WO2014115356A1 - エステル交換触媒及び該触媒を用いたバイオディーゼル燃料の製造方法 - Google Patents
エステル交換触媒及び該触媒を用いたバイオディーゼル燃料の製造方法 Download PDFInfo
- Publication number
- WO2014115356A1 WO2014115356A1 PCT/JP2013/070335 JP2013070335W WO2014115356A1 WO 2014115356 A1 WO2014115356 A1 WO 2014115356A1 JP 2013070335 W JP2013070335 W JP 2013070335W WO 2014115356 A1 WO2014115356 A1 WO 2014115356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- biodiesel fuel
- titanium
- transesterification
- catalysts
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 232
- 239000003225 biodiesel Substances 0.000 title claims abstract description 85
- 238000005809 transesterification reaction Methods 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000010936 titanium Substances 0.000 claims abstract description 65
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 51
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000011148 porous material Substances 0.000 claims abstract description 42
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000000470 constituent Substances 0.000 claims abstract description 5
- 239000003925 fat Substances 0.000 claims description 53
- 239000003921 oil Substances 0.000 claims description 40
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 11
- 239000000194 fatty acid Substances 0.000 claims description 11
- 229930195729 fatty acid Natural products 0.000 claims description 11
- 235000021588 free fatty acids Nutrition 0.000 abstract description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 81
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 57
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 55
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 42
- 238000002360 preparation method Methods 0.000 description 39
- 235000019198 oils Nutrition 0.000 description 38
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 36
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 30
- 235000011187 glycerol Nutrition 0.000 description 28
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 26
- 229920002415 Pluronic P-123 Polymers 0.000 description 24
- 239000000446 fuel Substances 0.000 description 24
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- 239000002243 precursor Substances 0.000 description 21
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 239000011780 sodium chloride Substances 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 230000000704 physical effect Effects 0.000 description 15
- XFVGXQSSXWIWIO-UHFFFAOYSA-N chloro hypochlorite;titanium Chemical compound [Ti].ClOCl XFVGXQSSXWIWIO-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 12
- 230000035484 reaction time Effects 0.000 description 12
- 238000001179 sorption measurement Methods 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- -1 zinc aluminate Chemical class 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 9
- 238000000634 powder X-ray diffraction Methods 0.000 description 9
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 8
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 8
- 241000221089 Jatropha Species 0.000 description 7
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 7
- 230000001788 irregular Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 239000011949 solid catalyst Substances 0.000 description 7
- 150000001298 alcohols Chemical class 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 125000005456 glyceride group Chemical group 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- MSPCIZMDDUQPGJ-UHFFFAOYSA-N N-methyl-N-(trimethylsilyl)trifluoroacetamide Chemical compound C[Si](C)(C)N(C)C(=O)C(F)(F)F MSPCIZMDDUQPGJ-UHFFFAOYSA-N 0.000 description 4
- 235000019482 Palm oil Nutrition 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 239000002540 palm oil Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 229920000428 triblock copolymer Polymers 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 3
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 3
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 3
- 235000021360 Myristic acid Nutrition 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000002815 homogeneous catalyst Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000006735 epoxidation reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000013335 mesoporous material Substances 0.000 description 2
- HUEBIMLTDXKIPR-UHFFFAOYSA-N methyl heptadecanoate Chemical compound CCCCCCCCCCCCCCCCC(=O)OC HUEBIMLTDXKIPR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 235000014593 oils and fats Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- 102220500397 Neutral and basic amino acid transport protein rBAT_M41T_mutation Human genes 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- JBXYCUKPDAAYAS-UHFFFAOYSA-N methanol;trifluoroborane Chemical compound OC.FB(F)F JBXYCUKPDAAYAS-UHFFFAOYSA-N 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002683 reaction inhibitor Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- GRONZTPUWOOUFQ-UHFFFAOYSA-M sodium;methanol;hydroxide Chemical compound [OH-].[Na+].OC GRONZTPUWOOUFQ-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- LADGBHLMCUINGV-UHFFFAOYSA-N tricaprin Chemical compound CCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCC)COC(=O)CCCCCCCCC LADGBHLMCUINGV-UHFFFAOYSA-N 0.000 description 1
- 229940093633 tricaprin Drugs 0.000 description 1
- 238000000193 wide-angle powder X-ray diffraction Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/026—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/89—Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B37/00—Compounds having molecular sieve properties but not having base-exchange properties
- C01B37/005—Silicates, i.e. so-called metallosilicalites or metallozeosilites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/02—Preparation of carboxylic acid esters by interreacting ester groups, i.e. transesterification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/03—Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
- C10L1/1881—Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0461—Fractions defined by their origin
- C10L2200/0469—Renewables or materials of biological origin
- C10L2200/0476—Biodiesel, i.e. defined lower alkyl esters of fatty acids first generation biodiesel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/026—Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
Definitions
- the present invention relates to a transesterification catalyst and a method for producing biodiesel fuel using the catalyst.
- Biodiesel fuel consisting of long-chain free fatty acid alkyl esters is starting to spread mainly in Europe as an environmentally friendly alternative to light oil because it uses vegetable oils or animal fats that are natural products as raw materials.
- BDF Biodiesel fuel
- it is necessary to satisfy high quality standards such as those specified in ASTM D6751-07b, EN14214: 2003, JSI K2390: 2008, EEBS: 2008, etc.
- high degree of stability is required.
- biodiesel fuel is separated into a fatty acid alkyl ester and glycerin by adding an alcohol such as methanol to a plant-derived oil (fatty acid triglyceride) and performing a transesterification using a homogeneous alkali catalyst such as sodium hydroxide.
- a homogeneous alkali catalyst such as sodium hydroxide.
- the separated fatty acid alkyl ester is distilled to remove methanol, and then mixed with water to wash the remaining homogeneous alkaline catalyst, residual glycerin and residual methanol. Thereafter, these impurities dissolved in water are separated and removed together with the aqueous layer, and residual water is dried and removed, whereby a biodiesel fuel is obtained.
- FIG. 1 shows an outline of the above process, but it is not easy to manufacture a biodiesel fuel that conforms to the fuel standard such as JIS K2390 by such a complicated manufacturing process.
- the homogeneous alkaline catalyst not only requires a special apparatus to corrode the production apparatus, but also requires sufficient water washing to remove the residual metal, so that a large amount of waste water is generated in the production process. Furthermore, since a homogeneous alkali catalyst cannot be reused, a large amount of waste catalyst is generated.
- the homogeneous catalyst is also mixed in glycerin, which is a by-product, it leads to an increase in purification cost associated with the use of glycerin.
- the raw material oil contains a large amount of free fatty acid, it reacts with the homogeneous alkali catalyst to produce soap, so a pre-process for removing the free fatty acid is also necessary. Further, in order to prevent saponification and catalyst deactivation, the water content of the raw material must be 0.3% or less. Thus, the conventional method for producing biodiesel fuel cannot compete with light oil fuel in terms of economy and environmental load.
- titania silica (TiO 2 / SiO 2 ), which is widely known as an oxidation catalyst for epoxidation, and Ti-MCM-41 in which Ti is supported on MCM-41, a mesoporous material, have relatively low molecular weight.
- Non-patent Document 2 Non-patent Document 2
- titanosilicate TS-1 tends to cause an active component to flow out during the reaction (Patent Document 4).
- the transesterification reaction using a titania-containing silica catalyst exhibits catalytic activity in the presence of free fatty acids and moisture. It is reported that it decreases (Patent Document 5).
- the present invention provides a biodiesel fuel production catalyst capable of producing biodiesel fuel with high selectivity, high yield, and low cost even in the presence of moisture and free fatty acids, and It aims at providing the manufacturing method of the biodiesel fuel which uses this catalyst.
- the present inventors are known as an oxidation catalyst for epoxidation and the like (see Non-Patent Documents 3 and 4 above), and SBA-15 containing titanium ( We have found that Ti-SBA-15) is an excellent transesterification catalyst. Furthermore, the inventors synthesized various Ti-SBA-15s with different physical properties such as Ti / Si molar ratio, titanium content, pore length length, etc., and examined transesterification of oils and alcohols for each. did. As a result, the optimally designed Ti-SBA-15 not only has a high transesterification yield of alcohol and triglyceride, but also does not reduce transesterification activity even in the presence of moisture and free fatty acids. In particular, it was found useful for transesterification between fats and oils and alcohols. Furthermore, the present inventors have found an efficient method for producing biodiesel fuel using the catalyst, and have completed the present invention.
- a transesterification catalyst comprising Ti-containing mesoporous silica having Ti and Si as skeleton constituent elements and having a pore diameter of 5 nm or more.
- a method for producing a biodiesel fuel characterized in that a fatty acid alkyl ester is obtained by transesterification of fats and alcohols in the presence of the transesterification catalyst according to any one of [1] to [7].
- transesterification can be efficiently performed using a solid catalyst containing titanium-containing mesoporous silica.
- biodiesel fuel by transesterification of fats and oils and alcohol can be efficiently produced.
- the catalyst according to the present invention is used, transesterification of triglyceride and lower alcohol can be achieved in a high yield, but the reaction efficiency does not decrease even if the reaction product contains about 10% of water.
- the free fatty acid which exists in fats and oils as a secondary component and is a reaction inhibitor in the prior art can also be esterified simultaneously, the yield of biodiesel fuel becomes high.
- the fatty acid methyl ester is 96.5% by mass or more, and the total glycerin, monoglyceride, diglyceride, triglyceride and free glycerin content is 0.25% by mass in conformity with fuel standards such as JIS K2390.
- fuel standards such as JIS K2390.
- a one-stage biodiesel production method capable of simultaneous esterification and transesterification with a solid catalyst can be achieved, and the catalyst according to the present invention can be recycled. It provides high economic and environmentally friendly technologies, such as no waste catalyst and wastewater discharge, and simplified processes.
- the figure which shows the outline of the manufacturing process of the conventional biodiesel fuel The figure which shows the outline
- the transesterification catalyst of the present invention is characterized by comprising titanium-containing mesopolar silica having Ti and Si as skeleton constituent elements and having a pore diameter of 5 nm or more, and the biodiesel fuel of the present invention
- This production method is characterized in that biodiesel fuel is produced in one step from an oil or fat by an ester exchange reaction using the transesterification catalyst.
- FIG. 2 is a diagram showing an outline of a production process of biodiesel fuel according to the present invention.
- transesterification is a reaction in which a substituent derived from an alcohol is recombined by a reaction between an ester and an alcohol.
- a fatty acid triglyceride and a diglyceride and / or a main component of an oil or fat raw material in particular, a fatty acid triglyceride and a diglyceride and / or a main component of an oil or fat raw material. It refers to a reaction in which an alcohol is allowed to act on monoglyceride to convert it into an ester of the alcohol and a fatty acid and free glycerin.
- the transesterification catalyst in the present invention is a titanium-containing mesoporous silica catalyst having a mesoporous structure.
- Mesoporous means having a large number of pores having a diameter of 2 nm to 50 nm
- mesoporous silica means a substance having uniform pores (mesopores) made of silicon dioxide (silica).
- Examples of the mesoporous silica include M41S, MSU, FSM, MCM-41, SBA, and the like.
- M41S mesoporous silica having a pore diameter of 5 nm or more
- SBA-15 can be preferably used because the structure is particularly stable.
- an irregular mesostructure structure (MCF) can also be suitably used as mesoporous silica having a pore diameter of 5 nm or more.
- the mesostructure is a structure having mesopores formed by forming a silica layer at the interface between an organic solvent that forms spherical droplets in an aqueous solution and the aqueous solution and removing the solvent.
- the structural state of the catalyst is not particularly limited, but an amorphous (amorphous) structure is preferable to a crystal structure.
- Ti and Si are present as structural skeleton constituent elements, but the molar ratio of Ti / Si is preferably 0.01 to 0.1, most preferably 0.03 to 0.07.
- the pore size of the titanium mesoporous silica catalyst (Ti-SBA-15) by SBA-15 used in the present invention is preferably 5 nm to 50 nm, preferably 5 nm to 10 nm, more preferably It is preferably 6.5 to 8 nm.
- the pore diameter of Ti-SBA-15 can be adjusted by increasing or decreasing the Ti / Si molar ratio.
- the MCF structure has sponge-like irregular pores.
- the pore diameter of the titanium-containing mesoporous silica catalyst containing the MCF structure is preferably 10 to 50 nm in diameter, and particularly preferably 15 to 40 nm in diameter.
- the pore diameter of the catalyst containing the MCF structure can be adjusted by increasing or decreasing the molar ratio of trimethylbenzene and P123 added to the reaction solution.
- the method for producing mesoporous silica is not particularly limited. For example, by carrying out the reaction step of precipitating silica by the reaction of silicon alkoxide and acid in two stages, and adjusting the acid concentration in each stage very strictly. Examples thereof include a method of obtaining a thin film mesoporous silica, or a method of obtaining a mesoporous silica from a composite of a surfactant and silica by mixing a surfactant and sodium silicate.
- the method for producing titanium-containing mesoporous silica in the present invention is not particularly limited.
- a block copolymer such as a nonionic amphiphilic polyalkylene oxide as a pore-forming agent (surfactant), and orthosilicate as a silica source.
- examples thereof include ethyl acid, titanium oxychloride as a titanium source, and sodium chloride as a structure modifier.
- titanium tetraisopropoxide is added to concentrated hydrochloric acid to synthesize a titanium oxychloride precursor.
- a triblock copolymer (trade name: Pluronic P123) which is a nonionic surfactant containing PEO (polyethylene oxide), sodium chloride, and ethyl orthosilicate (TEOS) are put in the same container and distilled.
- Hydrolysis is performed with water or hydrochloric acid, and the titanium oxychloride precursor prepared above is added to the hydrolyzate to obtain a reaction solution.
- a method is available in which the precipitate is washed with water and then fired in a furnace to obtain titanium-containing mesoporous silica.
- the molar ratio of titanium tetraisopropoxide to concentrated hydrochloric acid is preferably 0.5 to 50, more preferably 1.5 to 30.
- the hydrochloric acid used in the synthesis of the hydrolyzate is preferably 0.1 to 1.0 M, but it may be carried out with distilled water without using hydrochloric acid.
- reaction solution when the reaction proceeds, a precipitate having a regular structure in which silica is surrounded by a column of surfactant molecules aggregated like a template is obtained, but a mesoporous silica having an irregular mesostructure structure is obtained.
- trimethylbenzene is further added to the reaction solution.
- the pore diameter is preferably 6.5 to 8 nm, and when the catalyst has an irregular mesostructure (MCF), the pore diameter is 15 to 40 nm. It is preferable.
- the molar ratio of Ti / Si can be adjusted by changing the ratio of the triblock copolymer and ethyl orthosilicate used in the synthesis reaction.
- the Ti loading ratio is preferably 0.1 to 10% by weight, more preferably 0.7 to 8.1% by weight in terms of titania (TiO 2 ) with respect to the catalyst.
- the P123 / TEOS molar ratio is preferably in the range of 0.0008 to 0.022, and the NaCl / TEOS molar ratio is preferably in the range of 0 to 6.
- the precipitate can be calcined.
- the firing temperature is preferably 1000 ° C. or less, and particularly preferably 500 to 800 ° C.
- an alcohol is, by way of example, methanol, ethanol, n-propanol, isopropanol and n-butanol, isobutanol, sec-butanol or tert-butanol, and branched or longer chain, optionally Likewise branched alcohols such as amyl alcohol, tert-amyl alcohol, n-hexanol and / or 2-ethylhexanol. Methanol and ethanol are preferably used.
- the aforementioned alcohols can be used alone or in admixture in the process according to the invention.
- fats and oils used as a raw material for biodiesel fuel refer to natural fats and oils used in foods, cosmetics, pharmaceuticals, and the like. These natural fats and oils are mixtures composed mainly of fatty acid triglycerides and diglycerides and / or monoglycerides as subcomponents, and can be converted to fatty acid alkyl esters which are the main components of biodiesel fuel by transesterification. . Specifically, vegetable oils such as rapeseed oil, sesame oil, jatropha oil, soybean oil, corn oil, sunflower oil, palm oil, cottonseed oil, rice oil, palm oil, safflower oil, beef fat, pork fat, chicken fat, fish oil, etc. Animal oils and fats and waste oils and fats from these uses.
- the molar ratio of methanol and fats and oils is large, and it should be 100 or more.
- the transesterification reaction of the present invention may be pressurized with nitrogen at 0 to 40 bar, but it may not be particularly pressurized.
- the reaction temperature is preferably 150 to 200 ° C., and the reaction time is preferably 1 to 6 hours.
- transesterification reaction of the present invention it is desirable to remove the water in the fats and oils. However, if the water content is 10% or less, the transesterification can be performed in a high yield without removing the water. Moreover, although free fatty acid may be removed, transesterification can be carried out without particular removal.
- the catalyst used in the present invention can be recovered and reused, but after filtration and washing with an appropriate amount of acetone, etc., it is dried overnight at 30 to 50 ° C. and calcined in air at 500 ° C. for 3 hours. It is preferable to use one.
- Example 1 Preparation of catalysts A to E and analysis of physical properties
- 12.7 g (0.13 mol) of concentrated hydrochloric acid (12M) and 14.8 g (0.052 mol) of titanium tetraisopropoxide (TTIP) were slowly stirred at 0 ° C. Add. At this time, the HCl / TTIP molar ratio is maintained at 2.5.
- the titanium oxychloride precursor obtained by this preparation method was a transparent yellow solution, and no precipitate was observed.
- the polypropylene bottle is sealed and stirred at 35 ° C. for 24 hours, and then left still at 100 ° C. for 24 hours for hydrothermal treatment.
- the formed white precipitate is filtered off, washed with 500 mL of distilled water and dried at 100 ° C. overnight.
- Catalysts A, B, C, D, and E (titanium contents were 1, 3, 5, 7, and 10 mol%, respectively) were obtained by the above method.
- titania weight% (titania molecular weight / titanium atomic weight) ⁇ (titanium weight / catalyst weight) ⁇ 100
- the titanium content of each catalyst in the following examples is also expressed by titania weight% calculated in the same manner.
- catalysts A to E had a regular two-dimensional hexagonal p6 mm structure.
- titania content was 8.03% by weight or less, no titanium oxide crystal precipitation was observed.
- titania content exceeded 8.03% by weight, a weak diffraction pattern derived from anatase-type titania microcrystals was observed.
- the structural characteristics of the catalyst determined by nitrogen adsorption are shown in Table 1.
- Catalysts A to E with a titania content of 1.07 to 9.18% by weight have a high specific surface area (766-890 m 2 / g), a large pore volume (0.79-0.90 cm 3 / g), and controlled mesopores (7.1 ⁇ 7.9 nm).
- FIG. 3 shows pore size distributions obtained by nitrogen adsorption for the catalysts A to E and the comparative catalyst R1 described later.
- Example 2 Preparation and physical property analysis of catalysts F and G
- Catalysts F and G were prepared in the same manner as in Example 1 except that the titanium oxychloride precursor prepared in Example 2 (1) was used and the Ti / Si molar ratio in the gel was 0.03.
- catalysts F and G had a regular two-dimensional hexagonal p6 mm structure.
- the structural characteristics of the catalyst determined by nitrogen adsorption are shown in Table 2.
- Catalysts F and G having a titania content of 1.07 to 9.18% by weight have a high specific surface area (792 to 902 m 2 / g), a large pore volume (0.80 to 1.02 cm 3 / g), and controlled mesopores (7.6 ⁇ 7.7nm).
- the titania contents determined by inductively coupled plasma optical emission spectrometry (ICP-OES) of catalysts F and G were 4.76 and 0.70 wt%, respectively, and decreased with increasing HCl / TTIP molar ratio.
- Example 3 Preparation and physical property analysis of catalysts H and I
- (1) Preparation of titanium precursor A titanium oxychloride precursor was prepared in the same manner as in Example 1.
- (2) Catalyst Preparation Catalysts H and I were prepared in the same manner as in Example 1 except that the Ti / Si molar ratio in the gel was 0.03 and the NaCl / TEOS molar ratio was 0 or 6.
- catalyst H had a two-dimensional hexagonal p6 mm structure, but catalyst I had an irregular pore structure.
- the structural characteristics of the catalyst determined by nitrogen adsorption are shown in Table 3.
- Catalysts H and I had a high specific surface area (446-716 m 2 / g), a large pore volume (0.53-0.68 cm 3 / g), and controlled mesopores (7.4 nm).
- the titania contents determined by inductively coupled plasma optical emission spectrometry (ICP-OES) for catalysts H and I were 2.69 and 3.11% by weight, respectively, and decreased with increasing NaCl / TEOS molar ratio.
- ICP-OES inductively coupled plasma optical emission spectrometry
- Example 4 Preparation and physical property analysis of catalysts J and K
- (1) Preparation of titanium precursor A titanium oxychloride precursor was prepared in the same manner as in Example 1.
- (2) Preparation of catalyst Catalysts J and K were prepared in the same manner as in Example 1 except that the Ti / Si molar ratio in the gel was 0.03 and the molar ratio of P123 / TEOS was 0.0087 or 0.022.
- catalysts J and K had a regular two-dimensional hexagonal p6 mm structure.
- the structural characteristics of the catalyst determined by nitrogen adsorption are shown in Table 4.
- Catalysts J and K had a high specific surface area (775-837 m 2 / g), a large pore volume (0.87-0.92 cm 3 / g), and controlled mesopores (7.1-8.0 nm).
- the titania contents determined by inductively coupled plasma optical emission spectrometry (ICP-OES) for catalysts H and I were 2.98 and 3.50% by weight, respectively, and decreased with increasing P123 / TEOS molar ratio.
- Example 5 Preparation and physical property analysis of catalysts L to M
- (1) Preparation of titanium precursor A titanium oxychloride precursor was prepared in the same manner as in Example 1.
- the catalysts L, M and N had a regular two-dimensional hexagonal p6mm structure.
- the structural characteristics of the catalyst determined by nitrogen adsorption are shown in Table 5.
- Catalysts L, M and N had a high specific surface area (542-840 m 2 / g), a large pore volume (0.74-0.91 cm 3 / g) and controlled mesopores (6.5-7.0 nm) .
- the titania content determined by inductively coupled plasma optical emission spectrometry (ICP-OES) of catalysts L, M and N was 0.185 to 3.14% by weight and decreased with increasing HCl concentration.
- ICP-OES inductively coupled plasma optical emission spectrometry
- Example 6 Preparation and physical property analysis of catalysts O and P
- (1) Preparation of titanium precursor A titanium oxychloride precursor was prepared in the same manner as in Example 1.
- catalysts O and P each had an irregular mesostructure structure (MCF).
- MCF mesostructure structure
- the structural characteristics of the catalyst determined by nitrogen adsorption are shown in Table 6.
- Catalysts O and P had a high specific surface area (534-562 m 2 / g), a large pore volume (0.99-1.13 cm 3 / g), and ordered mesopores (31.1-37.3 nm).
- the titania contents determined by inductively coupled plasma optical emission spectrometry (ICP-OES) of catalysts O and P were 2.75 and 3.16% by weight.
- the pore diameter fraction determined by nitrogen adsorption when the molar ratio of TMB / P123 was changed from 0.33 to 6 was obtained. As shown in FIG. The pore diameter increased from 18.2 to 37.3 nm with increasing TMB / P123 molar ratio. It was found that the pore size can be adjusted by changing the molar ratio of TMB / P123.
- Example 7 Preparation and physical property analysis of catalysts Q to S
- (1) Preparation of titanium precursor A titanium oxychloride precursor was prepared in the same manner as in Example 1.
- catalysts Q, R and S had a regular two-dimensional hexagonal p6 mm structure.
- the structural characteristics of the catalyst determined by nitrogen adsorption are shown in Table 7.
- Catalysts Q, R and S had a specific surface area of 341-618 m 2 / g, a large pore volume, and 0.49-0.70 cm 3 / g, 6.5-6.7 nm mesopores. As the firing temperature increased, the specific surface area and pore volume decreased.
- Comparative Example 1 SBA-15 not containing titanium and zeolite H-ZSM-5, titanosilicate TS-1 and titanium-containing mesoporous silica Ti-MCM41 as catalysts containing titanium having different structures were prepared by the following method.
- Table 8 shows the structural characteristics of the catalyst obtained by nitrogen adsorption together with a commercially available titania catalyst.
- TEOS ethyl orthosilicate
- comparative catalyst R2 (zeolite H-ZSM-5)
- Na-ZSM-5 zeolite Tosoh HAZ-820 NAA: non-surface area 322 m 2 / g, Na 2 O content 3.7, Al 2 O 3 content 26
- 1M NH 4 NO 3 ion exchange 3 times Then, it was calcined in air at 550 ° C. for 3 hours to obtain proton type H-ZSM-5 (comparative catalyst R2).
- Titanium-containing mesoporous silica Ti-MCM-411 Titanium-containing mesoporous silica Ti-MCM-411 was prepared by a method described in the literature (D. Srinivas, R. Srivastava, P. Ratnasamy, Catal. Today 2004, 96, 127-133.). That is, Comparative Catalyst R7 was prepared by the method described in the above document using 10.9 g of 25 wt% tetramethylammonium hydroxide (TMAOH) as a raw material and 72 g of deionized water.
- TMAOH tetramethylammonium hydroxide
- Crystal size of comparative catalyst (commercial titania catalyst)
- the crystal sizes of commercial titania catalysts R3 to R5 used as comparative catalysts were 84.7 nm (comparative catalyst R3), 25.5 nm (comparative catalyst R4) and 15 nm (comparative catalyst R5), respectively.
- composition and properties of raw oil According to the IUPAC method (“2.301. Preparation of the Fatty Acid Methyl Esters”), the composition analysis of the raw oil and fat was performed, and the average molecular weight was calculated.
- 0.5g fat and oil were mixed with 7mL of 0.5M sodium hydroxide methanol solution, heated and stirred at 80 ° C for 10 minutes, 8mL boron trifluoride methanol solution was added, and heated and stirred at the same temperature for 5 minutes. . 7 mL of heptane was added to this solution, and the mixture was stirred for 1 minute.
- Biodiesel fuel preparation method Biodiesel fuel preparation method Biodiesel fuel synthesis by transesterification of fats and methanol with the catalyst of the present invention and a comparative catalyst was performed according to the following procedure. That is, a stainless steel high-pressure autoclave (inner diameter 1.8 mm i, length 30 cm) was inserted with a glass test tube containing 5 g of oil, 5 g of methanol, and 0.75 g of a catalyst previously dried at 110 ° C. for 2 hours, and purged with nitrogen After that, the mixture was heated and stirred at 200 ° C. for 3 hours. After cooling to room temperature, the catalyst was filtered off, excess methanol was distilled off, and the upper biodiesel fuel was subjected to analysis.
- the fatty acid methyl ester (FAME) and free fatty acid (FFA) contents in the biodiesel fuel were quantified by the following procedure. That is, 100 ⁇ L of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) was added to 0.1 g of biodiesel fuel and reacted for at least 15 minutes to silylate glycerin, monoglyceride, diglyceride and free fatty acid.
- MSTFA N-methyl-N-trimethylsilyltrifluoroacetamide
- Gr G + 0.255MG + 0.146DG + 0.103TG ⁇ Equation (2)
- Gr total amount of glycerin in the sample
- G amount of free glycerin in the sample
- MG amount of monoglyceride in the sample
- DG amount of diglyceride in the sample
- TG amount of triglyceride in the sample
- fatty acid methyl ester content 96.5% by mass or more, total glycerin
- the monoglyceride, diglyceride, triglyceride and free glycerin contents are specified to be 0.25% by mass or less, 0.2% by mass or less, 0.2% by mass or less, 0.8% by mass or less and 0.02% by mass or less, respectively.
- Example 8 Reaction using Ti-SBA-15 catalysts A to E having different titanium contents in Example 1
- Table 10 shows the results of transesterification of jatropha oil with the catalysts A to E of the present invention.
- catalysts A to E that is, a titanium-containing SBA-15 mesoporous silica catalyst having a titania content of 1.07 to 9.18% by mass
- the fatty acid methyl ester yield was 74.6 to 90.9% by mass
- the total glycerin content was 1.6 to 9.4. It was mass%.
- the fatty acid methyl ester yield was 83.9 to 90.9 mass%, and the total glycerin amount was 1.6 to 2.8 mass%. Furthermore, when the catalysts B and C, that is, the titania contents were 2.92 and 5.11% by mass, the fatty acid methyl ester yield was 89.5% by mass or more and the total glycerin amount was 1.7% by mass or less.
- catalyst AD which does not show a clear anatase-type diffraction pattern by powder X-ray diffraction, gives a relatively high fatty acid methyl ester yield and total residual glycerin content. There were few.
- the low fatty acid methyl ester yield in SBA-15 and H-ZSM-5 which is the same structure and does not contain titanium, and aluminosilicate, indicate that the titanium species of the catalyst of the present invention is an active species for biodiesel fuel synthesis. It shows that it has become.
- Fatty acid methyl ester yields using pure titania comparative catalysts R3 to R5 were as low as 33.9%, 39.8%, and 54.9%, respectively, but increased as the crystal size decreased.
- the residual total glycerin amount was as high as 7.8% by mass, 7.9% by mass and 5.9% by mass.
- Fatty acid methyl ester yields when using comparative catalysts R6 and R7 containing titania and silica are 68.8% by mass and 83.4% by mass, respectively, and are lower than the catalyst of the present invention.
- the total amount of residual glycerol was 4.5% by mass and 2.5% by mass.
- R7 having a larger pore size has a higher fatty acid methyl ester yield than R6, and the pore size greatly affects the yield.
- FIG. 5 shows (a) low-angle and (b) wide-angle powder X-ray diffraction patterns of the catalysts A to E obtained in the above Examples and the catalysts R1 and R3 to R5 obtained in Comparative Examples. It is shown that the shorter the half width of the peak on the graph of FIG. R3 to R5 having a low transesterification yield have a high degree of crystallinity. Further, when compared with the catalysts A to E, the catalyst E having the lowest transesterification yield shows crystallinity. From the above results, it became clear that the transesterification efficiency is higher in the amorphous structure catalyst than in the crystal structure.
- Example 9 Effect of methanol / oil ratio
- the amount of remaining triglyceride, diglyceride, monoglyceride and free glycerin were 0.03% by mass, 0.04% by mass, 0.55% by mass and 0.01% by mass, respectively.
- Titanium concentration in biodiesel fuel was measured by inductively coupled plasma optical emission spectrometry (ICP-OES) in the same manner as European standard prEN 14538. In either case, no titanium was detected.
- ICP-OES inductively coupled plasma optical emission spectrometry
- Example 10 Effect of nitrogen pressurization and reaction time
- the fatty acid methyl ester yield increased as the reaction time increased, and the biodiesel fuel obtained by the reaction for 3 hours met the fuel specifications.
- the influence of nitrogen pressurization was hardly seen.
- Example 11 Effect of water addition (water resistance study)
- the reaction time was 3 hours and the water addition amount was 2% by weight or less
- the obtained biodiesel fuel satisfied the fuel standard.
- a biodiesel fuel satisfying the fuel standard was obtained by setting the reaction time to 6 hours. From the above results, it can be seen that the catalyst of the present invention has high water resistance. The reason for this is that the acidity of the catalyst of the present invention is lower than that of Ti-MCM-41, so even if water is present, it is considered that the influence on the decrease in catalyst activity is low.
- Example 12 Effect of addition of free fatty acid (examination of free fatty acid resistance)
- the catalyst of the present invention has high resistance to free fatty acids.
- Example 13 Effect of repeated use
- a biodiesel fuel was synthesized by repeatedly using the catalyst in the same manner as in Example 8 except that the catalyst B was used and the methanol / fat molar ratio was 108 and the fat / catalyst weight ratio was 15.
- the used catalyst that was repeatedly used was one that was filtered and washed with an appropriate amount of acetone after the previous reaction, dried at 50 ° C. overnight, and calcined in air at 500 ° C. for 3 hours.
- the specific surface area and pore volume of the used catalyst decreased compared to the unused catalyst, the pore diameter was hardly changed, and a biodiesel fuel satisfying the fuel standard was obtained.
- an experiment was performed under the same conditions using Ti-MCM-41 prepared in Comparative Example 1.
- the catalyst of the present invention can be used repeatedly and can maintain high biodiesel fuel synthesis activity by a simple regeneration process.
- Example 14 Effect of preparation of titania precursor
- Biodiesel was produced in the same manner as in Example 8 except that catalysts B, F and G prepared by changing the HCl / TTIP molar ratio were used, and the methanol / fat molar ratio was 108 and the fat / catalyst weight ratio was 15. Synthesized fuel. Catalysts with different titania contents were obtained by changing the HCl / TTIP molar ratio, but in all cases biodiesel fuels that meet fuel specifications were obtained. From the above results, it can be seen that the catalyst of the present invention provides high biodiesel fuel synthesis activity even when the HCl / TTIP molar ratio at the time of preparing the titanium precursor is changed in the range of 1.5-30.
- Example 15 Effect of added sodium chloride during preparation
- Biodiesel was produced in the same manner as in Example 8 except that catalysts B, H and I prepared by changing the NaCl / TEOS molar ratio were used, and the methanol / fat molar ratio was 108 and the fat / catalyst weight ratio was 15. Synthesized fuel.
- a catalyst with a different structure was obtained, but in all cases, a biodiesel fuel meeting the fuel standard was obtained. From the above results, it can be seen that the catalyst of the present invention gives high biodiesel fuel synthesis activity even when the NaCl / TEOS molar ratio at the time of catalyst preparation is changed in the range of 0-6.
- Example 16 Effect of adding P123 during preparation
- Biodiesel in the same manner as in Example 8 except that catalysts B, J and K prepared by changing the P123 / TEOS molar ratio were used, and the methanol / fat molar ratio was 108 and the fat / catalyst weight ratio was 15. Synthesized fuel.
- Catalysts with varying P123 / TEOS molar ratios provided biodiesel fuel that met fuel specifications in all cases. From the above results, it can be seen that the catalyst of the present invention gives high biodiesel fuel synthesis activity even when the P123 / TEOS molar ratio during catalyst preparation is changed in the range of 0.087 to 0.022.
- Example 17 Effect of added hydrochloric acid during catalyst preparation
- catalyst B and catalysts L, M, and N prepared by adding hydrochloric acid at the time of catalyst preparation were used, and the methanol / fat molar ratio was 108 and the fat / catalyst weight ratio was 15, the same method as Example 8 was used.
- Biodiesel fuel was synthesized. Only distilled water or a catalyst having a hydrochloric acid concentration of 0.1M gave a biodiesel fuel meeting the fuel specifications in all cases. When the hydrochloric acid concentration exceeds 0.1M, the titanium content of the catalyst is lowered and sufficient catalytic activity cannot be obtained. From the above results, the catalyst of the present invention can contain a sufficient amount of titanium when it is prepared with a weak acidity of 0.1 M or less at the time of catalyst preparation, and provides high biodiesel fuel synthesis activity. I understand that.
- Example 18 Pore Control Effect by Addition of Trimethylbenzene
- the catalyst B and catalyst O and P prepared by adding trimethylbenzene at the time of catalyst preparation were used, and the biofuel was prepared in the same manner as in Example 8 except that the methanol / fat molar ratio was 108 and the fat / catalyst weight ratio was 15. Diesel fuel was synthesized. All of the catalysts prepared by adding trimethylbenzene had a three-dimensional irregular mesostructure structure, but since the high dispersibility of titanium was maintained, a biodiesel fuel satisfying the fuel standard was provided.
- Example 19 Effect of firing temperature
- methanol / fat molar ratio 108
- fat / catalyst weight ratio 15
- reaction time 0.5 to 3 hours
- Example 20 Influence of oil type
- methanol / fat molar ratio 108
- fat / catalyst weight ratio 15 or 30, reaction time 3 hours or 5 hours
- fats and oils jatropha oil, palm oil, waste edible oil, palm fatty acid distillate Biodiesel fuel was synthesized in the same manner as in Example 8 except that (PFAD: by-product during palm oil purification), soybean oil and rapeseed oil were used. In both cases, biodiesel fuel that satisfies the fuel standards was obtained.
- Example 21 and Comparative Example 3 Durability test in preparation of biodiesel fuel
- the durability test of biodiesel fuel synthesis by transesterification of fats and methanol was performed according to the following procedure.
- a stainless steel reaction tube inner diameter 0.93 mm
- reaction temperature 180 ° C
- methanol / jatropha oil (molar ratio) 100
- the yield (mass%) of the Jatropha oil biodiesel fuel when the reaction is carried out under the above conditions is shown in FIG.
- none of the catalysts has a durability with no decrease in activity, but the yield of biodiesel fuel is greatly different, and only the catalyst B of the present invention is a quality standard for biodiesel fuel (containing FAME). Amount of 96.5% by mass or more).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Emergency Medicine (AREA)
- Health & Medical Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
また、均一系アルカリ触媒は製造装置を腐食させるため特殊な装置を必要とするだけでなく、残留金属の除去には十分な水洗を必要とするため、製造工程において大量の廃水が発生する。さらに、均一系アルカリ触媒は再利用できないため廃触媒も大量に生成する。また、副生成物であるグリセリン中にも均一系触媒が混入するため、グリセリンの利用に伴う精製コスト増につながる。
さらに、原料油中に遊離脂肪酸が多く含まれていると、均一系アルカリ触媒と反応して石けんを生成するため、遊離脂肪酸を除去する前工程も必要である。またけん化や触媒の失活化を防ぐために、原料の水分含量は0.3%以下にする必要もある。このように従来のバイオディーゼル燃料の製造方法では経済性においても環境負荷という点においても軽油燃料と競合できるものではない。
例えば、アルカリ金属担持触媒(特許文献1)、アルカリ土類触媒または塩基性固体触媒(特許文献2、非特許文献1)を用いた検討が行われている。しかし、活性成分であるカルシウムやランタンが生成油中に高濃度で流出するため触媒活性が低下しやすいという課題がある。
また、アルミン酸亜鉛触媒(特許文献3)を用いる方法では、高温高圧という反応条件を必要とし、また、残存グリセリド値が上記規格を満たさない。
また、エポキシ化等の酸化触媒として広く知られているチタニアシリカ(TiO2/SiO2)や、メソ多孔質材料のMCM-41にTiを担持したTi-MCM-41が、比較的低分子とアルコール類のエステル交換に有効であるという報告(非特許文献2)があり、メソ多孔質やミクロ多孔質材料を利用した触媒によるバイオディーゼル燃料の製造も検討されている。
しかし、例えば、チタノシリケートTS-1では、反応中に活性成分の流出がおこりやすく(特許文献4)また、チタニア含有シリカ触媒によるエステル交換反応は、遊離脂肪酸や水分の存在下では触媒活性が低下する(特許文献5)ということが報告されている。
上記の背景に鑑み、主反応である油脂のエステル化と不純物である遊離脂肪酸を同時にエステル化でき、かつ高収率でバイオディーゼル燃料を製造できる固体触媒の開発が求められている。
さらに、発明者らは、Ti/Siのモル比、チタンの含有量、細孔径長等の物理性状等が異なるTi-SBA-15を種々合成し、それぞれについて油脂類とアルコールのエステル交換を検討した。その結果、最適に設計されたTi-SBA-15では、アルコールとトリグリセリドのエステル交換の収率が高いだけでなく、水分や遊離脂肪酸の存在下であってもエステル交換活性が低下しないことから、特に油脂類とアルコール類とのエステル交換に有用であることを見出した。更に、本発明者らは当該触媒を使用した効率的なバイオディーゼル燃料の製造方法を見出し本発明の完成に至った。
[1]骨格構成元素としてTiとSiを有し、細孔径が5nm以上であるチタン含有メソポーラスシリカからなることを特徴とするエステル交換触媒。
[2]前記チタン含有メソポーラスシリカが、SBA-15であることを特徴とする[1]に記載のエステル交換触媒。
[3]前記触媒の細孔径が6.5~8nmであることを特徴とする[2]に記載のエステル交換触媒。
[4]前記チタン含有メソポーラスシリカが、メソ構造体構造(MCF)を有することを特徴とする[1]に記載のエステル交換触媒。
[5]前記触媒の細孔径が15~40nmであることを特徴とする[4]に記載のエステル交換触媒。
[6]前記メソポーラスシリカのTi/Siモル比が0.03~0.07であることを特徴とする[1]~[5]のいずれかに記載のエステル交換触媒。
[7]油脂類とアルコールのエステル交換によりバイオディーゼル燃料を製造するための触媒であって、[1]~[6]のいずれかに記載のエステル交換触媒。
[8][1]~[7]のいずれかに記載のエステル交換触媒の存在下、油脂類とアルコールのエステル交換により脂肪酸アルキルエステルを得ることを特徴とするバイオディーゼル燃料の製造方法。
本発明によれば、図2に示すように、固体触媒による同時エステル化、エステル交換が可能な1段バイオディーゼル燃料製造方法が達成でき、また、本発明による触媒はリサイクル使用が可能であり、廃触媒や汚水排出もなく、プロセスも簡略化できるなど、高い経済性や環境調和型技術を提供する。
以下、本発明について詳細に説明する。
本発明における、エステル交換とは、エステルとアルコールとの反応によりアルコール由来の置換基を組み替える反応であるが、本発明においては、特に、油脂原料の主成分である脂肪酸トリグリセリドおよび、ジグリセリド及び/又はモノグリセリドにアルコールを作用させて、当該アルコールと脂肪酸とのエステル及び遊離グリセリンに変換する反応をいう。
本発明では、細孔径が5nm以上のメソポーラスシリカとして、特に、構造が安定していることから、SBA-15を好適に用いることができる。
また、本発明では、細孔径が5nm以上のメソポーラスシリカとして、不規則的なメソ構造体構造(MCF)も好適に用いることができる。なお、メソ構造体とは、水溶液中で球状の液滴を形成する有機溶媒と水溶液の界面でシリカ層形成させ、溶媒を除去することによってできるメソ孔を有する構造体である。
また、触媒の構造状態は、特に限定しないが、結晶構造よりもアモルファス(非晶質)構造であるほうが好ましい。
Ti-SBA-15の細孔径は、Ti/Siのモル比率を増減させることで、調節することが可能である。
チューブ状の細孔を有するSBA-15に対し、MCF構造は、スポンジ状の不規則な細孔を有する。MCF構造を含む含チタンメソポーラスシリカ触媒の細孔径は、直径10~50nmであることが好ましく、特に、直径15~40nmであることが好ましい。
上記MCF構造を含む触媒の細孔径は、反応液に加えるトリメチルベンゼンとP123のモル比を増減させることで、調節することが可能である。
本発明の、好適なゲル組成(モル比)は、P123:ケイ素:チタン:HCl:NaCl:水=0.013:1:0.01~0.10:0.025~0.25:1:220である。
本発明のエステル交換反応は、窒素で、0~40barで加圧しても良いが、特に加圧しなくても良い。また、反応温度は150~200℃で、反応時間は1~6時間が好ましい。
また、遊離脂肪酸は除去しても良いが、特に除去を行わなくても、エステル交換を行うことができる。
(1)チタン前駆体の調製
50mLビーカー中、12.7g(0.13mol)の濃塩酸(12M)に14.8g(0.052mol)のチタンテトライソプロポキシド(TTIP)を0℃で激しく攪拌しながらゆっくりと加える。このとき、HCl/TTIPモル比を2.5に保持する。本調製法で得たオキシ塩化チタン前駆体は、透明な黄色溶液で、沈殿物は全く観測されなかった。
250mLのポリプロピレン製瓶中で、3gのプルロニックP123トリブロック共重合体(Aldrich社製,Mn=5800)および2.36gの食塩を160gの蒸留水に35~40℃で溶かす。この溶液に8.4gのオルトケイ酸エチル(TEOS)を加え、4時間攪拌して、予め加水分解させる。つづいて、0.213~2.13gの(1)で調製したオキシ塩化チタン(ケイ素に対し1-10mol%)を加える。このときのゲルの組成は、P123:ケイ素:チタン:HCl:NaCl:水=0.013:1:0.01-0.10:0.025-0.25:1:220である。ポリプロピレン製瓶を密栓して35℃で24時間攪拌した後、さらに100℃、24時間静置して水熱処理を行う。生成した白色沈殿をろ別し、500mLの蒸留水で洗浄した後、100℃で一晩乾燥させる。触媒中に含まれるP123を除去するため、500℃で3時間、空気中で焼成する(昇温速度=1℃/分)。以上の方法により触媒A,B,C,D,E(チタン含有量はそれぞれ1,3,5,7,10モル%)を得た。
なお、触媒中のチタン成分含有量は、以下の式に従いチタニア重量%で示している。
チタニア重量%=(チタニア分子量/チタン原子量)×(チタン重量/触媒重量)×100
以降の実施例における各触媒のチタン含有量についても、同様に算出したチタニア重量%で表す。
粉末X線回折パターンから、触媒A~Eは規則的な2次元六方晶系p6mm構造であった。チタニア含有量が8.03重量%以下では、酸化チタン結晶析出は見られなかった。チタニア含有量が8.03重量%を超えるとアナターゼ型チタニア微結晶に由来する弱い回折パターンが見られた。窒素吸着により求めた触媒の構造特性を表1に示す。チタニア含有量が1.07~9.18重量%である触媒A~Eは高比表面積(766-890m2/g)かつ細孔容量が大きく(0.79-0.90cm3/g)、制御されたメソ孔(7.1~7.9nm)を有していた。
触媒A~E、及び後述する比較触媒R1の、窒素吸着で求めた細孔径分布を図3に示す。
(1)チタン前駆体の調製
濃塩酸の量を7.65g(0.078mol)または153g(1.55mol)にするほかは、実施例1と同様の方法でオキシ塩化チタン前駆体を調製した(HCl/TTIPモル比=1.5および30)。得られたオキシ塩化チタン前駆体は透明な黄色溶液で沈殿物は見られなかった。
実施例2(1)で調製したオキシ塩化チタン前駆体を用い、ゲル中のTi/Siモル比を0.03とするほかは、実施例1と同様の方法で触媒FおよびGを調製した。このときのゲルの組成はP123:ケイ素:チタン:HCl:NaCl:水=0.013:1:0.03:0.045または0.90:1:220である。
粉末X線回折パターンから、触媒F、Gは規則的な2次元六方晶系p6mm構造であった。窒素吸着により求めた触媒の構造特性を表2に示す。チタニア含有量が1.07~9.18重量%である触媒F、Gは高比表面積(792~902m2/g)かつ細孔容量が大きく(0.80~1.02cm3/g)、制御されたメソ孔(7.6~7.7nm)を有していた。触媒FおよびGの誘導結合プラズマ発光分光分析(ICP-OES)で求めたチタニア含有量は、それぞれ4.76及び0.70 重量%であり、HCl/TTIPモル比の増加とともに減少した。
(1)チタン前駆体の調製
実施例1と同様の方法でオキシ塩化チタン前駆体を調製した。
(2)触媒の調製
ゲル中のTi/Siモル比を0.03、NaCl/TEOSのモル比を0または6とするほかは、実施例1と同様の方法で触媒HおよびIを調製した。このときのゲルの組成はP123:ケイ素:チタン:HCl:NaCl:水=0.013:1:0.03:0.075:0または6:220である。
粉末X線回折パターンから、触媒Hは2次元六方晶系p6mm構造であったが、触媒Iは不規則な細孔構造を有していた。窒素吸着により求めた触媒の構造特性を表3に示す。触媒H、Iは高比表面積(446-716m2/g)かつ細孔容量が大きく(0.53-0.68cm3/g)、制御されたメソ孔(7.4nm)を有していた。触媒HおよびIの誘導結合プラズマ発光分光分析(ICP-OES)で求めたチタニア含有量は、それぞれ2.69及び3.11重量%であり、NaCl/TEOSモル比の増加とともに減少した。
(1)チタン前駆体の調製
実施例1と同様の方法でオキシ塩化チタン前駆体を調製した。
(2)触媒の調製
ゲル中のTi/Siモル比を0.03、P123/TEOSのモル比を0.0087または0.022とするほかは、実施例1と同様の方法で触媒JおよびKを調製した。このときのゲルの組成はP123:ケイ素:チタン:HCl:NaCl:水=0.0087または0.022:1:0.03:0.075:1:220である。
粉末X線回折パターンから、触媒JおよびKは規則的な2次元六方晶系p6mm構造を有していた。窒素吸着により求めた触媒の構造特性を表4に示す。触媒J、Kは高比表面積(775-837m2/g)かつ細孔容量が大きく(0.87-0.92cm3/g)、制御されたメソ孔(7.1-8.0nm)を有していた。触媒HおよびIの誘導結合プラズマ発光分光分析(ICP-OES)で求めたチタニア含有量は、それぞれ2.98及び3.50重量%であり、P123/TEOSモル比の増加とともに減少した。
(1)チタン前駆体の調製
実施例1と同様の方法でオキシ塩化チタン前駆体を調製した。
Ti/Siモル比を0.03、蒸留水に代えて160gの水を含む塩酸を用い、塩酸の濃度を0.2、0.5および1.0Mとするほかは、実施例1と同様の方法で触媒L、MおよびNを調製した。このときのゲルの組成はP123:ケイ素:チタン:HCl:NaCl:水=0.013:1:0.03:0.47、0.87または2.1:1:220である。
粉末X線回折パターンから、触媒L、MおよびNは規則的な2次元六方晶系p6mm構造を有していた。窒素吸着により求めた触媒の構造特性を表5に示す。触媒L、MおよびNは高比表面積(542-840m2/g)かつ細孔容量が大きく(0.74-0.91cm3/g)、制御されたメソ孔(6.5-7.0nm)を有していた。触媒L、MおよびNの誘導結合プラズマ発光分光分析(ICP-OES)で求めたチタニア含有量は、0.185~3.14重量%であり、HCl濃度の増加とともに減少した。
(1)チタン前駆体の調製
実施例1と同様の方法でオキシ塩化チタン前駆体を調製した。
オルトケイ酸エチルを加えた後にトリメチルベンゼン(TMB)を加えた。Ti/Siモル比を0.03とし、TMB/P123のモル比を2または6とするほかは、実施例1と同様の方法で触媒OおよびPを調製した。このときのゲルの組成はP123:ケイ素:チタン:HCl:TMB:NaCl:水=0.0087または0.022:1:0.03:0.075:1.2または3.7:1:220である。
粉末X線回折パターンから、触媒OおよびPはそれぞれ不規則的なメソ構造体構造(MCF)を有していた。窒素吸着により求めた触媒の構造特性を表6に示す。触媒OおよびPは高比表面積(534-562m2/g)かつ細孔容量が大きく(0.99-1.13cm3/g)、整ったメソ孔(31.1-37.3nm)を有していた。
触媒OおよびPの誘導結合プラズマ発光分光分析(ICP-OES)で求めたチタニア含有量は、2.75および3.16重量%であった。
細孔径はTMB/P123モル比の増加により、18.2~37.3nmまで増加した。TMB/P123のモル比を変えることで、細孔径サイズの調整ができることが判明した。
(1)チタン前駆体の調製
実施例1と同様の方法でオキシ塩化チタン前駆体を調製した。
Ti/Siモル比を0.03、焼成温度を600℃、700℃および800℃とするほかは、実施例1と同様の方法で触媒Q、RおよびSを調製した。
粉末X線回折パターンから、触媒Q、RおよびSは規則的な2次元六方晶系p6mm構造を有していた。窒素吸着により求めた触媒の構造特性を表7に示す。触媒Q、RおよびSは比表面積341-618m2/gかつ細孔容量が大きく0.49-0.70cm3/g、6.5-6.7nmのメソ孔を有していた。焼成温度の上昇とともに、比表面積および細孔容量は減少した。
比較例としてチタンを含まないSBA-15およびゼオライトH-ZSM-5、異なる構造を有するチタンを含む触媒としてチタノシリケートTS-1およびチタン含有メソポーラスシリカTi-MCM41を以下の方法で調製した。市販のチタニア触媒とともに窒素吸着により求めた触媒の構造特性を表8に示す。
チタン非含有SBA-15は、文献記載の方法(D.Y.Zhao,J.L.Feng,Q.S.Huo;N.Melosh,G.H.Fredrickson,B.F.Chmelka,G.D.Stucky,Science 1998,279,548-552.)により調製した。すなわち、ポリプロピレン製瓶中で、1gのプルロニックP123トリブロック共重合体(Aldrich社製,Mn=5800)を40.0gの2M塩酸に加え、35℃で一晩かけて溶かす。この溶液に2.10gのオルトケイ酸エチル(TEOS)を加え、ポリプロピレン製瓶を密栓して35℃で24時間攪拌した後、さらに90℃、24時間静置して水熱処理を行う。生成した沈殿をろ別し、脱イオン水で洗浄した後、50℃で一晩乾燥させて比較触媒R1を得た。
市販のNa-ZSM-5ゼオライト(東ソー製HAZ-820 NAA:非表面積322m2/g、Na2O含有量3.7、Al2O3含有量26)1M NH4NO3を用いて3回イオン交換し、空気中、550℃、3時間焼成することによりプロトン型のH-ZSM-5(比較触媒R2)を得た。
チタン含有メソポーラスシリカTi-MCM-41は、文献記載の方法(D.Srinivas,R.Srivastava,P.Ratnasamy,Catal.Today 2004,96,127-133.)により調製した。すなわち、10.9gの25重量%水酸化テトラメチルアンモニウム(TMAOH)を72gの脱イオン水を原料として、上記文献記載の方法で比較触媒R7を調製した。
市販のチタノシリケートTS-1(ARC-TS-1CL、SiO2/TiO2モル比=35)を1M NH4NO3を用いて3回処理し、空気中、550℃、3時間焼成することによりチタノシリケートTS-1触媒(比較触媒R6)を得た。
比較触媒として用いた市販チタニア触媒R3~R5の結晶サイズはそれぞれ84.7nm(比較触媒R3)、25.5nm(比較触媒R4)および15nm(比較触媒R5)であった。
IUPAC法(“2.301.Preparation of the Fatty Acid Methyl Esters”)にしたがって原料油脂の組成分析を行い、平均分子量を算出した。油脂の組成分析は、0.5g油脂を7mLの0.5M水酸化ナトリウムメタノール溶液と混合し80℃で10分間加熱攪拌後、8mL 三フッ化ホウ素メタノール溶液を加えて、同温度で5分間加熱攪拌する。この溶液に7mLのヘプタンを加えて1分間攪拌し、さらに適量の飽和食塩水を加えて分離した上層を無水硫酸ナトリウムで乾燥して、脂肪酸メチルエステル溶液を得た。この溶液をHP-88キャピラリカラム(内径0.25mm、長さ60m、膜厚0.25μm)装着のガスクロマトグラフで分析を行い、油脂の脂肪酸組成を求めた。油脂の酸価は、JIS K 2501にしたがって分析、算出した。油脂の性状を表9に示す。
本発明の触媒および比較触媒による油脂とメタノールのエステル交換によるバイオディーゼル燃料合成は以下の手順で行った。すなわち、ステンレス製高圧オートクレーブ(内径1.8mm i、長さ30cm)に5gの油脂、5gのメタノールおよび予め110℃で2時間乾燥した0.75gの触媒を入れたガラス製試験管を挿入し、窒素置換した後、200℃で3時間加熱攪拌した。室温まで冷却した後、触媒をろ別、余剰のメタノールを留去した後、上層のバイオディーゼル燃料を分析に供した。
バイオディーゼル燃料中の脂肪酸メチルエステル(FAME)および遊離脂肪酸(FFA)含有量定量は、以下の手順で行った。すなわち、0.1gのバイオディーゼル燃料に100μLのN-メチル-N-トリメチルシリルトリフルオロアセトアミド(MSTFA)を加え、少なくとも15分間反応させてグリセリン、モノグリセリド、ジグリセリド及び遊離脂肪酸をシリル化した。これに、2mLのヘプタデカン酸メチル溶液(10mg/mLヘプタン溶液)を内部標準として加え、5mLのヘプタンで希釈した後、HP-1キャピラリカラム(内径0.25mm、長さ60m、膜厚0.25μm)装着のガスクロマトグラフで分析を行い、以下の式(1)にしたがって脂肪酸メチルエステル(FAME)および遊離脂肪酸(FFA)含有量を算出した。
バイオディーゼル燃料中のグリセリンおよびグリセリド類含有量定量は、欧州規格EN14105:2003にしたがって行った。すなわち、0.1gのバイオディーゼル燃料に80μLの1,2,4-ブタントリオール(1mg/mLピリジン溶液)をグリセリン定量用内部標準として、100μLのトリカプリン(8mg/mLピリジン溶液)をグリセリド類定量用内部標準としてそれぞれ加え、さらに100μLのN-メチル-N-トリメチルシリルトリフルオロアセトアミド(MSTFA)を加えて少なくとも15分間反応させてグリセリン、モノグリセリド及びジグリセリドをシリル化した。7mLのヘプタンで希釈した後、DB-5HTキャピラリカラム(内径0.25mm、長さ30m、膜厚0.1μm)装着のガスクロマトグラフで分析を行い、グリセリンおよびグリセリド類含有量を算出するとともに、以下の式(2)にしたがって全グリセリン量を算出した。
式中、
Gr:試料中の全グリセリン量
G :試料中の遊離グリセリン量
MG:試料中のモノグリセリド量
DG:試料中のジグリセリド量
TG:試料中のトリグリセリド量
表10に本発明の触媒A~Eによるジャトロファ油のエステル交換の結果を示す。反応は[0070]に記載の方法により、メタノール/油脂モル比=27、油脂/触媒重量比=15の条件で行った。触媒A~E、すなわちチタニア含有量1.07~9.18質量%のチタン含有SBA-15メソポーラスシリカ触媒を用いて反応を行った場合は、脂肪酸メチルエステル収率74.6~90.9質量%、全グリセリン量1.6~9.4質量%であった。触媒A~D、チタニア含有量1.07~8.03質量%の場合は、脂肪酸メチルエステル収率83.9~90.9質量%、全グリセリン量1.6~2.8質量%であった。さらに触媒BおよびC、すなわちチタニア含有量2.92および5.11質量%の場合に限ると、脂肪酸メチルエステル収率89.5質量%以上、全グリセリン量1.7質量%以下であった。明確なアナターゼ型の回折パターを示す触媒Eに比べて、粉末X線回折で明確なアナターゼ型の回折パターを示さない触媒A-Dは、比較的高い脂肪酸メチルエステル収率を与え、残存する全グリセリン量も少なかった。
表10に比較触媒R1~R7によるジャトロファ油のエステル交換の結果を示す。反応は、実施例8と同様の条件で行った。
比較触媒R1およびR2を用いた場合の脂肪酸メチルエステル収率は、それぞれ21.8質量%および23.9質量%と低く、残存全グリセリン量は7.0質量%および9.4質量%と高かった。すなわち、構造が同じでチタンを含まないSBA-15やアルミノシリケートであるH-ZSM-5で脂肪酸メチルエステル収率が低いことは、本発明の触媒のチタン種がバイオディーゼル燃料合成の活性種となっていることを示している。
触媒Bを用い、メタノール/油脂モル比を27~216まで変化させるほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。メタノール/油脂比を増加させると脂肪酸メチルエステル収率は増加し、メタノール/油脂比=108で、脂肪酸メチルエステル収率98.1質量%、残存全グリセリン量0.16質量%の高品質バイオディーゼル燃料が得られた。残存するトリグリセリド量、ジグリセリド量、モノグリセリド量および遊離グリセリン量はそれぞれ0.03質量%、0.04質量%、0.55質量%および0.01質量%でバイオディーゼル燃料規格を満たしていた。バイオディーゼル燃料中のチタン濃度を欧州規格prEN 14538と同様の方法で誘導結合プラズマ発光分光分析(ICP-OES)により測定したところ、いずれの場合も検出されず、チタンの流出はなかった。
触媒Bを用い、メタノール/油脂モル比=108、反応時間を0.5時間ないし3時間、オートクレーブを予め窒素で0~40bar加圧するほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。反応時間が増加すると脂肪酸メチルエステル収率は増加し、3時間の反応で得られたバイオディーゼル燃料は、燃料規格を満たしていた。一方、窒素加圧の影響はほとんど見られなかった。
触媒Bを用い、メタノール/油脂モル比=108、反応時間を3時間ないし6時間、水添加量0~10重量%とするほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。反応時間が3時間の場合は、水添加量2重量%以下の場合は、得られたバイオディーゼル燃料は、燃料規格を満たしていた。一方、3~5重量%の場合は、反応時間を6時間とすることで、燃料規格を満たすバイオディーゼル燃料が得られた。以上の結果から、本発明の触媒は、高い耐水性を有することがわかる。この理由としては、本発明の触媒の酸性度はTi-MCM-41に比べて低いため、水が存在しても、触媒活性低下への影響は低いと考えられる。
触媒Bを用い、メタノール/油脂比=108、反応時間を3時間ないし6時間、遊離脂肪酸としてミリスチン酸添加量0~50重量%とするほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。ミリスチン酸添加量が30重量%以下の場合、反応時間が3時間の場合、水添加量2重量%以下の場合は、得られたバイオディーゼル燃料は、燃料規格を満たしていた。一方、ミリスチン酸添加量が40重量%の場合は、グリセリン量が燃料規格値を超えたが、水洗することで燃料規格を満たすバイオディーゼル燃料が得られた。以上の結果から、本発明の触媒は、高い耐遊離脂肪酸性を有することがわかる。
触媒Bを用い、メタノール/油脂モル比=108、油脂/触媒重量比=15とするほかは、実施例8と同様の方法で触媒を繰り返し使用してバイオディーゼル燃料を合成した。繰り返し使用する使用済み触媒は、前回の反応後、ろ別して適量のアセトンで洗浄した後、50℃で一晩乾燥させ、空気中500℃、3時間焼成したものを使用した。使用済み触媒は未使用触媒に比べて比表面積や細孔容量は減少したが、細孔径はほとんど変わらず、燃料規格を満たすバイオディーゼル燃料が得られた。
また、比較例1で調製したTi-MCM-41を用いて同様の条件で実験を行った。未使用のTi-MCM-41を用いた反応では、全グリセリド、モノグリセリドは、それぞれ0.26質量%、0.87質量%であり、燃料規格を満たすものではなかった。さらに、再生後のTi-MCM-41を用いた場合は、全グリセリド、モノグリセリドは、それぞれ0.29質量%、1.0質量%に増加した。
以上の結果から、本発明の触媒は、繰り返し使用が可能で、簡単な再生工程により高いバイオディーゼル燃料合成活性を維持することができる。
HCl/TTIPモル比を変化させて調製した触媒B、FおよびGを用い、メタノール/油脂モル比=108、油脂/触媒重量比=15とするほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。HCl/TTIPモル比を変化させることでチタニア含有量の異なる触媒が得られるが、いずれの場合も燃料規格を満たすバイオディーゼル燃料が得られた。以上の結果から、本発明の触媒は、チタン前駆体調製時のHCl/TTIPモル比を1.5~30の範囲で変化させても高いバイオディーゼル燃料合成活性を与えることがわかる。
NaCl/TEOSモル比を変化させて調製した触媒B、HおよびIを用い、メタノール/油脂モル比=108、油脂/触媒重量比=15とするほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。NaCl/TEOSモル比を変化させることで構造の異なる触媒が得られるが、いずれの場合も燃料規格を満たすバイオディーゼル燃料が得られた。以上の結果から、本発明の触媒は、触媒調製時のNaCl/TEOSモル比を0~6の範囲で変化させても高いバイオディーゼル燃料合成活性を与えることがわかる。
P123/TEOSモル比を変化させて調製した触媒B、JおよびKを用い、メタノール/油脂モル比=108、油脂/触媒重量比=15とするほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。P123/TEOSモル比を変化させた触媒は、いずれの場合も燃料規格を満たすバイオディーゼル燃料を与えた。以上の結果から、本発明の触媒は、触媒調製時のP123/TEOSモル比を0.087~0.022の範囲で変化させても高いバイオディーゼル燃料合成活性を与えることがわかる。
触媒Bおよび触媒調製時に塩酸を添加して調製した触媒L、MおよびNを用い、メタノール/油脂モル比=108、油脂/触媒重量比=15とするほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。蒸留水のみないし塩酸濃度が0.1M触媒は、いずれの場合も燃料規格を満たすバイオディーゼル燃料を与えた。塩酸濃度が0.1Mを超えると触媒のチタン含有量が低下し、十分な触媒活性が得られない。以上の結果から、本発明の触媒は、触媒調製時の塩酸濃度を0.1M以下の弱酸性で調製した場合に、十分な量のチタンを含有させることができ、高いバイオディーゼル燃料合成活性を与えることがわかる。
触媒Bおよび触媒調製時にトリメチルベンゼンを添加して調製した触媒OおよびPを用い、メタノール/油脂モル比=108、油脂/触媒重量比=15とするほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。トリメチルベンゼンを添加して調製した触媒は、いずれも3次元の不規則なメソ構造体構造を有するが、チタンの高分散性が維持されるため、燃料規格を満たすバイオディーゼル燃料を与えた。
触媒B、および触媒Bと同じ条件で調製し、800℃で焼成した触媒Sを用い、メタノール/油脂モル比=108、油脂/触媒重量比=15、反応時間=0.5時間ないし3時間とするほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。反応時間を3時間とすることで、燃料規格を満たすバイオディーゼル燃料が得られた。焼成温度500~800℃では、バイオディーゼル燃料反応活性に大きな違いはなかった。
触媒Bを用い、メタノール/油脂モル比=108、油脂/触媒重量比=15又は30、反応時間3時間又は5時間の条件で、油脂としてジャトロファ油、パーム油、廃食用油、パーム脂肪酸蒸留物(PFAD:パーム油精製時の副産物)、大豆油および菜種油を用いるほかは、実施例8と同様の方法でバイオディーゼル燃料を合成した。いずれも燃料規格を満たすバイオディーゼル燃料が得られた。
触媒B及び比較触媒R5、R6を用い、油脂とメタノールのエステル交換によるバイオディーゼル燃料合成の耐久性試験を以下の手順で行った。
すなわち、ステンレス製反応管(内径0.93mm)に2gの触媒を充填し、窒素気流中110℃で2時間乾燥した後、反応温度180℃、メタノール/ジャトロファ油(モル比)=100、ジャトロファ油供給速度WHSV=0.5h-1の条件で反応を行った。
該図から明らかなように、いずれの触媒も活性低下は見られず耐久性を有するが、バイオディーゼル燃料の収率は大きく異なり、本発明の触媒Bのみ、バイオディーゼル燃料の品質規格(FAME含有量96.5質量%以上)を満たした。
Claims (8)
- 骨格構成元素としてTiとSiを有し、細孔径が5nm以上であるチタン含有メソポーラスシリカからなることを特徴とするエステル交換触媒。
- 前記チタン含有メソポーラスシリカが、SBA-15であることを特徴とする請求項1に記載のエステル交換触媒。
- 前記触媒の細孔径が6.5~8nmであることを特徴とする請求項2に記載のエステル交換触媒。
- 前記チタン含有メソポーラスシリカが、メソ構造体構造(MCF)を有することを特徴とする請求項1に記載のエステル交換触媒。
- 前記触媒の細孔径が15~40nmであることを特徴とする請求項4に記載のエステル交換触媒。
- 前記メソポーラスシリカのTi/Siモル比が0.03~0.07であることを特徴とする請求項1~5のいずれか1項に記載のエステル交換触媒。
- 油脂類とアルコールのエステル交換反応によりバイオディーゼル燃料を製造するための触媒であることを特徴とする請求項1~6のいずれか1項に記載のエステル交換触媒。
- 請求項1~7のいずれか1項に記載のエステル交換触媒の存在下、油脂類とアルコールとのエステル交換反応により脂肪酸アルキルエステルを得ることを特徴とするバイオディーゼル燃料の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/763,534 US9518238B2 (en) | 2013-01-28 | 2013-07-26 | Transesterification catalyst and method for producing biodiesel fuel using transesterification catalyst |
JP2014558422A JP6085890B2 (ja) | 2013-01-28 | 2013-07-26 | エステル交換触媒及び該触媒を用いたバイオディーゼル燃料の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013013720 | 2013-01-28 | ||
JP2013-013720 | 2013-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014115356A1 true WO2014115356A1 (ja) | 2014-07-31 |
Family
ID=51227165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/070335 WO2014115356A1 (ja) | 2013-01-28 | 2013-07-26 | エステル交換触媒及び該触媒を用いたバイオディーゼル燃料の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9518238B2 (ja) |
JP (1) | JP6085890B2 (ja) |
WO (1) | WO2014115356A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ306084B6 (cs) * | 2015-07-22 | 2016-07-27 | Unipetrol Výzkumně Vzdělávací Centrum, A. S. | Nanokatalyzátor pro výrobu biopaliv, způsob jeho výroby a použití |
CN110787837A (zh) * | 2019-11-12 | 2020-02-14 | 江南大学 | 磁性介孔固体酸催化剂及其制备和应用 |
WO2021106619A1 (ja) * | 2019-11-29 | 2021-06-03 | 富士通商株式会社 | 流通式反応装置を用いたバイオ燃料の製造方法 |
JP2021091875A (ja) * | 2019-11-29 | 2021-06-17 | 国立大学法人東京農工大学 | 流通式反応装置を用いたバイオ燃料の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2915850A4 (en) * | 2012-11-05 | 2016-06-22 | Mitsui Chemicals Inc | COMPOSITION BASED ON RESIN PREMIXING, COMPOSITION FOR RIGID POLYURETHANE FOAM, AND RIGID POLYURETHANE FOAM |
KR102087722B1 (ko) * | 2017-09-14 | 2020-04-24 | 한국기계연구원 | 미세먼지 제거용 필터 모듈 및 이를 포함하는 미세먼지 제거용 공기청정 시스템 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173103A (ja) * | 1993-05-04 | 1995-07-11 | Engelhard De Meern Bv | エステル化方法 |
JPH0892166A (ja) * | 1994-09-21 | 1996-04-09 | Nippon Shokubai Co Ltd | 芳香族炭酸エステルの製造方法およびそれに用いる触媒 |
JPH11140026A (ja) * | 1997-11-06 | 1999-05-25 | Mitsubishi Chemical Corp | カルボン酸エステルの製造方法 |
JP2005200398A (ja) * | 2003-08-29 | 2005-07-28 | Nippon Shokubai Co Ltd | 脂肪酸アルキルエステル及び/又はグリセリンの製造方法 |
JP2006151798A (ja) * | 2004-10-27 | 2006-06-15 | National Institute Of Advanced Industrial & Technology | 繊維状多孔質シリカ金属複合体粒子とその製造方法 |
CN103012127A (zh) * | 2011-09-28 | 2013-04-03 | 中国石油化工股份有限公司 | 一种苯酚和二甲酯进行酯交换的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1118159A (zh) | 1993-12-20 | 1996-03-06 | 株式会社日本触媒 | 用于制备芳族酯的催化剂及用所述催化剂制备芳族酯的方法 |
FR2752242B1 (fr) | 1996-08-08 | 1998-10-16 | Inst Francais Du Petrole | Procede de fabrication d'esters a partir d'huiles vegetales ou animales et d'alcools |
BRPI0414031A (pt) * | 2003-08-29 | 2006-10-24 | Nippon Catalytic Chem Ind | método de produção de ésteres alquìlicos de ácidos graxos e/ou glicerina e composição contendo éster alquìlico de ácido graxo |
JP2005126346A (ja) | 2003-10-22 | 2005-05-19 | Jgc Corp | 油脂類からの脂肪酸低級アルキルエステルの製造方法 |
ITMI20050361A1 (it) | 2005-03-08 | 2006-09-09 | Aser S R L | Processo per la produzione di esteri da oli vegetali e grassi animali con l'impiego di catalizzatori eterogenei |
US8222173B2 (en) * | 2005-09-28 | 2012-07-17 | Nippon Oil Corporation | Catalyst and method of manufacturing the same |
US9162212B2 (en) | 2009-03-09 | 2015-10-20 | Wayne State University | Supported catalyst systems and method of making biodiesel products using such catalysts |
-
2013
- 2013-07-26 JP JP2014558422A patent/JP6085890B2/ja not_active Expired - Fee Related
- 2013-07-26 WO PCT/JP2013/070335 patent/WO2014115356A1/ja active Application Filing
- 2013-07-26 US US14/763,534 patent/US9518238B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07173103A (ja) * | 1993-05-04 | 1995-07-11 | Engelhard De Meern Bv | エステル化方法 |
JPH0892166A (ja) * | 1994-09-21 | 1996-04-09 | Nippon Shokubai Co Ltd | 芳香族炭酸エステルの製造方法およびそれに用いる触媒 |
JPH11140026A (ja) * | 1997-11-06 | 1999-05-25 | Mitsubishi Chemical Corp | カルボン酸エステルの製造方法 |
JP2005200398A (ja) * | 2003-08-29 | 2005-07-28 | Nippon Shokubai Co Ltd | 脂肪酸アルキルエステル及び/又はグリセリンの製造方法 |
JP2006151798A (ja) * | 2004-10-27 | 2006-06-15 | National Institute Of Advanced Industrial & Technology | 繊維状多孔質シリカ金属複合体粒子とその製造方法 |
CN103012127A (zh) * | 2011-09-28 | 2013-04-03 | 中国石油化工股份有限公司 | 一种苯酚和二甲酯进行酯交换的方法 |
Non-Patent Citations (3)
Title |
---|
RYOO, H. I. ET AL.: "Direct syntheses of sulfonated mesoporous SiO2-TiO2-SO3H materials as solid acid catalysts", J. MATER. CHEM., vol. 20, pages 6419 - 6421 * |
SRIVASTAVA, R. ET AL.: "Synthesis of polycarbonate precursors over titanosilicate molecular sieves", CATAL. LETT., vol. 91, no. 1-2, November 2003 (2003-11-01), pages 133 - 139 * |
ZHAO, H.-L. ET AL.: "One-Step Synthesis of Metal- Doped Mesoporous MCM-41 Materials and Their Application in Esterification Catalysis", ACTA PHYSICO-CHIMICA SINICA, vol. 27, no. 2, pages 499 - 504 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ306084B6 (cs) * | 2015-07-22 | 2016-07-27 | Unipetrol Výzkumně Vzdělávací Centrum, A. S. | Nanokatalyzátor pro výrobu biopaliv, způsob jeho výroby a použití |
CN110787837A (zh) * | 2019-11-12 | 2020-02-14 | 江南大学 | 磁性介孔固体酸催化剂及其制备和应用 |
CN110787837B (zh) * | 2019-11-12 | 2021-01-05 | 江南大学 | 磁性介孔固体酸催化剂及其制备和应用 |
WO2021106619A1 (ja) * | 2019-11-29 | 2021-06-03 | 富士通商株式会社 | 流通式反応装置を用いたバイオ燃料の製造方法 |
JP2021091875A (ja) * | 2019-11-29 | 2021-06-17 | 国立大学法人東京農工大学 | 流通式反応装置を用いたバイオ燃料の製造方法 |
JP7045775B2 (ja) | 2019-11-29 | 2022-04-01 | 国立大学法人東京農工大学 | 流通式反応装置を用いたバイオ燃料の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014115356A1 (ja) | 2017-01-26 |
US20150361365A1 (en) | 2015-12-17 |
US9518238B2 (en) | 2016-12-13 |
JP6085890B2 (ja) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6085890B2 (ja) | エステル交換触媒及び該触媒を用いたバイオディーゼル燃料の製造方法 | |
Carmo Jr et al. | Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41 | |
Sharma et al. | Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review | |
Feyzi et al. | Catalytic performance and characterization of Cs–Ca/SiO2–TiO2 nanocatalysts for biodiesel production | |
JP4976016B2 (ja) | エステル交換反応によるエステルの製造方法 | |
Kulkarni et al. | Kinetic studies on the synthesis of fuel additives from glycerol using CeO2–ZrO2 metal oxide catalyst | |
Hojjat et al. | Optimization of process conditions for biodiesel production over CaO–Al 2 O 3/ZrO 2 catalyst using response surface methodology | |
CN1212972C (zh) | 具有中孔隙或中孔隙和微孔隙的无机氧化物及其制备方法 | |
Liang et al. | Synthesis and characterization of the acidic properties and pore texture of Al-SBA-15 supports for the canola oil transesterification | |
Pirouzmand et al. | One-step biodiesel production from waste cooking oils over metal incorporated MCM-41; positive effect of template | |
Pires et al. | Esterification of a waste produced from the palm oil industry over 12-tungstophosforic acid supported on kaolin waste and mesoporous materials | |
da Conceição et al. | Keggin-structure heteropolyacid supported on alumina to be used in trans/esterification of high-acid feedstocks | |
Olutoye et al. | Synthesis of fatty acid methyl ester from palm oil (Elaeis guineensis) with Ky (MgCa) 2xO3 as heterogeneous catalyst | |
Nayebzadeh et al. | Catalytic activity of KOH–CaO–Al 2 O 3 nanocomposites in biodiesel production: impact of preparation method | |
Tang et al. | Highly active CaO for the transesterification to biodiesel production from rapeseed oil | |
Mohebbi et al. | Efficient sulfated high silica ZSM-5 nanocatalyst for esterification of oleic acid with methanol | |
Abukhadra et al. | Insight into the catalytic conversion of palm oil into biodiesel using Na+/K+ trapped muscovite/phillipsite composite as a novel catalyst: Effect of ultrasonic irradiation and mechanism | |
Faba et al. | Thermo-chemically tuning of active basic sites on nanoarchitectured silica for biodiesel production | |
Yusuff et al. | Optimization of biodiesel production from waste frying oil over alumina supported chicken eggshell catalyst using experimental design tool | |
Chang et al. | Efficient simultaneous esterification/transesterification of non-edible Jatropha oil for biodiesel fuel production by template-free synthesized nanoporous titanosilicates | |
Praveen et al. | Production of biodiesel: kinetics and reusability studies of the Mg–Al hydrotalcite catalyst using Jatropha oil | |
ES2370700B1 (es) | Catalizador heterogéneo de tipo espinela aluminato de cinc sobre-estequiométrico en cinc y su utilización en un procedimiento de preparación de ésteres alcohólicos a partir de triglicéridos y alcoholes. | |
Lu et al. | Transesterification of vegetable oil to biodiesel over Mgo-Li2O catalysts templated by a PDMS-PEO comb-like copolymer | |
Dutta et al. | Polyoxometalate based mesoporous acidic catalyst from biogenic silica for vegetable oil methanolysis: Structure activity relationship study | |
Bosco et al. | Sulfated pillared clay as catalyst in glycerol esterification with caprylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13872514 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014558422 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14763534 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13872514 Country of ref document: EP Kind code of ref document: A1 |