CN201233438Y - 一种霍尔传感器 - Google Patents

一种霍尔传感器 Download PDF

Info

Publication number
CN201233438Y
CN201233438Y CNU2008201262660U CN200820126266U CN201233438Y CN 201233438 Y CN201233438 Y CN 201233438Y CN U2008201262660 U CNU2008201262660 U CN U2008201262660U CN 200820126266 U CN200820126266 U CN 200820126266U CN 201233438 Y CN201233438 Y CN 201233438Y
Authority
CN
China
Prior art keywords
output
voltage signal
module
magnetic induction
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU2008201262660U
Other languages
English (en)
Inventor
陈波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CNU2008201262660U priority Critical patent/CN201233438Y/zh
Application granted granted Critical
Publication of CN201233438Y publication Critical patent/CN201233438Y/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

本实用新型公开了一种霍尔传感器。本实用新型公开的霍尔传感器包括:电压调节模块,其输入端连接自外部电源、并向霍尔传感器内的所有模块提供电源电压信号;偏置与基准模块,提供参考电压信号和恒定电流;霍尔片,在感应到与其垂直的磁场时,产生大小与磁感应强度成正比的磁感应电压信号并输出至放大器;放大器,输出放大后的磁感应电压信号;脉宽调制(PWM)输出模块,接收放大器放大后的磁感应电压信号,并通过PWM输出端输出脉宽与磁感应电压信号大小成比例的脉冲信号。可见,本实用新型由PWM输出模块产生脉冲信号、并根据外部磁场强度对该脉冲信号进行脉宽调制,从而使得该霍尔传感器能够提供脉宽与外部磁场强度成比例的脉冲信号。

Description

一种霍尔传感器
技术领域
本实用新型涉及传感器技术,特别涉及一种霍尔传感器。
背景技术
图1为现有的一种霍尔传感器的结构示意图。如图1所示,该霍尔传感器通常称为线性霍尔传感器,包括:电压调节模块11、偏置与基准模块12、霍尔片13、放大器(AMP)14、控制和补偿模块15、以及线性输出级16。
电压调节模块11的输入端连接自电源Vcc,电压调节模块11的输出端连接至霍尔传感器中的所有其他模块,用于根据电源Vcc提供的电源电压向霍尔传感器中的所有其他模块提供电源电压信号。电压调节模块11的输出端与霍尔传感器中的所有其他模块的连接关系,如图1中自电压调节模块引出的悬空箭头省略表示。
偏置与基准模块12根据电压调节模块11输出的电源电压信号提供参考电压信号和恒定电流,其提供的参考电压信号和恒定电流可以输出至霍尔传感器中的其他模块,偏置与基准模块12的输出端与霍尔传感器中除电压调节模块11之外的所有其他模块的连接关系,如图1中自偏置与基准模块引出的悬空箭头省略表示。
霍尔片13的电源输入端与电压调节模块11的输出端相连、地端接地,同时具有两路信号输出端分别与AMP 14的两路输入端相连,霍尔片13在感应到与其垂直的外部磁场时,会产生一个大小与该外部磁场的磁感应强度成正比的磁感应电压信号并输出至AMP 14的两路输入端。
AMP 14将其两路输入端接收到的磁感应电压信号放大后,通过其输出端输出至线性输出级16。
线性输出级16对AMP 14放大后的磁感应电压信号进行调节、以增大其驱动力后经线性输出端输出。
在图1中,AMP 14还具有一控制端。线性输出级16将调整后的磁感应电压信号输出至控制和补偿模块15,由控制和补偿模块15根据该磁感应电压信号产生补偿控制信号输出至AMP 14的控制端,实现对AMP 14的闭环控制。
图2为现有的另一种霍尔传感器的结构示意图。如图2所示,该霍尔传感器通常称为开关霍尔传感器,相比于如图1所示的线性霍尔传感器,开关霍尔传感器的区别仅在于:AMP 14和开关输出级17(此处所述的开关输出级17与如图1所示的线性输出级16的工作原理基本相同)之间增加了一个施密特触发器20。
当霍尔片13根据其感应到的磁场强度产生的磁感应电压信号,经AMP14放大后大于某预设值时,施密特触发器20会输出高电平至开关输出级17,再由开关输出级17调整对该高电平信号进行调整、以增大其驱动能力后通过开关输出端输出。
当霍尔片13根据其感应到的磁场强度产生的磁感应电压信号,经AMP14放大后输出至施密特触发器20,如果输出至施密特触发器20的磁感应电压信号小于上述预设值时,施密特触发器20会输出低电平至开关输出级17,再由开关输出级17调整对该低电平信号进行调整、以增大其驱动能力后通过开关输出端输出。
可见,现有技术中如图1所示的线性霍尔传感器无法提供脉宽与外部磁场强度成比例的脉冲信号,而现有技术中如图2所示的开关霍尔传感器虽然能够输出高低电平交替的脉冲信号,但其无法根据外部磁场强度对脉冲信号进行脉宽调制(PWM),从而也无法提供脉宽与外部磁场强度成比例的脉冲信号。
实用新型内容
有鉴于此,本实用新型提供了一种霍尔传感器,能够输出脉宽与外部磁场强度成比例的脉冲信号。
本实用新型提供的一种霍尔传感器,包括:
电压调节模块,其输入端连接自外部电源、并向霍尔传感器内的所有模块提供电源电压信号;
偏置与基准模块,提供参考电压信号和恒定电流;
霍尔片,在感应到与其垂直的磁场时,产生大小与磁感应强度成正比的磁感应电压信号并输出至放大器AMP;
AMP,输出放大后的磁感应电压信号;
所述霍尔传感器还包括:
脉宽调制PWM输出模块,接收AMP放大后的磁感应电压信号,并输出脉宽与磁感应电压信号大小成比例的脉冲信号。
由上述技术方案可见,本实用新型中的霍尔传感器除了包括电压调节模块、偏置与基准模块、霍尔片、AMP之外,还包括PWM输出模块,由PWM输出模块产生脉冲信号、并根据外部磁场强度对该脉冲信号进行脉宽调制,从而使得该霍尔传感器能够提供脉宽与外部磁场强度成比例的脉冲信号。
附图说明
图1为现有的一种霍尔传感器的结构示意图。
图2为现有的另一种霍尔传感器的结构示意图。
图3为本实用新型实施例中霍尔传感器的结构示意图。
图4为本实用新型实施例中霍尔传感器内PWM输出模块的结构示意图。
图5为本实用新型实施例中PWM输出模块的振荡器输出的脉冲信号示意图。
图6为本实用新型实施例中霍尔传感器内线性输出模块的结构示意图。
图7为本实用新型实施例中霍尔传感器内开关输出模块的结构示意图。
图8为本实用新型实施例中霍尔传感器内保护模块的结构示意图。
具体实施方式
为使本实用新型的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本实用新型进一步详细说明。
图3为本实用新型实施例中霍尔传感器的结构示意图。如图3所示,本实施例中的霍尔传感器,除了包括如图1所示的电压调节模块11、偏置与基准模块12、霍尔片13、AMP 14、控制和补偿模块15之外,还包括:PWM输出模块31、线性输出模块32、开关输出模块33、以及输出调节模块34和保护模块35。
电压调节模块11,其输入端连接自外部电源Vcc、输出端连接至霍尔传感器中的所有其他模块,用于向霍尔传感器内的所有模块提供电源电压信号。电压调节模块11的输出端与霍尔传感器中的所有其他模块的连接关系,如图3中自电压调节模块引出的悬空箭头省略表示。
保护模块35,输入端连接自电压调节模块11的输入端所连接的外部电源Vcc;在该外部电源Vcc的电压小于预设的过压保护阈值时,向电压调节模块11输出允许其工作的控制信号;在该外部电源Vcc的电压大于等于预设的过压保护阈值时,向电压调节模块11输出禁止其工作的控制信号,以实现过压保护。当然,如果不需要实现过压保护,则可去除保护模块35。
偏置与基准模块12,根据电压调节模块11输出的电源电压信号提供参考电压信号和恒定电流,其提供的参考电压信号和恒定电流可以输出至霍尔传感器中的其他模块,偏置与基准模块12的输出端与霍尔传感器中除电压调节模块11之外的所有其他模块的连接关系,如图3中自偏置与基准模块引出的悬空箭头省略表示。
霍尔片13的电源输入端与电压调节模块11的输出端相连、地端接地,且霍尔片13的两路信号输出端分别与AMP 14的两路输入端相连,霍尔片13在感应到与其垂直的磁场时,产生大小与磁感应强度成正比的磁感应电压信号并输出至放大器AMP 14;
AMP 14,输出放大后的磁感应电压信号。
输出调节模块34的输入端连接自AMP 14的输出端,对AMP 14放大后的磁感应电压信号进行例如滤波等优化处理;输出调节模块34的三路输出端分别连接至PWM输出模块31、线性输出模块32、以及开关输出模块33,将经AMP 14放大和优化处理后的磁感应电压信号分别输出至PWM输出模块31、线性输出模块32、以及开关输出模块33。
输出调节模块34还将优化处理后的磁感应电压信号输出至控制和补偿模块15,由控制和补偿模块15按照现有方式产生补偿控制信号输出至AMP14的控制端,实现对AMP 14的闭环控制。其中,控制和补偿模块15为可选的模块,如果不需要对AMP 14实现闭环控制则可将控制和补偿模块15去除。
需要说明的是,输出调节模块34仅仅是为了对AMP 14放大后的磁感应电压信号进行优化处理,实际应用中也可以不设置输出调节模块34,而是直接将AMP 14的输出端分别连接至PWM输出模块31、线性输出模块32、以及开关输出模块33,且将可选的控制和补偿模块15的输入端连接自线性输出模块32。
PWM输出模块31,接收经AMP 14放大、并经输出调节模34块优化后的磁感应电压信号,并通过PWM输出端输出脉宽与磁感应电压信号电压大小、也就是脉宽与霍尔片感应到的外部磁场强度成比例的脉冲信号。
实际应用中,PWM输出模块31可以为可调节的功能模块,也可以为不可调节的功能模块。在图3中,PWM输出模块31属于可调节的功能模块,并进一步具有一频率调节输入端,PWM输出模块31可根据自频率调节输入端输入的频率调节信号或外接元器件,调节其输出的脉冲信号频率。
线性输出模块32,接收经AMP 14放大、并经输出调节模块34优化后的磁感应电压信号,并可按照现有如图1所示的线性输出级16的方式进行调节、以增大其驱动能力后通过线性输出端输出磁感应电压信号,且增大磁感应电压信号的输出范围,使其最小输出接近0、最大输出接近电源电压。
实际应用中,线性输出模块32可以为可调节的功能模块,也可以为不可调节的功能模块。在图3中,线性输出模块32属于可调节的功能模块,并进一步具有一斜率调节输入端,这里所述的斜率是指线性输出模块32输出的磁感应电压信号与作用于霍尔片13的磁场强度的线性比例,线性输出模块32可根据自斜率调节输入端输入的斜率调节信号或外接元器件,调节其输出的磁感应电压信号斜率。
开关输出模块33,接收经AMP 14放大、并经输出调节模块34优化后的磁感应电压信号,并通过开关输出端输出与该磁感应电压信号大小相对应的高低电平。
实际应用中,开关输出模块33可以为可调节的功能模块,也可以为不可调节的功能模块。在图3中,开关输出模块33属于可调节的功能模块,并进一步具有一阈值调节输入端,这里所述的阈值是指开关输出模块33根据其接收到的磁感应电压信号大小,实现其输出的高低电平切换所依据的阈值,开关输出模块33可根据自阈值调节输入端输入的阈值调节信号或外接元器件,以调节高低电平切换的时机。
可见,本实施例在霍尔传感器中设置了PWM输出模块34,由PWM输出模块34产生脉冲信号、并根据外部磁场强度对该脉冲信号进行脉宽调制,从而能够提供脉宽与外部磁场强度成比例的脉冲信号,以较低的硬件成本实现PWM输出。
需要说明的是,本实施例中只需设置PWM输出模块31即可提供脉宽与外部磁场强度成比例的脉冲信号,而线性输出模块32和开关输出模块33只是为了提供更多种类的输出信号,并非霍尔传感器中必不可少的模块。
而且,本实施例在霍尔传感器中设置了保护模块35,由于保护模块35能够实现过压保护,从而提高了霍尔传感器的安全性。
下面,分别对本实施例中霍尔传感器内的PWM输出模块31、线性输出模块32、开关输出模块33、以及保护模块35进行详细说明。
图4为本实用新型实施例中霍尔传感器内PWM输出模块的结构示意图。如图4所示,本实施例中的PWM输出模块31包括:误差放大器311、比较器312、RS触发器313、振荡器314、电流源315、P沟道互补金属氧化物半导体(PMOS)316、N沟道互补金属氧化物半导体(NMOS)317、以及电容318、PWM输出级319。
误差放大器311,其正端输入接收经输出调节模块34优化后的磁感应电压信号、其负端输入接收偏置与基准模块12提供的参考电压信号,其输出端输出磁感应电压信号相比于参考电压信号的误差放大值。
比较器312,其负端输入接收误差放大器311输出的误差放大值、正端输入通过电容318接地,其输出端在正端输入大于负端输入时输出高电平、在正端输入小于等于负端输入时输出低电平。
RS触发器313,其R端连接自比较器312的输出端、S端连接自振荡器314、Q端连接至PWM输出级319、Q非(即图4中所示的Q)端连接至PMOS316和NMOS 317的栅极。
其中,振荡器314产生的是高电平脉宽较窄的脉冲信号,参见图5。
PWM输出级319也可以对Q端输出的电平信号进行调节、以增大其驱动能力后通过PWM输出端输出,PWM输出级319的工作原理与现有如图1所示的线性输出级16和如图2所示的开关输出级17相类似,在此不再赘述。
电流源315,接收并输出偏置与基准模块312所提供的恒定电流。
PMOS 316,其漏极与电流源相连、源极与电容318连接比较器312的一端相连、栅极与RS触发器313的Q非端相连。这样,在PMOS 316作为控制端的栅极为低电平时,导通电流源315与电容318连接比较器312的一端,在其作为控制端的栅极为高电平时,断开电流源315与电容连接比较器的一端。
NMOS 317,其漏极与电容318连接比较器312的一端相连、源极与地端相连、栅极与RS触发器313的Q非端相连。这样,在NMOS 317作为控制端的栅极为高电平时导通电容318连接比较器312的一端与地端,在作为控制端的栅极为低电平时断开电容318连接比较器312的一端与地端。
当然,上述PMOS 316和NMOS 317也可以由其他带有控制端的开关器件来替换。
仍参见图4,该PWM输出模块31还包括频率调节电路310,频率调节电路310的输出端连接至振荡器314、输入端连接自如图3所示的频率调节输入端,一外接电阻40的一端连接在频率调节输入端、该外接电阻40的另一端接地。
这样,调节外接电阻的阻值大小,即可通过频率调节电路310影响到振荡器314内部参数,从而影响到振荡器314产生的脉冲信号周期长度,而由于PWM输出模块31输出的脉冲信号与振荡器314产生的脉冲信号周期相同,因而就实现了对PWM输出模块31输出的脉冲信号频率调节。
以上只是以通过外接电阻40实现频率调节为例,实际应用中,也可直接通过频率调节信号来控制频率调节电路310、以改变振荡器314产生的脉冲信号频率,但工作原理基本相同。且频率调节电路310可由现有任意一种频率调节电路来实现,在此不再一一赘述。
以下举一实例,对上述PWM输出模块31的工作原理进行如下说明:
1)在图3中的霍尔片13未感应到外部磁场时,假设误差放大器311的放大倍数为n(n大于1的实数)、图3中的输出调节模块34输出的电磁感应电压信号大小为Vm(Vm的大小由电路特性决定)、偏置与基准模块11提供的参考电压信号大小为Vr,误差放大器311输出至比较器312负端的电压为n(Vm-Vr)。
在振荡器314产生的脉冲信号的前半个周期内,当该脉冲信号为高电平时,由于电容318未充电,因而比较器312的正端输入电压大小为0,低于比较器312的负端输入n(Vm-Vr),使得比较器312的输出为0、即RS触发器313的R端输入为0;且由于振荡器314产生的脉冲信号此时为高电平,即RS触发器313的S端输入为1,因而RS触发器313的Q端输出为1、Q非端输出为0,PMOS 316被导通且NMOS 317断开、电容318充电,相应地,比较器312的正端输入电压逐步提升。
在振荡器314产生的脉冲信号的前半个周期内,当该脉冲信号跳变为低电后,虽然电容318已充电,但比较器312的正端输入电压仍低于负端输入的n(Vm-Vr),因而比较器312的输出仍为0、即RS触发器313的R端输入仍为0;且振荡器314输出的脉冲信号跳变为低电平,即RS触发器313的S端输入变为0,因而RS触发器313的Q端输出保持为1、Q非端输出保持为0,PMOS 316继续导通且NMOS 317继续断开、电容318继续充电,使得比较器312的正端输入电压逐步提升,并在振荡器314产生的脉冲信号的前半个周期结束时高于比较器312的负端输入电压n(Vm-Vr)。
这样,在振荡器314产生的脉冲信号的前半个周期内,Q端输出、即PWM输出端的输出均为高电平1。当然,电容318充电使得比较器312的正端输入电压高于负端输入电压时间,主要取决于电容318的容值、电流源315的恒定电流大小、以及误差放大器311的放大倍数n,本实例中假设电容318的容值、电流源315的恒定电流大小、以及误差放大器311的放大倍数n能够满足在振荡器314产生的脉冲信号的半个周期内,电容318充电即可使得比较器312的正端输入电压高于负端输入电压。
在振荡器314产生的脉冲信号的后半个周期内,由于电容318充电使得比较器312的正端输入电压高于负端输入电压,比较器312的正端输入电压高于负端输入电压n(Vm-Vr),因而比较器312的输出为1、即RS触发器313的R端输入为1;由于振荡器314产生的脉冲信号仍持续为低电平,即RS触发器313的S端输入为0,因而RS触发器313的Q端输出跳变为0、Q非端输出跳变为1,PMOS 316断开且NMOS 317被导通、电容318放电;电容318放电后,使得比较器312的正端输入电压逐步降低并低于负端输入电压。其中,电容318放电的时间很快,与振荡器314产生的脉冲信号周期相比可以忽略不计。
在振荡器314产生的脉冲信号的后半个周期内,当电容318放电使得比较器312的正端输入电压低于负端输入电压时,比较器312的输出再次变为0、即RS触发器313的R端输入再次跳变为0;而此时,振荡器314产生的脉冲信号仍持续为低电平,即RS触发器313的S端输入为0,因而RS触发器313的Q端输出保持为0、Q非端输出保持为1,PMOS 316继续断开且NMOS 317继续导通、电容318放电直至振荡器314产生的脉冲信号的后半个周期结束时放空。
这样,在振荡器314产生的脉冲信号的后半个周期内,Q端输出均为0,直到该脉冲信号在其下一个周期再次调变为高电平为止。当然,电容318放电直至放空的时间,主要取决于电容318的容值,本实例中假设电容318的容值能够满足该电容在振荡器314产生的脉冲信号的半个周期内放电放空。
由此,在振荡器314产生的脉冲信号的高电平脉宽宽度可忽略不计时,假设电容318充电并使其两端电压高于到比较器312的负端输入电压的时间,即Q端输出为1的时间刚好等于振荡器314产生的脉冲信号的半个周期,则能够实现在图3中的霍尔片13未感应到外部磁场时时,PWM输出模块31输出周期与振荡器314产生的脉冲信号相同、且占空比为50%的脉冲信号。
2)在图3中的霍尔片13感应到外部磁场时,仍假设误差放大器311的放大倍数为n(n大于1的实数)、图3中的输出调节模块34输出的电磁感应电压信号大小为Vm’(Vm’大于Vm)、偏置与基准模块12提供的参考电压信号大小为Vr,误差放大器311输出至比较器312负端的电压为n(Vm’-Vr),且n(Vm’-Vr)大于n(Vm-Vr)。
这样,相比于霍尔片13未感应到外部磁场的情况,比较器312负端的电压升高了,电容318充电以使得比较器312的正端输入电压高于负端输入电压时间加长了,RS触发器313的Q端输出保持为1的时间、即PWM输出端的输出均为高电平1的时间随之加长了;而由于振荡器314产生的脉冲信号的频率是不变的,因而PWM输出端的脉冲信号的占空比就提高了。
由此可见,如图4所示的PWM输出模块31能够输出脉宽与磁感应电压信号电压大小、也就是霍尔片13受到的外部磁场强度成比例的脉冲信号。
图6为本实用新型中霍尔传感器内线性输出模块的结构示意图。如图6所示,本实施例中的线性输出模块32包括:前端控制电路321和线性输出级16。
前端控制电路321用于分压,与通过如图3所示的斜率调节输入端与一外接电阻60的一端相连、且该外接电阻60的另一端接地;前端控制电路321接收经AMP 14放大、并经输出调节模块34优化的磁感应电压信号,按照其连接的该外接电阻60阻值所确定的分压比例对接收到的磁感应电压信号进行分压,并输出分压后的磁感应电压信号。
其中,前端控制电路321与外接电阻60的组合可按照现有任意一种分压电路的结构来实现,在此不再一一赘述。
线性输出级16,接收分压后的磁感应电压信号,并按照现有方式对其接收到的磁感应电信号进行调节、以增大其驱动能力和输出范围后,经线性输出端输出。
这样,与霍尔片13感应到的磁感应强度成正比的磁感应电压信号,经前端控制电路321分压后,再由线性输出级16进行调节、以增大其驱动能力和输出范围后输出,使得线性输出模块32输出的磁感应电压信号与作用于霍尔片13的外部磁场强度的线性比例有所降低,从而实现了对线性输出模块32的斜率调节。
以上只是以通过外接电阻实现斜率调节为例,实际应用中,也可直接通过斜率调节信号来控制前端控制电路的分压比例,但工作原理基本相同,在此不再一一赘述。
当然,如果不需要对线性输出模块32进行斜率调节,则也可以去除前端控制电路321及其连接的外接电阻60,即使得线性输出模块32中仅包含线性输出级16。
图7为本实用新型中霍尔传感器内开关输出模块的结构示意图。如图7所示,本实施例中的开关输出模块33包括:采样控制电路331、迟滞比较器332、以及开关输出级17。
采样控制电路331可由多个电阻串联而成,接收偏置与基准模块12提供的参考电压信号,并对该参考电压信号按照分压比例进行分压后输出。其中,采样控制电路331还连接至一外接电阻70的一端,该外接电阻70的另一端接地,采样控制电路331的分压比例由该外接电阻70的阻值确定。
迟滞比较器332,其负端输入接收经AMP 14放大、并经输出调节模块34优化后的磁感应电压信号,其正端输入连接自采样控制电路331,其输出端连接至开关输出级17;当其负端输入小于正端输入时,其输出端输出高电平;当其负端输入由小于正端输入变为大于等于正端输入时,其输出端由高电平变为低电平;当其负端输入由大于等于正端输入变为小于正端输入、且负端输入小于预设回复阈值时,其输出端由低电平变为高电平。
开关输出级17,接收迟滞比较器332输出的电平信号,并按照现有方式对其接收到的电平信号进行调节、以增大其驱动力后,经开关输出端输出。
这样,当如图3所示的霍尔片13感应到的外部磁场强度由零逐渐增大,输出调节模块34输出的磁感应电压信号大小也逐渐增大,当该外部磁场小于预设导通阈值时,使得输出调节模块34输出的磁感应电压信号小于经采样控制电路331分压后的参考电压信号大小,因而迟滞比较器332的负端输入电压小于正端输入电压,迟滞比较器332的输出端输出高电平,相应地,开关输出级17输出高电平;
当上述外部磁场大于等于预设导通阈值时,使得输出调节模块34输出的磁感应电压信号大于等于经采样控制电路331分压后的参考电压信号大小,因而迟滞比较器332的负端输入电压由小于正端输入电压变为大于等于正端输入电压,迟滞比较器332输出也就由高电平变为低电平,相应地,开关输出级17输出低电平;
此后,如果上述外部磁场减小并使其小于预设的导通阈值,使得输出调节模块34输出的磁感应电压信号再次小于经采样控制电路331分压后的参考电压信号大小,则由于迟滞比较器332的迟滞特性,其输出不会立即由低电平变为高电平,而只有当上述外部磁场减小直至小于预设的回复阈值,即使得迟滞比较器332负端输入电压小于某个预设的特定电压值时,迟滞比较器332的输出才会由低电平变为高电平。该预设的特定电压值通常由迟滞比较器332自身的特性决定。
其中,迟滞比较器332的正端输入电压与上述预设的特定电压值的差值称之为迟滞比较器332的迟滞电压,而外部磁场的导通阈值与回复阈值之差称之为磁滞,而迟滞比较器332的正端输入电压、以及上述预设的特定电压值均可看作其输出端进行高低电平切换的阈值。
而采样控制电路331由于能够调节迟滞比较器332的正端输入电压,因而也就调节了迟滞比较器332输出电压的高低电平切换阈值,从而实现对阈值及迟滞电压大小的调节。
当然,如图7所示的开关输出模块33中,也可以利用现有的施密特触发器20、或其他具有类似功能的元器件替换迟滞比较器332。
以上只是以通过外接电阻实现阈值调节为例,实际应用中,也可直接通过阈值调节信号来控制采样控制电路的分压比例。
图8为本实用新型中霍尔传感器内保护模块的结构示意图。如图8所示,本实施例中的保护模块35包括:第一采样电阻351、第二采样电阻352、以及比较器353。
第一采样电阻351的一端连接自如图3所示的电压调节模块11输出端所连接的外部电源Vcc、另一端与第二采样电阻352的一端相连,第二采样电阻352的另一端接地。
比较器353的负端输入连接自第一采样电阻351与第二采样电阻352相连的一端、正端输入接收偏置与基准模块12提供的参考电压信号;在正端输入大于负端输入时,其输出端向电压调节模块11的使能端输出高电平信号,允许电压调节模块11工作;在正端输入小于等于负端输入时,其输出端向电压调节模块11输出低电平信号,禁止电压调节模块11工作。
这样,第一采样电阻351和第二采样电阻352构成的分压电路,将外部电源Vcc的电压分压后输出至比较器353的负端输入,而比较器353正端输入接收的参考电压信号与分压比例的商则可看作过压保护阈值。
当正端输入电压大于负端输入电压时,即分压后的电源Vcc电压信号小于过压保护阈值,则表示电源电压信号正常,因而向电压调节模块11的使能端输出高电平信号,允许电压调节模块11工作;
当正端输入电压小于等于负端输入电压时,即分压后的电源电压信号大于等于过压保护阈值,则表示电源电压信号异常,因而向电压调节模块11的使能端输出低电平信号,禁止电压调节模块11工作。
上述高电平信号用作允许电压调节模块11工作的控制信号,而低电平信号则用作禁止电压调节模块11工作的控制信号,实际应用中,也可利用低电平信号作为允许电压调节模块11工作的控制信号,并利用高电平信号作为禁止电压调节模块11工作的控制信号。
当然,上述保护模块35仅仅是一种实现方式,能够依据阈值进行判断的各种电路结构均可实现上述功能,在此不再一一赘述。
以上所述仅为本实用新型的较佳实施例而已,并非用于限定本实用新型的保护范围。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换以及改进等,均应包含在本实用新型的保护范围之内。

Claims (11)

1、一种霍尔传感器,包括:
电压调节模块,其输入端连接自外部电源、并向霍尔传感器内的所有模块提供电源电压信号;
偏置与基准模块,提供参考电压信号和恒定电流;
霍尔片,在感应到与其垂直的磁场时,产生大小与磁感应强度成正比的磁感应电压信号并输出至放大器AMP;
AMP,输出放大后的磁感应电压信号;
其特征在于,所述霍尔传感器还包括:
脉宽调制PWM输出模块,接收AMP放大后的磁感应电压信号,并输出脉宽与磁感应电压信号大小成比例的脉冲信号。
2、如权利要求1所述的霍尔传感器,其特征在于,所述PWM输出模块包括:
误差放大器,其正端输入接收所述AMP放大后的磁感应电压信号、其负端输入接收所述偏置与基准模块提供的参考电压信号,其输出端输出所接收的磁感应电压信号相比于参考电压信号的误差放大值;
第一比较器,其负端输入接收所述误差放大值、正端输入通过一电容接地,其输出端在正端输入大于负端输入时输出高电平、在正端输入小于等于负端输入时输出低电平;
RS触发器,其R端连接自第一比较器的输出端、S端连接自一振荡器;
PWM输出级,连接自RS触发器的Q端,将RS触发器的Q端输出信号调节后输出;
PMOS,其漏极与电流源相连、源极与电容连接比较器的一端相连、栅极与RS触发器的Q非端相连;
NMOS,其漏极与电容连接比较器的一端相连、源极与地端相连、栅极与RS触发器的Q非端相连。
3、如权利要求2所述的霍尔传感器,其特征在于,所述PWM输出模块进一步包括:
频率调节电路,其输出端连接至振荡器、输入端与第一外接电阻的一端相连,第一外接电阻的另一端接地。
4、如权利要求1至3中任意一项所述的霍尔传感器,其特征在于,所述霍尔传感器进一步包括:
线性输出模块,接收AMP放大后的磁感应电压信号,并对该磁感应电压信号进行调节后输出。
5、如权利要求4所述的霍尔传感器,其特征在于,所述线性输出模块包括:
前端控制电路,与第二外接电阻的一端相连、该第二外接电阻的另一端接地;且,前端控制电路接收AMP放大后的磁感应电压信号,并输出分压后的磁感应电压信号,该分压的分压比例依据第二外接电阻的阻值确定;
线性输出级,接收分压后的磁感应电压信号,并通过线性输出端输出调节后的该磁感应电压信号。
6、如权利要求4所述的霍尔传感器,其特征在于,所述霍尔传感器进一步包括:
开关输出模块,接收AMP放大后的磁感应电压信号,并通过开关输出端输出与该磁感应电压信号大小相对应的高低电平。
7、如权利要求6所述的霍尔传感器,其特征在于,所述开关输出模块包括:
采样控制电路,与第三外接电阻的一端相连、且第三外接电阻的另一端接地;且,采样控制电路接收偏置与基准模块提供的参考电压信号,并输出分压后的参考电压信号,该分压的分压比例依据第三外接电阻的阻值确定;
迟滞比较器,其负端输入接收AMP放大后的磁感应电压信号,其正端输入连接自采样控制电路;当其负端输入小于正端输入时,其输出端输出高电平;当其负端输入由小于正端输入变为大于等于正端输入时,其输出端由高电平变为低电平;当其负端输入由大于等于正端输入变为小于正端输入、且负端输入小于第一预设值时,其输出端由低电平变为高电平;
开关输出级,接收迟滞比较器输出的电平,并对其接收到的电平进行调节后通过开关输出端输出。
8、如权利要求6所述的霍尔传感器,其特征在于,所述霍尔传感器进一步包括输出调节模块,所述AMP放大后的磁感应电压信号经输出调节模块优化后再输出至所述PWM输出模块、线性输出模块、以及开关输出模块。
9、如权利要求8所述的霍尔传感器,其特征在于,所述霍尔传感器进一步包括控制和补偿模块,接收经所述AMP放大、且经所述输出调节模块优化后的磁感应电压信号,并产生补偿控制信号输出至所述输出调节模块。
10、如权利要求1至3中任意一项所述的霍尔传感器,其特征在于,所述霍尔传感器进一步包括:
保护模块,其输入端连接所述外部电源;在所述外部电源电压小于第二预设值时,向电压调节模块输出允许其工作的控制信号;在所述外部电源电压大于等于第二预设值时,向电压调节模块输出禁止其工作的控制信号。
11、如权利要求10所述的霍尔传感器,其特征在于,所述保护模块包括:
第一采样电阻的一端连接自所述外部电源、另一端与第二采样电阻的一端相连,第二采样电阻的另一端接地;
第二比较器,其负端输入连接自第一采样电阻与第二采样电阻相连的一端、正端输入接收偏置与基准模块提供的参考电压信号;其正端输入连接自第一采样电阻与第二采样电阻相连的一端;在正端输入大于负端输入时,其输出端向电压调节模块输出允许其工作的控制信号;在正端输入小于等于负端输入时,其输出端向电压调节模块输出禁止其工作的控制信号。
CNU2008201262660U 2008-07-29 2008-07-29 一种霍尔传感器 Expired - Fee Related CN201233438Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2008201262660U CN201233438Y (zh) 2008-07-29 2008-07-29 一种霍尔传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2008201262660U CN201233438Y (zh) 2008-07-29 2008-07-29 一种霍尔传感器

Publications (1)

Publication Number Publication Date
CN201233438Y true CN201233438Y (zh) 2009-05-06

Family

ID=40619820

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2008201262660U Expired - Fee Related CN201233438Y (zh) 2008-07-29 2008-07-29 一种霍尔传感器

Country Status (1)

Country Link
CN (1) CN201233438Y (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888233A (zh) * 2010-07-16 2010-11-17 灿瑞半导体(上海)有限公司 双极锁存型霍尔开关电路
CN103038658A (zh) * 2010-07-28 2013-04-10 阿莱戈微系统公司 具有改善的感测磁场信号和噪声信号之间的区分的磁场传感器
CN103308872A (zh) * 2013-05-13 2013-09-18 华南理工大学 组合式磁场传感器及微弱磁场测量装置
WO2014063412A1 (zh) * 2012-10-26 2014-05-01 苏州大学 基于磁温差电效应的传感器元件及其实现方法
CN103874929A (zh) * 2011-10-10 2014-06-18 ams有限公司 霍尔传感器
CN104965182A (zh) * 2015-07-03 2015-10-07 乐鑫信息科技(上海)有限公司 一种集成霍尔效应探测器的无线物联网芯片及方法
CN105425008A (zh) * 2015-10-30 2016-03-23 张良 物联网高灵敏度磁性传感器采样电路
CN106164691A (zh) * 2013-09-06 2016-11-23 罗伯特·博世有限公司 低偏移和高灵敏度垂直霍尔效应传感器
CN104076301B (zh) * 2014-06-24 2017-02-01 国家电网公司 一种交直流混叠磁场的分离式监测电路
CN107037379A (zh) * 2017-05-26 2017-08-11 北京传嘉科技有限公司 霍尔传感装置、终端
CN109698687A (zh) * 2019-02-25 2019-04-30 成都芯进电子有限公司 一种磁信号检测时序控制电路及控制方法
CN109828224A (zh) * 2019-03-26 2019-05-31 深圳市晶丰弘实业有限公司 一种线性霍尔集成电路在弱磁检测传感器中的应用方法
CN110120803A (zh) * 2018-02-06 2019-08-13 意瑞半导体(上海)有限公司 一种全极霍尔开关电路
CN111398878A (zh) * 2020-06-04 2020-07-10 宁波中车时代传感技术有限公司 一种具有纹波抑制功能的霍尔可编程芯片
CN112525228A (zh) * 2020-11-27 2021-03-19 科华恒盛股份有限公司 霍尔电路及霍尔传感器
CN113049050A (zh) * 2019-12-10 2021-06-29 布莱克曼两合公司 具有缓冲电源的包括电磁传感器的流量计

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888233A (zh) * 2010-07-16 2010-11-17 灿瑞半导体(上海)有限公司 双极锁存型霍尔开关电路
CN103038658B (zh) * 2010-07-28 2015-09-16 阿莱戈微系统有限责任公司 具有改善的感测磁场信号和噪声信号之间的区分的磁场传感器
CN103038658A (zh) * 2010-07-28 2013-04-10 阿莱戈微系统公司 具有改善的感测磁场信号和噪声信号之间的区分的磁场传感器
CN103874929B (zh) * 2011-10-10 2016-08-17 ams有限公司 霍尔传感器
CN103874929A (zh) * 2011-10-10 2014-06-18 ams有限公司 霍尔传感器
US9575141B2 (en) 2011-10-10 2017-02-21 Ams Ag Hall sensor with hall sensor elements that respectively comprise element terminals and are interconnected in a circuit lattice
WO2014063412A1 (zh) * 2012-10-26 2014-05-01 苏州大学 基于磁温差电效应的传感器元件及其实现方法
US9797962B2 (en) 2012-10-26 2017-10-24 Soochow University Sensor element based on magneto-thermoelectric effect, and realizing method thereof
CN103308872A (zh) * 2013-05-13 2013-09-18 华南理工大学 组合式磁场传感器及微弱磁场测量装置
CN103308872B (zh) * 2013-05-13 2016-01-06 华南理工大学 组合式磁场传感器及微弱磁场测量装置
CN106164691B (zh) * 2013-09-06 2020-04-07 罗伯特·博世有限公司 低偏移和高灵敏度垂直霍尔效应传感器
CN106164691A (zh) * 2013-09-06 2016-11-23 罗伯特·博世有限公司 低偏移和高灵敏度垂直霍尔效应传感器
CN104076301B (zh) * 2014-06-24 2017-02-01 国家电网公司 一种交直流混叠磁场的分离式监测电路
CN104965182A (zh) * 2015-07-03 2015-10-07 乐鑫信息科技(上海)有限公司 一种集成霍尔效应探测器的无线物联网芯片及方法
CN105425008B (zh) * 2015-10-30 2018-06-12 张良 物联网高灵敏度磁性传感器采样电路
CN105425008A (zh) * 2015-10-30 2016-03-23 张良 物联网高灵敏度磁性传感器采样电路
CN107037379A (zh) * 2017-05-26 2017-08-11 北京传嘉科技有限公司 霍尔传感装置、终端
CN110120803A (zh) * 2018-02-06 2019-08-13 意瑞半导体(上海)有限公司 一种全极霍尔开关电路
CN110120803B (zh) * 2018-02-06 2023-07-28 意瑞半导体(上海)有限公司 一种全极霍尔开关电路
CN109698687A (zh) * 2019-02-25 2019-04-30 成都芯进电子有限公司 一种磁信号检测时序控制电路及控制方法
CN109698687B (zh) * 2019-02-25 2023-08-15 成都芯进电子有限公司 一种磁信号检测时序控制电路及控制方法
CN109828224A (zh) * 2019-03-26 2019-05-31 深圳市晶丰弘实业有限公司 一种线性霍尔集成电路在弱磁检测传感器中的应用方法
CN113049050A (zh) * 2019-12-10 2021-06-29 布莱克曼两合公司 具有缓冲电源的包括电磁传感器的流量计
CN111398878A (zh) * 2020-06-04 2020-07-10 宁波中车时代传感技术有限公司 一种具有纹波抑制功能的霍尔可编程芯片
CN111398878B (zh) * 2020-06-04 2020-09-11 宁波中车时代传感技术有限公司 一种具有纹波抑制功能的霍尔可编程芯片
CN112525228A (zh) * 2020-11-27 2021-03-19 科华恒盛股份有限公司 霍尔电路及霍尔传感器

Similar Documents

Publication Publication Date Title
CN201233438Y (zh) 一种霍尔传感器
CN102624042B (zh) 电池充电器数字控制电路和方法
CN101247083B (zh) 开关稳压器
CN102075146B (zh) G类音频放大系统及方法
CN102255504B (zh) 一种开关控制电路及其方法
US20020084767A1 (en) Solar power charging system
CN203747681U (zh) 开关电源及其控制芯片
CN104300773B (zh) 一种自适应假负载电路
CN104065119A (zh) 电池供电电路及供电方法
CN102043417A (zh) 低压降稳压器、直流对直流转换器以及低压降稳压方法
CN101027621A (zh) 控制器
CN104218646A (zh) 一种移动电源充电电路
CN105846681B (zh) 开关电源装置
CN103036426A (zh) 一种峰值电流渐变的同步升压电路
CN105099188A (zh) Dc-dc变换器
CN105281568A (zh) 降压电路
CN103078496A (zh) 一种降压电路
CN103378633B (zh) 充电控制电路
CN110231846A (zh) 一种具有恒流和恒压双功能的电源模块反馈控制电路
CN102983825B (zh) 一种d类功放芯片
CN106817022A (zh) 优化瞬态响应特性的电源转换器
CN105162325A (zh) 基于参考电压比较振荡器的脉冲频率调制电路
CN101989747A (zh) 系统连接逆变器装置及其控制方法
CN102685050B (zh) 直流偏移校准电路
CN101546916B (zh) 电池充电器及其控制方法

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Assignee: Ningbo BYD Semiconductor Co., Ltd.

Assignor: Biyadi Co., Ltd.

Contract record no.: 2010440020106

Denomination of utility model: Screw packaging structure of Hall sensor

Granted publication date: 20090506

License type: Exclusive License

Record date: 20100708

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090506

Termination date: 20160729