KR102577410B1 - 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법 - Google Patents

겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법 Download PDF

Info

Publication number
KR102577410B1
KR102577410B1 KR1020210015599A KR20210015599A KR102577410B1 KR 102577410 B1 KR102577410 B1 KR 102577410B1 KR 1020210015599 A KR1020210015599 A KR 1020210015599A KR 20210015599 A KR20210015599 A KR 20210015599A KR 102577410 B1 KR102577410 B1 KR 102577410B1
Authority
KR
South Korea
Prior art keywords
polyurethane foam
reaction
foaming
foam
polyurethane
Prior art date
Application number
KR1020210015599A
Other languages
English (en)
Other versions
KR20220112070A (ko
Inventor
홍승범
이호준
오충익
김소연
리오치하오
장수호
주형욱
오민석
Original Assignee
주식회사 풍산
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 풍산, 한국과학기술원 filed Critical 주식회사 풍산
Priority to KR1020210015599A priority Critical patent/KR102577410B1/ko
Publication of KR20220112070A publication Critical patent/KR20220112070A/ko
Application granted granted Critical
Publication of KR102577410B1 publication Critical patent/KR102577410B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

본 발명은, 폴리우레탄 폼 합성 과정에서 겔화반응과 발포반응 간에 시간 간격을 조절하여 상온에서 제조된 폴리우레탄 폼의 높이를 개선하고, 균일한 크기 및 형태의 미세 기공을 유지하고, 이에 따라 개선된 재현성 및 반복성을 갖추어 일정한 폴리우레탄 폼의 대량 생산이 가능한 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법에 관한 것이다.

Description

겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법{Method for preparing polyurethane foam at room temperature by controlling the gelling reaction time}
본 발명은 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법에 관한 것으로서, 보다 구체적으로는, 폴리우레탄 폼 합성 과정에서 겔화반응과 발포반응 간의 시간차를 조절하여 상온에서 제조된 폴리우레탄 폼의 높이를 개선하고, 균일한 크기 및 형태의 미세 기공을 유지할 수 있는 것이며, 이에 따라 더 높은 재현성 및 반복성을 갖추어 일정한 폴리우레탄 폼의 대량 생산이 가능한 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법에 관한 것이다.
일반적으로 폴리우레탄 폼(Polyurethane foam)은 우레탄우레아(ureathaneurea)로 이루어진 고분자 물질이자, 수산기(hydroxyl group)를 가진 폴리올(polyol) 및 이소시아네이트기(isocyanate group)를 가진 디이소시아네이트(diisocyanate) 화합물의 부가중합반응으로 우레탄 결합(urethane linkage)을 생성하는 겔화반응 그리고 상기 이소시아네이트기의 반응으로 형성된 카르바민산(carbamic acid)에서 이산화탄소가 방출됨에 따라 생성된 아민(amine)이 다시 다른 이소시아네이트기와 반응해 우레아(urea)를 생성하는 발포반응을 통해 얻어지는 다공질의 고분자 발포생성물이다.
이러한 폴리우레탄 폼은 생활 및 산업분야에서 폼, 고무, 섬유, 접착제, 도료 등 다양한 형태의 중간 소재로 널리 활용되는 것으로서, 고무, 섬유, 합성 피혁, 경질폼, 연질폼, 페인트(도료), 접착제/밀봉제, 신발 등의 다양한 수요시장이 형성되어, 2019년 기준 전 세계 시장 950억달러 규모를 가진 폴리우레탄 시장 중 상당 부분을 폴리우레탄 폼이 차지하고 있으며, 그 수요는 지속적으로 증가하고 있다.
그 중 최근에는, 고에너지 화합물인 나이트로아민(nitroamine)과의 합성을 통해 폴리우레탄을 바인더로 하는 복합화약 중합체(polymer bonded explosive)를 적용한, 무거운 금속 탄피를 대체할 소재로서 발포형 추진제(foamed propellant)가 개발되고 있다.
폴리우레탄 폼의 제조방법에는 크게 원샷(one-shot) 방법 및 프리폴리머(prepolymer) 방법이 있다.
원샷 방법은, 폴리올과 이소시아네이트 등의 모든 재료를 동시에 섞어 혼합한 후 몰드(mold)에 넣어 모든 반응을 동시에 시작하는 방법으로서, 간단하고 빠르게 제품을 만들 수 있다는 경제적 이점이 있으나, 모든 화학반응이 동시에 진행되어 공정온도가 높아지는 등 반응조절이 어려운 면이 있다(비특허문헌 001).
이러한 단점을 보완한 프리폴리머 방법은, 상기 폴리올과 이소시아네이트를 우선 혼합 중합하여, 프리폴리머(prepolymer)를 제작하고, 나머지 추가 재료를 순차적으로 투입하여 폴리우레탄 폼을 중합하는 방법으로서, 열과 같은 기계적인 물성 등을 매우 미세하게 조정하는 것이 용이하다.
폴리우레탄 반응에 있어서, 반응기구 및 속도론을 자세히 이해하는 것은 제품의 물성 조절을 위하여 필수적인 사항으로서, 특히, 우레탄 반응의 반응 속도가 매우 빠른 경우가 많기 때문에, 많은 제약 조건이 따르게 되므로, 혼합되는 재료 간의 매우 복잡한 반응기구에 대하여 많은 연구가 진행되고 있다(비특허문헌 002 내지 007).
이와 같이 프리폴리머 방법을 통한 다양한 폴리우레탄 폼 공정방법이 개시되어 있다고는 하나, 물을 가진 폼 프리믹스 제제에 있어서, 특정 아민계 촉매의 양을 감소시켜 금속계 촉매 및/또는 아민촉매의 블렌드를 이용하여 폼 가공처리에서 저장 안정성을 향상시키거나(특허문헌 001), 특정 구조를 갖는 폴리에테르-폴리실록산 블록 공중합체 및 모노올 유기 화합물을 포함시켜 프리믹스 액의 균질성 및 안정성을 향상시키는 방법과 같이(특허문헌 002), 조성 또는 촉매와 같은 성분 또는 그 성분의 함유율을 변화시키는 방법으로 폴리우레탄 폼의 물성을 주로 변화시키는 방법들이 개시되어 왔다.
그러나 폴리우레탄 프리폴리머와 가교제, 발포제, 첨가제 등을 큰 형태의 몰드 내 주입 후 발포시키는 방법 대신 폴리우레탄 프리폴리머 발포 혼합액을 냉각처리하여 경화를 지연시킴으로써, 폴리우레탄 폼 드레싱제의 생산 시 불량률을 줄이고, 생산성 및 가공 효율성을 향상시키면서 물성을 개선시킬 수 있는 방법과 같이(특허문헌 003), 제조 공정 조건 및 순서 등에 의해서도 생성되는 반응물의 물성이 민감하게 변화됨을 확인 할 수 있었지만, 동일한 방법에 따른 폴리우레탄 폼의 재현성 및 반복성 확보가 곤란하다는 어려움이 여전히 남아있었다.
이에 대하여, 본 발명에서는 폴리우레탄 폼의 합성 시, 프리폴리머법을 통한 종래 기술에서 간과되었던 겔화반응과 발포반응 간의 시간차를 조절하여, 폴리우레탄 폼의 높이와 미세 기공 형태에 차이가 발생함을 확인함에 따라, 겔화 반응과 발포반응 간 시간차라는 새로운 공정변수를 통하여, 폼의 형태, 기공 크기 및 분포에 영향을 주는 것을 확인하였고, 이를 제어함으로써 균일한 기공 크기 및 분포를 가지는 폴리우레탄 폼의 안정적이고, 재현성 있는 제조방법을 제공하는 것이다.
대한민국 공개특허공보 제10-2015-0122171호(2015.10.30.) 대한민국 공개특허공보 제10-2017-0132306호(2017.12.01.) 대한민국 등록특허공보 제10-1199453호(2012.11.02.)
P.Krol, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethanes. Prog. Mater. Sci., 52, 915-1015(2007). Akindoyo, J. O. et al. Polyurethane types, synthesis and applications-a review. RSC Adv. 6, 114453-114482(2016). 무역위원회 인터젠컨설팅. 폴리우레탄 산업경쟁력 조사(2009). Bchnlein-Mau, J. & Krober, H. Technology of foamed propellants. Propellants, Explos. Pyrotech. 34, 239-244(2009). Yang, W., Yang, J., Zhao, Y. & Zhang, Y. Preparation and Structure Study of Water-Blown Polyurethane/RDX Gun Propellant Foams. J. Energ. Mater. 36, 121-126(2018). Polyurethane Global Market Report(2020). Research, B. Global Polyurethane Foam Market(2019).
본 발명은 더 높은 재현성과 반복성을 갖춘 균일한 물성의 폴리우레탄 폼의 합성방법을 제공함에 그 목적이 있다.
또한, 화학적 발포제인 물을 마지막에 첨가함으로써 겔화 반응과 발포 반응 간 시간차를 통하여 효과적으로 균일한 물성의 폴리우레탄 폼을 안정적으로 합성하는 방법을 제공함에 다른 목적이 있다.
또한, 균일한 물성의 폴리우레탄 폼을 보다 효율적으로 대량 생산할 수 있는 폴리우레탄 폼의 합성방법을 제공함에 다른 목적이 있다.
상기 목적을 달성하기 위해 본 발명은,
[1] 폴리우레탄 폼의 합성방법에 관한 것으로서, 폴리올, 가교제, 촉매 및 물리적 발포제를 포함하는 재료를 순차적으로 혼합하여 혼합물을 제조하는 예비혼합 단계;
상기 혼합물에 디이소시아네이트를 첨가하고 겔화반응시켜 프리폴리머를 제조하는 겔화반응 단계;
상기 프리폴리머는 상온에서 시간차를 두고 이어서 화학적 발포제를 첨가하는 발포반응 단계; 및
상기 발포반응 처리된 반응물을 몰드에서 경화시켜 폴리우레탄 폼을 합성하는 경화 단계;
를 포함한다.
[2] [1]에 있어서, 상기 예비혼합 단계의 재료에 계면활성제를 더 혼합하여 혼합물을 제조한다.
[3] [2]에 있어서, 상기 계면활성제로는 실리콘 계면활성제를 사용한다.
[4] [1] 또는 [2]에 있어서, 상기 물리적 발포제로는 사이클로펜테인(cyclopentane)이다.
[5] [1] 또는 [2]에 있어서, 상기 화학적 발포제로는 물(H2O) 또는 탈이온수(deionized water)를 사용한다.
[6] [1]에 있어서, 상기 발포반응 단계에서의 시간차는 10분 이상, 바람직하게는 10분이상 30분이하, 더 바람직하게는 10분이다.
[7] [1] 내지 [6] 중 선택된 어느 하나의 폴리우레탄 폼 합성방법에 따라 제조되는 폴리우레탄 폼.
[8] [7]에 있어서, 상기 폴리우레탄 폼은, 신발, 가구, 전자부품, 냉장고, 쇼케이스, 홈 인테리어 제품, 건자재, 단열재, 흡음재, 쿠션재, 심박조율기, 인공심장 또는 혈액과 접촉되는 물품에 사용하거나, 나일론 및 점토가 첨가된 복합체를 자동차 부품에 사용하거나, 또는 니트로아민과 결합된 복합화약 중합체를 금속 탄피를 대체하는 발포형 추진제에 사용할 수 있다.
본 발명은 종래 기술의 폴리우레탄 폼 합성방법으로부터 폴리우레탄 폼의 물성이 달라지는 문제를 효율적으로 해소하여, 고품질의 폴리우레탄 폼을 균일하게 합성함에 있어서 재현성 및 반복성을 효율적으로 개선시켰으며, 이에 따라 폴리우레탄 폼의 균일한 대량 생산이 가능해졌다.
또한, 본 발명은 효율적으로 고품질 폴리우레탄 폼을 균일하게 대량 생산할 수 있어, 공정 및 설비 비용을 절감할 수 있다.
도 1은 본 발명의 폴리우레탄 폼 합성방법에 관한 개략도이다.
도 2는 본 발명의 촉매 함량변화에 따른 폴리우레탄 폼 사진(a) 및 상기 폼의 미세구조 사진(b)이다.
도 3은 본 발명의 시간차 및 실리콘 계면활성제의 유무에 따른 폴리우레탄 폼의 FT-IR 흡광 스펙트럼에 대한 그래프이다.
도 4는 본 발명의 시간차 및 실리콘 계면활성제의 유무에 따른 폴리우레탄 폼의 사진이다.
도 5는 본 발명의 시간차 및 실리콘 계면활성제의 유(e~h)·무(a~d)에 따른 폴리우레탄 폼의 SEM 이미지이다.
도 6은 본 발명의 폴리우레탄 폼 합성방법 중 겔화반응과 발포반응 사이의 시간간격이 10분일 경우의 폴리우레탄 폼의 정면도(a) 및 횡단면도(b)이다.
도 7은 본 발명의 폴리우레탄 폼 합성방법 중 겔화반응과 발포반응 사이의 시간간격이 10분일 경우의 폴리우레탄 폼의 높이에 관한 그래프이다.
도 8은 본 발명의 폴리우레탄 폼 합성방법 중 겔화반응과 발포반응 사이의 시간간격이 10분일 경우의 폴리우레탄 폼의 평균 기공 반지름에 관한 그래프이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 도면에 예시하고, 그 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명은, 프리폴리머 방법에 따른 폴리우레탄 폼의 합성방법에 관한 것으로서, 구체적으로, 도 1에 개시된 바와 같이, 크게 재료(components), 예비혼합(premixing), 겔화반응(gelling reaction), 발포반응(blowing reaction) 및 경화(casting)를 포함하여 이루어지는 개선된 폴리우레탄 폼 합성방법을 제공한다.
제조예
예비혼합 단계로서, 폴리올, 사슬연장제 또는 가교제, 및 첨가제인 촉매 및 물리적 발포제를 500ml 컵에 순차적으로 섞은 후 Daihan 사의 High-Speed Digital Overhead Stirrer (HS-30D) 모델의 교반기로 500rpm 20초 간 교반하여 혼합물을 제조했다.
폴리올은 폴리프로필렌글라이콜 및 폴리테트라메틸렌글라이콜 등으로 대표되는 폴리에테르 폴리올(Polyether polyol), 디카르복실산계 폴리에스테르로 대표되는 폴리에스테르 폴리올(Polyester polyol), 폴리카프로락톤으로 대표되는 폴리락톤 폴리올(Polylacton polyol), 또는 카보네이트와 디올을 반응시켜 얻어지는 폴리카보네이트 폴리올(Polycarbonate polyol) 등이 있을 수 있으며, 본 발명에서는 폴리프로필렌글라이콜이 바람직하다.
사슬연장제(chain extenders)는 고분자의 주사슬을 연장시키는 화합물이고, 가교제는 고분자사슬을 가지달린 사슬로 만들거나 망사구조를 만드는 화합물로서, 주로 저분량의 다가알콜이나 아민이며, 사슬연장제에는 2관능성 화합물인 2가의 알콜이나 아민류를 주로 사용하고, 가교제로는 3가 이상의 트리올(triol), 테트라올(tetraol), 폴리아민(polyamine)과 같은 다관능성 화합물을 주로 사용한다.
촉매로는 특별히 한정되지 않으나, 경우에 따라, 비-아민 촉매, 또는, 아민촉매를 포함하고, 상기 비-아민촉매는 무기- 또는 유기-금속 화합물이다. 유용한 무기- 또는 유기-금속 화합물은 임의 금속(전이 금속, 전이후 금속, 희토 금속, 메탈로이드, 알칼리 금속, 알칼리 토금속 등을 포함하지만 이에 한정되진 않는다)의 유기 염, 루이스 할라이드 등을 포함하지만 이에 한정되진 않는다. 본 발명에서는 주석 촉매로서, 디부틸주석디라우레이트(dibutyltin dilaurate)가 바람직하다.
이어서, 겔화반응 단계로서, 상기 혼합물에 디이소시아네이트를 처리 후 상기 교반기로 500rpm 20초 간 교반하여 프리폴리머를 제조하고 일정 시간(시간차)만큼 상온에 놓아두었다.
이소시아네이트 화합물로는, 대표적으로 톨루엔디이소시아네이트(Toluene diisocyanate:TDI)계와 메틸렌디페닐디이소시아네이트(MethyleneDiphenyl diisocyanate:MDI)계 화합물을 들 수 있고, 그 중 톨루엔디이소시아네이트(toluene diisocyanate), 디페닐메탄디이소시아네이트(Diphenylmethane diisocyanate), 토릴렌 디이소시아네이트(Torilene diisocyanate) 및 이들의 유도체 중에서 선택된 화합물이 바람직하며, 본 발명에서는 디이소시아네이트 화합물로서, 톨루엔디이소시아네이트가 바람직하다.
그 후, 발포반응 단계로서, 상기 프리폴리머에 화학적 발포제를 첨가하고, 상기 교반기로 500rpm 20초간 교반하였다.
상기 발포반응 처리된 반응물은 몰드(mold)에서 경화시켜 폴리우레탄 폼을 제조한다.
상기 물리적 발포제는 물리적 처리(예를 들어, 온도, 압력)를 통해 이들의 발포제 특성을 얻는 휘발성의 저비점을 가지는 화합물로서, 본 발명에서는 폴리올과 이소시아네이트가 반응하여 폴리우레탄을 형성할 때 발생하는 반응열을 이용하여 기공을 형성 및 성장시킨다. 예를 들어 사이클로펜테인(끓는점: 49℃)이 있다.
상기 화학적 발포제는 가스가 유리되는 화학 반응 또는 화학 분해를 통해 이들의 발포제 특성을 얻는 발포제이며, 본 발명에서는 폴리우레탄 반응 시, 이소시아네이트와 화학적 발열 반응으로 CO2의 생성을 통해 폼을 발포시키는 화합물로서, 예를 들어 증류수 또는 탈이온수(deionized water)와 같은 물(H2O)이 있다.
상기 발포반응 처리된 반응물은 몰드(mold)에서 경화되어 폴리우레탄 폼을 제조한다.
실시예
본 발명에서는 상기 제조예에 따라 폴리우레탄 폼을 합성함에 있어서, 상기 예비혼합단계에서 계면활성제, 즉 실리콘 계면활성제를 상기 폴리올, 가교제, 촉매 및 물리적 발포제에 이어 순차적으로 더 혼합하였으며, 하기 표 1의 원재료를 사용하였다.
상기 디이소시아네이트로서, 메틸렌디페닐4,4'-디이소사이아네이트(Methylene diphenyl 4,4'-diisocyanate, MDI)를 상기 톨릴렌 2,4-디이소시아네이트(tolylene 2,4-diisocyanate, 80%, tech)(이하, '톨루엔 2,4'-디이소시아네이트') 대신 사용할 수도 있다.
상기 촉매는, 최적화된 폼 형성을 위해서는 폴리우레탄 합성 속도 및 CO2 발생 속도간의 균형의 관점을 고려하여 화학적 발포제인 물(H2O) 1중량부에 대하여, 0.1~1중량부, 바람직하게는 0.5중량부를 사용하며, 상기 촉매가 물 1중량부에 대하여, 0.1중량부 이하이면 반응 결과물에서 폼 형태가 나타나지 않고, 1중량부 이상이면 CO2가 모두 발포 되기 전에 고분자 합성을 완료시켜 셀(기공, Cell)의 크기가 작고 폼 형성이 어렵다.
CO2 발생량이 일정한 조건 하에서, 상기 제조예의 방법에 따라 상기 표 2의 조성을 가지는 폴리우레탄 폼을 제조하여, 그 형태 및 미세구조에 대한 사진을 도 2에 나타냈다. 이로부터 CO2 발생량이 일정한 상황에서, 폴리우레탄 합성 속도가 늦추어지면 그만큼 기공이 커지는 것을 확인할 수 있었다.
상기 물리적 발포제인 사이클로펜테인은 기공의 크기 및 형태에 영향을 미치는 것이며, 용도에 따라, 화학적 발포제와의 적정 혼합 비율을 통해 기공의 크기조절이 가능하다.
본 발명에서 상기 계면활성제로서 사용된 실리콘 계면활성제는, 원료의 혼합을 용이하게 하며, 합성 중 우레탄 시스템의 계면의 표면장력을 낮춤으로써 기포(셀) 결합(병합)을 지연시켜 기포 성장에 용이하여 기포 간 압력 차를 낮춤에 따라 가스의 확산을 막게 되고, 이에 따라 우레탄 셀이 커지면서 불균일화되는 것을 방지하여, 기공을 성장시킬 수 있게 된다. 또한, 점도 상승 시 기포 불안정화로 인한 기공의 파괴, 합일 및 기공 막이 얇아지는 등의 문제를 예방함으로써 폼의 꺼짐 현상을 방지하여 기공을 안정화시킬 수 있고, 폴리우레탄 폼의 밀도 균일화에 유리하다.
이러한 실리콘 계면활성제로, 셀 표면의 전하를 공급하면서 정전기적 반발력을 제공해 셀의 뭉침을 방지할 수 있는 화합물이면 제한되진 않으나, 본 발명에서의 실리콘 계면활성제는 pH-Value 4%는 5.0~8.0이고, 운점(cloud point) 4%는 61~67℃이고, 25℃에서의 점도는 330~570 mPa.₃, 25℃에서의 밀도는 1.045~1.065g/ml이고, 25℃에서의 굴절률(refractive index)은 1.4470~1.4520이고, Colour to Gardner은 ≤3이다.
상기 표 3의 조성을 가지는 샘플 # S-1 및 # S-2는, 상기 실시예에 기재된 원재료 및 방법으로 폴리우레탄 폼을 제조하는 것으로서, 구체적으로는,
상기 디이소시아네이트 화합물(TDI) 및 물(water)을 제외한 나머지 원재료를 500rpm, 20초간 먼저 혼합하여 mixture A를 제조하고,
상기 mixture A에 상기 TDI를 넣어서 500rpm, 20초간 혼합하여 mixture B를 제조하고,
상기 mixture B의 겔화시간으로서, 상온에서 시간차(t)를 0, 1, 5, 10, 30분 간 두었고, 이어서, 여기에 발포반응을 위한 물(water)을 첨가하여 500rpm, 20초간 혼합하였다. 단, t=0의 경우, 상기 mixture A의 제조단계에서 상기 물도 추가한다.
이에 대한 성분 분석은 Thermo Fisher Scientific Instrument사의 Nicolet iS50 모델의 퓨리에변환 적외선 분광기(Fourier transform-Infrared spectrometer)를 사용하였고, 그 결과를 하기 표 4 및 도 3에 나타내었다.
이를 통해, 겔화 반응과 발포 반응 간 시간차에 상관없이 모든 폼에서 우레탄(1702 cm-1)과 우레아(1642 cm-1) 피크(peaks)를 확인할 수 있었으나, -C=O 피크(1702 cm-1)는 폴리우레탄 결합 내 경질 분절(hard segment)의 N-H와 C=O 그룹 간 그리고 연질 분절(soft segment)의 에스터 또는 에스터-산소 그룹 간의 수소결합에 의해 나타나며, 이는 폴리우레아의 -C=O 피크(1642 cm-1)와 다르게 나타나있다.
상기 표 4를 통해, 프리폴리머 방법에 비하여 원샷 방법(t=0)은 실리콘 계면활성제 유무에 관계없이 폴리우레탄 피크의 세기가 약하고, 폴리우레아 대비 폴리우레탄 피크의 낮은 비율은, 폼 내 폴리우레탄 비율이 폴리우레아에 비해 적게 합성된 것으로서, 이는 겔화 반응과 발포 반응이 동시에 일어나면 물로 인한 우레아 반응으로 인해 디이소시아네이트가 소진되면서 합성되는 폴리우레탄 양을 저감시키는 것이라고 할 수 있다.
또한, 구조로서, 폼의 높이는 몰드 내에 형성된 폼을 측면에서 사진촬영을 하여 측정하였으며, 컵의 높이를 기준으로 하여 Photoshop 소프트웨어를 활용하여 폼의 최고 높이를 측정하였으며, 그 결과를 도 4에 나타내었다.
# S-1과 같이, 실리콘 계면활성제가 미 첨가된 경우에는, 발포반응으로 폼이 빠르게 부풀어 오른 후 그 무게를 이기지 못하고 무너지거나 외부 공기와 접촉하면서 급격한 수축(shrinkage)과 동시에 붕괴되나, 계면활성제가 첨가된 폼은 원샷 방법을 제외하고 모두 안정적인 폼 성장을 보여주었다.
특히, 시간차를 10 분으로 하여 제조한 폴리우레탄 폼은 실리콘 계면활성제 유무와 상관없이 가장 높은 폼 높이를 보였다. 반면, 시간차를 30분으로 하여 제조한 폴리우레탄 폼은 시간차 10분 준 폼만큼 성장하지 않았다.
이는, 우레탄 프리폴리머의 경화도(degree of curing)에 따른 박막 두께(film thickness)의 차이 때문인 것으로서, 발포 반응 시점이 너무 이를 경우 기공 벽을 이루는 우레탄 뼈대가 이산화탄소 발생으로 인한 기공의 급격한 팽창을 이기지 못하고 끊어지지만 반대로 발포 반응 시점이 너무 늦을 경우, 우레탄 박막의 경화가 상당 부분 진행되어 박막 두께가 증가하고 더불어 강성(stiffness)이 증가하여 기공 확장에 제약을 받게 된다.
폼의 미세 구조는 SEM (scanning electron microscope, Hitachi S4800)을 사용하여 얻은 사진으로 확인하였고, 각 시료의 폼 중앙 부분에서 1 cm (L), 2cm (W), 0.5 cm (T) 크기의 시료를 채취한 후 절단면을 스퍼터를 이용해 백금 코팅(platinum sputter coating)한 후 10.0 kV의 가속전압과 35의 배율로 관찰하였고, 기공 면적은 Adobe Photoshop 2020을 이용해 측정하였고 반지름은 기공 면적을 원형으로 간주하여 계산하였으며, 기공이 서로 붙어 터지거나 기공 벽(cell window)이 온전하지 않아 생긴 구멍들은 기공 면적 측정에서 제외하였다. 이에 따라 SEM을 통하여 기공 크기를 측정한 도 5 및 6을 통하여, 겔화 반응과 발포 반응 간 시간차에 의한 폴리우레탄 폼의 미세구조 효과를 확인하였다.
계면활성제가 첨가되지 않은 폼(#S-1)은 시간차가 길어질수록 기공 크기가 작아지고 기공 밀도가 증가했지만 계면활성제가 첨가된 폼의 경우 시간차는 기공 크기와 밀도에 큰 변화를 주지 못했고, 특히, 계면활성제가 없는 경우, 겔화 반응과 발포 반응 간 시간차가 10 min 이상일 때 계면활성제를 첨가한 폼과 같이 비교적 온전한 기공 벽을 확인할 수 있었다.
반면 계면활성제를 첨가한 경우(#S-2), 모든 시간차에서 벽이 온전하게 형성됨을 알 수 있고, 시간차에 따라서 평균 기공 크기(반경)가 최소 227㎛, 최고 300 ㎛사이에서 변화하는 것을 확인할 수 있었다.
이와 같이, 겔화반응과 발포반응 간의 시간차가 10분 이상일 때, 계면활성제 없는 폼에서 계면활성제가 포함된 폼처럼 온전한 기공이 확인되는 것은, 기공 벽에 표면 장력 구배(surface tension gradient)를 만들어 급격한 팽창에 따른 기공 벽배액(cell window drainage) 현상을 막아주는 계면활성제를 통해, 겔화 반응과 발포 반응 간 시간차가 10 분 이상일 때 우레탄 프리폴리머의 경화가 상당 부분 진행되고 박막 두께가 두꺼워져서 급격한 기공 팽창에 의해 터질 확률이 줄어들기 때문이다.
상기에서 확인한 바와 같이, 겔화반응 및 발포반응 간 시간차가 10분일 때, 가장 바람직한 본 발명의 효과를 나타내었으므로, 이를 기준으로 하여, 상술한 방법에서의 조건들과 동일한 조건으로 폴리우레탄 폼을 10번 제작한 결과(C1~C10), 폴리우레탄 폼의 평균 높이는 160 ± 3 mm이고, 기공 평균 반지름은 335 ± 107㎛으로 측정됐다(도 6 내지 8 참조).
또한, C1~C10의 각 시료에서의 기공 평균 크기가 동일한지를 확인하기 위해, one-way ANOVA 테스트를 진행했으며, 그 결과는 도 8에 나타내었으며, 상기 도 8의 결과에서는 C1~C10의 평균 간에 유의미한 차이는 발견되지 않았다(F(9, 665) = 0.685, p=.72).
이로써, 공정조건으로서 겔화반응과 발포반응 간의 시간차를 제어함으로써, 보다 높은 재현성 및 반복성을 갖는 폴리우레탄 폼을 제조할 수 있게 되는 것이다.
본 발명의 폴리우레탄 폼은, 신발, 가구, 전자부품, 건자재, 냉장고, 홈 인테리어 제품 등에 사용할 수 있으며; 건축 분야에서의 단열재, 흡음재 또는 쿠션재; 냉장고 또는 쇼케이스; 경질 액체 폴리우레탄은 신발 생산에 이용할 수 있다.
자동차 산업에서는, 나노 물질을 바탕으로 한 폴리우레탄이 제조됨에 따라, 토요타 자동차 업체에서 상기 폴리우레탄을 이용한 폴리우레탄 폼에 나일론과 점토를 첨가한 복합체를 사용할 수 있다.
방산 분야에서는, 폴리우레탄 폼을 고에너지 화합물(e.g. 니트로아민(nitroamine))과의 결합을 통해 폴리우레탄을 바인더로 하는 복합화약 중합체(Polymer Bonded Explosive: PBX)에 사용할 수 있으며, 한 예로 폴리우레탄 폼을 이용해 무거운 금속 탄피를 대체할 수 있는 발포형 추진제(foamed propellant)를 들 수 있다.
의학 분야에서는, 심박 조율기(pacemaker), 인공 심장, 혈액과 접촉되는 물품에도 사용할 수 있다.

Claims (8)

  1. 폴리우레탄 폼의 합성방법에 관한 것으로서, 폴리올, 가교제, 촉매 및 물리적 발포제를 포함하는 재료를 순차적으로 혼합하여 혼합물을 제조하는 예비혼합 단계;
    상기 혼합물에 디이소시아네이트를 첨가하고 겔화반응시켜 프리폴리머를 제조하는 겔화반응 단계;
    상기 프리폴리머는 상온에서 시간차를 두고 이어서 화학적 발포제를 첨가하는 발포반응 단계; 및
    상기 발포반응 처리된 반응물을 몰드에서 경화시켜 폴리우레탄 폼을 합성하는 경화 단계;
    를 포함하는 폴리우레탄 폼의 합성방법.
  2. 제1항에 있어서, 상기 예비혼합 단계의 재료에 계면활성제를 더 혼합하여 혼합물을 제조하는 것을 특징으로 하는 폴리우레탄 폼의 합성방법.
  3. 제2항에 있어서, 상기 계면활성제는 실리콘 계면활성제인 것을 특징으로 하는 폴리우레탄 폼의 합성방법.
  4. 제1항에 있어서, 상기 물리적 발포제는 사이클로펜테인인 것을 특징으로 하는 폴리우레탄 폼의 합성방법.
  5. 제1항에 있어서, 상기 화학적 발포제는 물(H2O)인 것을 특징으로 하는 폴리우레탄 폼의 합성방법.
  6. 제1항에 있어서, 상기 발포반응 단계의 시간차는 10분 이상인 것을 특징으로 하는 폴리우레탄 폼의 합성방법.
  7. 삭제
  8. 삭제
KR1020210015599A 2021-02-03 2021-02-03 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법 KR102577410B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210015599A KR102577410B1 (ko) 2021-02-03 2021-02-03 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210015599A KR102577410B1 (ko) 2021-02-03 2021-02-03 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법

Publications (2)

Publication Number Publication Date
KR20220112070A KR20220112070A (ko) 2022-08-10
KR102577410B1 true KR102577410B1 (ko) 2023-09-13

Family

ID=82847003

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210015599A KR102577410B1 (ko) 2021-02-03 2021-02-03 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법

Country Status (1)

Country Link
KR (1) KR102577410B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238611A (ja) 2003-01-17 2004-08-26 Bridgestone Corp 微細セル軟質ポリウレタンフォーム
JP2019530789A (ja) 2016-10-17 2019-10-24 ロジャーズ コーポレーション ポリウレタン及び組成物並びにそれらから形成される部材の硬化を遅延させる為の方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3420628B2 (ja) * 1994-02-24 2003-06-30 ビーエーエスエフ イノアック ポリウレタン株式会社 微細セル構造ポリウレタンエラストマー及びその製造方法
KR100936319B1 (ko) * 2007-12-04 2010-01-12 현대자동차주식회사 저밀도 폴리우레탄 폼 조성물 및 그 제조방법
KR101199453B1 (ko) 2012-06-07 2012-11-09 주식회사 제네웰 폴리우레탄 폼 드레싱재의 연속 제조방법 및 장치
CN104755557B (zh) * 2012-11-05 2018-04-13 三井化学Skc聚氨酯株式会社 树脂预混合组合物、硬质聚氨酯泡沫用组合物及硬质聚氨酯泡沫
EP4223814A3 (en) 2013-02-26 2023-08-23 Honeywell International Inc. Polyurethane foam premixes containing halogenated olefin blowing agents and foams made from same
CN107922740B (zh) 2015-04-14 2021-01-12 陶氏东丽株式会社 聚醚-聚硅氧烷嵌段共聚物组合物、含有其的表面活性剂、稳泡剂、形成聚氨酯泡沫的组合物、化妆品及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238611A (ja) 2003-01-17 2004-08-26 Bridgestone Corp 微細セル軟質ポリウレタンフォーム
JP2019530789A (ja) 2016-10-17 2019-10-24 ロジャーズ コーポレーション ポリウレタン及び組成物並びにそれらから形成される部材の硬化を遅延させる為の方法

Also Published As

Publication number Publication date
KR20220112070A (ko) 2022-08-10

Similar Documents

Publication Publication Date Title
AU768105B2 (en) Foamed thermoplastic polyurethanes
CN1939948B (zh) 聚氨酯泡沫体制备用硅烷醇官能化化合物
KR101853021B1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
CN101516955B (zh) 基于聚氯乙烯的多孔发泡聚合物产品的配制剂,基于聚氯乙烯的改进的多孔发泡的聚合物产品,和所述改进的多孔发泡的聚合物产品的生产方法
CN110385642B (zh) 多孔性聚氨酯研磨垫及其制备方法
EP1174458A1 (en) Foamed thermoplastic polyurethanes
RU2008151494A (ru) Способ производства жестких и полужестких пен с низкими количествами диизоцианата с применением полимерных полиолов, характеризующихся высоким содержанием твердых веществ и высоким гидроксильным числом, и получаемые пены
JP4410665B2 (ja) 軟質ポリウレタン発泡体の製造方法
CN106103521A (zh) 为由其制备的聚氨基甲酸酯产品提供良好的发泡‑凝胶平衡的聚醚多元醇
JP4932727B2 (ja) Pipaポリオールの製造方法
KR102577410B1 (ko) 겔화반응 시간 조절을 통한 상온에서의 폴리우레탄 폼 합성방법
ES2797960T3 (es) Uso de Z-HFO-1,1,1,4,4,4-hexafluoro-2-buteno en aplicaciones de formación de espuma a alta temperatura
CN109666112A (zh) 一种汽车顶棚聚氨酯泡沫及其制备方法
JP2006348156A (ja) 硬質ポリウレタン発泡体の製造方法
JPH0827240A (ja) 連通気泡ポリウレタンフォームの製造方法
JP7257843B2 (ja) 発泡ポリウレタンエラストマーの製造方法
US3488300A (en) Process of varying pressure to control cell size of polyurethane foams
RU2765788C2 (ru) Полиольные композиции
KR20180132678A (ko) 단분산 분산된 폴리머 입자를 갖는 폴리머 폴리올을 제조하는 방법
KR101985105B1 (ko) 폴리우레탄 조성물, 이를 포함하는 흡음재 및 폴리우레탄 폼의 제조방법
KR20180024096A (ko) 연마패드 제조용 우레탄계 프리폴리머, 연마패드 및 이의 제조방법
KR102258434B1 (ko) 차량시트용 폴리우레탄 폼
KR101839796B1 (ko) 샌드위치 구조 복합체의 코어재로 사용가능한 우수한 기계적 물성을 갖는 수소결합 폴리비닐클로라이드계 발포체 및 이의 제조방법
KR20230165034A (ko) 폴리우레탄 폼 제조용 선중합체, 폴리우레탄 폼 및 그 제조방법
KR20230135343A (ko) 자동차 내장재용 탄소 저감형 폴리우레탄 발포체 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right