WO2014063412A1 - 基于磁温差电效应的传感器元件及其实现方法 - Google Patents

基于磁温差电效应的传感器元件及其实现方法 Download PDF

Info

Publication number
WO2014063412A1
WO2014063412A1 PCT/CN2012/086286 CN2012086286W WO2014063412A1 WO 2014063412 A1 WO2014063412 A1 WO 2014063412A1 CN 2012086286 W CN2012086286 W CN 2012086286W WO 2014063412 A1 WO2014063412 A1 WO 2014063412A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
magnetic
sensor element
magnetic field
thermoelectric element
Prior art date
Application number
PCT/CN2012/086286
Other languages
English (en)
French (fr)
Inventor
狄国庆
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US14/438,003 priority Critical patent/US9797962B2/en
Publication of WO2014063412A1 publication Critical patent/WO2014063412A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor

Definitions

  • the present invention relates to the field of sensor technology, and in particular to a sensor element based on a magnetic temperature difference electrical effect and an implementation method thereof.
  • Magnetic sensors are widely used in many fields such as spatial positioning and orientation, automatic monitoring and control, and information storage. Among them, magnetic sensing components are the key components that determine the performance and use of magnetic sensors.
  • magnetic sensing elements can be classified into Faraday magnetic induction, anisotropy magneto-resistance (AMR), Hall effect, giant magnetoresistance (GMR: Different types of effects such as giant magneto-resistance and TM giant magneto-resistance.
  • AMR anisotropy magneto-resistance
  • GMR giant magnetoresistance
  • Sensors that are particularly sensitive to GMR and TMR effects, because of their high sensitivity and suitable for large-capacity information storage In recent years, in order to meet the increasing demand for storage density, ultra-high-sensitivity magnetoresistive components have been in the state of development competition, and the focus of research and development is to find more suitable by finding.
  • the material, the more suitable multilayer structure and the more suitable manufacturing process improve the sensitivity and stability of the components.
  • WO/2012/093587 C02FE-BASED HEUSLER ALLOY AND SPINTRONIC DEVICE USING SAME proposes a CPP-GMR element which obtains the highest MR ratio and high output signal by using Heusler alloy
  • WO/2011/103437 A HIGH GMR STRUCTURE WITH LOW DRIVE FIELDS proposes multi-period structural components with ferromagnetic exchange coupling and display giant magnetoresistance (GMR);
  • WO/2011/007767 METHOD FOR PRODUCING MAGNETORESISTIVE EFFECT ELEMENT, MAGNETIC SENSOR, ROTATION-ANGLE DETECTION DEVICE discloses a method for regulating the magnetization orientation of a fixed ferromagnetic film layer and the process of preparing a GMR film;
  • Application Number 2009280406 Method of MANUFACTURING TMR READ HEAD, AND TMR LAMINATED BODY
  • GMR-based or TMR-based sensors can temporarily meet the requirements of recent storage density technology development
  • both types of sensor elements are multilayer structures formed by stacking different performance films (see, for example, WO/2010/050125; WO/ 2002/078021; Application Number 06000077; Application Number 10011433)
  • thermoelectric element based on a magnetic thermoelectric effect
  • the sensor element comprising a plurality of angularly-shaped thermoelectric elements in a magnetic field
  • the thermoelectric element being made of a magnetic material having a thermoelectric effect
  • the thermoelectric element comprising the first The side, the second side and the corner formed by the two sides are connected, and the corner is provided with heating means, and the temperature of the area where the other end of the first side and the second side is located is less than or equal to the ambient temperature.
  • the heating device is an electric heating wire or an illumination device, and the corner heating is achieved by energizing or partially illuminating the electric heating wire, and the heating temperature is adjusted by the current or the intensity of the light.
  • an insulating thin layer is further disposed between the electrothermal thin wire and the thermoelectric element.
  • the first side and the second side of the thermoelectric component are bent and formed by the same magnetic material having a thermoelectric effect, or are formed by welding a magnetic material having different thermoelectric effects, the first
  • the angle between the edge and the second side is 0 ⁇ 180.
  • the corner portion is a bent portion of the first side and the second side, or a welded portion of the first side and the second side.
  • the first side and the second side of the thermoelectric element are made of conventional filaments of magnetic material, or thin film lines are formed on the insulating substrate by vacuum coating and micromachining.
  • the plurality of angular structural thermoelectric elements located in the magnetic field are connected in series or in parallel with each other, or a combination of series and parallel.
  • the plurality of thermoelectric elements are sequentially connected in a line shape, the former
  • the end of the second side of the thermoelectric component is electrically connected to the first end of the latter thermoelectric element.
  • the first end of the thermoelectric component is electrically connected to each other, and the second component of the thermoelectric component is electrically connected.
  • the side ends are electrically connected to each other.
  • the angle between the first side and the second line side of the same thermoelectric component is 90°, and the plurality of thermoelectric elements are connected in series when the turns are in a right-angled triangle.
  • the magnetic material having the thermoelectric effect of the thermoelectric element is a metal, or a semimetal, or a semiconductor, or a conductive oxide.
  • thermoelectric element is parallel to the magnetic field.
  • thermoelectric component is placed in a magnetic field, the thermoelectric component comprising a plurality of angularly structured thermoelectric elements, the thermoelectric component being made of a magnetic material having a thermoelectric effect, the thermoelectric component comprising a first side, a second a side and a corner formed by the two sides;
  • the temperature difference electrical component of the angular structure converts the change information of the magnetic field into the changed electrical information based on the magnetic temperature difference electric effect, and outputs the voltage at both ends of the thermoelectric element.
  • the sensor element structure and the manufacturing process of the invention have stable performance and can be processed into various forms and sizes, and can be used for developing different kinds of magnetic field sensors, in particular, it is possible to develop ultra-high A new generation of readout heads for density magnetic information storage is widely used in many fields including information storage.
  • FIG. 1 is a schematic structural view of a temperature difference electrical component of a sensor element according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of an implementation principle of a sensor component according to an embodiment of the present invention
  • the invention discloses a sensor element based on a magnetic temperature difference electric effect, the sensor element comprises a plurality of angular difference thermoelectric elements located in a magnetic field, the thermoelectric element is made of a magnetic material having a thermoelectric effect, and the thermoelectric element comprises a first a side, a second side and a corner formed by the two sides, a heating device is arranged at the corner, and the temperature of the area of the other end of the first side and the second side is less than or equal to the ambient temperature Degree.
  • the invention also discloses a method for realizing a sensor element based on a magnetic temperature difference electric effect, and the method comprises:
  • thermoelectric component is placed in a magnetic field, and the thermoelectric component comprises a plurality of angular differential thermoelectric elements, the thermoelectric component is made of a magnetic material having a thermoelectric effect, and the thermoelectric component comprises a first side, a second side, and two sides. Connecting the formed corners;
  • the temperature difference electrical component of the angular structure converts the change information of the magnetic field into the changed electrical information based on the magnetic temperature difference electric effect, and outputs the voltage at both ends of the thermoelectric element.
  • the invention relates to a sensor element based on magnetic temperature difference electric effect and an implementation method thereof.
  • a thermoelectric component having an angular structure is placed in a magnetic field, and a corner portion of the thermoelectric component is heated.
  • a voltage across the thermoelectric component is corresponding. Change, thereby realizing the transformation of magnetic field information into electrical information.
  • a sensor element based on a magnetic temperature difference electric effect includes a plurality of angular differential thermoelectric elements 10 located in a magnetic field H, and the thermoelectric component 10 is made of a magnetic material having a thermoelectric effect.
  • the thermoelectric component 10 includes a first side 11, a second side 12, and a corner portion 13 formed by the first side 11 and the second side 12 being joined.
  • the corner portion 13 is provided with heating means.
  • the heating device is an electric heating wire or an illumination device, and the heating of the diagonal portion 13 is achieved by electric heating or local illumination, and the heating temperature is adjusted by the intensity of the current or the light.
  • the electric heating thin wire 20 is energized and heated, and the heating temperature is adjusted by the magnitude of the current.
  • thermoelectric component 10 Place the thermoelectric component 10 in the magnetic field H; Heating the corner portion 13 of the thermoelectric element 10 such that the temperature of the corner portion 13 is higher than the temperature of the other end of the first side 11 and the second side 12;
  • thermoelectric component 10 converts the information of the magnetic field change into the changed electrical information.
  • thermoelectric element in the present embodiment is made of a magnetic material having a thermoelectric effect, and has a magnetic anisotropy of a thermoelectric effect, which may be a metal, or a semimetal, or a semiconductor, or a conductive oxide.
  • the first side and the second side of the thermoelectric element are made of conventional filaments of magnetic material, or thin film lines are formed on the insulating substrate by vacuum coating and micromachining, thereby forming a miniature or small-sized sensor.
  • the thermoelectric element is placed in a variable magnetic field H.
  • the plane of the thermoelectric element is parallel to the direction of the variable magnetic field H, and in other embodiments there may be a certain angle.
  • the corner portion 13 (F portion) is heated by a heating device to form a high temperature region, and the ends E and G of the first side 11 and the second side 12 are placed in a lower temperature region, and may be directly placed at ambient temperature.
  • the ends E and G are two temperature junctions, and the corner F is a high temperature junction.
  • the thermoelectric component passes the temperature difference between the high temperature junction and the temperature junction, and directly converts the thermal energy at the high temperature end into electrical energy, thereby A voltage is generated between the two ends E and G.
  • the magnitude of the voltage changes with the change of the magnetic field strength, and the positive and negative polarities of the voltage change with the change of the magnetic field direction, thereby realizing the transformation of the magnetic field information and the electrical information.
  • the electric heating wire 20 is directly in contact with the corner portion (F portion) of the thermoelectric component 10.
  • the electrothermal thin wire and the thermoelectric component may be indirectly contacted with an insulating thin layer.
  • the first side and the second side of the thermoelectric element may be of the same material or different materials conforming to heat transfer matching requirements.
  • the same material it is directly bent and formed, and the bent portion is the corner portion of the thermoelectric component; when different materials are used, the two materials are welded and formed, and the welded portion is the corner portion of the thermoelectric component.
  • the angle between the first side and the second side is 0 ⁇ 180°.
  • the thermoelectric component is bent by using the same magnetic material having a thermoelectric effect, and the bending angle between the first side and the second side is preferably set to 90°.
  • the electrical heating causes the temperature of the component F to 345.
  • thermoelectric component in the invention can be used alone, and the electromotive force generated by each single thermoelectric component is small, only a few to several hundred microvolts, and a plurality of thermoelectric components can be connected in series to amplify the electricity. Signal, improve the sensitivity of the sensor.
  • thermoelectric elements When connected in series, the thermoelectric elements are connected in a line shape when connected in series, and the end of the second side of the previous thermoelectric element is electrically connected to the first end of the latter thermoelectric element, preferably, the thermoelectric element
  • the angle between the first side and the second line side is 90°, and the cross section of the thermoelectric elements connected in series is a right-angled triangle.
  • the oblique side can also be set as a curve or the like;
  • the first end portions of the thermoelectric elements are electrically connected to each other, and the second end portions of the thermoelectric elements are electrically connected to each other as two connection ends.
  • the voltage across the series assembly is proportional to the number of components, thereby improving the magnetic-electrical information conversion performance of the sensor element.
  • the sensor element based on the magnetic temperature difference electric effect and the implementation method thereof are used to place the thermoelectric component having the angular structure in the magnetic field, and to heat the corner of the thermoelectric component, when the magnetic field changes, the temperature difference The voltage across the electrical component changes accordingly, thereby realizing the conversion of magnetic field information to electrical information.
  • the sensor element of the invention has a single structure, stable performance, easy to manufacture or process into various forms and sizes, and is used for developing different kinds of magnetic field sensors, in particular, a new generation of readings which may be used for developing ultra-high density magnetic information storage.
  • the magnetic head is widely used in many fields including information storage.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种基于磁温差电效应的传感器元件及其实现方法,所述传感器元件包括若干位于磁场(H)中的角形结构的温差电元件(10),所述温差电元件(10)由具有温差电效应的磁性材料制成,温差电元件(10)包括第一边(11)、第二边(12)以及两边相接形成的角部(13),所述角部(13)处设有加热装置(20),所述第一边(11)和第二边(12)的另一端所在区域温度小于或等于周围环境温度。该传感器元件结构及其制造工艺简单、性能稳定,能够加工成各种形式和大小的尺寸,可用于开发不同种类的磁场传感器,特别是可能用于开发超高密度磁性信息存储的新一代读出磁头,在包括信息存储在内的众多领域获得广泛的应用。

Description

基于磁温差电效应的传感器元件及其实现方法
本申请要求于 2012 年 10 月 26 日提交中国专利局、 申请号为 201210419190.1、 发明名称为 "基于磁温差电效应的传感器元件及其实现方法 "的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及传感器技术领域,特别是涉及一种基于磁温差电效应的传感器 元件及其实现方法。
背景技术
磁性传感器广泛应用于空间定位和定向、 自动监测和控制、信息存储等诸 多技术领域, 其中的磁性传感元件是关键的部分、 决定着磁性传感器的性能和 用途。
从原理上, 磁性传感元件可以分为利用法拉第 ( Faraday )磁感应、 各向 异'] "生磁电阻 ( AMR: anisotropy magneto-resistance )效应、 霍耳 ( Hall )效应、 巨磁电阻(GMR: giant magneto-resistance )效应、 P遂道磁电阻(TMR: tunnel giant magneto-resistance )效应等不同类型。 特别 于 GMR和 TMR效应的 传感器, 因为它们的高灵敏度、 适用于超大容量的信息存储, 受到各国相关领 域技术人员的重视。 近年来, 为满足日益增长的存储密度需求, 超高灵敏度的 磁电阻元件一直处于你追我赶的开发竟争状态,而研究开发的重点是通过寻找 发现更合适的材料、 更合适的多层结构和更合适的制造工艺,提高元件的灵敏 度和运行的稳定性。
现有技术中 WO/2012/093587 ( C02FE-BASED HEUSLER ALLOY AND SPINTRONIC DEVICE USING SAME )提出了通过采用 Heusler合金、获得最 高 MR比和高输出信号的 CPP-GMR元件; WO/2011/103437 ( A HIGH GMR STRUCTURE WITH LOW DRIVE FIELDS )提出具有铁磁交换耦合、 显示巨 磁电阻(GMR)的多周期结构元件; WO/2011/007767 ( METHOD FOR PRODUCING MAGNETORESISTIVE EFFECT ELEMENT, MAGNETIC SENSOR, ROTATION-ANGLE DETECTION DEVICE )公开了一种既能调控固 定铁磁膜层的磁化取向又能筒化 GMR膜制备工艺的方法; Application Number 2009280406 ( METHOD OF MANUFACTURING TMR READ HEAD, AND TMR LAMINATED BODY )公开了得到高 MR比的 TMR读出磁头的方法; Application Number 2009202412 ( TUNNEL JUNCTION TYPE MAGNETORESISTIVE HEAD AND METHOD OF MANUFACTURING THE SAME )介绍了获得在面电阻 R A小于 1.0 Ω μ m2的区域 MR比退化小的 TMR 磁头的方法; WO/2008/142748 ( MAGNETIC HEAD FOR MAGNETIC DISK APPARATUS ) 发明了一种用在硬盘 ( HDD ) 装置中、 含有 TMR 元件或 CPP-GMR元件、信号传送性能优异的读出磁头; WO/2010/050125 ( CPP-GMR ELEMENT, TMR ELEMENT, AND MAGNETIC RECORDING/ REPRODUCTION DEVICE )通过采用结晶磁各向异性能达 2 108 erg/cm 的 L10Mn5。Ir5Q 薄膜作为反铁磁性层, 能够保证即使尺寸小到 5 nm, 元件的稳定 性也能达到天文数字的 1.2 1049年。
虽然基于 GMR或 TMR效应传感器能够暂时满足近期存储密度技术发展 的要求,但这两类传感器元件都是由不同性能薄膜叠加而形成的多层结构(比 如,见专利 WO/2010/050125; WO/2002/078021; Application Number 06000077; Application Number 10011433 ), 不仅对薄膜材料的性能有特殊的要求, 元件的 制备工艺也复杂; 另外, 还要求磁头的尺寸进一步减小。 受这些关键因素的综 合限制, 元件性能提高的难度越来越大。
因此, 为解决上述技术问题,基于新物理效应的磁性传感器元件的研究开 发成为该领域技术发展的新方向。 发明内容
有鉴于此,本发明的目的在于提供一种基于磁温差电效应的传感器元件及 其实现方法。
为了实现上述目的, 本发明实施例提供的技术方案如下: 一种基于磁温差电效应的传感器元件,所述传感器元件包括若干位于磁场 中的角形结构的温差电元件,所述温差电元件由具有温差电效应的磁性材料制 成, 温差电元件包括第一边、 第二边以及两边相接形成的角部, 所述角部处设 有加热装置,所述第一边和第二边的另一端所在区域温度小于或等于周围环境 温度。
作为本发明的进一步改进, 所述加热装置为一电热细线或光照装置, 角部 加热通过对电热细线通电或局部光照实现, 加热温度由电流或光的强度调节。
作为本发明的进一步改进,所述电热细线和温差电元件之间还设有绝缘薄 层。
作为本发明的进一步改进,所述温差电元件的第一边和第二边由同一种具 有温差电效应的磁性材料弯折成型、 或由不同温差电效应的磁性材料焊接成 型,所述第一边和第二边的夹角为 0~180。 ,所述角部为第一边和第二边的弯折 部、 或第一边和第二边的焊接部。
作为本发明的进一步改进,所述温差电元件的第一边和第二边由磁性材料 的常规细丝制作, 或由真空镀膜和微加工方法在绝缘村底上制作薄膜细线形 成。
作为本发明的进一步改进,所述若干位于磁场中的角形结构温差电元件为 相互串联或相互并联、 或串联和并联的组合, 串联时, 若干温差电元件顺次连 接成线圏状,前一个温差电元件的第二边的端部和后一个温差电元件的第一边 端部电性连接, 并联时, 若干温差电元件的第一边端部相互电性连接, 温差电 元件的第二边端部相互电性连接。
作为本发明的进一步改进,所述同一个温差电元件的第一边和第二线边的 夹角为 90° , 若干温差电元件顺次串联时连接成的线圏截面成直角三角形。
作为本发明的进一步改进,所述温差电元件的具有温差电效应的磁性材料 为金属、 或半金属、 或半导体、 或导电氧化物。
作为本发明的进一步改进, 所述温差电元件所在平面与磁场平行。
相应地, 一种基于磁温差电效应的传感器元件实现方法, 所述方法包括: 将温差电元件放置于磁场中,所述温差电元件包括若干个角形结构的温差 电元件, 所述温差电元件由具有温差电效应的磁性材料制成, 温差电元件包括 第一边、 第二边以及所述两边相接形成的角部;
加热温差电元件的角部, 使角部的温度高于第一边和第二边另一端的温 度;
磁场发生变化时,基于磁温差电效应, 角形结构的温差电元件将磁场的变 化信息转化为变化的电信息, 在温差电元件两端以电压的形式输出。
与现有技术相比, 本发明的传感器元件结构和制造工艺筒单、 性能稳定, 能够加工成各种形式和大小的尺寸, 可用于开发不同种类的磁场传感器,特别 是可能用于开发超高密度磁性信息存储的新一代读出磁头,在包括信息存储在 内的众多领域获得广泛的应用。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明中记载的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施方式传感器元件中温差电元件的结构示意图; 图 2为本发明一实施方式传感器元件中实现原理的流程示意图; 图 3为本发明一实施方式中温差电元件两端 G和 E间的电压随磁场强度 的变化图。 具体实施方式
本发明公开了一种基于磁温差电效应的传感器元件,传感器元件包括若干 位于磁场中的角形结构的温差电元件,温差电元件由具有温差电效应的磁性材 料制成, 温差电元件包括第一边、 第二边以及两边相接形成的角部, 角部处设 有加热装置, 第一边和第二边的另一端所在区域温度小于或等于周围环境温 度。
本发明还公开了一种基于磁温差电效应的传感器元件的实现方法,方法包 括:
将温差电元件放置于磁场中,温差电元件包括若干个角形结构的温差电元 件, 温差电元件由具有温差电效应的磁性材料制成, 温差电元件包括第一边、 第二边以及两边相接形成的角部;
加热温差电元件的角部, 使角部的温度高于第一边和第二边另一端的温 度;
磁场发生变化时,基于磁温差电效应, 角形结构的温差电元件将磁场的变 化信息转化为变化的电信息, 在温差电元件两端以电压的形式输出。
本发明基于磁温差电效应的传感器元件及其实现方法将具有角形结构的 温差电元件放置于磁场中, 加热温差电元件的角部, 当磁场发生变化时, 温差 电元件两端的电压会相应的变化, 从而实现磁场信息到电信息的转化。
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都应当属于本发明保护的范围。
参见图 1所示, 本发明一实施方式中基于磁温差电效应的传感器元件, 包 括若干位于磁场 H中的角形结构的温差电元件 10,温差电元件 10由具有温差 电效应的磁性材料制成, 温差电元件 10包括第一边 11、 第二边 12以及第一 边 11和第二边 12相接形成的角部 13, 角部 13处设有加热装置。 加热装置为 一电热细线或光照装置,通过电热细线通电或局部光照、 实现对角部 13加热, 加热温度由电流或光的强度调节。 优选地, 本实施方式中采用对电热细线 20 通电进行加热, 加热温度由电流的大小调节。
本实施方式中传感器元件的实现方法为:
将温差电元件 10放置于磁场 H中; 加热温差电元件 10的角部 13, 使角部 13的温度高于第一边 11和第二边 12的另一端的温度;
磁场 H发生变化时, 基于磁温差电效应, 温差电元件 10将磁场变化的信 息转化为变化的电信息。
本实施方式中的温差电元件采用具有温差电效应的磁性材料制成,具有温 差电效应的磁各向异性, 其可为金属、 或半金属、 或半导体、 或导电氧化物。 温差电元件的第一边和第二边由磁性材料的常规细丝制作,或由真空镀膜和微 加工方法在绝缘村底上制作薄膜细线形成, 由此制成微型或小尺寸的传感器。 将温差电元件置于可变磁场 H中,优选地,温差电元件所在平面与可变磁场 H 的方向相平行, 在其他实施方式中也可以有一定的夹角。
角部 13(F部)通过加热装置加热形成高温区域, 第一边 11和第二边 12的 端部 E和 G置于较低温度的区域中, 也可以直接置于周围的环境温度, 则端 部 E和 G为两个氏温结, 角部 F为高温结, 温差电元件就通过高温结和氐温 结之间的温差,将高温端的热能直接转化成了电能,从而在温差电元件的两端 E和 G之间产生一个电压。该电压的大小会随着磁场强度的改变而变化, 电压 的正负极性随着磁场方向的改变而变化, 从而实现磁场信息与电信息的转化。 优选地, 本实施方式中电热细线 20直接与温差电元件 10的角部 (F部)接触, 其他实施方式中电热细线和温差电元件还可以设有绝缘薄层间接接触。
本发明中温差电元件的第一边和第二边可以是同一种材料,也可以是符合 传热匹配要求的不同种材料。 采用同一种材料时, 直接将其折弯成型, 弯折部 即为温差电元件的角部; 采用不同种材料时, 将两种材料焊接成型, 焊接部即 为温差电元件的角部。 第一边和第二边间的夹角为 0~180° 。 优选地, 本发明 一优选实施方式中温差电元件采用同一种具有温差电效应的磁性材料弯折而 成, 第一边和第二边之间的弯折角度最佳设为 90° 。
参图 3所示, 在本发明一具体实施例中, 电加热使元件 F部的温度至 345
K, 室温是 302 K, 磁场方向平行于元件的第二边, 磁场强度 H从 0逐渐增加 至 6000 Oe时, 温差电元件两端 G和 E间的电压 UGE随磁场强度的变化曲线。 本发明中的温差电元件可以单独使用,每个单个温差电元件所产生的电动 势很小, 只有几到几百个微伏, 还可以先将多个温差电元件串联起来使用, 起 到放大电信号、提高传感器灵敏度的作用。 串联时, 温差电元件顺次串联时连 接成线圏状,前一个温差电元件的第二边的端部和后一个温差电元件的第一边 端部电性连接, 优选地, 温差电元件的第一边和第二线边的夹角为 90° , 且 温差电元件顺次串联时连接成的线圏截面成直角三角形,在其他实施方式中斜 边也可以设置为曲线等; 并联时, 温差电元件的第一边端部相互电性连接, 温 差电元件的第二边端部相互电性连接, 分别作为两个连接端。 串联组合件两端 的电压与元件的个数成正比, 由此提高传感器元件的磁 -电信息转化性能。
由上述技术方案可以看出,本发明基于磁温差电效应的传感器元件及其实 现方法将具有角形结构的温差电元件放置于磁场中, 加热温差电元件的角部, 当磁场发生变化时, 温差电元件两端的电压会相应的变化,从而实现磁场信息 到电信息的转化。
本发明的传感器元件结构筒单、 性能稳定, 容易制造或加工成各种形式和 大小的尺寸、用于开发不同种类的磁场传感器,特别是可能用于开发超高密度 磁性信息存储的新一代读出磁头,在包括信息存储在内的众多领域获得广泛的 应用。
对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细节, 而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现 本发明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非 限制性的, 本发明的范围由所附权利要求而不是上述说明限定, 因此旨在将落 在权利要求的等同要件的含义和范围内的所有变化嚢括在本发明内。不应将权 利要求中的任何附图标记视为限制所涉及的权利要求。
此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施 方式仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经 适当组合, 形成本领域技术人员可以理解的其他实施方式。

Claims

权 利 要 求
1、 一种基于磁温差电效应的传感器元件, 其特征在于, 所述传感器元件 包括若干位于磁场中的角形结构的温差电元件,所述温差电元件由具有温差电 效应的磁性材料制成, 温差电元件包括第一边、第二边以及两边相接形成的角 部, 所述角部处设有加热装置, 所述第一边和第二边的另一端所在区域温度小 于或等于周围环境温度。
2、 根据权利要求 1所述的传感器元件, 其特征在于, 所述加热装置为一 电热细线或光照装置, 角部加热通过对电热细线通电或局部光照实现,加热温 度由电流或光的强度调节。
3、 根据权利要求 2所述的传感器元件, 其特征在于, 所述电热细线和温 差电元件之间还设有绝缘薄层。
4、 根据权利要求 1所述的传感器元件, 其特征在于, 所述温差电元件的 第一边和第二边由同一种具有温差电效应的磁性材料弯折成型、或由不同温差 电效应的磁性材料焊接成型,所述第一边和第二边的夹角为 0~180。 ,所述角部 为第一边和第二边的弯折部、 或第一边和第二边的焊接部。
5、 根据权利要求 4所述的传感器元件, 其特征在于, 所述温差电元件的 第一边和第二边由磁性材料的常规细丝制作,或由真空镀膜和微加工方法在绝 缘村底上制作薄膜细线形成。
6、 根据权利要求 4所述的传感器元件, 其特征在于, 所述若干位于磁场 中的角形结构温差电元件为相互串联或相互并联、或串联和并联的组合, 串联 时, 若干温差电元件顺次连接成线圏状, 前一个温差电元件的第二边的端部和 后一个温差电元件的第一边端部电性连接, 并联时, 若干温差电元件的第一边 端部相互电性连接, 温差电元件的第二边端部相互电性连接。
7、 根据权利要求 6所述的传感器元件, 其特征在于, 所述同一个温差电 元件的第一边和第二线边的夹角为 90° , 若干温差电元件顺次串联时连接成 的线圏截面成直角三角形。
8、 根据权利要求 1所述的传感器元件, 其特征在于, 所述温差电元件的 具有温差电效应的磁性材料为金属、 或半金属、 或半导体、 或导电氧化物。
9、 根据权利要求 1所述的传感器元件, 其特征在于, 所述温差电元件所 在平面与磁场平行。
10、 一种基于磁温差电效应的传感器元件实现方法, 其特征在于, 所述方 法包括:
将温差电元件放置于磁场中,所述温差电元件包括若干个角形结构的温差 电元件, 所述温差电元件由具有温差电效应的磁性材料制成, 温差电元件包括 第一边、 第二边以及所述两边相接形成的角部;
加热温差电元件的角部, 使角部的温度高于第一边和第二边另一端的温 度;
磁场发生变化时,基于磁温差电效应, 角形结构的温差电元件将磁场的变 化信息转化为变化的电信息, 在温差电元件两端以电压的形式输出。
PCT/CN2012/086286 2012-10-26 2012-12-10 基于磁温差电效应的传感器元件及其实现方法 WO2014063412A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/438,003 US9797962B2 (en) 2012-10-26 2012-12-10 Sensor element based on magneto-thermoelectric effect, and realizing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210419190.1 2012-10-26
CN201210419190.1A CN102901940B (zh) 2012-10-26 2012-10-26 基于磁温差电效应的传感器元件及其实现方法

Publications (1)

Publication Number Publication Date
WO2014063412A1 true WO2014063412A1 (zh) 2014-05-01

Family

ID=47574282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086286 WO2014063412A1 (zh) 2012-10-26 2012-12-10 基于磁温差电效应的传感器元件及其实现方法

Country Status (3)

Country Link
US (1) US9797962B2 (zh)
CN (1) CN102901940B (zh)
WO (1) WO2014063412A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201233438Y (zh) * 2008-07-29 2009-05-06 比亚迪股份有限公司 一种霍尔传感器
WO2010050125A1 (ja) * 2008-10-31 2010-05-06 株式会社日立製作所 Cpp-gmr素子、tmr素子および磁気記録再生装置
WO2012093587A1 (ja) * 2011-01-07 2012-07-12 独立行政法人物質・材料研究機構 Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子
CN102983791A (zh) * 2012-10-26 2013-03-20 苏州大学 温差交流发电装置及其发电方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3564401A (en) * 1965-08-16 1971-02-16 Nasa Thermally cycled magnetometer
JP3777024B2 (ja) * 1997-06-26 2006-05-24 内橋エステック株式会社 磁界の検出方法
JP4089985B2 (ja) * 1997-07-17 2008-05-28 内橋エステック株式会社 多ヘッド型磁界センサ
WO2002077657A1 (en) 2001-03-22 2002-10-03 Fujitsu Limited Magnetoresistive spin-valve sensor and magnetic storage apparatus
CN100394450C (zh) * 2002-10-26 2008-06-11 深圳市华夏磁电子技术开发有限公司 自旋阀巨磁电阻及含有该巨磁电阻的验钞机磁头传感器
JP2004289100A (ja) 2003-01-31 2004-10-14 Japan Science & Technology Agency Cpp型巨大磁気抵抗素子及びそれを用いた磁気部品並びに磁気装置
JP2005078750A (ja) * 2003-09-02 2005-03-24 Toshiba Corp 磁気記録再生装置
US7408747B2 (en) 2005-02-01 2008-08-05 Hitachi Global Storage Technologies Netherlands B.V. Enhanced anti-parallel-pinned sensor using thin ruthenium spacer and high magnetic field annealing
WO2008142748A1 (ja) 2007-05-16 2008-11-27 Fujitsu Limited 磁気ディスク装置用の磁気ヘッド
JP5279297B2 (ja) 2008-02-27 2013-09-04 株式会社パイロットコーポレーション スライド式の複合筆記具
US8779764B2 (en) 2009-07-13 2014-07-15 Hitachi Metals, Ltd. Method for producing magnetoresistive effect element, magnetic sensor, rotation-angle detection device
JP2009280406A (ja) 2009-09-01 2009-12-03 Duplo Seiko Corp 給紙装置
WO2011103437A1 (en) 2010-02-22 2011-08-25 Integrated Magnetoelectronics Corporation A high gmr structure with low drive fields

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201233438Y (zh) * 2008-07-29 2009-05-06 比亚迪股份有限公司 一种霍尔传感器
WO2010050125A1 (ja) * 2008-10-31 2010-05-06 株式会社日立製作所 Cpp-gmr素子、tmr素子および磁気記録再生装置
WO2012093587A1 (ja) * 2011-01-07 2012-07-12 独立行政法人物質・材料研究機構 Co2Fe基ホイスラー合金とこれを用いたスピントロニクス素子
CN102983791A (zh) * 2012-10-26 2013-03-20 苏州大学 温差交流发电装置及其发电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, JIALUO ET AL.: "Influence of Magnetic Anisotropy Thermoelectric Effect on Spin-dependent Devices", ACTA PHYSICA SINICA, vol. 61, no. 20, 20 October 2012 (2012-10-20), pages 207201 - 1-207201-6 *

Also Published As

Publication number Publication date
US9797962B2 (en) 2017-10-24
CN102901940B (zh) 2015-07-15
US20150293186A1 (en) 2015-10-15
CN102901940A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
JP3839697B2 (ja) 回転角度センサ
JP4780117B2 (ja) 角度センサ、その製造方法及びそれを用いた角度検知装置
JP5297075B2 (ja) 磁気センサおよびその製造方法、並びに電流検出方法および電流検出装置
WO2012136132A1 (zh) 单一芯片桥式磁场传感器及其制备方法
WO2015033464A1 (ja) 磁気センサ素子
JP5805500B2 (ja) 生体磁気センサーの製造方法
Cao et al. Wheatstone bridge sensor composed of linear MgO magnetic tunnel junctions
TW201719637A (zh) 自旋力矩振盪器、其製造方法及包括其的電子裝置
Nakano et al. Magnetic tunnel junctions using perpendicularly magnetized synthetic antiferromagnetic reference layer for wide-dynamic-range magnetic sensors
JP2009036770A (ja) 磁気センサおよびその製造方法
CN111630402A (zh) 磁检测装置及其制造方法
JP3587678B2 (ja) 磁界センサ
Davies et al. Magnetoresistive sensor detectivity: A comparative analysis
JP4790448B2 (ja) 磁気抵抗効果素子及びその形成方法
JP2017103378A (ja) 磁気抵抗効果素子及び磁気センサ、並びに磁気抵抗効果素子の製造方法及び磁気センサの製造方法
Franco et al. Optimization of asymmetric reference structures through non-evenly layered synthetic antiferromagnet for full bridge magnetic sensors based on CoFeB/MgO/CoFeB
JP2000307171A (ja) 磁気デバイスのピン止め層
JP6639509B2 (ja) 改善されたプログラミング性及び低い読取り消費電力で磁場を検出するマグネティック・ロジック・ユニット(mlu)セル
WO2014063412A1 (zh) 基于磁温差电效应的传感器元件及其实现方法
JP6923881B2 (ja) トンネル磁気抵抗素子及びその製造方法
JP2009164269A (ja) 磁気抵抗効果素子の製造方法および磁気抵抗効果素子
JP2007235051A (ja) 磁気抵抗効果素子、磁気抵抗効果素子の基板および磁気抵抗効果素子の製造方法
JP2002232039A (ja) スピンバルブ型巨大磁気抵抗効果素子、磁気抵抗効果型磁気ヘッド、およびこれらの製造方法
Sun et al. Linearization of the tunneling magnetoresistance sensors through a three-step annealing process
JP2005072436A (ja) トンネルジャンクション素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887094

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.10.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12887094

Country of ref document: EP

Kind code of ref document: A1