JP2010040590A - エピタキシャルシリコンウェーハおよびその製造方法 - Google Patents

エピタキシャルシリコンウェーハおよびその製造方法 Download PDF

Info

Publication number
JP2010040590A
JP2010040590A JP2008198706A JP2008198706A JP2010040590A JP 2010040590 A JP2010040590 A JP 2010040590A JP 2008198706 A JP2008198706 A JP 2008198706A JP 2008198706 A JP2008198706 A JP 2008198706A JP 2010040590 A JP2010040590 A JP 2010040590A
Authority
JP
Japan
Prior art keywords
epitaxial
wafer
gas
silicon wafer
epitaxial film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008198706A
Other languages
English (en)
Inventor
Maruhisa Fujimoto
真留久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008198706A priority Critical patent/JP2010040590A/ja
Publication of JP2010040590A publication Critical patent/JP2010040590A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】Asを含むシリコン単結晶基板にエピタキシャル膜を形成したエピタキシャルシリコンウェーハの周縁領域の抵抗率均一性を向上させ、効率的にデバイスの形成が可能なエピタキシャルシリコンウェーハおよびその製造方法を提供する。
【解決手段】ウェーハ上にエピタキシャル膜を形成する際に、シラン化合物と水素ガスからなる供給ガスを毎分50リットル以上流し、かつウェーハを1080℃以上、1100℃以下の温度範囲になるように加熱することにより、形成されたエピタキシャルシリコンウェーハの周縁領域のエピタキシャル層内の抵抗率特性が大幅に改善される。
【選択図】図7

Description

本発明は、エピタキシャルシリコンウェーハおよびその製造方法に関し、詳しくは、周縁付近まで抵抗値の変化が少なく、かつ平坦性に優れたエピタキシャルシリコンウェーハおよびその製造方法に関する。
半導体製造分野において、シリコンウェーハ基板上にエピタキシャル膜を成長させたエピタキシャルウェーハが従来から知られている。エピタキシャルウェーハは基板上に任意の厚さ、抵抗をもったエピタキシャル膜を形成でき、デバイス製作において障害となるgrow−in欠陥問題の解消もできる為、その使用範囲は広がっている。
また、半導体デバイスは年々、微細化の要求が高くなっており、それに伴い使用されるエピタキシャルウェーハの品質向上も求められている。エピタキシャル膜の抵抗率の均一性と、厚みの均一性は重要な要求事項である。特に、1枚のエピタキシャルウェーハで周縁部分まで有効に利用して、多数のデバイスを製作する場合、ウェーハの中心から周縁に至るまで全面に渡ってその品質を維持させることが重要であり、近年ではウェーハ周縁領域(ウェーハ側面より約3〜5mm)まで、抵抗率のエピタキシャル層内の均一性をも含めた管理が必要となってきている。
特開平6−232060号公報 特開2002−43230号公報
しかしながら、高濃度にAsがドープされたシリコンウェーハ基板を用いてエピタキシャル膜を形成する場合、エピタキシャル膜を成長させる工程で、シリコンウェーハ基板のエピタキシャル成長面の裏面側、特にその周縁部からAsが拡散し、エピタキシャル成長面側に達して、成長したエピタキシャル膜の周縁領域に取り込まれてしまう現象(オートドープ)が生じる。このようにエピタキシャル膜の周縁領域にAsが取り込まれると、エピタキシャルシリコンウェーハの周縁領域では、エピタキシャル層の表面近傍の抵抗率が周縁に向かって急激に低下する状態となる。または、たとえ表面近傍の抵抗率が均一であっても、エピタキシャルシリコンウェーハの表面より基板方向に向かう深さ方向の抵抗率分布(エピタキシャルプロファイル)において緩やかに抵抗率が低下する状態となる。その結果、エピタキシャルシリコンウェーハの周縁領域で抵抗率の均一性が保たれず、1枚のエピタキシャルウェーハで周縁領域まで多数のデバイスを形成することができなくなってしまうという課題があった。なお、ここで本明細書中におけるオートドープとは、シリコンウェーハのエピタキシャル膜中の中心部分と周縁領域における表面近傍の抵抗率の差が±2%を越える場合で、エピタキシャルプロファイルにおいて抵抗率が低下する状態となる場合に、オートドープが生じていると定義する。また、この周辺領域(外周部)とは、ウェーハ外縁から3mmの範囲の領域を意味する。
従来は、エピタキシャル膜の形成の前段階である水素環境における高温処理(以下、水素ベークと称する)工程において、処理温度を高くしたり、水素ガスを多く流すことによって、エピタキシャル膜に取り込まれたAsを追い出して、オートドープの影響を低減させていた。しかし、水素ベークの条件を最適に設定しても、オートドープの完全な解消は困難であった。また、こうした水素ベークの処理時間が長くなると、エピタキシャルシリコンウェーハの生産性が低下するという課題もあった。
本発明は、上記事情に鑑みてなされたものであって、Asを含むシリコン単結晶基板にエピタキシャル膜を形成するエピタキシャルシリコンウェーハの周縁領域のエピタキシャル層内の抵抗率均一性を向上させ、効率的にデバイスの形成が可能なエピタキシャルシリコンウェーハおよびその製造方法を提供することを目的とする。
上記の目的を達成するために、本発明によれば、Asを含むシリコン単結晶基板にエピタキシャル膜を形成するエピタキシャルシリコンウェーハの製造方法であって、前記エピタキシャル膜の形成工程では、温度を1080℃以上,1100℃以下、圧力を常圧として、シラン化合物を含む水素ガスからなる供給ガスを毎分50リットル以上流してエピタキシャル膜を成長させることを特徴とするエピタキシャルシリコンウェーハの製造方法が提供される。
エピタキシャル膜を形成する際に、シラン化合物と水素ガスからなる供給ガスを毎分50リットル以上流し、かつシリコン単結晶基板を1080℃以上、1100℃以下の温度範囲になるように加熱することにより、形成されたエピタキシャルシリコンウェーハの周縁領域のエピタキシャル層内の抵抗率特性が大幅に改善される。即ち、エピタキシャルシリコンウェーハの周縁領域において、エピタキシャル膜のエピタキシャルプロファイルは、従来のエピタキシャル成長で一般的であった1150℃程度でエピタキシャル膜を形成すると、ウェーハ側面に向かって抵抗率が徐々に緩やかに低下していく特性となる。これは、エピタキシャル膜の形成において、従来一般的に行われてきた1150℃程度にウェーハを加熱すると、Asをドープしたウェーハの場合、エピタキシャル膜の周縁からAsが拡散し、成長したエピタキシャル膜の周縁領域に取り込まれるため、周縁領域の抵抗率が下がってしまう現象による。
このように、エピタキシャルシリコンウェーハの周縁領域のエピタキシャルプロファイルにおいて、ウェーハ側面に向かって抵抗率が徐々に低下する特性であると、周縁領域のエピタキシャル層内の抵抗率の均一性が保たれないため、周縁領域までデバイスを形成することができなくなる。しかし、本発明のように、シラン化合物と水素ガスからなる供給ガスを毎分50リットル以上流し、かつ1080℃以上、1100℃以下の温度範囲になるように加熱してエピタキシャル膜を形成することにより、Asの再吸着が防止され、エピタキシャルシリコンウェーハのほぼ側面まで抵抗率がほとんど低下せず、周縁領域のエピタキシャル層内の抵抗率の均一性は大幅に向上する。
これにより、エピタキシャルシリコンウェーハのほぼ側面までデバイスを形成することが可能になり、1枚のエピタキシャルシリコンウェーハに形成できるデバイスの数を増やし、効率的にエピタキシャルシリコンウェーハを利用することが可能になる。
前記エピタキシャル膜の形成工程では、前記シリコン単結晶基板の直径方向の中心部分を流れる前記供給ガスと、周縁部分を流れる前記供給ガスとで、その流量を異ならせてもよい。前記供給ガスの流量は、前記シリコン単結晶基板の直径方向の周縁部分よりも中心部分のほうが多くなるようにすればよい。エピタキシャル膜内の抵抗率の均一性も向上させかつ、エピタキシャル膜の平坦度をTTVで3μm 以内、または、SFQRで0.3μm以内とするためには、中心部分と周縁部分との供給ガスの流量割合を1:0.70〜1:0.90程度に設定すればよい。具体的には、ガスの流れる領域を5領域に分割し、ウェーハ中心を流れるガス量を1とした場合、その直ぐ外側の領域は0.89〜0.9程度、そのさらに外側の外縁部では0.75とすることができる。ガスの流れる領域はそれぞれ均等な幅とすることや、中心を2としてその外側を1sらに外縁側を1とすることなどができる。
エピタキシャルシリコンウェーハの周縁領域のエピタキシャル膜内の抵抗率の均一性を高めるために、エピタキシャル膜の形成時に、ウェーハを従来よりも低い温度である1080℃以上、1100℃以下の温度範囲に設定すると、成長したエピタキシャル膜の中心領域の膜厚が周縁領域よりも薄くなり、エピタキシャル膜の膜厚の面内均一性が低下ことがある。しかし、供給ガスの流量を制御して、エピタキシャル膜の膜厚分布のばらつきを補償することにより、エピタキシャルの膜厚を中心からウェーハ側面(エッジ)までほぼ均一に保ち、膜厚の面内均一性を良好に保つことが好ましい。
こうした供給ガスの流量調節は、本発明のように、温度を1080℃以上、1100℃以下の範囲にしてエピタキシャル膜を形成する際には、例えば、エピタキシャルシリコンウェーハの中心領域を流れる供給ガスの流量を、周縁領域を流れる供給ガスの流量よりも多くなるように設定し、全体として流量が毎分50リットル以上になるようにすれば、エピタキシャルの膜厚を中心からウェーハ側面(エッジ)までほぼ均一に保つことができる。
また、本発明によれば、前記エピタキシャルシリコンウェーハの製造方法によって製造されたことを特徴とするエピタキシャルシリコンウェーハが提供される。こうしたエピタキシャルシリコンウェーハは、周縁領域においてもほぼ側面までエピタキシャルプロファイルにおいて抵抗率がほとんど低下せず、エピタキシャル層内の抵抗率の均一性は大幅に向上する。これにより、エピタキシャルシリコンウェーハのほぼ側面近くまでデバイスを形成することが可能になり、1枚のエピタキシャルシリコンウェーハに形成できるデバイスの数を増やし、効率的にデバイスが形成可能なエピタキシャルシリコンウェーハが実現できる。
本発明のエピタキシャルシリコンウェーハの製造方法によれば、Asを含むシリコン単結晶基板にエピタキシャル膜を形成したエピタキシャルシリコンウェーハにおいて、周縁領域のエピタキシャル層内の抵抗率の均一性を大幅に向上させることができる。これによって、エピタキシャルシリコンウェーハの周縁領域までデバイスの形成が可能となり、効率的にデバイスを形成できるエピタキシャルシリコンウェーハを提供することが可能になる。
以下、本発明のエピタキシャルシリコンウェーハの製造方法について、図面を参照して説明する。まず、本発明のエピタキシャルシリコンウェーハの製造方法に使用されるエピタキシャル成長装置の一例について説明する。図1は、エピタキシャル成長装置の一例を示す模式側断面図である。また、図2は、図1におけるx矢視した本実施形態におけるエピタキシャル成長装置を示す模式平断面図、図3は、図2におけるガス供給口をy方向からみた斜視図、図4は、ガス供給口が均一高さとされた場合の図2におけるガス供給口をy方向からみた正面図、図5は、ガス供給口が高さ設定された場合の図2におけるガス供給口をy方向からみた正面図である。
本実施形態におけるエピタキシャル成長装置1は、図1、図2に記載するように、上ドーム部7と下ドーム部9とこれらの間に設けられた中リング部8とからチャンバが構成され、該チャンバ内には、シリコン単結晶基板(以下、ウェーハと称する)12を保持するサセプタ11が、チャンバ内をガス流路(チャンバ内上部)2とチャンバ内下部3にウェーハ12で分けるように設けられる。
サセプタ11はサセプタ支持部16により回転可能に支持され、サセプタ支持部16は、チャンバ外部の図示しない回転駆動機構により回転可能とされている。チャンバ外側の上ドーム部7の上側位置および下ドーム部9の下側には赤外線ランプ15,15がウェーハ12加熱用に複数設けられている。サセプタ11の外側には余熱リング10が設けられ、余熱リング10の上面はサセプタ11上のウェーハ12の表面と略同一面となるようになっている。なお、上ドーム部7が、さらに上下2つに分解される構造も可能である。
中リング部8は、厚みを有する略円筒形状の石英部材とされ、その上面81は平面状とされる。この中リング部8には、ガス流路2の上流側および下流側となる位置で上面81外周側に、底面82,83が略水平面とされ、かつ外周と同心の垂直曲面84,85を有する切欠86,87が設けられている。この切欠86,87は、中リング部8の径方向に均一な寸法を有し、中リング部8の周方向には、ガス流路2の幅方向にウェーハ12の径寸法と同程度かやや大きい程度に設定されており、これにより、後述するようにガス流供給口のガス流路2幅方向に、ウェーハ12全面にガスを供給可能とされている。
中リング部8の内周上側には、余熱リング10により中リング部8とサセプタ11との間でチャンバ内上部2とチャンバ内下部3とを分離しつつ、余熱リング10中リング部8の上面81と余熱リング10上面とが略同一平面となるように余熱リング10を載置する凸部88が周設されている。
上ドーム部7は、上方が一体となった蓋部で閉じられた中リング部8と同径で同幅の円筒形状石英部材とされ、下端面71は中リング8上面81と密着される平面状とされる。この上ドーム部7には、中リング部8の切欠86,87に対応する円周位置に、底面82,83および垂直曲面84,85にそれぞれ対向する天井面72,73および垂直曲面74,75を有する切欠76,77が円周内側に設けられている。切欠76,77の外周位置では、下端面71aが下端面71よりも下側に突出されている。
これらの切欠76,86が組み合わされることにより、図1〜3に示すように、底面82、垂直曲面84、垂直曲面74、天井面72、および、上面81の一部で囲まれたガス供給口が形成される。このガス供給口は、中リング部8の外周位置と内周位置とで、ガスを流入および放出する高さ位置が異なり、下側から流入されたガスが、ガス衝突壁面(垂直曲面)84に衝突して拡散し、流量調節面(天井面)72により流量を調節されるようになっている。
同様に切欠77,87が組み合わされることにより、底面83、垂直曲面85、垂直曲面75、天井面73、および、上面81の一部で囲まれたガス排出口が形成され、中リング部8の外周位置と内周位置とで、ガスを流入および放出する高さ位置が異なるようになっている。
ガス供給口には、図1,図2に示すように、ガス流路2の幅方向に2つに分割された導入側整流部材6が接続され、この導入側整流部材6には穴付きバッフル5、ガス導入部材4を介して、イン側流量調節器17の設けられたイン側導入配管19、アウト側流量調節器18の設けられたアウト側導入配管20が接続されている。イン側導入配管19,アウト側導入配管20は、図示しないガス供給手段に接続されたガス導入管21から分岐している。ガス排出口には、排気側整流部材13が接続され、この排気側整流部材13には、ガス排気部材14を介して図示しないガス排気手段が接続されている。なお、図2においては、ガス導入部材4、ガス排気部材14の記載は省略している。
また、ガス供給口の下側のガス流入位置となる底面82には、図2〜図5に示すように、垂直方向かつガス流速方向に延在するガス供給口仕切り板8a,8bが設けられる。このガス供給口仕切り板8a,8bの上端は中リング部8の上面81と面一となるように設けられており、ガス排出口のチャンバに開口した部分の形状としては、複数に分割されることなく1つとなっている。さらに、導入側整流部材6にも、これらガス供給口仕切り板8a,8bに連続して整流部材仕切り板6a,6bが設けられて、ウェーハ12の中心側(イン側)および、ウェーハ12の外周側(アウト側)に供給するガスを別々に送り込むように分離されている。
前記ガス供給口の断面形状のうち、チャンバに開口する位置における断面形状は、その高さ寸法が以下のように設定されている。
具体的には、ウェーハ12法線方向(上下方向)となる高さ方向寸法が、図4に示すように、高さ均一なガス供給口としてウェーハに成膜されたエピタキシャル膜の膜厚分布を補償して、成膜するエピタキシャル膜の膜厚が均一化するようにガス流量を制御可能として、前記エピタキシャル膜の膜厚分布に対応して設定されている。本実施形態では、図5に示すように、ガス供給口の流量調節面(天井面)72が、エピタキシャル膜の膜厚分布を補償するようにガス流量を制御可能な形状になっている。
以上のような構成のエピタキシャル成長装置1を用いて、本発明のエピタキシャルシリコンウェーハの製造方法について説明する。まず、エピタキシャル膜32を形成する工程よりも前工程において、水素気流下でウェーハ12を加熱し、Asのオートドープを低減する水素ベークを行うことが好ましい。こうした水素ベーク工程は、例えば、1180℃で水素ガスを毎分70〜90リットル程度流し、30〜60秒程度行えばよく、さらに好ましくは、水素ガスを80l/min程度流し、40sec程度行うことができる。
そして、エピタキシャル膜を形成する際には、まず、Asを含むシリコン単結晶基板(ウェーハ)12をサセプタ11上に載置する。サセプタ11は、サセプタ支持具16により一定の回転数で回転される。
次いで、ガス導入管21より原料ガスとなるシラン化合物ガス(SiH、SiCl、SiHCl、SiCl)と水素ガスからなる供給ガスが導入され、イン側導入配管19,アウト側導入配管20に分岐後、イン側流量調節器17,アウト側流量調節器18にてガス流量が調整される。
シラン化合物ガスはSiHCl3をもちいるのが、生産性を考慮すると好ましい。
シラン化合物と水素ガスからなる供給ガスは、分岐前の流量、すなわちチャンバ内に供給される総流量が毎分50リットル以上に設定される。また、チャンバ内の圧力は常圧であればよい。その後、供給ガスは、ガス導入部材4、穴付きバッフル5、導入側整流部材6を通り、中リング部8のガス衝突壁面84で拡散し、さらにチャンバ上部天井面72でガス流路2内へと向きを変えられウェーハ12上を流れる。
この状態で、赤外線ランプ15を点灯させることによりウェーハ12、サセプタ11、リング10を加熱し、ウェーハ12のガス流路(チャンバ内上部)2を供給ガスが通過する際、ウェーハ12上でエピタキシャル成長が起こり、エピタキシャル膜が形成される。ウェーハ12は、赤外線ランプ15によって、温度が1080℃以上、1100℃以下の範囲になるように加熱される。
このように、ウェーハ12上にエピタキシャル膜を形成する際に、シラン化合物と水素ガスからなる供給ガスを毎分50リットル以上流し、かつウェーハ12を1080℃以上、1100℃以下の温度範囲になるように加熱することにより、エピタキシャル膜の上部空間におけるAsの濃度が減少し、これによりAsの再吸着が防止され、その結果、図6に示すように、形成されたエピタキシャルシリコンウェーハ31の周縁領域Eのエピタキシャル層内の抵抗率特性が大幅に改善される。
即ち、エピタキシャルシリコンウェーハ31の周縁領域E、例えばウェーハ側面(エッジ)から、中心に向かって約3〜5mmの幅の領域において、エピタキシャル膜32の抵抗率は、従来のエピタキシャル成長で一般的であった1150℃程度でエピタキシャル膜を形成すると、図7のグラフの破線に示すように、エピタキシャルプロファイルにおいて、ウェーハ側面に向かって抵抗率が徐々に緩やかに低下していく特性となる。これは、エピタキシャル膜の形成において、従来一般的に行われてきた1150℃程度にウェーハを加熱すると、Asをドープしたウェーハの場合、エピタキシャル膜の周縁からAsが拡散し、成長したエピタキシャル膜の周縁領域に取り込まれるため、エピタキシャル層内の周縁領域の抵抗率が下がってしまう現象による。
このように、エピタキシャルシリコンウェーハの周縁領域Eのエピタキシャル層内の抵抗特性、ウェーハ側面に向かってエピタキシャルプロファイルにおける抵抗率が徐々に低下する特性であると、周縁領域Eの抵抗率の均一性が保たれないため、この周縁領域Eまでデバイスを形成することができなくなる。特に、直径の大きいエピタキシャルシリコンウェーハの場合、周縁領域の表面積は相当に大きく、この周縁領域にデバイスが形成できないと、1枚のエピタキシャルシリコンウェーハに形成できるデバイスの数は大幅に少なくなる。
しかし、上述した本発明のように、シラン化合物と水素ガスからなる供給ガスを毎分50リットル以上流し、かつウェーハ12を1080℃以上、1100℃以下の温度範囲になるように加熱してウェーハ12上にエピタキシャル膜32を形成することにより、図7のグラフの実線に示すように、エピタキシャルシリコンウェーハのほぼ側面までエピタキシャルプロファイルにおける抵抗率がほとんど低下せず、周縁領域Eのエピタキシャル層内の抵抗率の均一性は大幅に向上する。
これにより、エピタキシャルシリコンウェーハ31のほぼ側面近くまでデバイスを形成することが可能になり、1枚のエピタキシャルシリコンウェーハ31に形成できるデバイスの数を増やし、効率的にエピタキシャルシリコンウェーハ31を利用することが可能になる。
一方、上述したように、エピタキシャルシリコンウェーハの周縁領域Eの抵抗率の均一性を高めるために、エピタキシャル膜の形成時に、ウェーハを従来よりも低い温度である1080℃以上、1100℃以下の温度範囲に設定すると、成長したエピタキシャル膜の中心領域の膜厚が周縁領域よりも薄くなり、エピタキシャル膜の膜厚の面内均一性が低下する。
このため、本発明では、図5に示すように、エピタキシャル成長装置1のガス供給口の流量調節面(天井面)72形状により供給ガスの流量を制御して、エピタキシャル膜の膜厚分布のばらつきを補償することにより、エピタキシャル32の膜厚を中心からウェーハ側面(エッジ)までほぼ均一に保ち、膜厚の面内均一性を良好に保つことが好ましい。こうした供給ガスの流量調節は、本発明のようにウェーハ12の温度を1080℃以上、1100℃以下の範囲にしてエピタキシャル膜32を形成する際には、例えば、ウェーハ12の中心領域を流れる供給ガスの流量を、周縁領域を流れる供給ガスの流量よりも多くなるように設定し、全体として流量が毎分50リットル以上になるようにすれば良い。
以下に、本発明のエピタキシャルシリコンウェーハの製造方法に使用されるエピタキシャル成長装置の他の例について説明する。
図12は、エピタキシャル成長装置の一例を示す模式正断面図である。また、図13は、本実施形態におけるエピタキシャル成長装置を示す模式平面図、図14は、図12,13におけるガス供給口付近を示す模式側断面図であり、図において符号1‘はエピタキシャル成長装置である。
本実施形態におけるエピタキシャル成長装置1‘は、図12〜図14に記載するように、平面状の石英部材とされる上部107と下部109、石英部材とされる側壁108,108、および、上流側壁184と下流側壁185とから略矩形のチャンバ101が構成され、該チャンバ101内には、シリコン単結晶基板(以下、ウェーハと称する)112を保持するサセプタ111が、該サセプタ111上側と上部107との間にチャンバ101を形成するように設けられる。
サセプタ111はサセプタ支持部116により回転可能に支持され、サセプタ支持部116は、チャンバ101外部の回転駆動機構116Aにより回転可能とされている。チャンバ101外側の上部107の上側位置および下部109の下側には図示しない赤外線ランプがウェーハ112加熱用に複数設けられている。サセプタ111の外側には余熱リング110が設けられ、余熱リング110の上面はサセプタ111上のウェーハ112の表面と略同一面となるようになっている。
上流側壁184は、厚みを有する矩形形状とされ、その内部にガス流れ方向にチャンバ101の断面積とほぼ同寸法の断面積とされるとともにチャンバ101に連通して貫通するガス流路186が設けられる。ガス流路186の寸法は幅方向にウェーハ112の径寸法と同程度かやや大きい程度に設定されており、これにより、ウェーハ112全面にガスを供給可能とされている。この上流隔壁184には、ガス流路186に垂直に連通するようにガス整流管172,172がガス流れ方向に直交する位置に複数設けられている。ガス整流管172,172には、それぞれガス流量制御手段106、106が接続され、ガス流路186の一端は、チャンバ101に連通し、反対の他端側は閉塞されており、ガス流路186の上側からその内部にガスを供給するようにガス整流管172,172の噴出方向が設定されている。
これらガス流量制御手段106には、図13の左右方向に貫通するようにガス供給管174が接続されており、このガス供給管174は、上流側壁184内部に管状に設けられて、ガス導入管21を介して図示しないガス供給手段に接続されている。
ガス流量制御手段106は、図示しない制御装置に接続され、前述した流量調節面(天井面)72による制御と同様に成膜するエピタキシャル膜の膜厚が均一化するように、ガス流路186に流入するガス流量をそれぞれ調節可能な弁になっている。ガス流路186に流入するガスは、流量をガス流量制御手段106によって制御されてガス整流管172から噴出し、ガス衝突壁面(垂直曲面)186Aに衝突して拡散し、その後、チャンバ101に流入する。
下流側壁185は、厚みを有する矩形形状とされ、その内部にガス流れ方向にチャンバ101の断面積とほぼ同寸法の断面積とされるとともにチャンバ101に連通して貫通するガス流路187が設けられる。ガス流路187の寸法は幅方向にウェーハ112の径寸法と同程度かやや大きい程度に設定され、ガス流路187は、ガス排気管114を介して図示しないガス排気手段が接続されている。
本発明においては、以上のような構成のエピタキシャル成長装置1‘を用いて、ウェーハに成膜されたエピタキシャル膜の膜厚分布を補償して成膜するエピタキシャル膜の膜厚が均一化するように、前記エピタキシャル膜の膜厚分布に対応してガス流量を制御するよう設定し、上述したエピタキシャル成長装置1を用いた場合と同様にしてエピタキシャルシリコンウェーハの製造をおこなう。これにより、エピタキシャルの膜厚を中心からウェーハ側面(エッジ)までほぼ均一に保ち、膜厚の面内均一性を良好に保つことができる。こうした供給ガスの流量調節は、本発明のようにウェーハ12の温度を1080℃以上、1100℃以下の範囲にしてエピタキシャル膜を形成する際には、例えば、ウェーハ112の中心領域を流れる供給ガスの流量を、周縁領域を流れる供給ガスの流量よりも多くなるように設定し、全体として流量が毎分50リットル以上になるようにすれば良い。
本出願人は、本発明の効果について検証した。まず、エピタキシャル膜の形成時におけるシラン化合物ガスと水素ガスからなる供給ガスの流量と、形成されたエピタキシャル膜の周縁領域の抵抗率との関係を検証した。検証にあたっては、Asをドープしたシリコン単結晶基板(基板比抵抗が3mΩcm〜5mΩcmで6インチ<100>)を用意して、供給ガスの流量を毎分40L(従来例),50L(本発明例),70L(本発明例)にそれぞれ設定して、エピタキシャル膜を形成し、ウェーハ側面から2.5mm付近の周縁領域でのエピタキシャルプロファイルの抵抗率の変化をSR測定機(広がり抵抗測定器)にて測定した。温度は1100℃に固定した。シリコン成長用ガスとしてシラン化合物はSiHCl3をもちい常圧で成長した。こうした検証結果を図8に示す。
図8において、縦軸は抵抗値を対数で表したもの、横軸はエピタキシャル層内の深さ、つまり表面より基板方向に向かう深さ方向の距離を表すものである。
図8に示す検証結果によれば、供給ガスの流量が従来の40Lではエピタキシャルプロファイルの抵抗率が緩やかに低下して、抵抗率の均一性に課題があることを示している。一方、本発明のように、供給ガスの流量を50L以上にすることによって、エピタキシャルプロファイルの抵抗率の変化がほぼ解消され、これによりオートドープが減少してエピタキシャル層内の抵抗率の均一性が大幅に向上していることが確認された。
次に、エピタキシャル膜の形成時における温度と、形成されたエピタキシャル膜の周縁領域の抵抗率との関係を検証した。検証にあたっては、Asをドープしたシリコン単結晶基板(基板比抵抗が3mΩcm〜5mΩcmで6インチ<100>)を用意して、エピタキシャル膜の形成時における温度を1150℃(従来例),1135℃(従来例),1100℃(本発明例)にそれぞれ設定して、エピタキシャル膜を形成し、ウェーハ側面から2.5mm付近の周縁領域でのエピタキシャルプロファイルの抵抗率の変化をSR測定機にて測定した。供給ガスの流量は全てのサンプルで毎分50Lに固定した。シリコン成長用ガスとしてシラン化合物はSiHCl3をもちい常圧で成長した。こうした検証結果を図9に示す。
図9において、縦軸は抵抗値を対数で表したもの、横軸はエピタキシャル層内の深さ、つまり表面より基板方向に向かう深さ方向の距離を表すものである。
図9に示す検証結果によれば、エピタキシャル膜の形成時における温度が、従来のように1150℃,1135℃では、ウェーハの周縁領域のエピタキシャルプロファイルの抵抗率が緩やかに低下して、エピタキシャル層内の抵抗率の均一性に課題があることを示している。一方、本発明のように、エピタキシャル膜の形成時における温度を1100℃以下にすることによって、エピタキシャルプロファイルの抵抗率の変化がほぼ解消され、これによりオートドープが減少してエピタキシャル層内の抵抗率の均一性が大幅に向上していることが確認された。
次に、エピタキシャル膜の形成時における温度を1180℃(高温、従来例)と、1080℃(低温、本発明例)として、形成されたエピタキシャル膜の外周からそれぞれ3mm、10mm、ウェーハ中心において、エピタキシャルプロファイルの抵抗率を測定することで、ドープされたAsの外方拡散量と温度との関係を検証した。こうした検証結果を図10に示す。
図10において、縦軸は抵抗値を対数で表したもの、横軸はエピタキシャル層内の深さ、つまり表面より厚み方向に向かう深さを表す軸である。
図10に示す検証結果によれば、エピタキシャル膜の形成時における温度が、従来のように1180℃といった高温では、特に外周から3mmといった周縁領域において、大きくエピタキシャルプロファイルの抵抗率の変化したのみならず、エピタキシャル層の表面近傍の抵抗率も変化し、Asがエピタキシャル膜に多く取り込まれており、オートドープが解消されていないことが示された。一方、本発明のようにエピタキシャル膜の形成時における温度を1080℃といった低温にすることにより、外周から3mmといった周縁領域においても、Asがエピタキシャル膜に取り込まれる量が抑制され、エピタキシャル層内の抵抗率の変化を抑制し、オートドープが解消されることが示された。
さらに、本発明と従来のそれぞれの条件により形成したエピタキシャル膜の表面近傍の抵抗率を全面に渡って測定した。本発明例では、温度を1080℃、供給ガスの流量を毎分50Lとしてエピタキシャル膜を形成した。従来例では、温度を1180℃、供給ガスの流量を毎分40Lとしてエピタキシャル膜を形成した。そして、ウェーハの直径方向に一定間隔ごとに容量−電圧測定法(CV法)によりエピタキシャル膜の表面近傍の抵抗率を測定した。こうした検証結果を図11としてX方向の結果を、図15としてy方向の結果を示す。
図11、図15において、縦軸はウェーハ表面中心位置での抵抗値に対する各点での抵抗率の比の値で表したもの、横軸は測定距離つまりウェーハ中心から周縁までの距離を表すものである。
図10に示す検証結果によれば、本発明の条件でエピタキシャル膜を形成したウェーハでは、表面の抵抗率は、ほぼ均一に保たれ、ウェーハの中心からエッジまでデバイスを形成可能であることを示している。一方、従来の条件でエピタキシャル膜を形成したウェーハでは、表面の抵抗率にばらつきがあり、特に周縁領域では抵抗率が大幅に落ち込んでいる。このような抵抗率の分布では、ウェーハの周縁領域に中心付近と同じ品質でデバイスを形成することは困難である。本発明の製造方法によってのエピタキシャルシリコンウェーハを形成することによって、エピタキシャルシリコンウェーハの中心からほぼ側面近くまで均一な品質のデバイスを形成することが可能になり、効率的にデバイスが形成可能なエピタキシャルシリコンウェーハが実現できることが確認された。
エピタキシャル成長装置の一実施形態を示す模式側面図である。 エピタキシャル成長装置の一実施形態を図1においてx矢視した模式平面図である。 図2におけるガス供給口をy方向からみた斜視図である。 ガス供給口が均一高さとされた場合の図2におけるガス供給口をy方向からみた正面図である。 ガス供給口が高さ設定された場合の図2におけるガス供給口をy方向からみた正面図である。 本発明のエピタキシャルシリコンウェーハを示す破断斜視図である。 本発明のエピタキシャルシリコンウェーハの周縁領域でのエピタキシャルプロファイルの抵抗率の例を示すグラフである。 本発明の実施例における検証結果を示すグラフである。 本発明の実施例における検証結果を示すグラフである。 本発明の実施例における検証結果を示すグラフである。 本発明の実施例における検証結果を示すグラフである。 エピタキシャル成長装置の他の実施形態を示す模式正断面図である。 エピタキシャル成長装置の他の実施形態を示す模式平面図である。 エピタキシャル成長装置の他の実施形態を示す模式側断面図である。 本発明の実施例における検証結果を示すグラフである。
符号の説明
1 エピタキシャル成長装置
11 シリコン単結晶基板(ウェーハ)
31 エピタキシャルシリコンウェーハ
32 エピタキシャル膜

Claims (4)

  1. Asを含むシリコン単結晶基板にエピタキシャル膜を形成するエピタキシャルシリコンウェーハの製造方法であって、
    前記エピタキシャル膜の形成工程では、温度を1050℃以上,1100℃以下、圧力を常圧として、シラン化合物を含む水素ガスからなる供給ガスを毎分50リットル以上流してエピタキシャル膜を成長させることを特徴とするエピタキシャルシリコンウェーハの製造方法。
  2. 前記エピタキシャル膜の形成工程では、前記シリコン単結晶基板の直径方向の中心部分を流れる前記供給ガスと、周縁部分を流れる前記供給ガスとで、その流量を異ならせたことを特徴とする請求項1に記載のエピタキシャルシリコンウェーハの製造方法。
  3. 前記供給ガスの流量は、前記シリコン単結晶基板の直径方向の周縁部分よりも中心部分のほうが多くなるようにしたことを特徴とする請求項1または2に記載のエピタキシャルシリコンウェーハの製造方法。
  4. 請求項1ないし3のいずれか1項に記載のエピタキシャルシリコンウェーハの製造方法によって製造されたことを特徴とするエピタキシャルシリコンウェーハ。
JP2008198706A 2008-07-31 2008-07-31 エピタキシャルシリコンウェーハおよびその製造方法 Pending JP2010040590A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008198706A JP2010040590A (ja) 2008-07-31 2008-07-31 エピタキシャルシリコンウェーハおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008198706A JP2010040590A (ja) 2008-07-31 2008-07-31 エピタキシャルシリコンウェーハおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2010040590A true JP2010040590A (ja) 2010-02-18

Family

ID=42012861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198706A Pending JP2010040590A (ja) 2008-07-31 2008-07-31 エピタキシャルシリコンウェーハおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2010040590A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343162B1 (ja) * 2012-10-26 2013-11-13 エピクルー株式会社 エピタキシャル成長装置
JP2019117857A (ja) * 2017-12-27 2019-07-18 株式会社Sumco エピタキシャルシリコンウェーハの製造方法およびエピタキシャルシリコンウェーハ
CN111128696A (zh) * 2018-10-31 2020-05-08 胜高股份有限公司 外延硅晶片的制造方法及外延硅晶片

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343162B1 (ja) * 2012-10-26 2013-11-13 エピクルー株式会社 エピタキシャル成長装置
JP2019117857A (ja) * 2017-12-27 2019-07-18 株式会社Sumco エピタキシャルシリコンウェーハの製造方法およびエピタキシャルシリコンウェーハ
CN111128696A (zh) * 2018-10-31 2020-05-08 胜高股份有限公司 外延硅晶片的制造方法及外延硅晶片

Similar Documents

Publication Publication Date Title
US9123759B2 (en) Susceptor, vapor phase growth apparatus, and method of manufacturing epitaxial wafer
US20140261159A1 (en) Film Forming Method Using Epitaxial Growth and Epitaxial Growth Apparatus
JP4379585B2 (ja) 気相成長装置およびエピタキシャルウェーハの製造方法
JP5004513B2 (ja) 気相成長装置及び気相成長方法
JP6009237B2 (ja) エピタキシャルシリコンウェーハの製造方法、および、エピタキシャルシリコンウェーハ
US10513797B2 (en) Manufacturing method of epitaxial silicon wafer
JP7365761B2 (ja) 気相成長装置
JP2010263112A (ja) エピタキシャル成長装置及びシリコンエピタキシャルウェーハの製造方法
JP4981485B2 (ja) 気相成長方法および気相成長装置
JP4581868B2 (ja) エピタキシャル成長装置およびその製造方法
JP2010040590A (ja) エピタキシャルシリコンウェーハおよびその製造方法
TWI754765B (zh) 用於磊晶沉積製程之注入組件
JP2008047785A (ja) 半導体装置の製造方法
US11692266B2 (en) SiC chemical vapor deposition apparatus
JP3893615B2 (ja) 気相成長装置およびエピタキシャルウェーハの製造方法
JP2010040574A (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
JP2010135598A (ja) エピタキシャルウェーハの製造方法
JP2023042593A (ja) SiCエピタキシャルウェハ
JP2012146697A (ja) エピタキシャルウェーハの製造装置及び製造方法
JP2015191956A (ja) 結晶成長装置
JP4655801B2 (ja) エピタキシャル成長装置及びエピタキシャルウェーハ製造方法
CN213781995U (zh) 碳化硅外延片的反应室及其排气装置和半导体设备
JP4591824B2 (ja) サセプタ
JP6179790B2 (ja) 気相成長装置及びエピタキシャルウェーハの製造方法
JP2004134625A (ja) 半導体装置の製造方法と製造装置