JP2021091875A - 流通式反応装置を用いたバイオ燃料の製造方法 - Google Patents

流通式反応装置を用いたバイオ燃料の製造方法 Download PDF

Info

Publication number
JP2021091875A
JP2021091875A JP2020187703A JP2020187703A JP2021091875A JP 2021091875 A JP2021091875 A JP 2021091875A JP 2020187703 A JP2020187703 A JP 2020187703A JP 2020187703 A JP2020187703 A JP 2020187703A JP 2021091875 A JP2021091875 A JP 2021091875A
Authority
JP
Japan
Prior art keywords
solid acid
acid catalyst
catalyst
biofuel
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020187703A
Other languages
English (en)
Other versions
JP7045775B2 (ja
Inventor
銭 衛華
Eika Sen
衛華 銭
加藤 正明
Masaaki Kato
正明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI TSUSHO CO Ltd
Tokyo University of Agriculture and Technology NUC
Original Assignee
FUJI TSUSHO CO Ltd
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI TSUSHO CO Ltd, Tokyo University of Agriculture and Technology NUC filed Critical FUJI TSUSHO CO Ltd
Priority to PCT/JP2020/042387 priority Critical patent/WO2021106619A1/ja
Publication of JP2021091875A publication Critical patent/JP2021091875A/ja
Application granted granted Critical
Publication of JP7045775B2 publication Critical patent/JP7045775B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Abstract

【課題】固体酸触媒の存在下で遊離脂肪酸を含む原料油と低級アルコールを反応させるバイオ燃料の製造方法において、流動式反応装置を用いて遊離脂肪酸の転化率が高く、トリグリセライドの転化率が低く抑えられて、ディーゼルエンジンに適したバイオ燃料の量産を可能にする。【解決手段】固体酸触媒としてSiO2/Al2O3系固体酸触媒、メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3/B2O3系固体酸触媒から選択された触媒を使用し、低級アルコールと原料油の質量比0.12〜0.8、反応温度として170℃〜300℃、液空間速度(LHSV)0.5(h-1)〜6(h-1)で行わせるバイオ燃料の製造方法。【選択図】図1

Description

本発明は、流通式反応装置を用いて原料油に適したバイオ燃料の製造方法に関する。
今日、利用可能な石油資源の減少や地球環境の悪化、新興国の発展に伴う燃料の需要といった課題が生じた。
そのため、化石資源に替わるクリーンかつ再生可能な燃料や化学製品の製造プロセスの開発が必要となっている。
これより、バイオ燃料やバイオ化成品は国内産業や温室効果ガスの排出削減、化石資源への依存度の低下、地域の経済発展、国内のエネルギー安全保障に大きく貢献できることが期待される。
現在、バイオディーゼル燃料の製造法は、トリグリセリド(TG)を主成分とする油脂を水酸化カリウム、水酸化ナトリウムなどのアルカリ触媒の存在下、エステル交換反応により脂肪酸エステルを製造する方法が実用化されている。
しかし、この方法では、原料となる油脂には多量の遊離脂肪酸(FFA)が存在し、これがエステル交換反応、生成物の分離又は精錬に悪影響を与えるため、前処理で除去しなければならない。
また、環境保全や化石燃料使用によるCO2放出量の削減のため、従来のディーゼルエンジン発電に使用された石油由来燃料油の一部あるいは全部を油脂由来燃料油の使用が注目されてきた。しかし、上記のように、油脂に含まれる遊離酸はディーゼルエンジンを腐食するため、その燃料油から遊離酸を除去しなければならない。
これに対して、固体酸触媒の存在下でトリグリセリドとメタノール、エタノール等の低級アルコールを反応させ、トリグリセリドのエステル交換反応と遊離脂肪酸のエステル化を同時に行わせる方法が提案されている。
特開平6−313183号公報 特開2009−114289 国際公開第2004/096962号
しかし、これらの方法では、エステル交換反応と遊離脂肪酸のエステル化の両方に低級アルコールが使用され、低級アルコールの使用量が多くなり、コスト面で問題がある。
そこで、本発明者は新規固体酸触媒を用いて低級アルコール使用量を制御し、原料油中のトリグリセリドが低級アルコールとのエステル交換が殆ど起こらず、一方遊離脂肪酸の低級アルコールとのエステル化反応を選択的に行われるような反応条件についてバッチ式反応装置を用いて検討し、その結果に基づいた最適な反応条件を先に提案した(特願2018-137583)。
しかし、バッチ式反応装置はバイオ燃料の大量生産には不向きであり、そこで流動式反応装置を用いて反応条件を検討した結果、流動式反応装置を用いた場合の最適な反応条件を見いだし、本発明を提案するものである。
本発明では、固体酸触媒の存在下で遊離脂肪酸を含む原料油と低級アルコールを反応させる流動式反応装置を用いたバイオ燃料の製造方法において、固体酸触媒としてSiO2/Al2O3系固体酸触媒メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3/B2O3系固体酸触媒等から選択された触媒を使用し、反応温度として100℃〜300℃、好ましくは170℃〜300℃とすることを提案するものである。
本発明において使用させる固体酸触媒SiO2/Al2O3系固体酸触媒メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3/B2O3系固体酸触媒について詳しく述べる。
<シリカーアルミナ系個体酸触媒:SiO2/Al2O3(Si/Al)>
本発明において使用されるシリカーアルミナ系固体酸触媒は、アモルファスなもので、アルミナの重量比は10%〜30%で、成型されたシリカーアルミナである。
なお、上記特許文献3に固体酸触媒として記載されるゼオライトは結晶体であるが、本発明で使用されるSiO2/Al2O3系固体酸触媒はアモルファスな成型品である。
<酸化ホウ素―アルミナ系固体酸触媒:Al2O3/B2O3(B/Al(x)>
本発明において使用される固体酸触媒の一例として、次のように酸化ホウ素―アルミナ(Al2O3/B2O3)を調製した。適量の市販アルミナ担体を乾燥器で120℃、1時間乾燥させ、適当なホウ素塩を蒸留水に溶解し、含浸法でホウ素をアルミナ担体に担持した。次に電気炉でこの触媒前駆体を450℃で焼成し、適量な酸化ホウ素を担持した酸化ホウ素―アルミナ触媒(B/Al(x)、x:B2O3担持量、重量%)を調製した。
<メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒:アルミニウムを導入したSBA−15固体酸触媒、Al-SBA-15(A/SBA15)>
本発明において使用される固体酸触媒の一例として、次のようなアルミニウム挿入したSBA-15固体酸触媒を調製した。SBA-15合成に使用する適量のPluronic P123に、適量な塩酸を加え、撹拌・溶解させ、適量なテトラエチルシリルケート(TEOS)を加え、3.0時間撹拌した。適量のアンモニウム塩を適当な塩酸水溶液に溶解したものを加えて、撹拌した後、25%アンモニア水でPH調整を行い、更に20h撹拌した。40℃の条件下で20時間撹拌し、白色の沈殿が生じた。この沈殿を適当な温度・時間で静置エージングを行った。最後に、吸引濾過しながら蒸留水で洗浄し、得られた粉末を550℃で6時間焼成させ、アルミニウム挿入したSBA-15固体酸触媒を調製した。
一方、本発明で使用できる原料油としては、各種植物油、動物油脂、そしてこれらの油脂由来脂肪酸やエステルの混合物等を挙げることができる。
低級アルコールとしては、メタノール、エタノール等を挙げることができる。
原料油と低級アルコールとは反応器内を上方又は下方より順方向に通過させたり、或いは向流方向に通過させて反応させる。
低級アルコールと原料油の質量比は0.01〜1.0、好ましくは0.1〜0.8である。特に遊離脂肪酸の高い転化率とトリグリセライドの低い転化率を得るためには、質量比は0.3が最適である。
また、反応器内を通過させる低級アルコールと原料油の液空間速度(LHSV)は0.1〜10(h-1)、好ましいのは0.5〜6(h-1)の範囲である。
本発明では、以上のような反応条件で流動式反応装置を用いることにより、原料油中の遊離脂肪酸の高い転化率を高めるとともに、原料油中のトリグリセリドの転化率を抑えることができ、ディーゼルエンジンに適したバイオ燃料を量産できる。
図中の反応条件によるMeOHとPAOの質量比の影響を示す図 図中の反応条件による液空間速度(LHSV)の影響を示す図 図中の反応条件による液空間速度(LHSV)の影響を示す図 図中の反応条件による担持量の影響を示す図 図中の反応条件による触媒の影響を示す図 図中の反応条件による各触媒についての酸価(AV)を示す図 図中の反応条件による各触媒についての粘度を示す図 本発明に使用する流通式反応装置の概略図
固体酸触媒の存在下で遊離脂肪酸を含む原料油と低級アルコールを反応させる流動式反応装置を用いたバイオ燃料の製造方法において、固体酸触媒としてSiO2/Al2O3系固体酸触媒メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3/B2O3系固体酸触媒から選択された触媒を使用し、低級アルコールと原料油の質量比0.1〜0.8、反応温度として170℃〜300℃、液空間速度(LHSV)0.5(h-1)〜6(h-1)で行わせるバイオ燃料の製造方法。
本発明に使用する反応装置
図8は、流通式反応装置の概略図であり、触媒が充填された反応器の外周にはヒータが設けられる。
それぞれのリザーバーに収納された原料油とアルコールはポンプにより反応器内に送られ、触媒層を通過させることにより反応が行われる。
反応液は、コンデンサーを通して減圧され、分離槽に送られ、分離槽では上部からは改質油が回収され、下部の層は分離塔に送られ、その頂部からは少量の未反応のアルコールが回収され、回収されたアルコールはリザーバーに収納され、反応器に送られ、再び反応に供される。
低級アルコールとしては、メタノール(MeOH)が使用され、原料油は約37.4%の遊離脂肪酸を含むパーム酸オイル(PAO)が使用され、PAOの酸価は75.5mgKOH/g、動粘度は34.4mPa・sであった。
固体酸触媒についてはSiO2/Al2O3系固体酸触媒(Si/Al)、Al2O3/B2O3系固体酸触媒(B/Al)、メソポーラスシリカSBA-15にアルミニウムを導入したAl-SBA-15系固体酸触媒(Al/SBA)を使用した。
反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化率についてのMeOHとPAOの質量比の影響を図1に示す。
反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化について、触媒としてSiO2/Al2O3系固体酸触媒(Si/Al)を使用した場合の液空間速度(LHSV)の影響を図2に示す。
反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化について、触媒としてAl2O3/B2O3系固体酸触媒(B/Al)SiO2/Al2O3系固体酸触媒(Si/Al)を使用した場合の液空間速度(LHSV)の影響を図3に示す。
反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化について、触媒としてAl2O3/B2O3系固体酸触媒(B/Al)/Alを使用した場合の担持量の影響を図4に示す。
反応条件:200℃、220℃、240℃における、原料油中の遊離脂肪酸(FFA)の転化率と原料油中のトリグリセリド(TG)の転化について、触媒の影響を図5に示す。
反応条件:200℃、220℃、240℃における、各触媒についての酸価(AV)を図6に示す。
反応条件:240℃、MeOH::PAO=0.3(g/g)、LHSV:1.6(h-1)における各固体酸触媒についての粘度を図7に示す。
また、流動式反応装置活性試験結果を表1に示すものである。
なお、遊離酸(FFA)転化率はガスクロを用いて測定し、トリグリセリド(TG)転化率はFFA転化率と脂肪酸メチルエステル(FAME)収率より求める。
なお粘度はバイオディーゼル(BDF)の基準値は40℃での動粘度であり、粘度計(A&D製SV−10A)を利用し、50℃から室温までの粘度を測定し、40℃の点での密度で割って動粘度を算出した。
表1は流動式反応装置活性試験結果を示すものである。
Figure 2021091875
表1中、LHSV: 原料油体積流量/触媒体積(h-1)
転化率1):原料油中のトリグリセリドの転換率(%)
転化率2):原料油中遊離脂肪酸(FFA)の転化率(%)
原料油:約55.0%の遊離脂肪酸を含むパーム酸オイル(PAO)で、酸価は110.9mgKOH/g原料油で、動粘度は34.4mPa・sであった。
実施例についての考察
(1)固体酸触媒Si/Alを用いてMeOHとPAOの質量比について考察結果、質量比が0.3(g/g)の時高いFFAより低いTG転化率が得られる。したがって質量比が0.3(g/g)がの時、最適である。
(2)固体酸触媒Si/AlとB/Alを用いてLHSVについて考察結果、両方とも1.6(h-1)の時FFAの転化率が高かった。
(3)三つの触媒について考察結果、B/Al方の酸価が一番低
(4)粘度測定もB/Alの動粘度が一番低かった。
(5)最適の反応条件としては、触媒B/Al、反応温度240℃、MeOH:PAO質量比は0.3(g/g)、LHSVは1.6(h-1)が最適である。
以上要するに、本発明によれば流動式反応装置を用いて遊離脂肪酸を含む原料油と低級アルコールを反応させることにより遊離脂肪酸の転化率が高く、且つトリグリセライドの転化率が低く抑えられてディーゼルエンジンに適した燃料の量産ができる。

Claims (4)

  1. 固体酸触媒の存在下で遊離脂肪酸を含む原料油と低級アルコールを反応させる流動式反応装置を用いたバイオ燃料の製造方法において、固体酸触媒としてSiO2/Al2O3系固体酸触媒メソポーラスシリカにアルミニウムを一部導入したSiO2/Al2O3系固体酸触媒、Al2O3/B2O3系固体酸触媒から選択された触媒を使用し、反応温度として100℃〜300℃で行わせるバイオ燃料の製造方法
  2. SiO2/Al2O3系固体酸触媒がアモルファスな成型品である請求項1記載のバイオ燃料の製造方法。
  3. 低級アルコールと油脂の質量比を0.01〜1..0の範囲で行う請求項1記載のバイオ燃料の製造方法。
  4. 液空間速度(LHSV)を0.1(h-1)〜10(h-1)の範囲で行う請求項1記載のバイオ燃料の製造方法
JP2020187703A 2019-11-29 2020-11-11 流通式反応装置を用いたバイオ燃料の製造方法 Active JP7045775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042387 WO2021106619A1 (ja) 2019-11-29 2020-11-13 流通式反応装置を用いたバイオ燃料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019216912 2019-11-29
JP2019216912 2019-11-29

Publications (2)

Publication Number Publication Date
JP2021091875A true JP2021091875A (ja) 2021-06-17
JP7045775B2 JP7045775B2 (ja) 2022-04-01

Family

ID=76311839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020187703A Active JP7045775B2 (ja) 2019-11-29 2020-11-11 流通式反応装置を用いたバイオ燃料の製造方法

Country Status (1)

Country Link
JP (1) JP7045775B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096962A1 (en) * 2003-04-29 2004-11-11 Escola De Química/Ufrj Catalytic process to the esterification of fatty acids present in the acid grounds of the palm using acid solid catalysts
JP2005206575A (ja) * 2003-08-29 2005-08-04 Nippon Shokubai Co Ltd 脂肪酸アルキルエステル及び/又はグリセリンの製造方法並びに脂肪酸アルキルエステル含有組成物
JP2009019197A (ja) * 2007-06-11 2009-01-29 Kao Corp 脂肪酸エステルの製造法
JP2011167677A (ja) * 2010-02-22 2011-09-01 Korea Inst Of Energy Research タングステンオキサイドアルミナ触媒の製造方法、その方法によって製造されたタングステンオキサイドアルミナ触媒及びその触媒を用いて遊離脂肪酸が含まれた廃食用油から遊離脂肪酸を除去する方法
WO2013137286A1 (ja) * 2012-03-13 2013-09-19 株式会社ダイキアクシス 固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法
JP2014504945A (ja) * 2010-11-02 2014-02-27 エボニック デグサ ゲーエムベーハー 担持触媒の製造方法、及び植物油中の遊離脂肪酸のエステル化のための該触媒の使用
WO2014115356A1 (ja) * 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 エステル交換触媒及び該触媒を用いたバイオディーゼル燃料の製造方法
WO2020022143A1 (ja) * 2018-07-23 2020-01-30 富士通商株式会社 バイオ燃料の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096962A1 (en) * 2003-04-29 2004-11-11 Escola De Química/Ufrj Catalytic process to the esterification of fatty acids present in the acid grounds of the palm using acid solid catalysts
JP2005206575A (ja) * 2003-08-29 2005-08-04 Nippon Shokubai Co Ltd 脂肪酸アルキルエステル及び/又はグリセリンの製造方法並びに脂肪酸アルキルエステル含有組成物
JP2009019197A (ja) * 2007-06-11 2009-01-29 Kao Corp 脂肪酸エステルの製造法
JP2011167677A (ja) * 2010-02-22 2011-09-01 Korea Inst Of Energy Research タングステンオキサイドアルミナ触媒の製造方法、その方法によって製造されたタングステンオキサイドアルミナ触媒及びその触媒を用いて遊離脂肪酸が含まれた廃食用油から遊離脂肪酸を除去する方法
JP2014504945A (ja) * 2010-11-02 2014-02-27 エボニック デグサ ゲーエムベーハー 担持触媒の製造方法、及び植物油中の遊離脂肪酸のエステル化のための該触媒の使用
WO2013137286A1 (ja) * 2012-03-13 2013-09-19 株式会社ダイキアクシス 固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法
WO2014115356A1 (ja) * 2013-01-28 2014-07-31 独立行政法人産業技術総合研究所 エステル交換触媒及び該触媒を用いたバイオディーゼル燃料の製造方法
WO2020022143A1 (ja) * 2018-07-23 2020-01-30 富士通商株式会社 バイオ燃料の製造方法

Also Published As

Publication number Publication date
JP7045775B2 (ja) 2022-04-01

Similar Documents

Publication Publication Date Title
Mohadesi et al. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method.
Shu et al. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+
CN101198677B (zh) 使用脂肪酸制备脂肪酸烷基酯的方法和设备
JP5866740B2 (ja) 燃料油の製造方法
CN103805224A (zh) 一种航空煤油的制备方法
KR20080072080A (ko) 수소화 정제방법 및 수소화 정제유
Kay et al. Biodiesel production from low quality crude jatropha oil using heterogeneous catalyst
US11427776B2 (en) Method for producing biofuel
EA029057B1 (ru) Катализатор и способы получения дизельного топлива из природного газа, жидкостей из природного газа или другого газообразного исходного сырья
CN102257108B (zh) 甲磺酸用于制备脂肪酸酯的方法
Kyrychenko et al. Alternative fuels from vegetable oils: innovative methods and technologies of production and usage
Hasanudin et al. Esterification of Free Fatty Acid in Palm Oil Mill Effluent using Sulfated Carbon-Zeolite Composite Catalyst.
JP7045775B2 (ja) 流通式反応装置を用いたバイオ燃料の製造方法
WO2021106619A1 (ja) 流通式反応装置を用いたバイオ燃料の製造方法
CN111229247B (zh) 一种用于草酸酯加氢制乙醇的催化剂及其制备方法和应用
WO2010113011A2 (en) Novel catalyst composition for biodiesel production and process for preparing the same
Brito et al. Reuse of fried oil to obtain biodiesel: Zeolites Y as a catalyst
HAJY et al. Efficient Synthesis of biodiesel from waste cooking oil catalysed by Al2O3 impregnated with NaOH
CN111744553B (zh) 十二烷基苯磺酸锆催化剂及其在糠醇醇解反应中的应用
Salihu et al. Production of biodiesel from waste cooking oil by transesterification process using heterogeneous catalyst
EP2862915B1 (en) Method for manufacturing biodiesel
Deva et al. Influence of various parameters on biodiesel production using different feedstock: A review
Yahya et al. Effect of calcination temperature on catalyst surface area of Ca supported TiO2 by sol-gel method for biodiesel production
Andrifar et al. Optimization of sustainable biodiesel production from waste cooking oil using heterogeneous alkali catalyst
Wang et al. Mg-Al Hydrotalcite/γ-Al2O3 as Fixed-Bed Catalyst in Biodiesel Production

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20201203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220319

R150 Certificate of patent or registration of utility model

Ref document number: 7045775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250