WO2014071642A1 - 一种微流体细胞捕获芯片及其制备方法 - Google Patents
一种微流体细胞捕获芯片及其制备方法 Download PDFInfo
- Publication number
- WO2014071642A1 WO2014071642A1 PCT/CN2012/084603 CN2012084603W WO2014071642A1 WO 2014071642 A1 WO2014071642 A1 WO 2014071642A1 CN 2012084603 W CN2012084603 W CN 2012084603W WO 2014071642 A1 WO2014071642 A1 WO 2014071642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hard material
- channel
- wedge
- chip
- cell capture
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 79
- 239000012780 transparent material Substances 0.000 claims abstract description 3
- 210000004027 cell Anatomy 0.000 claims description 78
- 239000011521 glass Substances 0.000 claims description 26
- 229910000831 Steel Inorganic materials 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 23
- 239000010959 steel Substances 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 239000000243 solution Substances 0.000 claims description 16
- 239000002121 nanofiber Substances 0.000 claims description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000002105 nanoparticle Substances 0.000 claims description 8
- -1 polydimethylsiloxane Polymers 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- 239000002086 nanomaterial Substances 0.000 claims description 5
- 108010090804 Streptavidin Proteins 0.000 claims description 4
- 230000009286 beneficial effect Effects 0.000 claims description 4
- 239000008363 phosphate buffer Substances 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 230000021164 cell adhesion Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 210000002919 epithelial cell Anatomy 0.000 claims description 3
- 239000008055 phosphate buffer solution Substances 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 3
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- KZNICNPSHKQLFF-UHFFFAOYSA-N dihydromaleimide Natural products O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N ethyl acetate Substances CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002317 succinimide Drugs 0.000 claims description 2
- XXQBIYASOABGRU-UHFFFAOYSA-N butoxy-dimethoxy-propylsilane Chemical compound CCCCO[Si](OC)(OC)CCC XXQBIYASOABGRU-UHFFFAOYSA-N 0.000 claims 1
- 230000014509 gene expression Effects 0.000 abstract description 6
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 230000006872 improvement Effects 0.000 description 13
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 8
- 238000000926 separation method Methods 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- 206010027476 Metastases Diseases 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- PVGATNRYUYNBHO-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-(2,5-dioxopyrrol-1-yl)butanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCN1C(=O)C=CC1=O PVGATNRYUYNBHO-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000008073 immune recognition Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- NCPQROHLJFARLL-UHFFFAOYSA-N 4-(2,5-dioxopyrrol-1-yl)butanoic acid Chemical compound OC(=O)CCCN1C(=O)C=CC1=O NCPQROHLJFARLL-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 238000009098 adjuvant therapy Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011127 radiochemotherapy Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/04—Cell isolation or sorting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0627—Sensor or part of a sensor is integrated
- B01L2300/0654—Lenses; Optical fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/12—Specific details about materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/08—Regulating or influencing the flow resistance
- B01L2400/084—Passive control of flow resistance
- B01L2400/086—Passive control of flow resistance using baffles or other fixed flow obstructions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N2015/0288—Sorting the particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49888—Subsequently coating
Definitions
- the invention relates to a cell capture tool and a preparation method thereof, in particular to a microfluidic cell capture chip for separating, enriching and recognizing circulating tumor cells and a preparation method thereof, and the microfluidic cell capture chip can be used as a tumor diagnosis and adjuvant therapy. And a useful tool for biochemical analysis.
- tumor diagnosis is usually diagnosed based on a large number of pathological conditions.
- Such methods such as biopsy or rectal cancer, usually involve invasive analysis with a degree of trauma and are not conducive to the patient.
- biomarkers in peripheral blood are also used for examination, such as serological parameters (PSA).
- PSA serological parameters
- metastases For many cancer patients, the death is mainly due to metastases.
- the current detection method is difficult to respond to the treatment situation in time, identify the metastasis, and guide the follow-up chemoradiotherapy process, which leads to the patient missing the optimal treatment timing and unable to adjust the invalid treatment and medication plan in time. Therefore, it is not possible to successfully treat all metastases, resulting in the eventual death of the patient. From a clinical perspective, metastases can be seen as conclusive events in the natural development of cancer.
- Circulating tumor cells refers to living solid tumor cells that are present at very low levels in the blood. With the deepening of research on circulating tumor cells, enrichment and identification of these cells has become a method to assist in the diagnosis of cancer. Regulatory agency (eg FDA Some clinical applications based on circulating tumor cell capture and identification systems have been approved.
- the traditional porous membrane method has the following disadvantages: (1) the pore size is inconsistent with the actual clinical patient cell size diversity, and there is a missing phenomenon; (2) The reagent consumption is large, and it is difficult to carry out the post-identification work; (3) the clogging phenomenon is easy to occur, which affects the experimental results; (4) The special filter membrane preparation process is complicated and the cost is high.
- the immunological recognition enrichment method mainly includes two types of magnetic bead enrichment and chip enrichment. Due to the complexity and diversity of organisms, tumor cells in body fluids may have degeneration of cell signature recognition groups, resulting in decreased efficiency of immune recognition, leading to false negative or false positives. Regardless of magnetic bead enrichment and chip enrichment, there is a low probability that the cells are in contact with the immune recognition group, and the binding is not strong, which affects the final detection and diagnosis. At the same time, such chips are costly and not easy to process. To this end, the existing methods for separation and enrichment of circulating tumor cells are to be improved.
- the technical problem to be solved by the present invention is to propose a microfluidic cell capture chip capable of separating and enriching rare cells from a liquid sample of a human body, thereby solving the problems of intrusion sampling and the like in the prior art.
- a microfluidic cell capture chip comprising an upper hard material and a lower hard material, a channel formed between the upper hard material and the lower hard material, the channel having an inlet and an outlet, At least one of the upper hard material and the lower hard material is a transparent material, and the height of the channel from the inlet to the outlet gradually transitions from high to low and is wedge-shaped or the channel portion is wedge-shaped, and the channel is at the lowest point. Or less than at least one target cell size .
- the channel has a width of 0.05 to 200 mm and a length of 1 to 500. Millimeter.
- a layer of a nanoparticle layer or a nanofiber layer or a micro/nano structure for increasing the frictional resistance between the cell and the contact surface is deposited on the upper and lower surfaces of the channel.
- the nanoparticle layer or the nanofiber layer is nano TiO 2 , SiO 2 or Fe 2 O 3 .
- At least one surface of the upper hard material or the lower hard material is immunomodified to enable molecular specific recognition of at least one target cell.
- a thickness is interposed between the upper hard material and the lower hard material.
- a 50-200 micron thick steel sheet having a thickness of 1 to 50 between the upper hard material and the lower hard material at the exit of the channel A micron thick steel sheet, the channel being formed between the two steel sheets.
- the upper hard material and the lower hard material are both glass or acrylic materials.
- Another technical solution adopted to solve the technical problem of the present invention is to provide a microfluidic cell capture chip.
- the manufacturing method comprises the following steps:
- Step 1 overlapping the upper hard material and the lower hard material
- Step 2 inserting a thick steel sheet at one end of the upper hard material and the lower hard material and pressing it with a clamp, and inserting a thin steel sheet at the other end of the upper hard material and the lower hard material The clamp is pressed to form a wedge-shaped channel between the upper hard material and the lower hard material;
- Step 3 sealing the side of the upper hard material and the lower hard material with polydimethylsiloxane, and then drying, so that the human liquid sample cannot be from the upper hard material and the lower hard material. Side of the stream;
- Step 4 Both ends of the wedge-shaped channel are also coated with polydimethylsiloxane, and then dried, and a through hole is formed at the thick steel sheet to form an inlet of the wedge-shaped channel at the thin steel sheet.
- a through hole is provided to form an outlet of the wedge channel, and a human body liquid sample can flow in from the inlet of the wedge channel and out from the outlet of the wedge channel.
- the method further includes: Step 5. Inserting a hole needle through which the human body liquid sample can pass, respectively, at the inlet and the outlet of the wedge structure.
- the thickness of the thick steel sheet is 50 to 200 ⁇ m, and the thickness of the thin steel sheet is 1 to 50. Micron.
- the channel has a width of 0.05 to 200 mm and a length of 1 to 500 mm.
- a surface of the upper hard material and the lower hard material is deposited with a layer of nano-particles or nano-fibers or a micro-layer which is beneficial to increase the friction between the cells and the contact surface.
- Nano structure wherein the nanoparticle layer or the nanofiber layer is nano TiO 2 , SiO 2 or Fe 2 O 3 .
- At least one surface of the upper hard material or the lower hard material is immunomodified to enable molecular specific recognition of at least one target cell.
- the step of modifying the at least one surface is: Step 1: Preparing 4% with absolute ethanol a solution of 3-mercaptopropyltrimethoxysilane, which is filled into the chip channel, and reacted at room temperature for 1 hour and then rinsed with absolute ethanol for 5 minutes; Step 2, using dimethyl sulfoxide to crosslink the protein 4
- Maleimidobutyric acid -N- succinimide ester is formulated into a solution of 1 ⁇ mol/mL, which is then injected into the chip channel, and reacted at room temperature for 45 minutes and then rinsed with absolute ethanol for 5 minutes.
- Step 3 Prepared with phosphate buffer solution.
- Step 4 Inject the epithelial cell adhesion factor antibody solution into the chip channel and allow the reaction to stand at room temperature for 1-2 hours, then rinse the channel with PBS for 5 minutes.
- Both the upper hard material and the lower hard material are glass or acrylic materials.
- the invention adopts a non-invasive manner to extract a human body liquid sample from a patient, and injects a human body liquid sample from the entrance of the microchannel chip. Since the height of the microchannel is wedge-shaped, the target cell will automatically separate and enrich when passing through the channel. set.
- the microfluidic cell capture chip of the invention has the advantages of simple structure, convenient manufacture and low cost, and can rapidly and efficiently separate and enrich cells of different sizes and specific molecular expression.
- Figure 1 is a schematic view showing the structure of an embodiment of the microfluidic cell capture chip of the present invention
- FIG. 2 is a schematic enlarged longitudinal cross-sectional view of a microfluidic cell capture chip of the present invention
- Figure 3 is a schematic illustration of cell separation of the microfluidic cell capture chip of the present invention.
- inventions of the present invention provide a microfluidic cell capture chip 100 for capturing microfluidic cells. 200.
- the microfluidic cell capture chip 100 includes an upper transparent glass sheet 10 and a lower transparent glass sheet 20, and a channel is formed between the upper transparent glass sheet 10 and the lower transparent glass sheet 20. 30, the channel has an inlet 32 and an outlet 34 from the inlet 32 to the outlet 34 The height gradually transitions from high to low and is wedge-shaped or the channel portion is wedge-shaped, the channel being at the lowest or near at least one target cell size.
- the microfluidic cells 200 For circulating tumor cells.
- these transparent glass sheet can be replaced by a transparent hard material, such as an acrylic material, and the upper transparent glass sheet and the lower transparent glass sheet can also be replaced by a transparent hard material and an opaque hard material, that is, As long as one of them is a transparent hard material.
- a transparent hard material such as an acrylic material
- the upper transparent glass sheet and the lower transparent glass sheet can also be replaced by a transparent hard material and an opaque hard material, that is, As long as one of them is a transparent hard material.
- the channel 30 has a width of 0.05 to 200 mm and a length of 1 to 500 mm.
- the At least one surface of the upper transparent glass sheet 10 or the lower transparent glass sheet 20 may be surface-modified.
- the surface modification step of the at least one surface is: Step 1: Prepare 4% of 3-ethyl acetate ⁇ propyltrimethoxysilane (MPTMS) solution, fill it into the chip channel, react at room temperature for 1 hour, then rinse with absolute ethanol for 5 minutes; Step two, with dimethyl sulfoxide (DMSO)
- DMSO dimethyl sulfoxide
- GMBS 4-maleimidobutyric acid-N-succinimidyl ester
- SA streptavidin
- Anti-EpCAM epithelial cell adhesion factor antibody
- a steel sheet 40 having a thickness of 50 to 200 microns is interposed between the upper transparent glass sheet 10 and the lower transparent glass sheet 20, in which the channel 30 is At the outlet 34, between the upper transparent glass sheet 10 and the lower transparent glass sheet 20, a steel sheet 40 having a thickness of 1 to 50 ⁇ m is inserted, and the channel is in the two steel sheets 40. Formed between.
- the embodiment of the present invention provides a microfluidic cell capture chip capable of separating and enriching cells from a sample of a human organic liquid, wherein the height of the channel 30 in the microfluidic cell capture chip 100 changes according to a certain rule, and the channel 30
- the upper and lower surfaces are specially treated (ie, a nano-film or nano-fiber such as TiO 2 , SiO 2 or Fe 2 O 3 is deposited on the glass surface of the upper and lower surfaces of the channel or a micro-nano structure which is beneficial to increase the friction between the cells and the contact surface. Its thickness is 5 ⁇ 200 nm) to improve the target cell capture efficiency.
- the microfluidic cell capture chip of the invention has the advantages of simple structure, convenient manufacture and low cost, and can rapidly and efficiently separate and enrich cells of different sizes and specific molecular expression.
- Microfluidic cell capture chip 100 of the present invention The cells were isolated and enriched in a non-manual manner. The cells are automatically separated and enriched in a microfluidic cell capture chip based on liquid flow.
- the microfluidic cell capture chip of the invention is identified by at least one type of tracer marker.
- the invention adopts a non-invasive manner to extract a human body liquid sample from a patient, and captures a human body liquid sample from the microfluidic cell capture chip.
- the entrance 32 of 100 is implanted, and since the height of the channel 30 is wedge-shaped, automatic separation and enrichment are achieved when the target cells pass through the channel 30.
- the invention also provides a method for manufacturing a microfluidic cell capture chip, comprising the following steps:
- Step 1 overlapping the upper and lower transparent glass sheets 10 and 20;
- Step 2 Insert a precision steel sheet with a thickness of 50-200 microns thick at one end of the two glass sheets. Pressing with a clamp, inserting a precision steel sheet with a thickness of 1 to 50 microns thick at the other end of the two glass sheets and pressing it with a clamp to form a wedge-shaped channel 30 between the two glass sheets;
- Step 3 Polydimethylsiloxane (PDMS) on the sides of the two glass sheets Sealing and drying on a heating table so that the human body liquid sample cannot flow out from the side of the glass sheet;
- PDMS Polydimethylsiloxane
- Step 4 Both ends of the wedge-shaped channel are also dried and coated with polydimethylsiloxane, and perforated at both ends, so that the human body liquid sample can be obtained from FIG.
- the inlet 32 of the illustrated wedge channel 30 flows in and out of the outlet 34;
- Step 5 Inlet 32 and outlet 34 of wedge channel 30 shown in FIG. A hole needle capable of passing a human body liquid sample is inserted, respectively, so that the microfluidic cell capture chip is completed.
- the present invention adopts a wedge-shaped channel structure design, and the width of the channel formed between the two glass sheets is 0.05 ⁇ a wedge channel of 200 mm with a channel length of 10 to 500 mm;
- the wedge channel of the present invention has an entrance height of 50 to 200 ⁇ m and an exit height of 1 to 50. Micrometer, when a human body liquid sample flows into the wedge channel through the inlet, the target capturing cells flowing in with the human body liquid sample will be stuck at a specific position due to the limitation of the fluid space;
- a microfluidic cycle tumor cell capture chip shown in Fig. 1 is produced;
- tracer substances eg fluorescent dyes such as DAPI or Hoechst) Dye
- adding an immunological reagent to identify the target cell eg fluorescent dyes such as DAPI or Hoechst
- the chip is placed under a microscope to observe the captured target cells.
- the wedge-shaped microfluidic cell capture chip used in the experimental device is simple in structure, easy to manufacture, and low in cost, and can rapidly and efficiently separate and enrich cells of different sizes and specific molecular expression.
- the invention adopts a non-invasive manner to extract a human body liquid sample from a patient, and injects a human body liquid sample from the entrance of the microchannel chip. Since the height of the microchannel is wedge-shaped, the target cell will automatically separate and enrich when passing through the channel. set.
- the microfluidic cell capture chip of the invention has the advantages of simple structure, convenient manufacture and low cost, and can rapidly and efficiently separate and enrich cells of different sizes and specific molecular expression.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Dispersion Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Clinical Laboratory Science (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims (17)
- 一种微流体细胞捕获芯片,其包括上部硬质材料和下部硬质材料,所述上部硬质材料和下部硬质材料之间形成有一条沟道,所述沟道具有入口和出口,所述上部硬质材料和下部硬质材料至少一个是透明的材料, 其特征在于, 所述沟道从入口到出口的高度由高向低逐渐过渡且呈楔形或者沟道部分区域呈楔形,所述沟道最低处接近或小于至少一种目标细胞尺寸 。
- 如权利要求 1 所述的微流体细胞捕获芯片,其特征在于 :所述 沟道的宽度为 0.05 ~ 200 毫米,长度为 1 ~ 500 毫米。
- 如权利要求 1 所述的微流体细胞捕获芯片,其特征在于 :所述 沟道的上下底面沉积一层纳米颗粒层或纳米纤维层或用于增加细胞与接触面间摩擦阻力的微纳结构。
- 如权利要求 3 所述的微流体细胞捕获芯片,其特征在于 :所述 纳米颗粒层或纳米纤维层为纳米 TiO2 、 SiO2 或者 Fe2O3 。
- 如权利要求 1 或 4 所述的微流体细胞捕获芯片,其特征在于 :对所述 上部硬质材料或者下部硬质材料的至少一个表面进行免疫修饰,能够至少对一种目标细胞进行分子特异性识别。
- 如权利要求 1 所述的微流体细胞捕获芯片,其特征在于 :在所述沟道的入口处,在所述 上部硬质材料和下部硬质材料之间塞有厚度为 50~200 微米厚的钢片, 在所述沟道的出口处,在所述 上部硬质材料和下部硬质材料之间塞有厚度为 1~50 微米厚的钢片,所述沟道在所述两块钢片之间形成。
- 如权利要求 1 所述的微流体细胞捕获芯片,其特征在于 :所述 上部硬质材料和下部硬质材料均为玻璃或者亚克力材料。
- 一种微流体细胞捕获芯片 的 制作方法,其特征在于,其包括如下步骤:步骤一、将上部硬质材料和下部硬质材料重叠在一起;步骤二、在所述上部硬质材料和下部硬质材料重叠的一端塞入厚钢片并用夹具压紧,在所述上部硬质材料和下部硬质材料重叠的另一端塞入薄钢片并用夹具压紧,从而在所述上部硬质材料和下部硬质材料中间形成楔形沟道;步骤三、在所述上部硬质材料和下部硬质材料的侧边用聚二甲基硅氧烷封涂,然后烘干,使人体液体样本不能从所述上部硬质材料和下部硬质材料的侧边流出;步骤四、所述楔形沟道的两端也用聚二甲基硅氧烷封涂,然后烘干,在厚钢片处设置通孔以形成所述楔形沟道的入口,在薄钢片处设置通孔以形成所述楔形沟道的出口,人体液体样本能从所述楔形沟道的入口流入,并从所述楔形沟道的出口流出。
- 如权利要求 8 所述的制作方法,其特征在于 :进一步包括: 步骤五、在所述楔形结构的入口和出口分别插上能使人体液体样本通过的孔针。
- 如权利要求 8 所述的制作方法,其特征在于 : 厚钢片的厚度为 50~200 微米,薄钢片的厚度为 1~50 微米。
- 如权利要求 8 所述的制作方法,其特征在于 :所述 沟道的宽度为 0.05 ~ 200 毫米,长度为 1 ~ 500 毫米。
- 如权利要求 8 所述的制作方法,其特征在于 :在步骤一中,所述 上部硬质材料和下部硬质材料的表面沉积一层纳米颗粒层或纳米纤维层或有利于增加细胞与接触面摩擦力的微纳结构。
- 如权利要求 12 所述的制作方法,其特征在于 :所述 纳米颗粒层或纳米纤维层为纳米 TiO2 、 SiO2 或者 Fe2O3 。
- 如权利要求 8 所述的制作方法,其特征在于 :对所述 上部硬质材料或者下部硬质材料的至少一个表面进行免疫修饰,能够至少对一种目标细胞进行分子特异性识别。
- 如权利要求 14 所述的制作方法,其特征在于 : 对所述至少一个表面进行修饰步骤为:步骤一、用无水乙醇配制 4% 的 3- 巯丙基三甲氧基硅烷溶液,将其注满芯片沟道,在常温下反应 1 小时后用无水乙醇冲洗 5 分钟;步骤二、用二甲亚砜将蛋白质交联剂 4- 马来酰亚胺基丁酸 -N- 琥珀酰亚胺酯 配制成 1 μmol/mL 的溶液,再将其注入芯片沟道,在常温下反应 45min 后用无水乙醇冲洗 5 分钟;步骤三、用磷酸盐缓冲液配制 50μg/mL 的链霉亲和素溶液,再将其注入芯片沟道,然后置入 4℃ 冰箱中过夜反应后用 pH=7.2-7.4 的磷酸盐缓冲液清洗 5 分钟;步骤四、将上皮细胞黏附因子抗体溶液注入芯片沟道,并在常温下静置反应 1-2 小时后用 PBS 将沟道冲洗 5 分钟。
- 如权利要求 8 所述的制作方法,其特征在于 :所述 上部硬质材料和下部硬质材料均为玻璃或者亚克力材料。
- 一种根据权利要求 8-16 任意一项制作方法制作出来的微流体细胞捕获芯片。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/418,122 US20150196913A1 (en) | 2012-11-08 | 2012-11-14 | Microfluidic chip for capturing cells and preparing method thereof |
JP2015540988A JP6163560B2 (ja) | 2012-11-08 | 2012-11-14 | マイクロ流体細胞の捕捉チップ及びその製作方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210442637.7 | 2012-11-08 | ||
CN201210442637.7A CN102925337B (zh) | 2012-11-08 | 2012-11-08 | 一种微流体细胞捕获芯片及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014071642A1 true WO2014071642A1 (zh) | 2014-05-15 |
Family
ID=47640269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/084603 WO2014071642A1 (zh) | 2012-11-08 | 2012-11-14 | 一种微流体细胞捕获芯片及其制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150196913A1 (zh) |
JP (1) | JP6163560B2 (zh) |
CN (1) | CN102925337B (zh) |
WO (1) | WO2014071642A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108949565A (zh) * | 2018-09-26 | 2018-12-07 | 中国科学技术大学 | 用于红细胞负载冻干保护剂的装置及方法 |
CN112608820A (zh) * | 2020-12-15 | 2021-04-06 | 北京大学 | 一种高细胞活性稀有细胞分离与富集的方法及装置和应用 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2852672C (en) | 2011-10-17 | 2021-07-20 | Massachusetts Institute Of Technology | A microfluidic system and method for delivering a payload into a cell by causing perturbations in a cell membrane of the cell |
CN103447101B (zh) * | 2013-07-23 | 2015-01-14 | 武汉友芝友医疗科技有限公司 | 一种微流芯片的制备方法 |
JP6502940B2 (ja) | 2013-08-16 | 2019-04-17 | マサチューセッツ インスティテュート オブ テクノロジー | 細胞への物質の選択的送達 |
KR20170074235A (ko) | 2014-10-31 | 2017-06-29 | 메사추세츠 인스티튜트 오브 테크놀로지 | 면역 세포로의 생체분자의 전달 |
CN113897285A (zh) | 2014-11-14 | 2022-01-07 | 麻省理工学院 | 化合物和组合物向细胞中的破坏和场实现的递送 |
CN107250373A (zh) | 2015-01-12 | 2017-10-13 | 麻省理工学院 | 通过微流体递送实现的基因编辑 |
EP4257675A3 (en) | 2015-07-09 | 2024-01-03 | Massachusetts Institute of Technology | Delivery of materials to anucleate cells |
CN105536895B (zh) * | 2015-12-10 | 2017-06-16 | 武汉纺织大学 | 一种可开启的微流控芯片及其制备方法 |
CN105363505B (zh) * | 2015-12-11 | 2017-05-31 | 武汉纺织大学 | 一种三维结构的细胞捕获与释放芯片及其制备方法 |
CN105462812B (zh) * | 2015-12-11 | 2017-09-19 | 武汉纺织大学 | 一种基于石蜡衬底膜的细胞捕获与释放芯片的制备方法 |
CN105316216B (zh) * | 2015-12-11 | 2018-03-02 | 武汉纺织大学 | 一种圆台细胞捕获芯片及其制备方法 |
CN106047677B (zh) * | 2016-05-19 | 2018-10-02 | 沈阳今唐基因与医学技术研究院 | 检测单细胞中核酸的微流控芯片及检测单细胞中核酸的方法 |
CN110520206B (zh) * | 2016-09-13 | 2022-03-18 | 海世欧申有限责任公司 | 微流体过滤装置 |
CN108103022A (zh) | 2017-12-15 | 2018-06-01 | 京东方科技集团股份有限公司 | 一种目标物捕获装置 |
CN108439466A (zh) * | 2018-03-21 | 2018-08-24 | 张磊 | 一种二氧化钛纳米颗粒水热合成法 |
CN108587860A (zh) * | 2018-04-24 | 2018-09-28 | 齐齐哈尔医学院 | 用于筛查乳腺癌细胞的微流控芯片组合装置及其制备方法和应用 |
CN108517291A (zh) * | 2018-06-01 | 2018-09-11 | 东莞东阳光科研发有限公司 | 一种细胞捕获装置 |
US11389799B2 (en) * | 2019-01-17 | 2022-07-19 | The Regents Of The University Of Michigan | Microfluidic device for size and deformability measurements and applications thereof |
WO2020159542A1 (en) | 2019-02-01 | 2020-08-06 | Hewlett-Packard Development Company, L.P. | Cell sorting devices |
US20210039100A1 (en) * | 2019-08-06 | 2021-02-11 | Bio-Rad Laboratories, Inc. | Structures on microfluidic devices to control sedimentation |
CN110577883B (zh) * | 2019-09-09 | 2022-09-23 | 武汉纺织大学 | 一种基于微流控芯片的细胞甄选装置 |
CN110643502A (zh) * | 2019-10-27 | 2020-01-03 | 苏州济研生物医药科技有限公司 | 一种单细胞微流控检测芯片及其制备方法和使用方法 |
CN112831394A (zh) * | 2019-11-25 | 2021-05-25 | 香港城市大学深圳研究院 | 一种微流控芯片 |
CN110935238A (zh) * | 2019-12-05 | 2020-03-31 | 西安交通大学 | 基于变截面微通道和粘弹性流体耦合的微纳米颗粒富集装置 |
CN110951834A (zh) * | 2019-12-10 | 2020-04-03 | 中国科学院深圳先进技术研究院 | 一种基于微流控芯片的细胞荧光原位杂交方法及其应用 |
CN111073796A (zh) * | 2020-03-04 | 2020-04-28 | 山东第一医科大学(山东省医学科学院) | 一种循环肿瘤细胞专用分离装置 |
CN111829938B (zh) * | 2020-06-02 | 2023-02-28 | 东南大学 | 一种细胞用多通道滤选计数芯片 |
CN114112605A (zh) * | 2020-08-27 | 2022-03-01 | 王剑 | 血液循环肿瘤细胞病理芯片的制作方法 |
CN112114133A (zh) * | 2020-09-03 | 2020-12-22 | 武汉纺织大学 | 一种用于多重生化检测的微粒排列方法 |
CN112924363A (zh) * | 2021-01-22 | 2021-06-08 | 中国科学院苏州纳米技术与纳米仿生研究所 | 中间型循环肿瘤细胞作为肿瘤诊断和预后标志物及其应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080248499A1 (en) * | 2005-08-11 | 2008-10-09 | University Of Washington, Uw Tech Transfer - Invention Licensing | Methods and Apparatus for the Isolation and Enrichment of Circulating Tumor Cells |
CN101358962A (zh) * | 2008-09-09 | 2009-02-04 | 东南大学 | 一种测量细胞变形性的方法 |
CN102405411A (zh) * | 2009-03-18 | 2012-04-04 | 加利福尼亚大学董事会 | 用于捕获循环细胞的装置 |
CN102439131A (zh) * | 2009-03-20 | 2012-05-02 | 新加坡科技研究局 | 用于分离细胞的装置及其使用方法 |
US20120129192A1 (en) * | 2010-11-22 | 2012-05-24 | Nauganeedles Llc | Apparatus and Methods for Detection of Tumor Cells in Blood |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4790640A (en) * | 1985-10-11 | 1988-12-13 | Nason Frederic L | Laboratory slide |
US6235536B1 (en) * | 1998-03-07 | 2001-05-22 | Robert A. Levine | Analysis of quiescent anticoagulated whole blood samples |
JP4392517B2 (ja) * | 2003-11-11 | 2010-01-06 | タマティーエルオー株式会社 | 微小量採血装置およびそれを用いたマイクロ流体素子 |
CN1265199C (zh) * | 2004-07-13 | 2006-07-19 | 东南大学 | 一种基于微球的微流控生物芯片 |
CN100491390C (zh) * | 2005-06-13 | 2009-05-27 | 中国科学院电子学研究所 | 可逆封装微流体分离提纯生物样品处理芯片 |
JP2008116211A (ja) * | 2006-10-31 | 2008-05-22 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | セルセパレータ及びそれを用いた細胞分離方法 |
CN101290314A (zh) * | 2008-03-07 | 2008-10-22 | 重庆大学 | 用于细胞固定和溶液稀释的微流控芯片 |
JP2010169701A (ja) * | 2008-05-13 | 2010-08-05 | Sony Corp | マイクロチップ |
JP4661942B2 (ja) * | 2008-05-13 | 2011-03-30 | ソニー株式会社 | マイクロチップとその流路構造 |
CN101629143B (zh) * | 2008-12-02 | 2011-09-21 | 中国科学院上海微系统与信息技术研究所 | 用于高通量药物筛选的微流控细胞阵列芯片、方法及应用 |
JP5327457B2 (ja) * | 2009-03-27 | 2013-10-30 | セイコーエプソン株式会社 | がん細胞分離装置およびその製造方法 |
CN102174369B (zh) * | 2011-01-28 | 2013-04-03 | 南京大学 | 一种基于微狭缝结构的全pdms微流控细胞捕获芯片及其制法 |
CN202330222U (zh) * | 2011-07-18 | 2012-07-11 | 深圳市检验检疫科学研究院 | 一种用于颗粒固定和细胞固定的微流控芯片 |
-
2012
- 2012-11-08 CN CN201210442637.7A patent/CN102925337B/zh active Active
- 2012-11-14 WO PCT/CN2012/084603 patent/WO2014071642A1/zh active Application Filing
- 2012-11-14 JP JP2015540988A patent/JP6163560B2/ja active Active
- 2012-11-14 US US14/418,122 patent/US20150196913A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080248499A1 (en) * | 2005-08-11 | 2008-10-09 | University Of Washington, Uw Tech Transfer - Invention Licensing | Methods and Apparatus for the Isolation and Enrichment of Circulating Tumor Cells |
CN101358962A (zh) * | 2008-09-09 | 2009-02-04 | 东南大学 | 一种测量细胞变形性的方法 |
CN102405411A (zh) * | 2009-03-18 | 2012-04-04 | 加利福尼亚大学董事会 | 用于捕获循环细胞的装置 |
CN102439131A (zh) * | 2009-03-20 | 2012-05-02 | 新加坡科技研究局 | 用于分离细胞的装置及其使用方法 |
US20120129192A1 (en) * | 2010-11-22 | 2012-05-24 | Nauganeedles Llc | Apparatus and Methods for Detection of Tumor Cells in Blood |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108949565A (zh) * | 2018-09-26 | 2018-12-07 | 中国科学技术大学 | 用于红细胞负载冻干保护剂的装置及方法 |
CN112608820A (zh) * | 2020-12-15 | 2021-04-06 | 北京大学 | 一种高细胞活性稀有细胞分离与富集的方法及装置和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN102925337A (zh) | 2013-02-13 |
JP6163560B2 (ja) | 2017-07-12 |
US20150196913A1 (en) | 2015-07-16 |
CN102925337B (zh) | 2014-06-18 |
JP2016503496A (ja) | 2016-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014071642A1 (zh) | 一种微流体细胞捕获芯片及其制备方法 | |
CN107084916B (zh) | 一种循环肿瘤细胞分离微流控芯片装置及其使用方法 | |
CN107402295B (zh) | 循环肿瘤细胞自动分离纯化微流控芯片及其分离纯化方法 | |
CN105062866B (zh) | 用于外周血循环肿瘤细胞的一次性分离芯片模块及其使用方法 | |
Cui et al. | ZnO nanowire-integrated bio-microchips for specific capture and non-destructive release of circulating tumor cells | |
CN101661038A (zh) | 应用了廉价导电材料的多通道梅毒诊断专用微流控器件 | |
CN109486653A (zh) | 基于微流控和免疫磁分离双重策略的痕量细胞捕获系统 | |
CN103940997B (zh) | 一种乳腺癌循环肿瘤细胞检测系统及试剂盒 | |
WO2011062407A2 (ko) | 분석물질의 검출 방법 및 장치 | |
CN105699641A (zh) | 一种外周血循环肿瘤细胞分离鉴定方法 | |
CN107287107A (zh) | 一种循环肿瘤细胞分离设备、系统及方法 | |
CN210916029U (zh) | 一种用于分离和检测循环肿瘤细胞的简易型微流控芯片 | |
WO2018214623A1 (zh) | 一种用于循环肿瘤细胞分离的微流控芯片,一种循环肿瘤细胞分离方法以及计数方法 | |
WO2023035617A1 (zh) | 一种采样与检测一体化的快速检测结构及其应用 | |
CN105062874A (zh) | 一种基于闭合环路的循环肿瘤细胞分离富集装置 | |
CN109718880A (zh) | 基于双抗法分选胎儿有核红细胞额定微流控芯片及其分选方法 | |
CN109294907A (zh) | 基于微流控技术的超顺磁纳米微粒分离装置或分离系统在外泌体分离中的应用 | |
CN206052033U (zh) | 肿瘤细胞捕获微流控芯片 | |
CN207130273U (zh) | 一种可捕获细菌的磁力微流控芯片 | |
CN107597216A (zh) | 一种应用微流体芯片分离外泌体的方法 | |
CN105807070B (zh) | 一种检测乙肝病毒的试剂盒 | |
CN108548920A (zh) | 一种利用免疫磁珠负向吸附联合流式细胞法检测循环肿瘤细胞的试剂盒的检测方法 | |
CN209652314U (zh) | 一种免疫结合与过滤一体的肿瘤细胞吸附装置 | |
CN204939452U (zh) | 用于外周血循环肿瘤细胞的一次性分离芯片模块 | |
CN111939992A (zh) | 捕获和富集循环肿瘤细胞的微流体系统的制备方法及微流体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12888042 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14418122 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015540988 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12888042 Country of ref document: EP Kind code of ref document: A1 |