WO2013137286A1 - 固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法 - Google Patents

固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法 Download PDF

Info

Publication number
WO2013137286A1
WO2013137286A1 PCT/JP2013/056908 JP2013056908W WO2013137286A1 WO 2013137286 A1 WO2013137286 A1 WO 2013137286A1 JP 2013056908 W JP2013056908 W JP 2013056908W WO 2013137286 A1 WO2013137286 A1 WO 2013137286A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
alkyl ester
acid alkyl
alcohol
catalyst
Prior art date
Application number
PCT/JP2013/056908
Other languages
English (en)
French (fr)
Inventor
祥生 王
Original Assignee
株式会社ダイキアクシス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイキアクシス filed Critical 株式会社ダイキアクシス
Priority to US14/385,076 priority Critical patent/US20150018572A1/en
Priority to BR112014022814-0A priority patent/BR112014022814B1/pt
Priority to JP2014504948A priority patent/JP6226861B2/ja
Priority to CA2867273A priority patent/CA2867273C/en
Priority to EP13760473.2A priority patent/EP2826561B1/en
Priority to CN201380024395.2A priority patent/CN104507569B/zh
Publication of WO2013137286A1 publication Critical patent/WO2013137286A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J27/055Sulfates with alkali metals, copper, gold or silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • C11C1/10Refining by distillation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a solid acid catalyst having high activity and activity stability for a catalytic reaction with a Lewis acid or Bronsted acid, a method for producing the same, and a method for producing a fatty acid alkyl ester using the same.
  • Fatty acid alkyl esters are used as chemicals, raw materials for plastics and chemical products, and alternative fuels for petroleum light oil.
  • the fatty acid alkyl ester is usually produced by an esterification reaction between a fatty acid and a C1-C10 lower alcohol or an ester exchange reaction between an aliphatic triglyceride and a C1-C10 lower alcohol.
  • Industrially it is produced by a method of producing a corresponding fatty acid monoester by transesterifying vegetable oil or animal oil in an alcohol solvent using an alkali trioxide as a raw material, an aliphatic triglyceride which is a main component of vegetable oil or animal oil.
  • the solid acid catalyst can catalyze the esterification reaction of free fatty acid and the transesterification of triglyceride at the same time, so there is no restriction on the free fatty acid content in the raw oil and fat, and the separation of the catalyst after the reaction is easy .
  • zeolites such as zeolites, ion exchange resins, and heteropolyacids
  • zeolite catalysts have low acidity and low catalytic activity due to limited mass transfer in the pores.
  • An ion exchange resin such as a sulfonic acid resin requires a reaction temperature of 170 ° C. or higher in order to increase the activity, but the resin cannot withstand such a temperature.
  • the heteropolyacid catalyst is easily soluble in water, there is a problem that the active component is lost within a short time and the activity is lost.
  • metal oxide catalysts such as TiO 2, ZrO 2, TiO 2 -ZrO 2 impregnated with sulfuric acid (JP-A-09-103681, JP-A No. 11-244701 and JP Hei 11-057478), sulfonated
  • the acid group-introduced amorphous carbon catalyst Japanese Patent Laid-Open No. 2009-114272 shows activity both in the esterification reaction and the transesterification reaction.
  • the sulfate group is easily washed away. There is.
  • an amorphous carbon catalyst having a sulfonic acid group introduced therein it is difficult to process the catalyst into a shape and strength required for a fixed bed flow reactor, so that it is not suitable for an industrial production apparatus.
  • Another solid acid catalyst is a solid containing ⁇ -alumina and tungstic acid, having a specific surface area of 3 to 50 m 2 / g and an argon adsorption heat of ⁇ 14.5 kJ / mol or less.
  • Acid catalyst Japanese Patent Laid-Open No. 2007-175649
  • solid acid catalyst obtained by supporting molybdenum oxide on a zirconia support and firing at 673K to 1473K
  • Japanese Patent Laid-Open No. 2009-149900 Japanese Patent Laid-Open No. 2009-149900
  • Niop and / or tantalum and molybdenum And / or a solid acid catalyst Japanese Patent Laid-Open No.
  • the object of the present invention is to have high activity for acid-catalyzed reactions such as esterification reaction, transesterification reaction, alkylation reaction, isomerization reaction, the reaction temperature is low, side reactions can be minimized, and during the reaction It is an object of the present invention to provide a solid acid catalyst that is free from catalyst component loss and excellent in stability, a method for producing the same, and a method for producing a fatty acid alkyl ester using the same.
  • the present invention has a periodic rule that is a main component of an inorganic porous carrier (A) such as silica, alumina, titania, magnesia, zirconia.
  • A inorganic porous carrier
  • B metal element oxide
  • C metal element oxide or sulfur oxide
  • D non-metal oxide
  • the solid acid catalyst for producing the fatty acid alkyl ester of the first invention is selected from group VIb of the periodic table in at least one inorganic porous carrier (A) selected from the group consisting of silica, alumina, titania, magnesia and zirconia.
  • A inorganic porous carrier
  • At least one metal element oxide or sulfate (C) selected from the group consisting of (Sn) and at least one nonmetal element oxide (D) selected from boron (B) and silicon (Si) are supported. It is characterized by letting
  • the solid acid catalyst for producing a fatty acid alkyl ester according to the second invention is the metal oxide (B), metal oxide or sulfate (C), and nonmetal with respect to the inorganic porous support (A) in the first invention.
  • the supported amount of the oxide (D) is 2.5 to 25%, 1 to 10% and 0.5 to 5%, respectively, in terms of the highest value oxide of the metal, and the total of B, C and D is 30%. It is characterized by the following.
  • the method for producing a solid acid catalyst for producing a fatty acid alkyl ester of the third invention is a method for producing a solid acid catalyst of the solid catalyst of the first invention or the second invention, wherein (a) the inorganic porous carrier (A) A step of impregnating the metal oxide (B) with a precursor of a metal oxide or a sulfated oxide (C); (b) before, during or after the step (a), a non-metal oxide ( It comprises the step of impregnating the precursor of D).
  • a method for producing a solid acid catalyst for producing a fatty acid alkyl ester according to a fourth aspect of the present invention is the method according to the third aspect, wherein the preparation method comprises the step of adding a metal oxide (B) and a metal oxide or sulfate ( After impregnating the water-soluble precursor of C) and drying at a temperature not higher than the temperature at which the metal oxide or sulfate precursor is thermally decomposed, impregnating the metal oxide (D) precursor and drying And firing at 400 to 750 ° C. in an oxygen atmosphere.
  • the preparation method comprises the step of adding a metal oxide (B) and a metal oxide or sulfate ( After impregnating the water-soluble precursor of C) and drying at a temperature not higher than the temperature at which the metal oxide or sulfate precursor is thermally decomposed, impregnating the metal oxide (D) precursor and drying And firing at 400 to 750 ° C. in an oxygen atmosphere.
  • a method for producing a fatty acid alkyl ester according to a fifth invention is a method for producing a fatty acid alkyl ester by reacting a fatty acid or / and triglyceride with an alcohol in the presence of the solid acid catalyst according to claims 1 to 4.
  • a first reaction step in which a fatty acid or / and triglyceride and an alcohol are brought into contact with a solid acid catalyst at a temperature of 100 to 250 ° C.
  • the crude fatty acid alkyl ester B obtained in the second separation step is distilled under reduced pressure, and fractions having boiling points of 100 ° C. or lower and 360 ° C. or higher are obtained. It includes an ester distillation step of cutting to obtain a purified fatty acid alkyl ester.
  • the method for producing a fatty acid alkyl ester of the seventh invention is characterized in that, in the fifth and sixth inventions, the solid acid catalyst is any one of the first and second inventions.
  • the method for producing a fatty acid alkyl ester of the eighth invention is the fifth to seventh inventions, wherein the molar ratio of alcohol to fatty acid or / and triglyceride is 1.2 to 40 in terms of molar ratio of alcohol to fatty acid,
  • the molar ratio of the alcohol to the crude fatty acid alkyl ester is 1.1 to 30 in terms of the molar ratio of alcohol to fatty acid.
  • the method for producing a fatty acid alkyl ester according to the ninth aspect of the present invention includes the step of separating the fatty acid alkyl ester reaction liquid A or the fatty acid alkyl ester reaction liquid B at normal pressure or reduced pressure in the first separation step and the second separation step according to the fifth to eighth inventions. Under heating, the alcohol and water are heated to a temperature higher than the boiling point of the alcohol and water to evaporate the alcohol and water, and then glycerin is separated.
  • the fatty acid alkyl ester can be efficiently obtained by contacting a mixture of a fatty acid or / and triglyceride-based animal and vegetable oil and lower alcohol with a solid catalyst without requiring harsh operating conditions. Can be manufactured well.
  • This solid acid catalyst has no restriction on the quality of the raw oil and fat, does not require a step of removing the catalyst from the reaction product, and generates a large amount of waste, compared to a homogeneous phase reaction process using a conventional alkali or acid catalyst. Less, high yield and high purity fatty acid alkyl ester and glycerin are obtained.
  • the catalyst activity is high, the side reaction is small, the activity is not lowered by the outflow of the catalyst component, and the life of the catalyst is long.
  • Main catalyst components selected from group VIb of the periodic table include manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), tin
  • a cocatalyst selected from the group consisting of (Sn) By adding a cocatalyst selected from the group consisting of (Sn), the activity of the catalyst is greatly improved, and the reaction can be carried out at a lower temperature. As a result, side reactions can be minimized.
  • the non-metal oxide of boron (B) or silicon (Si) serves to prevent the catalytically active component from dissolving and flowing out into the reaction fluid, and can improve the stability of the catalyst.
  • the crude fatty acid alkyl ester A having a water concentration of 0.1% or less by removing the alcohol, water and glycerin from the fatty acid alkyl ester reaction liquid A.
  • Examples of raw materials used in the solid acid catalyst according to the present invention, a method for producing the same, and a method for producing a fatty acid alkyl ester using the same include various animal and vegetable oils and fats mainly composed of triglycerides, and fatty acids obtained by hydrolysis of animal and vegetable oils and fats. Is a representative.
  • Vegetable oils include soybean oil, rapeseed oil, sunflower oil, cottonseed oil, coconut oil, sesame oil, olive oil, corn oil, peanut oil, castor oil, rice oil, palm oil, jatropha oil, algae oil, and the like.
  • Animal oils include beef tallow, pork tallow, horse tallow, fish oil, whale oil and the like. These fats and oils may be used alone or as a mixture of two or more. These fats and oils may be used waste oil.
  • Used waste oil for example, waste oil and fat discarded from oil processing factory, food manufacturing factory, restaurant, general household, etc., oil and fat residue such as oil cake in edible oil manufacturing process, used as lubricating oil for metal hot rolling process
  • oils and fats of vegetable oils, waste oils and fats generated in processed oils and fats manufacturing processes such as margarine, shortening, returned edible oils and fats such as defective products and expired animals, and animal oils and fats generated in edible oil and fish meat processing processes.
  • the alcohol used in the solid acid catalyst according to the present invention, the production method thereof and the fatty acid alkyl ester production method using the same is preferably a saturated aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • primary alcohols such as methanol, ethanol, n-propanol and n-butanol, secondary alcohols such as isopropanol and sec-butanol, and tertiary alcohols such as tert-butanol may be used. It can.
  • primary alcohols such as methanol and ethanol are particularly preferred.
  • the water content of these alcohols is not particularly limited, but the lower the water content, the more preferable.
  • the production method thereof and the production method of fatty acid alkyl ester using the same when triglyceride and alcohol are reacted, the fatty acid alkyl ester can be obtained by the reaction represented by Chemical Formula 1. Moreover, when a fatty acid and alcohol are reacted, a fatty acid alkyl ester can be obtained by the reaction represented by Chemical Formula 2.
  • the solid acid catalyst of the present invention comprises an inorganic porous support (A), an oxide (B) of at least one metal element selected from Group VIb of the periodic table, manganese (Mn), iron (Fe), cobalt ( Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), tin (Sn) and at least one metal element oxide or sulfate (C) and boron ( It is obtained by supporting an oxide (D) of at least one nonmetallic element selected from B) and silicon (Si).
  • silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), magnesia (MgO), and zirconia (ZrO 2 ) are used as the inorganic porous carrier. These inorganic porous carriers may be used alone or in combination of two or more. In the present invention, alumina and silica are particularly preferably used, but alumina (Al 2 O 3 ) is most preferable when only one kind is selected. When two or more types are selected, silica-alumina (SiO 2 -Al 2 O 3 ) has higher performance than that of any one of silica and alumina, and is more preferable.
  • the solid acid catalyst according to the present invention has 2.5 to 25% by mass of the Group VIb metal element as an active metal component on the inorganic porous support in terms of oxide, based on the total amount of the catalyst.
  • At least one metal element selected from the group consisting of manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), and tin (Sn) 1 to 10 mass% of the oxide or sulfate of the catalyst in terms of oxide, and the oxide of at least one nonmetallic element selected from boron (B) and silicon (Si)
  • 0.5 to 5% by mass is supported with respect to the total amount of the catalyst.
  • the Group VIb metal element is selected from chromium, tungsten and molybdenum. These metal elements are supported on the carrier as metal oxides.
  • the oxidation state is not particularly limited, and examples thereof include Cr 2 O 3 , CrO 2 , CrO 3 , MoO 2 , MoO 3 , WO 2 and WO 3 . These metal oxides may be used alone or in combination of two or more. Although there are no particular limitations on the loading or mixing method, a normal impregnation method or a solid phase mixing method is preferably used.
  • the raw material for supporting the Group VIA metal element on the carrier as an oxide is not particularly limited, and examples thereof include ammonium chromate, chromium nitrate, ammonium tungstate, and metatungsten.
  • Ammonium acid, ammonium molybdate, tungstic acid, and tungsten chloride are used. These compounds can be used alone or in combination of two or more.
  • the oxide or sulfate (C) of the metal element supported on the catalyst carrier together with the Group VIb metal element is manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), One or more selected from zinc (Zn), gallium (Ga), and tin (Sn) are preferred, and tin and zinc are particularly preferably used.
  • These metal elements are usually supported on the carrier as oxides or sulfates.
  • a metal selected from manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), and tin (Sn) is an oxide.
  • the raw material to be supported on the carrier as a sulfate is not particularly limited, but for example, sulfate, nitrate, carbonate, acetate, phosphate and the like are preferably used. In order to obtain a metal sulfate, the sulfate is most preferable. These compounds are also used alone or in combination of two or more.
  • the Group VIb metal and manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), tin (Sn) are selected.
  • the oxide (D) of the nonmetallic element supported on the carrier together with the metal include one or more nonmetallic oxides selected from boron (B) and silicon (Si).
  • Specific examples include boric acid, silicic acid, and ethyl silicic acid. Among these, boric acid and ethyl silicic acid are particularly preferably used. Boron and silicon are also usually supported as oxides on the support.
  • the preferred supported amount of these active ingredients is 2.5 to 25% by mass, preferably 5 to 15% by mass, based on the weight of the support, of metal oxide (B) in terms of oxide.
  • the metal oxide or metal sulfate (C) is 1 to 10% by mass, preferably 2 to 5% by mass
  • the nonmetal oxide (D) is 0.5 to 5% by mass, preferably 1 to 2.5% by mass
  • the total of B, C, and D is 30% or less.
  • the supported amount of the Group VIb metal component in the catalyst is less than 2.5% by mass, sufficient catalytic activity cannot be obtained. On the other hand, even when the supported amount exceeds 25% by mass, the dispersibility of the active metal is not improved. The catalyst activity is saturated and the catalyst activity is saturated, so the economy of catalyst production is poor.
  • the loading amount of the metal element oxide or sulfide (C) is less than 1% by mass, the effect as a co-catalyst cannot be sufficiently obtained, and therefore the oil and fat can be efficiently converted into an ester. I can't. However, even if the amount exceeds 10% by mass, the esterification activity is saturated and the catalytic activity may be lowered, which is economically disadvantageous.
  • the oxide (D) of the nonmetallic element increases the dispersibility of the metal element oxide (B) and the metal element oxide or sulfate (C) on the support, increases the active sites, Useful to prevent oxides from being reduced and eluted from the catalyst.
  • the amount of the nonmetallic element oxide (D) supported is less than 0.5% by mass, the above effect cannot be obtained effectively. However, even if it exceeds 5% by mass, the above effect is saturated, which is uneconomical.
  • the total of B, C, and D is 30% or less, and preferably 25% or less.
  • the total of B, C, and D exceeds 30%, the dispersibility of the active metal is deteriorated, and the catalytic activity is saturated.
  • the inorganic porous support (A) is first impregnated with the nonmetallic oxide (D), and then the metal oxide (B) and the metal oxide (C) are impregnated. Impregnating the inorganic porous support (A) with the metal oxide (B) and the metal oxide (C) and simultaneously impregnating with the non-metal oxide (D); Any method of impregnating the inorganic porous carrier (A) with the product (C) and then impregnating the non-metal oxide (D) can be used. In particular, the method of impregnating the inorganic porous carrier (A) with the metal oxide (B) and the metal oxide (C) and simultaneously impregnating the non-metal oxide (D) has a remarkable effect.
  • the preparation method is not particularly limited, and the catalyst according to the present invention can be prepared by any conventionally known method. It can be easily prepared by an impregnation method.
  • the compound of at least one selected metal element is dissolved in water to form an aqueous solution, which is impregnated into a carrier, and then preferably heated and dried at 120 ° C. for 2 to 24 hours, and then at 400 to 750 ° C. By calcination for about 2 to 24 hours, the catalyst according to the present invention can be obtained.
  • properties of the solid acid catalyst according to the present invention are not particularly limited, but fatty acid or / and animal and vegetable fats and oils are efficiently converted to fatty acid alkyls.
  • the specific surface area is 100 m 2 / g or more
  • the pore volume is in the range of 0.3 to 1.2 cc / g
  • the average pore diameter is in the range of 60 to 120 mm. preferable.
  • the acidity of the solid acid catalyst according to the present invention is not particularly limited, but in order to increase the conversion efficiency of fatty acid or / and animal and vegetable fats and oils to fatty acid alkyl esters and suppress other side reactions, the acidity is adjusted.
  • the Hammett function H0 represented is preferably ⁇ 1.5 to ⁇ 11, and more preferably ⁇ 4 to ⁇ 10.
  • the transesterification reaction of triglyceride and alcohol (Chemical Formula 1) and the esterification reaction of fatty acid and alcohol (Chemical Formula 2) can proceed smoothly, with few side reactions, and from fatty acid or / and triglyceride and alcohol. This is because the efficiency of producing the fatty acid alkyl ester is high.
  • the shape of the catalyst is not particularly limited, and usually powder, extrusion molding, tableting molding, or the like can be used.
  • the shape of extrusion molding generally includes a cylinder, a three-leaf, a four-leaf, a ring, and the like, and is not particularly limited in the present invention, but is preferably a cylinder, a three-leaf, or a four-leaf. If it is a cylinder, a three-leaf, or a four-leaf, the catalyst can be packed more densely than other shapes such as a ring, and pressure loss can be suppressed as compared to spheres and granules.
  • the size is preferably 1/10 to 1/22 inch in diameter and 3.2 to 3.6 inch in length.
  • FIG. 1 is a block diagram showing a method for producing a fatty acid alkyl ester of the present invention and a method for producing a fatty acid alkyl ester in the production apparatus.
  • the method for producing a fatty acid alkyl ester of the present invention comprises contacting a fatty acid or / and triglyceride and an alcohol with a solid acid catalyst at a temperature of 100 to 250 ° C. and a pressure of 0.1 to 6.0 MPa.
  • the alcohol, water and glycerin are separated and removed from the fatty acid alkyl ester reaction liquid A to obtain a water concentration of 0.1. % Of the crude fatty acid alkyl ester A and the solid fatty acid alkyl ester A and the alcohol at a temperature of 60 to 210 ° C.
  • the fatty acid or / and triglyceride and the alcohol are heated at a temperature of 100 to 250 ° C., more preferably 120 to 230 ° C., particularly preferably 140 to 210 ° C., and a pressure of 0.1 to 6.0 MPa, preferably 0.5.
  • the reaction is carried out in contact with the solid acid catalyst at -5 MPa, particularly preferably at 1.0-4.5 MPa.
  • the esterification and transesterification proceed even at 100 ° C. or lower, the reaction rate is slow and the production efficiency deteriorates.
  • the reaction temperature is 250 ° C. or higher, side reactions other than esterification and transesterification reaction become violent, and the yield of fatty acid alkyl ester may be lowered.
  • WHSV weight hourly space velocity
  • esterification reaction when 1 mole of alcohol is reacted with 1 mole of fatty acid, a corresponding mole of fatty acid alkyl ester is produced.
  • transesterification reaction when 3 mol of alcohol is reacted with 1 mol of triglyceride, 1 mol of the corresponding fatty acid alkyl ester is produced.
  • both the esterification reaction and the transesterification reaction are equilibrium reactions, and the reverse reaction becomes more intense as the concentration of the reaction product increases. In order to suppress the reverse reaction and allow the forward reaction to proceed as much as possible, it is effective to make the amount of alcohol as a reactant excessive.
  • the molar ratio of alcohol to fatty acid or / and triglyceride is 1.2 to 40, more preferably 1.5 to 30, particularly preferably in terms of the molar ratio of alcohol to fatty acid. Is 3-15.
  • the molar ratio of the alcohol to the crude fatty acid alkyl ester is 1.1 to 30, more preferably 1.5 to 25, and particularly preferably 2 to 20 in terms of the molar ratio of alcohol to fatty acid. is there.
  • fatty acid alkyl ester can be efficiently produced from fatty acid or / and triglyceride.
  • the molar ratio is less than 1.1, esterification or transesterification reaction becomes insufficient.
  • the reaction apparatus becomes enormous and the process energy consumption increases, which is uneconomical. .
  • 0 to 3% of water may be added and reacted with the raw material fat.
  • the presence of water in the reaction raw material is preferable because the reaction rate can be further increased. If the amount of water added to the raw oil and fat exceeds 3%, the reaction rate is lowered, which is not preferable.
  • the first separation step is a step of obtaining the crude fatty acid alkyl ester A by separating and removing the alcohol, glycerin and water from the fatty acid alkyl ester reaction liquid A obtained in the first reaction step.
  • the fatty acid alkyl ester reaction liquid A contains glycerin, water, and excessively added alcohol in addition to the fatty acid alkyl ester fraction containing fatty acid alkyl ester as a main component.
  • Examples of the method for separating and removing the alcohol and water from the fatty acid alkyl ester reaction liquid A include simple distillation and rectification using a difference in boiling point between the fatty acid alkyl ester fraction and the alcohol and water.
  • Simple distillation and rectification may be performed under normal pressure or under reduced pressure. In the case of atmospheric distillation, it may be performed at a temperature higher than the boiling point of either alcohol or water.
  • the distillation temperature may be set appropriately according to the degree of vacuum in the distillation apparatus. The higher the degree of vacuum in the distillation apparatus, the lower the distillation temperature.
  • concentration of the water contained in a crude fatty acid alkylester will be 0.1% or less.
  • the alcohol distilled by the distillation step becomes a crude alcohol containing water. If this crude alcohol is rectified using a normal rectification method, the purity can be increased to 99.8% or more. Can be reused as a raw material of the present invention.
  • Second reaction step (S30) the crude fatty acid alkyl ester A from which the alcohol, water and glycerin have been separated and removed in the second reaction step is contacted with a solid acid catalyst at a temperature of 60 to 210 ° C. and a pressure of 0.1 to 6.0 MPa. It is preferable to make it.
  • Animal and vegetable oils and fats used as raw materials usually contain free fatty acids.
  • the free fatty acid reacts with alcohol to produce water as a by-product. If water is present in the reaction system, the produced fatty acid alkyl ester may be hydrolyzed back to free fatty acid. The higher the water concentration in the reaction system, the more severe the hydrolysis reaction of the fatty acid alkyl ester.
  • the concentration of the free fatty acid contained in the fatty acid alkyl ester exceeds a certain level, the quality standard defined as a chemical product, biodiesel fuel or the like may not be passed.
  • the free fatty acid remaining in the fatty acid alkyl ester can be converted into the fatty acid alkyl ester when it comes into contact with the solid acid catalyst together with the alcohol.
  • the monoglyceride, diglyceride and triglyceride remaining in the fatty acid alkyl ester can also be converted to the fatty acid alkyl ester by transesterification under the conditions of the second reaction step.
  • the esterification rate can be improved, and the yield of the fatty acid alkyl ester as the final product can be improved. Both purity can be increased.
  • the crude fatty acid alkyl esterification reaction liquid B obtained by the second reaction step contains the alcohol, glycerin and water together with the fatty acid alkyl ester. Therefore, in the second separation step, the alcohol, glycerin and water are separated and removed from the reaction solution, and a crude fatty acid alkyl ester B having a lower acid value and a higher purity can be produced.
  • Separation and removal of the alcohol, glycerin and water from the crude fatty acid alkyl esterification reaction liquid B can be performed by the same method as in the first separation step.
  • the alcohol from the separation step becomes a crude alcohol containing water. If the crude alcohol is rectified using a normal rectification method, the purity can be increased to 99.8% or more, and the present invention. Can be reused as raw material.
  • the control index of the glycerin separation operation is that the concentration of free glycerin contained in the crude fatty acid alkyl ester B is 0.02% or less.
  • the crude fatty acid alkyl ester B may be used as it is as a chemical product, biodiesel fuel, or the like, but purification by vacuum distillation is effective when higher purity is required.
  • the crude fatty acid alkyl ester obtained in the second separation step contains impurities such as oxidative decomposition products, thermal polycondensation products, and colored products of fats and oils. There is. These impurities remain in the fatty acid alkyl ester phase without being converted to the fatty acid alkyl ester in the method for producing a fatty acid alkyl ester of the present invention.
  • the impurities are cut as a light component having a boiling point of 100 ° C. or less and a heavy component having a boiling point of 360 ° C. or more and removed from the crude fatty acid alkyl ester B. Become.
  • the distillation under reduced pressure of the crude fatty acid alkyl ester B is performed at a vacuum of 15 torr or less, more preferably 5 torr or less, and conditions such as distillation temperature are set so as to distill the fatty acid alkyl ester having a boiling point of 100 ° C. or more and 360 ° C. or less.
  • Example 1 ⁇ Production of Catalyst A> For 100 parts by weight of boehmite (manufactured by Daimei Chemical Co., Ltd.), 5 parts by weight of 40% nitric acid and 100 parts by weight of distilled water are kneaded, extruded, fired at 500 ° C. for 6 hours, and columnar with a diameter of 1.2 mm A ⁇ -alumina support (pore volume 0.53 ml / g, specific surface area 185 m 2 / g, average pore diameter 75 mm) was obtained as a molded product.
  • the above mixed aqueous solution of ammonium metatungstate, iron (III) sulfate and boric acid was impregnated in 100 g of the ⁇ -alumina carrier in a glass beaker. Then, it dried at 120 degreeC and baked at 500 degreeC for 6 hours in the muffle furnace, and prepared the catalyst A.
  • Example 2 ⁇ Production of Catalyst B> Example 1 was used except that 15.24 g of cobalt (II) sulfate heptahydrate (CoSO 4 .7H 2 O) was used instead of 11.26 g of iron (III) sulfate (Fe 2 (SO 4 ) 3 ). Catalyst B was prepared in the same manner.
  • Example 3 Provide of Catalyst C> Example 1 was used except that 15.84 g of nickel (II) sulfate hexahydrate (NiSO 4 .6H 2 O) was used instead of 11.26 g of iron (III) sulfate (Fe 2 (SO 4 ) 3 ). Catalyst C was prepared in the same manner.
  • Example 4 ⁇ Production of Catalyst D> Example 1 except that 15.90 g of copper (II) sulfate heptahydrate (CuSO 4 .7H 2 O) was used instead of 11.26 g of iron (III) sulfate (Fe 2 (SO 4 ) 3 ) Catalyst D was prepared in the same manner.
  • Example 5 Provide of Catalyst E> Catalyst E was prepared in the same manner as in Example 1 except that 8.92 g of zinc sulfate (Zn (SO 4 ) 2 ) was used instead of 11.26 g of iron (III) sulfate (Fe 2 (SO 4 ) 3 ). It was adjusted.
  • Example 6 ⁇ Production of Catalyst F> In a glass beaker, 12.26 g of hexaammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O), 8.92 g of zinc sulfate (ZnSO 4 ) and boric acid (H 3 BO 3 ) 2.66 g was dissolved in 110 g of water to prepare a mixed aqueous solution of hexaammonium molybdate tetrahydrate, zinc sulfate and boric acid.
  • hexaammonium molybdate tetrahydrate (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O)
  • ZnSO 4 zinc sulfate
  • boric acid H 3 BO 3
  • a mixed aqueous solution of hexaammonium molybdate tetrahydrate, zinc sulfate and boric acid was impregnated in 100 g of a ⁇ -alumina carrier prepared in the same manner as in Example 1 in a glass beaker. Then, it dried at 120 degreeC and baked at 500 degreeC for 6 hours in the muffle furnace, and prepared the catalyst F.
  • Example 7 ⁇ Production of Catalyst G> In a glass beaker, ethyl silicate (Si (OC 2 H 5 ) 4 ) 5.20 was dissolved in 120 g of ethanol to prepare an ethanol solution of ethyl silicate.
  • the above mixed aqueous solution of hexaammonium molybdate tetrahydrate and cobalt (II) sulfate heptahydrate was impregnated in ⁇ -alumina supporting the above ethyl silicate in a glass beaker. Then, it dried at 120 degreeC and baked at 500 degreeC for 6 hours in the muffle furnace, and prepared the catalyst G.
  • Example 8 Provide of Catalyst H> The catalyst was prepared in the same manner as in Example 7 except that 7.78 g of tin (IV) chloride (SnCl 4 ) was used instead of 15.24 g of cobalt (II) sulfate heptahydrate (CoSO 4 .7H 2 O). H was adjusted.
  • tin (IV) chloride SnCl 4
  • cobalt (II) sulfate heptahydrate CoSO 4 .7H 2 O
  • Example 9 ⁇ Production of Catalyst I> A mixture of boehmite (manufactured by Daimei Chemical Co., Ltd.) and silicic acid n-hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) Part by weight and 100 parts by weight of distilled water were kneaded, extruded, fired at 500 ° C. for 6 hours, and columnar shaped silica-alumina carrier having a diameter of 1.2 mm (pore volume 0.65 m 2 / g, specific surface area 225 m 2 / G, average pore diameter 105 mm).
  • silica-alumina carrier 100 g was impregnated with the above mixed aqueous solution of hexaammonium molybdate tetrahydrate, gallium sulfate (III) n hydrate and boric acid in a glass beaker. Then, it dried at 120 degreeC and baked at 500 degreeC in the muffle furnace for 6 hours, and prepared the catalyst I.
  • Comparative Example 1 ⁇ Production of Comparative Catalyst A>
  • ammonium metatungstate (NH 4 ) 6 H 2 W 12 O 40 ⁇ nH 2 O) 10.63 g and zinc nitrate hexahydrate (Zn (NO 3 ) 2 ⁇ 6H 2 O) 12.26 g was dissolved in 110 g of water to prepare a mixed aqueous solution of ammonium metatungstate and zinc nitrate hexahydrate.
  • the above mixed aqueous solution of ammonium metatungstate and zinc nitrate hexahydrate was impregnated in 100 g of ⁇ -alumina carrier prepared in the same manner as in Example 1 in a glass beaker. Then, it dried at 120 degreeC and baked at 500 degreeC for 6 hours in the muffle furnace, and prepared the comparison catalyst A.
  • Comparative Example 2 ⁇ Production of Comparative Catalyst B>
  • a glass beaker 10.63 g of ammonium metatungstate ((NH 4 ) 6 H 2 W 12 O 40 ⁇ nH 2 O) was dissolved in 110 g of distilled water to prepare an aqueous solution of ammonium metatungstate.
  • Comparative Example 3 Ammonium metatungstate in place of ((NH 4) 6 H 2 W 12 O 40 ⁇ nH 2 O) 10.63g, molybdate six ammonium tetrahydrate ((NH 4) 6 Mo 7 O 24 ⁇ 4H 2 O) Comparative catalyst C was prepared in the same manner as in Comparative Example 2, except that 12.26 g was used.
  • Example 19 Production of fatty acid methyl ester from waste edible oil raw material As fats and oils, waste edible oil (free fatty acid 2%, moisture 0.9%) recovered from general households was used.
  • Alcohol was methanol (purity 99.8%).
  • the catalyst A prepared in Example 1 was used as the solid acid catalyst.
  • Alcohol was methanol (purity 99.8%).
  • the catalyst A prepared in Example 1 was used as the solid acid catalyst.
  • Example 21 Production of fatty acid methyl ester from palm fatty acid distillate (PFAD) Palm fat fatty acid distillate (PFAD) (free fatty acid 80%, moisture 0.2%) was used as the fat. Methanol (purity 99.8%) was used as the alcohol. As the solid acid catalyst, the catalyst A prepared in Example 1 was used.
  • Example 19 For the production of fatty acid methyl ester from PFAD, the same apparatus as in Example 19 was used. 1 reactor and no. The reaction was conducted under the same conditions as in Example 19 except that the temperature of the two reactors was 200 ° C. and 160 ° C., respectively. 10 hours after the start of the reaction, no. 1 Coarse FAME transfer pump (H) outlet, No. 1 2 Samples of crude fatty acid methyl ester A, crude fatty acid methyl ester B and purified fatty acid methyl ester were collected from the outlet of the crude FAME transfer pump (M) and the outlet of the purified FAME transfer pump (T) and analyzed. Table 3 shows the conversion rate of triglyceride (TG) and the residual rate of free fatty acid (FFA) determined by analyzing crude fatty acid methyl ester A and crude fatty acid methyl ester B. Table 4 shows.
  • the solid acid catalyst of the present invention produces a high-purity fatty acid alkyl ester that can be used as an oleochemical raw material or light oil alternative fuel at low cost and high efficiency from various fat raw materials including waste fats and oils that have been disposed of in large quantities. Used for Further, in the chemical industry, it can be used as a catalyst for a reaction that requires an acid catalyst such as an alkylation reaction, an acylation reaction, an esterification reaction, or an isomerization reaction. Conventionally, acid catalysts such as sulfuric acid, aluminum chloride, hydrogen fluoride, phosphoric acid, and p-toluenesulfonic acid are used in these reactions. However, these acid catalysts have the property of corroding metals and are expensive.
  • a Raw material oil supply pump B 1st alcohol supply pump C 2nd alcohol supply pump D No.1 heater E No.1 reactor F 1st gas-liquid separator G 1st methanol evaporator H No.1 crude FAME transfer pump I No.2 heater J No.2 reactor K 2nd gas-liquid separator L 2nd methanol evaporator M No.2 crude FAME transfer pump N FAME heater O FAME evaporator P FAME circulation pump Q Condenser R Vacuum pump S Purified FAME tank T Purified FAME transfer pump 10-30 Piping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Microbiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)

Abstract

 本発明は、従来の均一相触媒を用いた脂肪酸アルキルエステル方法の様々な問題点を解決し、様々な油脂から低コストかつ高収率で高品質の脂肪酸アルキルエステルと高純度のグリセリンを製造することができる脂肪酸アルキルエステル製造用固体酸触媒を提供することを目的とする。本発明は、主活性成分となる周期律表第VIb族から選ばれる少なくとも一種の金属元素の酸化物(B)と助触媒となるマンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)からなる群から選ばれる少なくとも一種の金属元素の酸化物または硫酸化物(C)及び触媒の安定化剤となるホウ素(B)と珪素(Si)から選ばれる少なくとも一種の非金属元素の酸化物(D)をシリカ、アルミナ、チタニア、マグネシア、ジルコニアなどの無機多孔質担体(A)に担持して、400~750℃で加熱処理してなる固体酸触媒である。

Description

固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法
 本発明は、ルイス酸またはブレンステッド酸による触媒反応に対して高い活性と活性安定性を有する固体酸触媒及びその製造方法並びにそれを用いた脂肪酸アルキルエステルの製造方法に関する。
 脂肪酸アルキルエステルは、化学薬品、樹脂・化成品の原材料、石油軽油の代替燃料等として使用される。
 脂肪酸アルキルエステルは、通常、脂肪酸とC1~C10の低級アルコールのエステル化反応または脂肪族トリグリセリドとC1~C10の低級アルコールのエステル交換反応によって製造される。工業的に、植物油や動物油の主成分である脂肪族トリグリセリドを原料として、アルカリを触媒としてアルコール溶媒中で植物油や動物油をエステル交換し、対応する脂肪酸モノエステルを製造する方法によって製造されている。
 しかしながら、植物油や動物油は一般に遊離脂肪酸を含むため、上記のアルカリ触媒を添加して行う脂肪酸モノエステルの製造方法では、エステル交換反応より先に遊離脂肪酸とアルカリ触媒とが反応して石けんと水が生成する。水はアルカリの触媒作用を著しく低下させると共に生成した石けんが界面活性剤として作用するため、生成物と触媒との分離を困難にする。一方、硫酸などの酸触媒は、遊離脂肪酸のエステル化反応とトリグリセリドのエステル交換反応を同時に触媒することができるが、エステル化反応に比べて、エステル交換反応の速度がはるかに遅いため、工業的に利用されている例が少ない。
 近年、固体酸または固体塩基触媒を利用した脂肪酸アルキルエステルの製造に関する研究が盛んに行われている。その中に固体酸触媒は遊離脂肪酸のエステル化反応とトリグリセリドのエステル交換反応を同時に触媒することができるため、原料油脂中の遊離脂肪酸含有量に対する制限がなく、反応後触媒の分離が容易である。
 これまでに、ゼオライト、イオン交換樹脂、ヘテロポリ酸などの固体酸触媒が検討されていたが、ゼオライト触媒は、酸性度が低く、細孔内の物質移動が制限されるため触媒活性が低い。スルホン酸樹脂などのイオン交換樹脂は、活性を高めるために170℃以上の反応温度が必要となるが、樹脂がこのような温度に耐えられない。一方、ヘテロポリ酸触媒は、水に溶けやすいため、活性成分が短時間内に流失し、活性がなくなるという問題がある。
 一方、硫酸を含浸したTiO2、ZrO2、TiO2-ZrO2などの金属酸化物触媒(特開平09-103681号公報、特開平11-244701号公報、特開平11-057478号公報)、スルホン酸基導入無定形炭素触媒(特開平2009-114272号公報)は、エステル化反応とエステル交換反応に対して、ともに活性を示すが、ヘテロポリ酸触媒と同様に、硫酸根が流失されやすいという欠点がある。また、スルホン酸基導入無定形炭素触媒の場合、触媒を固定床流通式反応器に要求される形状と強度に加工するのが困難のため、工業的生産装置に向かない。
 他の固体酸触媒としては、α-アルミナおよびタングステン酸を含有し、比表面積が3~50m/gであり、かつアルゴン吸着熱が-14.5kJ/mol以下であることを特徴とする固体酸触媒(特開2007-175649号公報)、ジルコニア担体にモリブデン酸化物を担持し、673K~1473Kで焼成してなる固体酸触媒(特開2009-149900号公報)、ニオプ及び/またはタンタルとモリブデンおよび/またはタングステンの金属酸化物が層状構造を形成している金属酸化物層と、前記金属酸化物層の層間に存在するプロトンとを有する固体酸触媒(特開2007-229627号公報)が開示されている。これらの固体酸触媒は、油脂とアルコールとの反応にも一定の活性を示すが、特に遊離脂肪酸含有量の高い原料油脂の場合、遊離脂肪酸が還元剤として活性成分であるモリブデンやタングステンなどの金属成分を還元させたり溶出したりする働きがあり、触媒活性が短時間内で失活する問題がある。
特開平9-103681号公報 特開平11-244701号公報 特開平11-057478号公報 特開2009-114272号公報 特開2007-175649号公報 特開2009-149900号公報 特開2007-229627号公報
 本発明の課題は、エステル化反応、エステル交換反応、アルキル化反応、異性化反応などの酸触媒反応に対する活性が高く、反応温度が低くて、副反応を最低限に抑えられ、且つ反応中に触媒成分の流失がなく、安定性に優れた固体酸触媒及びその製造方法並びにそれを用いた脂肪酸アルキルエステルの製造方法を提供することである。
 本発明は、上記の問題又は課題を解決する固体酸触媒を開発すべく鋭意検討した結果、シリカ、アルミナ、チタニア、マグネシア、ジルコニアなどの無機多孔質担体(A)に、主成分となる周期律表第VIb族金属元素の酸化物(B)と、助触媒となる金属元素の酸化物または硫酸化物(C)及び触媒成分を安定させ流失を防ぐための非金属酸化物(D)を担持させて得られる脂肪酸アルキルエステル製造用の固体酸触媒は前記の課題を解決しうることを見出し、以下に記載する本発明を完成するに至った。
 第1発明の脂肪酸アルキルエステル製造用の固体酸触媒は、シリカ、アルミナ、チタニア、マグネシア及びジルコニアからなる群から選ばれる少なくとも一種の無機多孔質担体(A)に、周期律表第VIb族から選ばれる少なくとも一種の金属元素の酸化物(B)と、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)からなる群から選ばれる少なくとも一種の金属元素の酸化物または硫酸化物(C)及びホウ素(B)と珪素(Si)から選ばれる少なくとも一種の非金属元素の酸化物(D)を担持させていることを特徴とする。
 第2発明の脂肪酸アルキルエステル製造用の固体酸触媒は、第1発明において、無機多孔質担体(A)に対して、金属酸化物(B)、金属酸化物または硫酸化物(C)及び非金属酸化物(D)の担持量は金属の最高価酸化物換算でそれぞれ2.5~25%、1~10%及び0.5~5%であり、かつB、C、Dの合計が30%以下であることを特徴とする。
 第3発明の脂肪酸アルキルエステル製造用の固体酸触媒の製造方法は、第1発明または第2発明の固体触媒の固体酸触媒の製造方法であって、(a)無機多孔質担体(A)に、金属酸化物(B)と金属酸化物または硫酸化物(C)の前駆体を含浸させる工程; (b)工程(a)の前か、その間かまたはその後で該担体に、非金属酸化物(D)の前駆体を含浸させる工程からなること特徴とする。
 第4発明の脂肪酸アルキルエステル製造用の固体酸触媒の製造方法は、第3発明において、前記調製方法が、無機多孔質担体(A)に金属酸化物(B)と金属酸化物または硫酸化物(C)の水溶性前駆体を含浸させ、金属の酸化物または硫酸化物の前駆体が熱分解される温度以下で乾燥した後に、金属酸化物(D)の前駆体を含浸させて、乾燥した後、酸素雰囲気中400~750℃で焼成することを特徴とする。
 第5発明の脂肪酸アルキルエステルの製造方法は、脂肪酸または/及びトリグリセリドとアルコールとを請求項目1ないし4記載の固体酸触媒の存在下で反応させて、脂肪酸アルキルエステルを製造する方法であって、脂肪酸または/及びトリグリセリドとアルコールとを、温度100~250℃、圧力0.1~6.0MPaで固体酸触媒と接触して脂肪酸アルキルエステル反応液Aを得る第一反応工程と、前記第一反応工程に次いで、前記脂肪酸アルキルエステル反応液Aから前記アルコール、水およびグリセリンを除去して水分濃度が0.1%以下となる粗脂肪酸アルキルエステルAを得る第一分離工程と、前記粗脂肪酸アルキルエステルAと前記アルコールを、温度60~210℃、圧力0.1~6.0MPaで固体酸触媒と接触して反応させる第二反応工程と、更に、第二反応工程で得られる脂肪酸アルキルエステルBから前記アルコール、水およびグリセリンを除去して遊離グリセリン濃度が0.02%以下となる脂肪酸アルキルエステルBを得る第二分離工程とを含むことを特徴とする。
 第6発明の脂肪酸アルキルエステルの製造方法は、第5発明において、第二分離工程で得られる粗脂肪酸アルキルエステルBを、減圧下で蒸留し、沸点が100℃以下および360℃以上の留分をカットして、精製脂肪酸アルキルエステルを得るエステル蒸留工程を含むことを特徴とする。
 第7発明の脂肪酸アルキルエステルの製造方法は、第5発明および第6発明において、固体酸触媒が、第1発明と第2発明のいずれかの固体酸触媒であることを特徴とする。
 第8発明の脂肪酸アルキルエステルの製造方法は、第5発明から第7発明において、脂肪酸または/及びトリグリセリドに対するアルコールのモル比は、アルコール対脂肪酸のモル比換算で1.2~40であり、前記第二工程において、粗脂肪酸アルキルエステルに対するアルコールのモル比は、アルコール対脂肪酸のモル比換算で1.1~30であることを特徴とする。
 第9発明の脂肪酸アルキルエステルの製造方法は、第5発明から第8発明における第一分離工程と前記第二分離工程において、脂肪酸アルキルエステル反応液Aまたは脂肪酸アルキルエステル反応液Bを常圧または減圧下で前記アルコールと水のいずれかの沸点より高い温度に加熱し、前記アルコールと水を蒸発させてから、グリセリンを分離することを特徴とする。
 第10発明の脂肪酸アルキルエステルの製造方法は、第5発明から第9発明における第一反応工程において、原料である脂肪酸または/及びトリグリセリドに対して0~3%の水を添加して反応させることを特徴とする。
 本明細書は本願の優先権の基礎である日本国特許出願2012-055461号および特願2012-055462号の明細書および/または図面に記載される内容を包含する。
 本発明の触媒を用いれば、過酷な運転条件を必要とせずに、脂肪酸または/及びトリグリセリドを主成分とする動植物油脂と低級アルコールとの混合物を固体触媒と接触させるだけで、脂肪酸アルキルエステルを効率よく製造しうる。この固体酸触媒は、従来のアルカリまたは酸触媒を用いた均一相反応プロセスに比べて、原料油脂の質に対する制限がなく、反応生成物からの触媒除去工程がいらなく、廃棄物の発生量が少なく、高収率で高純度の脂肪酸アルキルエステルとグリセリンが得られる。また、従来提案されている固体触媒に比べて、触媒活性が高く、副反応が少なく、触媒成分の流出による活性低下が少なく、触媒の寿命が長い。
 そして、本発明によれば、次の利点を生じる。周期律表第VIb族から選ばれる主触媒成分に、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)からなる群から選ばれる助触媒を加えることによって、触媒の活性が大幅に向上され、より低い温度で反応を行うことが可能となる。そのために、副反応が最小限に抑えることができる。さらに、ホウ素(B)または珪素(Si)の非金属酸化物は、触媒活性成分が反応流体に溶け出して流出することを阻止する役割を果たし、触媒の安定性を改善することができる。
 なお、本発明の製造方法において、第一反応工程に次いで、前記脂肪酸アルキルエステル反応液Aから前記アルコール、水およびグリセリンを除去して水分濃度が0.1%以下となる粗脂肪酸アルキルエステルAを得る第一分離工程と、前記粗脂肪酸アルキルエステルAと前記アルコールを、温度60~210℃、圧力0.1~6.0MPaで固体酸触媒と接触して反応させる第二反応工程を含むことで、高い収率で遊離脂肪酸残存量が少ない高品質の脂肪酸アルキルエステルを製造することができる。
本発明の脂肪酸アルキルエステルの製造方法を示すブロック図である。 本発明の実施例に使われる脂肪酸アルキルエステル製造装置の構成図である。
 以下、本発明について詳細に説明する 。
 本発明に係る固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法において用いられる原料例としては、トリグリセリドを主成分とする各種の動植物油脂、動植物油脂が加水分解されてなる脂肪酸が代表として挙げられる。
 植物油としては、大豆油、菜種油、ひまわり油、綿実油、椰子油、胡麻油、オリーブ油、コーン油、落花生油、ヒマシ油、米油、パーム油、ジャトロファ油、藻油などが挙げられる。動物油としては、牛脂、豚脂、馬脂、魚油、鯨油などが挙げられる。これらの油脂は、それぞれ単独で、あるいは2種以上の混合物であってもよい。なお、これらの油脂は使用済み廃油でもよい。使用済み廃油としては、例えば油脂加工工場、食品製造工場、飲食店、一般家庭などから廃棄される廃油脂、食用油製造工程における油滓などの油脂残渣、金属熱圧延加工の潤滑油として使用する植物性油脂の廃油脂、マーガリン、ショートニング等の加工油脂類製造工程で発生する廃油脂、不良品および期間切れ等返品食用油脂、食用油魚肉加工工程で発生する動物油脂などが挙げられる。
 本発明に係る固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法において用いられるアルコールは、炭素数1乃至10の飽和脂肪族炭化水素基であることが好ましい。このようなアルコールとしては、メタノール、エタノール、n-プロパノール、及びn-ブタノールなどの1級アルコール、イソプロパノール、及びsec-ブタノールなどの2級アルコール、並びにtert-ブタノールなどの3級アルコールを用いることができる。この中で、メタノール及びエタノールなどの1級アルコールが特に好ましい。なお、これらのアルコールの含水量は特に制限がないが、水分含有量が低いほど、より好ましい。
 本発明に係る固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法において、トリグリセリドとアルコールを反応させた場合、化1で表される反応で脂肪酸アルキルエステルを得ることができる。また、脂肪酸とアルコールを反応させた場合、化2で表される反応で脂肪酸アルキルエステルを得ることができる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本発明の固体酸触媒は、無機多孔質担体(A)に、周期律表第VIb族から選ばれる少なくとも一種の金属元素の酸化物(B)とマンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)からなる群から選ばれる少なくとも一種の金属元素の酸化物または硫酸化物(C)及びホウ素(B)と珪素(Si)から選ばれる少なくとも一種の非金属元素の酸化物(D)を担持させて得られる。
 前記の無機多孔質担体としては、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、マグネシア(MgO)、ジルコニア(ZrO)が用いられる。これらの無機多孔質担体は、単独で用いても、2種以上を混合して用いても良い。本発明においては、特にアルミナ、シリカが好適に用いられるが、1種のみを選択する場合はアルミナ(Al)が最も好ましい。2種類以上を選択する場合は、シリカ-アルミナ(SiO-Al)がシリカとアルミナのいずれか1種の場合よりも性能が高く、より好適である。
 本発明による固体酸触媒は、このように、無機多孔質担体上に、活性金属成分として、第VIb族金属元素を酸化物換算で触媒の全体量に対して2.5~25質量%と、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)からなる群から選ばれる少なくとも一種の金属元素の酸化物または硫酸化物を酸化物換算で触媒の全体量に対して1~10質量%と、ホウ素(B)と珪素(Si)から選ばれる少なくとも一種の非金属元素の酸化物を酸化物換算で触媒の全体量に対して0.5~5質量%を担持させてなるものである。
 本発明において、上記第VIb族金属元素は、クロム、タングステン及びモリブデンから選ばれる。これらの金属元素は、担体上に金属酸化物として担持される。酸化価態としては特に制限はないが、Cr2O3、CrO2、CrO3、MoO2、MoO3、WO2、WO3等が挙げられる。これらの金属酸化物は、単独で用いても、2種類以上を混合して用いても良い。担持あるいは混合の方法としては特に制限はないが、通常の含浸法や固相での混合法等が好適に用いられる。
 このように、上記第VIA族金属元素を酸化物として担体上に担持させるための原料としては、特に、限定されるものではないが、例えば、クロム酸アンモニウム、硝酸クロム、タングステン酸アンモニウム、メタタングステン酸アンモニウム、モリブデン酸アンモニウム、タングステン酸、塩化タングステンが用いられる。これらの化合物は、単独で、又は2種以上を組み合わせて用いることができる。
 上記第VIb族金属元素と共に触媒担体に担持させる金属元素の酸化物または硫酸化物(C)は、ママンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)から選ばれる1種または2種以上が好ましく、特に、スズと亜鉛が好ましく用いられる。これらの金属元素は、通常、酸化物または硫酸化物として、担体に担持されている。
 このように、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)から選ばれる金属を酸化物または硫酸化物として担体に担持させるための原料は、特に、限定されないが、例えば、硫酸塩、硝酸塩、炭酸塩、酢酸塩、リン酸塩等が好ましく用いられる。金属の硫酸化物を得るためには、特に硫酸塩は最も好ましい。これらの化合物も、単独で、又は2種以上を組み合わせて用いられる。
 更に、上記第VIb族金属とマンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)から選ばれる金属と共に、担体上に担持させる非金属元素の酸化物(D)としては、ホウ素(B)と珪素(Si)から選ばれる1種または2種以上の非金属の酸化物を挙げることができる。具体的には、ホウ酸、けい酸、エチルけい酸等を挙げることができるが、なかでも、特に、ホウ酸とエチルけい酸が好ましく用いられる。ホウ素とケイ素も、通常、担体上に酸化物として担持されている。
 本発明によれば、これら活性成分の好ましい担持量は、酸化物換算で、担体の重量を基準として、金属酸化物(B)が2.5~25質量%で、好ましくは5~15質量%であり、金属酸化物または金属硫酸化物(C)が1~10質量%で、好ましくは2~5質量%であり、非金属酸化物(D)が0.5~5質量%で、好ましくは1~2.5質量%であり、かつB、C、Dの合計が30%以下である。
 触媒における第VIb族金属成分の担持量が2.5質量%未満であるときは、十分な触媒活性を得られず、他方、担持量が25質量%を越えても、活性金属の分散性が悪くなって、上記触媒活性が飽和するので、触媒製造の経済性に劣る。
 他方、金属元素の酸化物または硫化物(C)の担持量が1質量%未満であるときは、助触媒としての効果が十分に得られず、従って、油脂を効率的にエステルに変換することができない。しかし、10質量%を越えて担持させても、上記エステル化活性は飽和し、触媒活性が逆に低下することがあるので、経済的に不利である。
 次に、非金属元素の酸化物(D)は、金属元素の酸化物(B)と金属元素の酸化物または硫酸化物(C)の担体上での分散性を高め、活性サイトを増やし、金属酸化物が還元され、触媒から溶出されることを防ぐのに有用である。非金属元素の酸化物(D)の担持量が0.5質量%未満であるときは、上記効果を有効に得ることができない。しかし、5質量%を越えても、上記効果が飽和するので、不経済となる。
 なお、B、C、Dの合計が30%以下であり、好ましくは25%以下である。B、C、Dの合計が30%を超えると、活性金属の分散性が悪くなって、上記触媒活性が飽和するので、触媒製造の経済性に劣る。
 前記の固体酸触媒の製造方法において、先に非金属酸化物(D)を無機多孔質担体(A)に含浸させてから、金属酸化物(B)と金属酸化物(C)を含浸すること、金属酸化物(B)と金属酸化物(C)を無機多孔質担体(A)に含浸すると同時に、非金属酸化物(D)を含浸すること、先に金属酸化物(B)と金属酸化物(C)を無機多孔質担体(A)に含浸させてから、非金属酸化物(D)を含浸することのいずれの方法を用いることができる。中でも、特に金属酸化物(B)と金属酸化物(C)を無機多孔質担体(A)に含浸すると同時に、非金属酸化物(D)を含浸する方法は、効果が著しい。
 前記担体に上記活性成分を担持させて触媒を得るに際して、その調製方法は、特に限定されず、本発明による触媒は、従来より知られている任意の方法によって調製することができるが、例えば、含浸法によって容易に調製することができる。
 即ち、上記第VIb族とマンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)からなる群から選ばれる少なくとも一種の金属元素の化合物とを水に溶解させて水溶液とし、これを担体に含浸させ、その後、好ましくは、120℃で2~24時間加熱、乾燥し、次いで、400~750℃で2~24時間程度、焼成することによって、本発明による触媒を得ることができる。
 このようにして得られる本発明による固体酸触媒の性状、即ち、比表面積、細孔容積、平均細孔径は、特に限定されるものではないが、脂肪酸または/及び動植物油脂を効率的に脂肪酸アルキルエステルに変換するためには、比表面積が100m/g以上であり、細孔容積が0.3~1.2cc/gの範囲にあり、平均細孔径が60~120Åの範囲にあるのが好ましい。
 なお、本発明による固体酸触媒の酸度は、特に限定されるものではないが、脂肪酸または/及び動植物油脂から脂肪酸アルキルエステルへの変換効率を高め、他の副反応を抑えるために、その酸度を表すハメット関数H0が-1.5~-11であることが好ましく、-4~-10であることがより好ましい。この酸度範囲内で、トリグリセリドとアルコールとのエステル交換反応(化1)及び脂肪酸とアルコールとのエステル化反応(化2)がスムーズに進行でき、副反応が少なく、脂肪酸または/及びトリグリセリドとアルコールから脂肪酸アルキルエステルを製造する効率が高いからである。
 本発明によれば、触媒の形状は、特に、限定されたものではなく、通常、パウダー、押出成型、打錠成型等を用いることができる。押出成型の形状は、一般には、円柱、三つ葉、四つ葉、リング等があり、本発明では特に制限されないが、好ましくは円柱、三つ葉、四つ葉である。円柱、三つ葉、四つ葉ならば、リング等の他の形状の触媒に比べて触媒充填を密に行うことができ、また球や顆粒等に比べて圧力損失も抑制できる。また、大きさは、通常、直径が1/10~1/22インチ、長さが3.2~3.6インチのものであることが好ましい。
 つぎに、図1に示す各工程を詳しく説明する。
 図1は本発明の脂肪酸アルキルエステルの製造方法とその製造装置における脂肪酸アルキルエステルの製造方法を示すブロック図である。
 同図に示すように、本発明の脂肪酸アルキルエステルの製造方法は、脂肪酸または/及びトリグリセリドとアルコールとを、温度100~250℃、圧力0.1~6.0MPaで固体酸触媒と接触して脂肪酸アルキルエステル反応液Aを得る第一反応工程(S10)と、前記第一反応工程に次いで、前記脂肪酸アルキルエステル反応液Aから前記アルコール、水およびグリセリンを分離除去して水分濃度が0.1%以下となる粗脂肪酸アルキルエステルAを得る第一分離工程(S20)と、前記粗脂肪酸アルキルエステルAと前記アルコールを、温度60~210℃、圧力0.1~6.0MPaで固体酸触媒と接触して反応させる第二反応工程(S30)と、更に、第二反応工程で得られる粗脂肪酸アルキルエステル化反応液Bから前記アルコール、水およびグリセリンを除去して粗脂肪酸アルキルエステルBを得る第二分離工程(S40)とからなる。
 つぎに、本発明の製造方法を説明する。
(i)第一反応工程(S10)
 本発明では、脂肪酸または/及びトリグリセリドとアルコールとを、温度100~250℃、より好ましくは120~230℃、特に好ましくは140~210℃、圧力0.1~6.0MPa、好ましくは0.5~5MPa、特に好ましくは1.0~4.5MPaで固体酸触媒と接触して反応させる。100℃以下でもエステル化とエステル交換反応は進行するが、反応速度が遅く、生産効率が悪くなる。一方、反応温度が250℃以上になると、エステル化とエステル交換反応以外の副反応が激しくなり、脂肪酸アルキルエステルの収率が逆に低くなる場合がある。
 脂肪酸または/及びトリグリセリドとアルコールとを固体酸触媒と接触する時間を重量空間速度(WHSV)と表される場合、0.3~1.5h-1 、好ましくは0.4~0.8h-1 である。一般的にWHSVが小さいほど、接触時間が長くなり、反応率が高くなるが、WHSVを0.3h-1 以下にしても小幅の反応率向上しか得られなく、生産性の観点からでは好ましくない。WHSVが1.5h-1を超えると、反応率が大幅に低下するので、生産性の観点からでは好ましくない。
 上記のエステル化反応では、1モルの脂肪酸に対して1モルのアルコールを反応させると、対応するモルの脂肪酸アルキルエステルが生成する。また、エステル交換反応では、1モルのトリグリセリドに対して3モルのアルコールを反応させると、対応する1モルの脂肪酸アルキルエステルが生成する。しかし、前記のエステル化反応とエステル交換反応ともに、平衡反応であり、反応生成物の濃度が高くなるにつれて、逆反応も激しくなる。逆反応を抑え、できるだけ正反応を進行させるには、反応物であるアルコールの量を過剰にするのは有効である。従って、本発明では、第一工程において、脂肪酸または/及びトリグリセリドに対するアルコールのモル比は、アルコール対脂肪酸のモル比換算で1.2~40であり、より好ましくは1.5~30、特に好ましくは3~15である。また、第二工程において、粗脂肪酸アルキルエステルに対するアルコールのモル比は、アルコール対脂肪酸のモル比換算で1.1~30であり、より好ましくは1.5~25、特に好ましくは2~20である。これによって、脂肪酸または/及びトリグリセリドから、効率的に脂肪酸アルキルエステルを製造することができる。前記モル比が1.1以下を下回ると、エステル化またはエステル交換反応が不十分となり、一方、前記モル比が40を越えると反応装置が巨大化してプロセスエネルギー消耗量も多くなり不経済である。
 なお、第一工程において、原料油脂に対して、0~3%の水を添加して反応させてもよい。反応原料に水を共存させると、反応率がさらに高められるので、好適である。原料油脂に対する前記水の添加量は、3%を超えると、反応率が逆に低下するので、好ましくない。
(ii)第一分離工程(S20)
 第一分離工程は、第一反応工程で得た脂肪酸アルキルエステル反応液Aから前記アルコール、グリセリン及び水を分離除去して粗脂肪酸アルキルエステルAを得る工程である。上記脂肪酸アルキルエステル反応液Aには、脂肪酸アルキルエステルを主成分とする脂肪酸アルキルエステル留分のほかに、グリセリン、水および過剰に添加したアルコールが含まれる。
 脂肪酸アルキルエステル反応液Aから前記アルコールと水を分離除去する方法としては、脂肪酸アキルエステル留分とアルコールと水との沸点差を利用した単蒸留、精留等が挙げられる。単蒸留と精留は、常圧下で行ってもよいし、減圧下で行ってもよい。常圧蒸留の場合、アルコールと水のいずれかの沸点よりも高い温度で行うとよい。また、減圧蒸留の場合、蒸留装置内の真空度に応じて蒸留温度を適宜に設定すればよい。蒸留装置内の真空度が高いほど蒸留温度が低くても蒸留できる。また、本発明では、粗脂肪酸アルキルエステルに含まれる水の濃度が0.1%以下となることを蒸留操作の制御指標とする。粗脂肪酸アルキルエステルA中の水分含有量が低いほど、アルコールと反応する第二反応工程で、より酸価が低い脂肪酸アルキルエステルが得られるため、好適である。
 前記蒸留工程によって留出されたアルコールは水を含む粗アルコールとなるが、この粗アルコールを通常の精留方法を用いて精留すれば、純度を99.8%以上のエタノールにすることができ、本発明の原料として再利用できる。
 なお、脂肪酸アルキルエステル反応液Aからグリセリンを分離除去する方法としては、脂肪酸アルキルエステル留分とグリセリンとの比重差及び極性の違いを利用した沈降分離、遠心分離、静電分離などが挙げられる。
(iii)第二反応工程(S30)
 本発明では、第二反応工程で前記アルコール、水およびグリセリンが分離除去された粗脂肪酸アルキルエステルAを、温度60~210℃、圧力0.1~6.0MPaで固体酸触媒と接触して反応させることが好ましい。原料として使用した動植物油脂には通常遊離脂肪酸が含まれている。その遊離脂肪酸がアルコールと反応して水を副生する。反応系内に水が存在すると、生成した脂肪酸アルキルエステルが加水分解され、遊離脂肪酸に戻される場合がある。反応系内の水濃度が高いほど、脂肪酸アルキルエステルの加水分解反応が激しくなる。脂肪酸アルキルエステルに含まれる遊離脂肪酸の濃度が一定レベルを超えると、化成品、バイオディーゼル燃料などとして定められている品質基準に合格しない場合がある。上記脂肪酸アルキルエステルに残留している遊離脂肪酸は、アルコールとともに固体酸触媒と接触すると脂肪酸アルキルエステルに変換することができる。当然のことではあるが、上記脂肪酸アルキルエステルに残留しているモノグリセリド、ジグリセリド及びトリグリセリドも第二反応工程の条件下でエステル交換反応によって脂肪酸アルキルエステルに変換しうる。このように、上記脂肪酸アルキルエステルに残留される少量の遊離脂肪酸とグリセリドをさらに脂肪酸アルキルエステルに変換することによって、エステル化率を向上させることができ、最終製品となる脂肪酸アルキルエステルの収率と純度ともに高められる。
(iv)第二分離工程(S40)
 一方、第二反応工程によって得られた粗脂肪酸アルキルエステル化反応液Bには、脂肪酸アルキルエステルと共に、前記アルコール、グリセリン及び水が含まれる。そこで、第二分離工程では、上記反応液から前記アルコール、グリセリン及び水を分離除去し、より酸価が低く純度が高い粗脂肪酸アルキルエステルBを製造することができる。
 上記粗脂肪酸アルキルエステル化反応液Bからの前記アルコール、グリセリン及び水の分離除去は、第一分離工程と同様な方法で行うことができる。前記分離工程からのアルコールは水を含む粗アルコールとなるが、この粗アルコールを通常の精留方法を用いて精留すれば、純度を99.8%以上のアルコールにすることができ、本発明の原料として再利用できる。
 また、本発明では、粗脂肪酸アルキルエステルBに含まれる遊離グリセリンの濃度が0.02%以下となることをグリセリン分離操作の制御指標とする。粗脂肪酸アルキルエステルB中の遊離グリセリン含有量が低いほど、より後続の精製工程でより純度の高い脂肪酸アルキルエステルが得られるため、好適である。
(v)エステル蒸留工程(S50)
 エステル蒸留工程は、第二分離工程で得た粗脂肪酸アルキルエステルBを、減圧下で蒸留し、沸点100℃以下および360℃以上の留分をカットして、より純度の高い精製脂肪酸アルキルエステルを得る工程である。
 上記粗脂肪酸アルキルエステルBは、そのままでも、化成品、バイオディーゼル燃料などとして利用できる場合もあるが、より高い純度が要求される場合、減圧蒸留による精製が有効である。特に使用済み天ぷら油などの廃棄油脂を原料とする場合、第二分離工程で得られる粗脂肪酸アルキルエステルには、油脂の酸化分解生成物、熱重縮合物、有色物などの不純物が含まれる場合がある。これらの不純物は、本発明の脂肪酸アルキルエステル製造方法では脂肪酸アルキルエステルに変換されなく、脂肪酸アルキルエステル相に残る。上記の粗脂肪酸アルキルエステルを減圧下で蒸留する工程において、前記の不純物が沸点100℃以下の軽質分及び沸点360℃以上の重質分としてカットされ、粗脂肪酸アルキルエステルBから除去されることになる。
 粗脂肪酸アルキルエステルBの減圧蒸留は、15torr以下、より好ましくは5torr以下の真空度で行い、沸点100℃以上かつ360℃以下の脂肪酸アルキルエステルを留出させるように蒸留温度などの条件が設定される。
 以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例に何ら限定されるものではない。
実施例1<触媒Aの製造>
 ベーマイト(大明化学工業株式会社製)100重量部に対して、40%硝酸5重量部と蒸留水100重量部を混練し、押出成形後、500℃で6時間焼成して直径1.2mmの柱状成形物のγ-アルミナ担体(細孔容積0.53ml/g、比表面積185m/g、平均細孔直径75Å)を得た。
 ガラス製ビーカー中で、メタタングステン酸アンモニウム((NH4)6H2W12O40・nH2O)10.63gと硫酸鉄(III)(Fe2(SO)3)11.26gおよびホウ酸2.66gを蒸留水110gに溶解させ、メタタングステン酸アンモニウム、硫酸鉄(III)およびホウ酸の混合水溶液を調製した。
 上記のメタタングステン酸アンモニウム、硫酸鉄(III)およびホウ酸の混合水溶液を、ガラス製ビーカー中で、前記のγ-アルミナ担体100gに含浸した。この後、120℃で乾燥し、マッフル炉中で500℃にて6時間焼成を行い、触媒Aを調整した。
実施例2<触媒Bの製造>
 硫酸鉄(III)(Fe2(SO)3)11.26gに代えて、硫酸コバルト(II)七水和物(CoSO4・7H2O)15.24gを用いた以外には、実施例1と同様の方法で触媒Bを調整した。
実施例3<触媒Cの製造>
 硫酸鉄(III)(Fe2(SO)3)11.26gに代えて、硫酸ニッケル(II)六水和物(NiSO4・6H2O)15.84gを用いた以外には、実施例1と同様の方法で触媒Cを調整した。
実施例4<触媒Dの製造>
 硫酸鉄(III)(Fe2(SO)3)11.26gに代えて、硫酸銅(II)七水和物(CuSO・7H2O)15.90gを用いた以外には、実施例1と同様の方法で触媒Dを調整した。
実施例5<触媒Eの製造>
 硫酸鉄(III)(Fe2(SO)3)11.26gに代えて、硫酸亜鉛(Zn(SO)2)8.92gを用いた以外には、実施例1と同様の方法で触媒Eを調整した。
実施例6<触媒Fの製造>
 ガラス製ビーカー中で、モリブデン酸六アンモニウム四水和物((NH4)6Mo7O24・4H2O)12.26gと硫酸亜鉛(ZnSO)8.92gおよびホウ酸(H3BO3)2.66gを水110gに溶解させ、モリブデン酸六アンモニウム四水和物、硫酸亜鉛およびホウ酸の混合水溶液を調製した。
 上記のモリブデン酸六アンモニウム四水和物、硫酸亜鉛およびホウ酸の混合水溶液を、ガラス製ビーカー中で、実施例1と同様の方法で調整したγ-アルミナ担体100gに含浸した。この後、120℃で乾燥し、マッフル炉中で500℃で6時間焼成を行い、触媒Fを調整した。
実施例7<触媒Gの製造>
 ガラス製ビーカー中で、けい酸エチル(Si(OC2H5)4)5.20を120gのエタノールに溶解させ、けい酸エチルのエタノール溶液を調製した。
 上記のけい酸エチルのエタノール溶液を、ガラス製ビーカー中で、実施例1と同様の方法で調整したγ-アルミナ担体100gに含浸した。この後、120℃で乾燥し、けい酸エチルを担持したγ-アルミナを得た。
 別のビーカーで、モリブデン酸六アンモニウム四水和物((NH4)6Mo7O24・4H2O)12.26gと硫酸コバルト(II)七水和物(CoSO4・7H2O)15.24gを溶解させ、モリブデン酸六アンモニウム四水和物と硫酸コバルト(II)七水和物の混合水溶液を調製した。
 上記のモリブデン酸六アンモニウム四水和物と硫酸コバルト(II)七水和物の混合水溶液を、ガラス製ビーカー中で、上記のけい酸エチルを担持したγ-アルミナに含浸した。この後、120℃で乾燥し、マッフル炉中で500℃で6時間焼成を行い、触媒Gを調整した。
実施例8<触媒Hの製造>
 硫酸コバルト(II)七水和物(CoSO4・7H2O)15.24gに代えて、塩化スズ(IV)(SnCl4)7.78gを用いた以外には、実施例7と同様の方法で触媒Hを調整した。
実施例9<触媒Iの製造>
 ベーマイト(大明化学工業株式会社製)と珪酸n水和物(和光純薬工業株式会社製)の混合物(ベーマイト:珪酸n水和物=1:1)100重量部に対して、40%硝酸5重量部と蒸留水100重量部を混練し、押出成形後、500℃で6時間焼成して直径1.2mmの柱状成形物のシリカ-アルミナ担体(細孔容積0.65m2/g、比表面積225m2/g、平均細孔直径105Å)を得た。
 ガラス製ビーカー中で、モリブデン酸六アンモニウム四水和物((NH4)6Mo7O24・4H2O)12.26gと硫酸ガリウム(III)n水和物(Ga(SO)3・nH2O)12.28gおよびホウ酸(H3BO3)2.66gを蒸留水110gに溶解させ、モリブデン酸六アンモニウム四水和物、硫酸ガリウム(III)n水和物およびホウ酸の混合水溶液を調製した。
 上記のモリブデン酸六アンモニウム四水和物、硫酸ガリウム(III)n水和物およびホウ酸の混合水溶液を、ガラス製ビーカー中で、前記のシリカ-アルミナ担体100gに含浸した。この後、120℃で乾燥し、マッフル炉中で500℃にて6時間焼成を行い、触媒Iを調整した。
比較例1<比較触媒Aの製造>
 ガラス製ビーカー中で、メタタングステン酸アンモニウム((NH4)6H2W12O40・nH2O)10.63gと硝酸亜鉛六水和物(Zn(NO3)2・6H2O)12.26gを水110gに溶解させ、メタタングステン酸アンモニウムと硝酸亜鉛六水和物の混合水溶液を調製した。
 上記のメタタングステン酸アンモニウムと硝酸亜鉛六水和物の混合水溶液を、ガラス製ビーカー中で、実施例1と同様の方法で調整したγ-アルミナ担体100gに含浸した。この後、120℃で乾燥し、マッフル炉中で500℃にて6時間焼成を行い、比較触媒Aを調整した。
比較例2<比較触媒Bの製造>
 ガラス製ビーカー中で、メタタングステン酸アンモニウム((NH4)6H2W12O40・nH2O)10.63gを110gの蒸留水に溶解させ、メタタングステン酸アンモニウムの水溶液を調製した。
 上記のメタタングステン酸アンモニウムの水溶液を、ガラス製ビーカー中で、実施例1と同様の方法で調整したγ-アルミナ担体100gに含浸した。この後、120℃で乾燥し、マッフル炉中で500℃にて6時間焼成を行い、比較触媒Bを調整した。
比較例3
 メタタングステン酸アンモニウム((NH4)6H2W12O40・nH2O)10.63gに代えて、モリブデン酸六アンモニウム四水和物((NHMo24・4HO)12.26gを用いた以外は、比較例2と同様の方法で比較触媒Cを調整した。
実施例10~18及び比較例4~6(触媒性能評価)
 耐圧硝子工業製ポータブルリアクターTPR-2型の反応容器に、パーム油とパーム脂肪酸蒸留物(PFAD)の混合油(酸価120mg KOH/g、水分0.06%)50g、メタノール4.16gと実施例1~実施9及び比較例1~3で調製した触媒のパウダー3.0gを加えて蓋をして密封した。これを150℃で圧力0.8MPaで1.5時間攪拌して脂肪酸メチルエステル化物反応液を得た。反応液を静置してメタノール層とエステル層に分層させた。メタノール層の比色分析によって触媒からの金属溶出有無を観察し、エステル層のGC分析と酸価測定によってそれぞれTG転化率とFFA残留率を求めた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
<実施例19> 廃食用油原料からの脂肪酸メチルエステルの製造
 油脂は、一般家庭から回収された廃食用油(遊離脂肪酸2%、水分0.9%)を用いた。
 アルコールは、メタノール(純度99.8%)を用いた。
 固体酸触媒は、実施例1で調製した触媒Aを用いた。
 廃食油からの脂肪酸メチルエステルの製造は、図2に示す固定床方式による高圧流通式反応装置を用いて、表2に示す反応条件で行った。反応開始後10時間後に、それぞれNo.1粗FAME移送ポンプ(H)出口、No.2粗FAME移送ポンプ(M)出口及び精製FAME移送ポンプ(T)出口から粗脂肪酸メチルエステルA、粗脂肪酸メチルエステルB及び精製脂肪酸メチルエステルのサンプルを採取し、分析した。粗脂肪酸メチルエステルA、粗脂肪酸メチルエステルBを分析することによって求められたトリグリセリド(TG)の転化率と遊離脂肪酸(FFA)の残留率を表3に示し、精製脂肪酸メチルエステルの性状分析結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<実施例20> 粗パーム油からの脂肪酸メチルエステルの製造
 油脂は、粗パーム油(遊離脂肪酸4.2%、水分0.2%)を用いた。
 アルコールは、メタノール(純度99.8%)を用いた。
 固体酸触媒は、実施例1で調製した触媒Aを用いた。
 粗パーム油からの脂肪酸メチルエステルの製造は、実施例19と同様な装置を用い、実施例19と同様な反応条件で行った。反応開始後10時間後に、それぞれNo.1粗FAME移送ポンプ(H)出口、No.2粗FAME移送ポンプ(M)出口及び精製FAME移送ポンプ(T)出口から粗脂肪酸メチルエステルA、粗脂肪酸メチルエステルB及び精製脂肪酸メチルエステルのサンプルを採取し、分析した。粗脂肪酸メチルエステルA、粗脂肪酸メチルエステルBを分析することによって求められたトリグリセリド(TG)の転化率と遊離脂肪酸(FFA)の残留率を表3に示し、精製脂肪酸メチルエステルの性状分析結果を表4に示す。
<実施例21> パーム脂肪酸蒸留物(PFAD)からの脂肪酸メチルエステルの製造
 油脂は、パーム脂肪酸蒸留物(PFAD)(遊離脂肪酸80%、水分0.2%)を用いた。アルコールは、メタノール(純度99.8%)を用いた。固体酸触媒は、実施例1で調整した触媒Aを用いた。
 PFADからの脂肪酸メチルエステルの製造は、実施例19と同様な装置を用い、No.1反応器とNo.2反応器の温度がそれぞれ200℃と160℃であること以外、実施例19と同様な条件で行った。反応開始後10時間後に、それぞれNo.1粗FAME移送ポンプ(H)出口、No.2粗FAME移送ポンプ(M)出口及び精製FAME移送ポンプ(T)出口から粗脂肪酸メチルエステルA、粗脂肪酸メチルエステルB及び精製脂肪酸メチルエステルのサンプルを採取し、分析した。粗脂肪酸メチルエステルA、粗脂肪酸メチルエステルBを分析することによって求められたトリグリセリド(TG)の転化率と遊離脂肪酸(FFA)の残留率を表3に示し、精製脂肪酸メチルエステルの性状分析結果を表4に示す。
 本発明の固体酸触媒は、大量廃棄されていたる廃油脂を含めて、様々な油脂原料から、低コスト・高効率でオレオケミカル原料または軽油代替燃料として利用できる高純度の脂肪酸アルキルエステルを製造するのに利用される。また、化学工業にいて、アルキル化反応、アシル化反応、エステル化反応、異性化反応等の酸触媒を必要とする反応の触媒としても利用できる。これらの反応には、従来硫酸、塩化アルミニウム、フッ化水素、リン酸、p-トルエンスルホン酸等の酸触媒が使用されているが、これらの酸触媒は金属を腐食させる性質があり、高価な耐食材料の使用あるいは耐食処理を施す必要があった。また通常、反応後の反応物質との分離が困難な上に廃酸処理が必要であり、アルカリ洗浄等の繁雑な工程を経なければならず、環境面にも大きな問題があった。さらに触媒を再利用することも非常に困難であった。これらの問題点は、本発明の固体酸触媒を使用することによって解決しうる。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
A 原料油供給ポンプ
B 第1アルコール供給ポンプ
C 第2アルコール供給ポンプ
D No.1加熱器
E No.1反応器
F 第1気液分離器
G 第1メタノール蒸発缶
H No.1粗FAME移送ポンプ
I No.2加熱器
J No.2反応器
K 第2気液分離器
L 第2メタノール蒸発缶
M No.2粗FAME移送ポンプ
N FAME加熱器
O FAME蒸発缶
P FAME循環ポンプ
Q コンデンサー
R 真空ポンプ
S 精製FAMEタンク
T 精製FAME移送ポンプ
10~30 配管

Claims (10)

  1.  シリカ、アルミナ、チタニア、マグネシア及びジルコニアからなる群から選ばれる少なくとも一種の無機多孔質担体(A)に、周期律表第VIb族から選ばれる少なくとも一種の金属元素の酸化物(B)とマンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、スズ(Sn)からなる群から選ばれる少なくとも一種の金属元素の酸化物または硫酸化物(C)及びホウ素(B)と珪素(Si)から選ばれる少なくとも一種の非金属元素の酸化物(D)を担持させて得られる脂肪酸アルキルエステル製造用の固体酸触媒。
  2.  無機多孔質担体(A)に対して、金属酸化物(B)、金属酸化物または硫酸化物(C)及び非金属酸化物(D)の担持量は金属の最高価酸化物換算でそれぞれ2.5~25%、1~10%及び0.5~5%であり、かつB、C、Dの合計が30%以下であることを特徴とする請求項1記載の脂肪酸アルキルエステル製造用の固体酸触媒。
  3.  請求項1または請求項2に記載の固体酸触媒の製造方法において、(a)無機多孔質担体(A)に、金属酸化物(B)と金属酸化物または硫酸化物(C)の前駆体を含浸させる工程; (b)工程(a)の前か、その間かまたはその後で該担体に、非金属酸化物(D)の前駆体を含浸させる工程からなること特徴とする脂肪酸アルキルエステル製造用固体酸触媒の製造方法。
  4.  請求項1または請求項2に記載の固体酸触媒の製造方法において、無機多孔質担体(A)に金属酸化物(B)と金属酸化物または硫酸化物(C)の水溶性前駆体を含浸させ、金属酸化物または金属硫酸化物の前駆体が熱分解される温度以下で乾燥した後に、金属酸化物(D)の前駆体を含浸させて、乾燥した後、酸素雰囲気中400~750℃で焼成することを特徴とする脂肪酸アルキルエステル製造用固体酸触媒の製造方法。
  5.  脂肪酸または/及びトリグリセリドとアルコールとを請求項目1ないし4記載の固体酸触媒の存在下で反応させて、脂肪酸アルキルエステルを製造する方法であって、脂肪酸または/及びトリグリセリドとアルコールとを、温度100~250℃、圧力0.1~6.0MPaで固体酸触媒と接触して脂肪酸アルキルエステル反応液Aを得る第一反応工程と、
    前記第一反応工程に次いで、前記脂肪酸アルキルエステル反応液Aから前記アルコール、水およびグリセリンを除去して水分濃度が0.1%以下となる粗脂肪酸アルキルエステルAを得る第一分離工程と、
    前記粗脂肪酸アルキルエステルAと前記アルコールを、温度60~210℃、圧力0.1~6.0MPaで固体酸触媒と接触して反応させる第二反応工程と、
    更に、第二反応工程で得られる脂肪酸アルキルエステルBから前記アルコール、水およびグリセリンを除去して遊離グリセリン濃度が0.02%以下となる脂肪酸アルキルエステルBを得る第二分離工程とを含むことを特徴とする脂肪酸アルキルエステルの製造方法。
  6.  第二分離工程で得られる粗脂肪酸アルキルエステルBを、減圧下で蒸留し、沸点が100℃以下および360℃以上の留分をカットして、精製脂肪酸アルキルエステルを得るエステル蒸留工程を含むことを特徴とする請求項5記載の脂肪酸アルキルエステルの製造方法。
  7.  固体酸触媒が、請求項1と請求項2のいずれかに記載の固体酸触媒であることを特徴とする、請求項5と請求項6のいずれかに記載の脂肪酸アルキルエステルの製造方法。
  8.  前記第一反応工程において、脂肪酸または/及びトリグリセリドに対するアルコールのモル比は、アルコール対脂肪酸のモル比換算で1.2~40であり、前記第二工程において、粗脂肪酸アルキルエステルに対するアルコールのモル比は、アルコール対脂肪酸のモル比換算で1.1~30であることを特徴とする請求項5~請求項7のいずれかに記載の脂肪酸アルキルエステルの製造方法。
  9.  前記第一分離工程と前記第二分離工程において、脂肪酸アルキルエステル反応液Aまたは脂肪酸アルキルエステル反応液Bを常圧または減圧下で前記アルコールと水のいずれかの沸点より高い温度に加熱し、前記アルコールと水を蒸発させてから、グリセリンを分離することを特徴とする請求項5~請求項8のいずれかに記載の脂肪酸アルキルエステルの製造方法。
  10.  前記第一反応工程において、原料である脂肪酸または/及びトリグリセリドに対して0~3%の水を添加して反応させることを特徴とする請求項5~請求項9のいずれかに記載の脂肪酸アルキルエステルの製造方法。
PCT/JP2013/056908 2012-03-13 2013-03-13 固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法 WO2013137286A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/385,076 US20150018572A1 (en) 2012-03-13 2013-03-13 Solid Acid Catalyst, Method of Manufacturing the Same and Method of Manufacturing Fatty Acid Alkyl Ester Using the Same
BR112014022814-0A BR112014022814B1 (pt) 2012-03-13 2013-03-13 método de produção de éster alquílico de ácidos graxos
JP2014504948A JP6226861B2 (ja) 2012-03-13 2013-03-13 固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法
CA2867273A CA2867273C (en) 2012-03-13 2013-03-13 Solid acid catalyst, method of manufacturing the same and method of manufacturing fatty acid alkyl ester using the same
EP13760473.2A EP2826561B1 (en) 2012-03-13 2013-03-13 Method for manufacturing a fatty acid alkyl ester using a solid acid catalyst
CN201380024395.2A CN104507569B (zh) 2012-03-13 2013-03-13 固体酸催化剂、其制造方法以及使用了其的脂肪酸烷基酯的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-055461 2012-03-13
JP2012-055462 2012-03-13
JP2012055461 2012-03-13
JP2012055462 2012-03-13

Publications (1)

Publication Number Publication Date
WO2013137286A1 true WO2013137286A1 (ja) 2013-09-19

Family

ID=49161192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056908 WO2013137286A1 (ja) 2012-03-13 2013-03-13 固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法

Country Status (9)

Country Link
US (1) US20150018572A1 (ja)
EP (1) EP2826561B1 (ja)
JP (1) JP6226861B2 (ja)
CN (1) CN104507569B (ja)
BR (1) BR112014022814B1 (ja)
CA (1) CA2867273C (ja)
MY (1) MY170828A (ja)
TW (1) TW201347845A (ja)
WO (1) WO2013137286A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098467A (zh) * 2014-07-09 2014-10-15 常州大学 一种合成丁氧基三乙二醇丙烯酸酯的方法
JP5832678B1 (ja) * 2015-02-25 2015-12-16 日本ケッチェン株式会社 脂肪酸アルキルエステル製造触媒、その製造方法及び当該触媒を用いた脂肪酸アルキルエステルの製造方法
WO2020022143A1 (ja) * 2018-07-23 2020-01-30 富士通商株式会社 バイオ燃料の製造方法
CN111411000A (zh) * 2020-03-31 2020-07-14 山东骏飞环保科技有限公司 一种贵金属fcc催化剂再生烟气助燃剂及其制备方法
WO2021106619A1 (ja) * 2019-11-29 2021-06-03 富士通商株式会社 流通式反応装置を用いたバイオ燃料の製造方法
JP2021091875A (ja) * 2019-11-29 2021-06-17 国立大学法人東京農工大学 流通式反応装置を用いたバイオ燃料の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3268307A4 (en) * 2015-03-10 2018-07-25 Ph Matter, LLC Chromium-free water-gas shift catalyst and process for making the same
MX2016004133A (es) * 2016-03-31 2017-09-29 Inst Mexicano Del Petróleo Uso de catalizadores acidos heterogeneos a base de sales metalicas mxtas para producir biodiesel.
KR102062333B1 (ko) * 2016-06-02 2020-01-03 유성민 지방산 메틸 또는 에틸 에스테르를 제조하기 위한 고체 촉매 및 이를 이용한 지방산 메틸 또는 에틸 에스테르 제조방법
KR20170140464A (ko) * 2016-06-10 2017-12-21 (주)대원인터내셔널 지방산 메틸 에스테르의 생산에 사용되는 세라믹 고체촉매 및 이를 제조하는 방법
CN106582802A (zh) * 2016-12-12 2017-04-26 湖南理工学院 一种酯化反应催化剂的制备方法
MY191588A (en) * 2017-06-06 2022-06-30 Univ Putra Malaysia Method of producing fatty acid methyl ester
CN107837811A (zh) * 2017-11-28 2018-03-27 广西锟德能源科技有限公司 一种酯化催化剂、酯化催化系统及制备酯化催化剂并酯化催化反应的方法
CN113004953B (zh) * 2021-03-16 2022-05-20 中国人民解放军空军勤务学院 一种利用椰子油制备生物航空燃料的方法
CN114950503B (zh) * 2021-12-21 2023-08-18 常州市金坛区维格生物科技有限公司 一种再生酸催化剂的制备方法及其应用
CN115651539B (zh) * 2022-10-28 2023-06-02 金华市美林涂料有限公司 一种高固低粘木蜡油及制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118533A (en) * 1981-01-16 1982-07-23 Mitsubishi Chem Ind Ltd Preparation of glycolic acid ester or ether
JPH09103681A (ja) 1995-10-13 1997-04-22 Japan Energy Corp 固体酸触媒及びその製造方法
JPH1157478A (ja) 1997-08-26 1999-03-02 Japan Energy Corp 固体酸触媒の製造方法
JPH11244701A (ja) 1998-03-04 1999-09-14 Japan Energy Corp 固体酸触媒の製造方法
JP2006218358A (ja) * 2005-02-08 2006-08-24 Toagosei Co Ltd エステル化触媒
JP2007175649A (ja) 2005-12-28 2007-07-12 Japan Energy Corp 固体酸及びその製造方法、並びに固体酸触媒
JP2007229627A (ja) 2006-03-01 2007-09-13 Univ Of Tokyo 固体酸触媒
JP2009114272A (ja) 2007-11-05 2009-05-28 Asahi Kasei Corp 固体酸触媒による脂肪酸モノエステル化物の製造方法
JP2009149900A (ja) 2007-03-27 2009-07-09 Dic Corp ポリエステル製造用固体酸触媒の製造方法
WO2011018802A1 (en) * 2009-08-13 2011-02-17 Council Of Scientific & Industrial Research Process for producing fatty acids
JP2012024654A (ja) * 2010-07-20 2012-02-09 Nippon Kayaku Co Ltd ポリ酸担持触媒の製造方法
JP2012055461A (ja) 2010-09-08 2012-03-22 Osada Res Inst Ltd 歯科治療椅子の安頭台
JP2012055462A (ja) 2010-09-08 2012-03-22 Panasonic Corp 電気掃除機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437532A (en) * 1942-12-24 1948-03-09 Union Oil Co Process for the catalytic reforming of hydrocarbons
US2748062A (en) * 1951-07-06 1956-05-29 Union Oil Co Hydrocarbon conversion catalyst and process
US3014066A (en) * 1960-02-25 1961-12-19 Texaco Inc Preparation of esters
US3329826A (en) * 1963-07-26 1967-07-04 Exxon Research Engineering Co Direct production of esters from organic acids
US3867412A (en) * 1970-09-28 1975-02-18 Halcon International Inc Method of oxidizing benzene to maleic anhydride using a vanadium, molybdenum, boron containing catalyst
US4408067A (en) * 1979-01-26 1983-10-04 Nitto Chemical Industries, Ltd. Process for producing carboxylic acid esters from nitriles
JPS5767534A (en) * 1980-10-16 1982-04-24 Mitsui Toatsu Chem Inc Preparation of alpha,beta-unsaturated carboxylic ester and alpha,beta-unsaturated carboxylic acid
DE4206750A1 (de) * 1992-03-04 1993-09-09 Hoechst Ag Verfahren zur herstellung von alkoholen oder aminen
CN100515565C (zh) * 2005-07-13 2009-07-22 北京化工大学 制备高分散、非晶态、高效脱硫催化剂的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118533A (en) * 1981-01-16 1982-07-23 Mitsubishi Chem Ind Ltd Preparation of glycolic acid ester or ether
JPH09103681A (ja) 1995-10-13 1997-04-22 Japan Energy Corp 固体酸触媒及びその製造方法
JPH1157478A (ja) 1997-08-26 1999-03-02 Japan Energy Corp 固体酸触媒の製造方法
JPH11244701A (ja) 1998-03-04 1999-09-14 Japan Energy Corp 固体酸触媒の製造方法
JP2006218358A (ja) * 2005-02-08 2006-08-24 Toagosei Co Ltd エステル化触媒
JP2007175649A (ja) 2005-12-28 2007-07-12 Japan Energy Corp 固体酸及びその製造方法、並びに固体酸触媒
JP2007229627A (ja) 2006-03-01 2007-09-13 Univ Of Tokyo 固体酸触媒
JP2009149900A (ja) 2007-03-27 2009-07-09 Dic Corp ポリエステル製造用固体酸触媒の製造方法
JP2009114272A (ja) 2007-11-05 2009-05-28 Asahi Kasei Corp 固体酸触媒による脂肪酸モノエステル化物の製造方法
WO2011018802A1 (en) * 2009-08-13 2011-02-17 Council Of Scientific & Industrial Research Process for producing fatty acids
JP2012024654A (ja) * 2010-07-20 2012-02-09 Nippon Kayaku Co Ltd ポリ酸担持触媒の製造方法
JP2012055461A (ja) 2010-09-08 2012-03-22 Osada Res Inst Ltd 歯科治療椅子の安頭台
JP2012055462A (ja) 2010-09-08 2012-03-22 Panasonic Corp 電気掃除機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2826561A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104098467A (zh) * 2014-07-09 2014-10-15 常州大学 一种合成丁氧基三乙二醇丙烯酸酯的方法
CN104098467B (zh) * 2014-07-09 2015-12-30 常州大学 一种合成丁氧基三乙二醇丙烯酸酯的方法
JP5832678B1 (ja) * 2015-02-25 2015-12-16 日本ケッチェン株式会社 脂肪酸アルキルエステル製造触媒、その製造方法及び当該触媒を用いた脂肪酸アルキルエステルの製造方法
JP2016155085A (ja) * 2015-02-25 2016-09-01 日本ケッチェン株式会社 脂肪酸アルキルエステル製造触媒、その製造方法及び当該触媒を用いた脂肪酸アルキルエステルの製造方法
WO2016136692A1 (ja) * 2015-02-25 2016-09-01 日本ケッチェン株式会社 脂肪酸アルキルエステル製造触媒、その製造方法及び当該触媒を用いた脂肪酸アルキルエステルの製造方法
WO2020022143A1 (ja) * 2018-07-23 2020-01-30 富士通商株式会社 バイオ燃料の製造方法
JP2020015778A (ja) * 2018-07-23 2020-01-30 国立大学法人東京農工大学 バイオ燃料の製造方法
US11427776B2 (en) 2018-07-23 2022-08-30 Fujitusyo Co., Ltd. Method for producing biofuel
WO2021106619A1 (ja) * 2019-11-29 2021-06-03 富士通商株式会社 流通式反応装置を用いたバイオ燃料の製造方法
JP2021091875A (ja) * 2019-11-29 2021-06-17 国立大学法人東京農工大学 流通式反応装置を用いたバイオ燃料の製造方法
JP7045775B2 (ja) 2019-11-29 2022-04-01 国立大学法人東京農工大学 流通式反応装置を用いたバイオ燃料の製造方法
CN111411000A (zh) * 2020-03-31 2020-07-14 山东骏飞环保科技有限公司 一种贵金属fcc催化剂再生烟气助燃剂及其制备方法

Also Published As

Publication number Publication date
BR112014022814A2 (pt) 2018-05-22
CA2867273A1 (en) 2013-09-19
CA2867273C (en) 2021-03-16
US20150018572A1 (en) 2015-01-15
JPWO2013137286A1 (ja) 2015-08-03
BR112014022814B1 (pt) 2020-10-27
CN104507569A (zh) 2015-04-08
EP2826561B1 (en) 2021-06-16
EP2826561A4 (en) 2016-01-06
CN104507569B (zh) 2017-06-13
EP2826561A1 (en) 2015-01-21
MY170828A (en) 2019-09-04
TW201347845A (zh) 2013-12-01
JP6226861B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6226861B2 (ja) 固体酸触媒、その製造方法及びそれを用いた脂肪酸アルキルエステルの製造方法
Buasri et al. Biodiesel production from waste cooking palm oil using calcium oxide supported on activated carbon as catalyst in a fixed bed reactor
TWI483922B (zh) 三級丁醇之製造方法及三級丁醇之連續製造裝置
US8124801B2 (en) Process of manufacturing of fatty acid alkyl esters
Mat et al. Solid catalysts and theirs application in biodiesel production
JP5576271B2 (ja) 油脂からの脂肪酸アルキルエステル及び/又はグリセリンの製造方法
CA2596105A1 (en) Method for producing fatty acid alkyl esters and/or glycerin
CN103910603A (zh) 一种联产环己醇和乙醇的方法
JP3995429B2 (ja) 低級アルキルエステルの製造方法
Hidayat et al. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst
JP2005126346A (ja) 油脂類からの脂肪酸低級アルキルエステルの製造方法
Esan et al. A non-conventional sustainable process route via methyl acetate esterification for glycerol-free biodiesel production from palm oil industry wastes
CN103880598A (zh) 一种联产环己醇和乙醇的方法及装置
US10184085B2 (en) Method for catalytic deoxygenation of natural oils and greases
BRPI0905128A2 (pt) processo de preparo de ésteres alcoólicos a partir de triglicerìdeos e de álcoois por meio de catalisadores heterogêneos, associando pelo menos uma solução sólida de znxal2o3+x e zno
JP5401023B2 (ja) アクロレインの製造方法およびアクリル酸の製造方法
JP5832678B1 (ja) 脂肪酸アルキルエステル製造触媒、その製造方法及び当該触媒を用いた脂肪酸アルキルエステルの製造方法
JP2010229351A (ja) 脂肪酸アルキルエステルおよび/またはグリセリンの製造方法
JP5629917B2 (ja) 非石油系原料からの燃料ガス製造用無機化学物質組成物およびそれを用いる燃料ガスの製法
EP2153893A1 (en) Sulfated zirconia catalyst; its production by melting the precursors and its use for esterification of fatty acids with alcohols.
CN103664528A (zh) 一种生产环己醇的方法
EP2303827B1 (en) Process of manufacturing of fatty acid alkyl esters
US20150239815A1 (en) Method for preparing acrolein from glycerol
CN103880599A (zh) 一种联产环己醇和乙醇的方法及装置
PL222393B1 (pl) Sposób otrzymywania glikolu propylenowego z gliceryny

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13760473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2867273

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14385076

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014504948

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013760473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201406146

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014022814

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014022814

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140915