基板に関する。より詳細には、本発明は、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる発光ダイオード用基板に関する。
 発光ダイオード(LED)は、省エネルギー等の観点から、近年益々広く使用されているが、LEDの温度が上昇するとエネルギー効率が低下するため、発光に伴って発生する熱を効率良く放出して、LEDの温度上昇を防ぐことが重要である。そこで、当該技術分野においては、LEDが実装されるパッケージ及び配線基板における放熱性を向上させるための様々な技術が提案されている。
 かかる技術の具体例としては、例えば、高い熱伝導率を有する金属(例えば、アルミニウム、銅、銀、及びタングステン等の金属、並びにこれらの金属の合金等)を含んでなる金属基体の表面に絶縁層が形成され、当該絶縁層の表面にLEDとの電気的接続のための導体パターンが形成された構造体(ヒートスラグタイプ)を配線基板として使用したり、LEDとの電気的接続のための導体パターンが表面に形成された絶縁材料の中に金属基体が埋設された構造体(ヒートスプレッダータイプ)を配線基板として使用したりすることによって、基板全体としての熱抵抗を低減しようとする技術が挙げられる(例えば、特許文献1及び2を参照)。
 上記のように高い熱伝導率を有する金属基体を備える基板は、かかる金属基体を備えない基板と比較して、基板全体として、より低い熱抵抗を有するので、LEDの発光に伴って発生する熱を、より効率的に放熱することができる。しかしながら、金属基体の表面に形成される絶縁層は、例えば、樹脂、セラミック等の誘電体材料を主たる材料とすることが一般的であり、これらの誘電体材料は、金属基体と比較して、より低い熱伝導率を有する。かかる絶縁層が有する相対的に低い熱伝導率は、導体パターンと金属基体との間での熱伝導におけるボトルネックとなる。即ち、基板全体としての熱抵抗を更に低減することにより基板の放熱性を更に向上させようとする際には、絶縁層が有する相対的に低い熱伝導率が障害となる虞がある。
 上記のような絶縁層が有する相対的に低い熱伝導率に起因する基板の放熱性の更なる向上における障害は、例えば、絶縁層の厚みを低減することにより、軽減することができる(例えば、特許文献2を参照)。しかしながら、従来技術に係る基板においては、絶縁層の厚みを低減することにより基板全体としての熱抵抗を低減しようとすると、当該基板における絶縁信頼性の低下を招く虞がある。具体的には、絶縁層の厚みの低減に伴い、導体パターンと金属基体との電気的絶縁を確保することが困難となり、例えば、金属基体を介する導体パターン同士の電気的短絡(ショート)を招く虞がある。
 一方、基板の絶縁信頼性を確保する観点からは、絶縁層の厚みは大きいことが望ましいが、絶縁層の厚みが増大するほど、絶縁層が有する相対的に低い熱伝導率に起因して、基板全体としての熱抵抗が増大し、基板全体としての放熱性が低下する。加えて、絶縁層を構成する誘電体材料(例えば、樹脂、セラミック等)と金属基体及び導体パターンを構成する材料(例えば、金属等)とでは、温度変化に伴う寸法変化の仕方(以降、「熱膨張収縮挙動」と称する場合がある)が異なる。従って、例えば、基板の製造工程、LEDを含むパッケージの実装工程、及びLEDを含むパッケージの完成後の稼働期間等における基板の温度変化に伴い、上記熱膨張収縮挙動の相違に起因して絶縁層に亀裂(クラック)が発生する等して、例えば、高湿環境下における基板の信頼性(高湿信頼性)の低下等の問題を招く虞がある。また、かかる懸念は金属基体の厚みが大きいほど顕著となる。更に、絶縁層を構成する誘電体材料としてセラミックを採用し、かかる絶縁層を金属基体及び導体パターンと共に同時焼成することによって基板を製造する際には、かかる懸念がより顕著となる。
 上記のように、当該技術分野においては、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる発光ダイオード用基板に対する要求が存在する。
特開2000-353826号公報 特開2006-525679号公報 特開2009-208459号公報 特開2009-029134号公報
 前述のように、当該技術分野においては、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる発光ダイオード用基板に対する要求が存在する。本発明は、かかる要求に応えるために為されたものである。即ち、本発明は、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる発光ダイオード用基板を提供することを1つの目的とする。
 上記目的は、
 金属基体と、
 前記金属基体の少なくとも1つの表面上に配設された、主としてセラミックを含んでなる誘電体材料からなる絶縁層と、
 前記絶縁層の前記金属基体とは反対側の表面において、前記絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出している表面導体と、
を備える、
発光ダイオード用基板であって、
 前記金属基体の前記少なくとも1つの表面に直交する方向として定義される厚み方向における厚み(Tm)が100μm以上であり、
 前記表面導体の前記厚み方向における厚み(Tc)が20μm以上であり、且つ100μm以下であり、
 前記絶縁層の前記厚み方向における厚み(Ti)と、前記表面導体の前記厚み方向における厚み(Tc)とが、以下に示す(1)式によって表される関係を満足する、発光ダイオード用基板によって達成される。
Figure JPOXMLDOC01-appb-M000002
 本発明に係る発光ダイオード用基板によれば、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる。その結果、LEDを含むパッケージの絶縁信頼性及び高湿信頼性を低下させること無く、LEDの発光に伴う発熱によりLEDの温度が上昇してLEDのエネルギー効率が低下することを抑制することができる。
本発明の1つの実施態様に係る発光ダイオード用基板の製造方法の一例を示す模式図である。 本発明のもう1つの実施態様に係る発光ダイオード用基板の製造方法の一例を示す模式図である。 本発明の1つの実施態様に係る発光ダイオード用基板の構成の一例を示す模式図である。 本発明のもう1つの実施態様に係る発光ダイオード用基板の構成の一例を示す模式図である。 本発明の更にもう1つの実施態様に係る発光ダイオード用基板の構成の一例を示す模式図である。 本発明の1つの実施態様に係る発光ダイオード用基板を含むLEDパッケージの構成の一例を示す模式図である。
 前述のように、本発明は、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる発光ダイオード用基板を提供することを1つの目的とする。本発明者は、上記目的を達成すべく鋭意研究の結果、所定値以上の厚みを有する金属基体を備える発光ダイオード用基板において、発光ダイオード(LED)との電気的接続のための表面導体の厚みを所定の範囲に収め、且つ金属基体と表面導体とを電気的に絶縁する絶縁層の厚み及び表面導体の厚みとが所定の関係を満たすように構成することにより、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができることを見出し、本発明を想到するに至ったものである。
 即ち、本発明の第1の実施態様は、
 金属基体と、
 前記金属基体の少なくとも1つの表面上に配設された、主としてセラミックを含んでなる誘電体材料からなる絶縁層と、
 前記絶縁層の前記金属基体とは反対側の表面において、前記絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出している表面導体と、
を備える、
発光ダイオード用基板であって、
 前記金属基体の前記少なくとも1つの表面に直交する方向として定義される厚み方向における厚み(Tm)が100μm以上であり、
 前記表面導体の前記厚み方向における厚み(Tc)が20μm以上であり、且つ100μm以下であり、
 前記絶縁層の前記厚み方向における厚み(Ti)と、前記表面導体の前記厚み方向における厚み(Tc)とが、以下に示す(1)式によって表される関係を満足する、発光ダイオード用基板である。
Figure JPOXMLDOC01-appb-M000003
 上記のように、本実施態様に係る発光ダイオード用基板は、
 金属基体と、
 前記金属基体の少なくとも1つの表面上に配設された、主としてセラミックを含んでなる誘電体材料からなる絶縁層と、
 前記絶縁層の前記金属基体とは反対側の表面において、前記絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出している表面導体と、
を備える、
発光ダイオード用基板である。
 上記金属基体は、上記絶縁層と比較して、より高い熱伝導率を有する材料である限り、如何なる材料によって構成されていてもよい。かかる金属基体の具体例としては、例えば、高い熱伝導率を有する金属(例えば、アルミニウム、銅、銀、及びタングステン等の金属、並びにこれらの金属の合金等)を含んでなる金属基体を挙げることができる。また、上記金属基体は、例えば、ヒートスラグ又はヒートスプレッダーを構成する材料として、当該技術分野において広く使用されている材料によって構成されていてもよい。更に、上記金属基体の材料に、高い熱伝導率を有するセラミックの粉末を混合してもよい。これにより、金属基体材料、絶縁材料、及び表面導体を同時焼成する際に、それらの焼結に伴う挙動(例えば、熱膨張収縮挙動等)をできる限り一致させて、基板の製造を容易なものとし且つ製造される基板の品質を向上させることができる。かかるセラミックの粉末としては、窒化アルミ(AlN)、窒化珪素(Si)、炭化珪素(SiC)、アルミナ(Al)、酸化銅(CuO)、及びスピネル系化合物等を挙げることができる。
 また、上記絶縁層は、主としてセラミックを含んでなる誘電体材料によって構成される。かかるセラミックは、例えば、配線基板の基材を構成する誘電体材料として、当該技術分野において広く使用されている種々のセラミックの中から適宜選択することができる。尚、上記絶縁層は、上記のように、上記金属基体の少なくとも1つの表面上に配設される。即ち、上記絶縁層は、上記金属基体の1つ以上の特定の表面の少なくとも一部を覆うように積層されていてもよい。あるいは、上記金属基体が上記絶縁層の内部に埋設されていてもよい。換言すれば、上記絶縁層は、上記金属基体と上記表面導体との間に介在して、上記金属基体と上記表面導体とを電気的に絶縁するように配設されている。かかる要件を満足する限りにおいて、上記金属基体の何れかの表面又はその一部が、上記基板の何れかの表面において露出していてもよい。
 更に、上記表面導体は、小さい電気抵抗を有する良導体からなることが望ましい。かかる良導体もまた、かかる回路基板の電気回路を構成する導体材料として、当該技術分野において広く使用されている種々の導体材料の中から適宜選択することができる。加えて、上記表面導体は、上記絶縁層の上記金属基体とは反対側の表面において、上記絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出するように配設される。これにより、上記表面電極は、上記基板にLEDを実装する際に、例えば、半田付け等の手法によって、LEDの電極(アノード電極又はカソード電極)と電気的に接続することができる。加えて、上記表面電極は、上記絶縁層に少なくとも部分的には埋設されるので、例えば、LEDを含むパッケージの実装工程、及びLEDを含むパッケージの完成後の稼働期間等における基板の温度変化に伴い、当該基板とLED素子との熱膨張収縮挙動の相違に起因してこれらを接続する表面導体に応力が作用する場合においても、例えば、表面導体が基板から脱離する等の問題が生ずる虞を低減することができる。
 尚、当然のことながら、上記表面電極は、LEDが実装された上記基板と当該LEDを含むパッケージを構成する他の配線基板等とを電気的に接続するための他の導体パターンと電気的に接続されていてもよい。具体的には、上記表面電極は、例えば、上記基板を貫くように配設されたビア電極を介して、上記基板の当該表面電極とは反対側の表面に配設された電極と電気的に接続されていてもよい。
 上記基板は、上記のような構造を構成することが可能である限り、如何なる手法によって製造されてもよい。例えば、上記のような構造を有する基板を製造するための具体的な方法は、例えば、主としてセラミックを含んでなる誘電体材料からなる基材を採用する配線基板の製造方法として、当該技術分野において広く使用されている種々の方法の中から適宜選択することができる。かかる方法の一般的な具体例としては、例えば、所謂「ドクターブレード法」及び「ゲルキャスト法」等を挙げることができる。
 前者の「ドクターブレード法」を採用する場合は、例えば、誘電体材料及びガラス等の焼結助剤を含んでなる原料粉末、有機バインダー、可塑剤、溶剤等を混合してなるスラリーを調製し、斯くして得られたスラリーを、ドクターブレード成形機を用いて、所望の厚みを有するシート状の成形体(グリーンシート)に成形し、当該グリーンシートを所望の大きさに打ち抜き、必要に応じてビア(貫通孔)を開け、例えばスクリーン印刷法等の手法により、銀等の導体材料を含んでなるペーストをグリーンシートの表面(及びビアの中)に印刷して導体パターンを配設し、斯くして得られた複数のグリーンシートを正確に積み重ねて、加熱加圧により積層して一体化することによって得られる成形体を焼成することによって、上記基板を製造することができる。
 一方、上記「ゲルキャスト法」を採用する場合は、例えば、フィルム状または薄板状の保護基材の表面に、例えばスクリーン印刷法等の印刷法によって導体パターンを配設し、導体パターンが配設されなかった部分には誘電体材料のスラリーを注入し、当該スラリーを固化させて得られる導体パターンが埋設された誘電体材料のシートを必要な枚数だけ積層して、導体パターンを表面電極及び/又は内層電極として構成することによって得られる成形体を焼成することによって、上記基板を製造することができる。
 尚、上記保護基材としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム等の樹脂フィルムを用いることが望ましく、また樹脂フィルム以外にも、ガラス板や紙、金属等のフィルム状または板状の種々の材料を用いることができる。但し、保護基材としては、剥離操作の容易性の観点から、可撓性を備えるものを用いることが好ましい。
 また、例えば、上記誘電体材料のシートを保護基材から容易に剥離することができるようにすること等を目的として、例えば、剥離剤等が上記保護基材の表面に塗布されていてもよい。かかる剥離剤には、例えば、当該技術分野において離型剤として知られている各種薬剤が含まれる。より具体的には、かかる剥離剤としては、公知のシリコーン系剥離剤、フッ素系剥離剤等を使用することができる。
 上記導体パターンは、主成分として、例えば、金、銀、銅等から選ばれる少なくとも1種類以上の金属と熱硬化性樹脂前駆体を含んでなる導体ペーストを、例えば、スクリーン印刷等の方法により上記保護基材の表面上に形成することによって配設されることが望ましい。かかる熱硬化性樹脂前駆体としては、フェノール樹脂、レゾール樹脂、ウレタン樹脂、エポキシ樹脂、メラミン樹脂等を使用することができる。これらの中では、フェノール樹脂、レゾール樹脂であることが特に好ましい。かかる導体ペーストを上記保護基材の表面上に印刷した後、この導体ペーストに含まれるバインダーを硬化させることによって、導体パターンを得ることができる。
 上記誘電体材料のスラリーとしては、例えば、樹脂、セラミックの粉末、ガラスの粉末、及び溶剤を含んでなるスラリーを挙げることができる。ここで、樹脂は所謂「バインダー」として機能するものであり、例えば、フェノール樹脂、レゾール樹脂、若しくはポリウレタン樹脂等の熱硬化性樹脂、又はポリオール及びポリイソシアネートを含んでなるポリウレタン前駆体等を使用することができる。これらの中では、ポリオール及びポリイソシアネートを含んでなる熱硬化性樹脂前駆体が特に好ましい。
 セラミックの粉末としては、酸化物系セラミック又は非酸化物系セラミックの何れを使用してもよい。例えば、アルミナ(Al)、ジルコニア(ZrO)、チタン酸バリウム(BaTiO)、窒化珪素(Si)、炭化珪素(SiC)、窒化アルミニウム(AlN)、酸化バリウム(BaO)、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化亜鉛(ZnO)、酸化ネオジム(Nd)等を使用することができる。ガラスの粉末としては、各種酸化物からなるものを使用することができる。具体的には、酸化亜鉛(ZnO)、酸化バリウム(BaO)、酸化硼素(B)、酸化珪素(SiO)、酸化マグネシウム(MgO)、酸化アルミニウム(Al)、酸化カルシウム(CaO)、及びアルカリ金属の酸化物等から適宜選択される複数種の成分からなるガラスが使用される。また、これらの材料は、1種類単独で、または2種以上を組み合わせて使用してもよい。更に、スラリーを調製可能な限りにおいて、セラミックの粉末及びガラスの粉末の粒子径は特に限定されない。
 また、上記溶剤としては、上記バインダーとしての樹脂(及び、使用する場合には分散剤)を溶解するものであれば特に限定されない。溶剤の具体例としては、例えば、多塩基酸エステル(例えば、グルタル酸ジメチル等)、多価アルコールの酸エステル(例えば、トリアセチン(グリセリルトリアセテート)等)等、分子内に2つ以上のエステル結合を有する溶剤を挙げることができる。
 更に、上記誘電体材料のスラリーは、上述の樹脂、セラミックの粉末、及び溶剤以外に、分散剤を含んでいてもよい。分散剤の具体例としては、例えば、ポリカルボン酸系共重合体、ポリカルボン酸塩等を挙げることができる。かかる分散剤を添加することにより、成形前のスラリーを低粘度とし、且つ高い流動性を有するものとすることができる。
 斯くして得られた成形体は、予め定められた温度において、予め定められた期間に亘って、予め定められた環境下において焼成(同時焼成)され、当該成形体の焼成体が得られる。尚、上述したような「ゲルキャスト法」は、「ゲルスラリー鋳込み法」等と称される場合もある(例えば、特許文献3を参照。尚、当該先行技術文献における開示内容は、引用により、本明細書に取り入れられる)。
 尚、上述のように導体パターンが表面上に配設された保護基材の導体パターンが配設されなかった部分に誘電体材料のスラリーを注入し、当該スラリーを固化させて得られる導体パターンが埋設された誘電体材料のシートを形成する方法としては、上記の他に、例えば、ディスペンサー法や、スピンコート法等を採用することもできる。更には、かかる方法として、所謂「ゲルペースト法」を採用することもできる。
 具体的には、一対のガイド板の間に基体(表面上に導体パターンが形成された基体)を設置し、当該基体上にセラミックスラリーを塗布してセラミックスラリーで導体パターンを被覆した後、例えばブレード状の治具を上記一対のガイド板の上面にて摺動させ(摺り切って)、余剰のセラミックスラリーを取り除く方法を採用してもよい。当該方法においては、一対のガイド板の高さを調整することにより、セラミックスラリーの厚みを容易に調整することができる(例えば、特許文献4を参照。尚、当該先行技術文献における開示内容は、引用により、本明細書に取り入れられる)
 ところで、冒頭において述べたように、発光ダイオード(LED)が実装される基板(発光ダイオード用基板)においては、LEDの発光に伴って発生する熱を効率良く放出して、LEDの温度上昇を防ぐことにより、LEDの温度上昇に起因するエネルギー効率の低下を抑制することが望ましい。上記金属基体は、かかる目的のために、本実施態様に係る発光ダイオード用基板を構成する構成要素の1つとして含まれる。
 尚、上述のように、上記金属基体は、例えば、高い熱伝導率を有する金属(例えば、アルミニウム、銅、銀、及びタングステン等の金属、並びにこれらの金属の合金等)を含んでなる。これにより、上記金属基体は、LEDの発光に伴って発生する熱を効率良く伝達して、基板の外部へと放出することができる。かかる効果を十分に発揮させるためには、上記金属基体の厚み(基板の主面に直交する方向における寸法)が大きいことが望ましい。従って、本実施態様に係る発光ダイオード用基板が備える金属基体もまた、金属基体の厚み(基板の主面に直交する方向における寸法)が大きいことが望ましい。具体的には、上記金属基体の厚み(基板の主面に直交する方向における寸法)は、100μm以上であることが望ましい。
 従って、前述のように、本実施態様にかかる発光ダイオード用基板においては、前記金属基体の前記少なくとも1つの表面に直交する方向として定義される厚み方向における厚み(Tm)が100μm以上である。これにより、本実施態様にかかる発光ダイオード用基板においては、厚い金属基体を備えることにより、LEDの発光に伴って発生する熱を、当該基板のLEDが配設された側とは反対側の主面に向かって、より効率良く伝導することができると共に、当該主面と平行な方向(面内方向)においても、効率の良い熱伝導を行うことができる。その結果、LEDの発光に伴って発生する熱を、効率良く基板内に伝達及び拡散して、例えば、当該基板のLEDが配設された側とは反対側の主面等を介して、基板の外部に効率良く放熱することができる。尚、より好ましくは、前記金属基体の厚み(Tm)は150μm以上であることが望ましい。
 ところで、前述のように、基板の絶縁信頼性を確保する観点からは、上記のようにLEDの発光に伴って発生する熱を基板内で効率良く伝導させる金属基体と当該基板とLEDとの電気的接続を確立する表面導体とを電気的に絶縁するための絶縁層の厚みは大きいことが望ましい。しかしながら、絶縁層の厚みが増大するほど、絶縁層が有する相対的に低い熱伝導率に起因して、基板全体としての熱抵抗が増大し、基板全体としての放熱性が低下する。加えて、絶縁層を構成する誘電体材料(本実施態様においては、主としてセラミックを含んでなる誘電体材料)と金属基体及び表面導体を構成する材料(例えば、金属等)との熱膨張収縮挙動が異なることに起因する種々の問題(例えば、基板の製造工程、LEDを含むパッケージの実装工程及びLEDを含むパッケージの完成後の稼働期間等における基板の温度変化に伴う絶縁層に亀裂(クラック)の発生等)して、例えば、高湿環境下における基板の信頼性(高湿信頼性)の低下等の問題を招く虞もある。また、かかる懸念は金属基体の厚みが大きいほど顕著となる。特に、絶縁層を構成する誘電体材料としてセラミックを採用する本実施態様に係る発光ダイオード用基板においては、かかる絶縁層を金属基体及び表面導体と共に同時焼成することによって基板を製造する際には、上記のような懸念がより顕著となる。
 従って、前述のように厚い金属基体を備える本実施態様に係る発光ダイオード用基板において基板の絶縁信頼性及び高湿信頼性を低下させること無く基板全体として低い熱抵抗を実現することにより高い放熱性を発揮するためには、上記のような懸念を低減することが重要である。そこで、前述のように、本発明者は、鋭意研究の結果、所定値以上の厚みを有する金属基体を備える発光ダイオード用基板において、発光ダイオード(LED)との電気的接続のための表面導体の厚みを所定の範囲に収め、且つ金属基体と表面導体とを電気的に絶縁する絶縁層の厚み及び表面導体の厚みとが所定の関係を満たすように構成することにより、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができることを見出した。
 具体的には、100μm以上の厚みを有する金属基体を備える、本実施態様に係る発光ダイオード用基板における表面導体の厚み(Tc)は、例えば、LEDとの半田付け性、基板との接着強度等の観点から、自ずと下限値(例えば、5μm)が存在する。しかしながら、本発明者は、基板全体としての熱抵抗を低減する効果は、表面導体の厚み(Tc)が20μm以上である場合に、より顕著に現れることを見出した。より好ましくは、本実施態様に係る発光ダイオード用基板における表面導体の厚み(Tc)は、30μm以上であることが望ましい。
 一方、前述のように、絶縁層を構成する誘電体材料(主としてセラミック)と金属基体及び表面導体を構成する材料との熱膨張収縮挙動が異なることに起因して発生する種々の問題(例えば、基板の温度変化に伴う絶縁層に亀裂(クラック)の発生等)を低減する観点からは、本実施態様に係る発光ダイオード用基板における表面導体の厚み(Tc)には上限値も存在する。具体的には、本実施態様に係る発光ダイオード用基板における表面導体の厚み(Tc)は、100μm以下である。これにより、上記のような懸念の増大を押さえることができる。より好ましくは、本実施態様に係る発光ダイオード用基板における表面導体の厚み(Tc)は、75μm以下であることが望ましい。
 即ち、本実施態様に係る発光ダイオード用基板においては、前述のように、前記表面導体の前記厚み方向における厚み(Tc)が20μm以上であり、且つ100μm以下である。
 また、前述のように、絶縁層が有する相対的に低い熱伝導率に起因する基板の放熱性の更なる向上における障害は、絶縁層の厚み(Ti)を低減することによって軽減することができる(例えば、特許文献2を参照)。しかしながら、絶縁層の厚み(Ti)を低減することにより基板全体としての熱抵抗を低減しようとすると、当該基板における絶縁信頼性の低下を招く虞がある。具体的には、絶縁層の厚み(Ti)の低減に伴い、表面導体と金属基体との電気的絶縁を確保することが困難となり、例えば、金属基体を介する表面導体同士の電気的短絡(ショート)(表面導体以外の導体パターンを基板が備える場合は、他の導体パターン同士若しくは表面導体と他の導体パターンとの電気的短絡)を招く虞がある。このように、基板における絶縁信頼性の確保という観点から、絶縁層の厚み(Ti)にも自ずと下限値が存在する。逆に、絶縁層の厚み(Ti)が大きいほど基板全体としての熱抵抗も増大することから、絶縁層の厚み(Ti)には上限値も存在する。
 しかしながら、本発明者は、鋭意研究の結果、上記のような絶縁層の厚み(Ti)の下限値及び上限値は、他の構成要素とは無関係に独立して定まるのではなく、これらの下限値及び上限値が表面導体の厚み(Tc)との間に特定の関係を有することを見出した。具体的には、本実施態様に係る発光ダイオード用基板においては、前述のように、前記絶縁層の前記厚み方向における厚み(Ti)と、前記表面導体の前記厚み方向における厚み(Tc)とが、以下に示す(1)式によって表される関係を満足する。
Figure JPOXMLDOC01-appb-M000004
 本実施態様に係る発光ダイオード用基板においては、絶縁層の厚み(Ti)及び表面導体の厚み(Tc)を上記関係式が成立するように構成することにより、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる。その結果、本実施態様に係る発光ダイオード用基板によれば、LEDを含むパッケージの絶縁信頼性及び高湿信頼性を低下させること無く、LEDの発光に伴う発熱によりLEDの温度が上昇してLEDのエネルギー効率が低下することを抑制することができる。
 ところで、前述のように、本実施態様に係る発光ダイオード用基板が備える表面導体は、前記絶縁層の前記金属基体とは反対側の表面において、前記絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出している。このように、本実施態様に係る発光ダイオード用基板においては、表面導体が絶縁層に少なくとも部分的には埋設されるので、例えば、LEDを含むパッケージの実装工程、及びLEDを含むパッケージの完成後の稼働期間等における基板の温度変化に伴い、当該基板とLED素子との熱膨張収縮挙動の相違に起因してこれらを接続する表面導体に応力が作用する場合においても、例えば、表面導体が基板から脱離する等の問題が生ずる虞を低減することができる。
 かかる効果を発揮させるためには、表面導体が絶縁層に十分に深く埋設されていることが望ましい。換言すれば、表面導体の絶縁層に埋設されている部分の厚みが十分に大きいことが望ましい。具体的には、本実施態様に係る発光ダイオード用基板において、表面導体の絶縁層に埋設されている部分の厚みの最大値が10μm以上であることが望ましい。
 従って、本発明の第2の実施態様は、
 本発明の前記第1の実施態様に係る発光ダイオード用基板であって、
 前記表面導体の前記絶縁層に埋設されている部分の前記厚み方向における厚み(Tb)の最大値(Tbmax)が10μm以上である、
発光ダイオード用基板である。
 上記のように、本実施態様に係る発光ダイオード用基板においては、前記表面導体の前記絶縁層に埋設されている部分の前記厚み方向における厚み(Tb)の最大値(Tbmax)が10μm以上である。換言すれば、本実施態様に係る発光ダイオード用基板が備える表面導体は、10μm以上の深さで、絶縁層に埋没している。これにより、本実施態様に係る発光ダイオード用基板によれば、例えば、前述したような基板の温度変化に伴い、当該基板とLED素子との熱膨張収縮挙動の相違に起因して、これらを接続する表面導体に応力が作用する場合においても、例えば、表面導体が基板から脱離する等の問題が生ずる虞をより確実に低減することができる。
 より好ましくは、本実施態様に係る発光ダイオード用基板が備える表面導体の半分以上が絶縁層に埋没していることが望ましい。換言すれば、本実施態様に係る発光ダイオード用基板が備える表面導体は、当該表面導体の厚み(Tc)の半分(1/2)以上の深さで、絶縁層に埋没していることがより望ましい。
 従って、本発明の第3の実施態様は、
 本発明の前記第2の実施態様に係る発光ダイオード用基板であって、
 前記表面導体の前記絶縁層に埋設されている部分の前記厚み方向における厚み(Tb)の最大値(Tbmax)が前記表面導体の前記厚み方向における厚み(Tc)の1/2以上である、
発光ダイオード用基板である。
 上記のように、本実施態様に係る発光ダイオード用基板においては、前記表面導体の前記絶縁層に埋設されている部分の前記厚み方向における厚み(Tb)の最大値(Tbmax)が前記表面導体の前記厚み方向における厚み(Tc)の1/2以上である。換言すれば、本実施態様に係る発光ダイオード用基板が備える表面導体は、その厚み方向において半分以上が絶縁層に埋没している。これにより、本実施態様に係る発光ダイオード用基板によれば、例えば、前述したような基板の温度変化に伴い、当該基板とLED素子との熱膨張収縮挙動の相違に起因して、これらを接続する表面導体に応力が作用する場合においても、例えば、表面導体が基板から脱離する等の問題が生ずる虞を更により確実に低減することができる。
 ところで、LEDの2つの電極(アノード電極又はカソード電極)は、LED素子の異なる表面(例えば、互いに反対側に向いている表面)のそれぞれに1つずつ配設されている場合がある一方、LED素子の同一の表面の2つの電極の両方が配設されている場合がある。後者の場合、本実施態様に係る発光ダイオード基板が備える表面導体は、LEDの2つの電極(アノード電極又はカソード電極)のそれぞれと別個に電気的接続を確立することができるように構成される必要がある。そのため、本実施態様に係る発光ダイオード用基板が備える表面導体は、少なくとも2つ以上の領域に分割されていてもよい。
 従って、本発明の第4の実施態様は、
 本発明の前記第1乃至前記第3の実施態様の何れか1つに係る発光ダイオード用基板であって、
 前記表面導体が、少なくとも2つ以上の領域に分割されている、
発光ダイオード用基板である。
 上記のように、本実施態様に係る発光ダイオード用基板においては、前記表面導体が、少なくとも2つ以上の領域に分割されている。これにより、例えば、上述のようにLEDの2つの電極(アノード電極又はカソード電極)の両方がLED素子の同一の表面に配設されている場合においても、これら2つの電極のそれぞれと別個に電気的接続を確立することができる。尚、上記説明においては、本実施態様に係る発光ダイオード用基板が備える少なくとも2つ以上の領域に分割された表面導体が、LEDの2つの電極のそれぞれと別個に電気的接続を確立する態様を例示したが、本実施態様は、例えば、本実施態様に係る発光ダイオード用基板が備える少なくとも2つ以上の領域に分割された表面導体の2つ以上の領域が、LEDの2つの電極の何れか一方と電気的に接続されるような使用形態を排除するものではないことを念のため申し添えておく。
 ところで、本実施態様に係る発光ダイオード用基板においては、上記のように、前記表面導体が、少なくとも2つ以上の領域に分割されている。従って、例えば、これら2つ以上の領域の間での絶縁信頼性を向上すること等を目的として、これら2つ以上の領域の間の空隙に絶縁材料(誘電体材料)を充填してもよい。
 即ち、本発明の第5の実施態様は、
 本発明の前記第4の実施態様に係る発光ダイオード用基板であって、
 前記表面導体の前記少なくとも2つ以上の領域の間が誘電体材料によって充填されている、
発光ダイオード用基板である。
 上記のように、本実施態様に係る発光ダイオード用基板においては、前記表面導体の前記少なくとも2つ以上の領域の間が誘電体材料によって充填されている。これにより、本実施態様に係る発光ダイオード用基板においては、例えば、少なくとも2つ以上の領域に分割された表面導体の2つ以上の領域の間での絶縁信頼性を向上させることができる。尚、これら2つ以上の領域の間に充填される誘電体材料は特に限定されるものではなく、当該基板の使用環境等に応じて、充填材料等として当該技術分野において広く使用されている各種材料の中から適宜選択することができる。あるいは、当該誘電体材料は、本実施態様に係る発光ダイオード用基板が備える絶縁層を構成する誘電体材料と同一の材料であってもよい。
 以上説明してきた種々の実施態様を始めとする本発明に係る発光ダイオード用基板によれば、これまで説明してきた種々の実施態様を始めとする本発明に係る発光ダイオード用基板によれば、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができる。その結果、LEDを含むパッケージの絶縁信頼性及び高湿信頼性を低下させること無く、LEDの発光に伴う発熱によりLEDの温度が上昇してLEDのエネルギー効率が低下することを抑制することができる。
 以下、本発明の幾つかの実施態様に係る発光ダイオード用基板につき更に詳しく説明する。但し、以下に述べる説明はあくまでも例示を目的とするものであり、本発明の範囲が以下の説明に限定されるものと解釈されるべきではない。
1.発光ダイオード用基板の製造方法
(1)ゲルペースト法を利用する発光ダイオード用基板の製造方法
 先ず、本発明に係る発光ダイオード用基板の製造方法の1つの例として、前述したようなゲルペースト法を利用する発光ダイオード用基板の製造方法につき、添付図面を参照しながら以下に説明する。図1は、前述のように、本発明の1つの実施態様に係る発光ダイオード用基板の製造方法の一例を示す模式図である。図1に示すように、本実施例に係る製造方法においては、ゲルペースト法により、所定の厚みを有する表面導体が埋設されたゲルシートを調製した。具体的には、先ず、ステップS11において、表面上に導体パターンが形成された保護基材を一対のガイド板(図示せず)の間に設置し、当該保護基材上にセラミックペースト(ペースト状スラリー)を塗布してセラミックペーストで導体パターンを被覆した後、例えばブレード状の治具を上記一対のガイド板の上面にて摺動させ(摺り切って)、余剰のセラミックペーストを取り除くことにより、導体パターンが埋設されたゲルシートを調製した。尚、本実施例においては、表面導体の一方の主面が、ゲルシートの一方の主面において、表面導体の面とゲルシートの面とが同一平面に存在して露出しているように(つまり、「面一(つらいち)」になるように)構成した。
 次に、ステップS12において、後に表面導体と裏面導体とを電気的に接続するために使用されるビア導体を配設するためのビアホールをパンチ加工によって形成した。更に、ステップS13において、上記のようにして形成されたビアホール内に導体ペーストを印刷法によって充填した。本実施例においては、斯くして得られたゲルシートを「表面側ゲルシート」と称することとする。
 一方、ステップS21において、誘電体材料のグリーンシートを打ち抜いて、金属基体及びビア導体を配設するための貫通孔及びビアホールを形成した。次に、ステップS22において、上記貫通孔及びビアホールをそれぞれ金属基体用材料(例えば、銅粉と窒化アルミニウム粉との混合物、銀等)及び導体ペーストによって充填した。加えて、本実施例においては、ステップS23において、当該基板をプリント基板等に接続するための裏面導体を、当該グリーンシートの一方の主面(裏面)に、上記ビア導体と接続するように、印刷法(例えば、スクリーン印刷法等)によって配設した。本実施例においては、斯くして得られたグリーンシートを「裏面側グリーンシート」と称することとする。
 最後に、ステップS31において、上記表面側ゲルシートの表面導体が露出していない側の主面と上記裏面側グリーンシートの裏面導体が形成されていない側の主面とが接触するように、上記表面側ゲルシートと上記裏面側グリーンシートとを積層した。尚、この積層時に上記表面側ゲルシート及び上記裏面側グリーンシートのそれぞれ対向する主面上で露出しているビア導体同士が電気的に導通可能な状態で互いに接触することが必要である。従って、上記ステップS21及びS22において形成されるビア導体と、上記ステップS12及びS13において形成される表面導体から延在するビア導体とは、上記表面側ゲルシートと上記裏面側グリーンシートとを積層する際に互いに電気的に導通可能な状態となることが可能な位置に配設した(具体的には、これらのビア導体は、基板の主面に平行な投影面において同じ位置に配設した)。
 以上のようにして得られた上記表面側ゲルシートと上記裏面側グリーンシートとの積層体を、その後、一体として焼成(同時焼成)することにより、表面導体の露出面と基板の主面とが同一平面に存在するように(つまり、「面一(つらいち)」になるように)構成された、本発明の1つの実施態様に係る発光ダイオード用基板を製造することができる。このように表面導体の露出面と基板の主面とが同一平面に存在するよう構成された、本発明の1つの実施態様に係る発光ダイオード用基板の構造の一例としては、例えば、図3及び図4に示す構造を挙げることができる。但し、当業者には容易に理解されるように、ゲルペースト法を利用する発光ダイオード用基板の製造方法によって製造される基板は、上記のように表面導体の露出面と基板の主面とが同一平面に存在するように構成された基板に限定されるものではなく、後述するような基板の主面から表面導体が突き出るように構成された基板をゲルペースト法を利用する発光ダイオード用基板の製造方法によって製造することも可能であることは言うまでも無い。
(2)ゲルスラリー鋳込み法を利用する発光ダイオード用基板の製造方法
 先ず、本発明に係る発光ダイオード用基板の製造方法のもう1つの例として、ゲルスラリー鋳込み法を利用する発光ダイオード用基板の製造方法につき、添付図面を参照しながら以下に説明する。図2は、前述のように、本発明のもう1つの実施態様に係る発光ダイオード用基板の製造方法の一例を示す模式図である。図2に示すように、本実施例に係る製造方法においては、ゲルスラリー鋳込み法によって形成されたゲルシートを利用して、表面導体が部分的に埋設されたゲルシートを調製した。
 具体的には、先ず、ステップS41において、ゲルスラリー鋳込み法によってゲルシートを作製し、次にステップS42において、上記ゲルシートにパンチ加工を施して、後に表面導体と裏面導体とを電気的に接続するために使用されるビア導体を配設するためのビアホールを形成した。次いで、ステップS43において、上記のようにして形成されたビアホール内に導体ペーストを印刷法によって充填した。更に、ステップS44において、上記のようにしてビア導体となるべき導体ペーストによって充填されたビアホールを有するゲルシートの一方の主面上に、当該ビア導体と接続するように、表面導体となるべき導体ペーストを印刷した。本実施例においては、斯くして得られたゲルシートを「表面側ゲルシート」と称することとする。
 一方、ステップS51において、ゲルスラリー鋳込み法によって作製した誘電体材料のゲルシートを打ち抜いて、金属基体及びビア導体を配設するための貫通孔及びビアホールを形成した。次に、ステップS52において、上記貫通孔及びビアホールをそれぞれ金属基体用材料(例えば、銅粉と窒化アルミニウム粉との混合物、銀等)及び導体ペーストによって充填した。加えて、本実施例においては、ステップS53において、当該基板をプリント基板等に接続するための裏面導体を、当該ゲルシートの一方の主面(裏面)に、上記ビア導体と接続するように、印刷法(例えば、スクリーン印刷法等)によって配設した。本実施例においては、斯くして得られたゲルシートを「裏面側ゲルシート」と称することとする。
 最後に、ステップS61において、上記表面側ゲルシートの表面導体が露出していない側の主面と上記裏面側ゲルシートの裏面導体が形成されていない側の主面とが接触するように、上記表面側ゲルシートと上記裏面側ゲルシートとを積層した。尚、ステップS61における積層時の圧力により、上記ステップS44において形成された表面導体がゲルシート内部に埋没すると共に、その形状が崩れて、形成当初の形状(矩形)ではなくなる。その後、積層圧力が解除されると、ゲルシート内部に埋没していた表面導体の一部がゲルシートの表面から突き出て、ステップS61に示すような形状となった。
 尚、上記積層時に上記表面側ゲルシート及び上記裏面側ゲルシートのそれぞれ対向する主面上で露出しているビア導体同士が電気的に導通可能な状態で互いに接触することが必要である。従って、上記ステップS51乃至S52において形成されるビア導体と、上記ステップS42及びS43において形成される表面導体から延在するビア導体とは、上記表面側ゲルシートと上記裏面側ゲルシートとを積層する際に、互いに電気的に導通可能な状態となることが可能な位置に配設した(具体的には、これらのビア導体は、基板の主面に平行な投影面において同じ位置に配設した)。
 以上のようにして得られた上記表面側ゲルシートと上記裏面側ゲルシートとの積層体を、その後、一体として焼成(同時焼成)することにより、絶縁層の金属基体とは反対側の表面において、表面導体が絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出しているように(つまり、基板の主面から表面導体が突き出るように)構成された、本発明のもう1つの実施態様に係る発光ダイオード用基板を製造することができる。このように表面導体が絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出しているように構成された、本発明の1つの実施態様に係る発光ダイオード用基板の構造の一例としては、例えば、図5に示す構造を挙げることができる。但し、当業者には容易に理解されるように、ゲルスラリー鋳込み法を利用する発光ダイオード用基板の製造方法によって製造される基板は、上記のように表面導体が絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出しているように構成された基板に限定されるものではなく、前述したような表面導体の露出面と基板の主面とが同一平面に存在するように(つまり、「面一(つらいち)」になるように)構成された基板をゲルスラリー鋳込み法を利用する発光ダイオード用基板の製造方法によって製造することも可能であることは言うまでも無い。
 尚、本実施例に係る発光ダイオード用基板においては、表面導体は2つの領域に分割されており、個々の領域が、基板の表面において、部分的に埋設され且つ部分的に露出している。従って、基板の表面から露出している部分においては、表面導体の2つの領域の間には空隙(ギャップ)が生ずることとなる。当該ギャップを誘電体材料で充填して、表面導体の2つの領域の間での絶縁信頼性を向上させることができる。尚、これら2の領域の間に充填される誘電体材料は特に限定されるものではなく、当該基板の使用環境等に応じて、充填材料等として当該技術分野において広く使用されている各種材料の中から適宜選択することができる。あるいは、当該誘電体材料は、本実施態様に係る発光ダイオード用基板が備える絶縁層を構成する誘電体材料と同一の材料であってもよい。
 尚、ステップS31及びステップS61の何れにおいて製造される基板についても、焼成過程の後にメッキ工程を実行して、表面導体及び裏面導体の表面にメッキ処理を施してもよい。また、上記はあくまでも例示に過ぎず、本発明に係る発光ダイオード用基板の製造方法が上記に限定されるものと解釈されるべきものではない。
2.各種評価用サンプル基板の評価(1)
 上述した製造方法により、表面導体の厚み(Tc)と絶縁層の厚み(Ti)との種々の組み合わせを有する発光ダイオード用基板の各種評価用サンプルを製造した。ここで、添付図面を参照しながら、本実施例に係る発光ダイオード用基板の各種評価用サンプルについて説明する。図3は、前述のように、本発明の1つの実施態様に係る発光ダイオード用基板の構成の一例を示す模式図である。図3に示すように、本実施例に係る発光ダイオード用基板を構成する各構成部材の「厚み」とは、金属基体、絶縁層、及び表面導体が積層される方向(即ち、これらの構成部材の界面に垂直な方向)における各構成部材の寸法を指す用語である。換言すれば、本実施例に係る発光ダイオード用基板における「厚み方向」とは、表面導体が積層される絶縁層と金属基体との界面となる金属基体の表面に直交する方向として定義される。
 尚、本実施例においては、種々の表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせを有する発光ダイオード用基板の各種評価用サンプルを評価したが、図3に示すように、何れのサンプルにおいても、金属基体は銀(Ag)を主成分とする材料によって構成し、その厚みは200μmで一定とし、その寸法は、LEDの寸法(1.2mm四方)に合わせて、1.5mm四方とした。また、基板の寸法は3.5mm四方とし、表面導体の2つの領域の間隔は50μmとした。更に、本発明の要件を満たす厚みを有する表面導体としては、基板の厚み方向において上記金属基体と対向する位置に、1.7mm四方の寸法を有する表面導体を配設した。尚、本実施例においては、表面導体の面積が金属基体の面積とほぼ一致しているので、表面導体と裏面導体とを電気的に接続するためのビア導体を(基板の主面委平行な平面への投影図において)金属基体が存在しない位置に配設し、かかるビア導体と上記表面導体とを電気的に接続する面内導体を更に配設した。
 上記のような条件の下で、表面導体の厚み(Tc)と絶縁層の厚み(Ti)とを、以下の表1及び表2に示すように種々に変更して、発光ダイオード用基板の各種評価用サンプルを製造し、基板全体としての電気的絶縁性(電気的短絡の有無)、ヒートサイクル後の絶縁層におけるクラックの発生状況、及び熱抵抗の大きさに対する、表面導体の厚み(Tc)及び絶縁層の厚み(Ti)の影響を調べた。かかる評価の結果につき、以下に詳しく説明する。
 尚、基板全体としての電気的絶縁性については、発光ダイオード用基板の各種評価用サンプルを製造後、個々のサンプルにおける表面導体と金属基体との間での電気的短絡の有無を検査し、電気的短絡が認められたものは「不良」、認められなかったものは「良」と判定した。また、ヒートサイクル後の絶縁層におけるクラックの発生状況については、上述のようにして製造された発光ダイオード用基板の各種評価用サンプルの各々につき、-40℃にて30分間保持した後、-40℃から150℃まで5分間かけて昇温し、150℃にて30分間保持した後、150℃から-40℃まで5分間かけて降温するサイクルにそれぞれ500回暴露した後に、溶融したハンダに基板を浸漬して、例えば、銅(Cu)、銀(Ag)等を含んでなる表面導体を溶解させ、表面導体を取り除いた後に、レッドチェック検査によって絶縁層におけるクラックの発生の有無を調べた。更に、熱抵抗の大きさについては、JPCA(社団法人日本電子回路工業会)の高輝度LED用電子回路基板試験方法に準拠して測定した。
(a)表面導体の厚み(Tc)と絶縁層の厚み(Ti)との関係
 本実施例においては、先ず、電気的絶縁性及びヒートサイクルに伴うクラックの発生に対する表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせの影響を調べた。各種評価用サンプルにおける表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせ、及び電気的絶縁性及びヒートサイクルに伴うクラックの発生についての評価結果を以下の表1に列挙する。
Figure JPOXMLDOC01-appb-T000005
 表1の結果からも明らかであるように、表面導体の厚み(Tc)が本発明における好適な範囲(20μm以上、100μm以下)に入っていても、電気的絶縁性及びヒートサイクルに伴うクラックの発生状況が共に良好であるためには、絶縁層の厚み(Ti)が特定の範囲内に入っている必要があることが判る。しかしながら、単純に絶縁層の厚み(Ti)が特定の範囲内に入っていれば良好な評価結果が得られるのではなく、絶縁層の厚み(Ti)の好適な範囲の上限値及び下限値は、表面導体の厚み(Tc)に対応して変化することが認められた。
 具体的には、絶縁層の厚み(Ti)が同じ5μmであっても、表面導体の厚み(Tc)が60μmである場合(実施例1P-2)は電気的絶縁性及びクラックの発生状況が何れも問題無く、「良」と判定されるのに対し、表面導体の厚み(Tc)が20μmである場合(比較例1P-1)は電気的絶縁性が「不良」となっている。また、絶縁層の厚み(Ti)が同じ42μmであっても、表面導体の厚み(Tc)が20μmである場合(実施例1P-5)は「良」と判定されるのに対し、表面導体の厚み(Tc)が100μmである場合(比較例1P-8)はヒートサイクルに伴うクラックの発生が認められた。
 そこで、種々の表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせと対応する評価用サンプルについての評価結果との関係から、金属基体の厚み(Tm)が100μm以上である基板においては、絶縁層の厚み(Ti)と表面導体の厚み(Tc)とが以下に示す(1)式によって表される関係を満足する場合に、電気的絶縁性及びヒートサイクルに伴うクラックの発生状況の何れについても良好な結果が得られることを見出した。
Figure JPOXMLDOC01-appb-M000006
(b)表面導体の厚み(Tc)の好適な範囲
 上記(a)においては、電気的絶縁性及びヒートサイクルに伴うクラックの発生状況について良好な結果を得るためには、絶縁層の厚み(Ti)と表面導体の厚み(Tc)とが上述した(1)式によって表される関係を満足する必要があることが確認された。次に、本実施例においては、基板全体としての熱抵抗に対する表面導体の厚み(Tc)の影響を調べた。各種評価用サンプルにおける表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせ、及び基板全体としての熱抵抗についての評価結果を以下の表2に列挙する。
 尚、基板全体としての熱抵抗の絶対値は、基板が備える絶縁層の厚み(Ti)によって大きく影響されるため、本実施例においては、絶縁層の厚み(Ti)を6μmで一定としたグループ(以降、「1Qグループ」と称する)と、絶縁層の厚み(Ti)を38μmで一定としたグループ(以降、「1Rグループ」と称する)とのぞれぞれのグループについて、様々な表面導体の厚み(Tc)における熱抵抗を調べた。尚、何れのグループにおいても、例えば、LEDとの半田付け性、基板との接着強度等の観点から、表面導体の厚み(Tc)の下限は5μmとし、それぞれのグループにおける表面導体の厚み(Tc)が5μmであるサンプル(比較例1Q-1及び比較例1R-1)を基準とした熱抵抗の相対値(百分率)を比較した。
Figure JPOXMLDOC01-appb-T000007
 表2の結果からも明らかであるように、絶縁層の厚み(Ti)が6μm及び40μmの何れの場合においても(即ち、1Qグループ及び1Rグループの何れにおいても)、表面導体の厚み(Tc)の増大に伴って基板全体としての熱抵抗が低下する傾向が認められた。これは、LEDとの電気的接続部分(即ち、表面導体の外部表面)を介して表面導体の内部に伝えられた熱が、表面導体の内部を通過して、金属基体との間に介在する絶縁層に伝導する際に、表面導体の厚み(Tc)が大きいほど、基板の厚み方向において、より深く伝導し易くなるためであると考えられる。
 更に、表2の結果からも明らかであるように、表面導体の厚み(Tc)の増大に伴って基板全体としての熱抵抗が低下する傾向は、表面導体の厚み(Tc)が20μm以上になるサンプル(実施例1Q-1乃至1Q-5及び実施例1R-1及び1R-5)において、より顕著となった。一方、表面導体の厚み(Tc)が110μmを超えるサンプル(比較例1Q-4及び比較例1R-4)においては、ヒートサイクル(H/C)に伴うクラックの発生が認められた。即ち、本実施例に係る発光ダイオード用基板において、基板の信頼性を低下させること無く、基板全体としての熱抵抗を有効に低減するためには、表面導体の厚み(Tc)が20μm以上であり、且つ100μm以下であることが望ましいことが確認された。
3.各種評価用サンプル基板の評価(2)
 上述した製造方法により、表面導体の厚み(Tc)と絶縁層の厚み(Ti)との種々の組み合わせを有する発光ダイオード用基板の各種評価用サンプルを製造した。ここで、添付図面を参照しながら、本実施例に係る発光ダイオード用基板の各種評価用サンプルについて説明する。図4は、前述のように、本発明のもう1つの実施態様に係る発光ダイオード用基板の構成の一例を示す模式図である。図4に示す実施態様に係る発光ダイオード用基板の構成は、金属基体の材質を銅(Cu)粉末と窒化アルミニウム(AlN)粉末との混合物とし、その寸法をLEDの寸法(1.2mm四方)よりも大幅に大きい2.0mm四方とし、本発明の要件を満たす厚みを有する表面導体の寸法もまた、LEDの寸法(1.2mm四方)よりも大幅に大きい2.5mm四方とし、(基板の主面委平行な平面への投影図において)金属基体が存在しない位置にビア導体を配設し、当該ビア導体を表面導体及び裏面導体と電気的に直接的に接続したことを除き、図3に示す実施態様に係る発光ダイオード用基板の構成と同様である。
 上記のような条件の下で、表面導体の厚み(Tc)と絶縁層の厚み(Ti)とを、以下の表3及び表4に示すように種々に変更して、発光ダイオード用基板の各種評価用サンプルを製造し、基板全体としての電気的絶縁性(電気的短絡の有無)、ヒートサイクル後の絶縁層におけるクラックの発生状況、及び熱抵抗の大きさに対する、表面導体の厚み(Tc)及び絶縁層の厚み(Ti)の影響を調べた。かかる評価の結果につき、以下に詳しく説明する。但し、各種評価項目の測定方法及び評価基準、ヒートサイクルの条件等は、上述した「2.各種評価用サンプル基板の評価(1)」と同様である。
(a)表面導体の厚み(Tc)と絶縁層の厚み(Ti)との関係
 本実施例においては、先ず、電気的絶縁性及びヒートサイクルに伴うクラックの発生に対する表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせの影響を調べた。各種評価用サンプルにおける表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせ、及び電気的絶縁性及びヒートサイクルに伴うクラックの発生についての評価結果を以下の表3に列挙する。
Figure JPOXMLDOC01-appb-T000008
 表3の結果からも明らかであるように、表面導体の厚み(Tc)が本発明における好適な範囲(20μm以上、100μm以下)に入っていても、電気的絶縁性及びヒートサイクルに伴うクラックの発生状況が共に良好であるためには、絶縁層の厚み(Ti)が特定の範囲内に入っている必要があることが判る。しかしながら、単純に絶縁層の厚み(Ti)が特定の範囲内に入っていれば良好な評価結果が得られるのではなく、絶縁層の厚み(Ti)の好適な範囲の上限値及び下限値は、表面導体の厚み(Tc)に対応して変化することが認められた。
 具体的には、絶縁層の厚み(Ti)が同じ5μmであっても、表面導体の厚み(Tc)が60μmである場合(実施例2P-2)は電気的絶縁性及びクラックの発生状況が何れも問題無く、「良」と判定されるのに対し、表面導体の厚み(Tc)が20μmである場合(比較例2P-1)は電気的絶縁性が「不良」となっている。また、絶縁層の厚み(Ti)が同じ42μmであっても、表面導体の厚み(Tc)が20μmである場合(実施例2P-5)は「良」と判定されるのに対し、表面導体の厚み(Tc)が100μmである場合(比較例2P-8)はヒートサイクルに伴うクラックの発生が認められた。
 そこで、種々の表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせと対応する評価用サンプルについての評価結果との関係から、金属基体の厚み(Tm)が100μm以上である基板においては、絶縁層の厚み(Ti)と表面導体の厚み(Tc)とが、上述した(1)式によって表される関係を満足する場合に、電気的絶縁性及びヒートサイクルに伴うクラックの発生状況の何れについても良好な結果が得られることが改めて確認された。
(b)表面導体の厚み(Tc)の好適な範囲
 上記(a)においては、電気的絶縁性及びヒートサイクルに伴うクラックの発生状況について良好な結果を得るためには、絶縁層の厚み(Ti)と表面導体の厚み(Tc)とが上述した(1)式によって表される関係を満足する必要があることが改めて確認された。次に、本実施例においては、基板全体としての熱抵抗に対する表面導体の厚み(Tc)の影響を調べた。各種評価用サンプルにおける表面導体の厚み(Tc)と絶縁層の厚み(Ti)との組み合わせ、及び基板全体としての熱抵抗についての評価結果を以下の表4に列挙する。尚、熱抵抗の相対値(百分率)の評価における基準の設定方法については、上述した「2.各種評価用サンプル基板の評価(1)」と同様である。
 尚、本実施例においても、基板全体としての熱抵抗の絶対値は、基板が備える絶縁層の厚み(Ti)によって大きく影響されるため、上述した「2.各種評価用サンプル基板の評価(1)」と同様に、絶縁層の厚み(Ti)を6μmで一定としたグループ(以降、「2Qグループ」と称する)と、絶縁層の厚み(Ti)を38μmで一定としたグループ(以降、「2Rグループ」と称する)とのぞれぞれのグループについて、様々な表面導体の厚み(Tc)における熱抵抗を調べた。
Figure JPOXMLDOC01-appb-T000009
 表4の結果からも明らかであるように、絶縁層の厚み(Ti)が6μm及び40μmの何れの場合においても(即ち、2Qグループ及び2Rグループの何れにおいても)、表面導体の厚み(Tc)の増大に伴って基板全体としての熱抵抗が低下する傾向が認められた。これは、LEDとの電気的接続部分(即ち、表面導体の外部表面)を介して表面導体の内部に伝えられた熱が、表面導体の内部を通過して、金属基体との間に介在する絶縁層に伝導する際に、表面導体の厚み(Tc)が大きいほど、基板の厚み方向において、より深く伝導し易くなることに加えて、表面導体の面積が大きいことに起因して、LEDとの電気的接続部分(即ち、表面導体の外部表面)を介して表面導体の内部に伝えられた熱が、基板の主面に平行な面内において、より大きな面積へと拡散しているため、絶縁層を介して当該熱を金属基体に伝導する際に絶縁層の相対的に高い熱抵抗が基板全体としての熱抵抗に及ぼす影響が低減されるためであると考えられる。
 更に、表4の結果からも明らかであるように、表面導体の厚み(Tc)の増大に伴って基板全体としての熱抵抗が低下する傾向は、表面導体の厚み(Tc)が20μm以上になるサンプル(実施例2Q-1乃至2Q-5及び実施例2R-1及び2R-5)において、より顕著となった。一方、表面導体の厚み(Tc)が110μmを超えるサンプル(比較例2Q-4及び比較例2R-4)においては、ヒートサイクル(H/C)に伴うクラックの発生が認められた。即ち、本実施例に係る発光ダイオード用基板において、基板の信頼性を低下させること無く、基板全体としての熱抵抗を有効に低減するためには、表面導体の厚み(Tc)が20μm以上であり、且つ100μm以下であることが望ましいことが改めて確認された。
4.結論
 以上のように、所定値(具体的には、100μm)以上の厚みを有する金属基体を備える場合であっても、発光ダイオード(LED)との電気的接続のための表面導体の厚みを所定の範囲(具体的には、20μm以上、100μm以下)に収め、且つ金属基体と表面導体とを電気的に絶縁する絶縁層の厚み及び表面導体の厚みとが所定の関係(具体的には、式(1)によって表される関係)を満たすように構成された、本発明に係る発光ダイオード用基板によれば、基板の絶縁信頼性及び高湿信頼性を低下させること無く、基板全体として低い熱抵抗を実現することにより高い放熱性を発揮することができることが確認された。
 尚、ここで、本発明に係る発光ダイオード用基板の適用例につき、添付図面を参照しながら説明する。図6は、前述のように、本発明の1つの実施態様に係る発光ダイオード用基板を含むLEDパッケージの構成の一例を示す模式図である。図6に示すように、本実施態様に係る発光ダイオード用基板を含むLEDパッケージにおいては、LEDの発光に伴って発生する熱が当該発光ダイオード用基板を介してプリント基板へと伝導される。この際、本実施態様に係る発光ダイオード用基板においては、上述したように、本発明の規定を満足する構成を有していることから、従来技術と比較して、より低い熱抵抗及びより高い信頼性(温度変化の繰り返しへの暴露に伴うクラック発生の低減)を呈することができる。その結果、図6に示すLEDパッケージにおいては、優れたエネルギー効率及び信頼性を発揮することができる。
 以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施態様及び対応する実施例につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施態様及び実施例に限定されるものと解釈されるべきではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。

Claims (5)

  1.  金属基体と、
     前記金属基体の少なくとも1つの表面上に配設された、主としてセラミックを含んでなる誘電体材料からなる絶縁層と、
     前記絶縁層の前記金属基体とは反対側の表面において、前記絶縁層に少なくとも部分的には埋設され且つ少なくとも部分的には露出している表面導体と、
    を備える、
    発光ダイオード用基板であって、
     前記金属基体の前記少なくとも1つの表面に直交する方向として定義される厚み方向における厚み(Tm)が100μm以上であり、
     前記表面導体の前記厚み方向における厚み(Tc)が20μm以上であり、且つ100μm以下であり、
     前記絶縁層の前記厚み方向における厚み(Ti)と、前記表面導体の前記厚み方向における厚み(Tc)とが、以下に示す(1)式によって表される関係を満足する、発光ダイオード用基板。
    Figure JPOXMLDOC01-appb-M000001
  2.  請求項1に記載の発光ダイオード用基板であって、
     前記表面導体の前記絶縁層に埋設されている部分の前記厚み方向における厚み(Tb)の最大値(Tbmax)が10μm以上である、
    発光ダイオード用基板。
  3.  請求項2に記載の発光ダイオード用基板であって、
     前記表面導体の前記絶縁層に埋設されている部分の前記厚み方向における厚み(Tb)の最大値(Tbmax)が前記表面導体の前記厚み方向における厚み(Tc)の1/2以上である、
    発光ダイオード用基板。
  4.  請求項1乃至3の何れか1項に記載の発光ダイオード用基板であって、
     前記表面導体が、少なくとも2つ以上の領域に分割されている、
    発光ダイオード用基板。
  5.  請求項4に記載の発光ダイオード用基板であって、
     前記表面導体の前記少なくとも2つ以上の領域の間が誘電体材料によって充填されている、
    発光ダイオード用基板。
PCT/JP2012/078752 2012-11-06 2012-11-06 発光ダイオード用基板 WO2014073039A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014545472A JP6125528B2 (ja) 2012-11-06 2012-11-06 発光ダイオード用基板および発光ダイオード用基板の製造方法
PCT/JP2012/078752 WO2014073039A1 (ja) 2012-11-06 2012-11-06 発光ダイオード用基板
EP12888036.6A EP2919287B1 (en) 2012-11-06 2012-11-06 Substrate for light emitting diodes
US14/701,792 US9408295B2 (en) 2012-11-06 2015-05-01 Substrate for light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078752 WO2014073039A1 (ja) 2012-11-06 2012-11-06 発光ダイオード用基板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/701,792 Continuation US9408295B2 (en) 2012-11-06 2015-05-01 Substrate for light-emitting diode

Publications (1)

Publication Number Publication Date
WO2014073039A1 true WO2014073039A1 (ja) 2014-05-15

Family

ID=50684177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078752 WO2014073039A1 (ja) 2012-11-06 2012-11-06 発光ダイオード用基板

Country Status (4)

Country Link
US (1) US9408295B2 (ja)
EP (1) EP2919287B1 (ja)
JP (1) JP6125528B2 (ja)
WO (1) WO2014073039A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059798A (ja) * 2015-09-19 2017-03-23 日本特殊陶業株式会社 配線基板およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6158341B2 (ja) * 2013-10-03 2017-07-05 シャープ株式会社 発光装置、および、発光装置の製造方法
US9930750B2 (en) * 2014-08-20 2018-03-27 Lumens Co., Ltd. Method for manufacturing light-emitting device packages, light-emitting device package strip, and light-emitting device package
CN104993041B (zh) * 2015-06-04 2019-06-11 陈建伟 一种led倒装芯片固晶导电粘接结构及其安装方法
US9668301B2 (en) * 2015-07-03 2017-05-30 Ndt Engineering & Aerospace Co., Ltd. Wet-use plane heater using PTC constant heater-ink polymer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353826A (ja) 1999-06-09 2000-12-19 Sanyo Electric Co Ltd 混成集積回路装置および光照射装置
JP2006525679A (ja) 2003-05-05 2006-11-09 ラミナ セラミックス インコーポレーテッド 高温動作用にパッケージ化された発光ダイオード
JP2008159791A (ja) * 2006-12-22 2008-07-10 Nichia Chem Ind Ltd 発光装置およびその製造方法
JP2009029134A (ja) 2007-07-27 2009-02-12 Ngk Insulators Ltd セラミック積層成形体、セラミック焼成体、セラミック積層成形体の製造方法及びセラミック焼成体の製造方法
JP2009208459A (ja) 2007-07-27 2009-09-17 Ngk Insulators Ltd セラミック成形体、セラミック部品、セラミック成形体の製造方法及びセラミック部品の製造方法
JP2011040622A (ja) * 2009-08-13 2011-02-24 Nippon Tungsten Co Ltd Ledパッケージ基板
JP2011205009A (ja) * 2010-03-26 2011-10-13 Kyocera Corp 表面実装型発光素子用配線基板および発光装置
JP2012084733A (ja) * 2010-10-13 2012-04-26 Toshiba Lighting & Technology Corp 発光装置および照明器具

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233817B1 (en) * 1999-01-17 2001-05-22 Delphi Technologies, Inc. Method of forming thick-film hybrid circuit on a metal circuit board
US6548832B1 (en) 1999-06-09 2003-04-15 Sanyo Electric Co., Ltd. Hybrid integrated circuit device
JP3840921B2 (ja) * 2001-06-13 2006-11-01 株式会社デンソー プリント基板のおよびその製造方法
JP2006066630A (ja) * 2004-08-26 2006-03-09 Kyocera Corp 配線基板および電気装置並びに発光装置
DE102005011857B4 (de) * 2005-03-15 2007-03-22 Alcan Technology & Management Ag Flächige Beleuchtungseinrichtung
JP4595665B2 (ja) * 2005-05-13 2010-12-08 富士電機システムズ株式会社 配線基板の製造方法
JP5413707B2 (ja) * 2005-06-06 2014-02-12 Dowaエレクトロニクス株式会社 金属−セラミック複合基板及びその製造方法
JP4804109B2 (ja) * 2005-10-27 2011-11-02 京セラ株式会社 発光素子用配線基板および発光装置並びに発光素子用配線基板の製造方法
US8294040B2 (en) * 2006-02-20 2012-10-23 Daicel Chemical Industries, Ltd. Porous film and multilayer assembly using the same
JP2008109079A (ja) * 2006-09-26 2008-05-08 Kyocera Corp 表面実装型発光素子用配線基板および発光装置
KR101041199B1 (ko) 2007-07-27 2011-06-13 엔지케이 인슐레이터 엘티디 세라믹 성형체, 세라믹 부품, 세라믹 성형체의 제조 방법및 세라믹 부품의 제조 방법
JP5188120B2 (ja) 2007-08-10 2013-04-24 新光電気工業株式会社 半導体装置
JP2010274256A (ja) * 2009-01-29 2010-12-09 Kyocera Corp 光照射ヘッド、露光デバイス、画像形成装置、液滴硬化装置、および液滴硬化方法
JP5689223B2 (ja) * 2009-03-05 2015-03-25 日亜化学工業株式会社 発光装置
EP2315284A3 (en) 2009-10-21 2013-03-27 Toshiba Lighting & Technology Corporation Light-Emitting apparatus and luminaire
EP2500955A1 (en) * 2009-11-13 2012-09-19 Asahi Glass Company, Limited Substrate for light-emitting elements and light-emitting device
CN102201524A (zh) 2010-03-24 2011-09-28 旭硝子株式会社 发光元件用基板及发光装置
JP2011233775A (ja) * 2010-04-28 2011-11-17 Stanley Electric Co Ltd 半導体パッケージおよび半導体発光装置
WO2012067203A1 (ja) * 2010-11-19 2012-05-24 旭硝子株式会社 発光素子用基板および発光装置
JP2012140289A (ja) 2010-12-28 2012-07-26 Asahi Glass Co Ltd 被覆アルミナフィラー、ガラスセラミックス組成物、発光素子用基板、および発光装置
JP5985846B2 (ja) * 2011-06-29 2016-09-06 Flexceed株式会社 発光素子搭載用基板及びledパッケージ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353826A (ja) 1999-06-09 2000-12-19 Sanyo Electric Co Ltd 混成集積回路装置および光照射装置
JP2006525679A (ja) 2003-05-05 2006-11-09 ラミナ セラミックス インコーポレーテッド 高温動作用にパッケージ化された発光ダイオード
JP2008159791A (ja) * 2006-12-22 2008-07-10 Nichia Chem Ind Ltd 発光装置およびその製造方法
JP2009029134A (ja) 2007-07-27 2009-02-12 Ngk Insulators Ltd セラミック積層成形体、セラミック焼成体、セラミック積層成形体の製造方法及びセラミック焼成体の製造方法
JP2009208459A (ja) 2007-07-27 2009-09-17 Ngk Insulators Ltd セラミック成形体、セラミック部品、セラミック成形体の製造方法及びセラミック部品の製造方法
JP2011040622A (ja) * 2009-08-13 2011-02-24 Nippon Tungsten Co Ltd Ledパッケージ基板
JP2011205009A (ja) * 2010-03-26 2011-10-13 Kyocera Corp 表面実装型発光素子用配線基板および発光装置
JP2012084733A (ja) * 2010-10-13 2012-04-26 Toshiba Lighting & Technology Corp 発光装置および照明器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2919287A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059798A (ja) * 2015-09-19 2017-03-23 日本特殊陶業株式会社 配線基板およびその製造方法

Also Published As

Publication number Publication date
JPWO2014073039A1 (ja) 2016-09-08
JP6125528B2 (ja) 2017-05-10
US9408295B2 (en) 2016-08-02
EP2919287A4 (en) 2016-05-11
EP2919287B1 (en) 2019-12-25
US20150237710A1 (en) 2015-08-20
EP2919287A1 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5640632B2 (ja) 発光装置
JP4804109B2 (ja) 発光素子用配線基板および発光装置並びに発光素子用配線基板の製造方法
US9596747B2 (en) Wiring substrate and electronic device
JP6125528B2 (ja) 発光ダイオード用基板および発光ダイオード用基板の製造方法
KR100917841B1 (ko) 전자부품 모듈용 금속 기판과 이를 포함하는 전자부품 모듈및 전자부품 모듈용 금속 기판 제조방법
JP2006216764A (ja) 発光素子実装用配線基板
JP4780939B2 (ja) 発光装置
JP6125527B2 (ja) 発光ダイオード用基板および発光ダイオード用基板の製造方法
JPWO2012036219A1 (ja) 発光素子用基板および発光装置
KR20110000001A (ko) 엘이디 어레이 기판 및 이의 제조방법
JP2006156447A (ja) 発光素子用配線基板ならびに発光装置およびその製造方法
JP2011205009A (ja) 表面実装型発光素子用配線基板および発光装置
JP5857956B2 (ja) 素子搭載用基板およびその製造方法
JP2011071554A (ja) 発光素子用配線基板ならびに発光装置
CN114747301B (zh) 电路基板以及电路基板的制造方法
KR101125752B1 (ko) 인쇄 회로 기판 및 그 제조 방법
KR20110043440A (ko) 저온 소결 세라믹 재료, 저온 소결 세라믹 소결체 및 다층 세라믹 기판
JP2012074478A (ja) 発光素子用基板および発光装置
JP2013149912A (ja) 配線基板および電子装置
JP5665479B2 (ja) 回路基板および電子装置
JP6398996B2 (ja) 発光素子用基板および発光装置
JP2015156406A (ja) バリスタおよびその製造方法
JP2013045900A (ja) 配線基板
KR101816983B1 (ko) 세라믹 회로기판 및 이의 제조방법
JP5869234B2 (ja) 配線基板の製造方法および配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014545472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012888036

Country of ref document: EP