WO2014065428A1 - エピタキシャル成長装置 - Google Patents

エピタキシャル成長装置 Download PDF

Info

Publication number
WO2014065428A1
WO2014065428A1 PCT/JP2013/079126 JP2013079126W WO2014065428A1 WO 2014065428 A1 WO2014065428 A1 WO 2014065428A1 JP 2013079126 W JP2013079126 W JP 2013079126W WO 2014065428 A1 WO2014065428 A1 WO 2014065428A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
epitaxial growth
growth apparatus
ring
susceptor
Prior art date
Application number
PCT/JP2013/079126
Other languages
English (en)
French (fr)
Inventor
晃 岡部
義信 森
Original Assignee
エピクルー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エピクルー株式会社 filed Critical エピクルー株式会社
Priority to KR1020217028138A priority Critical patent/KR102457101B1/ko
Priority to SG11201502959PA priority patent/SG11201502959PA/en
Priority to CN201380054803.9A priority patent/CN105103276B/zh
Priority to KR1020207025651A priority patent/KR102300579B1/ko
Priority to EP18196541.9A priority patent/EP3456860A3/en
Priority to KR1020157012864A priority patent/KR102155162B1/ko
Priority to EP13848894.5A priority patent/EP2913844B1/en
Publication of WO2014065428A1 publication Critical patent/WO2014065428A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to an epitaxial growth apparatus.
  • an epitaxial growth apparatus for growing an epitaxial film on a substrate by epitaxial growth, a processing chamber, a rotatable substrate support disposed in the processing chamber and configured to rotate the substrate about a rotation axis;
  • an apparatus for forming a film on a substrate on a substrate support by introducing a reaction gas so as to be parallel to the horizontal direction of the substrate see, for example, Patent Document 1).
  • Such an epitaxial growth apparatus is now required to increase the growth rate.
  • an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an epitaxial growth apparatus capable of improving the growth rate.
  • An epitaxial growth apparatus of the present invention is provided outside a reaction chamber, a reaction chamber defined by a substrate placement portion on which a substrate is placed, a light-transmitting ceiling plate, and a side wall portion, and placed in the reaction chamber.
  • the distance from the substrate placed on the substrate placement unit is less than 10 mm.
  • the boundary layer can be prevented from spreading when the reaction gas is introduced into the reaction chamber, thereby improving the growth rate. It is possible.
  • the ceiling plate is fixed to an annular support portion in which a through hole is formed in a top view, and the diameter of the through hole of the support portion gradually decreases toward the substrate side. It is preferable that the ceiling plate is fixed to.
  • the support portion By forming the support portion in such a shape, it is possible to support the ceiling plate so that the distance between the center of the ceiling plate and the substrate is less than 10 mm even in a state where the thermal stress is high.
  • a supply path for supplying a reaction gas into the reaction chamber is formed in the side wall, and the supply path has a wall part with which the reaction gas introduced from the reaction gas introducing means collides, It is preferable that at least both ends are provided with rectifying grooves along the flow direction of the reaction gas. By providing the rectifying groove, it is possible to improve the rectilinearity of the reaction gas that decreases when the distance between the center of the ceiling plate and the substrate is less than 10 mm.
  • the rectifying grooves are provided so as to face the hole portions arranged in a line in the longitudinal direction of the rectifying plate facing the supply path on the surface opposite to the wall portion. preferable. By being provided in this way, rectification can be further improved.
  • the rectifying plate has a plurality of holes formed in each row, and the rectifying grooves are provided corresponding to the holes in the regions located at both ends of the region. . By being provided in this way, rectification can be further improved.
  • the rectifying groove is preferably provided such that the center of the groove faces the center of the annular side wall.
  • a susceptor ring is provided on the outer periphery of the substrate mounting portion, and the susceptor ring is provided on the inner peripheral side of the first ring portion and is opened by being separated from the outer periphery of the susceptor. It is preferable that it consists of a 2nd ring part installed in the recessed part. Thus, by comprising from two members, it is possible to reduce the amount of heat escape.
  • the second ring portion is provided facing a separation portion between the susceptor and the first ring portion. This is because wraparound of the reaction gas can be suppressed.
  • the second ring portion is provided so as to cover a separation portion between the susceptor and the first ring portion. This is because the wraparound of the reaction gas can be further suppressed.
  • FIG. 4 is a partial cross-sectional view of an epitaxial growth apparatus according to a second embodiment. The graph which shows the result of an Example and a comparative example.
  • Embodiment 1 An epitaxial growth apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • the epitaxial growth apparatus 1 is a film forming apparatus for epitaxially growing a film such as silicon on the substrate W.
  • the epitaxial growth apparatus 1 has a reaction chamber 2.
  • the reaction chamber 2 includes a susceptor 3 on which the substrate W is placed, a side wall portion 4 and a ceiling portion 5.
  • the susceptor 3 is a circular plate-like member in a top view, and is configured to be slightly larger than the substrate W.
  • the susceptor 3 is provided with a substrate recess 3a for placing the substrate W thereon.
  • the susceptor 3 is supported by a susceptor support portion 6 having a plurality of arm portions. While supporting the susceptor 3, the susceptor support unit 6 moves up and down from a film formation position P ⁇ b> 1 where film formation is performed on the substrate W to a substrate transport position P ⁇ b> 2 where the substrate W is taken in and out of the epitaxial growth apparatus 1.
  • the susceptor support 6 is configured to rotate at the film formation position P1 so that the substrate W can be rotated at the film formation position.
  • the susceptor support portion 6 is configured such that the thickness of each arm portion is thinner than that of a normal one. Thereby, it is possible to suppress the heat from the heating means 62 described later from being blocked by the susceptor support 6, to reduce the difference in radiant heat of the susceptor 3 by the susceptor support 6, and to reduce the heat from the susceptor 3. Since the amount of escape to the susceptor support 6 can be reduced, the temperature distribution of the susceptor 3 can be made uniform.
  • the susceptor 3 is provided with an annular susceptor ring 7 around the film forming position P1.
  • the susceptor ring 7 includes a first ring 11 and a second ring 12 placed on the first ring 11 as will be described in detail later.
  • the susceptor ring 7 is supported by a flange portion 13 provided on the side wall portion 4 of the reaction chamber 2.
  • the ceiling portion 5 includes a ceiling plate 21 and a support portion 22 that supports the ceiling plate 21.
  • the ceiling plate 21 is permeable, so that heat from the heating means 23 (for example, a halogen lamp) provided on the outside of the ceiling plate 21 can be transmitted to heat the inside of the reaction chamber 2. It is configured. That is, the epitaxial growth apparatus 1 in the present embodiment is a cold wall type epitaxial growth apparatus. In the present embodiment, quartz is used as the ceiling plate 21.
  • the support portion 22 that supports the ceiling board is annular.
  • the diameter of the through hole 24 of the support portion 22 gradually decreases toward the substrate side.
  • the ceiling board is being fixed to the edge part by the side of the board
  • the inner peripheral portion projects to form a projecting portion 25.
  • the protruding portion 25 is also formed so that the diameter gradually decreases in the protruding direction.
  • the support portion is composed of two slope portions.
  • the side wall part 4 includes an annular upper side wall part 31 and an annular lower side wall part 32.
  • the flange portion 13 described above is provided on the inner peripheral side of the lower side wall portion.
  • a substrate transfer port 30 is provided below the flange portion 13.
  • the upper side wall portion 31 has an inclined portion on the upper surface thereof corresponding to the protruding portion 25 of the support portion 22 described above. By having this inclined surface, the upper side wall portion 31 and the support portion 22 are fitted to each other.
  • the upper surface of the lower side wall portion 32 is cut out at a part of the outer peripheral portion, and a region where the notch is not provided is configured as a placement surface 33 on which the upper side wall portion is placed.
  • a first recess 34 is formed in the lower side wall portion by the notch in the lower side wall portion.
  • the first recess 34 is a recess formed in a portion of the upper surface of the lower side wall portion where the placement surface 33 is not formed.
  • the upper side wall portion 31 corresponds to the shape of the first concave portion 34 at a position corresponding to the first concave portion 34 when placed on the lower side wall portion 32, and a gap 35 is formed between the upper side wall portion 31 and the first concave portion 34.
  • the 1st convex part 36 is provided so that may be formed.
  • the gap 35 between the first convex portion 36 and the first concave portion 34 functions as a reactive gas supply path 41 (supply path).
  • the reactive gas supply path 41 will be described in detail later.
  • a part of the outer peripheral portion of the upper surface of the lower side wall portion 32 is cut away to form a second concave portion 37.
  • the upper side wall portion 31 corresponds to the shape of the second concave portion 37 at a position corresponding to the second concave portion 37 when placed on the lower side wall portion 32, and a gap 38 is formed between the upper side wall portion 31 and the second concave portion 37.
  • the 2nd convex part 39 is formed so that may be formed.
  • a gas discharge path 42 is formed by the second concave portion 37 and the second convex portion 39 of the upper side wall portion 31.
  • reaction gas supply path 41 and the gas discharge path 42 face each other in the reaction chamber 2, and the reaction gas flows in parallel to the horizontal direction of the substrate W in the reaction chamber 2.
  • a purge hole 44 through which purge gas is discharged is formed in the wall surface 43 constituting the second concave portion 37 of the lower side wall portion 32.
  • the purge hole 44 is provided below the flange portion 13. Since the purge hole 44 is provided in the wall surface 43 constituting the second recess 37, the purge hole 44 faces the gas discharge path 42. Accordingly, both the reaction gas and the purge gas are discharged to the gas discharge path 42.
  • An annular mounting table 45 is provided on the lower surface side of the side wall 4, and the side wall 4 is mounted on the mounting table 45.
  • An annular clamping part 51 is provided on the outer peripheral side of the ceiling part 5, the side wall part 4, and the mounting table 45, and the annular clamping part 51 clamps the ceiling part 5, the sidewall part 4, and the mounting table 45. And support.
  • the holding part 51 is provided with a supply side communication path 52 that communicates with the reaction gas supply path 41 and a discharge side communication path 53 that communicates with the gas discharge path 42.
  • a reaction gas introduction section 54 is provided in the supply side communication passage 52.
  • a first source gas and a second source gas are introduced from the reaction gas introduction unit 54.
  • the second source gas also functions as a carrier gas. It is also possible to use a mixture of three or more gases as the reaction gas.
  • the reaction gas introduction unit 54 is provided with a rectifying plate 55 so as to be perpendicular to the gas flow path.
  • the rectifying plate 55 is provided with a plurality of holes 56 in a line along the circumferential direction, and the reaction gas passes through the holes 56 so that the first source gas and the second source gas are mixed. And rectified.
  • a gas discharge part 57 is provided in the discharge side communication path 53.
  • the reaction gas supply path is provided with a reaction gas introduction part via the supply side communication path.
  • the gas discharge path is provided with a gas discharge part via the discharge side communication path.
  • the gas discharge path is provided so that the flow path faces the center of the reaction chamber.
  • an apparatus bottom 61 is provided at the lower part on the inner peripheral side of the mounting table 45.
  • Another heating means 62 is provided outside the apparatus bottom 61, and the substrate can be heated from below.
  • a shaft portion 63 of the susceptor support portion 6 is inserted, and a purge gas introduction portion (not shown) through which purge gas is introduced is provided.
  • the purge gas is introduced from a purge gas introduction means (not shown) provided in the purge gas introduction part into a reaction chamber lower part 64 constituted by the apparatus bottom part 61, the lower side wall part 32 and the mounting table 45.
  • the purge hole 44 described above communicates with the reaction chamber lower portion 64.
  • the susceptor 3 is moved to the substrate transfer position P2, the substrate W is loaded from the substrate transfer port 30, and the susceptor 3 is moved to the film formation position P1.
  • a silicon substrate having a diameter of, for example, 200 mm is used.
  • a purge gas for example, hydrogen
  • a reaction gas for example, trichlorosilane as the first source gas and hydrogen as the second source gas
  • the reactive gas forms a boundary layer on the substrate surface, and a reaction occurs in this boundary layer.
  • a silicon film is formed on the substrate W.
  • the reaction gas is discharged from a gas discharge path 42 that faces the reaction chamber 2.
  • the purge gas is discharged to the gas discharge path 42 through the purge hole 44.
  • the support portion 22 supports the ceiling plate 21 so that the distance H between the ceiling surface on the reaction chamber side in the center of the ceiling plate 21 and the substrate W is less than 10 mm. Can do.
  • the epitaxial growth apparatus 1 in this embodiment can suppress the boundary layer formed by the reactive gas flowing between the ceiling plate 21 and the susceptor 3 from spreading to the ceiling side, and as a result, the boundary layer becomes narrow. Then, the gas velocity in the boundary layer is increased, and as a result, the gas density is improved and the reaction efficiency on the substrate surface can be increased. Thereby, in the epitaxial growth apparatus 1, a growth rate can be improved.
  • the distance H between the ceiling plate 21 and the substrate W is less than 10 mm, preferably the distance H between the ceiling plate 21 and the substrate W is less than 10 mm, and from the surface of the film on which the substrate is formed, to the ceiling plate 21. Is set to 1 mm or more. By setting it as this range, the gas flow of the reaction gas can be smoothly performed while forming the boundary layer, which is preferable.
  • the distance between the substrate W and the ceiling plate 21 is made shorter than before (conventionally about 20 mm), thereby narrowing the boundary layer and increasing the reaction efficiency on the substrate surface. As the growth rate is improved.
  • the distance H between the substrate W and the ceiling plate 21 can be short, that is, less than 10 mm.
  • the infrared rays from the heating means 23 generally pass through the ceiling plate 21, but the ceiling plate 21 itself absorbs radiant heat from the susceptor 3 or the substrate W. The absorbed heat is input from the ceiling plate 21 to the support portion 22 through the joint portion with the support portion 22.
  • the distance H between the substrate W and the ceiling board 21 is shortened, the amount of radiation heat absorbed is high and the heat input to the support portion 22 is greater than in the conventional case. If it has a substantially right angle corner, stress concentrates on this corner and there is a risk of cracking.
  • the support portion 22 is inclined so that the ceiling plate 21 is lower than the conventional one, thereby supporting the ceiling plate 21 on the substrate side without providing corner portions where stress is likely to concentrate. It has such a shape as to be able to.
  • the reaction gas supply path 41 is provided with a guide portion so as to make the gas flow uniform.
  • a reaction gas supply path 41 formed with the first concave portion 34 of the lower side wall portion 32 and the first convex portion 36 of the upper side wall portion 31 communicates with the reaction gas introduction portion, and introduces the gas from the reaction gas introduction portion. It has the 1st supply path 71 extended in the direction which corresponds.
  • the reaction gas supply path 41 further communicates with the first supply path 71, communicates with the second supply path 72 extending in a direction perpendicular to the gas introduction direction, and the second supply path 72.
  • a third supply path 73 extending in a direction coinciding with the introduction direction.
  • the third supply path 73 communicates with the reaction chamber 2.
  • the second supply path 72 extends in a direction perpendicular to the gas introduction direction, so that the gas introduced from the reaction gas introduction section enters the reaction gas introduction section of the second supply path 72. It contacts the opposing wall surface 74. Thereby, the reaction gas is diffused and the mixing property of the reaction gas is increased. That is, the second supply path 72 functions as a reaction gas mixing chamber.
  • a groove portion 75 extending in the vertical direction is formed on the wall surface of the second supply path 72 so that the 72 gas does not stagnate in the second supply path. This groove part 75 functions as a guide part.
  • the groove 75 is provided in this way, the gas diffused by contacting the wall surface 74 of the second supply path can easily flow into the third supply path 73 and is further rectified along the groove. Thus, the straightness of the reaction gas is improved and the spread of the reaction gas when flowing into the reaction chamber 2 can be suppressed.
  • the groove 75 will be described in detail.
  • a plurality of groove portions 75 are continuously formed as concave portions on the entire surface of the wall surface 74 of the second supply path.
  • the groove 75 which is a recess is curved in the width direction of the groove.
  • the groove portion 75 has an arc shape in a top view. Since the groove 75 is curved in the width direction, when the reaction gas comes into contact with the wall surface 74, that is, the bottom of the groove 75, it is difficult to diffuse (concentrate easily) and the reaction gas flows into the reaction chamber. Is more difficult to spread outside the substrate. If the depth of the groove 75 is too deep, diffusion can be suppressed, but it becomes difficult to mix the first source gas and the second source gas in the reaction gas. Therefore, in the present embodiment, the depth of the groove 75 is 3 mm.
  • each of the groove portions 75 is provided so as to face the center C in the in-plane direction of the lower side wall portion 32. That is, the groove part 75 is provided along the circumferential direction of the lower side wall part 32.
  • each groove portion 75 is provided at a position where the center in the width direction of each groove portion and the center of the hole portion 56 of the rectifying plate 55 provided in the reaction gas introduction portion substantially coincide (correspond). That is, in this embodiment, the number of the groove parts 75 in the wall surface 74 and the number of the hole parts 56 correspond. Thereby, since the reaction gas rectified from the rectifying plate 55 flows into each groove portion 75 as it is, the rectification action can be further enhanced and the straightness of the reaction gas can be improved.
  • the groove portion 75 is provided on the entire surface of the wall surface 74 of the second supply path 72, but it may be provided at least at an end portion of the wall surface 74 of the second supply path 72.
  • the end portion is a portion of the current plate corresponding to the end region, although the hole of the current plate is divided into a plurality of regions.
  • the rectifying plate is divided into three regions 81, and if a groove 75 is provided corresponding to the hole portions of the regions 82 and 83 at the end of this region. Good.
  • the groove 75 in order to improve the straightness of the reactive gas, particularly at the end portion of the reactive gas supply path.
  • such an effect can be easily obtained by forming the groove 75 functioning as a guide portion as a recess.
  • it is not preferable to separately provide a rectifying member in the second supply path because problems such as mixing of reaction gases and manufacturing costs are not preferable. Therefore, it is preferable to form the groove 75 as a recess as in this embodiment. is there. Since the reaction gas can be rectified by the groove 75 and a desired effect can be obtained, it is not necessary to individually control the reaction gas introduction unit.
  • the reaction gas tends to be trapped in the lower part of the reaction chamber. It is conceivable that the temperature distribution of the substrate is difficult to be made uniform, and as a result, the film thickness distribution and the film quality at the time of thick film formation (for example, the distribution of resistivity and the occurrence of crystal defects) may be considered.
  • the susceptor ring 7 is composed of two members to further prevent this. This point will be described.
  • the susceptor ring 7 functions as a preheat ring.
  • the first ring 11 constituting the susceptor ring 7 is provided apart from the outer periphery of the susceptor, and a stepped portion 91 having a lower upper surface is formed on the inner peripheral side of the first ring.
  • the second ring 12 is placed on the step portion 91, and this second ring 12 faces the separation portion 92 formed between the first ring 11 and the susceptor 3, that is, on the separation portion 92. It is provided to protrude.
  • the second ring 12 is provided so that the upper surface thereof is equal to the upper surface of the susceptor 3.
  • the reaction gas mixed and rectified in the reaction gas supply path 41 or the like is maintained at a speed as high as possible.
  • the substrate W can be smoothly supplied without being lowered.
  • the upper surface of the susceptor 3 refers to the upper surface of a region where the substrate recess 3a (see FIG. 1) of the susceptor 3 is not formed.
  • the second ring 12 of this embodiment is made of silicon carbide in view of thermal conductivity.
  • the susceptor ring 7 can be configured with higher accuracy. That is, the distance between the susceptor ring 7 and the susceptor 3 can be reduced to the limit, thereby reducing the flow of the reaction gas to the back side of the substrate W, that is, the reaction chamber lower portion 64, and making the temperature distribution of the substrate uniform. can do. Thereby, in this embodiment, the film thickness distribution and film quality distribution of the formed film are made uniform.
  • the heat transfer between the first ring 11 and the second ring 12 is configured with the first ring 11 and the second ring 12 as one member. It is possible to suppress more than the case.
  • the second ring 12 is configured to face the separating portion 92 as described above, it is possible to reduce the reaction gas from leaking downward from between the susceptor ring 7 and the susceptor 3 during film formation. Since the flow of the reaction gas is hardly disturbed and the reaction gas can be prevented from leaking downward, particles can be reduced.
  • the second ring 12 is formed thinner than the first ring 11. Thereby, the heat loss by the radiation from the susceptor 3 can be suppressed. Moreover, since the 2nd ring 12 is thin, the heating amount required in order to maintain the 2nd ring 12 at predetermined
  • the first ring 11 when the first ring 11 is made of a material having low thermal conductivity, the first ring 11 functions as a heat insulating material, and the above effects can be further enhanced.
  • the second ring 12 is configured to face the separating portion 92, but the present invention is not limited to this. Since the susceptor ring 7 can be configured with high accuracy if the second ring 12 is configured to be placed at least on the step portion 91 of the first ring 11, the distance between the susceptor ring 7 and the susceptor 3. As a result, it is possible to reduce the wraparound of the reaction gas to the back side of the substrate W, and to make the temperature distribution of the substrate uniform.
  • the ceiling surface of the ceiling plate 21 is easily coated with the reaction gas. If the ceiling surface is coated, the ceiling surface becomes cloudy, and there is a possibility that film formation cannot be sufficiently performed by a cold wall type epitaxial apparatus that is heated from the heating means 23 via the ceiling plate 21.
  • the groove 75 is provided on the wall surface of the reaction gas supply path 41, and the susceptor ring 7 is formed of two members, so that the reaction gas is less likely to stay in the reaction chamber, As a result, adhesion of the coating material can be suppressed. Thereby, it is possible to perform sufficient film formation continuously.
  • the epitaxial growth apparatus 1A according to the present embodiment is different from the first embodiment in that the second ring 12A is provided so as to cover the separation portion 92A. Also in this embodiment, the first ring 11A is placed on the flange portion 13A of the side wall portion 32A. The second ring 12A is placed on the stepped portion 91A of the first ring 11A, and its inner peripheral side faces the outer periphery of the susceptor 3A.
  • the second ring 12A is provided so as to cover the separation portion 92A, it is possible to further suppress the reaction gas flowing into the reaction chamber 2A from entering the reaction chamber lower portion 64A.
  • the amount of overlap between the second ring 12A and the susceptor 3A is small.
  • the thickness of the second ring 12A of this embodiment is about 0.8 mm. With such a thickness, heat loss due to radiation from the susceptor 3A to the second ring 12A can be suppressed as much as possible.
  • Epitaxial growth was performed using the epitaxial growth apparatus 1A (distance H between the substrate surface and the ceiling plate 21 was 9.27 mm) based on the following growth conditions.
  • First source gas (trichlorosilane) flow rate 8.5SLM
  • Second source gas (hydrogen) flow rate 80.0SLM Purge gas (hydrogen) flow rate 15.0SLM Growth time 600.0 seconds Growth temperature 1100.0 °C Rotation speed 20.0RPM
  • Example 1 epitaxial growth was performed under the same conditions except that the amount of the first source gas was changed to 13.5 SLM.
  • Epitaxial growth was performed under the same conditions as in Example 1 except that the first source gas amount was changed to 17.0 SLM.
  • FIG. 8 shows the relationship between the detected growth rate and the first source gas.
  • the growth rate was improved by 50% or more, and the improvement rate of the growth rate was improved as the amount of the first raw material gas was increased. Therefore, the growth rate was improved by using the epitaxial growth apparatus of this embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 成長速度が向上するエピタキシャル成長装置を提供する。 エピタキシャル成長装置は、基板を載置する基板載置部、光透過性を有する天井板、及び側壁部から画成される反応室と、反応室外部に設置され、反応室内に載置された基板を前記天井板を介して加熱する加熱手段と、反応室内に基板の水平方向に対して平行に反応ガスを導入する反応ガス導入手段と、を備え、天井板の中心と前記基板載置部との距離が、10mm未満である。

Description

エピタキシャル成長装置
 本発明はエピタキシャル成長装置に関する。
 従来、エピタキシャル成長により基板上にエピタキシャル膜を成長させるエピタキシャル成長装置としては、処理チャンバと、前記処理チャンバ内に配置され、回転軸を中心として基板を回転させるように構成された回転可能な基板支持体とを備え、基板の水平方向に対して平行となるように反応ガスを導入し、基板支持体上の基板に成膜を行う装置が知られている(例えば、特許文献1参照)。
特表2001-520456号公報
 このようなエピタキシャル成長装置では、現在ではより成長速度の高速化が求められている。この場合に、成長速度をより高速とするために反応ガス中に第1原料ガスを大量に含有させることは、例えば成膜コストの上昇やパーティクルの増加があるため好ましくない。
 そこで、本発明の課題は、上記従来技術の問題点を解決することにあり、成長速度が向上するエピタキシャル成長装置を提供しようとするものである。
 本発明のエピタキシャル成長装置は、基板を載置する基板載置部、光透過性を有する天井板、及び側壁部から画成される反応室と、前記反応室外部に設置され、前記反応室内に載置された基板を前記天井板を介して加熱する加熱手段と、前記反応室内に基板の水平方向に対して平行に反応ガスを導入する反応ガス導入手段と、を備え、該天井板の中心と前記基板載置部に載置された基板との距離が、10mm未満となるように構成されたことを特徴とする。本発明では、天井板の中心と基板との距離が、10mm未満であることにより、反応室に反応ガスを導入した場合の境界層の広がりを抑制することができ、これにより成長速度を向上することが可能である。
 前記天井板は、上面視において貫通穴が形成された環状の支持部に固定され、該支持部の貫通穴は、該基板側に向かってその径が徐々に小さくなり、この基板側の端部に前記天井板が固定されていることが好ましい。支持部をこのような形状とすることで、熱応力が高い状態でも天井板の中心と基板との距離が10mm未満であるように天井板を支持することが可能である。
 前記側壁部には、前記反応室内に反応ガスを供給する供給路が形成され、前記供給路は、前記反応ガス導入手段から導入された反応ガスが衝突する壁部を有し、該壁部の少なくとも両端部には、反応ガスの流れ方向に沿った整流溝が設けられていることが好ましい。整流溝を設けることで、天井板の中心と基板との距離を10mm未満とした場合に低下する反応ガスの直進性を向上させることが可能である。
 前記整流溝は、前記供給路に対し前記壁部とは逆側の面で対向する整流板の長手方向に一列に列設された孔部に対し、それぞれ対向するように設けられていることが好ましい。このように設けられていることで、より整流性を高めることができる。
 前記整流板は、列設された孔部が複数の領域毎に形成されており、該領域のうち、両端に位置する領域の孔部に対応して前記整流溝が設けられていることが好ましい。このように設けられていることで、より整流性を高めることができる。
 前記整流溝は、溝の中心が円環状の側壁部の中心を向くように設けられていることが好ましい。このように設けられていることで、より整流性を高めることができる。
 前記基板載置部の外周には、サセプタリングが設けられ、サセプタリングは、サセプタの外周に離間して設けられる第1リング部と、該第1リング部の内周側に設けられ、開放された凹部に設置される第2リング部とからなることが好ましい。このように二部材から構成されることで、熱の逃げ量を低下させることが可能である。
 前記第2リング部は、前記サセプタと前記第1リング部との離間部に臨んで設けられていることが好ましい。反応ガスの回り込みを抑制できるからである。
 前記第2リング部は、前記サセプタと前記第1リング部との離間部を覆って設けられていることが好ましい。反応ガスの回り込みをさらに抑制できるからである。
 本発明のエピタキシャル成長装置によれば、成長速度が向上するという優れた効果を奏し得る。
エピタキシャル成長装置の全体を示す断面図 反応室を説明するためのエピタキシャル成長装置の部分解斜視図。 側壁部を説明するためのエピタキシャル成長装置の部分斜視図。 供給路について説明するためのエピタキシャル成長装置の一部断面図。 供給路について説明するためのエピタキシャル成長装置の模式図。 プリヒートリングを説明するためのエピタキシャル成長装置の一部断面図。 実施形態2に係るエピタキシャル成長装置の一部断面図。 実施例及び比較例の結果を示すグラフ。
(実施形態1)
 本発明の実施形態1に係るエピタキシャル成長装置について図1、2を用いて説明する。
 エピタキシャル成長装置1は、基板W上に例えばシリコンなどの膜をエピタキシャル成長させるための成膜装置である。
 エピタキシャル成長装置1は、反応室2を有する。反応室2は、基板Wが載置されるサセプタ3と、側壁部4と、天井部5とから構成される。
 サセプタ3は、上面視において円形状の板状部材であり、基板Wより若干大きくなるように構成されている。サセプタ3には、基板Wを載置するための基板用凹部3aが設けられている。サセプタ3は、複数の腕部を有するサセプタ支持部6により支持されている。サセプタ支持部6は、サセプタ3を支持しながら、基板W上に成膜が行われる成膜位置P1から基板Wのエピタキシャル成長装置1への出し入れを行う基板搬送位置P2まで昇降する。そして、サセプタ支持部6は、この成膜位置P1で回転して基板Wが成膜位置で回転されることが可能であるように構成されている。また、このサセプタ支持部6は、各腕部の太さは通常のものよりも細く構成されている。これにより、後述する加熱手段62からの熱がサセプタ支持部6により遮られることを抑制し、サセプタ支持部6によるサセプタ3の輻射熱の差を小さくすることができ、且つ、サセプタ3からの熱がサセプタ支持部6へ逃げる量を減少させることができるので、サセプタ3の温度分布を均一にすることが可能である。
 サセプタ3は、成膜位置P1においてその周囲に環状のサセプタリング7が配されている。サセプタリング7は、詳しくは後述するが第1リング11とこの第1リング11上に載置された第2リング12とからなる。サセプタリング7は、反応室2の側壁部4に設けられたフランジ部13により支持されている。
 天井部5は、天井板21と、天井板21を支持する支持部22とからなる。天井板21は、透過性を有するものであり、天井板21の外側上方に設けられた加熱手段23(例えばハロゲンランプ)からの熱を透過して反応室2内を加熱することができるように構成されている。即ち、本実施形態におけるエピタキシャル成長装置1はコールドウォールタイプのエピタキシャル成長装置である。本実施形態では、天井板21として石英を用いている。
 天井板を支持する支持部22は、環状である。支持部22の貫通穴24は、基板側に向かって徐々に径が小さくなっている。そして、貫通穴の基板側の端部に天井板が固定されている。固定方法としては、溶接が挙げられる。また、支持部22を裏面側(下面側)からみると、内周部が突出して突出部25となっている。この突出部25も突出方向に向かって徐々に径が小さくなるように形成されている。このように、支持部は二つの斜面部から構成される。
 側壁部4は、環状の上部側壁部31と、環状の下部側壁部32とからなる。下部側壁部の内周側には、前述したフランジ部13が設けられている。このフランジ部13よりも下方側に、基板搬送口30が設けられている。
 上部側壁部31は、上述した支持部22の突出部25に対応してその上面に傾斜部を有している。この斜面を有することで、上部側壁部31と支持部22とが互いに嵌合する。
 下部側壁部32の上面は外周部の一部が切り欠かれ、この切り欠きが設けられていない領域は、上部側壁部が載置される載置面33として構成されている。下部側壁部の切り欠きにより、下部側壁部には第1凹部34が形成されている。即ち、第1凹部34は、下部側壁部の上面の載置面33が形成されていない部分に形成された凹部である。上部側壁部31には、下部側壁部32への載置時にこの第1凹部34に対応する位置に、第1凹部34の形状に対応し、かつ、この第1凹部34との間に間隙35が形成されるように、第1凸部36が設けられている。そして、この第1凸部36と第1凹部34との間の間隙35が反応ガス供給路41(供給路)として機能する。反応ガス供給路41については詳しくは後述する。
 また、下部側壁部32の第1凹部34と対向する領域において、下部側壁部32の上面はその外周部の一部が切り欠かれて第2凹部37が形成されている。上部側壁部31には、下部側壁部32への載置時にこの第2凹部37に対応する位置に、第2凹部37の形状に対応し、かつ、この第2凹部37との間に間隙38が形成されるように、第2凸部39が形成されている。この第2凹部37と上部側壁部31の第2凸部39とでガス排出路42とが形成されている。
 このように反応ガス供給路41とガス排出路42とは反応室2において対向し、反応室2において反応ガスは基板Wの水平方向に対して平行に流れる。
 また、下部側壁部32の第2凹部37を構成する壁面43には、パージガスが排出されるパージ孔44が形成されている。パージ孔44は、フランジ部13よりも下方に設けられている。そして、このパージ孔44が第2凹部37を構成する壁面43に設けられていることから、パージ孔44はガス排出路42に臨んでいる。従って、ガス排出路42には、反応ガスとパージガスの両方が排出される。
 側壁部4の下面側には、環状の載置台45が設けられ、側壁部4が載置台45に載置されている。
 天井部5、側壁部4、載置台45の外周側には、環状の挟持部51が設けられており、環状の挟持部51は、これら天井部5、側壁部4及び載置台45をクランプして支持している。挟持部51には、それぞれ反応ガス供給路41に連通する供給側連通路52と、ガス排出路42に連通する排出側連通路53とが設けられている。
 供給側連通路52には、反応ガス導入部54が設けられている。反応ガス導入部54からは、本実施形態では、第1原料ガスと、第2原料ガスとが導入されている。なお、第2原料ガスはキャリアガスとしても機能する。反応ガスとしては3種類以上のガスを混合して用いることも可能である。反応ガス導入部54には、ガス流路に対して垂直となるように整流板55が設けられている。整流板55には、複数の孔部56が周方向に沿って一列に設けられており、この孔部56を反応ガスが通過することで、第1原料ガスと第2原料ガスとが混合されると共に整流される。また、排出側連通路53には、ガス排出部57が設けられている。即ち、反応ガス供給路は、供給側連通路を介して反応ガス導入部が設けられている。また、ガス排出路は、排出側連通路を介してガス排出部が設けられている。ガス排出路については、流路が反応室の中心に対向するように設けられている。
 また、載置台45の内周側下部には、装置底部61が設けられている。装置底部61の外側には、別の加熱手段62が設けられており、基板を下方からも加熱することが可能である。
 装置底部61の中央には、サセプタ支持部6の軸部63が挿入されると共に、パージガスが導入されるパージガス導入部(図示せず)が設けられている。パージガスは、パージガス導入部に設けられた図示しないパージガス導入手段から装置底部61、下部側壁部32及び載置台45とから構成された反応室下部64に導入される。前述したパージ孔44は反応室下部64に連通する。
 かかる本実施形態のエピタキシャル成長装置を用いた成膜方法について説明する。
 サセプタ3を基板搬送位置P2まで移動させ、基板Wを基板搬送口30から搬入し、サセプタ3を成膜位置P1まで移動させる。基板Wとしては、直径が例えば200mmのシリコン基板を用いる。その後、加熱手段23、62により加熱しながら、パージガス導入部からパージガス(例えば水素)を反応室下部64に導入する。また、反応ガス(例えば第1原料ガスとしてトリクロロシラン、第2原料ガスとして水素)を反応ガス導入部54から反応ガス供給路41を介して反応室2内に導入する。反応ガスは、基板表面に境界層を形成し、この境界層において反応が生じる。これにより、基板W上にシリコン膜を成膜する。反応ガスは、反応室2に臨んだガス排出路42から排出される。また、パージガスはパージ孔44を介してガス排出路42へ排出される。
 かかる本実施形態のエピタキシャル成長装置によれば、支持部22が天井板21を支持することで、天井板21の中央部の反応室側の天井面と基板Wとの距離Hを10mm未満とすることができる。これにより、本実施形態におけるエピタキシャル成長装置1は、この天井板21とサセプタ3との間を流れる反応ガスにより形成される境界層が天井側に広がるのを抑制でき、結果として境界層が狭くなる。そうすると、この境界層内におけるガス速度が上昇するので、結果としてガス密度が向上し、基板表面における反応効率を高めることができる。これにより、エピタキシャル成長装置1では、成長速度を向上させることができる。
 天井板21と基板Wとの距離Hは、10mm未満であり、好ましくは天井板21と基板Wとの距離Hは、10mm未満、かつ、基板の成膜された膜の表面から天井板21との距離を1mm以上とすることである。この範囲とすることで、境界層を形成しつつも、反応ガスのガス流れをスムーズに行うことができ、好ましい。
 即ち、本実施形態における反応室2では、基板Wと天井板21との距離を従来よりも短く(従来は20mm程度)することで、境界層を狭くして基板表面における反応効率を高め、結果として成長速度を向上させている。
 本実施形態では、支持部22を応力が集中しにくい形状としていることから、本実施形態では、基板Wと天井板21との距離Hを短く、即ち10mm未満とすることができる。具体的には、天井板21を加熱手段23からの赤外線は概ね通過するが、天井板21自体はサセプタ3、又は基板Wからの輻射熱を吸収する。この吸収された熱は天井板21から支持部22との接合部を介して支持部22へ入力される。特に、本実施形態では、基板Wと天井板21との距離Hを短くしたことから、この輻射熱の吸収量が高く、支持部22に入力される熱が従来よりも多いので、支持部22が略直角の角部を有するとこの角部に応力が集中してしまい、割れなどが発生するおそれがある。
 そこで、本実施形態では、天井板21を従来よりも下方にするために支持部22は傾斜させることで、なるべく応力が集中しやすい角部を設けずに天井板21を基板側で支持することができるようにこのような形状としている。
 また、本実施形態では、上述のように境界層を狭くするために天井板21と基板Wとの距離Hを短くしているので、反応ガスが基板Wの外側に逃げてしまいやすく、基板において膜厚分布の均一化が難しい場合も考えられるので、これを防止することが好ましい。このため、本実施形態では、以下説明するように反応ガス供給路41にはガス流れを均一化するようにガイド部が設けられている。
 反応ガス供給路41に設けられたガイド部について、図3~図5を用いて詳細に説明する。下部側壁部32の第1凹部34と上部側壁部31の第1凸部36と形成された反応ガス供給路41は、反応ガス導入部に連通し、反応ガス導入部からのガスの導入方向と一致する方向に延設された第1供給路71を有する。反応ガス供給路41は、さらに第1供給路71に連通し、ガスの導入方向に対して垂直な方向に延設された第2供給路72と、第2供給路72に連通し、ガスの導入方向に一致する方向に延設された第3供給路73とを備える。第3供給路73は、反応室2に連通している。
 第2供給路72は、上述のようにガスの導入方向に対して垂直方向に延設されており、これにより反応ガス導入部から導入されたガスが第2供給路72の反応ガス導入部に対向する壁面74に接触する。これにより反応ガスが拡散され、反応ガスの混合性が高まる。即ち、第2供給路72は反応ガスの混合室として機能する。この場合に、第2供給路で72ガスが停滞しないように、本実施形態では、第2供給路72の壁面には、上下方向に延びた溝部75が形成されている。この溝部75がガイド部として機能する。このように溝部75が設けられていることで、第2供給路の壁面74に接触することで拡散されたガスも第3供給路73へ流入しやすく、さらにこの溝部に沿って整流されることで、反応ガスの直進性が向上して、反応室2に流入した場合の反応ガスの広がりを抑制できる。
 溝部75について、詳細に説明する。溝部75は、第2供給路の壁面74の全面に複数が連続して凹部として形成されている。図5(2)に示すように、凹部である溝部75は、溝部の幅方向において湾曲している。本実施形態では、溝部75は、上面視において円弧状である。溝部75が幅方向において湾曲していることから、反応ガスが壁面74に、即ち溝部75の底部に接触した場合に、拡散しにくく(集中しやすく)、反応ガスが反応室へ流入した場合にも基板の外側へより広がりにくい。なお、この溝部75の深さが深すぎると拡散を抑制することはできるが、反応ガス中の第1原料ガスと第2原料ガスとの混合をすることが難しくなる。従って、本実施形態では、溝部75の深さは、3mmである。
 また、溝部75は、それぞれが下部側壁部32の面内方向の中央Cに向かうように設けられている。即ち、溝部75は、下部側壁部32の周方向に沿って設けられている。このように設けることで、各溝部75によりガイドされた反応ガスが中心側に向かうように整流性が高まり、反応ガスが反応室内で分散されてしまうことが抑制される。
 さらに、各溝部の幅方向の中心と反応ガス導入部に設けられた整流板55の孔部56の中心とが略一致する(対応する)位置に、各溝部75は設けられている。即ち、本実施形態では壁面74における溝部75の数と孔部56の数とは一致する。これにより、整流板55より整流された反応ガスがそのまま各溝部75に流入するのでさらに整流作用を高め、反応ガスの直進性を向上させることができる。
 なお、本実施形態では第2供給路72の壁面74の全面に溝部75を設けたが、第2供給路72の壁面74のうち、少なくとも端部部分に設ければよい。端部部分とは、整流板の孔部が複数の領域に分けられて設けられているが、この領域のうち、最も端部の領域に対応する部分をいう。例えば、図5に示す場合では、整流板は3つの領域81に分けられており、この領域のうち、最も端部の領域82、83の孔部に対応して溝部75が設けられていればよい。上記のように反応ガスは基板の外側に逃げやすいので、特に反応ガス供給路の端部部分において反応ガスの直進性を高めるために溝部75を設けることが好ましいのである。そして、この場合にガイド部として機能する溝部75を凹部として形成することでこのような効果を簡易に得ることができる。例えば、整流部材を第2供給路に別途設けるとなると反応ガスの混合性や製造コスト等の問題が発生するため好ましくないので、本実施形態のように溝部75を凹部として形成することが好ましいのである。そして、溝部75により反応ガスを整流して所望の効果を得ることができるので、反応ガス導入部について個別に制御を行う必要もない。
 さらにまた、本実施形態では、上述のように境界層を狭くするために天井板21と基板Wとの距離を狭くしているので、反応室下部への反応ガスの周りこみが発生しやすいと共に基板の温度分布が均一化されにくいことが考えられ、その結果、厚膜形成時の膜厚分布や膜質の低下(例えば抵抗率の分布や結晶欠陥の発生など)も考えられる。本実施形態では、さらにこれを防止すべく、サセプタリング7が二部材で構成されている。この点について説明する。
 サセプタリング7は、プリヒートリングとして機能するものである。サセプタリング7を構成する第1リング11は、サセプタの外周に対して離間して設けられており、この第1リングの内周側には上面が低い段差部91が形成されている。段差部91には、第2リング12が載置されており、この第2リング12は、第1リング11とサセプタ3との間に形成された離間部92に臨んで、即ち離間部92にせり出すように設けられている。第2リング12は、その上面がサセプタ3の上面と等しくなるように設けている。このように第2リング12の上面がサセプタ3の上面と等しくなるように設けていることで、反応ガス供給路41等で混合されて整流された状態が維持された反応ガスを、速度をできるだけ低下させること無く、スムーズに基板Wに供給できる。なお、ここでいうサセプタ3の上面とは、サセプタ3の基板用凹部3a(図1参照)の形成されていない領域の上面をいう。本実施形態の第2リング12は、熱伝導性に鑑みてシリコンカーバイドを材料としている。
 そして、このように第2リング12と第1リング11とを別部材で構成していることで、より精度良くサセプタリング7を構成することができる。即ち、サセプタリング7とサセプタ3との距離を限界まで近づけることができ、これにより基板Wの裏面側、即ち反応室下部64への反応ガスの回り込みを低減できると共に、基板の温度分布を均一化することができる。これにより、本実施形態では、形成された膜の膜厚分布や膜質分布が均一化される。
 また、第1リング11と第2リング12の二部材にすることで、第1リング11と第2リング12との間の熱の移動を第1リング11と第2リング12を一部材で構成する場合よりも抑制することができる。
 さらに、このように第2リング12が離間部92に臨むように構成されていることで、成膜時にサセプタリング7とサセプタ3との間から反応ガスが下方に漏れ出すことを低減できて、反応ガスの流れが乱れにくく、また、反応ガスが下方に漏れ出すことを低減できることから、パーティクルを低減できる。
 この場合に、第2リング12は第1リング11に比べて薄く形成してある。これにより、サセプタ3からの輻射による熱損失を抑制することができる。また、第2リング12が薄いことで、第2リング12を所定の高温に維持する(プリヒート)ために必要な加熱量を少なくすることができる。本実施形態の他に、第1リング11が、熱伝導率の小さい材質である場合には第1リング11が断熱材として機能し、上記の効果をさらに高めることができる。
 なお、本実施形態では第2リング12が離間部92に臨むように構成したが、これに限定されない。第2リング12は、第1リング11の段差部91に少なくとも載置されるように構成されていれば、精度良くサセプタリング7を構成することができるので、サセプタリング7とサセプタ3との距離を限界まで近づけることができ、これにより基板Wの裏面側への反応ガスの回り込みを低減できると共に、基板の温度分布を均一化することができる。
 また、本実施形態では、境界層を狭くするために天井板21と基板Wとの距離を狭くしているので、天井板21の天井面も反応ガスによりコーティングされやすい。天井面がコーティングされると、天井面が曇ってしまい、天井板21を介して加熱手段23から加熱するコールドウォールタイプのエピタキシャル装置では十分に成膜ができないおそれがある。これに対し、本実施形態では、上述のように反応ガス供給路41の壁面に溝部75を設け、かつ、サセプタリング7を二部材で構成することで、反応ガスが反応室において滞留しにくく、その結果コート材の付着を抑制できる。これにより、連続して十分な成膜を行うことが可能である。
(実施形態2)
 本発明の別の実施形態について図7を用いて説明する。
 本実施形態に係るエピタキシャル成長装置1Aでは、第2リング12Aが離間部92Aを覆うように設けられている点が実施形態1とは異なる。本実施形態でも、第1リング11Aは側壁部32Aのフランジ部13Aに載置されている。第2リング12Aは、この第1リング11Aの段差部91Aに載置されており、かつ、その内周側はサセプタ3Aの外周に臨んでいる。
 本実施形態では、第2リング12Aが離間部92Aを覆うように設けられていることで、反応室2Aに流入した反応ガスが反応室下部64Aへ入ることをより抑制することができる。第2リング12Aが、図7中図示しない加熱手段からサセプタ3Aへの加熱を遮るのを抑制すべく、第2リング12Aとサセプタ3Aとのオーバーラップ量は少ない方が好ましい。
 このような本実施形態の第2リング12Aの厚みは約0.8mmである。このような厚みとすることで、サセプタ3Aから第2リング12Aへの輻射による熱損失を可能な限り抑制することができる。
(実施例)
 以下、実施例により発明の詳細について説明する。
 エピタキシャル成長装置1A(基板表面と天井板21との距離Hは9.27mm)により、以下の成長条件に基づいてエピタキシャル成長を行った。
 第1原料ガス(トリクロロシラン)流量 8.5SLM
 第2原料ガス(水素)流量 80.0SLM
 パージガス(水素)流量 15.0SLM
 成長時間 600.0秒
 成長温度 1100.0℃
 回転速度 20.0RPM
 実施例1とは、第1原料ガス量を13.5SLMに変更した点以外は同一条件でエピタキシャル成長を行った。
実施例1とは、第1原料ガス量を17.0SLMに変更した点以外は同一条件でエピタキシャル成長を行った。
(比較例1)
 従来のエピタキシャル成長装置(基板表面と天井板21との距離Hは20mm、溝部75はなく、サセプタリングは1部材からなる)により、第2原料ガスの流量を34.0SLM、回転速度を35.0RPMとした点以外は、実施例1と同一の成長条件に基づいてエピタキシャル成長を行った。
(比較例2)
 従来のエピタキシャル成長装置(基板表面と天井板21との距離Hは20mm、溝部75はなく、サセプタリングは1部材からなる)により、第2原料ガスの流量を34.0SLM、回転速度を35.0RPMとした点以外は、実施例2と同一の成長条件に基づいてエピタキシャル成長を行った。
(比較例3)
 従来のエピタキシャル成長装置(基板表面と天井板21との距離Hは20mm、溝部75はなく、サセプタリングは1部材からなる)により、第2原料ガスの流量を34.0SLM、回転速度を35.0RPMとした点以外は、実施例3と同一の成長条件に基づいてエピタキシャル成長を行った。
 各実施例及び比較例による膜の成長速度を検出した。検出された成長速度と第1原料ガスとの関係を図8に示す。
 図8に示すように、エピタキシャル成長装置1Aによれば、成長速度が50%以上向上され、第1原料ガス量が多くなれば多くなるほど成長速度の改善率は向上した。従って、本実施形態のエピタキシャル成長装置を用いることで、成長速度が向上した。
1     エピタキシャル成長装置
2     反応室
3     サセプタ
4     側壁部
5     天井部
6     サセプタ支持部
7     サセプタリング
11   第1リング
12   第2リング
13   フランジ部
21   天井板
22   支持部
23   加熱手段
24   貫通穴
25   突出部
30   基板搬出口
31   上部側壁部
32   下部側壁部
33   載置面
34   第1凹部
35   間隙
36   第1凸部
37   第2凹部
38   間隙
39   第2凸部
41   反応ガス供給路
42   ガス排出路
43   壁面
44   パージ孔
45   載置台
51   挟持部
52   供給側連通路
53   排出側連通路
54   反応ガス導入部
55   整流板
56   孔部
57   ガス排出部
61   装置底部
62   加熱手段
63   軸部
64   反応室下部
71   第1供給路
72   第2供給路
73   第3供給路
74   壁面
75   溝部
81、82、83     領域
91   段差部
92   離間部
W     基板

Claims (9)

  1.  基板を載置する基板載置部、光透過性を有する天井板、及び側壁部から画成される反応室と、
     前記反応室外部に設置され、前記反応室内に載置された基板を前記天井板を介して加熱する加熱手段と、
     前記反応室内に基板の水平方向に対して平行に反応ガスを導入する反応ガス導入手段と、を備え、
     該天井板の中心と前記基板載置部に載置された基板との距離が、10mm未満となるように構成されたことを特徴とするエピタキシャル成長装置。
  2.  前記天井板は、上面視において貫通穴が形成された環状の支持部に固定され、
     該支持部の貫通穴は、該基板側に向かってその径が徐々に小さくなり、この基板側の端部に前記天井板が固定されていることを特徴とする請求項1記載のエピタキシャル成長装置。
  3.  前記側壁部には、前記反応室内に反応ガスを供給する供給路が形成され、
     前記供給路は、前記反応ガス導入手段から導入された反応ガスが衝突する壁部を有し、該壁部の少なくとも両端部には、反応ガスの流れ方向に沿った整流溝が設けられていることを特徴とする請求項1又は2に記載のエピタキシャル成長装置。
  4.  前記整流溝は、前記供給路に対し前記壁部とは逆側の面で対向する整流板の長手方向に一列に列設された孔部に対し、それぞれ対向するように設けられていることを特徴とする請求項3に記載のエピタキシャル成長装置。
  5.  前記整流板は、列設された孔部が複数の領域毎に形成されており、該領域のうち、両端に位置する領域の孔部に対応して前記整流溝が設けられていることを特徴とする請求項4記載のエピタキシャル成長装置。
  6.  前記整流溝は、溝の中心が円環状の側壁部の中心を向くように設けられていることを特徴とする請求項3~5のいずれか一項に記載のエピタキシャル成長装置。
  7.  前記基板載置部の外周には、サセプタリングが設けられ、
     サセプタリングは、サセプタの外周に離間して設けられる第1リング部と、該第1リング部の内周側に設けられ、開放された凹部に設置される第2リング部とからなることを特徴とする請求項1~6のいずれか一項に記載のエピタキシャル成長装置。
  8.  前記第2リング部は、前記サセプタと前記第1リング部との離間部に臨んで設けられていることを特徴とする請求項7記載のエピタキシャル成長装置。
  9.  前記第2リング部は、前記サセプタと前記第1リング部との離間部を覆って設けられていることを特徴とする請求項8記載のエピタキシャル成長装置。
PCT/JP2013/079126 2012-10-26 2013-10-28 エピタキシャル成長装置 WO2014065428A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217028138A KR102457101B1 (ko) 2012-10-26 2013-10-28 에피택셜 성장장치
SG11201502959PA SG11201502959PA (en) 2012-10-26 2013-10-28 Epitaxial growth apparatus
CN201380054803.9A CN105103276B (zh) 2012-10-26 2013-10-28 外延生长装置
KR1020207025651A KR102300579B1 (ko) 2012-10-26 2013-10-28 에피택셜 성장장치
EP18196541.9A EP3456860A3 (en) 2012-10-26 2013-10-28 Epitaxial growth apparatus
KR1020157012864A KR102155162B1 (ko) 2012-10-26 2013-10-28 에피택셜 성장장치
EP13848894.5A EP2913844B1 (en) 2012-10-26 2013-10-28 Epitaxial growth apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012237109A JP5343162B1 (ja) 2012-10-26 2012-10-26 エピタキシャル成長装置
JP2012-237109 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065428A1 true WO2014065428A1 (ja) 2014-05-01

Family

ID=49679220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079126 WO2014065428A1 (ja) 2012-10-26 2013-10-28 エピタキシャル成長装置

Country Status (7)

Country Link
US (1) US10443129B2 (ja)
EP (2) EP2913844B1 (ja)
JP (1) JP5343162B1 (ja)
KR (3) KR102300579B1 (ja)
CN (2) CN105103276B (ja)
SG (2) SG11201502959PA (ja)
WO (1) WO2014065428A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063997A (zh) * 2015-03-25 2020-12-11 应用材料公司 用于外延生长装置的腔室部件
WO2022079954A1 (ja) * 2020-10-12 2022-04-21 エピクルー株式会社 気相成長装置及びエピタキシャルウェーハの製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5602903B2 (ja) * 2013-03-14 2014-10-08 アプライド マテリアルズ インコーポレイテッド エピタキシャル成長による成膜方法、および、エピタキシャル成長装置
US10047457B2 (en) * 2013-09-16 2018-08-14 Applied Materials, Inc. EPI pre-heat ring
JP7008509B2 (ja) * 2015-05-27 2022-02-10 アプライド マテリアルズ インコーポレイテッド 高成長率のepiチャンバのための遮熱リング
KR102184067B1 (ko) * 2017-12-27 2020-11-27 도쿄엘렉트론가부시키가이샤 에칭 방법 및 에칭 장치
JP6998839B2 (ja) * 2018-06-25 2022-01-18 グローバルウェーハズ・ジャパン株式会社 エピタキシャルシリコンウェーハの製造方法
JP7159986B2 (ja) * 2019-06-27 2022-10-25 株式会社Sumco エピタキシャル成長装置およびエピタキシャルウェーハの製造方法
US11032945B2 (en) * 2019-07-12 2021-06-08 Applied Materials, Inc. Heat shield assembly for an epitaxy chamber
JP2021068871A (ja) * 2019-10-28 2021-04-30 株式会社Sumco エピタキシャル成長装置およびエピタキシャルウェーハの製造方法
CN111850514B (zh) * 2020-06-30 2022-11-22 北京北方华创微电子装备有限公司 用于外延生长设备的进排气构件及外延生长设备
CN111748792B (zh) * 2020-07-10 2022-10-21 北京北方华创微电子装备有限公司 气相沉积装置
CN114457321B (zh) * 2022-01-21 2023-03-28 深圳市纳设智能装备有限公司 一种进气装置及cvd设备
JP2023163848A (ja) 2022-04-28 2023-11-10 エピクルー株式会社 エピタキシャル成長装置のためのパラメータ決定装置、パラメータ決定方法、及びパラメータ決定プログラム
CN115064471B (zh) * 2022-08-01 2023-11-28 北京屹唐半导体科技股份有限公司 晶圆的热处理装置
CN115305458B (zh) * 2022-10-10 2023-02-03 中微半导体设备(上海)股份有限公司 一种气体分配件、气体输送装置及其薄膜处理装置
KR102572438B1 (ko) * 2022-11-17 2023-08-30 주식회사 피제이피테크 에피택셜 성장장치 및 그에 사용되는 가스공급조절 모듈
CN115595552B (zh) * 2022-12-16 2023-04-11 新美光(苏州)半导体科技有限公司 用于等离子蚀刻设备的碳化硅环及碳化硅环的成型工艺
US20240274463A1 (en) * 2023-02-10 2024-08-15 Applied Materials, Inc. Overlapping substrate supports and pre-heat rings, and related process kits, processing chambers, methods, and components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520456A (ja) 1997-10-10 2001-10-30 アプライド マテリアルズ インコーポレイテッド 回転基板上に処理流体を導入する方法及び装置
JP2004063779A (ja) * 2002-07-29 2004-02-26 Komatsu Electronic Metals Co Ltd エピタキシャルウェーハ製造装置及びサセプタ構造
JP2005307238A (ja) * 2004-04-19 2005-11-04 Shizuo Fujita 成膜方法及び成膜装置
JP2006049503A (ja) * 2004-08-03 2006-02-16 Sumco Corp エピタキシャル成長装置
JP2007324286A (ja) * 2006-05-31 2007-12-13 Sumco Techxiv株式会社 成膜反応装置及び同方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976875A (ja) * 1982-10-22 1984-05-02 Hitachi Ltd マグネトロン型スパッタ装置とそれに用いるターゲット
US5024716A (en) * 1988-01-20 1991-06-18 Canon Kabushiki Kaisha Plasma processing apparatus for etching, ashing and film-formation
JPH02252234A (ja) * 1989-03-27 1990-10-11 Toshiba Corp 光cvd装置
JP3038524B2 (ja) * 1993-04-19 2000-05-08 コマツ電子金属株式会社 半導体製造装置
US6500734B2 (en) * 1993-07-30 2002-12-31 Applied Materials, Inc. Gas inlets for wafer processing chamber
JP3911518B2 (ja) * 1995-03-31 2007-05-09 株式会社Sumco 気相成長装置用サセプターと気相成長方法
US5846332A (en) * 1996-07-12 1998-12-08 Applied Materials, Inc. Thermally floating pedestal collar in a chemical vapor deposition chamber
US6063440A (en) * 1997-07-11 2000-05-16 Applied Materials, Inc. Method for aligning a wafer
US6099648A (en) * 1997-08-06 2000-08-08 Applied Materials, Inc. Domed wafer reactor vessel window with reduced stress at atmospheric and above atmospheric pressures
US6143079A (en) * 1998-11-19 2000-11-07 Asm America, Inc. Compact process chamber for improved process uniformity
JP3758579B2 (ja) * 2002-01-23 2006-03-22 信越半導体株式会社 熱処理装置および熱処理方法
US7118781B1 (en) * 2003-04-16 2006-10-10 Cree, Inc. Methods for controlling formation of deposits in a deposition system and deposition methods including the same
JP2007511902A (ja) * 2003-10-29 2007-05-10 エーエスエム アメリカ インコーポレイテッド 薄膜成長用反応装置
JP2005353775A (ja) * 2004-06-09 2005-12-22 Sumco Corp エピタキシャル装置
WO2007012814A2 (en) * 2005-07-27 2007-02-01 Ingenia Technology Limited Signature for access tokens
JP4704894B2 (ja) * 2005-11-16 2011-06-22 国立大学法人京都大学 成膜方法及び成膜装置
TW200809926A (en) * 2006-05-31 2008-02-16 Sumco Techxiv Corp Apparatus and method for depositing layer on substrate
JP2008028357A (ja) * 2006-07-24 2008-02-07 Hynix Semiconductor Inc 半導体素子及びその製造方法
US20080179289A1 (en) * 2007-01-30 2008-07-31 Collins Kenneth S Process for wafer backside polymer removal with a plasma stream
US7954866B2 (en) * 2008-07-03 2011-06-07 Honda Motor Co., Ltd. Bumper beam with gussets to prevent underride
DE102008034260B4 (de) * 2008-07-16 2014-06-26 Siltronic Ag Verfahren zum Abscheiden einer Schicht auf einer Halbleiterscheibe mittels CVD in einer Kammer und Kammer zum Abscheiden einer Schicht auf einer Halbleiterscheibe mittels CVD
JP2010040590A (ja) * 2008-07-31 2010-02-18 Sumco Corp エピタキシャルシリコンウェーハおよびその製造方法
JP2010034474A (ja) * 2008-07-31 2010-02-12 Sumco Corp エピタキシャル成長装置及びエピタキシャルウェーハ製造方法
JP2010050130A (ja) * 2008-08-19 2010-03-04 Sumco Techxiv株式会社 半導体ウェーハの支持具
KR101840322B1 (ko) * 2009-12-31 2018-03-20 어플라이드 머티어리얼스, 인코포레이티드 웨이퍼 엣지 및 경사면 증착을 수정하기 위한 쉐도우 링
SG183511A1 (en) * 2010-03-03 2012-09-27 Veeco Instr Inc Wafer carrier with sloped edge
JP2012146697A (ja) * 2011-01-06 2012-08-02 Shin Etsu Handotai Co Ltd エピタキシャルウェーハの製造装置及び製造方法
JP5837178B2 (ja) * 2011-03-22 2015-12-24 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 化学気相堆積チャンバ用のライナアセンブリ
JP5386046B1 (ja) * 2013-03-27 2014-01-15 エピクルー株式会社 サセプタ支持部およびこのサセプタ支持部を備えるエピタキシャル成長装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001520456A (ja) 1997-10-10 2001-10-30 アプライド マテリアルズ インコーポレイテッド 回転基板上に処理流体を導入する方法及び装置
JP2004063779A (ja) * 2002-07-29 2004-02-26 Komatsu Electronic Metals Co Ltd エピタキシャルウェーハ製造装置及びサセプタ構造
JP2005307238A (ja) * 2004-04-19 2005-11-04 Shizuo Fujita 成膜方法及び成膜装置
JP2006049503A (ja) * 2004-08-03 2006-02-16 Sumco Corp エピタキシャル成長装置
JP2007324286A (ja) * 2006-05-31 2007-12-13 Sumco Techxiv株式会社 成膜反応装置及び同方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913844A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063997A (zh) * 2015-03-25 2020-12-11 应用材料公司 用于外延生长装置的腔室部件
US11441236B2 (en) 2015-03-25 2022-09-13 Applied Materials, Inc. Chamber components for epitaxial growth apparatus
WO2022079954A1 (ja) * 2020-10-12 2022-04-21 エピクルー株式会社 気相成長装置及びエピタキシャルウェーハの製造方法
JP7549871B2 (ja) 2020-10-12 2024-09-12 エピクルー株式会社 気相成長装置及びエピタキシャルウェーハの製造方法

Also Published As

Publication number Publication date
KR102457101B1 (ko) 2022-10-19
CN108728823A (zh) 2018-11-02
KR102300579B1 (ko) 2021-09-08
CN108728823B (zh) 2020-09-15
CN105103276A (zh) 2015-11-25
JP2014086688A (ja) 2014-05-12
KR102155162B1 (ko) 2020-09-21
EP2913844A4 (en) 2016-07-13
SG11201502959PA (en) 2015-05-28
US20140116340A1 (en) 2014-05-01
JP5343162B1 (ja) 2013-11-13
KR20200106564A (ko) 2020-09-14
KR20210111361A (ko) 2021-09-10
EP2913844B1 (en) 2018-09-26
EP3456860A2 (en) 2019-03-20
EP3456860A3 (en) 2019-05-08
EP2913844A1 (en) 2015-09-02
US10443129B2 (en) 2019-10-15
KR20150074072A (ko) 2015-07-01
SG10201703435SA (en) 2017-05-30
CN105103276B (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
JP5343162B1 (ja) エピタキシャル成長装置
JP5602903B2 (ja) エピタキシャル成長による成膜方法、および、エピタキシャル成長装置
JP7136945B2 (ja) エピタキシャル成長装置用のチャンバ構成要素
JP5386046B1 (ja) サセプタ支持部およびこのサセプタ支持部を備えるエピタキシャル成長装置
JP6749295B2 (ja) エピタキシャル成長による成膜方法、および、エピタキシャル成長装置
JP6309252B2 (ja) エピタキシャル成長による成膜方法、および、エピタキシャル成長装置
JP6198584B2 (ja) エピタキシャル成長による成膜方法、および、エピタキシャル成長装置
JP7209675B2 (ja) エピタキシャル成長による成膜方法、および、エピタキシャル成長装置
JP2018125545A (ja) エピタキシャル成長による成膜方法、および、エピタキシャル成長装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380054803.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013848894

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157012864

Country of ref document: KR

Kind code of ref document: A