WO2014069659A1 - ポリカーボネート樹脂組成物及び成形品 - Google Patents

ポリカーボネート樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2014069659A1
WO2014069659A1 PCT/JP2013/079899 JP2013079899W WO2014069659A1 WO 2014069659 A1 WO2014069659 A1 WO 2014069659A1 JP 2013079899 W JP2013079899 W JP 2013079899W WO 2014069659 A1 WO2014069659 A1 WO 2014069659A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
mass
oxide
resin composition
group
Prior art date
Application number
PCT/JP2013/079899
Other languages
English (en)
French (fr)
Inventor
貴紀 大和田
圭二 関根
剛範 野口
Original Assignee
出光興産株式会社
旭ファイバーグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 旭ファイバーグラス株式会社 filed Critical 出光興産株式会社
Priority to EP13851931.9A priority Critical patent/EP2915849B1/en
Priority to CN201380057463.5A priority patent/CN104769038B/zh
Priority to US14/440,152 priority patent/US9896569B2/en
Priority to JP2014544624A priority patent/JP6131264B2/ja
Priority to KR1020157011262A priority patent/KR102110106B1/ko
Publication of WO2014069659A1 publication Critical patent/WO2014069659A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the present invention relates to a polycarbonate resin composition and a molded article thereof, and more particularly to a polycarbonate resin composition and a molded article thereof that give a molded article having excellent transparency.
  • Polycarbonate resin molded products are transparent and excellent in mechanical strength such as heat resistance and impact resistance, and are widely used as industrial transparent materials in the electrical, mechanical and automotive fields. Moreover, it is used also for a lens, an optical disc, etc. as a plastic for optical materials.
  • Polycarbonate resin molded products are superior in mechanical strength, but their strength is lower than glass and ceramics. Therefore, when mechanical strength is required, glass filler is added to increase mechanical strength. I am trying. However, the polycarbonate resin molded product reinforced with the conventional general glass filler has a problem that the transparency is lowered.
  • the refractive indexes of the polycarbonate resin and the glass filler are substantially the same. It has been studied to maintain the transparency of a polycarbonate resin molded article by using a refractive index (see, for example, Patent Documents 1 to 5).
  • Patent Document 1 discloses a glass-based packing in which a difference in refractive index between an aromatic polycarbonate resin using a reaction product of hydroxyaralkyl alcohol and lactone as a terminal stopper is 0.01 or less.
  • a resin composition containing an agent is disclosed.
  • Patent Document 2 discloses a resin composition comprising an aromatic polycarbonate resin, a glass fiber having a refractive index difference of 0.015 or less between the aromatic polycarbonate resin, and polycaprolactone.
  • Patent Document 3 discloses a resin composition comprising a glass fiber having a refractive index difference of 0.015 or less between an aromatic polycarbonate resin and the aromatic polycarbonate resin, and a polyester resin.
  • Patent Document 4 discloses a resin composition containing a glass fiber having a refractive index difference of 0.015 or less between an aromatic polycarbonate resin and the aromatic polycarbonate resin, and an aliphatic polycarbonate resin.
  • the difference in refractive index between the glass filler and the aromatic polycarbonate resin is 0.004 to 0.015 for light with a wavelength of 486 nm, 0.002 or less for light with a wavelength of 589 nm, and wavelength of 656 nm.
  • the content of the glass filler is 2 to 40% by mass
  • the total light transmittance when the composition is formed into a flat plate shape is 75% or more
  • JP-A-7-118514 JP-A-9-165506 Japanese Patent Laid-Open No. 6-212070 JP-A-8-143760 Japanese Patent No. 4666459
  • Patent Documents 1 to 4 only describe the refractive index as nD (refractive index at 589 nm) and do not match the refractive index at each wavelength, so that the transparency is insufficient and the molded product is rainbow-colored. There are problems such as color development. Patent Document 5 also proposes a combination of refractive indexes for each wavelength, but it is not satisfactory for use in applications that require high transparency, for example, as an alternative material for window glass. Absent. For each wavelength, when the refractive index of the glass filler is matched with the aromatic polycarbonate resin having a high refractive index, there arises a problem that the Abbe number tends to decrease and chromatic aberration increases.
  • nD refractive index at 589 nm
  • An object of the present invention is to provide a polycarbonate resin composition that gives a molded product with very excellent transparency and a molded product with excellent transparency.
  • the present invention provides the following (1) to (17).
  • X 1 represents a divalent aliphatic hydrocarbon group having 2 to 20 carbon atoms or a divalent alicyclic hydrocarbon group having 4 to 22 carbon atoms.
  • the divalent aliphatic hydrocarbon group and The divalent alicyclic hydrocarbon group may include at least one heteroatom selected from an oxygen atom, a nitrogen atom and a sulfur atom, at least one halogen atom selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the polycarbonate resin has a molar ratio (A / B) of the aliphatic carbonate repeating unit (A) to the aromatic carbonate repeating unit (B) in the range of 100/0 to 0.5 / 99.5.
  • the polycarbonate resin composition according to any one of (2) to (4), wherein (6) The difference between the refractive index (nF) of light having a wavelength of 486.1 nm and the refractive index (nC) of light having a wavelength of 656.3 nm (nF) of the polycarbonate resin having an Abbe number of 35 or more.
  • the glass filler contains 0 to 10% by mass as a total amount of the sodium oxide (Na 2 O), the potassium oxide (K 2 O), and the lithium oxide (Li 2 O).
  • Na 2 O sodium oxide
  • K 2 O potassium oxide
  • Li 2 O lithium oxide
  • the difference between the refractive index of the polycarbonate resin and the refractive index of the glass filler is 0.004 or less for light with a wavelength of 486.1 nm, 0.002 or less for light with a wavelength of 589.3 nm,
  • the polycarbonate resin is contained in an amount of 98 to 60% by mass and the glass filler is contained in an amount of 2 to 40% by mass with respect to the total amount of the polycarbonate resin and the glass filler.
  • the polycarbonate resin composition as described.
  • the polycarbonate according to any one of (1) to (12) having a total light transmittance of 75% or more and a haze value of 35% or less when the polycarbonate resin composition is molded into a flat plate shape.
  • Resin composition (14) A molded product obtained by molding the polycarbonate resin composition according to any one of (1) to (13).
  • the polycarbonate resin composition which gives the molded article excellent in transparency, and the molded article excellent in transparency can be provided, and it is suitable as a glass substitute material including windows, such as a car or a building. Can be used.
  • the glass filler contained in the polycarbonate resin composition of the present invention comprises 50 to 75% by mass of silicon dioxide (SiO 2 ), 0 to 30% by mass of aluminum oxide (Al 2 O 3 ), 0 to 30% of boron oxide (B 2 O 3 ).
  • the content of silicon dioxide (SiO 2 ) is 50 to 75% by mass. If the silicon dioxide (SiO 2 ) is less than 50% by mass, it may be difficult to adjust to a desired refractive index, and if it exceeds 75% by mass, the solubility in forming a glass may be reduced. . From this viewpoint, the content of silicon dioxide (SiO 2 ) is preferably 55 to 75% by mass, and more preferably 60 to 75% by mass.
  • the content of aluminum oxide (Al 2 O 3 ) is 0 to 30% by mass. Decreased solubility and aluminum oxide (Al 2 O 3) exceeds 30 wt%, the resulting glass filler tends to be heterogeneous. From this viewpoint, the content of aluminum oxide (Al 2 O 3 ) is preferably 1 to 25% by mass.
  • the total of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) is 50 to 93% by mass. If the total of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) is less than 50% by mass, it may be difficult to adjust to the desired refractive index. Solubility may be reduced. From this viewpoint, the total of silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ) is preferably 65 to 80% by mass.
  • Boron oxide (B 2 O 3 ) is an optional component and is contained in an amount of 0 to 20% by mass.
  • boron oxide (B 2 O 3 ) By containing boron oxide (B 2 O 3 ), the solubility of the glass is improved and the water resistance of the glass can be improved. If the content of boron oxide (B 2 O 3 ) exceeds 20% by mass, the strength as a glass filler may be reduced. From this viewpoint, boron oxide (B 2 O 3 ) is preferably contained in an amount of 0 to 8% by mass, and more preferably 0 to 5% by mass.
  • Magnesium oxide (MgO) is an optional component and is contained in an amount of 0 to 11% by mass.
  • MgO magnesium oxide
  • physical properties such as tensile strength of the glass filler can be improved, and chemical durability can be improved.
  • the content of magnesium oxide (MgO) exceeds 11% by mass, the solubility as glass may be reduced.
  • the magnesium oxide (MgO) is preferably contained in an amount of 0 to 10% by mass.
  • Calcium oxide (CaO) is an optional component and is contained in an amount of 0 to 25% by mass. When calcium oxide (CaO) exceeds 25% by mass, adjustment to a desired refractive index may be difficult, and the glass may be easily crystallized. From this viewpoint, calcium oxide (CaO) is preferably contained in an amount of 0 to 15% by mass.
  • Zinc oxide (ZnO), strontium oxide (SrO), and barium oxide (BaO) are optional components, each containing 0 to 10% by mass.
  • zinc oxide (ZnO), strontium oxide (SrO), and barium oxide (BaO) in place of calcium oxide (CaO)
  • the solubility of the glass is improved and the crystallization of the glass is suppressed. it can.
  • the respective contents exceed 10% by mass, the liquidus temperature rises, and there is a possibility that crystallization is likely to occur.
  • zinc oxide (ZnO), barium oxide (BaO), and strontium oxide (SrO) are each preferably contained in an amount of 0 to 5% by mass.
  • the total of calcium oxide (CaO), zinc oxide (ZnO), strontium oxide (SrO), and barium oxide (BaO) is 0 to 25% by mass. If the total exceeds 25% by mass, adjustment to a desired refractive index may be difficult.
  • the total of calcium oxide (CaO), zinc oxide (ZnO), strontium oxide (SrO), and barium oxide (BaO) is preferably 5 to 25% by mass. When the total is 5% by mass or more, the solubility of the glass is improved.
  • Sodium oxide (Na 2 O) is an optional component and is contained in an amount of 0 to 15% by mass. If the sodium oxide exceeds 15% by mass, the water resistance of the glass is lowered and the alkali is liable to elute, the polycarbonate resin is hydrolyzed by the eluted alkali component, and the physical properties of the molded product are lowered due to the decrease in molecular weight. . From this viewpoint, sodium oxide (Na 2 O) is preferably contained in an amount of 0 to 5% by mass.
  • Potassium oxide (K 2 O) and lithium oxide (Li 2 O) are optional components, each containing 0 to 10% by mass. Potassium oxide (K 2 O) and lithium oxide (Li 2 O) can be substituted for sodium oxide (Na 2 O) to improve the solubility of the glass. However, if each content exceeds 10% by mass, the water resistance of the glass is lowered and the alkali is liable to be eluted. The polycarbonate resin is hydrolyzed by the eluted alkaline component, and the physical properties of the molded product are lowered due to the decrease in the molecular weight. It becomes a factor of. Further, the glass is easily crystallized. From this viewpoint, it is preferable that potassium oxide (K 2 O) and lithium oxide (Li 2 O) are contained in an amount of 0 to 5% by mass, respectively.
  • the total of sodium oxide (Na 2 O), potassium oxide (K 2 O), and lithium oxide (Li 2 O) is 0 to 15% by mass.
  • the total amount of sodium oxide (Na 2 O), potassium oxide (K 2 O), and lithium oxide (Li 2 O) exceeds 15% by mass, the water resistance of the glass is lowered, and the alkali is easily eluted and eluted.
  • a polycarbonate resin is hydrolyzed by an alkali component, and a decrease in molecular weight causes a decrease in physical properties of a molded product. From this viewpoint, the total of sodium oxide (Na 2 O), potassium oxide (K 2 O), and lithium oxide (Li 2 O) is preferably 0 to 10% by mass.
  • Titanium oxide (TiO 2 ) is an optional component and is contained in an amount of 0 to 10% by mass. By containing titanium oxide (TiO 2 ), the solubility of the glass can be improved, and the water resistance of the glass can be improved. If the titanium oxide (TiO 2 ) exceeds 10% by mass, the glass is easily crystallized, the polycarbonate resin is hydrolyzed, and the molecular weight is lowered, causing a decrease in physical properties of the molded product. From this viewpoint, the titanium oxide (TiO 2 ) is preferably contained in an amount of 0 to 5% by mass, more preferably 0 to 4% by mass, and further preferably 0 to 2% by mass. If the content of titanium oxide (TiO 2 ) is 2% by mass or less, coloring of the glass in the presence of iron oxide (Fe 2 O 3 ) contained as an impurity can be suppressed.
  • the content of iron oxide (Fe 2 O 3 ) as an impurity in the raw material is 0 to 1% by mass, and 0 to 0.1% by mass with respect to the whole glass. It is preferable. In order to suppress coloring of the glass filler, it is preferable to contain 0 to 2% by mass of diantimony trioxide (Sb 2 O 3 ) with respect to the whole glass. Further, in order to improve the solubility of the glass filler, fluorine (F 2 ) may be contained in an amount of 0 to 2% by mass, preferably 0 to 1% by mass, based on the entire glass.
  • the glass filler that can be used for the polycarbonate resin composition of the present invention has the following components as long as it does not adversely affect the adjustment of the refractive index of the glass filler having the above composition, glass properties, glass moldability, etc. May be included.
  • zirconium (Zr) zirconium (Zr), lanthanum (La), yttrium (Y), gadolinium (Gd), bismuth (Bi), antimony (Sb), tantalum (Ta), niobium
  • An oxide containing an element such as Nb) or tungsten (W) may be contained.
  • zirconium oxide (ZrO 3 ) is an optional component and is preferably contained in an amount of 0 to 10% by mass. When zirconium oxide (ZrO 3 ) exceeds 10% by mass, the solubility in forming glass may be lowered.
  • the specific gravity of the glass filler is preferably 2.75 or less from the viewpoint of weight reduction.
  • the glass filler can be used in various forms such as glass fiber, glass powder, glass flake, milled fiber or glass bead, but is preferably used as glass fiber from the viewpoint of reinforcing effect.
  • the glass fiber can be obtained using a conventionally known method for spinning long glass fibers.
  • the glass raw material is continuously vitrified in a melting furnace, led to fore-haas, and a direct melt (DM) method in which a bushing is attached to the bottom of the fore-heart and spun, or the melted glass is processed into marble, cullet, or rod shape
  • DM direct melt
  • the glass can be made into fiber using various methods such as a remelting method in which it is remelted and spun.
  • the average fiber diameter of the glass fiber is not particularly limited, but a glass fiber having a diameter of 3 to 25 ⁇ m is preferably used.
  • the ratio of the average fiber length to the average fiber diameter (aspect ratio) of the glass fibers in the molded product is preferably 2 to 150.
  • the aspect ratio is 2 or more, an effect of improving the mechanical strength is obtained.
  • the aspect ratio is 150 or less, high transparency of the molded product is obtained, and the appearance of the molded product is improved.
  • the average fiber diameter of the glass fibers in the molded product is preferably 3 to 25 ⁇ m, more preferably 5 to 15 ⁇ m, and even more preferably 7 to 15 ⁇ m. Further, the aspect ratio of the glass fiber in the molded product is more preferably 2.5 to 120, further preferably 3 to 100.
  • Glass powder can be obtained by a conventionally known production method. For example, a glass raw material is melted in a melting furnace, the melt is poured into water and crushed, or formed into a sheet shape with a cooling roll, and the sheet is pulverized. Can be.
  • the particle size of the glass powder is not particularly limited, but those having 1 to 100 ⁇ m are preferably used.
  • Glass flakes can be obtained by a conventionally known production method. For example, a glass raw material is melted in a melting furnace, the melt is drawn into a tube shape, the glass film thickness is made constant, and then crushed with a roll to obtain a frit having a specific film thickness. It can be ground into flakes having the desired aspect ratio.
  • the thickness and aspect ratio of the glass flake are not particularly limited, but those having a thickness of 0.1 to 10 ⁇ m and an aspect ratio of 5 to 150 are preferably used.
  • Milled fiber can be obtained using a conventionally known milled fiber manufacturing method.
  • a glass fiber strand can be made into a milled fiber by pulverizing with a hammer mill or a ball mill.
  • the fiber diameter and aspect ratio of the milled fiber are not particularly limited, but those having a fiber diameter of 3 to 25 ⁇ m and an aspect ratio of 2 to 150 are preferably used.
  • the average fiber diameter of the milled fiber is more preferably 5 to 20 ⁇ m, further preferably 7 to 15 ⁇ m.
  • the aspect ratio of the milled fiber is more preferably 2.5 to 90, and further preferably 3 to 70.
  • Glass beads can be obtained by a conventionally known production method. For example, a glass raw material can be melted in a melting furnace, and the melt can be sprayed with a burner to form glass beads having a desired particle size.
  • the particle size of the glass beads is not particularly limited, but those having 5 to 300 ⁇ m are preferably used.
  • the glass filler is surface-treated with a treatment agent containing a coupling agent. It is preferable.
  • a silane coupling agent a silane coupling agent, a borane coupling agent, an aluminate coupling agent, a titanate coupling agent, or the like can be used.
  • a silane coupling agent from the viewpoint of good adhesion between the polycarbonate resin and glass.
  • an aminosilane coupling agent an epoxysilane coupling agent, an acrylic silane coupling agent, or the like can be used.
  • aminosilane coupling agents are most preferably used.
  • components other than the coupling agent contained in the treatment agent include a film former, a lubricant, and an antistatic agent. These may be used alone or in combination with a plurality of components.
  • a film former polymers such as vinyl acetate resin, urethane resin, acrylic resin, polyester resin, polyether resin, phenoxy resin, polyamide resin, epoxy resin or polyolefin resin, or modified products thereof can be used.
  • a lubricant aliphatic ester-based, aliphatic ether-based, aromatic ester-based or aromatic ether-based surfactants can be used.
  • antistatic agent inorganic salts such as lithium chloride and potassium iodide or quaternary ammonium salts such as ammonium chloride type and ammonium ethosulphate type can be used.
  • the refractive index of the glass filler at a wavelength of 589.3 nm is preferably 1.500 to 1.540, and the Abbe number of the glass filler is preferably 35 or more.
  • the polycarbonate resin contained in the polycarbonate resin composition of the present invention contains an aliphatic carbonate repeating unit (A) derived from an aliphatic dihydroxy compound.
  • the polycarbonate resin contained in the polycarbonate resin composition of the present invention preferably contains an aliphatic carbonate repeating unit (A) derived from an aliphatic dihydroxy compound and an aromatic carbonate repeating unit (B) derived from an aromatic dihydroxy compound. .
  • the aliphatic carbonate repeating unit (A) is represented by the following formula (I).
  • X 1 represents a divalent aliphatic hydrocarbon group having 2 to 20 carbon atoms or a divalent alicyclic hydrocarbon group having 4 to 22 carbon atoms.
  • the divalent aliphatic hydrocarbon group and divalent alicyclic hydrocarbon group for X at least one hetero atom selected from an oxygen atom, a nitrogen atom and a sulfur atom, a fluorine atom, a chlorine atom, a bromine atom, and It may contain at least one halogen atom selected from iodine atoms.
  • the alicyclic hydrocarbon group containing a hetero atom include a divalent oxygen having 4 to 20 carbon atoms or a nitrogen-containing saturated heterocyclic group.
  • divalent group represented by X 1 examples include a divalent group obtained by removing two hydroxyl groups from an aliphatic dihydroxy compound described later, and among them, an aliphatic dihydroxy compound represented by the following general formula (1) A divalent group obtained by removing two hydroxyl groups from is preferable.
  • Aromaatic carbonate repeating unit (B) The aromatic carbonate repeating unit (B) is represented by the following formula (II).
  • X 2 represents a hydrocarbon residue containing an aromatic group.
  • the hydrocarbon residue containing an aromatic group in X 2 those having a structure bonded to the oxygen atom of the aromatic hydrocarbon group adjacent to X 2 is preferred.
  • the hydrocarbon residues containing an aromatic group in X 2 at least one heteroatom selected from an oxygen atom, a nitrogen atom, a sulfur atom and a silicon atom; a fluorine atom, a chlorine atom, a bromine atom and an iodine atom At least one halogen atom; one or more groups selected from an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 5 to 20 carbon atoms, and an aromatic hydrocarbon group having 6 to 20 carbon atoms May be included.
  • Specific examples of the hydrocarbon residue containing an aromatic group represented by X 2 include a group obtained by removing two hydroxyl groups from an aromatic dihydroxy compound described later.
  • the aliphatic carbonate repeating unit (A) is derived from an aliphatic dihydroxy compound.
  • the compound represented by following General formula (1) is mentioned, for example.
  • R 1 is an alkylene group having 2 to 18, preferably 2 to 10, more preferably 3 to 6 carbon atoms, a cycloalkylene group having 4 to 20 carbon atoms, preferably 5 to 20 carbon atoms, or carbon.
  • a divalent oxygen or nitrogen-containing saturated heterocyclic group having a number of 4 to 20, preferably 5 to 20, and at least one heteroatom selected from an oxygen atom, a nitrogen atom and a sulfur atom, a fluorine atom, a chlorine atom, bromine It may contain at least one halogen atom selected from atoms and iodine atoms.
  • a represents an integer of 0 or 1.
  • alkylene group having 2 to 18 carbon atoms examples include ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, n-pentylene group, n-hexylene group, n-heptylene group, n- Octylene group, 2-ethylhexylene group, n-nonylene group, n-decylene group, n-undecylene group, n-dodecylene group, n-tridecylene group, n-tetradecylene group, n-pentadecylene group, n-hexadecylene group, Examples thereof include n-heptadecylene group and n-octadecylene group.
  • Examples of the cycloalkylene group having 4 to 20 carbon atoms include a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a cyclodecylene group, a cyclotetradecylene group, an adamantylene group, a bicycloheptylene group, and a bicyclodecylene group. Group, tricyclodecylene group and the like.
  • aliphatic dihydroxy compound examples include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7 -Heptanediol, 1,8-octanediol, 1,10-decanediol, 2,2-dimethylpropane-1,3-diol, diethylene glycol, triethylene glycol, tetraethylene glycol, octaethylene glycol, dipropylene glycol
  • Dihydroxy compounds having a chain aliphatic hydrocarbon group such as N-methyldiethanolamine and p-xylylene glycol; 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2- Cyclohexane dimeta 1,3-cyclohexaned
  • An aliphatic dihydroxy compound may be used individually by 1 type, and may use 2 or more types.
  • the method for purifying the aliphatic dihydroxy compound used in the present invention is not particularly limited. Preferably, it may be purified by either simple distillation, rectification or recrystallization, or a combination of these techniques. However, commercially available products of the aliphatic dihydroxy compounds may contain stabilizers and deteriorated products generated during storage, which may adversely affect the polymer quality. When a polymer is obtained using the aliphatic dihydroxy compound, it is preferable to purify it again and use it immediately in the polymerization reaction. When it is unavoidably stored and used for a while after purification, it is preferably used after being dried, stored at a low temperature of 40 ° C. or lower, light-shielded and in an inert atmosphere.
  • the aromatic carbonate repeating unit (B) is derived from an aromatic dihydroxy compound.
  • aromatic dihydroxy compound the compound represented by following General formula (2) can be mentioned, for example, 1 type may be used independently and 2 or more types may be used.
  • R 2 and R 3 are each a halogen atom of fluorine, chlorine, bromine, iodine or an alkyl group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group. N-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group and the like. R 2 and R 3 may be the same or different.
  • R 2 is more or different multiple R 2 on the same
  • a plurality of R 3 when there are a plurality of R 3 may be the same or different.
  • b and c are each an integer of 0 to 4.
  • Z is a single bond, an alkylene group having 1 to 20 carbon atoms, an alkylidene group having 2 to 20 carbon atoms, a cycloalkylene group having 5 to 20 carbon atoms, a cycloalkylidene group having 5 to 20 carbon atoms, —S—, — It represents SO—, —SO 2 —, —O—, —CO— or a bond represented by the following formula (3) or (3 ′).
  • R 12 and R 13 are each a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or each having 1 to 9 carbon atoms which may have a substituent.
  • Examples of the alkylene group having 1 to 20 carbon atoms and the alkylidene group having 2 to 20 carbon atoms in Z in the general formula (2) include, for example, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, and an ethylidene group.
  • Cycloalkylene group having 5 to 20 carbon atoms and cycloalkylidene group having 5 to 20 carbon atoms include, for example, cyclopentylene group, cyclohexylene group, cyclopentylidene group, cyclohexylidene group, and the like. Group and the like.
  • Examples of the aromatic dihydroxy compound represented by the general formula (2) include bis (4-hydroxyphenyl) methane; bis (3-methyl-4-hydroxyphenyl) methane; bis (3-chloro-4-hydroxyphenyl). ) Methane; bis (3,5-dibromo-4-hydroxyphenyl) methane; 1,1-bis (4-hydroxyphenyl) ethane; 1,1-bis (2-tert-butyl-4-hydroxy-3-methyl) Phenyl) ethane; 1-phenyl-1,1-bis (3-fluoro-4-hydroxy-3-methylphenyl) ethane; 2,2-bis (4-hydroxyphenyl) propane (commonly referred to as bisphenol A); 2,2 -Bis (3-methyl-4-hydroxyphenyl) propane; 2,2-bis (2-methyl-4-hydroxyphenyl) propane; 2,2 Bis (3,5-dimethyl-4-hydroxyphenyl) propane; 1,1-bis (2-tert-butyl-4-hydroxy-5-methylphenyl) propane;
  • Aromatic dihydroxy compounds other than the general formula (2) include dihydroxybenzenes, halogens and alkyl-substituted dihydroxybenzenes.
  • resorcin 4-methyl resorcin, 4-ethyl resorcin, 4-propyl resorcin, 4-butyl resorcin, 4-t-butyl resorcin, 4-phenyl resorcin, 4-cumyl resorcin; 2,4,5,6- 2,4,5,6-tetrabromoresorcin; catechol, hydroquinone, 3-methylhydroquinone, 3-ethylhydroquinone, 3-propylhydroquinone, 3-butylhydroquinone, 3-t-butylhydroquinone, 3-phenyl Hydroquinone, 3-cumylhydroquinone; 2,5-dichlorohydroquinone; 2,3,5,6-tetramethylhydroquinone; 2,3,
  • polyorganosiloxane (POS) represented by the following general formula (III)
  • VI 9,9-bis (4-hydroxyalkylphenyl) fluorenes represented by the following formula:
  • R 4 , R 5 , R 6 and R 7 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or a carbon number. 6 to 12 aryl groups, and Y represents a phenol residue having a trimethylene group represented by the following formula (IV). d represents 70 to 1000.
  • R 8 represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and e represents an integer of 0 to 4.
  • R 8 s may be the same or different.
  • Preferable phenol residues having a trimethylene group are allylphenol residues and eugenol residues, and particularly preferable phenol residues having a trimethylene group include 2-allylphenol residues and eugenol residues represented by the following formulae. It is a group.
  • polyorganosiloxane represented by the general formula (III) include compounds represented by the following general formulas (a) to (c).
  • R 4 to R 7 and d are as described above.
  • ⁇ , ⁇ -bis [3- (2-hydroxyphenyl) propyl] polydimethylsiloxane represented by the general formula (b), or the general formula (c) The ⁇ , ⁇ -bis [3- (4-hydroxy-3-methoxyphenyl) propyl] polydimethylsiloxane shown is preferred because of its availability.
  • R 9 and R 10 each independently represents an alkyl group having 1 to 3 carbon atoms
  • W represents a linear or branched alkylene group having 2 to 15 carbon atoms
  • f and g are each independently an integer of 0 to 4
  • h is an integer of 2 to 450.
  • Examples of the alkyl group represented by R 9 and R 10 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. If R 9 is plural, R 9 may be the same or different, when there are a plurality of R 10 s, a plurality of R 10 may be the same or different from each other.
  • Examples of the linear or branched alkylene group having 2 to 15 carbon atoms represented by W include alkylene groups such as ethylene group, propylene group, butylene group, isobutylene group, pentylene group and isopentylene group, ethylidene group, propylidene group, isopropylene group.
  • Examples include alkylidene residues such as a lidene group, a butylidene group, an isobutylidene group, a pentylidene group, and an isopentylidene group.
  • h is preferably 2 to 200, more preferably 6 to 70.
  • R 14 and R 15 represent a methyl group.
  • j and l are integers of 0 to 2, respectively.
  • m is an integer of 1 to 6, respectively.
  • the aromatic dihydroxy compound represented by the general formula (VI) include 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene and 9,9-bis (4- (2-hydroxyethoxy). -3-methylphenyl) fluorene, 9,9-bis (4- (2-hydroxyethoxy) -3,5-dimethylphenyl) fluorene, and the like. Of these, 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene is preferred.
  • composition ratio The composition ratio of the polycarbonate resin contained in the polycarbonate resin composition of the present invention is such that the molar ratio (A / B) of the aliphatic carbonate repeating unit (A) to the aromatic carbonate repeating unit (B) is preferably 100/0 to 0.5 / 99.5. More preferably, it is 95/5 to 20/80, and still more preferably 95/5 to 40/60.
  • the Abbe number is likely to increase, that is, a region having little chromatic aberration can be obtained.
  • the copolymer composition having the aliphatic carbonate repeating unit (A) and the aromatic carbonate repeating unit (B) can be adjusted to a desired composition ratio by blending one kind alone or two or more kinds in appropriate combination.
  • the composition of the polycarbonate resin contained in the polycarbonate resin composition of the present invention may contain repeating units derived from other dihydroxy compounds to the extent that the effects are not lost in addition to the repeating units (A) and (B).
  • the ratio is preferably 10% mol or less with respect to the total number of moles of the repeating units (A) and (B). The molar ratio is calculated by measuring with proton NMR.
  • the viscosity average molecular weight of the polycarbonate resin contained in the polycarbonate resin composition of the present invention is usually 10,000 to 50,000. Within this range, the balance between mechanical properties and fluidity is excellent. Preferably it is 10,000 to 35,000, more preferably 10,000 to 22,000.
  • the refractive index of the polycarbonate resin contained in the polycarbonate resin composition of the present invention is not particularly limited, but for example, it is preferably 1.450 to 1.590 for light having a wavelength of 589.3 nm. It is preferably 470 to 1.570, more preferably 1.490 to 1.550.
  • the difference (nF ⁇ nC) between the refractive index (nF) of the polycarbonate resin for light with a wavelength of 486.1 nm and the refractive index (nC) for light with a wavelength of 656.3 nm is preferably 0.015 or less. 013 or less is preferable, and 0.011 or less is more preferable.
  • the Abbe number of the polycarbonate resin of the present invention is preferably 35 or more, more preferably 40 or more, and further preferably 45 or more, from the viewpoint of reducing chromatic aberration.
  • the glass transition temperature of the polycarbonate resin is preferably 75 to 175 ° C, more preferably 80 to 170 ° C, and still more preferably 90 to 165 ° C. If the glass transition temperature of the polycarbonate resin is too low, the applications that can be used are limited. If it is too high, the melt fluidity at the time of molding will be inferior, and it will not be possible to mold in a temperature range where there is little polymer degradation.
  • the carbonic acid diester used in the transesterification method is at least one compound selected from a diaryl carbonate compound, a dialkyl carbonate compound and an alkylaryl carbonate compound.
  • the diaryl carbonate compound is a compound represented by the following general formula (4) or a compound represented by the following general formula (5).
  • Ar 1 and Ar 2 each represent an aryl group, and they may be the same or different.
  • Ar 3 and Ar 4 each represent an aryl group, which may be the same or different, and D 1 represents a residue obtained by removing two hydroxyl groups from the aromatic dihydroxy compound.
  • the dialkyl carbonate compound is a compound represented by the following general formula (6) or a compound represented by the following general formula (7).
  • R 21 and R 22 each represent an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, and they may be the same or different.
  • R 23 and R 24 each represent an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms, which may be the same or different, and D 2 represents the above-mentioned A residue obtained by removing two hydroxyl groups from an aromatic dihydroxy compound is shown.
  • the alkylaryl carbonate compound is a compound represented by the following general formula (8) or a compound represented by the following general formula (9).
  • Ar 5 represents an aryl group
  • R 25 represents an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms
  • Ar 6 is an aryl group
  • R 26 is an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 4 to 20 carbon atoms
  • D 1 is a residue obtained by removing two hydroxyl groups from the aromatic dihydroxy compound. Indicates a group.
  • diaryl carbonate compound examples include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, bis (m-cresyl) carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, and bisphenol A bisphenyl carbonate. It is done.
  • dialkyl carbonate compound examples include diethyl carbonate, dimethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, bisphenol A bismethyl carbonate, and the like.
  • alkyl aryl carbonate compound examples include methyl phenyl carbonate, ethyl phenyl carbonate, butyl phenyl carbonate, cyclohexyl phenyl carbonate, and bisphenol A methyl phenyl carbonate.
  • the carbonic acid diester one or more of the above compounds are appropriately selected and used, and among them, it is preferable to use diphenyl carbonate.
  • raw materials other than the dihydroxy compound and the carbonic acid diester may be used.
  • diesters of dihydroxy compounds include bisphenol A diacetate, bisphenol A dipropionate, bisphenol A dibutyrate, and bisphenol A dibenzoate.
  • dicarbonates of dihydroxy compounds include bismethyl carbonate of bisphenol A, bisethyl carbonate of bisphenol A, and bisphenyl carbonate of bisphenol A.
  • monohydroxy esters of dihydroxy compounds include bisphenol A monomethyl carbonate, bisphenol A monoethyl carbonate, bisphenol A monopropyl carbonate, and bisphenol A monophenyl carbonate.
  • Terminal stopper In the production of polycarbonate, an end stopper can be used as necessary.
  • the terminal terminator include on-butylphenol; mn-butylphenol; pn-butylphenol; o-isobutylphenol; m-isobutylphenol; p-isobutylphenol; ot-butylphenol; tert-butylphenol; pt-butylphenol; on-pentylphenol; mn-pentylphenol; pn-pentylphenol; on-hexylphenol; mn-hexylphenol; pn-hexyl O-cyclohexylphenol; m-cyclohexylphenol; p-cyclohexylphenol; o-phenylphenol; m-phenylphenol; p-phenylphenol; on-nonylphenol; mn-nonylphenol; O-cumylphenol; m-cumylphenol;
  • Examples thereof include monohydric phenols such as chroman derivatives represented by the following formula.
  • phenols although not particularly limited in the present invention, pt-butylphenol, p-cumylphenol, p-phenylphenol and the like are preferable. Moreover, the compound etc. which are represented by a following formula can also be used.
  • terminal terminator a compound represented by the following general formula (11) or (12) can also be used.
  • R 31 and R 32 are each an alkyl group having 4 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, a perfluoroalkyl group having 4 to 30 carbon atoms, or Formula (13)
  • the carbon number of the alkyl group of R 31 and R 32 is preferably 4 to 22, more preferably 8 to 22.
  • Examples of the alkyl group include hexyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, pentadecyl group, hexadecyl group, octadecyl group and the like.
  • the carbon number of the aralkyl group of R 31 and R 32 is preferably 8-20, more preferably 10-20.
  • Examples of the aralkyl group include benzyl group, phenethyl group, methylbenzyl group, 2-phenylpropan-2-yl group, diphenylmethyl group and the like.
  • the perfluoroalkyl group of R 31 and R 32 preferably has 2 to 20 carbon atoms.
  • 4,4,5,5,6,6,7,7,7-nonafluoroheptyl group as a perfluoroalkyl group
  • R 33 , R 34 , R 35 , R 36 and R 37 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 6 to 20 carbon atoms, or 2 to 10 carbon atoms. At least one group selected from the group consisting of an alkenyl group, an aryl group having 6 to 10 carbon atoms and an aralkyl group having 7 to 20 carbon atoms.
  • R 33 , R 34 , R 35 , R 36 and R 37 are each independently at least selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 10 carbon atoms. It is preferably a kind of group. In particular, at least one group selected from the group consisting of a methyl group and a phenyl group is preferable.
  • p is an integer of 0 to 3, preferably an integer of 1 to 3, more preferably an integer of 2 to 3.
  • q is an integer of 4 to 100, more preferably an integer of 4 to 50, and still more preferably an integer of 8 to 50.
  • U in Formula (12) represents at least one bond selected from the group consisting of a single bond, an ether bond, a thioether bond, an ester bond, an amino bond, and an amide bond.
  • U is preferably at least one bond selected from the group consisting of a single bond, an ether bond and an ester bond. Of these, a single bond and an ester bond are preferable.
  • k is an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1.
  • the terminal terminator represented by the above formula (11) or (12) is preferably derived from a biogenic substance.
  • biogenic substances include long-chain alkyl alcohols having 14 or more carbon atoms, such as cetanol, stearyl alcohol, and behenyl alcohol.
  • branching agent In the present invention, a branching agent may be used as necessary.
  • the branching agent include phloroglucin; trimellitic acid; 1,1,1-tris (4-hydroxyphenyl) ethane; 1- [ ⁇ -methyl- ⁇ - (4′-hydroxyphenyl) ethyl] -4- [ ⁇ ', ⁇ '-bis (4 "-hydroxyphenyl) ethyl] benzene; ⁇ , ⁇ ', ⁇ " -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene; isatin bis (o-cresol), etc. Is mentioned.
  • a polycarbonate in the production of a polycarbonate by an ordinary transesterification method, can be obtained by performing a transesterification reaction with a dihydroxy compound and a carbonic acid diester and, if necessary, a terminal terminator or a branching agent. Specifically, the reaction may proceed according to a known transesterification method. Below, the procedure and conditions of the preferable manufacturing method of this invention are shown concretely.
  • the dihydroxy compound and the carbonic acid diester are subjected to a transesterification reaction in such a ratio that the carbonic acid diester is 0.9 to 1.5 times the mole of the dihydroxy compound. Depending on the situation, 0.98 to 1.20 times mol is preferable.
  • the amount of the terminal terminator composed of the monohydric phenol or the like is in the range of 0.05 to 10 mol% with respect to the dihydroxy compound, the hydroxyl end of the obtained polycarbonate is blocked. Since it is stopped, a polycarbonate excellent in heat resistance and water resistance can be obtained.
  • Such a terminal terminator made of monohydric phenol or the like may be added to the reaction system in advance, or partly added to the reaction system in advance and the remainder added as the reaction proceeds. May be. Furthermore, depending on the case, after the transesterification reaction of the dihydroxy compound and the carbonic acid diester partially proceeds, the whole amount may be added to the reaction system.
  • the reaction temperature is not particularly limited and is usually selected in the range of 100 to 330 ° C., preferably in the range of 180 to 300 ° C. More preferably, the reaction temperature gradually becomes 180 to 300 as the reaction proceeds. A method of raising the temperature to °C is good. If the temperature of this transesterification reaction is 100 ° C. or higher, the reaction rate is increased. On the other hand, if it is 330 ° C. or lower, side reactions do not occur and problems such as coloration of the produced polycarbonate hardly occur.
  • the reaction pressure is set according to the vapor pressure of the monomer used and the reaction temperature. This should just be set so that reaction may be performed efficiently, and is not limited.
  • an atmospheric pressure (normal pressure) or a pressurized state of 1 to 50 atm (760 to 38,000 torr) is set, and in the latter stage of the reaction, the reduced pressure state, preferably finally 1.33. It is often set to ⁇ 1.33 ⁇ 10 4 Pa (0.01 to 100 torr).
  • the reaction time may be carried out until the target molecular weight is reached, and is usually about 0.2 to 10 hours.
  • the above transesterification reaction is usually carried out in the absence of an inert solvent, but it may be carried out in the presence of 1 to 150% by mass of an inert solvent of the obtained polycarbonate, if necessary.
  • the inert solvent include aromatic compounds such as diphenyl ether, halogenated diphenyl ether, benzophenone, polyphenyl ether, dichlorobenzene, and methylnaphthalene; cycloalkanes such as tricyclo (5,2,10) decane, cyclooctane, and cyclodecane. Is mentioned. Further, it may be performed in an inert gas atmosphere as necessary.
  • the inert gas examples include gases such as argon, carbon dioxide, dinitrogen monoxide and nitrogen, alkanes such as chlorofluorohydrocarbon, ethane and propane. And various types of alkene such as ethylene and propylene.
  • a polymerization catalyst can be used to increase the polymerization rate.
  • the polymerization catalyst include alkali metal compounds, alkaline earth metal compounds, nitrogen-containing compounds, metal compounds, or nitrogen-containing organic basic compounds.
  • a combination of a compound and a quaternary phosphonium salt containing an aryl group is exemplified.
  • organic acid salts organic acid salts, inorganic salts, oxides, hydroxides, hydrides, alkoxides, quaternary ammonium hydroxides, and the like of alkali metals and alkaline earth metals are preferably used. It can be used alone or in combination.
  • alkali metal compound examples include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide, sodium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium carbonate, sodium acetate, potassium acetate, cesium acetate, lithium acetate, Sodium stearate, potassium stearate, cesium stearate, lithium stearate, sodium borohydride, sodium benzoate, potassium benzoate, cesium benzoate, lithium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, phosphorus
  • Examples include dilithium oxyhydrogen, disodium phenylphosphate, disodium salt of bisphenol A, dipotassium salt, dicesium salt, dilithium salt, sodium salt of phenol, potassium salt, cesium salt, and lithium salt.These compounds may be used alone or in combination of two or more.
  • Alkaline earth metal compounds include magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, magnesium diacetate, calcium diacetate, strontium diacetate, diacetate Barium etc. are mentioned. These compounds may be used alone or in combination of two or more.
  • nitrogen-containing compounds include quaternary ammonium hydroxides having alkyl, aryl groups, etc., such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide.
  • quaternary ammonium hydroxides having alkyl, aryl groups, etc. such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide.
  • tertiary amines such as triethylamine, dimethylbenzylamine and triphenylamine
  • imidazoles such as 2-methylimidazole, 2-phenylimidazole and benzimidazole can
  • bases or basic salts such as ammonia, tetramethylammonium borohydride, tetrabutylammonium borohydride, tetrabutylammonium tetraphenylborate, tetraphenylammonium tetraphenylborate, and the like can be given. These compounds may be used alone or in combination of two or more.
  • the metal compound examples include a zinc aluminum compound, a germanium compound, an organic tin compound, an antimony compound, a manganese compound, a titanium compound, and a zirconium compound. These compounds may be used alone or in combination of two or more.
  • Examples of the combination of the nitrogen-containing organic basic compound and the quaternary phosphonium salt containing an aryl group include a combination of tetramethylammonium hydroxide and tetraphenylphosphonium tetraphenylborate.
  • the amount of these polymerization catalysts used is preferably 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 2 equivalent, preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 2 equivalent, more preferably 1 ⁇ with respect to 1 mol of the dihydroxy compound. It is selected in the range of 10 ⁇ 7 to 1 ⁇ 10 ⁇ 3 equivalent.
  • a catalyst deactivator can be added at a later stage of the reaction.
  • a known catalyst deactivator is effectively used.
  • sulfonic acid ammonium salt and phosphonium salt are preferable.
  • salts of dodecylbenzenesulfonic acid such as tetrabutylphosphonium salt of dodecylbenzenesulfonic acid and salts of paratoluenesulfonic acid such as tetrabutylammonium salt of paratoluenesulfonic acid are preferable.
  • esters of sulfonic acid methyl benzenesulfonate, ethyl benzenesulfonate, butyl benzenesulfonate, octyl benzenesulfonate, phenyl benzenesulfonate, methyl paratoluenesulfonate, ethyl paratoluenesulfonate, butyl paratoluenesulfonate, Octyl paratoluenesulfonate, phenyl paratoluenesulfonate, and the like are also preferably used.
  • tetrabutylphosphonium salt of dodecylbenzenesulfonate or butyl paratoluenesulfonate is most preferably used.
  • the amount of the catalyst deactivator used is preferably 0.5 to 50 mol per mol of the catalyst when at least one polymerization catalyst selected from alkali metal compounds and / or alkaline earth metal compounds is used. It can be used in a proportion, more preferably in a proportion of 0.5 to 10 mol, still more preferably in a proportion of 0.8 to 5 mol.
  • the reaction in the transesterification method may be carried out either continuously or batchwise.
  • the reactor used for melt polymerization is a vertical reactor equipped with an anchor-type stirring blade, a Max blend stirring blade, or a helical ribbon-type stirring blade, or a horizontal reaction equipped with a paddle blade, lattice blade, or spectacle blade. Any of the devices may be used. Furthermore, an extruder type equipped with a screw may be used. In the case of a continuous type, it is preferable to use such a reaction apparatus in combination.
  • Interfacial polycondensation method in the production of a polycarbonate by an ordinary interfacial polycondensation method, for example, in an inert solvent such as methylene chloride, in the presence of a known acid acceptor or molecular weight regulator, a catalyst or a branching agent is used as necessary. To react a dihydroxy compound and a carbonate precursor such as phosgene.
  • a phase transfer catalyst such as a tertiary amine or a salt thereof, a quaternary ammonium salt, or a quaternary phosphonium salt can be preferably used.
  • the tertiary amine include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, dimethylaniline and the like, and examples of the tertiary amine salt include hydrochlorides and bromates of these tertiary amines. Etc.
  • Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, and tetrabutylammonium bromide.
  • Examples thereof include butylphosphonium chloride and tetrabutylphosphonium bromide.
  • These catalysts may be used alone or in combination of two or more. Among the above catalysts, tertiary amines are preferable, and triethylamine is particularly preferable.
  • Examples of the inert organic solvent include dichloromethane (methylene chloride); trichloromethane; carbon tetrachloride; 1,1-dichloroethane; 1,2-dichloroethane; 1,1,1-trichloroethane; Examples include 1,1,1,2-tetrachloroethane; 1,1,2,2-tetrachloroethane; pentachloroethane; chlorinated hydrocarbons such as chlorobenzene, toluene, acetophenone, and the like. These organic solvents may be used alone or in combination of two or more. Of these, methylene chloride is particularly preferred.
  • the polycarbonate resin composition of the present invention includes the polycarbonate resin and the glass filler.
  • the content of the glass filler contained in the polycarbonate resin composition of the present invention is preferably 2 to 40% by mass, more preferably 5 to 35% by mass with respect to the total amount of the polycarbonate resin and the glass filler. %, And more preferably 10 to 30% by mass.
  • content of the glass filler is less than 2% by mass, the mechanical properties cannot be sufficiently improved.
  • content of the said glass filler exceeds 40 mass%, the contact interface of resin and glass will increase, the high transparency of a molded article will fall, and the fluidity
  • the polycarbonate resin composition of the present invention can realize an improvement in strength such as elastic modulus and a low linear expansion coefficient by blending a glass filler while maintaining the excellent transparency inherent in the polycarbonate resin.
  • the difference in refractive index between the glass filler and the polycarbonate resin is preferably 0.004 or less with respect to light having a wavelength of 486.1 nm, more preferably 0.003 or less, and 0.002 or less. More preferably, it is preferably 0.002 or less for light having a wavelength of 589.3 nm, more preferably 0.001 or less, and 0.002 or less for light having a wavelength of 656.3 nm. It is preferable that it is 0.001 or less.
  • the difference in refractive index between the glass filler and the polycarbonate resin is greater than 0.004 with respect to light having a wavelength of 486.1 nm, the transparency of the molded product becomes insufficient.
  • the difference in refractive index between the glass filler and the polycarbonate resin is greater than 0.002 with respect to light having a wavelength of 589.3 nm and / or light having a wavelength of 656.3 nm, the transparency of the molded product becomes poor. It will be enough. That is, by setting the difference in refractive index between the glass filler and the polycarbonate resin within the above range, sufficient transparency of the molded product can be maintained.
  • the Abbe numbers of the glass filler and the polycarbonate resin are 35 or more, respectively. Is preferably 40 or more, and more preferably 45 or more.
  • a well-known additive can be used for the polycarbonate resin composition of this invention in the range which does not impair characteristics, such as refractive index.
  • the antioxidant can suppress the decomposition of the resin during the production of the polycarbonate resin composition or during molding.
  • the polycarbonate resin composition of the present invention can be produced using a conventionally known method.
  • the method of mixing the said polycarbonate resin, the said glass filler, and arbitrary additives using a mixer etc., melt-kneading with an extruder, and pelletizing can be used preferably.
  • the polycarbonate resin molded product of the present invention is formed by molding the polycarbonate resin composition.
  • the method for producing a polycarbonate resin molded product of the present invention can be obtained by molding a polycarbonate resin composition by a conventionally known molding method, for example, injection molding, extrusion molding, compression molding, calendar molding, or the like. Moreover, you may shape
  • the thickness of the molded product can be arbitrarily set according to the application. Particularly when the transparency of the molded product is required, 0.2 to 4.0 mm is preferable, and 0.3 to 3.0 mm is preferable. Preferably, 0.3 to 2.0 mm is more preferable. If the thickness of the molded product is 0.2 mm or more, warpage does not occur and good mechanical strength can be obtained. Moreover, if the thickness of a molded article is 4.0 mm or less, high transparency is obtained.
  • the molded article may be formed with a hard coat film, an antifogging film, an antistatic film, or an antireflection film as necessary, or two or more kinds of composite films.
  • a hard coat film is formed since the weather resistance is good and wear of the surface of the molded article with time can be prevented.
  • the material of the hard coat film is not particularly limited, and known materials such as an acrylate hard coat agent, a silicone hard coat agent, and an inorganic hard coat agent can be used.
  • the production conditions of the polycarbonate resin composition and the molding conditions of the polycarbonate resin molded product can be appropriately selected and are not particularly limited, but the heating temperature during melt-kneading and the resin temperature during injection molding are the decomposition of the resin. Therefore, it is usually preferable to appropriately select from the range of 150 ° C to 300 ° C.
  • the temperature of the mold is set to a temperature higher than general conditions, so that the resin in contact with the mold can easily flow, and the outermost surface of the molded product
  • the surface roughness can be reduced.
  • the surface roughness of the outermost surface of the molded product can be reduced by setting the pressure during molding to a pressure higher than general conditions.
  • the total light transmittance with respect to visible light is 75% or more, and a haze is 35% or less.
  • the total light transmittance is more preferably 80% or more, and still more preferably 83% or more.
  • the haze is more preferably 30% or less, and further preferably 25% or less. Since the polycarbonate resin molded article having the optical properties is excellent in transparency, it can be used in applications requiring high transparency.
  • the total light transmittance for visible light can be measured according to JIS-K7361 or ASTM D1003, and the haze can be measured according to JIS-K7105 or ASTM D1003.
  • the molded article of the present invention is a polycarbonate excellent in scratch resistance, weather resistance and parallel light transmittance as compared with a polycarbonate consisting only of an aromatic carbonate repeating unit by using a polycarbonate resin composition containing an aliphatic carbonate repeating unit.
  • a resin molded product can be obtained.
  • the polycarbonate resin molded product of the present invention is a member that requires transparency and rigidity, as well as scratch resistance and weather resistance, such as 1) automotive parts such as sunroofs, door visors, rear windows, and side windows. 2) Architectural parts such as architectural glass, sound barriers, carports, sunrooms and gratings, 3) railcars, windows for ships, 4) televisions, radio cassettes, video cameras, video tape recorders, audio players , DVD players, telephones, displays, computers, registers, copiers, printers, facsimiles, etc., parts for electrical equipment such as outer panels and housing parts, 5) mobile phones, PDAs, cameras, slide projectors, Precision cases such as clocks, calculators, measuring instruments, display devices, etc. and covers, etc. Parts for appliances, 6) plastic greenhouse, agricultural parts greenhouses etc., 7) light cover and blinds, can be suitably used in furniture parts such as interior instrumentation.
  • ⁇ Refractive index and Abbe number of polycarbonate resin> Abbe refractometer (Model 2010 / M PRISM COUPLER manufactured by METRICON), using interference filters with wavelengths of 656.3 nm (C line), 589.3 nm (D line), and 486.1 nm (F line) Refractive index, nC, nD, and nF were measured.
  • a resin was compression molded at 130 to 220 ° C. to produce a 1 mm thick plate, which was used as a measurement test piece.
  • ⁇ Glass transition temperature Tg of polycarbonate resin Using a polycarbonate resin and using a thermal analysis system DSC-2910 manufactured by TA Instruments Inc. under a nitrogen atmosphere (nitrogen flow rate: 40 ml / min) in accordance with JIS K7121, a temperature rising rate: 20 The measurement was performed under the conditions of ° C / min.
  • the refractive index of the glass filler is a value obtained by measuring the test piece by the immersion method according to the method B of JIS-K7142, and the Abbe number was calculated from the obtained refractive index.
  • Specific gravity is a value measured by Archimedes method.
  • Total light transmittance and haze value The total light transmittance which is an optical physical property of a polycarbonate resin molded product is a value obtained by measuring a sample having a thickness of 2 mm according to ASTM D1003 using an NDH sensor manufactured by Nippon Denshoku Co., Ltd. It is.
  • the haze value is a value obtained by measuring a sample having a thickness of 2 mm according to ASTM D1003 using an NDH sensor manufactured by Nippon Denshoku Co., Ltd.
  • Viscosity average molecular weight of PC1, refractive index (nF) for light of wavelength 486.1 nm, refractive index (nD) for light of wavelength 589.3 nm, refractive index (nC) for light of wavelength 656.3 nm, Abbe number, and glass The results of measuring the transition temperature are shown in Table 1.
  • Production Example 2 instead of CHDM and isosorbide (ISB), the aliphatic dihydroxy compound used in Production Example 1 was replaced with 80.784 g (0.561 mol) of CHDM, 81.985 g (0.561 mol) of ISB, and the amount of BPA used was 17 Except for the change to .784 g (0.078 mol), the same operation as in Production Example 1 was performed to obtain the desired copolymerized polycarbonate (PC2). The results are shown in Table 1.
  • Production Example 3 The aliphatic dihydroxy compound used in Production Example 1 was replaced with ISB and tricyclodecanedimethanol (TCDDM), and 70.585 g (0.483 mol) of ISB and 95.668 g (0.483 mol) of TCDDM were used. Except that the amount used was changed to 53.352 g (0.234 mol), the same operation as in Production Example 1 was performed to obtain the desired copolymer polycarbonate (PC3). The results are shown in Table 1.
  • Production Example 4 The aliphatic dihydroxy compound used in Production Example 1 was replaced with TCDDM, except that TCDDM was used in 136.416 g (0.696 mol), and the amount of BPA used was changed to 114.912 g (0.504 mol). The completely same operation was performed and the target copolymer polycarbonate (PC4) was obtained. The results are shown in Table 1.
  • the temperature inside the reaction vessel was raised to 180 ° C. and allowed to react for 15 minutes, and then the pressure was gradually reduced and reacted at 13.3 kPa for 20 minutes to distill off the produced phenol.
  • the temperature was raised to 200 ° C. and the reaction was performed at a reduced pressure of 4 kPa for 20 minutes.
  • the pressure was gradually reduced to 0.13 kPa to distill off the phenol.
  • the temperature was further raised to 250 ° C., and the reaction was carried out at 0.07 kPa with stirring for 1 hour.
  • PC6 copolymer polycarbonate
  • Viscosity average molecular weight of PC6, refractive index (nF) for light having a wavelength of 486.1 nm, refractive index (nD) for light having a wavelength of 589.3 nm, refractive index (nC) for light having a wavelength of 656.3 nm, Abbe number, and glass The results of measuring the transition temperature are shown in Table 1.
  • Production Example 10 The amount of ISB used as the aliphatic dihydroxy compound used in Production Example 9 was changed to 66.58 g (0.456 mol), and the amount of BPA used as the aromatic dihydroxy compound was changed to 32.83 g (0.144 mol). The same operation as in Production Example 9 was performed to obtain the desired copolymerized polycarbonate (PC7). The results are shown in Table 1.
  • Production Examples 5 to 8, 11, 12 [Manufacture of glass fiber] Glass fibers GF1 to GF6 having the composition (% by mass) shown in Table 2 were produced. The glass fiber was spun at a fiber diameter of 15 ⁇ m by a conventionally known method, and Production Examples 5, 7, and 8 were used as binders in aminosilane and urethane adjusted so that the total amount was 0.5% by mass with respect to the glass fiber. In Production Example 6, similarly prepared aminosilane and epoxy were adhered, and in Production Examples 11 and 12, similarly prepared aminosilane and urethane were adhered.
  • Examples 1 to 6 and Comparative Examples 1 to 2 Manufacture of glass fiber reinforced polycarbonate resin molded products
  • the compositions (mass%) shown in Table 3 and below The polycarbonate resin composition molded articles of Examples 1 to 6 were manufactured under the conditions described above.
  • the polycarbonate resin obtained in Production Examples 1 to 4, 9, and 10 and the glass fiber obtained in Production Examples 5 to 8, 11, and 12 were blended in the ratio shown in Table 3 and an extruder (model name: Micro Twin Screw).
  • the polycarbonate resin composition and molded product of the present invention are required as mechanical substitutes, transparency and rigidity, as well as scratch resistance and light resistance, for example, as glass substitute materials including windows for automobiles and buildings. Can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Glass Compositions (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 脂肪族ジヒドロキシ化合物に由来する脂肪族カーボネート繰り返し単位(A)を含むポリカーボネート樹脂と、特定のガラスフィラーとを含むポリカーボネート樹脂組成物並びに成形品である。

Description

ポリカーボネート樹脂組成物及び成形品
 本発明は、ポリカーボネート樹脂組成物及びその成形品に関し、さらに詳しくは、透明性に優れた成形体を与えるポリカーボネート樹脂組成物及びその成形品に関する。
 ポリカーボネート樹脂成形品は、透明かつ、耐熱性や耐衝撃性等の機械強度に優れており、工業用の透明材料として、電気、機械、自動車分野等に広く用いられている。また、光学材料用のプラスチックとして、レンズや光学ディスク等にも使用されている。
 ポリカーボネート樹脂成形品は、機械強度に優れているとはいえ、ガラスやセラミックスに比べればその強度は低いため、機械強度が必要とされる場合は、ガラスフィラー等を添加して機械強度の強化を図っている。
 しかしながら、従来の一般的なガラスフィラーで補強したポリカーボネート樹脂成形品は透明性が低下するという問題があった。
 これに対して、ポリカーボネート樹脂の組成を変更すること、ポリカーボネート樹脂組成物に添加剤を添加すること、またはガラスフィラー組成を変更することで、ポリカーボネート樹脂及びガラスフィラーの屈折率を実質的に同一の屈折率にすることにより、ポリカーボネート樹脂成形品の透明性を維持することが検討されている(例えば、特許文献1~5参照)。
 特許文献1には、末端停止剤としてヒドロキシアラルキルアルコールとラクトンとの反応生成物を用いた芳香族ポリカーボネート樹脂と、該芳香族ポリカーボネート樹脂との屈折率の差が0.01以下であるガラス系充填剤とを含む樹脂組成物が開示されている。
 特許文献2には、芳香族ポリカーボネート樹脂と、該芳香族ポリカーボネート樹脂との屈折率の差が0.015以下であるガラス繊維と、ポリカプロラクトンとを含む樹脂組成物が開示されている。
 特許文献3には、芳香族ポリカーボネート樹脂と該芳香族ポリカーボネート樹脂との屈折率の差が0.015以下であるガラス繊維と、ポリエステル樹脂とを含む樹脂組成物が開示されている。
 特許文献4には、芳香族ポリカーボネート樹脂と該芳香族ポリカーボネート樹脂との屈折率の差が0.015以下であるガラス繊維と、脂肪族ポリカーボネート樹脂とを含む樹脂組成物が開示されている。
 特許文献5には、ガラスフィラーと芳香族ポリカーボネート樹脂との屈折率の差が、波長486nmの光に対して0.004~0.015、波長589nmの光に対して0.002以下、波長656nmの光に対して0.002以下であり、前記ガラスフィラーの含有率が2~40質量%であり、該組成物を平板状に成形した際の全光線透過率が75%以上、かつ、ヘイズが35%以下であることを特徴とするポリカーボネート樹脂組成物が開示されている。
特開平7-118514号公報 特開平9-165506号公報 特開平6-212070号公報 特開平8-143760号公報 特許第4666459号公報
 特許文献1~4には、屈折率がnD(589nmにおける屈折率)の記載しかなく、屈折率を各波長で合わせているわけではないため、透明性が不十分であり、成形品が虹色に発色するなどの課題がある。
 特許文献5には、各波長について屈折率を合わせたものも提案されているが、高透明性を必要とする用途、例えば窓ガラスの代替材料等として活用するには透明性が満足できるものではない。また、各波長について、屈折率の高い芳香族ポリカーボネート樹脂にガラスフィラーの屈折率を合わせると、アッベ数が低下しやすく、色収差が大きくなるという問題が生じる。
 本発明の目的は、透明性に非常に優れた成形品を与えるポリカーボネート樹脂組成物及び透明性に優れた成形品を提供することにある。
 本発明者は、前記目的を達成すべく鋭意研究を重ねた結果、特定のガラスフィラー及び特定のポリカーボネート樹脂を含む樹脂組成物及びその成形品が目的に適合し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、下記(1)~(17)を提供するものである。
(1)脂肪族ジヒドロキシ化合物に由来する脂肪族カーボネート繰り返し単位(A)を含むポリカーボネート樹脂と、
 二酸化ケイ素(SiO2)50~75質量%、酸化アルミニウム(Al23)0~30質量%、酸化ホウ素(B23)0~20質量%、酸化マグネシウム(MgO)0~11質量%、酸化カルシウム(CaO)0~25質量%、酸化亜鉛(ZnO)0~10質量%、酸化ストロンチウム(SrO)0~10質量%、酸化バリウム(BaO)0~10質量%、酸化ナトリウム(Na2O)0~15質量%、酸化カリウム(K2O)0~10質量%、酸化リチウム(Li2O)0~10質量%、酸化チタン(TiO2)0~10質量%、酸化鉄(Fe23)0~1質量%、及びフッ素(F2)0~2質量%を含有し、前記二酸化ケイ素(SiO2)と前記酸化アルミニウム(Al23)との合計量として50~93質量%含有し、前記酸化カルシウム(CaO)と前記酸化亜鉛(ZnO)と前記酸化ストロンチウム(SrO)と前記酸化バリウム(BaO)との合計量として0~25質量%含有し、かつ前記酸化ナトリウム(Na2O)と前記酸化カリウム(K2O)と前記酸化リチウム(Li2O)との合計量として0~15質量%含有することを特徴とするガラスフィラーと
を含む、ポリカーボネート樹脂組成物。
(2)前記ポリカーボネート樹脂が、脂肪族ジヒドロキシ化合物に由来する脂肪族カーボネート繰り返し単位(A)及び芳香族ジヒドロキシ化合物に由来する芳香族カーボネート繰り返し単位(B)を含む、(1)に記載のポリカーボネート樹脂組成物。
(3)前記脂肪族カーボネート繰り返し単位(A)が、下記式(I)で表されるものである、(1)または(2)に記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
(式中、X1は炭素数2~20の2価の脂肪族炭化水素基又は炭素数4~22の2価の脂環式炭化水素基を示す。前記2価の脂肪族炭化水素基及び2価の脂環式炭化水素基は、酸素原子、窒素原子及び硫黄原子から選ばれる少なくとも1つのヘテロ原子、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選ばれる少なくとも1つのハロゲン原子を含んでもよい。)
(4)前記芳香族カーボネート繰り返し単位(B)が、下記式(II)で表されるものである、(2)または(3)に記載のポリカーボネート樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、X2は、芳香族基を含む炭化水素残基を示す。)
(5)前記ポリカーボネート樹脂が、前記脂肪族カーボネート繰り返し単位(A)と前記芳香族カーボネート繰り返し単位(B)のモル比(A/B)が、100/0~0.5/99.5の範囲である、(2)~(4)のいずれかに記載のポリカーボネート樹脂組成物。
(6)前記ポリカーボネート樹脂のアッベ数が35以上であり、かつ前記ポリカーボネート樹脂の波長486.1nmの光に対する屈折率(nF)と波長656.3nmの光に対する屈折率(nC)との差(nF-nC)が0.015以下である、(1)~(5)のいずれかに記載のポリカーボネート樹脂組成物。
(7)前記ポリカーボネート樹脂のガラス転移温度が75~175℃である、(1)~(6)のいずれかに記載のポリカーボネート樹脂組成物。
(8)前記ガラスフィラーが、前記酸化ナトリウム(Na2O)と前記酸化カリウム(K2O)と前記酸化リチウム(Li2O)との合計量として0~10質量%含有する、(1)から(7)のいずれかに記載のポリカーボネート樹脂組成物。
(9)前記ガラスフィラーの波長589.3nmにおける屈折率が、1.500~1.540である、(1)~(8)のいずれかに記載のポリカーボネート樹脂組成物。
(10)前記ガラスフィラーのアッベ数が35以上である、(1)~(9)のいずれかに記載のポリカーボネート樹脂組成物。
(11)前記ポリカーボネート樹脂の屈折率と前記ガラスフィラーの屈折率との差が、波長486.1nmの光に対して0.004以下、波長589.3nmの光に対して0.002以下、波長656.3nmの光に対して0.002以下である、(1)~(10)のいずれかに記載のポリカーボネート樹脂組成物。
(12)前記ポリカーボネート樹脂及び前記ガラスフィラーの合計量に対して、前記ポリカーボネート樹脂を98~60質量%、前記ガラスフィラーを2~40質量%含有する、(1)~(11)のいずれかに記載のポリカーボネート樹脂組成物。
(13)前記ポリカーボネート樹脂組成物を平板状に成形した際の全光線透過率が75%以上、かつ、ヘイズ値が35%以下である、(1)~(12)のいずれかに記載のポリカーボネート樹脂組成物。
(14)(1)~(13)のいずれかに記載のポリカーボネート樹脂組成物を成形してなる成形品。
 本発明によれば、透明性に優れた成形品を与えるポリカーボネート樹脂組成物及び透明性に優れた成形品を提供することができ、自動車や建物等の窓等を含めたガラス代替材料として好適に使用することができる。
<ガラスフィラー>
 本発明のポリカーボネート樹脂組成物に含まれるガラスフィラーは、二酸化ケイ素(SiO2)50~75質量%、酸化アルミニウム(Al23)0~30質量%、酸化ホウ素(B23)0~20質量%、酸化マグネシウム(MgO)0~11質量%、酸化カルシウム(CaO)0~25質量%、酸化亜鉛(ZnO)0~10質量%、酸化ストロンチウム(SrO)0~10質量%、酸化バリウム(BaO)0~10質量%、酸化ナトリウム(Na2O)0~15質量%、酸化カリウム(K2O)0~10質量%、酸化リチウム(Li2O)0~10質量%、酸化チタン(TiO2)0~10質量%、酸化鉄(Fe23)0~1質量%、及びフッ素(F2)0~2質量%を含有し、前記二酸化ケイ素(SiO2)と前記酸化アルミニウム(Al23)との合計量が50~93質量%、前記酸化カルシウム(CaO)と前記酸化亜鉛(ZnO)と前記酸化ストロンチウム(SrO)と前記酸化バリウム(BaO)との合計量が0~25質量%、かつ前記酸化ナトリウム(Na2O)と前記酸化カリウム(K2O)と前記酸化リチウム(Li2O)との合計量が0~15質量となる組成からなっている。
 本発明のガラスフィラーは、後述する脂肪族カーボネート繰り返し単位(A)を含むポリカーボネート樹脂を強化するために用いる。
 上記のガラスフィラーの組成において、二酸化ケイ素(SiO2)の含有量は50~75質量%である。二酸化ケイ素(SiO2)が50質量%未満であると、所望の屈折率への調整が困難となるおそれがあり、また75質量%を超えるとガラスにする際の溶解性が低下することがある。この観点から、二酸化ケイ素(SiO2)の含有量は55~75質量%であることが好ましく、60~75質量%であることがより好ましい。
 酸化アルミニウム(Al23)の含有量は0~30質量%である。酸化アルミニウム(Al23)が30質量%を超えると溶解性が低下し、得られるガラスフィラーが不均質になり易くなる。この観点から、酸化アルミニウム(Al23)の含有量は1~25質量%であることが好ましい。
 二酸化ケイ素(SiO2)と酸化アルミニウム(Al23)の合計は50~93質量%である。二酸化ケイ素(SiO2)と酸化アルミニウム(Al23)の合計が50質量%未満であると、所望の屈折率への調整が困難となるおそれがあり、また93質量%を超えるとガラスにする際の溶解性が低下することがある。この観点から、二酸化ケイ素(SiO2)と酸化アルミニウム(Al23)の合計は65~80質量%であることが好ましい。
 酸化ホウ素(B23)は任意成分であり、0~20質量%含有する。酸化ホウ素(B23)を含有させることによりガラスの溶解性が向上し、ガラスの耐水性などを向上させることができる。酸化ホウ素(B23)の含有量が20質量%を超えるとガラスフィラーとしての強度が低下するおそれがある。この観点から、酸化ホウ素(B23)は、0~8質量%含有することが好ましく、0~5質量%含有することがより好ましい。
 酸化マグネシウム(MgO)は任意成分であり、0~11質量%含有する。酸化マグネシウム(MgO)を含有させることにより、ガラスフィラーの引張強度等の物性を向上させ、化学耐久性を向上させることができる。酸化マグネシウム(MgO)の含有量が11質量%を超えるとガラスとしての溶解性が低下するおそれがある。この観点から、酸化マグネシウム(MgO)は、0~10質量%含有することが好ましい。
 酸化カルシウム(CaO)は任意成分であり、0~25質量%含有する。酸化カルシウム(CaO)が25質量%を超えると所望の屈折率への調整が困難となるおそれがあり、またガラスが結晶化し易くなるおそれがある。この観点から、酸化カルシウム(CaO)は、0~15質量%含有することが好ましい。
 酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)は任意成分であり、それぞれ0~10質量%含有する。
 酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)は酸化カルシウム(CaO)と置換して含有することにより、ガラスの溶解性が向上し、またガラスの結晶化を抑制することができる。しかしそれぞれの含有量が10質量%を超えると、液相温度が上昇し、結晶化し易くなるおそれがある。この観点から、酸化亜鉛(ZnO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)は、それぞれは、0~5質量%含有することが好ましい。
 酸化カルシウム(CaO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の合計は0~25質量%である。その合計が25質量%を超えると所望の屈折率への調整が困難となるおそれがある。酸化カルシウム(CaO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の合計は5~25質量%であることが好ましい。その合計が5質量%以上であると、ガラスの溶解性が向上する。
 酸化ナトリウム(Na2O)は任意成分であり、0~15質量%含有する。酸化ナトリウムが15質量%を超えるとガラスの耐水性が低下し、アルカリが溶出し易くなり、溶出したアルカリ成分によってポリカーボネート樹脂を加水分解させ、分子量の低下によって、成形品の物性低下の要因となる。この観点から、酸化ナトリウム(Na2O)は、0~5質量%含有することが好ましい。
 酸化カリウム(K2O)、酸化リチウム(Li2O)は、任意成分であり、それぞれ0~10質量%含有する。酸化カリウム(K2O)、酸化リチウム(Li2O)は、酸化ナトリウム(Na2O)と置換して含有することにより、ガラスの溶解性が向上させることができる。しかしそれぞれの含有量が10質量%を超えると、ガラスの耐水性が低下し、アルカリが溶出し易くなり、溶出したアルカリ成分によってポリカーボネート樹脂を加水分解させ、分子量の低下によって、成形品の物性低下の要因となる。またガラスが結晶化し易くなる。この観点から、酸化カリウム(K2O)、酸化リチウム(Li2O)は、それぞれ0~5質量%含有することが好ましい。
 酸化ナトリウム(Na2O)、酸化カリウム(K2O)、酸化リチウム(Li2O)の合計は0~15質量%である。酸化ナトリウム(Na2O)、酸化カリウム(K2O)、酸化リチウム(Li2O)の合計が、15質量%を超えるとガラスの耐水性が低下し、アルカリが溶出し易くなり、溶出したアルカリ成分によってポリカーボネート樹脂を加水分解させ、分子量の低下によって、成形品の物性低下の要因となる。この観点から、酸化ナトリウム(Na2O)、酸化カリウム(K2O)、酸化リチウム(Li2O)の合計は0~10質量%であることが好ましい。
 酸化チタン(TiO2)は任意成分であり、0~10質量%含有する。酸化チタン(TiO2)を含有させることによりガラスの溶解性を向上させることができ、ガラスの耐水性を向上させることができる。酸化チタン(TiO2)が10質量%を超えるとガラスが結晶化し易くなり、ポリカーボネート樹脂を加水分解させ、分子量の低下によって、成形品の物性低下の要因となる。この観点から、酸化チタン(TiO2)は、0~5質量%含有することが好ましく、0~4質量%含有することがより好ましく、0~2質量%含有することがさらに好ましい。酸化チタン(TiO2)の含有量が2質量%以下であれば、不純物として含有される酸化鉄(Fe23)の存在下におけるガラスの着色を抑えることができる。
 また、ガラスフィラーの着色を抑えるために、原料中の不純物としての酸化鉄(Fe23)含有量は0~1質量%であり、ガラス全体に対して0~0.1質量%であることが好ましい。
 また、ガラスフィラーの着色を抑えるために、三酸化二アンチモン(Sb23)を、ガラス全体に対して0~2質量%含有することが好ましい。さらにガラスフィラーの溶解性を向上させるために、フッ素(F2)を、ガラス全体に対して0~2質量%、好ましくは0~1質量%含有してもよい。
 そして、本発明のポリカーボネート樹脂組成物に用いることのできるガラスフィラーは、上記の組成からなるガラスフィラーの屈折率の調整、ガラス物性、ガラス成形性等に悪影響を及ぼさない範囲で、更に下記成分を含んでもよい。
 例えば、ガラスフィラーの屈折率を調整する成分として、ジルコニウム(Zr)、ランタン(La)、イットリウム(Y)、ガドリニウム(Gd)、ビスマス(Bi)、アンチモン(Sb)、タンタル(Ta)、ニオブ(Nb)又はタングステン(W)等の元素を含む酸化物を含有させてもよい。また、ガラスの色を調整、消色する成分として、コバルト(Co)、銅(Cu)、ネオジウム(Nd)、アンチモン(Sb)等の元素を含む酸化物を含有させてもよい。酸化ジルコニウム(ZrO3)は任意成分であり、0~10質量%含有することが好ましい。酸化ジルコニウム(ZrO3)が10質量%を超えるとガラスにする際の溶解性が低下することがある。
 ガラスフィラーの比重は、軽量化の観点から2.75以下とすることが好ましい。
 本発明では、ガラスフィラーを、ガラス繊維、ガラスパウダー、ガラスフレーク、ミルドファイバー又はガラスビーズなど様々な形態で用いることができるが、補強効果の点からガラス繊維として用いることが好ましい。
 ガラス繊維は、従来公知のガラス長繊維の紡糸方法を用いて得ることができる。例えば、溶融炉でガラス原料を連続的にガラス化してフォアハースに導き、フォアハースの底部にブッシングを取り付けて紡糸するダイレクトメルト(DM)法、又は、溶融したガラスをマーブル、カレット、棒状に加工してから再溶融して紡糸する再溶融法等の各種の方法を用いてガラスを繊維化することができる。ガラス繊維の平均繊維径は、特に限定されないが、3~25μmのものが好ましく用いられる。3μmよりも細い場合には、ガラス繊維と樹脂との接触面積が増大して乱反射の原因となり、成形品の透明性が低下する場合がある。25μmよりも太い場合には、ガラス繊維の強度が弱くなり、結果として成形品の強度が低下する場合がある。成形品中のガラス繊維の平均繊維長と平均繊維径の比(アスペクト比)は、2~150のものが好ましく用いられる。アスペクト比が2以上であれば、機械的強度の向上効果が得られ、アスペクト比が150以下であれば、成形品の高い透明性が得られ、成形品外観が良くなる。以上の観点から、成形品中のガラス繊維の平均繊維径は、3~25μmが好ましく、5~15μmがより好ましく、7~15μmがさらに好ましい。また、成形品中のガラス繊維のアスペクト比は、2.5~120がより好ましく、3~100がさらに好ましい。
 ガラスパウダーは、従来公知の製造方法で得られる。例えば、溶融炉でガラス原料を溶融し、この融液を水中に投入して水砕したり、冷却ロールでシート状に成形して、そのシートを粉砕したりして、所望する粒径のパウダーにすることができる。ガラスパウダーの粒径は特に限定されないが、1~100μmのものが好ましく用いられる。
 ガラスフレークは、従来公知の製造方法で得られる。例えば、溶融炉でガラス原料を溶融し、この融液をチューブ状に引き出し、ガラスの膜厚を一定にした後、ロールで粉砕することにより、特定の膜厚のフリットを得て、そのフリットを粉砕して所望するアスペクト比を有するフレークにすることができる。ガラスフレークの厚み及びアスペクト比は特に限定されないが、厚み0.1~10μmでアスペクト比が5~150のものが好ましく用いられる。
 ミルドファイバーは、従来公知のミルドファイバーの製造方法を用いて得ることができる。例えば、ガラス繊維のストランドをハンマーミルやボールミルで粉砕することにより、ミルドファイバーにすることができる。ミルドファイバーの繊維径及びアスペクト比は特に限定されないが、繊維径は3~25μm、アスペクト比は2~150のものが好ましく用いられる。ミルドファイバーの平均繊維径は、5~20μmがより好ましく、7~15μmがさらに好ましい。また、ミルドファイバーのアスペクト比は、2.5~90がより好ましく、3~70がさらに好ましい。
 ガラスビーズは、従来公知の製造方法で得られる。例えば、溶融炉でガラス原料を溶融し、この融液をバーナーで噴霧して、所望する粒径のガラスビーズにすることができる。ガラスビーズの粒径は特に限定されないが、5~300μmのものが好ましく用いられる。
 そして、ポリカーボネート樹脂とガラスフィラーとの親和性を増し、密着性を増大して空隙形成による成形品の透明性低下を抑制するために、ガラスフィラーを、カップリング剤を含む処理剤で表面処理することが好ましい。
 カップリング剤としては、シラン系カップリング剤、ボラン系カップリング剤、アルミネート系カップリング剤又はチタネート系カップリング剤等を使用することができる。特に、ポリカーボネート系樹脂とガラスとの接着性が良好である点からシラン系カップリング剤を用いるのが好ましい。上記シラン系カップリング剤としては、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、アクリルシラン系カップリング剤等を使用することができる。それらのシラン系カップリング剤の中でも、アミノシラン系カップリング剤を用いるのが最も好ましい。
 また、処理剤に含まれるカップリング剤以外の成分としては、フィルムフォーマー、潤滑剤及び帯電防止剤等が挙げられ、これらを単独で用いても複数の成分を併用してもよい。前記フィルムフォーマーとしては、酢酸ビニル樹脂、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ポリエーテル樹脂、フェノキシ樹脂、ポリアミド樹脂、エポキシ樹脂又はポリオレフィン樹脂等のポリマー、もしくはそれらの変性物を使用することができる。
前記潤滑剤としては、脂肪族エステル系、脂肪族エーテル系、芳香族エステル系又は芳香族エーテル系の界面活性剤を使用することができる。前記帯電防止剤としては、塩化リチウム、ヨウ化カリウム等の無機塩又はアンモニウムクロライド型、アンモニウムエトサルフェート型等の4級アンモニウム塩を使用できる。
 前記ガラスフィラーの波長589.3nmにおける屈折率は、1.500~1.540とすることが好ましく、前記ガラスフィラーのアッベ数は、35以上とすることが好ましい。これにより、特に後述する脂肪族カーボネート繰り返し単位(A)を含むポリカーボネート樹脂を組み合わせた樹脂組成物及び成形品の透明性を向上させることができる。
〔ポリカーボネート樹脂〕
 本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂は、脂肪族ジヒドロキシ化合物に由来する脂肪族カーボネート繰り返し単位(A)を含む。本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂は、脂肪族ジヒドロキシ化合物に由来する脂肪族カーボネート繰り返し単位(A)及び芳香族ジヒドロキシ化合物に由来する芳香族カーボネート繰り返し単位(B)を含むことが好ましい。
(脂肪族カーボネート繰り返し単位(A))
 前記脂肪族カーボネート繰り返し単位(A)は、下記式(I)で表される。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(I)において、X1は炭素数2~20の2価の脂肪族炭化水素基又は炭素数4~22の2価の脂環式炭化水素基を示す。X1における2価の脂肪族炭化水素基及び2価の脂環式炭化水素基としては、酸素原子、窒素原子及び硫黄原子から選ばれる少なくとも1つのヘテロ原子、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選ばれる少なくとも1つのハロゲン原子を含んでもよい。ヘテロ原子を含む前記脂環式炭化水素基としては、例えば、炭素数4~20の2価の酸素若しくは窒素含有飽和複素環式基等が挙げられる。
 X1で示される2価の基の具体例としては、後述する脂肪族ジヒドロキシ化合物から2つの水酸基を除いた2価の基が挙げられ、中でも下記一般式(1)で示される脂肪族ジヒドロキシ化合物から2つの水酸基を除いた2価の基が好ましい。
(芳香族カーボネート繰り返し単位(B))
 前記芳香族カーボネート繰り返し単位(B)は、下記式(II)で表される。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(II)において、X2は、芳香族基を含む炭化水素残基を示す。
 X2における芳香族基を含む炭化水素残基としては、芳香族炭化水素基がX2に隣接する酸素原子に結合する構造を有するものが好ましい。X2における芳香族基を含む炭化水素残基の中に、酸素原子、窒素原子、硫黄原子、ケイ素原子から選ばれる少なくとも1つのヘテロ原子;フッ素原子、塩素原子、臭素原子及びヨウ素原子から選ばれる少なくとも1つのハロゲン原子;炭素数1~20の脂肪族炭化水素基、炭素数5~20脂環式炭化水素基、及び炭素数6~20の芳香族炭化水素基から選ばれる1種以上の基を含んでいてもよい。
 X2で示される芳香族基を含む炭化水素残基の具体例として、後述する芳香族ジヒドロキシ化合物から2つの水酸基を除いた基等が挙げられる。
(脂肪族ジヒドロキシ化合物)
 脂肪族カーボネート繰り返し単位(A)は、脂肪族ジヒドロキシ化合物から誘導される。
 前記脂肪族ジヒドロキシ化合物としては、例えば、下記一般式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)において、R1は炭素数2~18、好ましくは2~10、より好ましくは3~6のアルキレン基、炭素数4~20、好ましくは5~20のシクロアルキレン基又は炭素数4~20、好ましくは5~20の2価の酸素若しくは窒素含有飽和複素環式基であり、酸素原子、窒素原子及び硫黄原子から選ばれる少なくとも1つのヘテロ原子及びフッ素原子、塩素原子、臭素原子及びヨウ素原子から選ばれる少なくとも1つのハロゲン原子を含んでも良い。aは0または1の整数を示す。
 炭素数2~18のアルキレン基としては、例えば、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、2-エチルヘキシレン基、n-ノニレン基、n-デシレン基、n-ウンデシレン基、n-ドデシレン基、n-トリデシレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、n-ヘプタデシレン基、n-オクタデシレン基等が挙げられる。炭素数4~20のシクロアルキレン基としては、例えば、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、シクロテトラデシレン基、アダマンチレン基、ビシクロヘプチレン基、ビシクロデシレン基、トリシクロデシレン基等が挙げられる。
 脂肪族ジヒドロキシ化合物としては、例えば、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,10-デカンジオール、2,2-ジメチルプロパン-1,3-ジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、オクタエチレングリコール、ジプロピレングリコ-ル、N-メチルジエタノールアミン、p-キシリレングリコール等の鎖式脂肪族炭化水素基を有するジヒドロキシ化合物;1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,6-デカリンジオール、1,5-デカリンジオール、2,3-デカリンジオール、2,6-デカリンジメタノール、1,5-デカリンジメタノール、2,3-デカリンジメタノール、2,3-ノルボルナンジオール、2,5-ノルボルナンジオール、2,3-ノルボルナンジメタノール、2,5-ノルボルナンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、1,3-アダマンタンジオール、1,3-アダマンタンジメタノール、トリシクロデカンジメタノール等の脂環式炭化水素基を有するジヒドロキシ化合物;イソソルビド等の縮合多環式エーテルジオール、3,9-ビス(2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス(2-ヒドロキシ-1,1-ジエチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス(2-ヒドロキシ-1,1-ジプロピルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,4-アンヒドロエリスリトール等の環状エーテルジオール等のヘテロ環スピロ化合物;2-(5-エチル-5-ヒドロキシメチル-1,3-ジオキサン-2-イル)-2-メチルプロパン-1-オール等の環状アセタールジオール;3,4-ピロリジンジオール、3,4-ジメチルピペリジンジオール、N-エチル-3,4-ピペリジンジオール、N-エチル-3,5-ピペリジンジオール等のN-ヘテロ環状ジオール;デオキシチオフルクトース等のS-ヘテロ環状ジオールなどが挙げられる。
 これらの脂肪族ジヒドロキシ化合物のうち、製造の容易さ、性質、用途の幅広さの観点から、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、1,3-アダマンタンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)-プロパン、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、2-(5-エチル-5-ヒドロキシメチル-1,3-ジオキサン-2-イル)-2-メチルプロパン-1-オール、イソソルビド、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましく、その中でも耐熱性の観点から1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、イソソルビドがより好ましい。
 脂肪族ジヒドロキシ化合物は、1種を単独で用いても良く、2種以上を用いても良い。
 本発明に用いる脂肪族ジヒドロキシ化合物の精製方法については特に限定されない。好ましくは、単蒸留、精留または再結晶のいずれか、もしくはこれらの手法の組み合わせにより精製してもよい。ただし、該脂肪族ジヒドロキシ化合物の市販品には安定剤や、保管中に生成した劣化物が含まれていることがあり、これらがポリマー品質に悪影響を与える可能性がある。該脂肪族ジヒドロキシ化合物を用いてポリマーを得る際には、再度精製を行い直ちに重合反応に使用するのが好ましい。やむを得ず精製後、暫く保管してから使用する際は、乾燥、40℃以下の低温、遮光および不活性雰囲気下で保管しておいて使用することが好ましい。
(芳香族ジヒドロキシ化合物)
 芳香族カーボネート繰り返し単位(B)は、芳香族ジヒドロキシ化合物から誘導される。
 前記芳香族ジヒドロキシ化合物としては、例えば、下記一般式(2)で表される化合物を挙げることができ、1種を単独で用いても良く、2種以上を用いても良い。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(2)において、R2及びR3は、それぞれフッ素、塩素、臭素、ヨウ素のハロゲン原子又は炭素数1~20のアルキル基、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基,tert-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基などを示す。R2及びR3はたがいに同一であっても異なっていてもよい。またR2が複数ある場合は複数のR2は同一でも異なっていてもよく、R3が複数ある場合は複数のR3は同一でも異なっていてもよい。b及びcは、それぞれ0~4の整数である。そして、Zは単結合、炭素数1~20のアルキレン基、炭素数2~20のアルキリデン基、炭素数5~20のシクロアルキレン基、炭素数5~20のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-、-CO-又は下記式(3)若しくは(3’)で示される結合を示す。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(3’)において、R12及びR13は、それぞれ、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、又は各々置換基を有してもよい、炭素数1~9のアルキル基、炭素数1~5のアルコキシ基、炭素数2~12のアルケニル基、もしくは炭素数6~12アリール基を示す。
 上記一般式(2)のZにおける、炭素数1~20のアルキレン基、炭素数2~20のアルキリデン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、エチリデン基、イソプロピリデン基などが挙げられ、炭素数5~20のシクロアルキレン基、炭素数5~20のシクロアルキリデン基としては、例えばシクロペンチレン基、シクロヘキシレン基、シクロペンチリデン基、シクロヘキシリデン基などが挙げられる。
 上記一般式(2)で表される芳香族ジヒドロキシ化合物としては、例えばビス(4-ヒドロキシフェニル)メタン;ビス(3-メチル-4-ヒドロキシフェニル)メタン;ビス(3-クロロ-4-ヒドロキシフェニル)メタン;ビス(3,5-ジブロモ-4-ヒドロキシフェニル)メタン;1,1-ビス(4-ヒドロキシフェニル)エタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-3-メチルフェニル)エタン;1-フェニル-1,1-ビス(3-フルオロ-4-ヒドロキシ-3-メチルフェニル)エタン;2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA);2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン;2,2-ビス(2-メチル-4-ヒドロキシフェニル)プロパン;2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパン;2,2-ビス(3-クロロ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3-フルオロ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3,5-ジフルオロ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン;2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン;2,2-ビス(4-ヒドロキシフェニル)ブタン;2,2-ビス(4-ヒドロキシフェニル)オクタン;2,2-ビス(4-ヒドロキシフェニル)フェニルメタン;2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン;1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン;2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン;2,2-ビス(3-ブロモ-4-ヒドロキシ-5-クロロフェニル)プロパン;2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン;2,2-ビス(4-ヒドロキシフェニル)ブタン;2,2-ビス(3-メチル-4-ヒドロキシフェニル)ブタン;1,1-ビス(2-ブチル-4-ヒドロキシ-5-メチルフェニル)ブタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-5-メチルフェニル)ブタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-5-メチルフェニル)イソブタン;1,1-ビス(2-t-アミル-4-ヒドロキシ-5-メチルフェニル)ブタン;2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)ブタン;2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)ブタン;4,4-ビス(4-ヒドロキシフェニル)ヘプタン;1,1-ビス(2-t-ブチル-4-ヒドロキシ-5-メチルフェニル)ヘプタン;1,1-(4-ヒドロキシフェニル)エタンなどのビス(ヒドロキシアリール)アルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン;1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(3-フェニル-4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサンなどのビス(ヒドロキシアリール)シクロアルカン類;ビス(4-ヒドロキシフェニル)エーテル;ビス(4-ヒドロキシ-3-メチルフェニル)エーテルなどのビス(ヒドロキシアリール)エーテル類;ビス(4-ヒドロキシフェニル)スルフィド;ビス(3-メチル-4-ヒドロキシフェニル)スルフィドなどのビス(ヒドロキシアリール)スルフィド類;ビス(4-ヒドロキシフェニル)スルホキシド;ビス(3-メチル-4-ヒドロキシフェニル)スルホキシド;ビス(3-フェニル-4-ヒドロキシフェニル)スルホキシドなどのビス(ヒドロキシアリール)スルホキシド類;ビス(4ヒドロキシフェニル)スルホン;ビス(3-メチル-4-ヒドロキシフェニル)スルホン;ビス(3-フェニル-4-ヒドロキシフェニル)スルホンなどのビス(ヒドロキシアリール)スルホン類、4,4’-ジヒドロキシビフェニル;4,4’-ジヒドロキシ-2、2’-ジメチルビフェニル;4,4’-ジヒドロキシ-3、3’-ジメチルビフェニル;4,4’-ジヒドロキシ-3、3’-ジシクロヘキシルビフェニル;3、3’-ジフルオロ-4,4’-ジヒドロキシビフェニルなどのジヒドロキシビフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-2-メチルフェニル)フルオレンなどの9,9-ビス(ヒドロキシフェニル)フルオレン類などが挙げられる。
 上記一般式(2)以外の芳香族ジヒドロキシ化合物としては、ジヒドロキシベンゼン類、ハロゲン及びアルキル置換ジヒドロキシベンゼン類がある。
 例えば、レゾルシン、4-メチルレゾルシン、4-エチルレゾルシン、4-プロピルレゾルシン、4-ブチルレゾルシン、4-t-ブチルレゾルシン、4-フェニルレゾルシン、4-クミルレゾルシン;2,4,5,6-テトラフルオロレゾルシン;2,4,5,6-テトラブロモレゾルシン;カテコール、ハイドロキノン、3-メチルハイドロキノン、3-エチルハイドロキノン、3-プロピルハイドロキノン、3-ブチルハイドロキノン、3-t-ブチルハイドロキノン、3-フェニルハイドロキノン、3-クミルハイドロキノン;2,5-ジクロロハイドロキノン;2,3,5,6-テトラメチルハイドロキノン;2,3,5,6-テトラ-t-ブチルハイドロキノン;2,3,5,6-テトラフルオロハイドロキノン;2,3,5,6-テトラブロモハイドロキノンなどが挙げられる。
 上記一般式(2)以外の芳香族ジヒドロキシ化合物としては、下記一般式(III)で示されるポリオルガノシロキサン(POS)、下記一般式(V)で示されるフェノール変性ジヒドロキシ化合物、下記一般式(VI)で示される9,9-ビス(4-ヒドロキシアルキルフェニル)フルオレン類などを用いることもできる。
Figure JPOXMLDOC01-appb-C000010
 前記一般式(III)において、R4、R5、R6及びR7は、それぞれ独立に水素原子、ハロゲン原子又は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基もしくは炭素数6~12のアリール基を示し、Yは下記式(IV)で表されるトリメチレン基を有するフェノール残基を示す。dは70~1000を示す。
Figure JPOXMLDOC01-appb-C000011
 上記式(IV)中、R8は炭素数1~4アルキル基もしくは炭素数1~4アルコキシ基を示し、eは0~4の整数を示す。R8が複数ある場合それぞれ同一でも異なっていてもよい。好ましいトリメチレン基を有するフェノール残基としては、アリルフェノール残基及びオイゲノール残基であり、特に好ましいトリメチレン基を有するフェノール残基としては、下記の式で表される2-アリルフェノール残基及びオイゲノール残基である。
Figure JPOXMLDOC01-appb-C000012
 上記一般式(III)で示されるポリオルガノシロキサンの具体例としては、下記一般式(a)~(c)で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記の式(a)~(c)において、R4~R7及びdは前記のとおりである。
 前記一般式(a)~(c)の中でも、前記一般式(b)に示されるα,ω-ビス[3-(2-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、または前記一般式(c)に示されるα,ω-ビス[3-(4-ヒドロキシ-3-メトキシフェニル)プロピル]ポリジメチルシロキサンが入手の容易さから好ましい。
Figure JPOXMLDOC01-appb-C000014
 前記一般式(V)において、R9およびR10は、それぞれ独立に炭素数1~3のアルキル基を示し、Wは炭素数2~15の直鎖又は分岐鎖のアルキレン基を示す。f及びgはそれぞれ独立に0~4の整数であり、hは2~450の整数である。
 R9およびR10で示されるアルキル基としては、メチル基、エチル基、n-プロピル基及びイソプロピル基が挙げられる。R9が複数ある場合、複数のR9は互いに同一でも異なっていてもよく、R10が複数ある場合、複数のR10は互いに同一でも異なっていてもよい。Wで示される炭素数2~15の直鎖又は分岐鎖のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、イソブチレン基、ペンチレン基及びイソペンチレン基などのアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基及びイソペンチリデン基などのアルキリデン残基が挙げられる。hは2~200であることが好ましく、より好ましくは6~70である。
Figure JPOXMLDOC01-appb-C000015
 前記一般式(VI)において、R14及びR15は、メチル基を示す。j及びlは、それぞれ0~2の整数である。mはそれぞれ1~6の整数である。
 前記一般式(VI)で表される芳香族ジヒドロキシ化合物としては、例えば9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3-メチルフェニル)フルオレン、9,9-ビス(4-(2-ヒドロキシエトキシ)-3,5-ジメチルフェニル)フルオレンなどが挙げられる。この中で、9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレンが好ましい。
(組成比)
 本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂の組成比は、脂肪族カーボネート繰り返し単位(A)と芳香族カーボネート繰り返し単位(B)のモル比(A/B)が、好ましくは100/0~0.5/99.5である。より好ましくは95/5~20/80、さらに好ましくは95/5~40/60である。
 脂肪族カーボネート繰り返し単位比率を高くすることで、アッベ数が大きくなり易く、つまり色収差の少ない領域とすることが出来る。
 また、脂肪族カーボネート繰り返し単位(A)を含むものを用いることで、芳香族カーボネート繰り返し単位(B)のみからなるポリカーボネートに比べて、さらに耐傷付性、耐候性、平行光線透過率に優れたポリカーボネート樹脂成形品を得ることができる。
 脂肪族カーボネート繰り返し単位(A)及び芳香族カーボネート繰り返し単位(B)を有する共重合ポリマーを1種単独、または2種以上を適宜組み合わせてブレンドすることにより、所望の組成比率に調整することができる。
 本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂の組成は、前記繰り返し単位(A)及び(B)の他に効果を失わない程度に他のジヒドロキシ化合物に由来する繰り返し単位を含有しても良い。割合としては前記繰り返し単位(A)及び(B)の合計モル数に対して10%モル以下が好ましい。前記モル比は、プロトンNMRにて測定して算出する。
 本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂の粘度平均分子量は、通常10,000~50,000である。この範囲内であると、機械物性と流動性のバランスが優れている。好ましくは10,000~35,000、より好ましくは10,000~22,000である。この粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
 [η]=1.23×10-5Mv0.83
 本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂の屈折率としては、特に制限は無いが、例えば、波長589.3nmの光に対して1.450~1.590であることが好ましく、1.470~1.570であることが好ましく、1.490~1.550であることがさらに好ましい。
 ポリカーボネート樹脂の波長486.1nmの光に対する屈折率(nF)と波長656.3nmの光に対する屈折率(nC)との差(nF-nC)は、0.015以下であることが好ましく、0.013以下が好ましく、0.011以下がさらに好ましい。
 本発明のポリカーボネート樹脂のアッベ数は、色収差を少なくする観点から、35以上が好ましく、40以上がより好ましく、45以上であることがさらに好ましい。
 ポリカーボネート樹脂のガラス転移温度としては、75~175℃であることが好ましく、80~170℃がより好ましく、90~165℃が更に好ましい。ポリカーボネート樹脂のガラス転移温度が低すぎると使用できる用途が限られてくる。高すぎると成形する際の溶融流動性に劣り、ポリマー分解が少ない温度範囲で成形できなくなる。
(ポリカーボネート樹脂の製造)
 本発明では、ポリカーボネート樹脂の製造方法に特に制限はなく、従来の各種方法により製造されたものを用いることができる。例えば、ジヒドロキシ化合物とカーボネート前駆体とを溶液法(界面重縮合法)又は溶融法(エステル交換法)により反応させて製造されたもの、すなわち、末端停止剤の存在下に、ジヒドロキシ化合物とホスゲン等のカーボネート前駆体を反応させる界面重縮合法、又は末端停止剤の存在下に、ジヒドロキシ化合物と炭酸ジエステルとをエステル交換法等により反応させて製造されたものを用いることができる。
 本発明では、ポリカーボネート樹脂の製造方法としては、エステル交換法が好ましい。
(炭酸ジエステル)
 エステル交換法において用いられる炭酸ジエステルとしては、炭酸ジアリール化合物、炭酸ジアルキル化合物及び炭酸アルキルアリール化合物から選択される少なくとも1種の化合物である。
 炭酸ジアリール化合物は、下記一般式(4)で表される化合物、又は下記一般式(5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000016
 式(4)中、Ar1及びAr2はそれぞれアリール基を示し、それらはたがいに同一でも異なっていてもよい。
 式(5)中、Ar3及びAr4はそれぞれアリール基を示し、それらはたがいに同一でも異なっていてもよく、D1は前記芳香族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。
 また、炭酸ジアルキル化合物は、下記一般式(6)で表される化合物、又は下記一般式(7)で表される化合物である。
Figure JPOXMLDOC01-appb-C000017
 式(6)中、R21及びR22はそれぞれ炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示し、それらはたがいに同一でも異なっていてもよい。
 式(7)中、R23及びR24はそれぞれ炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示し、それらはたがいに同一でも異なっていてもよく、D2は前記芳香族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。
 そして、炭酸アルキルアリール化合物は、下記一般式(8)で表される化合物、又は下記一般式(9)で表される化合物である。
Figure JPOXMLDOC01-appb-C000018
 式(8)中、Ar5はアリール基、R25は炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基を示す。
 式(9)中、Ar6はアリール基,R26は炭素数1~20のアルキル基又は炭素数4~20のシクロアルキル基、D1は前記芳香族ジヒドロキシ化合物から水酸基2個を除いた残基を示す。
 ここで、炭酸ジアリール化合物としては、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、ビス(m-クレジル)カーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ビスフェノールAビスフェニルカーボネートなどが挙げられる。
 また、炭酸ジアルキル化合物としては、例えば、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート、ビスフェノールAビスメチルカーボネートなどが挙げられる。
 そして、炭酸アルキルアリール化合物としては、例えば、メチルフェニルカーボネート、エチルフェニルカーボネート、ブチルフェニルカーボネート、シクロヘキシルフェニルカーボネート、ビスフェノールAメチルフェニルカーボネート等が挙げられる。
 本発明において、炭酸ジエステルとしては、上記の化合物一種又は二種以上を適宜選択して用いるが、これらの中では、ジフェニルカーボネートを用いるのが好ましい。
 また、エステル交換法では、上記ジヒドロキシ化合物及び炭酸ジエステル以外の原料を用いてもよい。
 例えば、ジヒドロキシ化合物のジエステル類として、例えば、ビスフェノールAのジ酢酸エステル、ビスフェノールAのジプロピオン酸エステル、ビスフェノールAのジブチル酸エステル、ビスフェノールAのジ安息香酸エステルなどを挙げることができる。
 また、ジヒドロキシ化合物のジ炭酸エステル類として、例えば、ビスフェノールAのビスメチル炭酸エステル、ビスフェノールAのビスエチル炭酸エステル、ビスフェノールAのビスフェニル炭酸エステルなどを挙げることができる。
 そして、ジヒドロキシ化合物のモノ炭酸エステル類として、例えば、ビスフェノールAモノメチル炭酸エステル、ビスフェノールAモノエチル炭酸エステル、ビスフェノールAモノプロピル炭酸エステル、ビスフェノールAモノフェニル炭酸エステルなどを挙げることができる。
(末端停止剤)
 ポリカーボネートの製造においては、必要に応じて末端停止剤を用いることができる。この末端停止剤としては、例えば、o-n-ブチルフェノール;m-n-ブチルフェノール;p-n-ブチルフェノール;o-イソブチルフェノール;m-イソブチルフェノール;p-イソブチルフェノール;o-t-ブチルフェノール;m-t-ブチルフェノール;p-t-ブチルフェノール;o-n-ペンチルフェノール;m-n-ペンチルフェノール;p-n-ペンチルフェノール;o-n-ヘキシルフェノール;m-n-ヘキシルフェノール;p-n-ヘキシルフェノール;o-シクロヘキシルフェノール;m-シクロヘキシルフェノール;p-シクロヘキシルフェノール;o-フェニルフェノール;m-フェニルフェノール;p-フェニルフェノール;o-n-ノニルフェノール;m-n-ノニルフェノール;p-n-ノニルフェノール;o-クミルフェノール;m-クミルフェノール;p-クミルフェノール;o-ナフチルフェノール;m-ナフチルフェノール;p-ナフチルフェノール;2,6-ジ-t-ブチルフェノール;2,5-ジ-t-ブチルフェノール;2,4-ジ-t-ブチルフェノール;3,5-ジ-t-ブチルフェノール;2,5-ジクミルフェノール;3,5-ジクミルフェノール;下記式で表される化合物や、
Figure JPOXMLDOC01-appb-C000019
下記式で表されるクロマン誘導体などの一価フェノールが挙げられる。
Figure JPOXMLDOC01-appb-C000020
 このようなフェノール類のうち、本発明では特に限定されないが、p-t-ブチルフェノール、p-クミルフェノール、p-フェニルフェノールなどが好ましい。
 また、下記式で表される化合物なども用いることができる。
Figure JPOXMLDOC01-appb-C000021
 また、末端停止剤として、下記一般式(11)または(12)で表される化合物なども用いることができる。
Figure JPOXMLDOC01-appb-C000022
 上記一般式(11)及び(12)において、R31及びR32はそれぞれ炭素数4~30のアルキル基、炭素数7~30のアラルキル基、炭素数4~30のパーフルオロアルキル基、または下記一般式(13)
Figure JPOXMLDOC01-appb-C000023
で表される基である。
 R31及びR32のアルキル基の炭素数は、好ましくは4~22、より好ましくは8~22である。アルキル基として、ヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ペンタデシル基、ヘキサデシル基、オクタデシル基等が挙げられる。
 R31及びR32のアラルキル基の炭素数は、好ましくは8~20、より好ましくは10~20である。アラルキル基として、ベンジル基、フェネチル基、メチルベンジル基、2-フェニルプロパン-2-イル基、ジフェニルメチル基等が挙げられる。
 R31及びR32のパーフルオロアルキル基の炭素数は好ましくは2~20である。パーフルオロアルキル基として4,4,5,5,6,6,7,7,7-ノナフルオロヘプチル基、4,4,5,5,6,6,7,7,8,8,9,9,9-トリデカフルオロノニル基、4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ヘプタデカフルオロウンデシル基などが挙げられる。
 式(13)中、R33、R34、R35、R36及びR37はそれぞれ独立して、炭素数1~10のアルキル基、炭素数6~20のシクロアルキル基、炭素数2~10のアルケニル基、炭素数6~10のアリール基および炭素数7~20のアラルキル基からなる群より選ばれる少なくとも1種の基を表す。
 式(13)中、R33、R34、R35、R36及びR37は、それぞれ独立して炭素数1~10のアルキル基および炭素数6~10のアリール基からなる群から選ばれる少なくとも一種の基であることが好ましい。特にそれぞれ独立してメチル基およびフェニル基からなる群から選ばれる少なくとも一種の基であることが好ましい。
 式(13)中、pは0~3の整数、好ましくは1~3の整数、より好ましくは2~3の整数である。qは4~100の整数、より好ましくは4~50の整数、さらに好ましくは8~50の整数である。
 式(12)のUは、単結合、エーテル結合、チオエーテル結合、エステル結合、アミノ結合およびアミド結合からなる群より選ばれる少なくとも1種の結合を表わす。Uは、好ましくは単結合、エーテル結合およびエステル結合からなる群より選ばれる少なくとも一種の結合である。なかでも単結合、エステル結合が好ましい。
 kは1~5の整数、より好ましくは1~3の整数、さらに好ましくは1である。
 上記式(11)または(12)で表される末端停止剤は、生物起源物質由来であることが好ましい。生物起源物質として、炭素数14以上の長鎖アルキルアルコール、例えばセタノール、ステアリルアルコール、ベヘニルアルコールが挙げられる。
(分岐剤)
 本発明では、必要に応じて、分岐剤を用いることもできる。分岐剤としては、例えばフロログルシン;トリメリット酸;1,1,1-トリス(4-ヒドロキシフェニル)エタン;1-〔α-メチル-α-(4’-ヒドロキシフェニル)エチル〕-4-〔α’,α’-ビス(4”-ヒドロキシフェニル)エチル〕ベンゼン;α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン;イサチンビス(o-クレゾール)などが挙げられる。
(エステル交換法)
 本発明において、通常のエステル交換法によるポリカーボネートの製造では、ジヒドロキシ化合物及び炭酸ジエステルと、必要に応じ末端停止剤あるいは分岐剤等を用いてエステル交換反応を行い、ポリカーボネートを得ることができる。具体的には、公知のエステル交換法に準じて反応を進行させればよい。以下に、本発明の好ましい製造方法の手順及び条件を具体的に示す。
 まず、ジヒドロキシ化合物と炭酸ジエステルとを、ジヒドロキシ化合物に対して炭酸ジエステルが0.9~1.5倍モルになるような比率でエステル交換反応する。なお、状況に応じて、0.98~1.20倍モルが好ましい。
 上記のエステル交換反応に当たって、前記の一価フェノールなどからなる末端停止剤の存在量が、ジヒドロキシ化合物に対して、0.05~10モル%の範囲にあると、得られるポリカーボネートの水酸基末端が封止されるため、耐熱性及び耐水性に充分優れたポリカーボネートが得られる。このような前記の一価フェノールなどからなる末端停止剤は、予め反応系に全量添加しておいてもよく、また予め反応系に一部添加しておき、反応の進行に伴って残部を添加してもよい。さらに場合によっては、前記ジヒドロキシ化合物と炭酸ジエステルとのエステル交換反応が一部進行した後に、反応系に全量添加してもよい。
 エステル交換反応を行うに当たって反応温度は、特に制限はなく、通常100~330℃の範囲、好ましくは180~300℃の範囲で選ばれるが、より好ましくは、反応の進行に合わせて次第に180~300℃まで温度を上げていく方法がよい。このエステル交換反応の温度が100℃以上であれば、反応速度が速くなり、一方、330℃以下であれば、副反応が生じることなく、生成するポリカーボネートが着色するなどの問題が生じにくい。
 また、反応圧力は、使用するモノマーの蒸気圧や反応温度に応じて設定される。これは、反応が効率良く行われるように設定されればよく、限定されるものではない。通常、反応初期においては、1~50atm(760~38,000torr)までの大気圧(常圧)ないし加圧状態にしておき、反応後期においては、減圧状態、好ましくは最終的には1.33~1.33×104Pa(0.01~100torr)にする場合が多い。
 さらに、反応時間は、目標の分子量となるまで行えばよく、通常、0.2~10時間程度である。
 上記のエステル交換反応は、通常不活性溶剤の不存在下で行われるが、必要に応じて、得られるポリカーボネートの1~150質量%の不活性溶剤の存在下において行ってもよい。不活性溶剤としては、例えば、ジフェニルエーテル、ハロゲン化ジフェニルエーテル、ベンゾフェノン、ポリフェニルエーテル、ジクロロベンゼン、メチルナフタレンなどの芳香族化合物;トリシクロ(5,2,10)デカン、シクロオクタン、シクロデカンなどのシクロアルカンなどが挙げられる。
 また、必要に応じて不活性ガス雰囲気下で行ってもよく、不活性ガスとしては、例えばアルゴン、二酸化炭素、一酸化二窒素、窒素などのガス、クロロフルオロ炭化水素、エタンやプロパンなどのアルカン、エチレンやプロピレンなどのアルケンなど、各種のものが挙げられる。
 またエステル交換法においては重合速度を速めるために、重合触媒を用いることができ、かかる重合触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、含窒素化合物、金属化合物、または含窒素有機塩基性化合物とアリール基を含む4級ホスホニウム塩との組合せ等が挙げられる。
 このような化合物としては、アルカリ金属やアルカリ土類金属の、有機酸塩、無機塩、酸化物、水酸化物、水素化物、アルコキシド、4級アンモニウムヒドロキシド等が好ましく用いられ、これらの化合物は単独もしくは組み合わせて用いることができる。
 アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二リチウム、フェニルリン酸二ナトリウム、ビスフェノールAの二ナトリウム塩、二カリウム塩、二セシウム塩、二リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩、リチウム塩等が挙げられる。これらの化合物は1種または2種以上併用してもよい。
 アルカリ土類金属化合物としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、二酢酸マグネシウム、二酢酸カルシウム、二酢酸ストロンチウム、二酢酸バリウム等が挙げられる。これらの化合物は1種または2種以上併用してもよい。
 含窒素化合物としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル、アリール基等を有する4級アンモニウムヒドロキシド類が挙げられる。また、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類が挙げられる。さらに、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基あるいは塩基性塩等が挙げられる。これらの化合物は1種または2種以上併用してもよい。
 金属化合物としては亜鉛アルミニウム化合物、ゲルマニウム化合物、有機スズ化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物等が挙げられる。これらの化合物は1種または2種以上併用してもよい。
 含窒素有機塩基性化合物とアリール基を含む4級ホスホニウム塩との組合せとしては、例えばテトラメチルアンモニウムヒドロキシドとテトラフェニルホスホニウムテトラフェニルボレートとの組合せが挙げられる。
 これらの重合触媒の使用量は、ジヒドロキシ化合物1モルに対し好ましくは1×10-9~1×10-2当量、好ましくは1×10-8~1×10-2当量、より好ましくは1×10-7~1×10-3当量の範囲で選ばれる。
 また、反応後期に触媒失活剤を添加することもできる。使用する触媒失活剤としては、公知の触媒失活剤が有効に使用されるが、この中でもスルホン酸のアンモニウム塩、ホスホニウム塩が好ましい。更にドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等のドデシルベンゼンスルホン酸の塩類、パラトルエンスルホン酸テトラブチルアンモニウム塩等のパラトルエンスルホン酸の塩類が好ましい。
 またスルホン酸のエステルとして、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、パラトルエンスルホン酸メチル、パラトルエンスルホン酸エチル、パラトルエンスルホン酸ブチル、パラトルエンスルホン酸オクチル、パラトルエンスルホン酸フェニル等も好ましく用いられる。
 その中でも、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩もしくはパラトルエンスルホン酸ブチルがもっとも好ましく使用される。これらの触媒失活剤の使用量はアルカリ金属化合物および/またはアルカリ土類金属化合物より選ばれた少なくとも1種の重合触媒を用いた場合、その触媒1モル当たり好ましくは0.5~50モルの割合で、より好ましくは0.5~10モルの割合で、更に好ましくは0.8~5モルの割合で使用することができる。
 エステル交換法における反応は、連続式、およびバッチ式のいずれで行ってもよい。溶融重合に用いられる反応装置は、アンカー型攪拌翼、マックスブレンド攪拌翼、もしくはヘリカルリボン型攪拌翼等を装備した縦型反応装置、またはパドル翼、格子翼、もしくはメガネ翼等を装備した横型反応装置のいずれでもよい。更にスクリューを装備した押出機型であってもよい。連続式の場合は、かかる反応装置を適宜組み合わせて使用することが好ましい。
(界面重縮合法)
 本発明において、通常の界面重縮合法によるポリカーボネートの製造では、例えば、塩化メチレンなどの不活性溶媒中において、公知の酸受容体や分子量調節剤の存在下、さらに必要に応じて触媒や分岐剤を添加し、ジヒドロキシ化合物及びホスゲン等のカーボネート前駆体を反応させる。
 界面重縮合法における触媒としては、相間移動触媒、例えば三級アミン又はその塩、四級アンモニウム塩、四級ホスホニウム塩などを好ましく用いることができる。三級アミンとしては、例えばトリエチルアミン、トリブチルアミン、N,N-ジメチルシクロヘキシルアミン、ピリジン、ジメチルアニリンなどが挙げられ、また三級アミン塩としては、例えばこれらの三級アミンの塩酸塩、臭素酸塩などが挙げられる。四級アンモニウム塩としては、例えばトリメチルベンジルアンモニウムクロリド、トリエチルベンジルアンモニウムクロリド、トリブチルベンジルアンモニウムクロリド、トリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミドなどが、四級ホスホニウム塩としては、例えばテトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミドなどが挙げられる。これらの触媒は、それぞれ単独で用いてもよく、二種以上を組み合わせて用いてもよい。上記触媒の中では、三級アミンが好ましく、特にトリエチルアミンが好適である。
 不活性有機溶剤としては、例えば、ジクロロメタン(塩化メチレン);トリクロロメタン;四塩化炭素;1,1-ジクロロエタン;1,2-ジクロロエタン;1,1,1-トリクロロエタン;1,1,2-トリクロロエタン;1,1,1,2-テトラクロロエタン;1,1,2,2-テトラクロロエタン;ペンタクロロエタン;クロロベンゼンなどの塩素化炭化水素や、トルエン、アセトフェノンなどが挙げられる。これらの有機溶剤はそれぞれ単独で用いてもよいし、二種以上組み合わせて用いてもよい。これらの中では、特に塩化メチレンが好適である。
<ポリカーボネート樹脂組成物>
 本発明のポリカーボネート樹脂組成物は、前記ポリカーボネート樹脂と、前記ガラスフィラーとを含む。
(ポリカーボネート樹脂及びガラスフィラーの含有量)
 本発明のポリカーボネート樹脂組成物中に含まれるガラスフィラーの含有量は、前記ポリカーボネート樹脂及び前記ガラスフィラーの合計量に対して、2~40質量%であることが好ましく、より好ましくは5~35質量%であり、さらに好ましくは10~30質量%である。
 前記ガラスフィラーの含有量が2質量%未満の場合、機械物性の向上が充分に得られない。また、前記ガラスフィラーの含有量が40質量%を超えると、樹脂とガラスとの接触界面が増大し、成形品の高い透明性が低下し、成形時の流動性が低下する。
 ポリカーボネート樹脂組成物に含まれるガラスフィラーの量を上記の範囲にすることにより、高い透明性と良好な機械的物性とを兼ね備えた成形品が得られる。
 本発明のポリカーボネート樹脂組成物は、ポリカーボネート樹脂が本来有する優れた透明性を保持したまま、ガラスフィラーを配合することによる弾性率などの強度向上や、低線膨張係数が実現できる。
(ガラスフィラーとポリカーボネート樹脂との屈折率の差)
 前記ガラスフィラーと前記ポリカーボネート樹脂との屈折率の差が、波長486.1nmの光に対して0.004以下であることが好ましく、0.003以下であることがより好ましく、0.002以下であることが更に好ましく、波長589.3nmの光に対して0.002以下であることが好ましく、0.001以下であることがより好ましく、波長656.3nmの光に対して0.002以下であることが好ましく、0.001以下であることがより好ましい。
 前記ガラスフィラーと前記ポリカーボネート樹脂との屈折率の差が、波長486.1nmの光に対して0.004よりも大きくなると、成形品の透明性が不充分となる。また、前記ガラスフィラーと前記ポリカーボネート樹脂との屈折率の差が、波長589.3nmの光及び/又は波長656.3nmの光に対して0.002よりも大きくなると、成形品の透明性が不充分となる。すなわち、前記ガラスフィラーと前記ポリカーボネート樹脂との屈折率の差を上記範囲内にすることで、成形品の充分な透明性を保持することができる。
 また、前記ポリカーボネート樹脂と前記ガラスフィラーの各波長の屈折率を合わせるためには色収差の少ない、すなわち、高アッベ領域が好ましく、この観点において、前記ガラスフィラーおよび前記ポリカーボネート樹脂それぞれのアッベ数は35以上が好ましく、40以上がより好ましく、45以上であることがさらに好ましい。
(添加剤)
 更に、本発明のポリカーボネート樹脂組成物には、屈折率等の特性を損なわない範囲で、周知の添加剤を用いることができる。例えば、酸化防止剤は、ポリカーボネート樹脂組成物の製造時や成形時の樹脂の分解を抑制することができる。
 また、用途や必要に応じて熱安定剤、可塑剤、光安定剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、紫外線吸収剤、離型剤等の添加剤を配合する
ことができる。
 本発明のポリカーボネート樹脂組成物は従来公知の方法を用いて製造することができる。例えば、上記ポリカーボネート樹脂と上記ガラスフィラーと任意の添加物とを混合機等を用いて混合し、押出し機で溶融混練してペレット化する方法が好ましく用いることができる。
<ポリカーボネート樹脂組成物成形品>
 本発明のポリカーボネート樹脂成形品は、前記ポリカーボネート樹脂組成物を成形してなる。
 本発明のポリカーボネート樹脂成形品の製造方法は、従来公知の成形方法、例えば、ポリカーボネート樹脂組成物を射出成形、押出成形、圧縮成形、カレンダー成形等により成形して、成形品を得ることができる。また、樹脂フィルムもしくは樹脂シートで内部の覆われた金型を用いて成形してもよい。
 成形品の厚さは用途に応じて任意に設定することができ、特に成形品の透明性が要求される場合には、0.2~4.0mmが好ましく、0.3~3.0mmが好ましく、0.3~2.0mmがさらに好ましい。成形品の厚みが0.2mm以上であれば、反りが生じることがなく、良好な機械強度が得られる。また成形品の厚みが4.0mm以下であれば、高い透明性が得られる。
 成形品には、必要に応じてハードコート膜、防曇膜、帯電防止膜、反射防止膜の被膜を形成しても良く、2種類以上の複合被膜としてもよい。
 中でも、耐候性が良好で、経時的な成形品表面の摩耗を防ぐことができることから、ハードコート膜の被膜が形成されていることが特に好ましい。ハードコート膜の材質は特に限定されず、アクリレート系ハードコート剤、シリコーン系ハードコート剤、無機系ハードコート剤等の公知の材料を用いることができる。
 なお、ポリカーボネート樹脂組成物の製造条件、及びポリカーボネート樹脂成形品の成形条件は、適宜選択可能であり、特に限定されないが、溶融混練時の加熱温度や射出成形時の樹脂の温度は、樹脂の分解を抑制することから、通常150℃~300℃の範囲から適宜選ぶのが好ましい。
 成形品の最表面に、ガラスフィラーの少なくとも一部分が存在することで、成形品の表面粗さが大きくなり、成形品表面での乱反射が多くなり、結果として成形品の透明性を悪化する場合がある。このため、成形品の表面粗さを小さくする方法として、成形品の最表面に樹脂の存在比率が高い層(スキン層)を形成させることにより、成形品の表面粗さを小さくする方法等がある。このスキン層を形成させる方法として、射出成形の場合には金型の温度を一般的な条件よりも高い温度にすることで、金型に接する樹脂が流動し易くし、成形品の最表面の表面粗さを小さくすることができる。また、圧縮成形の場合には、成形時の圧力を一般的な条件よりも高い圧力にすることにより、成形品の最表面の表面粗さを小さくすることができる。これらの方法を用いて、成形品の表面粗さを小さくすることにより、成形品表面での乱反射が少なくなり、ヘイズが小さくなり、結果として成形品の透明性を改善することができる。
 そして、このようにして得られたポリカーボネート樹脂成形品は、平板に成形した際、可視光に対する全光線透過率は75%以上、かつ、ヘイズは35%以下であることが好ましい。全光線透過率は80%以上がより好ましく83%以上が更に好ましい。また、ヘイズは30%以下がより好ましく、25%以下が更に好ましい。
 前記光学物性を備えたポリカーボネート樹脂成形品は透明性に優れたものであるので、高い透明性を要求される用途において使用することができる。なお、可視光に対する全光線透過率はJIS-K7361もしくはASTM D1003に準じて測定し、ヘイズはJIS-K7105もしくはASTM D1003に準じて測定することができる。
 本発明の成形品は、脂肪族カーボネート繰り返し単位を含むポリカーボネート樹脂組成物を用いることで、芳香族カーボネート繰り返し単位のみからなるポリカーボネートと比べ、耐傷付性、耐候性、平行光線透過率に優れたポリカーボネート樹脂成形品を得ることができる。
 そして、本発明のポリカーボネート樹脂成形品は、透明性及び剛性、更には耐傷付性及び耐候性が必要とされる部材、例えば、1)サンルーフ、ドアバイザー、リアウィンド、サイドウィンド等の自動車用部品、2)建築用ガラス、防音壁、カーポート、サンルーム及びグレーチング類等の建築用部品、3)鉄道車両、船舶用の窓、4)テレビ、ラジオカセット、ビデオカメラ、ビデオテープレコーダ、オーディオプレーヤ、DVDプレーヤー、電話器、ディスプレイ、コンピュータ、レジスター、複写機、プリンター、ファクシミリ等の各種部品、外板およびハウジングの各部品等の電気機器用部品、5)携帯電話、PDA、カメラ、スライドプロジェクター、時計、電卓、計測器、表示器機等の精密機械等のケース及びカバー類等の精密機器用部品、6)ビニールハウス、温室等の農業用部品、7)照明カバーやブラインド、インテリア器具類等の家具用部品等に好適に用いることができる。
 次に、本発明を実施例及び比較例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、各例における特性値は、以下に示す要領に従って求めた。
<ポリカーボネート樹脂の繰り返し単位(A)及び(B)の組成比>
 核磁気共鳴(NMR)測定装置(日本電子株式会社製;JNM-AL500)を用いて、1H-NMRを測定し、繰り返し単位(A)及び(B)の共重合量を算出した。
<ポリカーボネート樹脂の粘度平均分子量>
 ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、[η]=1.23×10-5Mv0.83の式により、粘度平均分子量(Mv)を算出した。
<ポリカーボネート樹脂の屈折率及びアッベ数>
 アッベ屈折計(METRICON社製 MODEL 2010/M PRISM COUPLER)で、波長656.3nm(C線)、589.3nm(D線)、486.1nm(F線)の干渉フィルターを用いて、各波長の屈折率、nC、nD、nFを測定した。
 測定試料は樹脂を130~220℃で圧縮成形し、厚み1mmの板を作製、測定試験片とした。
<ポリカーボネート樹脂のガラス転移温度Tg>
 ポリカーボネート樹脂を用いてティー・エイ・インスツルメント(株)製の熱分析システムDSC-2910を使用して、JISK7121に準拠して窒素雰囲気下(窒素流量:40ml/min)、昇温速度:20℃/minの条件下で測定した。
<ガラスフィラーの屈折率及び比重及びアッベ数>
 ガラスフィラーの屈折率は試験片をJIS-K7142のB法による浸液法によって測定した値であり、得られた屈折率からアッベ数を算出した。比重はアルキメデス法によって測定した値である。
<ポリカーボネート樹脂組成物の性能評価>
(1)全光線透過率及びヘイズ値
 ポリカーボネート樹脂成形品の光学物性である全光線透過率は、日本電色株式会社製NDHセンサーを用い、ASTM D1003に準じて厚さ2mmのサンプルを測定した値である。ヘイズ値は日本電色株式会社製NDHセンサーを用い、ASTM D1003に準じて厚さ2mmのサンプルを測定した値である。
製造例1
[ポリカーボネート樹脂の製造]
 脂肪族ジヒドロキシ化合物として、1,4-シクロヘキサンジメタノール(CHDM)165.89g(1.152mol)、芳香族ジヒドロキシ化合物として、ビスフェノールA(BPA)10.94g(0.048mol)、炭酸ジエステルとして、ジフェニルカーボネートを269.64g(1.26mol)、及びテトラメチルアンモニウムヒドロキシド15wt%水溶液を1.44ml、0.1mol/L 水酸化ナトリウム水溶液24μLを攪拌装置、蒸留器及び減圧装置を備えた反応槽に仕込み、窒素置換した後、140℃で溶融した。30分攪拌後、内温を180℃に昇温しつつ徐々に減圧し13.3kPaで30分間反応させ、生成するフェノールを溜去した。次に同圧に維持しながら昇温し続け、190℃で30分間、さらに200℃で30分間反応を行い、その後、210℃で30分間、220℃で30分間、さらに240℃で30分間反応を行い、フェノールを溜去させた。その後、ゆっくりと減圧し240℃で133Pa以下とし、30分間保持後、さらに真空度を上げていき、フル真空到達後4時間攪拌下で反応させた。その後、失活剤として、p-トルエンスルホン酸ブチル10vol%トルエン溶液16μLを添加加後、240℃、13.3kPaで20分間攪拌し、目的の共重合ポリカーボネート(PC1)を得た。PC1の粘度平均分子量、波長486.1nmの光に対する屈折率(nF)、波長589.3nmの光に対する屈折率(nD)、波長656.3nmの光に対する屈折率(nC)、アッベ数、及びガラス転移温度を測定した結果を表1に示す。
製造例2
 製造例1で使用した脂肪族ジヒドロキシ化合物をCHDM、イソソルビド(ISB)に代えて、CHDMを80.784g(0.561mol)、ISBを81.985g(0.561mol)用い、BPAの使用量を17.784g(0.078mol)に代えた以外は製造例1と全く同様の操作を行い、目的の共重合ポリカーボネート(PC2)を得た。結果を表1に示す。
製造例3
 製造例1で使用した脂肪族ジヒドロキシ化合物をISB、トリシクロデカンジメタノール(TCDDM)に代えて、ISBを70.585g(0.483mol)、TCDDMを95.668g(0.483mol)用い、BPAの使用量を53.352g(0.234mol)に代えた以外は製造例1と全く同様の操作を行い、目的の共重合ポリカーボネート(PC3)を得た。結果を表1に示す。
製造例4
 製造例1で使用した脂肪族ジヒドロキシ化合物をTCDDMに代えて、TCDDMを136.416g(0.696mol)用い、BPAの使用量を114.912g(0.504mol)に代えた以外は製造例1と全く同様の操作を行い、目的の共重合ポリカーボネート(PC4)を得た。結果を表1に示す。
製造例9
 脂肪族ジビドロキシ化合物として、イソソルビド(ISB)67.45g(0.462mol)、芳香族ジヒドロキシ化合物として、ビスフェノールA(BPA)31.46g(0.138mol)、炭酸ジエステルとして、ジフェニルカーボネートを132.25g(0.618mol)、及びテトラメチルアンモニウムヒドロキシド15wt%水溶液を0.73ml、0.1mol/L水酸化ナトリウム水溶液30μLを撹拌装置、蒸留器及び減圧装置を備えた反応槽に仕込み、窒素置換した。
 反応槽内温を180℃に昇温して15分間反応させた後、徐々に減圧し13.3kPaで20分間反応させ、生成するフェノールを溜去した。
 次に200℃に昇温すると共に4kPaに減圧して20分間反応を行い、更に220℃に昇温してから徐々に0.13kPaまで減圧してフェノールを溜去した。更に250℃に昇温して0.07kPaで1時間撹拌下で反応させた。
 その後、失活剤として、p-トルエンスルホン酸ブチル10vol%トルエン溶液8μLを添加後、250℃、13.3kPaで20分間撹拌し、目的の共重合ポリカーボネート(PC6)を得た。
 PC6の粘度平均分子量、波長486.1nmの光に対する屈折率(nF)、波長589.3nmの光に対する屈折率(nD)、波長656.3nmの光に対する屈折率(nC)、アッベ数、及びガラス転移温度を測定した結果を表1に示す。
製造例10
 製造例9で使用した脂肪族ジヒドロキシ化合物であるISBの使用量を66.58g(0.456mol)に、芳香族ジヒドロキシ化合物であるBPAの使用量を32.83g(0.144mol)に代えた以外は製造例9と全く同様の操作を行い、目的の共重合ポリカーボネート(PC7)を得た。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000024
製造例5~8,11,12
[ガラス繊維の製造]
 表2に示す組成(質量%)で、ガラス繊維GF1~6を製造した。
 なお、ガラス繊維は、従来公知の方法により繊維径15μmで紡糸し、バインダーとして製造例5,7,8はガラス繊維に対して合計量が0.5質量%となるよう調整したアミノシランとウレタンを、製造例6は同様に調整したアミノシランとエポキシを、製造例11,12は同様に調整したアミノシランとウレタンを付着させた。上記で得られたガラス繊維GF1~6の波長486.1nmの光に対する屈折率(nF)、波長589.3nmの光に対する屈折率(nD)、波長656.3nmの光に対する屈折率(nC)、比重及びアッベ数を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000025
実施例1~6、及び比較例1~2
[ガラス繊維強化ポリカーボネート樹脂成形品の製造]
 製造例1~4,9,10で得られたポリカーボネート樹脂、及びガラスフィラーとして製造例5~8,11,12で得られたガラス繊維を用いて、表3に示す組成(質量%)及び以下の条件でコンパウンドを行い、実施例1~6のポリカーボネート樹脂組成物成形品を製造した。
 表3に示す割合で製造例1~4,9,10で得られたポリカーボネート樹脂及び製造例5~8,11,12で得られたガラス繊維を配合し、押出機(機種名:Micro Twin Screw compounder(DSM社製))に供給し、押し出し温度:170℃~300℃で溶融混練し、射出成形機(機種名:Injection Molding Machine (Explore 社製))シリンダー温度170℃~300℃、金型温度30~120℃の条件で射出成形してダンベル片を得た。得られたダンベル片について、再度150~300℃で圧縮成形し、厚み2mmの板を作製、測定試験片とした。
 また、表1に示すPC5のポリカーボネート樹脂、及びガラスフィラーとして製造例7及び8で得られたガラス繊維を用いて、表3に示す組成(質量%)及び実施例と同様の条件でコンパウンドを行い比較例1~2のポリカーボネート樹脂組成物成形品を製造した。
Figure JPOXMLDOC01-appb-T000026
 表3の結果より、実施例1~6の成形品は、比較例1~2の成形品に比べて、全光線透過率が同等であり、ヘイズ値が低いため、透明性に優れたものであることがわかる。
 本発明のポリカーボネート樹脂組成物及び成形品は、機械強度、透明性及び剛性、更には耐傷付性及び耐光性が要求される、例えば、自動車や建物等の窓等を含めたガラス代替材料として好適に用いることができる。

Claims (14)

  1.  脂肪族ジヒドロキシ化合物に由来する脂肪族カーボネート繰り返し単位(A)を含むポリカーボネート樹脂と、
     二酸化ケイ素(SiO2)50~75質量%、酸化アルミニウム(Al23)0~30質量%、酸化ホウ素(B23)0~20質量%、酸化マグネシウム(MgO)0~11質量%、酸化カルシウム(CaO)0~25質量%、酸化亜鉛(ZnO)0~10質量%、酸化ストロンチウム(SrO)0~10質量%、酸化バリウム(BaO)0~10質量%、酸化ナトリウム(Na2O)0~15質量%、酸化カリウム(K2O)0~10質量%、酸化リチウム(Li2O)0~10質量%、酸化チタン(TiO2)0~10質量%、酸化鉄(Fe23)0~1質量%、及びフッ素(F2)0~2質量%を含有し、前記二酸化ケイ素(SiO2)と前記酸化アルミニウム(Al23)との合計量として50~93質量%含有し、前記酸化カルシウム(CaO)と前記酸化亜鉛(ZnO)と前記酸化ストロンチウム(SrO)と前記酸化バリウム(BaO)との合計量として0~25質量%含有し、かつ前記酸化ナトリウム(Na2O)と前記酸化カリウム(K2O)と前記酸化リチウム(Li2O)との合計量として0~15質量%含有することを特徴とするガラスフィラーと
    を含む、ポリカーボネート樹脂組成物。
  2.  前記ポリカーボネート樹脂が、脂肪族ジヒドロキシ化合物に由来する脂肪族カーボネート繰り返し単位(A)及び芳香族ジヒドロキシ化合物に由来する芳香族カーボネート繰り返し単位(B)を含む、請求項1に記載のポリカーボネート樹脂組成物。
  3.  前記脂肪族カーボネート繰り返し単位(A)が、下記式(I)で表されるものである、請求項1または2に記載のポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、X1は炭素数2~20の2価の脂肪族炭化水素基又は炭素数4~22の2価の脂環式炭化水素基を示す。前記2価の脂肪族炭化水素基及び2価の脂環式炭化水素基は、酸素原子、窒素原子及び硫黄原子から選ばれる少なくとも1つのヘテロ原子、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選ばれる少なくとも1つのハロゲン原子を含んでもよい。)
  4.  前記芳香族カーボネート繰り返し単位(B)が、下記式(II)で表されるものである、請求項2または3に記載のポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、X2は、芳香族基を含む炭化水素残基を示す。)
  5.  前記ポリカーボネート樹脂が、前記脂肪族カーボネート繰り返し単位(A)と前記芳香族カーボネート繰り返し単位(B)のモル比(A/B)が、100/0~0.5/99.5の範囲である、請求項2~4のいずれかに記載のポリカーボネート樹脂組成物。
  6.  前記ポリカーボネート樹脂のアッベ数が35以上であり、かつ前記ポリカーボネート樹脂の波長486.1nmの光に対する屈折率(nF)と波長656.3nmの光に対する屈折率(nC)との差(nF-nC)が0.015以下である、請求項1~5のいずれかに記載のポリカーボネート樹脂組成物。
  7.  前記ポリカーボネート樹脂のガラス転移温度が75~175℃である、請求項1~6のいずれかに記載のポリカーボネート樹脂組成物。
  8.  前記ガラスフィラーが、前記酸化ナトリウム(Na2O)と前記酸化カリウム(K2O)と前記酸化リチウム(Li2O)との合計量として0~10質量%含有する、請求項1~7のいずれかに記載のポリカーボネート樹脂組成物。
  9.  前記ガラスフィラーの波長589.3nmにおける屈折率が、1.500~1.540である、請求項1~8のいずれかに記載のポリカーボネート樹脂組成物。
  10.  前記ガラスフィラーのアッベ数が35以上である、請求項1~9のいずれかに記載のポリカーボネート樹脂組成物。
  11.  前記ポリカーボネート樹脂の屈折率と前記ガラスフィラーの屈折率との差が、波長486.1nmの光に対して0.004以下、波長589.3nmの光に対して0.002以下、波長656.3nmの光に対して0.002以下である、請求項1~10のいずれかに記載のポリカーボネート樹脂組成物。
  12.  前記ポリカーボネート樹脂及び前記ガラスフィラーの合計量に対して、前記ポリカーボネート樹脂を98~60質量%、前記ガラスフィラーを2~40質量%含有する、請求項1~11のいずれかに記載のポリカーボネート樹脂組成物。
  13.  前記ポリカーボネート樹脂組成物を平板状に成形した際の全光線透過率が75%以上、かつ、ヘイズ値が35%以下である、請求項1~12のいずれかに記載のポリカーボネート樹脂組成物。
  14.  請求項1~13のいずれかに記載のポリカーボネート樹脂組成物を成形してなる成形品。
PCT/JP2013/079899 2012-11-05 2013-11-05 ポリカーボネート樹脂組成物及び成形品 WO2014069659A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13851931.9A EP2915849B1 (en) 2012-11-05 2013-11-05 Polycarbonate resin composition and molded article
CN201380057463.5A CN104769038B (zh) 2012-11-05 2013-11-05 聚碳酸酯树脂组合物和成形品
US14/440,152 US9896569B2 (en) 2012-11-05 2013-11-05 Polycarbonate resin composition and molded article
JP2014544624A JP6131264B2 (ja) 2012-11-05 2013-11-05 ポリカーボネート樹脂組成物及び成形品
KR1020157011262A KR102110106B1 (ko) 2012-11-05 2013-11-05 폴리카보네이트 수지 조성물 및 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-243612 2012-11-05
JP2012243612 2012-11-05

Publications (1)

Publication Number Publication Date
WO2014069659A1 true WO2014069659A1 (ja) 2014-05-08

Family

ID=50627551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079899 WO2014069659A1 (ja) 2012-11-05 2013-11-05 ポリカーボネート樹脂組成物及び成形品

Country Status (7)

Country Link
US (1) US9896569B2 (ja)
EP (1) EP2915849B1 (ja)
JP (1) JP6131264B2 (ja)
KR (1) KR102110106B1 (ja)
CN (1) CN104769038B (ja)
TW (1) TWI609046B (ja)
WO (1) WO2014069659A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151971A (zh) * 2014-08-20 2014-11-19 南京信息工程大学 一种耐冲击涂层材料及其制备方法
WO2017135582A3 (ko) * 2016-02-04 2018-08-02 에스케이케미칼주식회사 내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물
WO2018199033A1 (ja) 2017-04-28 2018-11-01 出光興産株式会社 ガラスフィラーを含むポリカーボネート系樹脂組成物及びその成形体
WO2019167957A1 (ja) * 2018-03-01 2019-09-06 旭ファイバーグラス株式会社 有色樹脂組成物及び有色樹脂成形体
JP2019151702A (ja) * 2018-03-01 2019-09-12 旭ファイバーグラス株式会社 サンルーフ用外装部品及びサンルーフ用複合部品
RU2807593C1 (ru) * 2022-12-29 2023-11-16 Акционерное общество "Институт стекла" Стеклонаполнитель пломбировочных и реставрационных стоматологических материалов

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300020B2 (ja) * 2014-06-16 2018-03-28 パナソニックIpマネジメント株式会社 プリント配線板用樹脂組成物、プリント配線板用プリプレグ、積層板、金属張積層板、プリント配線板、及び酸化マグネシウム
CN104743888B (zh) * 2014-09-22 2016-03-23 巨石集团有限公司 一种玻璃纤维组合物及其玻璃纤维和复合材料
WO2016060062A1 (ja) * 2014-10-17 2016-04-21 東レ株式会社 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム
CN107849344B (zh) * 2015-07-31 2020-07-10 华东理工大学 聚碳酸酯树脂复合物
CN106219988B (zh) * 2016-07-08 2018-05-22 中国计量大学 一种高性能玻璃纤维的制备方法
CN106145687B (zh) * 2016-07-08 2018-05-01 中国计量大学 一种高强度玻璃纤维
JP7065079B2 (ja) * 2017-03-31 2022-05-11 出光興産株式会社 熱可塑性樹脂の製造方法
RU2692712C1 (ru) * 2018-01-14 2019-06-26 Общество с ограниченной ответственностью "Сферастек" Способ получения микрошариков для световозвращающих покрытий
RU2692714C1 (ru) * 2018-01-14 2019-06-26 ООО "Сферастек" Стеклянный микрошарик для световозвращающих покрытий
RU2679025C1 (ru) * 2018-01-14 2019-02-05 ООО "Сферастек" Способ получения прозрачного бесцветного натрий-кальций-силикатного стекла для световозвращающих микрошариков
RU2672890C1 (ru) * 2018-01-14 2018-11-20 Общество с ограниченной ответственностью "Сферастек" Стеклянный микрошарик
RU2682279C1 (ru) * 2018-01-14 2019-03-18 Общество с ограниченной ответственностью "Сферастек" Натрий-кальций-силикатное прозрачное бесцветное стекло
US10882779B2 (en) * 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber
EP3822319A4 (en) 2018-07-11 2022-04-13 Mitsubishi Engineering-Plastics Corporation THERMOPLASTIC RESIN COMPOSITION AND MOLDED ARTICLE MANUFACTURING METHOD
KR102190737B1 (ko) * 2020-10-14 2020-12-15 주식회사 코아스 항균성, 항바이러스성 및 탈취성이 우수한 가구 부재용 조성물 및 이를 이용하여 제조된 가구용 부재
CN115873226B (zh) * 2022-12-21 2024-05-03 万华化学集团股份有限公司 一种共聚碳酸酯及其制备方法和用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212070A (ja) 1993-01-20 1994-08-02 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物
JPH07118514A (ja) 1993-10-26 1995-05-09 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JPH08143760A (ja) 1994-11-17 1996-06-04 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物および成形品
JPH09165506A (ja) 1995-12-14 1997-06-24 Mitsubishi Eng Plast Kk 芳香族ポリカーボネート樹脂組成物
JPH10147700A (ja) * 1996-11-20 1998-06-02 Teijin Chem Ltd ガラス繊維強化ポリカーボネート樹脂組成物及び電動工具ハウジング成形品
JP2006022235A (ja) * 2004-07-09 2006-01-26 Asahi Fiber Glass Co Ltd ポリカーボネート樹脂組成物及びそれを用いた成形品
JP2011021172A (ja) * 2008-11-28 2011-02-03 Mitsubishi Chemicals Corp ポリカーボネート樹脂、ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
JP4666459B2 (ja) 2004-12-14 2011-04-06 旭ファイバーグラス株式会社 ポリカーボネート樹脂組成物及びそれを用いた成形品

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2098566A1 (en) * 1991-11-15 1993-05-16 Masaya Okamoto Polycarbonate resin composition and process for producing the same
US6211526B1 (en) * 1998-09-30 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Marking of materials using luminescent and optically stimulable glasses
US6316576B1 (en) * 1999-01-08 2001-11-13 Mitsubishi Gas Chemical Company, Inc. Polycarbonate resin and process for producing the same
US7138479B2 (en) 2003-12-31 2006-11-21 General Electric Company Aliphatic diol polycarbonates and their preparation
WO2005100443A1 (ja) * 2004-04-14 2005-10-27 Idemitsu Kosan Co., Ltd. 硫黄含有化合物、その製造方法及び含硫黄重合体並びに光学材料
KR101211448B1 (ko) * 2004-05-13 2012-12-12 아사히 파이바 그라스 가부시끼가이샤 폴리카보네이트 수지 강화용 유리 섬유 및 폴리카보네이트수지 성형품
US7119140B2 (en) * 2004-07-22 2006-10-10 Ronald Basham Transparent films, compositions, and method of manufacture thereof
JPWO2008156091A1 (ja) * 2007-06-18 2010-08-26 日本板硝子株式会社 ガラス組成物
US7718755B2 (en) * 2007-10-18 2010-05-18 Sabic Innovative Plastics Ip B.V. Aliphatic diol-based polycarbonates, method of making, and articles formed therefrom
EP2952536B1 (en) * 2007-12-13 2021-02-24 Mitsubishi Chemical Corporation Polycarbonate and molded article
CN101514060B (zh) 2009-03-31 2011-10-26 上海穆特环保科技有限公司 应急饮用水处理设备
CN103339531B (zh) * 2011-01-14 2016-05-25 帝人株式会社 由芳香族-脂肪族聚碳酸酯树脂形成的光学透镜
US8557158B2 (en) * 2011-08-23 2013-10-15 Sabic Innovative Plastics Ip B.V. Molded article having enhanced aesthetic effect and method and system for making the molded article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212070A (ja) 1993-01-20 1994-08-02 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物
JPH07118514A (ja) 1993-10-26 1995-05-09 Teijin Chem Ltd 芳香族ポリカーボネート樹脂組成物
JPH08143760A (ja) 1994-11-17 1996-06-04 Teijin Chem Ltd 強化芳香族ポリカーボネート樹脂組成物および成形品
JPH09165506A (ja) 1995-12-14 1997-06-24 Mitsubishi Eng Plast Kk 芳香族ポリカーボネート樹脂組成物
JPH10147700A (ja) * 1996-11-20 1998-06-02 Teijin Chem Ltd ガラス繊維強化ポリカーボネート樹脂組成物及び電動工具ハウジング成形品
JP2006022235A (ja) * 2004-07-09 2006-01-26 Asahi Fiber Glass Co Ltd ポリカーボネート樹脂組成物及びそれを用いた成形品
JP4666459B2 (ja) 2004-12-14 2011-04-06 旭ファイバーグラス株式会社 ポリカーボネート樹脂組成物及びそれを用いた成形品
JP2011021172A (ja) * 2008-11-28 2011-02-03 Mitsubishi Chemicals Corp ポリカーボネート樹脂、ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2915849A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151971A (zh) * 2014-08-20 2014-11-19 南京信息工程大学 一种耐冲击涂层材料及其制备方法
CN104151971B (zh) * 2014-08-20 2016-05-18 南京信息工程大学 一种耐冲击涂层材料及其制备方法
WO2017135582A3 (ko) * 2016-02-04 2018-08-02 에스케이케미칼주식회사 내열성 및 용제 용해성이 우수한 폴리에스테르 수지 및 이를 함유하는 코팅 조성물
US11401372B2 (en) 2016-02-04 2022-08-02 Sk Chemicals Co., Ltd. Polyester resin having excellent heat resistance and solubility in solvents, and coating composition containing same
WO2018199033A1 (ja) 2017-04-28 2018-11-01 出光興産株式会社 ガラスフィラーを含むポリカーボネート系樹脂組成物及びその成形体
KR20190136026A (ko) 2017-04-28 2019-12-09 이데미쓰 고산 가부시키가이샤 유리 필러를 포함하는 폴리카보네이트계 수지 조성물 및 그의 성형체
JPWO2018199033A1 (ja) * 2017-04-28 2020-03-12 出光興産株式会社 ガラスフィラーを含むポリカーボネート系樹脂組成物及びその成形体
WO2019167957A1 (ja) * 2018-03-01 2019-09-06 旭ファイバーグラス株式会社 有色樹脂組成物及び有色樹脂成形体
JP2019151702A (ja) * 2018-03-01 2019-09-12 旭ファイバーグラス株式会社 サンルーフ用外装部品及びサンルーフ用複合部品
JPWO2019167957A1 (ja) * 2018-03-01 2021-02-12 旭ファイバーグラス株式会社 有色樹脂組成物及び有色樹脂成形体
JP7144155B2 (ja) 2018-03-01 2022-09-29 旭ファイバーグラス株式会社 サンルーフ用外装部品及びサンルーフ用複合部品
RU2807593C1 (ru) * 2022-12-29 2023-11-16 Акционерное общество "Институт стекла" Стеклонаполнитель пломбировочных и реставрационных стоматологических материалов

Also Published As

Publication number Publication date
US9896569B2 (en) 2018-02-20
EP2915849B1 (en) 2018-03-28
CN104769038A (zh) 2015-07-08
TW201425463A (zh) 2014-07-01
JPWO2014069659A1 (ja) 2016-09-08
EP2915849A1 (en) 2015-09-09
CN104769038B (zh) 2017-06-30
KR20150082256A (ko) 2015-07-15
KR102110106B1 (ko) 2020-05-13
TWI609046B (zh) 2017-12-21
EP2915849A4 (en) 2016-06-15
JP6131264B2 (ja) 2017-05-17
US20150291767A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP6131264B2 (ja) ポリカーボネート樹脂組成物及び成形品
TWI549986B (zh) A high-flow polycarbonate copolymer, a method for producing a high molecular weight aromatic polycarbonate resin, and an aromatic polycarbonate compound
TWI513731B (zh) Method for producing aromatic polycarbonate resin by high molecular weight
EP3112392A1 (en) Polycarbonate and optical member including same
US20230052441A1 (en) Polycarbonate/polyorganosiloxane copolymer and resin composition including said copolymer
JP5808959B2 (ja) 高屈折率ポリカーボネート共重合体及び光学レンズ
EP4071194A1 (en) Polycarbonate/polyorganosiloxane copolymer and resin composition including said copolymer
JP2010189508A (ja) ポリカーボネート樹脂組成物及びその製造方法
US20230046996A1 (en) Polycarbonate/polyorganosiloxane copolymer and resin composition including said copolymer
TW201433589A (zh) 高分子量化的芳香族聚碳酸酯樹脂之製造方法
KR102509149B1 (ko) 유리 필러를 포함하는 폴리카보네이트계 수지 조성물 및 그의 성형체
JPWO2014077341A1 (ja) 芳香族ポリカーボネート樹脂組成物
CN110461904B (zh) 热塑性树脂的制造方法
CN110997807A (zh) 聚碳酸酯系树脂组合物的制造方法
JP2003020394A (ja) 芳香族−脂肪族共重合ポリカーボネート樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544624

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157011262

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013851931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14440152

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE