WO2014069556A1 - レジンプレミックス組成物、硬質ポリウレタンフォーム用組成物および硬質ポリウレタンフォーム - Google Patents

レジンプレミックス組成物、硬質ポリウレタンフォーム用組成物および硬質ポリウレタンフォーム Download PDF

Info

Publication number
WO2014069556A1
WO2014069556A1 PCT/JP2013/079501 JP2013079501W WO2014069556A1 WO 2014069556 A1 WO2014069556 A1 WO 2014069556A1 JP 2013079501 W JP2013079501 W JP 2013079501W WO 2014069556 A1 WO2014069556 A1 WO 2014069556A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
fatty acid
resin premix
premix composition
acid
Prior art date
Application number
PCT/JP2013/079501
Other languages
English (en)
French (fr)
Inventor
篤史 宮田
佐藤 憲一
信介 松本
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2014544569A priority Critical patent/JP5887655B2/ja
Priority to KR1020157009660A priority patent/KR101754063B1/ko
Priority to CN201380056364.5A priority patent/CN104755557B/zh
Priority to EP13850391.7A priority patent/EP2915850A4/en
Priority to US14/438,693 priority patent/US20150299376A1/en
Publication of WO2014069556A1 publication Critical patent/WO2014069556A1/ja
Priority to PH12015500951A priority patent/PH12015500951A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4891Polyethers modified with higher fatty oils or their acids or by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33348Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/52Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type obtained by dehydration of polyhydric alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/52Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type obtained by dehydration of polyhydric alcohols
    • C08G2650/54Polyglycerols

Definitions

  • the present invention relates to a resin comprising a polyol containing a polyether ester polyol obtained by condensing a polyether polyol obtained by dehydrating condensation of a trihydric or higher alcohol and a fatty acid and / or a fatty acid ester, and a hydrocarbon-based blowing agent.
  • the present invention relates to a premix composition, a composition for a rigid polyurethane foam comprising the resin premix composition and a polyisocyanate, and a rigid polyurethane foam obtained by reacting these.
  • Polyether polyol which is a raw material for rigid polyurethane foam, has been conventionally produced by a method of ring-opening polymerization of a cyclic ether compound such as ethylene oxide, propylene oxide, and tetrahydrofuran to an active hydrogen compound that is an initiator.
  • This method is an excellent method in which the reaction is possible under relatively mild conditions because of the high activity of the cyclic ether compound, and the polyether polyol produced by this method is excellent in that the molecular weight distribution is narrow.
  • cyclic ether compounds have a low boiling point and are highly toxic, they have the disadvantage that they are difficult to store and synthesize.
  • the average number of hydroxyl groups of the polyether polyols obtained from these cyclic ether compounds is not higher than the number of active hydrogens in the initiator due to the nature of the reaction, and in some cases, the average number of hydroxyl groups due to side reactions during the reaction. May be reduced. Therefore, when preparing polyether polyols for rigid polyurethane foams that require a particularly high number of hydroxyl groups, it is necessary to select an initiator having many hydroxyl groups such as pentaerythritol, sorbitol, and saccharides in the production method. However, an initiator having many hydroxyl groups is often in a solid state, and there is a problem that handling as an initiator is difficult.
  • a polyether polyol can also be produced by dehydrating and condensing alcohol.
  • the number of hydroxyl groups per molecule of polyether polyol can theoretically be increased by using a polyol compound having three or more hydroxyl groups in one molecule as the alcohol.
  • a polyether polyol obtained by dehydration condensation of a polyol compound having three or more hydroxyl groups in one molecule polyglycerol obtained by dehydration condensation of glycerin in the presence of an alkali can be mentioned (Patent Document 1).
  • Patent Document 2 when used as a polyol for rigid polyurethane foam, it is necessary to use polyglycerin having a high degree of condensation.
  • polyglycerin has a very high viscosity when the degree of condensation increases, it can be used alone as a polyol for rigid polyurethane foam. It is difficult to use. Therefore, a technique for obtaining a polyether polyol having a low viscosity by adding a monovalent or divalent alcohol to glycerin and condensing has been developed (Patent Documents 3 and 4).
  • chlorofluorocarbons that have been used for a long time as foaming agents for rigid polyurethane foams have high ozone depletion potential and global warming potential, so their use is restricted and suppressed, and pentane, isopentane, cyclopentane, etc. are representative.
  • Hydrocarbon blowing agents, or water have been used as blowing agents.
  • foaming is caused by carbon dioxide gas generated by the reaction between isocyanate and water, but at the same time, there is a problem that the foam becomes brittle due to the formation of urea bonds, and hydrocarbon-based foaming agents are used.
  • the present invention seeks to solve the problems associated with the prior art as described above, and uses a polyol obtained without using a ring-opening polymerization reaction of a cyclic ether.
  • a resin premix composition having good storage stability even when it is contained is provided.
  • a resin premix composition comprising at least a polyol and a hydrocarbon foaming agent,
  • the polyol is Containing a polyether polyol (A) obtained by reacting a polyether polyol obtained by condensing a polyhydric alcohol containing at least 50 mol% of a trihydric or higher alcohol with a fatty acid and / or a fatty acid ester.
  • Resin premix composition characterized.
  • the polyol is (1) including at least 10 parts by weight of the polyether ester polyol (A) and (2) 0 to 90 parts by weight of other polyols (provided that the total of (1) and (2) is 100 parts by weight)
  • the resin premix composition as described in [1] above.
  • a composition for rigid polyurethane foam comprising the resin premix composition according to any one of [1] to [4] above and a polyisocyanate.
  • a rigid polyurethane foam obtained by reacting the resin premix composition according to any one of [1] to [4] above with a polyisocyanate.
  • a polyether ester polyol having a large number of hydroxyl groups and a low viscosity can be easily obtained.
  • a hydrocarbon-based blowing agent By mixing this with a hydrocarbon-based blowing agent, the compatibility is excellent and the storage stability is also excellent.
  • a resin premix composition can be prepared.
  • This resin premix composition is useful for the production of rigid polyurethane foam, and the rigid polyurethane foam obtained by using this resin premix composition is used as a heat insulating material such as a building material panel, a refrigerator, a freezer, a pipe, a house, a vehicle. It can be used for structural support materials such as.
  • the resin premix composition of the present invention comprises at least a polyol and a hydrocarbon-based foaming agent, and the polyol contains 50 mol% or more of a trihydric or higher alcohol. It includes a polyether polyol (A) obtained by reacting a polyether polyol obtained by condensing (all the polyhydric alcohol is 100 mol%) with a fatty acid and / or a fatty acid ester. Moreover, the resin premix composition here is used for rigid polyurethane foam, and means a composition containing no polyisocyanate described later.
  • the polyether ester polyol (A) is a polyol for rigid polyurethane foam obtained without using a ring-opening polymerization reaction of a cyclic ether compound such as ethylene oxide, propylene oxide, butylene oxide, and tetrahydrofuran.
  • the resin premix composition containing the polyol (A) and the hydrocarbon-based blowing agent is excellent in storage stability. The reason is presumed that the polyether ester polyol (A) obtained by condensing a specific fatty acid with a polyether compound can increase the hydrophobicity of the polyol.
  • the polyether ester polyol (A) is usually prepared by dehydrating condensation etherification of a polyhydric alcohol containing 50 mol% of a trihydric or higher alcohol, and then preparing the polyether polyol, and then the fatty acid and / or fatty acid. It can be obtained by dehydrating condensation esterification with an ester.
  • the polyhydric alcohol is not particularly limited, but is preferably a polyhydric alcohol having a boiling point of 160 ° C. or higher which is the lower limit of the reaction temperature.
  • a polyol having a sufficient number of functional groups for use in rigid polyurethane foam by containing a trivalent or higher alcohol, a polyol having a sufficient number of functional groups for use in rigid polyurethane foam can be obtained.
  • the trihydric or higher alcohol is preferably 50 mol% or more with respect to 100 mol% of the polyhydric alcohol, preferably 70 to 100 mol% from the viewpoint that the number of functional groups can be designed high, and 90 to 100 mol%. Is more preferable. If the trihydric or higher alcohol is less than 50 mol%, the number of functional groups of the polyol will not be sufficiently high, and foam shrinkage will occur when used in rigid polyurethane foam applications.
  • trivalent or higher alcohols examples include glycerin, trimethylolethane, trimethylolpropane, 1,2,6-hexanetriol, pentaerythritol, diglycerin, ditrimethylolpropane, dipentaerythritol, methylglucoside, glucose, and the like. Since it is easy in handling to use a liquid trihydric alcohol, glycerol and diglycerol are preferably used, and glycerol having a lower viscosity is more preferable.
  • the divalent alcohol is 50 mol% to 0 mol%, preferably 30 to 0 mol%, more preferably 10 to 0 mol%, based on 100 mol% of the polyhydric alcohol.
  • the dihydric alcohol is not particularly limited, but ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, hexylene glycol, 1,7-heptanediol, 1,8- Octanediol, 1,9-nonanediol, 1,10-decanediol, 1,4-cyclohexanediol, isosorbide, bisphenol A, catechol, 4-t-butylcatechol, hydroquinone, 2-t-butylhydroquinone, resorcin, p Hydroxy pheneth
  • dihydric alcohols for example, Actol KB-280, Actol KB-300, Actol ES-41, Actol ES-01, Actol manufactured by Mitsui Chemicals, Inc. D-280, Actcall D-400 and the like.
  • These polyhydric alcohols may be used alone or in combination of two or more.
  • glycerin is preferable because it is a liquid at the time of preparation and is easy to handle, and a polyol having a sufficient number of functional groups can be easily obtained by condensation.
  • condensation etherification catalyst used when the polyhydric alcohol is subjected to a dehydration condensation reaction, it is preferable to use a known catalyst used for the glycerin condensation reaction, such as an alkali catalyst, an acid catalyst, and a solid acid catalyst.
  • the catalyst concentration is not particularly limited, but for example, it is not particularly limited with respect to all hydroxyl groups of all alcohol components such as glycerin, but is usually preferably 0.01 to 10 mol%.
  • alkali catalyst examples include tris [tris (dimethylamino) phosphoranylidene] phosphoric such as alkali metal or alkaline earth metal hydroxide, carbonate or oxide such as sodium, lithium, potassium, calcium, cesium or magnesium.
  • phosphazene catalysts such as triamide (PZO), tetrakis [tris (dimethylamino) phosphoranideneamino] phosphonium hydroxide (PZN), tris [tris (dimethylamino) phosphoranylideneamino] phosphine sulfide (PZS), and the like. .
  • the acid catalyst examples include iodine, hydrogen iodide, sulfuric acid, phosphoric acid, fluorosulfuric acid, phosphotungstic acid, methanesulfonic acid, trifluoromethanesulfonic acid, octanesulfonic acid, 1,1,2,2-tetrafluoroethanesulfonic acid. Benzenesulfonic acid, paratoluenesulfonic acid and the like.
  • the solid acid catalyst is not particularly limited as long as it is generally used.
  • smectite silicate, acid clay, activated clay, vermiculite and other silicates are impregnated with inorganic acid or organic acid and dried.
  • inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, phosphorous acid, perchloric acid, and the like.
  • organic acids include formic acid, acetic acid, oxalic acid, monochloroacetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, boric acid, tungstic acid, molybdic acid, vanadic acid, chromic acid, and heteropolyacid. Can be mentioned.
  • Any reaction apparatus may be used as the reaction apparatus used for the polyhydric alcohol condensation reaction as long as the apparatus is equipped with an instrument capable of distilling the produced water.
  • a reaction apparatus in which a distillation column is connected to the upper part of the reactor and a condenser is further connected.
  • the distillation column is a raw material such as polyhydric alcohol, water and low polymer produced by the reaction, etc., necessary components such as raw material and low polymer are refluxed to the reactor, and unnecessary components such as water are condensed in the condenser. Used to discharge.
  • the number of theoretical plates in the distillation column is not particularly limited, but is usually 1 to 20 plates.
  • the packing in the distillation column is not particularly limited, but usually Raschig ring, Berle saddle, McMahon, Cannon, Stepman, Sruza packing, Dixon and the like are used.
  • the temperature of the distillation column is not particularly limited, and can be set to an arbitrary temperature using a refrigerant or a heat medium.
  • the condenser is used to condense water and the low boiling point produced by the side reaction. Condensation is usually performed using a refrigerant, and the temperature of the refrigerant is not particularly limited, but is usually about ⁇ 30 ° C. to 60 ° C.
  • the reaction temperature in the dehydration condensation is not particularly limited as long as it is a temperature at which dehydration condensation starts, but is usually 160 to 280 ° C., and preferably 200 to 270 ° C.
  • the pressure during the reaction is not particularly limited, and the reaction may be carried out under normal pressure, reduced pressure, or increased pressure as long as most of the polyhydric alcohol is not distilled together with water.
  • the catalyst may be added to react with the batch mixture, or the reaction may be performed by condensing only a portion of the alcohol first, then adding another type of alcohol in the middle and dropping to condense. May be.
  • the hydroxyl value of the polyether polyol after completion of etherification is not particularly limited as long as the hydroxyl value of the polyether ester polyol (A) after esterification is 200 to 600 mgKOH / g, but is 400 to 1400 mgKOH / g. It is preferably 600 to 1200 mgKOH / g.
  • the hydroxyl value is too low, the viscosity will be very high, and the viscosity of the polyol after esterification will be high. If the hydroxyl value is too high, condensation will not proceed sufficiently and it will be difficult to express the hardness required for rigid polyurethane foam. It becomes.
  • the obtained polyether polyol may be purified to remove the catalyst, or may be subjected to condensation esterification as the next step without being purified.
  • a purification method a known method can be used according to the type of catalyst used.
  • an alkali catalyst such as potassium hydroxide, sodium hydroxide, potassium carbonate, or phosphazene catalyst
  • neutralize with an acid such as hydrochloric acid, acetic acid, or oxalic acid
  • the catalyst can be removed, for example, by removing cations by using an exchange resin.
  • an acidic catalyst such as sulfuric acid, para-toluenesulfonic acid, hydrochloric acid, or phosphoric acid
  • neutralize with a base such as sodium hydroxide, potassium hydroxide, or potassium carbonate, and then filter the anion exchange resin.
  • the catalyst can be removed, for example, by removing anions.
  • the colored component may be adsorbed and removed by activated carbon or the like.
  • the fatty acid and / or fatty acid ester is not particularly limited, but is preferably an esterified product of a fatty acid having 10 to 24 carbon atoms and / or a fatty acid having 10 to 24 carbon atoms.
  • Such fatty acids and / or fatty acid esters include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, arachidonic acid, behenic acid, lignoceric acid or these Fatty acid esterified products or fatty acids obtained by hydrolysis from soybean oil fatty acids, palm oil fatty acids, palm kernel oil fatty acids, coconut oil fatty acids, sunflower oil fatty acids, rapeseed oil fatty acids, cottonseed oil fatty acids or the like, or these fatty acids It is possible to use the esterified product.
  • esterified products include methylated products, ethylated products, and propylated products.
  • a fatty polyol and / or a fatty acid ester satisfying the carbon number can be made into a liquid polyol having high compatibility with a hydrocarbon-based blowing agent with respect to the total amount of the fatty acid and / or the fatty acid ester.
  • 50 wt% or more is preferable, 70 wt% or more is more preferable, and 80 wt% or more is more preferable.
  • the fatty acid and / or fatty acid ester when a fatty acid having 9 or less carbon atoms is used in excess of 50 wt%, the hydrophobicity is low and may be separated when a hydrocarbon-based foaming agent is mixed. .
  • the resulting polyether ester polyol (A) may be solidified.
  • a saturated fatty acid ester it is preferable to contain 50 wt% or more of a saturated fatty acid having 10 to 14 carbon atoms and / or an esterified product of a saturated fatty acid having 10 to 14 carbon atoms.
  • the fatty acid or fatty acid ester which contains 50 wt% or more of unsaturated fatty acid and / or unsaturated fatty acid ester.
  • the reaction apparatus for the esterification reaction only needs to have a device for distilling the produced water or alcohol out of the system, and these condensations are carried out, for example, under an inert gas such as nitrogen gas, without solvent-free high temperature condensation.
  • an inert gas such as nitrogen gas
  • other known polymerization methods such as solution polymerization may be used.
  • the temperature at the time of high-temperature condensation in the absence of a solvent may be any number as long as dehydration condensation or dealcoholization condensation occurs, but it is usually preferably 160 ° C to 260 ° C.
  • the pressure during the reaction may be any of pressurization, normal pressure, and reduced pressure as long as dehydration or dealcohol condensation is possible, but it is preferable from the viewpoint of reaction efficiency to proceed the reaction under normal pressure or reduced pressure. .
  • esterification catalyst a tin catalyst such as tin octylate or dibutyltin dilaurate, a titanium catalyst such as titanium tetranormal butoxide, titanium tetraisopropoxide, or titanium lactate may be used.
  • a tin catalyst such as tin octylate or dibutyltin dilaurate
  • titanium catalyst such as titanium tetranormal butoxide, titanium tetraisopropoxide, or titanium lactate
  • Other catalysts such as a bismuth catalyst
  • a known esterification catalyst may be used.
  • the acid value of the polyether ester polyol (A) of the present invention is 0 to 5 mgKOH / g, preferably 0 to 3 mgKOH / g, more preferably 0 to 2 mgKOH / g.
  • An acid value exceeding 5 mgKOH / g is not preferable because the reactivity is delayed when the urethanization reaction is performed.
  • the hydroxyl value of the polyether ester polyol (A) of the present invention is preferably 200 to 600 mgKOH / g, more preferably 300 to 550 mgKOH / g. If it is below 200 mg KOH / g, the foam becomes soft and it becomes difficult to prepare a rigid foam. If it exceeds 600 mg KOH / g, the amount of fatty acid to be added is small, and there is a possibility that the fatty acid and unreacted polyether polyol remain and the polyol is separated. There is.
  • the viscosity of the polyether ester polyol (A) of the present invention is preferably 50,000 mPa ⁇ s or less at 25 ° C., and more preferably 20,000 mPa ⁇ s or less.
  • the viscosity exceeds 50,000 mPa ⁇ s, it is not preferable because the viscosity of the polyol is too high and it becomes difficult to prepare a polyurethane foam, and handling is easier if the polyol viscosity is 20,000 mPa ⁇ s or less. Therefore, it is preferable.
  • the average number of functional groups of the polyetherester polyol (A) is preferably 3 or more, and more preferably 3.5 or more. When the average number of functional groups is less than 3, it is not preferable because the number of functional groups is too low to maintain the necessary strength as a rigid polyurethane foam. An average functional group number of 3.5 or more is more preferable because sufficient strength can be obtained as a polyurethane foam.
  • the polyol of the present invention contains the polyether ester polyol (A), and may be the polyether ester polyol (A) alone or a combination of two or more of these with other polyols. Good.
  • the polyether ester polyol (A) is at least 10 parts by weight (10 to 100 parts by weight), preferably 20 to 100 parts by weight, based on 100 parts by weight of the polyol of the present invention.
  • the other polyol is preferably used in an amount of 0 to 90 parts by weight, preferably 0 to 80 parts by weight.
  • the other polyol is not particularly limited as long as it is different from the polyether ester polyol (A) and has a hydroxyl group at the end, and known polyether polyol, polyester polyol, polymer polyol (polymer dispersed polyol), etc. I can give you.
  • polyether polyols used as other polyols include polyether polyols obtained by addition polymerization of alkylene oxides with polyhydric alcohols, aromatic amines, and aliphatic amines.
  • Any polyhydric alcohol can be used as long as it can be used for producing a polyether polyol.
  • aromatic amine examples include tolylenediamine (hereinafter abbreviated as “TDA”) and / or crude TDA, diphenylmethanediamine (hereinafter abbreviated as “MDA”) and / or crude MDA.
  • TDA tolylenediamine
  • MDA diphenylmethanediamine
  • aliphatic amine examples include ethylenediamine, triethanolamine, and isopropanolamine. These can be used alone or in combination.
  • the alkylene oxide may be any alkylene oxide used in the production of polyether polyol, and examples thereof include alkylene oxides having 2 to 8 carbon atoms. More specifically, ethylene oxide, propylene oxide, butylene oxide and the like can be mentioned, and among these, propylene oxide and butylene oxide are preferably used. These can be used alone or in combination.
  • polyether polyols examples thereof include GR-84T, DA-401P, GR-33F, T-700S (trademark, Actol: manufactured by Mitsui Chemicals, Inc.).
  • polyester polyols used as other polyols those obtained by semi-esterifying an anhydride such as an aromatic carboxylic acid or an aliphatic carboxylic acid with a polyhydric alcohol or an aliphatic amine and then polymerizing an alkylene oxide, Or what was obtained by condensation-reacting aromatic carboxylic acid or aliphatic carboxylic acid with a polyhydric alcohol is mentioned.
  • aromatic carboxylic acid examples include phthalic acid, terephthalic acid, isophthalic acid, and pyromellitic acid.
  • aromatic carboxylic acid anhydride examples include phthalic anhydride and pyromellitic acid anhydride. Is mentioned.
  • Examples of the aliphatic carboxylic acid include adipic acid, succinic acid, and maleic acid
  • examples of the aliphatic carboxylic acid anhydride include succinic anhydride and maleic anhydride.
  • polyester polyols commercially available products may be used, and examples thereof include RMK-342 (trademark: Maximol: manufactured by Kawasaki Kasei Co., Ltd.).
  • the polymer polyol include a polymer polyol obtained from a polyether polyol.
  • the polymer polyol is a dispersion in which vinyl polymer particles are dispersed in a polyether polyol by dispersing and polymerizing a compound having an unsaturated bond in the polyether polyol using a radical initiator such as azobisisobutyronitrile.
  • a radical initiator such as azobisisobutyronitrile.
  • the vinyl polymer particles may be vinyl polymer particles made of a polymer of a compound having an unsaturated bond, but at the time of dispersion polymerization, at least a part of the compound having an unsaturated bond is grafted to a polyether polyol as a dispersion medium. Polymer particles are preferred.
  • the compound having an unsaturated bond is a compound having an unsaturated bond in the molecule, and examples thereof include acrylonitrile, styrene, and acrylamide. These compounds having an unsaturated bond can be used singly or in combination of two or more.
  • a dispersion stabilizer, a chain transfer agent, or the like may be used in combination.
  • the hydroxyl value of these other polyols is not limited as long as a rigid polyurethane foam can be prepared, but is preferably 200 mgKOH / g or more and 800 mgKOH / g or less.
  • Urethane catalyst As the catalyst mixed in the resin premix composition of the present invention, amines, aziridines, quaternary ammonium compounds, alkali metal salts, lead compounds, tin compounds, which are usually used for urethane foaming, Any urethane catalyst such as an alcoholate compound, a phenolate compound, a metal halide, or a metal complex compound can be used.
  • amines include trimethylaminoethylpiperazine, triethylamine, tripropylamine, N-methylmorpholine, N-ethylmorpholine, triethylenediamine, N, N, N ′, N′-tetramethylhexamethylene.
  • aziridines examples include 2-ethylaziridine.
  • quaternary ammonium compounds include tertiary amine carboxylates.
  • alkali metal salts examples include potassium octylate and sodium acetate.
  • Examples of the lead compound include lead naphthenate and lead octylate.
  • Examples of tin compounds include dibutyltin diacetate and dibutyltin dilaurate.
  • Examples of the alcoholate compound include sodium methoxide and sodium ethoxide.
  • Examples of the phenolate compound include potassium phenoxide, lithium phenoxide, sodium phenoxy and the like.
  • metal halide examples include iron chloride, zinc chloride, zinc bromide, tin chloride and the like.
  • metal complex compound examples include metal complex compounds such as acetylacetone metal salts.
  • catalysts can be used alone or in combination of two or more, and the amount used is preferably 0.001 to 10 parts by weight, more preferably 100 parts by weight of the total polyol used in the present invention. Is preferably 0.1 to 5 parts by weight.
  • hydrocarbon foaming agent As the hydrocarbon foaming agent contained in the resin premix composition of the present invention, a hydrocarbon having 3 to 8 carbon atoms can be preferably used. Specific examples include propane, n-butane, isobutane, n-pentane, isopentane, neopentane, n-hexane, isohexane, n-heptane, isoheptane, cyclopentane, cyclohexane, cycloheptane and the like. These can be used alone or in combination. Among these, cyclopentane and isopentane can be preferably used, and cyclopentane is particularly preferable.
  • water can be used in combination as a foaming agent.
  • ion-exchanged water or distilled water is usually used, but industrial water can be used as it is depending on circumstances.
  • a chlorofluorocarbon compound can be used in combination as a foaming agent.
  • the chlorofluorocarbon compounds include HCFC-141b, HFC-245fa, HFC-365mfc and the like.
  • the amount of the foaming agent used can be 1 to 50 parts by weight, more preferably 2 to 40 parts by weight, and particularly preferably 5 to 30 parts by weight with respect to 100 parts by weight of the total polyol. preferable.
  • a foam stabilizer can be used in the resin premix composition of the present invention as necessary.
  • conventionally known silicon-containing organic surfactants are used. Specifically, silicone derivatives (alkylene oxide-modified polydimethylsiloxane having an alkoxy group or an active OH group at the terminal) are used. Can be mentioned. Also, so-called nonionic surfactants such as polyoxyethylene octadecylamine and long-chain fatty acid alkylol amide can be used as the foam stabilizer.
  • foam stabilizer examples include, for example, SZ-1127, SZ-1142, SZ-1605, SZ-1642, SZ-1645, SZ-1649, SZ-1655, SZ-1675, SZ-1694, SZ-1711. , L-580, L-5740, L-5420, L-5421, L-5440, SF-2935F, SF-2938F, SF-2940F, SF-2945F, SF-2908, SRX-294A, SH-190, SH -192, SH-193, etc. (above, trade names, manufactured by Toray Dow Corning Silicone Co., Ltd.), F-327, F-345, F-305, F-388, F-394, etc.
  • foam stabilizers can be used alone or in combination of two or more, and the amount used is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the total polyol. Part is preferred.
  • a chain extender or crosslinking agent can be used in the resin premix composition of the present invention as necessary. When these are used, it is preferable to use 0.1 to 5 parts by weight, preferably 0.5 to 3 parts by weight, based on 100 parts by weight of polyol.
  • chain extender examples include dihydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, 1,3-butanediol, and 1,4-butanediol.
  • crosslinking agent examples include polyhydric alcohols such as glycerin and diglycerin, alkanolamines such as triethanolamine, diethanolamine, and monoethanolamine, aliphatic amine compounds such as ethylenediamine, diethylenetriamine, and triethylenetetraamine, aniline, 2, Aromatic amines such as 4-tolylenediamine, 2,6-tolylenediamine, bisphenol A, bisphenol F, hydroquinone, resorcinol, novolak, resole and other aromatic alcohols, pentaerythritol, and sorbitol.
  • polyhydric alcohols such as glycerin and diglycerin
  • alkanolamines such as triethanolamine, diethanolamine, and monoethanolamine
  • aliphatic amine compounds such as ethylenediamine, diethylenetriamine, and triethylenetetraamine
  • aniline 2,
  • Aromatic amines such as 4-tolylenediamine, 2,6-tolylenediamine,
  • additives Various other additives can be added to the resin premix composition of the present invention depending on applications and purposes. Examples of such additives include flame retardants, antioxidants, colorants, and viscosity reducing agents.
  • the resin premix composition of the present invention is excellent in compatibility with a hydrocarbon-based foaming agent and excellent in storage stability.
  • the rigid polyurethane foam composition of the present invention comprises a polyisocyanate in addition to the resin premix composition.
  • the polyisocyanate is not particularly limited as long as it is a bifunctional or higher functional polyisocyanate.
  • diphenylmethane diisocyanate hereinafter abbreviated as “MDI”
  • polymeric MDI polymeric MDI
  • tolylene diisocyanate hereinafter abbreviated as “TDI”
  • HDI hexamethylene Diisocyanate
  • XDI xylene diisocyanate
  • NBDI norbornene diisocyanate
  • H12MDI dicyclohexylmethane diisocyanate
  • H6XDI hydrogenated Xylylene diisocyanate
  • IPDI isophorone diisocyanate
  • TDI TDI
  • crude TDI containing a multifunctional tar for example, TDI-TRC manufactured by Mitsui Chemicals, Inc.
  • MDI is mainly composed of 4,4'-isomer (4,4'-MDI), and polymeric MDI containing trinuclear or higher polynuclear (for example, Cosmonate series manufactured by Mitsui Chemicals, Inc.) Can be suitably used.
  • modified polyisocyanate compounds such as nurate modification, carbodiimide modification, prepolymer modification (prepolymer having an isocyanate group at the molecular end obtained from polyisocyanate and the above-mentioned polyol), uretdione modification, and the like can also be used as the polyisocyanate.
  • These polyisocyanates and modified products thereof can be used singly or in combination of two or more.
  • the ratio of the resin premix composition and the polyisocyanate used in the present invention is not particularly limited, but the molar ratio of the isocyanate groups contained in the polyisocyanate and the active hydrogen groups contained in the resin premix composition is usually 50: The range is 100 to 300: 100, preferably 90: 100 to 150: 100.
  • the molar ratio of isocyanate groups when the number of moles of active hydrogen groups contained in the resin premix composition is 100 is expressed as an NCO index.
  • the rigid polyurethane foam of the present invention comprises a composition for rigid polyurethane foam (that is, the resin premix composition and polyisocyanate), a urethanization catalyst and a hydrocarbon-based foaming agent, and if necessary, a foam stabilizer. In the presence, it can be produced by reacting and foaming by a conventionally known method.
  • foaming may be carried out in any state, a method of carrying out in the mold similar to the shape or shape of the molded product is preferable.
  • the polyisocyanate and the resin premix composition are preferably mixed immediately before foaming.
  • mixing method of each component either dynamic mixing or static mixing may be used, or both mixing methods may be used in combination.
  • a mixing method by dynamic mixing a method of mixing with a stirring blade or the like can be mentioned.
  • a mixing method by static mixing a method of mixing in a machine head mixing chamber of a foaming machine, a method of mixing in a liquid feeding pipe using a static mixer or the like, and the like can be mentioned.
  • the mixing temperature and pressure can be arbitrarily set according to the quality of the desired rigid polyurethane foam, the type and composition of the raw material, and can be heated as necessary prior to mixing.
  • each starting component is stirred and mixed at a liquid temperature of 10 to 50 ° C., preferably 15 to 30 ° C., and then introduced into an open mold or a closed mold whose temperature can be controlled as necessary under high pressure.
  • the mold temperature is 20 to 110 ° C., preferably 30 to 60 ° C., particularly preferably 45 to 55 ° C.
  • the rigid polyurethane foam is a polyurethane foam having a hydroxyl value (OHV) of 200 or more and a glass transition degree (Tg) of 100 ° C. or more.
  • the rigid polyurethane foam obtained from the composition for rigid polyurethane foam of the present invention is excellent in compressive strength, dimensional stability, thermal conductivity, heat insulating performance, and moldability. For this reason, the rigid polyurethane foam of this invention can be utilized for structural support materials, such as heat insulating materials, such as a building material panel, a refrigerator, a freezer, piping, a house, vehicles, such as a motor vehicle.
  • structural support materials such as heat insulating materials, such as a building material panel, a refrigerator, a freezer, piping, a house, vehicles, such as a motor vehicle.
  • Hydroxyl value Defined in terms of mg of potassium hydroxide corresponding to the hydroxyl group in 1 g of polyether polyol, and measured according to JIS K1557, Section 6.4 “Hydroxyl value”. Acid value: The acid value was measured according to JIS K6901 5.3.2 “Partial acid value”.
  • a resin premix composition containing cyclopentane as a blowing agent was prepared by mixing the raw materials shown in Table 1 as a resin premix composition formulation. After mixing the raw materials, let stand in a room at 25 ° C. for one week, and visually check whether the resin premix composition is separated. Table 1 shows the non-separated one as “AA” and the separated one as “BB”. Described.
  • Cream time, gel time, and tack-free time were evaluated with the mixing start time of the polyol and polyisocyanate in the resin premix composition as 0 seconds.
  • TFT Tack-free time
  • Low-temperature dimensional change rate The dimensional change rate of a test piece after measuring a rigid polyurethane foam test piece of 80 mm ⁇ 80 mm ⁇ 20 mm in a thermostatic chamber at ⁇ 30 ° C. for 48 hours was determined.
  • Example 1 Preparation of polyether polyol 600 g of diethylene glycol (27.0 mol% in polyhydric alcohol) and 22.6 g of sodium hydroxide were charged into a flask equipped with a distillation column and a condenser, and the temperature was raised to 250 ° C. in a nitrogen atmosphere. After the temperature increase, 1406 g of glycerin (73.0 mol% in the polyhydric alcohol) was added dropwise over 5 hours, and dehydration condensation was performed at normal pressure for 18 hours. Thereafter, oxalic acid dihydrate was added so as to be half the number of moles of sodium hydroxide, and neutralization was performed at 120 ° C. for 1 hour. The hydroxyl value of this polyether polyol was 806 mgKOH / g.
  • the resulting polyether ester polyol (1) was a brown turbid liquid with a hydroxyl value of 420 mg KOH / g, an acid value of 0.39 mg KOH / g, and a viscosity at 25 ° C. of 2670 mPa ⁇ s. Moreover, the average functional group number of this polyol was 3.8.
  • a resin premix composition was prepared with the composition described in Table 1 below, sealed in a sealable glass bottle and stored at 25 ° C. for 1 week. Then, it was confirmed visually whether the resin premix composition was separated. Since no separation was confirmed, Cosmonate M-200 as an isocyanate was added to the resin premix composition adjusted to 20 ° C. in an amount such that the NCO index was 110, and the mixture was stirred with a stirring blade for 5 seconds.
  • the stirred mixed solution was added to a foamed BOX of 200 ⁇ 200 ⁇ 200 mm, and cream time (CT), gel time (GT), and tack free time (TFT) were measured.
  • CT cream time
  • GT gel time
  • TFT tack free time
  • a predetermined amount of the mixed liquid stirred was poured into a 400 ⁇ 300 ⁇ 50 mm vertical panel heated in advance to 40 ° C., then covered and cured for 5 minutes, and then demolded.
  • the core density, thermal conductivity, compressive strength, and low temperature dimensional stability of this sample were measured by the above methods. The measurement results are shown in Table 1.
  • Example 2 Preparation of polyether polyol 500 g of diethylene glycol (22.4 mol% in polyhydric alcohol) and 22.6 g of sodium hydroxide were charged into a flask equipped with a distillation column and a condenser, and the temperature was raised to 250 ° C. in a nitrogen atmosphere. After the temperature increase, 1500 g of glycerin (77.6 mol% in the polyhydric alcohol) was added dropwise over 5 hours, and dehydration condensation was further performed at normal pressure for 18 hours. Thereafter, sulfuric acid was added so that the number of moles of sodium hydroxide was half that of sodium hydroxide, neutralization was performed at 120 ° C. for 1 hour, and then dehydration was performed at 110 ° C. under reduced pressure for 4 hours. The hydroxyl value of this polyether polyol was 795 mgKOH / g.
  • the resulting polyether ester polyol (2) was a brown turbid liquid having a hydroxyl value of 430 mg KOH / g, an acid value of 0.48 mg KOH / g, and a viscosity at 25 ° C. of 5100 mPa ⁇ s. Moreover, the average functional group number of this polyol was 4.1.
  • Example 3 (Preparation of polyether polyol) 667 g of diethylene glycol (30.3 mol% in polyhydric alcohol) and 22.6 g of sodium hydroxide were charged into a flask equipped with a distillation column and a condenser, and the temperature was raised to 250 ° C. in a nitrogen atmosphere. After the temperature increase, 1333 g of glycerin (69.7 mol% in the polyhydric alcohol) was added dropwise over 5 hours, and dehydration condensation was performed at normal pressure for 24 hours. Thereafter, oxalic acid dihydrate was added so as to be half the number of moles of sodium hydroxide, neutralized at 120 ° C. for 1 hour, and then dehydrated at 110 ° C. under reduced pressure for 4 hours. The neutralized salt precipitated was removed using 5B filter paper at a pressure of 0.35 MPa. The hydroxyl value of this polyether polyol was 791 mgKOH / g.
  • Example 4 (Preparation of polyether polyol) Dipropylene glycol 667 g (25.6 mol% in polyhydric alcohol) and sodium hydroxide 22.6 g were charged into a flask equipped with a distillation column and a condenser, and the temperature was raised to 250 ° C. in a nitrogen atmosphere. After the temperature increase, 1333 g of glycerin (74.4 mol% in the polyhydric alcohol) was added dropwise over 5 hours, followed by dehydration condensation at normal pressure for 18 hours. Thereafter, oxalic acid dihydrate was added so as to be half the number of moles of sodium hydroxide, neutralized at 120 ° C. for 1 hour, and then dehydrated at 110 ° C. under reduced pressure for 4 hours. The hydroxyl value of this polyether polyol was 777 mgKOH / g.
  • the resulting polyether ester polyol (4) was a brownish liquid with a hydroxyl value of 432 mgKOH / g, an acid value of 0.39 mgKOH / g, and a viscosity at 25 ° C. of 2160 mPa ⁇ s. Moreover, the average functional group number of this polyol was 3.9.
  • Example 5 Preparation of polyether polyol 2024 g of glycerin and 7.05 g of sodium hydroxide were charged into a flask equipped with a distillation column and a condenser, heated to a temperature of 260 ° C. in a nitrogen atmosphere, and subjected to dehydration condensation at normal pressure for 17 hours. Thereafter, oxalic acid dihydrate was added so as to be half the number of moles of sodium hydroxide, neutralized at 120 ° C. for 1 hour, and then dehydrated at 110 ° C. under reduced pressure for 4 hours. The neutralized salt precipitated was removed using 5B filter paper at a pressure of 0.35 MPa. The hydroxyl value of this polyether polyol was 1044 mgKOH / g.
  • the resulting polyether ester polyol (5) was a brown turbid liquid with a hydroxyl value of 449 mg KOH / g, an acid value of 0.56 mg KOH / g, and a viscosity at 25 ° C. of 19600 mPa ⁇ s. Moreover, the average functional group number of this polyol was 4.2.
  • Example 6 Preparation of polyether polyol 5060 g of glycerin and 17.63 g of sodium hydroxide were charged into a flask equipped with a distillation column and a condenser, heated to a temperature of 260 ° C. in a nitrogen atmosphere, and dehydrated and condensed at normal pressure for 21 hours. Thereafter, oxalic acid dihydrate was added so as to be half the number of moles of sodium hydroxide, neutralized at 120 ° C. for 1 hour, and then dehydrated at 120 ° C. and atmospheric pressure for 4 hours. The neutralized salt precipitated was removed using 5B filter paper at a pressure of 0.35 MPa. The hydroxyl value of this polyether polyol was 990 mgKOH / g.
  • the resulting polyether ester polyol (6) was a brown turbid liquid with a hydroxyl value of 400 mgKOH / g, an acid value of 0.58 mgKOH / g, and a viscosity at 25 ° C. of 15300 mPa ⁇ s.
  • the average functional group number of this polyol was 4.6.
  • Example 7 Preparation of polyether polyol 5060 g of glycerin and 17.63 g of sodium hydroxide were charged into a flask equipped with a distillation column and a condenser, heated to a temperature of 260 ° C. in a nitrogen atmosphere, and subjected to dehydration condensation at normal pressure for 27 hours. Thereafter, oxalic acid dihydrate was added so as to be half the number of moles of sodium hydroxide, neutralized at 120 ° C. for 1 hour, and then dehydrated at 120 ° C. and atmospheric pressure for 4 hours. The neutralized salt precipitated was removed using 5B filter paper at a pressure of 0.35 MPa. The hydroxyl value of this polyether polyol was 951 mgKOH / g.
  • the resulting polyether ester polyol (7) was a brown transparent liquid, having a hydroxyl value of 396 mgKOH / g, an acid value of 0.6 mgKOH / g, and a viscosity at 25 ° C. of 14400 mPa ⁇ s.
  • the average functional group number of this polyol was 4.5.
  • the precipitated neutralized salt was removed using 5B filter paper at a pressure of 0.35 MPa to obtain a polyether polyol (8).
  • the polyether polyol (8) had a hydroxyl value of 783 mgKOH / g and a viscosity at 25 ° C. of 3050 mPa ⁇ s.
  • the average functional group number of this polyol was 4.9.
  • Comparative Example 2 (Production of rigid polyurethane foam) With the composition shown in Table 1, a rigid polyurethane foam was prepared in the same manner as in Example 1, and various physical properties were measured. The results are shown in Table 1. In addition, the foam obtained by the comparative example 2 had high heat conductivity compared with the foam obtained by the Example, and was inferior as a foam.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

ポリオールが環状エーテルの開環重合反応を用いることなく得られ、このポリオールと炭化水素系発泡剤を含んでいても貯蔵安定性が良好なレジンプレミックス組成物を提供することを目的とし、本発明のレジンプレミックス組成物は、ポリオールおよび炭化水素系発泡剤を少なくとも含んでなるレジンプレミックス組成物であって、前記ポリオールが、50モル%以上の3価以上のアルコールを含む多価アルコールを縮合させて得られるポリエーテルポリオールと、脂肪酸および/または脂肪酸エステルとを反応させて得られるポリエーテルエステルポリオール(A)を含むことを特徴とするレジンプレミックス組成物である。

Description

レジンプレミックス組成物、硬質ポリウレタンフォーム用組成物および硬質ポリウレタンフォーム
 本発明は、3価以上のアルコールを脱水縮合して得られるポリエーテルポリオールと脂肪酸および/または脂肪酸エステルとを縮合して得られるポリエーテルエステルポリオールを含有するポリオールおよび炭化水素系発泡剤を含むレジンプレミックス組成物、前記レジンプレミックス組成物とポリイソシアネートとからなる硬質ポリウレタンフォーム用組成物、およびこれらを反応させることにより得られる硬質ポリウレタンフォームに関する。
 硬質ポリウレタンフォームの原料であるポリエーテルポリオールは、従来、開始剤である活性水素化合物にエチレンオキサイドやプロピレンオキサイド、テトラヒドロフランなどの環状エーテル化合物を開環重合させる方法により製造されてきた。この方法は、環状エーテル化合物の活性が高いため、比較的穏やかな条件で反応が可能であるという優れた方法であり、この方法により製造されたポリエーテルポリオールは分子量分布が狭いという点で優れているが、環状エーテル化合物は沸点が低く、毒性も強いため、その保管や合成時の取り扱いが難しいという欠点がある。
 また、これらの環状エーテル化合物より得られるポリエーテルポリオールの平均水酸基数は、反応の性質上、開始剤中の活性水素数より高くなることはなく、場合によっては反応中の副反応により平均水酸基数が低下する可能性もある。したがって、特に高水酸基数を要求される硬質ポリウレタンフォーム用ポリエーテルポリオールを調製する際には、前記製造方法において、ペンタエリスリトールやソルビトール、糖類など多くの水酸基を持つ開始剤を選択する必要がある。しかしながら、多くの水酸基を持つ開始剤は固体状であることが多く、開始剤としての取り扱いが難しいという問題がある。
 一方、ポリエーテルポリオールは、アルコールを脱水縮合することによっても製造することができる。この方法では、アルコールとして1分子中に3以上の水酸基をもつポリオール化合物を用いることにより、理論上、ポリエーテルポリオール1分子当たりの水酸基数を増やすことができる。このような、1分子中に3以上の水酸基を持つポリオール化合物を脱水縮合して得られるポリエーテルポリオールとしては、グリセリンをアルカリ存在下で脱水縮合させて得られるポリグリセリンが挙げられる(特許文献1、特許文献2)。また、硬質ポリウレタンフォームのポリオールとして使用する場合、縮合度が高いポリグリセリンを使用する必要があるが、ポリグリセリンは縮合度が高くなると非常に粘度が高くなるため、単独で硬質ポリウレタンフォームのポリオールとして使用することは困難である。従って、グリセリンに1価あるいは2価のアルコールを加えて縮合することにより低粘度のポリエーテルポリオールを得る技術が開発されている(特許文献3、特許文献4)。
 一方、硬質ポリウレタンフォームの発泡剤として長く使用されてきたフロン類はオゾン層破壊係数や地球温暖化係数が高いことから、その使用が制限、抑制され、ペンタンやイソペンタン、シクロペンタンなどを代表とする炭化水素系発泡剤、もしくは水が発泡剤として使用されるようになってきている。このうち発泡剤として水を使用する場合はイソシアネートと水との反応により発生する炭酸ガスにより発泡するが、同時にウレア結合が生成することによりフォームがもろくなるという問題があり、炭化水素系発泡剤を使用した硬質ポリウレタンフォームが必要とされている。
 しかしながら、前記の縮合ポリエーテルポリオールを用いてレジンプレミックス組成物を調製するにあたりこれら炭化水素系発泡剤を使用すると、縮合ポリエーテルポリオールの親水性が高すぎるためにレジンプレミックス組成物が分離し、貯蔵安定性に欠けるという問題点があった。
 一方、レジンプレミックス組成物の貯蔵安定性を確保するために発泡剤とポリオールの相溶性を良くしすぎると発泡時に熱伝導率が悪化するということが報告されている(非特許文献1)。
特開平2-172938号公報 特開平7-216082号公報 国際公開第2008/053780号パンフレット 国際公開第2009/131141号パンフレット
Proceedings of the Polyurethanes 1995 Conference, p.292 S.Matsumoto et al.
 本発明は、前記のような従来技術に伴う問題を解決しようとするものであって、環状エーテルの開環重合反応を用いることなく得られるポリオールを用いて、このポリオールと炭化水素系発泡剤を含んでいても貯蔵安定性が良好なレジンプレミックス組成物を提供するものである。
 本発明は、例えば以下の[1]~[11]に関する。
 [1] ポリオールおよび炭化水素系発泡剤を少なくとも含んでなるレジンプレミックス組成物であって、
 前記ポリオールが、
 50モル%以上の3価以上のアルコールを含む多価アルコールを縮合させて得られるポリエーテルポリオールと、脂肪酸および/または脂肪酸エステルとを反応させて得られるポリエーテルエステルポリオール(A)を含むことを特徴とするレジンプレミックス組成物。
 [2] 前記ポリオールが、
 (1)前記ポリエーテルエステルポリオール(A)を少なくとも10重量部と
 (2)その他のポリオールを0~90重量部(ただし、(1)と(2)の合計を100重量部とする)を含むことを特徴とする上記[1]に記載のレジンプレミックス組成物。
 [3] 前記3価以上のアルコールが、グリセリンであることを特徴とする上記[1]に記載のレジンプレミックス組成物。
 [4] 前記多価アルコールが、グリセリンであることを特徴とする前記[1]に記載のレジンプレミックス組成物。
 [5] 上記[1]~[4]の何れか一項に記載のレジンプレミックス組成物とポリイソシアネートとからなる硬質ポリウレタンフォーム用組成物。
 [6] 上記[1]~[4]の何れか一項に記載のレジンプレミックス組成物とポリイソシアネートとを反応させることにより得られる硬質ポリウレタンフォーム。
 [7] 前記ポリエーテルエステルポリオール(A)の水酸基価が、200~600mgKOH/gであることを特徴とする上記[1]~[4]の何れか一項に記載のレジンプレミックス組成物。
 [8] 前記ポリエーテルエステルポリオール(A)の粘度が、25℃で50,000mPa・s以下であることを特徴とする上記[1]~[4]の何れか一項に記載のレジンプレミックス組成物。
 [9] ポリエーテルエステルポリオール(A)の平均官能基数が、3以上であることを特徴とする上記[1]~[4]の何れか一項に記載のレジンプレミックス組成物。
 [10] 前記脂肪酸および/または脂肪酸エステルが、不飽和脂肪酸および/または不飽和脂肪酸エステルを50wt%以上含むことを特徴とする上記[1]~[4]の何れ一項かに記載のレジンプレミックス組成物。
 [11] 前記脂肪酸および/または脂肪酸エステルが、炭素数10~14の飽和脂肪酸および/または炭素数10~14の飽和脂肪酸のエステル化物を50wt%以上含むことを特徴とする上記[1]~[4]の何れか一項に記載のレジンプレミックス組成物。
 本発明によると、水酸基数が多く、低粘度のポリエーテルエステルポリオールを容易に得ることができ、これと炭化水素系発泡剤を混合することにより、相溶性に優れ、また貯蔵安定性に優れたレジンプレミックス組成物を調製することができる。このレジンプレミックス組成物は、硬質ポリウレタンフォーム製造用として有用であり、このレジンプレミックス組成物を用いて得られる硬質ポリウレタンフォームは、建材パネル、冷蔵庫、冷凍庫、配管などの断熱材、住宅、車両などの構造支持材に利用することができる。
 1.レジンプレミックス組成物
 本発明のレジンプレミックス組成物は、ポリオールおよび炭化水素系発泡剤を少なくとも含んでなるものであり、前記ポリオールが、50モル%以上の3価以上のアルコールを含む多価アルコール(多価アルコール全体を100モル%とする)を縮合させて得られるポリエーテルポリオールと、脂肪酸および/または脂肪酸エステルとを反応させて得られるポリエーテルエステルポリオール(A)を含むものである。
 また、ここでいうレジンプレミックス組成物とは、硬質ポリウレタンフォームに用いるものであり、後述するポリイソシアネートを含まないものを意味する。
 (1)ポリオール
 [ポリエーテルエステルポリオール(A)]
 本発明において、ポリエーテルエステルポリオール(A)は、エチレンオキサイドやプロピレンオキサイド、ブチレンオキシド、テトラヒドロフランなどの環状エーテル化合物の開環重合反応を用いることなく得られる硬質ポリウレタンフォーム用ポリオールであり、ポリエーテルエステルポリオール(A)および炭化水素系発泡剤を含むレジンプレミックス組成物は、貯蔵安定性に優れる。この理由は、ポリエーテル化合物に特定の脂肪酸を縮合することにより得られるポリエーテルエステルポリオール(A)は、ポリオールの疎水性を高めることができるためと推定される。
 ポリエーテルエステルポリオール(A)は、通常50モル%の3価以上のアルコールを含む多価アルコールを脱水縮合エーテル化させてポリエーテルポリオールを調製した後、該ポリエーテルポリオールと、脂肪酸および/または脂肪酸エステルとを脱水縮合エステル化させることによって得ることができる。
 (ポリエーテルポリオール)
 (多価アルコール)
 多価アルコールは、特に制限されないが、沸点が反応温度の下限である160℃以上の多価アルコールが好ましい。
 本発明において、3価以上のアルコールを含むことで、硬質ポリウレタンフォーム用途に使用するために充分な官能基数を持つポリオールが得られる。3価以上のアルコールは、多価アルコール100モル%に対して、通常50モル%以上、官能基数を高く設計できる点から70~100モル%を含むことが好ましく、90~100モル%を含むことがより好ましい。3価以上のアルコールが50モル%を下回ると、ポリオールの官能基数が充分高いものとならず、硬質ポリウレタンフォーム用途に使用した場合にフォームの収縮を招くことになる。
 3価以上のアルコールとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン、1,2,6-ヘキサントリオール、ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、ジペンタエリスリトール、メチルグルコシド、グルコースなどが挙げられ、液状である3価アルコールを用いることが取り扱い上容易であることから、グリセリン、ジグリセリンが好ましく用いられ、粘度がより低いグリセリンを用いることがより好ましい。
 また、本発明では、多価アルコールとして、ポリオールの粘度を低下させるために2価のアルコールを含んでいてもよい。
 2価のアルコールは、多価アルコール100モル%に対して、50モル%~0モル%、好ましくは30~0モル%、さらに好ましくは10~0モル%である。
 2価のアルコールとしては、特に限定されないが、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ヘキシレングリコール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジオール、イソソルビド、ビスフェノールA、カテコール、4-t-ブチルカテコール、ハイドロキノン、2-t-ブチルヒドロキノン、レゾルシン、p-ヒドロキシフェネチルアルコール、1,4-ジヒドロキシナフタレン、1,4-ジヒドロキシアントラキノン、ポリエチレングリコール200、ポリエチレングリコール400などが挙げられる。これら2価のアルコールとしては、市販品を用いてもよく、例えば、三井化学(株)製アクトコールKB-280、アクトコールKB-300、アクトコールES-41、アクトコールES-01、アクトコールD-280、アクトコールD-400などが挙げられる。
 これらの多価アルコールは、1種単独で用いても2種以上を組み合わせて用いてもよい。
 なお、多価アルコールとしては、グリセリンであることが仕込み時に液体であるため取扱いが容易であり、また縮合により充分な官能基数のポリオールを得やすいため好ましい。
 (縮合エーテル化触媒)
 前記多価アルコールを脱水縮合反応させる際に使用される縮合エーテル化触媒としては、アルカリ触媒、酸触媒、固体酸触媒などのグリセリンの縮合反応に用いられる公知の触媒を使用することが好ましい。触媒濃度は、特に制限されないが、例えば、グリセリンなどアルコール全成分の全水酸基に対して、特に限定されないが、通常0.01~10モル%が好ましい。
 アルカリ触媒としては、例えば、ナトリウム、リチウム、カリウム、カルシウム、セシウムもしくはマグネシウムなどのアルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩もしくは酸化物など、トリス〔トリス(ジメチルアミノ)ホスホラニリデン〕ホスホリックトリアミド(PZO)、テトラキス〔トリス(ジメチルアミノ)ホスホラニデンアミノ〕ホスホニウムヒドロキシド(PZN)、トリス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスフィンスルフィド(PZS)などのホスファゼン触媒などが挙げられる。
 酸触媒としては、例えば、ヨウ素、ヨウ化水素、硫酸、燐酸、フルオロ硫酸、リンタングステン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、オクタンスルホン酸、1,1,2,2-テトラフルオロエタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸などが挙げられる。
 固体酸触媒としては一般的に使用されているものであれば特に制限はないが、例えば、スメクタイト族珪酸塩、酸性白土、活性白土、バーミキュライト等の珪酸塩に無機酸もしくは有機酸を含浸させ乾燥した触媒が挙げられる。ここで無機酸の例としては例えば、塩酸、硫酸、硝酸、リン酸、ポリリン酸、亜リン酸、過塩素酸などが挙げられる。有機酸としては、例えば、ギ酸、酢酸、シュウ酸、モノクロル酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、ホウ酸、タングステン酸、モリブデン酸、バナジン酸、クロム酸、ヘテロポリ酸等が挙げられる。
 (脱水縮合エーテル化反応)
 多価アルコールの縮合反応に使用する反応装置は、生成する水を留出させることができる器具を備えた装置であれば、どのような反応装置を用いてもよい。例えば、反応器上部に蒸留塔を連結し、さらに凝縮器を連結した反応装置が挙げられる。
 蒸留塔は、原料である多価アルコール、反応により生成する水および低重合物等のうち、原料や低重合物などの必要な成分を反応装置へ還流し、水などの不要な成分を凝縮器に排出するために用いる。蒸留塔の理論段数は特に制限はないが、通常1~20段である。また、蒸留塔中の充填物は特に制限はないが、通常、ラシヒリング、ベルルサドル、マクマホン、キャノン、ステップマン、スルーザパッキン、ディクソンなどを用いる。蒸留塔の温度は特に制限はなく、冷媒あるいは熱媒を用いて任意の温度に設定することができる。
 凝縮器は、水や副反応で生成した低沸分を凝縮させるために用いる。凝縮は、通常冷媒を用いて行い、冷媒の温度は特に制限はないが、通常-30℃~60℃程度である。
 前記脱水縮合における反応温度は、脱水縮合が始まる温度であれば特に制限されないが、通常160~280℃であり、200~270℃が好ましい。また、反応時の圧力も特に制限はなく多価アルコールの大部分が水とともに留出しない条件であれば、常圧、減圧、加圧のどの条件で反応を行なってもよい。
 複数種の多価アルコールを使用する場合は一括混合したものに触媒を加えて反応してもよいし、一部のアルコールのみを先に縮合して途中から別種のアルコールを添加、滴下して縮合してもよい。
 エーテル化終了後のポリエーテルポリオールの水酸基価は、エステル化後のポリエーテルエステルポリオール(A)としての水酸基価が200~600mgKOH/gになるのであれば特に制限はないが、400~1400mgKOH/gであることが好ましく、600~1200mgKOH/gであることがさらに好ましい。
 水酸基価が低すぎると粘度が非常に高くなり、エステル化後のポリオールの粘度が高くなり、水酸基価が高すぎる場合は縮合が充分進まず、硬質ポリウレタンフォームに必要な硬度を発現することが困難となる。
 (ポリエーテルポリオールの精製)
 得られたポリエーテルポリオールは、精製を行って触媒を除去してもよいし、特に精製を行わずそのまま次工程である縮合エステル化を行ってもよい。精製の手法は使用した触媒の種類に応じて、既知の方法を用いることができる。
 触媒として、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、ホスファゼン触媒などのアルカリ触媒を用いた場合は、塩酸、酢酸、シュウ酸などの酸により中和を行った後、ろ過すること、あるいは陽イオン交換樹脂を用いることによる陽イオンの除去することなどにより、触媒を除くことができる。硫酸やパラトルエンスルホン酸、塩酸、リン酸などの酸性触媒を用いた場合は、水酸化ナトリウムや水酸化カリウム、炭酸カリウムなどの塩基により中和を行った後ろ過すること、陰イオン交換樹脂を用いることにより、陰イオンを除去することなどにより、触媒を除くことができる。また、ポリオールが着色した場合は、活性炭などにより、着色成分を吸着して除いてもよい。
 (脂肪酸および/または脂肪酸エステル)
 脂肪酸および/または脂肪酸エステルは、特に限定されないが、好ましくは、炭素数10~24の脂肪酸および/または炭素数10~24の脂肪酸のエステル化物である。このような脂肪酸および/または脂肪酸エステルとしては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキジン酸、アラキドン酸、ベヘン酸、リグノセリン酸あるいはこれらの脂肪酸のエステル化物、もしくは大豆油脂肪酸、パーム油脂肪酸、パーム核油脂肪酸、ヤシ油脂肪酸、ひまわり油脂肪酸、ナタネ油脂肪酸、綿実油脂肪酸などの天然油脂より加水分解して得られる脂肪酸、あるいはこれらの脂肪酸のエステル化物を用いることが可能である。なお、エステル化物としては、メチル化物、エチル化物、プロピル化物などが挙げられる。
 本発明において、前記炭素数を満たす脂肪酸および/または脂肪酸エステルを、脂肪酸および/または脂肪酸エステルの全量に対して、炭化水素系発泡剤との相溶性が高い液状のポリオールを作ることが可能との理由から、50wt%以上が好ましく、70wt%以上がより好ましく、80wt%以上がさらに好ましい。前記脂肪酸および/または脂肪酸エステルとしては、炭素数9以下の脂肪酸を50wt%を超えて用いた場合には疎水性が低くなり、炭化水素系発泡剤を混合した際に分離してしまうおそれがある。また、炭素数が25以上の脂肪酸および/または脂肪酸エステルを50wt%を超えて用いた場合には、ポリオールの結晶性が高くなって固体となり、ポリウレタンフォームを調製することが困難となる。
 また、前記脂肪酸および/または脂肪酸エステルとして、炭素数16~24の飽和脂肪酸が多く含まれるものを用いた場合には、得られるポリエーテルエステルポリオール(A)が固化するおそれがあるため、飽和脂肪酸および/または飽和脂肪酸エステルを含む場合、炭素数10~14の飽和脂肪酸および/または炭素数10~14の飽和脂肪酸のエステル化物を50wt%以上含有することが好ましい。
 また、不飽和脂肪酸および/または不飽和脂肪酸エステルを50wt%以上含む脂肪酸もしくは脂肪酸エステルを用いることも好ましい。
 (縮合エステル化反応)
 エステル化反応の反応装置は生成する水、もしくはアルコールを系外に留出させる装置を具備していれば良く、これらの縮合は例えば、窒素ガスなどの不活性ガス下において、無溶剤下高温縮合をしてもよいし、溶液重合などの他の公知の重合方法を用いても良い。無溶剤下の高温縮合時の温度は、脱水縮合もしくは脱アルコール縮合が起こる温度なら何度でもかまわないが、通常160℃~260℃が好ましい。また、反応中の圧力は脱水、もしくは脱アルコール縮合が可能であれば、加圧、常圧、減圧のいずれでもかまわないが、常圧もしくは減圧下に反応を進めることが反応効率の点から好ましい。
 また、エステル化触媒として、オクチル酸スズやジブチルスズジラウレートなどのスズ触媒、チタンテトラノルマルブトキシドやチタンテトライソプロポキシド、チタンラクテートなどのチタン触媒などを用いても良く、他の触媒、例えばビスマス触媒など公知のエステル化触媒を用いても良い。
 (ポリエーテルエステルポリオール(A))
 本発明のポリエーテルエステルポリオール(A)の酸価は、0~5mgKOH/g、好ましくは0~3mgKOH/g、さらに好ましくは0~2mgKOH/gである。酸価が5mgKOH/gを超えるとウレタン化反応を行うにあたって反応性が遅延するため好ましくない。
 また、本発明のポリエーテルエステルポリオール(A)の水酸基価は、好ましくは200~600mgKOH/g、より好ましくは300~550mgKOH/gである。200mgKOH/gを下回るとフォームが軟らかくなり硬質フォームの調製が困難になり、600mgKOH/gを上回ると添加する脂肪酸の量が少なく、脂肪酸と未反応のポリエーテルポリオールが残存しポリオールが分離する可能性がある。
 さらに、本発明のポリエーテルエステルポリオール(A)の粘度は、25℃で50,000mPa・s以下であることが好ましく、20,000mPa・s以下であることがさらに好ましい。粘度が、50,000mPa・sを超える場合は、ポリオールの粘度が高すぎ、ポリウレタンフォームの調製が困難となるため好ましくなく、ポリオール粘度が20,000mPa・s以下であればより取り扱いが容易であるため好ましい。
 また、ポリエーテルエステルポリオール(A)の平均官能基数は、3以上であることが好ましく、3.5以上であることがさらに好ましい。平均官能基数が3未満である場合は官能基数が低すぎ硬質ポリウレタンフォームとして必要な強度を保持できないため好ましくない。平均官能基数が3.5以上であればポリウレタンフォームとして充分な強度を得ることが出来るためより好ましい。
 [その他のポリオール]
 本発明のポリオールは、前記ポリエーテルエステルポリオール(A)を含有するものであり、前記ポリエーテルエステルポリオール(A)単独でも、これと他のポリオールとを2種以上組み合わせたものを用いたものでもよい。その他のポリオールを併用する場合は、本発明のポリオールの合計100重量部に対して、ポリエーテルエステルポリオール(A)が少なくとも10重量部(10~100重量部)、好ましくは20~100重量部、その他のポリオールが0~90重量部、好ましくは0~80重量部となる量で用いることが好ましい。
 他のポリオールとしては、前記ポリエーテルエステルポリオール(A)と異なり、かつ水酸基を末端に持つものであれば特に限定されないが、公知のポリエーテルポリオール、ポリエステルポリオールおよびポリマーポリオール(ポリマー分散ポリオール)などをあげることができる。
 他のポリオールとして用いられるポリエーテルポリオールとしては、多価アルコール、芳香族アミン、脂肪族アミンにアルキレンオキシドを付加重合させて得たポリエーテルポリオール等が挙げられる。
 前記多価アルコールとしては、ポリエーテルポリオールの製造に用いることができるものであればいずれでも用いることができる。具体的には、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、トリメチロールプロパン、トリメチロールエタン、グリセリン、ペンタエリスリトール、アルファメチルグルコシド、麦芽糖、ソルビトール、ショ糖等が挙げられる。これらは単独でも複数を組合せて用いることもできる。
 前記芳香族アミンとしては、例えばトリレンジアミン(以下、「TDA」と略す)および/または粗TDA、ジフェニルメタンジアミン(以下、「MDA」と略す)および/または粗MDA等が挙げられる。
 前記脂肪族アミンとしては、例えばエチレンジアミン、トリエタノールアミン、イソプロパノールアミン等が挙げられる。これらは単独でも複数を組み合わせて用いることもできる。
 前記アルキレンオキシドとしては、ポリエーテルポリオールの製造に用いられるアルキレンオキシドであればいずれでもよいが、例えば、炭素数2~8のアルキレンオキシドが挙げられる。より具体的には、エチレンオキシド、プロピレンオキシド、ブチレンオキシド等が挙げられ、この中でもプロピレンオキシド、ブチレンオキシドを用いることが好ましい。これらは単独でも複数を組み合わせて用いることもできる。
 これらポリエーテルポリオールとしては、市販品を用いてもよく、例えばGR-84T、DA-401P、GR-33F、T-700S(商標・アクトコール:三井化学(株)製)などが挙げられる。
 他のポリオールとして用いられるポリエステルポリオールとしては、芳香族カルボン酸または脂肪族カルボン酸等の無水物を、多価アルコールまたは脂肪族アミン類により半エステル化させた後、アルキレンオキシドを重合させたもの、あるいは芳香族カルボン酸または脂肪族カルボン酸を多価アルコールと縮合反応させて得られたものが挙げられる。
 前記芳香族カルボン酸としては、例えば、フタル酸、テレフタル酸、イソフタル酸、ピロメリット酸等が挙げられ、前記芳香族カルボン酸の無水物としては、例えば、無水フタル酸、ピロメリット酸無水物等が挙げられる。
 前記脂肪族カルボン酸としては、例えば、アジピン酸、コハク酸、マレイン酸等が挙げられ、前記脂肪族カルボン酸の無水物としては、例えば、無水コハク酸、無水マレイン酸等が挙げられる。
 これらポリエステルポリオールとしては、市販品を用いてもよく、例えばRMK-342(商標・マキシモール:川崎化成(株)製)などが挙げられる。
 ポリマーポリオールとしては、例えば、ポリエーテルポリオールから得られるポリマーポリオールが挙げられる。
 ポリマーポリオールは、アゾビスイソブチロニトリル等のラジカル開始剤を用いて、ポリエーテルポリオール中で不飽和結合を有する化合物を分散重合させることにより、ポリエーテルポリオール中にビニルポリマー粒子が分散した分散体として得ることができる。このビニルポリマー粒子は、不飽和結合を有する化合物の重合体からなるビニルポリマー粒子でもよいが、分散重合時に、不飽和結合を有する化合物の少なくとも一部が分散媒であるポリエーテルポリオールにグラフト化されたポリマー粒子が好ましい。
 不飽和結合を有する化合物としては、分子中に不飽和結合を有する化合物であり、例えば、アクリロニトリル、スチレン、アクリルアミドなどが挙げられる。これらの不飽和結合を有する化合物は、1種単独でまたは2種以上を混合して用いることができる。ポリマーポリオールを製造する際に、不飽和結合を有する化合物の他に、分散安定化剤や連鎖移動剤等を併用してもよい。
 これら他のポリオールの水酸基価については硬質ポリウレタンフォームを調製できるものであれば制限はないが、200mgKOH/g以上800mgKOH/g以下であることが好ましい。
 (2)ウレタン化触媒
 本発明のレジンプレミックス組成物中に混合される触媒としては、通常ウレタン発泡に用いられるアミン類、アジリジン類、4級アンモニウム化合物、アルカリ金属塩、鉛化合物、錫化合物、アルコラート化合物、フェノラート化合物、金属ハロゲン化物、金属錯体化合物等のウレタン化触媒であればいずれでも使用することができる。
 アミン類としては、具体的には、トリメチルアミノエチルピペラジン、トリエチルアミン、トリプロピルアミン、N-メチルモルフォリン、N-エチルモルフォリン、トリエチレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N,N’,N’,N’-ペンタメチルジエチレントリアミン(Polycat-5)、ジメチルシクロヘキシルアミン(Polycat-8)、ジアゾビシクロウンデセン、1,3,5-トリス(ジメチルアミノプロピル)ヘキサヒドロ-s-トリアジン(Polycat-41)等を挙げることができる。
 アジリジン類としては2-エチルアジリジン等を挙げることができる。
 4級アンモニウム化合物としては3級アミンのカルボン酸塩等を挙げることができる。
 アルカリ金属塩類としては、オクチル酸カリウム、酢酸ナトリウムなどを例示することができる。
 鉛化合物としてはナフテン酸鉛、オクチル酸鉛等を挙げることができる。
 錫化合物としてはジブチル錫ジアセテート、ジブチル錫ジラウレート等を挙げることができる。
 アルコラート化合物としてはナトリウムメトキシド、ナトリウムエトキシド等を挙げることができる。
 フェノラート化合物としては、カリウムフェノキシド、リチウムフェノキシド、ナトリウムフェノキシ等を挙げることができる。
 金属ハロゲン化物としては、塩化鉄、塩化亜鉛、臭化亜鉛、塩化錫等を挙げることができる。
 金属錯体化合物としてはアセチルアセトン金属塩等の金属錯化合物等を挙げることができる。
 これらの触媒は、単独または、2種以上併用して用いることができ、その使用量は、本発明に用いられる全ポリオール100重量部に対して、0.001~10重量部が好ましく、さらに好ましくは0.1~5重量部が好ましい。
 (3)炭化水素系発泡剤
 本発明のレジンプレミックス組成物中に含有される炭化水素系発泡剤としては、炭素原子数3~8の炭化水素を好ましく用いることができる。具体的には、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ネオペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、イソヘプタン、シクロペンタン、シクロヘキサン、シクロヘプタンなどが挙げられる。これらは単独で、または複数を併用して用いることができる。このうち、シクロペンタン、イソペンタンを好ましく用いることができ、特にシクロペンタンが好ましい。
 また、本発明においては、発泡剤として水を併用することもできる。水は、通常、イオン交換水、蒸留水が用いられるが、場合により、工業用水をそのまま用いることもできる。
 さらに、本発明においては、発泡剤としてフロン化合物を併用することもできる。フロン化合物としてはHCFC-141b、HFC-245fa、HFC-365mfcなどの化合物が挙げられる。
 このような発泡剤の使用量は、全ポリオール100重量部に対して、1~50重量部用いることができ、更に好ましくは2~40重量部、特に好ましくは5~30重量部であることが好ましい。
 (4)その他の添加剤
 [整泡剤]
 本発明のレジンプレミックス組成物には必要に応じて整泡剤を用いることができる。整泡剤としては、従来公知の含珪素有機系の界面活性剤が用いられ、具体的には、シリコーン誘導体(アルキレンオキサイド変性ポリジメチルシロキサンで末端にアルコキシ基または活性のOH基などを有する)が挙げられる。また、ポリオキシエチレンオクタデシルアミン、長鎖脂肪酸アルキロールアマイドなど、いわゆるノニオン系の界面活性剤も整泡剤として使用可能である。整泡剤の具体例としては、例えば、SZ-1127、SZ-1142、SZ-1605、SZ-1642、SZ-1645、SZ-1649、SZ-1655、SZ-1675、SZ-1694、SZ-1711、L-580、L-5740、L-5420、L-5421、L-5440、SF-2935F、SF-2938F、SF-2940F、SF-2945F、SF-2908、SRX-294A、SH-190、SH-192、SH-193等(以上、商品名、東レ・ダウコーニング・シリコーン(株)製)、F-327、F-345、F-305、F-388、F-394等(以上、商品名、信越化学工業(株)製)、TG-B-8404、TG-B-8461、TG-B-8462、TG-B-8466、TG-B-8467、TG-B-8474(以上、商品名、エボニック社製、シリコーン整泡剤)が挙げられる。これら整泡剤は、単独または2種以上併用して用いることができ、その使用量は、全ポリオール100重量部に対して、0.1~10重量部が好ましく、さらに好ましくは1~5重量部が好ましい。
 [鎖延長剤または架橋剤]
 本発明のレジンプレミックス組成物には必要に応じ、鎖延長剤あるいは架橋剤を用いることができる。これらを用いる場合は、ポリオール100重量部に対し、0.1~5重量部、好ましくは0.5~3重量部を用いることが好ましい。
 鎖延長剤としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオールなどの2価アルコール類が挙げられる。
 架橋剤としては、グリセリン、ジグリセリン等の多価アルコール類、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン等のアルカノールアミン類、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン等の脂肪族アミン化合物、アニリン、2,4-トリレンジアミン、2,6-トリレンジアミン等の芳香族アミン、ビスフェノールA、ビスフェノールF、ハイドロキノン、レゾルシン、ノボラック、レゾール等の芳香族アルコール、ペンタエリスリトール、ソルビトールなどが挙げられる。
 [その他の添加剤]
 本発明のレジンプレミックス組成物には、用途や目的に応じて、その他の各種添加剤を添加することができる。このような添加剤としては、例えば、難燃剤、酸化防止剤、着色剤、低粘度化剤などが挙げられる。
 本発明のレジンプレミックス組成物は、炭化水素系発泡剤との相溶性に優れ、貯蔵安定性にも優れる。
 2.硬質ポリウレタンフォーム用組成物
 本発明の硬質ポリウレタンフォーム用組成物は、前記レジンプレミックス組成物に、さらにポリイソシアネートを含むものである。
 [ポリイソシアネート]
 ポリイソシアネートとしては、2官能以上のポリイソシアネートであれば制限はないが、例えばジフェニルメタンジイソシアネート(以下、「MDI」と略す)、ポリメリックMDI、トリレンジイソシアネート(以下、「TDI」と略す)、ヘキサメチレンジイソシアネート(以下、「HDI」と略す)、キシレンジイソシアネート(以下、「XDI」と略す)、ノルボルネンジイソシアネート(以下、「NBDI」と略す)、ジシクロヘキシルメタンジイソシアネート(以下、「H12MDI」と略す)、水添キシリレンジイソシアネート(以下、「H6XDI」と略す)、イソホロンジイソシアネート(以下、「IPDI」と略す)などが挙げられる。これらポリイソシアネートは、単独でも2種類以上を混合して用いてもよい。中でも、硬質ポリウレタンフォーム用ポリイソシアネートとしては、TDIおよび/またはMDIが好ましい。
 TDIとしては、異性体を単独で、または混合物として使用することができる。すなわち、2,4-体(2,4-TDI)100%品、2,4-体/2,6-体=80/20または65/35(それぞれ質量比)のもの、およびこれらの混合物、さらに、多官能性のタールを含有する粗TDI(例えば、三井化学(株)製TDI-TRC)も使用できる。
 MDIとしては、4,4’-体(4,4’-MDI)を主成分とするもの、3核体以上の多核体を含有するポリメリックMDI(例えば、三井化学(株)製コスモネートシリーズ)が好適に使用できる。
 また、ポリイソシアネートとして、ヌレート変性、カルボジイミド変性、プレポリマー変性(ポリイソシアネートと前記ポリオールとから得られる、イソシアネート基を分子末端に有するプレポリマー)、ウレトジオン変性等の変性ポリイソシアネート化合物を用いることもできる。これらのポリイソシアネートおよびその変性体は、1種単独または2種以上を組み合わせて使用することができる。
 本発明に用いるレジンプレミックス組成物とポリイソシアネートとの割合は特に限定はないが、ポリイソシアネートに含まれるイソシアネート基とレジンプレミックス組成物に含まれる活性水素基とのモル比が通常は50:100~300:100の範囲、好ましくは90:100~150:100となる範囲である。なお、レジンプレミックス組成物に含まれる活性水素基のモル数を100としたときのイソシアネート基のモル比をNCOインデックスとして表記する。
 3.硬質ポリウレタンフォーム
 本発明の硬質ポリウレタンフォームは、前記硬質ポリウレタンフォーム用組成物(すなわち、前記レジンプレミックス組成物とポリイソシアネート)を、ウレタン化触媒および炭化水素系発泡剤、要すれば整泡剤の存在下で、従来公知の方法で反応および発泡させることにより製造することができる。
 発泡はどのような状態で実施してもよいが、成型品の形状または形状に類似した金型内部で実施する方法が好ましい。また、ポリイソシアネートとレジンプレミックス組成物は発泡直前で混合することが好ましい。
 各成分の混合方法はダイナミックミキシング、スタティックミキシングいずれを用いてもよく、また両者の混合方法を併用してもよい。
 ダイナミックミキシングによる混合方法としては、攪拌翼等により混合する方法が挙げられる。また、スタティックミキシングによる混合方法としては、発泡機のマシンヘッド混合室内で混合を行う方法、あるいはスタティックミキサー等を用いて送液配管内で混合を行う方法等が挙げられる。
 発泡直前で実施される混合や物理発泡剤等のガス状成分と液状成分を混合する場合は、スタティックミキシングで実施し、貯留可能な成分同士の混合の場合は、ダイナミックミキシングで実施することが好ましい。混合温度、圧力は目的の硬質ポリウレタンフォームの品質、原料の種類や組成によって必要に応じて任意に設定することができ、混合に先立ち必要に応じて加熱することもできる。例えば、各出発成分を液温10~50℃、好ましくは15~30℃で攪拌混合し、オープンモールドに、あるいは場合により高圧下で、必要に応じて温度制御の可能なクローズドモールドに導入することにより、硬質ポリウレタンフォームを得ることができる。この場合、モールド(金型)温度は20~110℃、好ましくは30~60℃、特に好ましくは45~55℃であることが好ましい。
 なお、本発明において、硬質ポリウレタンフォームとは、水酸基価(OHV)が200以上であり、ガラス転移度(Tg)が100℃以上のポリウレタンフォームのことである。
 本発明の硬質ポリウレタンフォーム用組成物により得られる硬質ポリウレタンフォームは、圧縮強度、寸法安定性、熱伝導率、断熱性能、成形性に優れている。このため、本発明の硬質ポリウレタンフォームは、建材パネル、冷蔵庫、冷凍庫、配管などの断熱材、住宅、自動車を始めとする車両などの構造支持材に利用することができる。
 以下、本発明を実施例により説明するが、本発明は、この実施例により何ら限定されるものではない。
 なお、「部」は、特に断らない限り、「重量部」を表す。また、実施例、比較例における分析、測定は以下の方法に従って行った。
 [ポリエーテルエステルポリオールの特性]
 水酸基価:ポリエーテルポリオール1g中の水酸基に相当する水酸化カリウムのmg数で定義し、測定はJIS K1557、6.4項「水酸基価」に従って行った。
 酸価:酸価の測定はJIS K6901 5.3.2項「部分酸価」に従って行った。
 粘度:円錐平板型回転粘度計(E型粘度計)を用い、25℃での粘度を測定した。
 分子量:得られたポリエーテルポリオールを0.05g程度精秤し、N,O-ビス(トリメチルシリル)アセトアミド0.5gを加えた後、ジメチルホルムアミド(以下、「DMF」と略す)/テトラヒドロフラン(以下、「THF」と略す)混合液(DMF:THF=1:9(重量比))を加えて10mLにメスアップした。これをゲルパーミエーションクロマトグラフィー(GPC)HLC-8020(東ソー(株)製)を用いて以下の条件で測定した。
   溶離液:THF
   溶離液流量:0.8ml/min
   溶離液温度:40℃
   カラム温度:40℃
   カラム:東ソー(株)製TSKgel G-3000H、G-2000H、G-1000Hを直列につないで使用
   検出器:RI(示差屈折率)検出器
   標準試料:ポリスチレン
 平均官能基数:GPC測定により得られた分子量と水酸基価測定により得られた水酸基価より、以下の式にて平均水酸基数を計算した。
   平均官能基数=(分子量×水酸基価)/(56108+74×水酸基価)
 [レジンプレミックス組成物の貯蔵安定性]
 レジンプレミックス組成物処方として表1に示された原料を混合することによって発泡剤としてシクロペンタンを含むレジンプレミックス組成物を調製した。原料混合後、25℃の室内に1週間静置し、目視にてレジンプレミックス組成物の分離の有無を確認し、分離しないものを「AA」、分離するものを「BB」として表1に記載した。
 [反応性試験]
 レジンプレミックス組成物中のポリオールとポリイソシアネートとの混合開始時刻を0秒として、クリームタイム、ゲルタイムおよびタックフリータイムを評価した。
 クリームタイム(CT)(秒):ポリオールとポリイソシアネートとの混合液が泡立ちを始めるまでの時間。
 ゲルタイム(GT)(秒):ゲル化の進行に伴い、細いガラスまたは金属製の棒を発泡中の発泡原液組成物上部に軽く差した後、素早く引き抜いた時に発泡原液組成物が糸を引き始めるまでの時間。
 タックフリータイム(TFT)(秒):発泡が終了し、フォームにベトツキが無くなるまでの時間。
 [硬質ポリウレタンフォームの物性]
 コア密度:JIS K-6400記載の方法により測定を実施した。JIS規格での見かけ密度を指す。本発明では、フォームサンプルから直方体フォームサンプルを切り出したものを測定サンプルとした。
 熱伝導率:JIS A-1412-2に従い、Anacon社製モデルTCA-8を用いて測定した。
 圧縮強度:JIS K-7220、硬質発泡プラスチック-硬質材料の圧縮試験-に従い、発泡したフォームを80×80×40mmに切断し、発泡方向と平行な方向の圧縮強度を測定した。
 低温寸法変化率:80mm×80mm×20mmの硬質ポリウレタンフォーム試験片を-30℃の恒温室内に48時間静置した後の試験片寸法変化率を測定して求めた。
 [実施例1]
 (ポリエーテルポリオールの調製)
 ジエチレングリコール600g(多価アルコール中27.0モル%)と水酸化ナトリウム22.6gとを蒸留塔および凝縮器を備えたフラスコに仕込み、窒素雰囲気下、温度250℃まで昇温した。昇温後グリセリン1406g(多価アルコール中73.0モル%)を5時間かけて滴下し、さらに常圧にて18時間脱水縮合させた。その後、シュウ酸二水和物を水酸化ナトリウムモル数に対して半分のモル数となるように加え120℃で1時間中和を実施した。このポリエーテルポリオールの水酸基価は806mgKOH/gであった。
 (ポリエーテルエステルポリオールの調製)
 このポリエーテルポリオール750gと純度72.1%のオレイン酸(和光純薬工業製)424.6gとを、凝縮器を備えたフラスコに仕込み、触媒としてチタンテトラノルマルブトキシドを0.1g仕込んだ。反応温度200℃にて15時間エステル化反応を実施した後、圧力0.35MPaにて、5Bろ紙を用いて析出した中和塩の除去を行った。得られたポリエーテルエステルポリオール(1)は褐色のにごった液体であり、水酸基価は420mgKOH/g、酸価0.39mgKOH/g、25℃での粘度は2670mPa・sであった。また、このポリオールの平均官能基数は3.8であった。
 (硬質ポリウレタンフォームの作製)
 下記表1に記載した組成にて、レジンプレミックス組成物を調製し、密閉可能なガラス瓶に密閉して25℃で1週間保管した。その後、目視にてレジンプレミックス組成物が分離したか否かを確認した。分離が確認されなかったため、20℃に調整したこのレジンプレミックス組成物にイソシアネートとしてコスモネートM-200をNCOインデックスが110となる量で加え、攪拌翼にて5秒間攪拌した。
 攪拌した混合液を200×200×200mmの発泡BOXに加え、クリームタイム(CT)、ゲルタイム(GT)、タックフリータイム(TFT)を測定した。また、同様に攪拌した所定量の混合液をあらかじめ40℃に加熱した400×300×50mmの垂直パネルに流し込み、その後蓋をして5分間キュアを行った後に脱型した。このサンプルのコア密度、熱伝導率、圧縮強度、低温寸法安定性を前記の方法にて測定した。測定した結果を表1に示した。
 [実施例2]
 (ポリエーテルポリオールの調製)
 ジエチレングリコール500g(多価アルコール中22.4モル%)と水酸化ナトリウム22.6gとを蒸留塔および凝縮器を備えたフラスコに仕込み、窒素雰囲気下、温度250℃まで昇温した。昇温後グリセリン1500g(多価アルコール中77.6モル%)を5時間かけて滴下し、さらに常圧にて18時間脱水縮合させた。その後、硫酸を水酸化ナトリウムモル数に対して半分のモル数となるように加え120℃で1時間中和を実施した後、110℃減圧下で4時間脱水を実施した。このポリエーテルポリオールの水酸基価は795mgKOH/gであった。
 (ポリエーテルエステルポリオールの調製)
 このポリエーテルポリオール750gと純度72.1%のオレイン酸(和光純薬工業製)423.3gとを、凝縮器を備えたフラスコに仕込み、触媒としてチタンテトラノルマルブトキシドを0.1g仕込んだ。反応温度200℃にて14.5時間エステル化反応を実施した後、圧力0.35MPaにて、5Bろ紙を用いて析出した中和塩の除去を行った。得られたポリエーテルエステルポリオール(2)は褐色のにごった液体であり、水酸基価は430mgKOH/g、酸価0.48mgKOH/g、25℃での粘度は5100mPa・sであった。また、このポリオールの平均官能基数は4.1であった。
 (硬質ポリウレタンフォームの作製)
 表1の組成にて、実施例1と同様にして硬質ポリウレタンフォームを調製し、各種物性を測定した。結果を表1に示す。
 [実施例3]
 (ポリエーテルポリオールの調製)
 ジエチレングリコール667g(多価アルコール中30.3モル%)と水酸化ナトリウム22.6gとを蒸留塔および凝縮器を備えたフラスコに仕込み、窒素雰囲気下、温度250℃まで昇温した。昇温後グリセリン1333g(多価アルコール中69.7モル%)を5時間かけて滴下し、さらに常圧にて24時間脱水縮合させた。その後、シュウ酸二水和物を水酸化ナトリウムモル数に対して半分のモル数となるように加え120℃で1時間中和を実施した後、110℃減圧下で4時間脱水を実施し、圧力0.35MPaにて、5Bろ紙を用いて析出した中和塩の除去を行った。このポリエーテルポリオールの水酸基価は791mgKOH/gであった。
 (ポリエーテルエステルポリオールの調製)
 このポリエーテルポリオール630gと純度72.1%のオレイン酸(和光純薬工業製)373.5gとを、凝縮器を備えたフラスコに仕込み、触媒としてチタンテトラノルマルブトキシドを0.1g仕込んだ。反応温度200℃にて13時間エステル化反応を実施した。得られたポリエーテルエステルポリオール(3)は褐色のにごった液体であり、水酸基価は424mgKOH/g、酸価0.49mgKOH/g、25℃での粘度は1990mPa・sであった。また、このポリオールの平均官能基数は3.7であった。
 (硬質ポリウレタンフォームの作製)
 表1の組成にて、実施例1と同様にして硬質ポリウレタンフォームを調製し、各種物性を測定した。結果を表1に示す。
 [実施例4]
 (ポリエーテルポリオールの調製)
 ジプロピレングリコール667g(多価アルコール中25.6モル%)と水酸化ナトリウム22.6gとを蒸留塔および凝縮器を備えたフラスコに仕込み、窒素雰囲気下、温度250℃まで昇温した。昇温後グリセリン1333g(多価アルコール中74.4モル%)を5時間かけて滴下し、さらに常圧にて18時間脱水縮合させた。その後、シュウ酸二水和物を水酸化ナトリウムモル数に対して半分のモル数となるように加え120℃で1時間中和を実施した後、110℃減圧下で4時間脱水を実施した。このポリエーテルポリオールの水酸基価は777mgKOH/gであった。
 (ポリエーテルエステルポリオールの調製)
 このポリエーテルポリオール700gと純度72.1%のオレイン酸(和光純薬工業製)379.7gとを凝縮器を備えたフラスコに仕込み、触媒としてチタンテトラノルマルブトキシドを0.1g仕込んだ。反応温度200℃にて13.5時間エステル化反応を実施し、圧力0.35MPaにて、5Bろ紙を用いて析出した中和塩の除去を行った。得られたポリエーテルエステルポリオール(4)は褐色のにごった液体であり、水酸基価は432mgKOH/g、酸価0.39mgKOH/g、25℃での粘度は2160mPa・sであった。また、このポリオールの平均官能基数は3.9であった。
 (硬質ポリウレタンフォームの作製)
 表1の組成にて、実施例1と同様にして硬質ポリウレタンフォームを調製し、各種物性を測定した。結果を表1に示す。
 [実施例5]
 (ポリエーテルポリオールの調製)
 グリセリン2024gと水酸化ナトリウム7.05gとを蒸留塔および凝縮器を備えたフラスコに仕込み、窒素雰囲気下、温度260℃まで昇温し常圧にて17時間脱水縮合させた。その後、シュウ酸二水和物を水酸化ナトリウムモル数に対して半分のモル数となるように加え120℃で1時間中和を実施した後、110℃減圧下で4時間脱水を実施し、圧力0.35MPaにて、5Bろ紙を用いて析出した中和塩の除去を行った。このポリエーテルポリオールの水酸基価は1044mgKOH/gであった。
 (ポリエーテルエステルポリオールの調製)
 このポリエーテルポリオール540gと純度72.1%のオレイン酸(和光純薬工業製)496.5gとを凝縮器を備えたフラスコに仕込み、触媒としてチタンテトラノルマルブトキシドを0.1g仕込んだ。反応温度240℃にて4時間エステル化反応を実施しポリエーテルエステルポリオールを得た。得られたポリエーテルエステルポリオール(5)は褐色のにごった液体であり、水酸基価は449mgKOH/g、酸価0.56mgKOH/g、25℃での粘度は19600mPa・sであった。また、このポリオールの平均官能基数は4.2であった。
 (硬質ポリウレタンフォームの作製)
 表1の組成にて、実施例1と同様にして硬質ポリウレタンフォームを調製し、各種物性を測定した。結果を表1に示す。
 [実施例6]
 (ポリエーテルポリオールの調製)
 グリセリン5060gと水酸化ナトリウム17.63gとを蒸留塔および凝縮器を備えたフラスコに仕込み、窒素雰囲気下、温度260℃まで昇温し常圧にて21時間脱水縮合させた。その後、シュウ酸二水和物を水酸化ナトリウムモル数に対して半分のモル数となるように加え120℃で1時間中和を実施した後、120℃常圧で4時間脱水を実施し、圧力0.35MPaにて、5Bろ紙を用いて析出した中和塩の除去を行った。このポリエーテルポリオールの水酸基価は990mgKOH/gであった。
 (ポリエーテルエステルポリオールの調製)
 このポリエーテルポリオール2100gと純度72.1%のオレイン酸(和光純薬工業製)2163gとを凝縮器を備えたフラスコに仕込み、触媒としてチタンテトラノルマルブトキシドを0.4g仕込んだ。反応温度240℃にて7時間エステル化反応を実施しポリエーテルエステルポリオールを得た。得られたポリエーテルエステルポリオール(6)は褐色のにごった液体であり、水酸基価は400mgKOH/g、酸価0.58mgKOH/g、25℃での粘度は15300mPa・sであった。なお、このポリオールの平均官能基数は4.6であった。
 (硬質ポリウレタンフォームの作製)
 表1の組成にて、実施例1と同様にして硬質ポリウレタンフォームを調製し、各種物性を測定した。結果を表1に示す。
 [実施例7]
 (ポリエーテルポリオールの調製)
 グリセリン5060gと水酸化ナトリウム17.63gとを蒸留塔および凝縮器を備えたフラスコに仕込み、窒素雰囲気下、温度260℃まで昇温し常圧にて27時間脱水縮合させた。その後、シュウ酸二水和物を水酸化ナトリウムモル数に対して半分のモル数となるように加え120℃で1時間中和を実施した後、120℃常圧で4時間脱水を実施し、圧力0.35MPaにて、5Bろ紙を用いて析出した中和塩の除去を行った。このポリエーテルポリオールの水酸基価は951mgKOH/gであった。
 (ポリエーテルエステルポリオールの調製)
 実施例6で作成したポリエーテルポリオール561gとパーム核油脂肪酸(C10の飽和脂肪酸0.1%、C12の飽和脂肪酸52.3%、C14の飽和脂肪酸17.3%、C16の飽和脂肪酸9.1%、C18の飽和脂肪酸2.4%、不飽和脂肪酸18.8%含有)500gを、凝縮器を備えたフラスコに仕込み、触媒としてチタンテトラノルマルブトキシドを0.1g仕込んだ。反応温度240℃にて6.5時間エステル化反応を実施し、ポリエーテルエステルポリオールを得た。得られたポリエーテルエステルポリオール(7)は褐色透明液体であり、水酸基価は396mgKOH/g、酸価0.6mgKOH/g、25℃での粘度は14400mPa・sであった。なお、このポリオールの平均官能基数は4.5であった。
 (硬質ポリウレタンフォームの作製)
 表1の組成にて、実施例1と同様にして硬質ポリウレタンフォームを調製し、各種物性を測定した。結果を表1に示す。
 [比較例1]
 (ポリエーテルポリオールの調製)
 ジエチレングリコール650gと水酸化ナトリウム45.2gとを蒸留塔および凝縮器を備えたフラスコに仕込み、窒素雰囲気下、温度250℃まで昇温した。昇温後グリセリン1300gを5時間かけて滴下し、さらに常圧にて8時間脱水縮合させた。その後、シュウ酸二水和物を水酸化ナトリウムモル数に対して半分のモル数となるように加え120℃で1時間中和を実施したのち、110℃、10mmHgにて4時間脱水をし、その後圧力0.35MPaにて、5Bろ紙を用いて析出した中和塩の除去を行いポリエーテルポリオール(8)を得た。このポリエーテルポリオール(8)の水酸基価は783mgKOH/g、粘度は25℃での粘度は3050mPa・sであった。なお、このポリオールの平均官能基数は4.9であった。
 (硬質ポリウレタン発泡体の作製)
 表1の組成にて、レジンプレミックス組成物を調製し、25℃で1週間静置して貯蔵安定性を確認したところ分離が認められたので発泡体の調製ができなかった。
 [比較例2]
 (硬質ポリウレタン発泡体の作製)
 表1の組成にて、実施例1と同様にして硬質ポリウレタンフォームを調製し、各種物性を測定した。結果を表1に示す。なお、比較例2で得た発泡体は、熱伝導率が実施例で得られた発泡体と比べて高く、発泡体として劣っていた。
Figure JPOXMLDOC01-appb-T000001

Claims (11)

  1.  ポリオールおよび炭化水素系発泡剤を少なくとも含んでなるレジンプレミックス組成物であって、
     前記ポリオールが、
     50モル%以上の3価以上のアルコールを含む多価アルコールを縮合させて得られるポリエーテルポリオールと、脂肪酸および/または脂肪酸エステルとを反応させて得られるポリエーテルエステルポリオール(A)を含むことを特徴とするレジンプレミックス組成物。
  2.  前記ポリオールが、
     (1)前記ポリエーテルエステルポリオール(A)を少なくとも10重量部と
     (2)その他のポリオールを0~90重量部(ただし、(1)と(2)の合計を100重量部とする)を含むことを特徴とする請求項1に記載のレジンプレミックス組成物。
  3.  前記3価以上のアルコールが、グリセリンであることを特徴とする請求項1に記載のレジンプレミックス組成物。
  4.  前記多価アルコールが、グリセリンであることを特徴とする請求項1に記載のレジンプレミックス組成物。
  5.  請求項1~4の何れか一項に記載のレジンプレミックス組成物とポリイソシアネートとからなる硬質ポリウレタンフォーム用組成物。
  6.  請求項1~4の何れか一項に記載のレジンプレミックス組成物とポリイソシアネートとを反応させることにより得られる硬質ポリウレタンフォーム。
  7.  前記ポリエーテルエステルポリオール(A)の水酸基価が、200~600mgKOH/gであることを特徴とする請求項1~4の何れか一項に記載のレジンプレミックス組成物。
  8.  前記ポリエーテルエステルポリオール(A)の粘度が、25℃で50,000mPa・s以下であることを特徴とする請求項1~4の何れか一項に記載のレジンプレミックス組成物。
  9.  前記ポリエーテルエステルポリオール(A)の平均官能基数が、3以上であることを特徴とする請求項1~4の何れか一項に記載のレジンプレミックス組成物。
  10.  前記脂肪酸および/または脂肪酸エステルが、不飽和脂肪酸および/または不飽和脂肪酸エステルを50wt%以上含むことを特徴とする請求項1~4の何れ一項かに記載のレジンプレミックス組成物。
  11.  前記脂肪酸および/または脂肪酸エステルが、炭素数10~14の飽和脂肪酸および/または炭素数10~14の飽和脂肪酸のエステル化物を50wt%以上含むことを特徴とする請求項1~4の何れか一項に記載のレジンプレミックス組成物。
PCT/JP2013/079501 2012-11-05 2013-10-31 レジンプレミックス組成物、硬質ポリウレタンフォーム用組成物および硬質ポリウレタンフォーム WO2014069556A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014544569A JP5887655B2 (ja) 2012-11-05 2013-10-31 レジンプレミックス組成物、硬質ポリウレタンフォーム用組成物および硬質ポリウレタンフォーム
KR1020157009660A KR101754063B1 (ko) 2012-11-05 2013-10-31 레진 프리믹스 조성물, 경질 폴리우레탄 폼용 조성물 및 경질 폴리우레탄 폼
CN201380056364.5A CN104755557B (zh) 2012-11-05 2013-10-31 树脂预混合组合物、硬质聚氨酯泡沫用组合物及硬质聚氨酯泡沫
EP13850391.7A EP2915850A4 (en) 2012-11-05 2013-10-31 COMPOSITION BASED ON RESIN PREMIXING, COMPOSITION FOR RIGID POLYURETHANE FOAM, AND RIGID POLYURETHANE FOAM
US14/438,693 US20150299376A1 (en) 2012-11-05 2013-10-31 Resin premix composition, rigid polyurethane foaming composition and rigid polyurethane foam
PH12015500951A PH12015500951A1 (en) 2012-11-05 2015-04-28 Resin premix composition, rigid polyurethane foaming composition and rigid polyurethane foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-243506 2012-11-05
JP2012243506 2012-11-05

Publications (1)

Publication Number Publication Date
WO2014069556A1 true WO2014069556A1 (ja) 2014-05-08

Family

ID=50627454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079501 WO2014069556A1 (ja) 2012-11-05 2013-10-31 レジンプレミックス組成物、硬質ポリウレタンフォーム用組成物および硬質ポリウレタンフォーム

Country Status (8)

Country Link
US (1) US20150299376A1 (ja)
EP (1) EP2915850A4 (ja)
JP (1) JP5887655B2 (ja)
KR (1) KR101754063B1 (ja)
CN (1) CN104755557B (ja)
MY (1) MY171671A (ja)
PH (1) PH12015500951A1 (ja)
WO (1) WO2014069556A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183070A1 (en) * 2014-05-26 2015-12-03 Universiti Kebangsaan Malaysia (Ukm) Method to produce natural oil-based polyurethane prepolymer
WO2020195641A1 (ja) * 2019-03-28 2020-10-01 三菱ケミカル株式会社 ポリアルキレンエーテルグリコール組成物及びそれを用いたポリウレタンの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428170B1 (en) * 2012-07-31 2019-10-01 Huntsman International Llc Hydrocarbon blown polyurethane foam formulation giving desirable thermal insulation properties
PL3990512T3 (pl) * 2019-06-28 2023-10-02 Basf Se Składnik poliolowy i jego zastosowanie do wytwarzania sztywnych pianek poliuretanowych
CN110452544A (zh) * 2019-08-21 2019-11-15 上海麦浦新材料科技有限公司 一种有机硅稳泡剂、硬质聚氨酯泡沫用组合物及其用途
US11407874B2 (en) 2019-10-07 2022-08-09 Covestro Llc Polyol premixes, thermally insulating rigid polyurethane foams and methods for their production
CN112831040A (zh) * 2020-12-31 2021-05-25 烟台市顺达聚氨酯有限责任公司 一种合成聚酯醚多元醇的方法
KR102577410B1 (ko) * 2021-02-03 2023-09-13 주식회사 풍산 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172938A (ja) 1988-12-24 1990-07-04 Sakamoto Yakuhin Kogyo Kk ポリグリセリン組成物およびその製造法
JPH07216082A (ja) 1994-01-27 1995-08-15 Mitsubishi Chem Corp ポリグリセリンの製造方法
JP2006291101A (ja) * 2005-04-13 2006-10-26 Toyo Tire & Rubber Co Ltd 硬質ポリウレタンフォーム用ポリオール組成物及び硬質ポリウレタンフォームの製造方法
WO2008053780A1 (fr) 2006-10-31 2008-05-08 Mitsui Chemicals, Inc. Polyéther polyol, mousse de polyuréthane dure et leurs procédés de production
WO2009131141A1 (ja) 2008-04-25 2009-10-29 三井化学株式会社 ポリエーテルポリオール、硬質ポリウレタン発泡体およびこれらの製造方法
JP2010095721A (ja) * 2008-10-16 2010-04-30 Bayer Materialscience Ag ポリエーテルエステルポリオールの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752465A (en) * 1985-09-20 1988-06-21 Product Resources International, Inc. Aerosol foam
US20060240194A1 (en) * 2005-04-26 2006-10-26 Cargill, Incorporated Polyglycerol fatty acid ester composition and coating
US20090082483A1 (en) * 2007-09-20 2009-03-26 Petrovic Zoran S Polyglycerol based polyols and polyurethanes and methods for producing polyols and polyurethanes
ES2375337T3 (es) * 2008-01-17 2012-02-29 Dow Global Technologies Llc Espumas basadas en isocianato aislantes térmicamente.
WO2014115356A1 (ja) * 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 エステル交換触媒及び該触媒を用いたバイオディーゼル燃料の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172938A (ja) 1988-12-24 1990-07-04 Sakamoto Yakuhin Kogyo Kk ポリグリセリン組成物およびその製造法
JPH07216082A (ja) 1994-01-27 1995-08-15 Mitsubishi Chem Corp ポリグリセリンの製造方法
JP2006291101A (ja) * 2005-04-13 2006-10-26 Toyo Tire & Rubber Co Ltd 硬質ポリウレタンフォーム用ポリオール組成物及び硬質ポリウレタンフォームの製造方法
WO2008053780A1 (fr) 2006-10-31 2008-05-08 Mitsui Chemicals, Inc. Polyéther polyol, mousse de polyuréthane dure et leurs procédés de production
WO2009131141A1 (ja) 2008-04-25 2009-10-29 三井化学株式会社 ポリエーテルポリオール、硬質ポリウレタン発泡体およびこれらの製造方法
JP2010095721A (ja) * 2008-10-16 2010-04-30 Bayer Materialscience Ag ポリエーテルエステルポリオールの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. MATSUMOTO, PROCEEDINGS OF THE POLYURETHANES 1995 CONFERENCE, 1995, pages 292
See also references of EP2915850A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015183070A1 (en) * 2014-05-26 2015-12-03 Universiti Kebangsaan Malaysia (Ukm) Method to produce natural oil-based polyurethane prepolymer
WO2020195641A1 (ja) * 2019-03-28 2020-10-01 三菱ケミカル株式会社 ポリアルキレンエーテルグリコール組成物及びそれを用いたポリウレタンの製造方法
CN113227201A (zh) * 2019-03-28 2021-08-06 三菱化学株式会社 聚亚烷基醚二醇组合物和使用了该组合物的聚氨酯的制造方法
CN113227201B (zh) * 2019-03-28 2023-07-21 三菱化学株式会社 聚亚烷基醚二醇组合物和使用了该组合物的聚氨酯的制造方法
JP7380676B2 (ja) 2019-03-28 2023-11-15 三菱ケミカル株式会社 ポリアルキレンエーテルグリコール組成物及びそれを用いたポリウレタンの製造方法

Also Published As

Publication number Publication date
US20150299376A1 (en) 2015-10-22
CN104755557B (zh) 2018-04-13
MY171671A (en) 2019-10-22
EP2915850A1 (en) 2015-09-09
JPWO2014069556A1 (ja) 2016-09-08
EP2915850A4 (en) 2016-06-22
KR20150058348A (ko) 2015-05-28
CN104755557A (zh) 2015-07-01
JP5887655B2 (ja) 2016-03-16
KR101754063B1 (ko) 2017-07-14
PH12015500951A1 (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5887655B2 (ja) レジンプレミックス組成物、硬質ポリウレタンフォーム用組成物および硬質ポリウレタンフォーム
JP6746602B2 (ja) 硬質ポリウレタン発泡体のためのイソシアネート反応性配合物
AU2012230372B2 (en) PU rigid foam with low thermal conductivity and good thermal stability
KR101853153B1 (ko) 폴리우레탄 경질 발포체의 향상된 저온 외피 경화를 위한 폴리올 제형
JP2002536516A (ja) 微細気泡の水発泡硬質ポリウレタン発泡体
US20110218259A1 (en) Preparing polyurethanes
AU2011244310B2 (en) Method for producing polyurethane rigid foams
WO2008062796A1 (fr) Procédé de fabrication d'une mousse rigide en polyuréthanne et mousse rigide en polyuréthanne
JP2008081701A (ja) ポリイソシアネート組成物および該組成物を用いた硬質ポリウレタンフォームの製造方法
JP2006348099A (ja) ポリウレタン発泡原液及び低密度ポリウレタン断熱材
WO2019096763A1 (en) Polyurethane foam composite panel
JP6050840B2 (ja) ポリエーテルポリオール組成物及びその製造方法
JP6917776B2 (ja) 硬質ポリウレタンフォーム用組成物および硬質ポリウレタンフォームの製造方法
EP3521331A1 (en) Polyurethane foam composite panel
KR102048077B1 (ko) 변성 이소시아네이트를 사용한 단열재용 고분자 조성물
JP5699563B2 (ja) 硬質発泡合成樹脂の製造方法
JP4084516B2 (ja) 硬質ポリウレタンフォームの製造方法
JP2002293871A (ja) 硬質ポリウレタンフォームおよびその製造方法
KR20200091451A (ko) 우레탄 기 및 이소시아누레이트 기를 포함하는 연속 기포 경질 폼의 제조 방법
KR102548562B1 (ko) 메타-톨루엔디아민으로 개시된 폴리올을 이용하여 제조된 경질 폴리우레탄 폼을 포함하는 냉동 시스템용 단열재
JP2011174063A (ja) 軟質ポリウレタンフォームの製造方法
JP3453731B2 (ja) 連続気泡硬質ポリウレタンフオームの製造方法
RU2780087C2 (ru) Полиизоциануратсодержащие пеноматериалы с длительным периодом между смешением компонентов и переходом в сметанообразную массу и способностью к мгновенному отверждению
JP2012529542A (ja) ジオキサン廃棄物量の少ないポリエステルポリオールの製造方法
JP2023039017A (ja) 制振性の良好なポリウレタン形成原料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13850391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544569

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157009660

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14438693

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12015500951

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: IDP00201502616

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013850391

Country of ref document: EP