WO2014061640A1 - 容器用鋼板およびその製造方法 - Google Patents

容器用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014061640A1
WO2014061640A1 PCT/JP2013/077917 JP2013077917W WO2014061640A1 WO 2014061640 A1 WO2014061640 A1 WO 2014061640A1 JP 2013077917 W JP2013077917 W JP 2013077917W WO 2014061640 A1 WO2014061640 A1 WO 2014061640A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
plating
layer
oxide
steel plate
Prior art date
Application number
PCT/JP2013/077917
Other languages
English (en)
French (fr)
Inventor
平野 茂
賢明 谷
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP13846467.2A priority Critical patent/EP2835447B1/en
Priority to ES13846467.2T priority patent/ES2635612T3/es
Priority to IN8245DEN2014 priority patent/IN2014DN08245A/en
Priority to KR1020167025763A priority patent/KR20160113739A/ko
Priority to CN201380022205.3A priority patent/CN104254643B/zh
Priority to KR1020147029591A priority patent/KR101929086B1/ko
Priority to US14/391,655 priority patent/US9945037B2/en
Priority to JP2013558839A priority patent/JP5594443B1/ja
Publication of WO2014061640A1 publication Critical patent/WO2014061640A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/361Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing titanium, zirconium or hafnium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the present invention relates to a steel plate for containers and a method for producing the same, and more particularly to a steel plate for containers and a method for producing the same that are used for two-piece cans and three-piece cans and have excellent corrosion resistance, adhesion, and weldability.
  • a two-piece can is a can body in which a can bottom and a can body are integrated. DrD cans, DI cans, etc. are known. Drawing, ironing, bending and bending back, or these processes Are molded and manufactured.
  • Steel plates used for the two-piece can body include tinplate (Sn-plated steel plate) and TFS (electrolytic chromic acid-treated steel plate (tin-free steel)), which are selectively used depending on the application and processing method.
  • the 3-piece can is a can body in which the can body and the bottom are separated.
  • the main method is to manufacture the can body by forming a thin steel plate into a cylindrical shape and joining it by welding a seam. Yes, the can body is manufactured by welding in this manner is called a welded can.
  • a material of the can body portion of the three-piece can a light-weight Sn-plated steel plate or a Ni-plated steel plate is used.
  • TFS etc. are used for the raw material of the bottom part of a 3 piece can.
  • the outer surface of the can is printed in order to appeal to consumers the value (commercial value) of the contents in the can.
  • the inner surface of the can is coated with a resin to ensure corrosion resistance.
  • the inner surface side of the can was painted with a spray or the like, and curved surface printing was performed on the outer surface side of the can.
  • Patent Document 1 Patent Document 2
  • Patent Document 5 a Ni-plated steel sheet is used as a laminated steel sheet for containers that is excellent in workability and adhesion and can be welded.
  • Patent Document 9 Various techniques have been disclosed for Ni-plated steel sheets (for example, Patent Document 9).
  • some of the Ni-plated steel sheets have a matte surface like the Sn-plated steel sheets, while others are known to have been subjected to gloss plating by a Ni plating method to which a brightener is added (Patent Document 6, Patent Document 7).
  • Ni does not have a sacrificial anticorrosive action like Sn in an acidic solution. Therefore, when Ni-plated steel sheet is used for containers filled with highly corrosive contents such as acidic beverages, piercing corrosion in which corrosion proceeds in the thickness direction from defective parts such as pinholes in the Ni plating layer It is known that a hole is formed in a short period of time. For this reason, the improvement of the corrosion resistance of the Ni-plated steel sheet has been demanded. In order to reduce perforation corrosion, Ni-plated steel sheets are disclosed in which the steel components of the plating base plate (base material steel plate) are adjusted so that the potential of the steel plate to be plated approaches the noble direction. (Patent Document 8).
  • Ni in the Ni plating layer is oxidized by dissolved oxygen in the plating bath or oxygen in the atmosphere, and a Ni oxide film is formed on the surface of the Ni plating layer.
  • the amount of chromate deposited varies depending on the film formation state of the Ni oxide film described above, resulting in a problem of poor appearance of the container.
  • a method is disclosed in which after Ni plating is performed, heat treatment is controlled to form a uniform oxidized Ni film on the Ni plating layer, thereby ensuring a good appearance (Patent Document 10). ).
  • Japanese Unexamined Patent Publication No. 2000-263696 Japanese Unexamined Patent Publication No. 2000-334886 Japanese Patent No. 3060073 Japanese Patent No. 2998043 Japanese Laid-Open Patent Publication No. 2007-231394 Japanese Unexamined Patent Publication No. 2000-26992 Japanese Unexamined Patent Publication No. 2005-149735 Japanese Unexamined Patent Publication No. 60-145380 Japanese Unexamined Patent Publication No. 56-169788 Japanese Laid-Open Patent Publication No. 10-265966
  • Patent Document 10 can ensure good appearance, it is not considered for perforation corrosion of the Ni plating layer, and the corrosion resistance of the plated steel sheet is insufficient.
  • an object of the present invention is to provide a steel plate for containers excellent in corrosion resistance, adhesion and weldability, and a method for producing the same.
  • the corrosion resistance against piercing corrosion is achieved by including at least one of Ni hydroxide and Ni oxide in the inside of the Ni plating layer instead of the surface thereof. I found that it can be improved. Specifically, when a Ni plating layer containing at least one of Ni hydroxide and Ni oxide is formed on a steel plate on a plating original plate, when corrosion proceeds from a defect portion such as a pinhole in the Ni plating layer, A phenomenon in which the perforation corrosion rate decreases was found (see FIG. 1, which will be described in detail below).
  • Ni hydroxide and Ni oxide are easily dissolved in an acidic solution. That is, in the initial stage of corrosion, Ni hydroxide and Ni oxide in the Ni plating layer are preferentially dissolved, so it is considered that the inside of the Ni plating layer becomes more void as corrosion progresses. And since many voids appear in the Ni plating layer, the corrosion (drilling corrosion) that has been concentrated in the pinholes in the past is dispersed in the voids, and the corrosion form changes from the entire corrosion to the Ni plating layer. It is thought that the rate of drilling corrosion that had progressed decreased due to the change to corrosion (interfacial corrosion) at the interface with the base iron.
  • a steel plate for containers according to an aspect of the present invention is a steel plate having a chromate film layer or a Zr-containing film layer on a Ni plating layer, wherein the Ni plating layer is made of Ni hydroxide and Ni oxide.
  • the Ni plating layer contains at least one, the Ni conversion amount is an adhesion amount of 0.3 g / m 2 or more, and the oxygen atom concentration caused by the Ni hydroxide and the Ni oxide is 1 to 10 atoms %,
  • the chromate film layer has an adhesion amount of 1 to 40 mg / m 2 in terms of Cr, and the Zr-containing film layer has an adhesion amount of 1 to 40 mg / m 2 in terms of Zr. .
  • the oxygen atom concentration is in the range of 1 to 10 atomic% in the entire thickness of the Ni plating layer excluding the natural oxide film formed on the surface of the Ni plating layer. It is good.
  • a method for manufacturing a steel plate for containers according to an aspect of the present invention is the method for manufacturing a steel plate for containers according to (1) above, and comprises an aqueous solution in which at least one of Ni sulfate and Ni chloride is dissolved.
  • At least one of Ni hydroxide and Ni oxide is included in the Ni plating layer, and a chromate film layer or a Zr-containing film layer is formed on such a Ni plating layer, thereby preventing puncture corrosion. It is possible to provide a steel plate for a container which is excellent in corrosion resistance and has excellent adhesion and weldability with a laminated resin film.
  • the present invention is a steel sheet having a chromate film layer or a Zr-containing film layer on the Ni plating layer, and the Ni plating layer contains at least one of Ni hydroxide and Ni oxide.
  • the Ni plating layer has an adhesion amount of 0.3 g / m 2 or more in terms of Ni, and oxygen attributed to Ni hydroxide and Ni oxide contained in the Ni plating layer.
  • the atomic concentration is in the range of 1 to 10 atomic%.
  • the chromate film layer formed on the upper layer of the Ni plating layer has an adhesion amount of 1 to 40 mg / m 2 in terms of Cr
  • the Zr-containing film layer has an adhesion amount of 1 to 40 mg / m 2 in terms of Zr. Amount.
  • a Ni plating layer containing at least one of Ni hydroxide and Ni oxide is formed on the surface of the steel plate, and the Ni plating layer has a Ni adhesion amount of 0.3 g. / M 2 or more, and the oxygen atom concentration of Ni hydroxide or Ni oxide is in the range of 1 to 10 atomic%.
  • a chromate film layer or a Zr-containing film layer is provided on the surface of the Ni plating layer.
  • the chromate film layer is formed on the Ni plating layer with an adhesion amount of 1 to 40 mg / m 2 in terms of Cr.
  • a Zr-containing coating layer is formed instead of the chromate coating layer, it is formed on the Ni plating layer with a Zr amount of 1 to 40 mg / m 2 .
  • the steel plate used for the steel plate for containers of this embodiment is a plating original plate.
  • a cold-rolled steel plate manufactured through processes such as hot rolling, pickling, cold rolling, annealing, temper rolling and the like from a normal slab manufacturing process can be exemplified.
  • it does not specifically limit about the component and characteristic of the steel plate concerning this embodiment For example, it is possible to use the low carbon steel etc. which are normally used as a steel plate for containers.
  • a Ni plating layer containing at least one of nickel hydroxide and nickel oxide is formed on the steel plate as the plating original plate in order to ensure corrosion resistance, adhesion, and weldability.
  • the plating original plate (base material steel plate) according to the present embodiment is also simply referred to as “steel plate”.
  • Ni is a metal that is excellent in adhesion and forgeability (characteristic of joining at a temperature below the melting point) to the steel sheet and can enjoy good weldability.
  • the amount of adhesion when Ni plating is applied to the steel sheet is 0 in terms of Ni.
  • the Ni conversion amount needs to be 0.3 g / m 2 or more.
  • the Ni conversion amount is 0.4 g / m 2 or more, and more preferably 0.6 g / m 2 or more.
  • the adhesion amount of Ni plating improves adhesion and weldability.
  • the Ni conversion amount exceeds 3 g / m 2 , the effect of improving adhesion and weldability is saturated, economically. It is a disadvantage. Therefore, it is preferable that the upper limit of the Ni plating adhesion amount is 3 g / m 2 in terms of Ni. More preferably, it is 2.5 g / m 2 or less.
  • the Ni plating layer contains at least one of Ni hydroxide and Ni oxide. That is, both Ni hydroxide and Ni oxide may be contained in the Ni plating layer, or one of them may be contained. There are a plurality of chemical forms of Ni oxide, and in this embodiment, it is difficult to specify what form of Ni oxide is contained, but among these, NiO and Ni 2 O are mainly used. 3 is contained. Further, in the past (particularly, Patent Document 10), a technique for oxidizing the surface layer of the Ni plating layer and forming Ni oxide on the Ni plating layer has been studied, but this embodiment is different from the conventional technique.
  • the nickel plating layer is characterized by containing Ni hydroxide and Ni oxide.
  • the surface portion of the Ni plating layer was formed with a Ni oxide layer, while the Ni plating layer was a two-layered plating layer on which the pure Ni layer was formed.
  • the Ni plating layer according to the embodiment is characterized by containing Ni hydroxide and Ni oxide throughout the entire thickness direction.
  • the oxygen atom concentration caused by Ni hydroxide and / or Ni oxide contained in the Ni plating layer is in the range of 1 to 10 atomic%. If the content of Ni hydroxide and / or Ni oxide in the Ni plating layer is too low, the above-described effect of reducing the piercing corrosion cannot be sufficiently exhibited. When the oxygen atom concentration caused by Ni hydroxide and / or Ni oxide contained in the Ni plating layer is 1 atomic% or more, the perforation corrosion rate starts to be suppressed, and the perforation corrosion can be reduced. From such a point of view, the oxygen atom concentration caused by Ni hydroxide and / or Ni oxide contained in the Ni plating layer is 1 atomic% or more.
  • the oxygen atom concentration caused by Ni hydroxide and / or Ni oxide in the Ni plating layer needs to be 10 atom% or less.
  • it is 8.5 atomic% or less, and more preferably 8 atomic% or less.
  • the oxygen atom concentration caused by Ni hydroxide or Ni oxide in the Ni plating layer is determined by measuring a sample after Ni plating without a chromate film layer or a Zr-containing film layer described later by X-ray photoelectron spectroscopy (XPS). Is measurable.
  • the Ni plating layer according to the present embodiment may contain inevitable impurities in addition to the above-described Ni hydroxide or Ni oxide as long as the effects of the present invention are not impaired.
  • the oxygen atom concentration caused by Ni hydroxide or Ni oxide is 1 to 10 atoms in the entire thickness of the Ni plating layer excluding the natural oxide film formed on the surface of the Ni plating layer. % Is preferable.
  • the steel plate for containers according to the present embodiment can be obtained by forming a chromate film layer or a Zr-containing film layer, which will be described later, after Ni plating is applied to the plating original plate. However, between the step of applying Ni plating and the step of forming the chromate coating layer or the Zr-containing coating layer, the Ni-plated steel sheet is exposed to the atmosphere, and the air in the atmosphere reacts with the surface layer portion of the Ni plating layer.
  • Ni in the surface layer portion of the Ni plating layer is oxidized to form a natural oxide film.
  • the oxygen concentration distribution in the Ni plating layer becomes higher in the surface layer portion of the plating layer.
  • the Ni plating layer according to this embodiment is caused by Ni hydroxide and / or Ni oxide in the entire thickness of the Ni plating layer excluding the Ni oxide layer (natural oxide film) formed on the surface of the Ni plating layer.
  • the oxygen atom concentration is preferably in the range of 1 to 10 atomic%.
  • the pin of the Ni plating layer by dispersing at least one of Ni hydroxide and Ni oxide uniformly throughout the thickness of the Ni plating layer excluding the Ni oxide layer (natural oxide film) on the surface of the Ni plating layer, the pin of the Ni plating layer
  • the perforation corrosion that has been concentrated in the holes can be dispersed by the voids formed by the dissolution of Ni hydroxide and Ni oxide, and the perforation corrosion rate can be suppressed.
  • the effect of improving the corrosion resistance and adhesion is also increased by increasing the amount of the chromate film layer deposited, but the hydrated Cr oxide in the chromate film layer is an electrically insulating material, so the amount of chromate film layer deposited increases.
  • the electrical resistance of the steel plate for containers becomes very high, which causes the weldability to deteriorate.
  • the amount of the chromate film layer must be 40 mg / m 2 or less in terms of metallic Cr.
  • it is 30 mg / m 2 or less in terms of metal Cr.
  • a Zr-containing film layer may be formed on the Ni plating layer.
  • the Zr-containing coating layer is a coating made of a Zr compound such as oxidized Zr, phosphoric acid Zr, hydroxide Zr, or fluoride Zr, or a composite coating thereof.
  • the Zr-containing coating layer is formed with an adhesion amount of 1 mg / m 2 or more in terms of metal Zr, dramatic improvements in adhesion to the resin film and corrosion resistance are observed, as in the above-described chromate coating layer. Therefore, the Zr-containing coating layer has an adhesion amount of 1 mg / m 2 or more in terms of Zr.
  • the adhesion amount of the Zr-containing coating layer is 2.5 mg / m 2 or more in terms of Zr.
  • the adhesion amount of the Zr-containing coating layer exceeds 40 mg / m 2 in terms of metal Zr amount, weldability and appearance are deteriorated.
  • the Zr-containing coating layer is an electrical insulator, when the amount of the Zr-containing coating layer is increased, the electrical resistance of the steel plate for containers becomes very high, which causes deterioration in weldability.
  • the adhesion amount of the Zr-containing coating layer exceeds 40 mg / m 2 in terms of metal Zr, the weldability is extremely deteriorated. Therefore, the adhesion amount of the Zr coating layer needs to be 1 to 40 mg / m 2 in terms of metal Zr amount.
  • it is 30 mg / m 2 or less in terms of metal Zr.
  • a plating base plate (base material steel plate) is immersed in a plating bath made of an aqueous solution in which at least one of Ni sulfate and Ni chloride is dissolved, and then the Ni precipitation limit.
  • a method for forming a Ni plating layer containing at least one of the above-described Ni hydroxide and Ni oxide on a steel sheet will be described.
  • a plating original plate is immersed in a plating bath made of an aqueous solution in which at least one of known nickel sulfate and nickel chloride is dissolved, and then cathode electrolysis is performed at a current density exceeding the limit current density of Ni precipitation.
  • the current density to a value exceeding the limit current density and cathodic electrolysis, it is possible to promote the generation of nickel hydroxide or nickel oxide due to the pH increase at the plating layer interface.
  • a Ni plating layer containing at least one of oxidized Ni can be obtained.
  • the concentrations of Ni sulfate and Ni chloride are not particularly limited, but can be in the range of 5 to 30% for Ni sulfate and 5 to 30% for Ni chloride.
  • the pH of the plating bath is not particularly limited, but may be pH 2 to pH 4 from the viewpoint of liquid stability.
  • the limiting current density of the present invention is a current density at which Ni deposition efficiency starts to decrease when the current density is gradually increased, and depends on the Ni ion concentration, pH, liquid flow rate and bath temperature of the plating bath. It is known to do. That is, the higher the Ni ion concentration, pH, liquid flow rate, and bath temperature, the higher the limiting current density tends to be.
  • the Ni adhesion efficiency can be calculated from the Ni adhesion amount and the energization amount.
  • Patent Documents 8 and 9 describe a wide current density of 3 to 300 A / dm 2 .
  • Ni plating layer containing Ni hydroxide or Ni oxide When a Ni plating layer containing Ni hydroxide or Ni oxide is formed by cathode electrolysis at a high current density, it can be obtained at a current density exceeding 300 A / dm 2 depending on the conditions of the plating bath.
  • the limiting current density tends to decrease by lowering the Ni ion concentration and pH. That is, depending on the conditions of the plating bath, even at a lower current density of 10 A / dm 2 , the limit current density is exceeded, and a Ni plating layer containing Ni hydroxide or Ni oxide can be obtained.
  • Ni plating layer containing at least one of Ni hydroxide and Ni oxide it is very important to set the current density in cathode electrolysis higher than the limit current density.
  • the pH at the plating layer interface is not sufficiently increased, and it becomes difficult to promote the generation of Ni hydroxide or Ni oxide.
  • Ni hydroxide and Ni oxide contained in the Ni plating layer cannot be sufficiently secured.
  • a bath that does not use boric acid or Ni chloride that suppresses the increase in pH at the interface may be used.
  • the limiting current density is lowered, so that a Ni plating layer containing Ni hydroxide or Ni oxide can be obtained at a relatively low current density.
  • the current density to be used is set to a value that exceeds the limit current density by at least 10%, preferably more than 20%, and is subjected to cathode electrolysis, so that at least one of Ni hydroxide and Ni oxide as described above is included.
  • the Ni plating layer thus produced can be manufactured industrially stably.
  • the Ni adhesion amount, the adhesion amount of the chromate film layer described later, and the adhesion amount of the Zr-containing film layer can be easily measured with a known analytical instrument such as a fluorescent X-ray apparatus or an X-ray photoelectron spectrometer.
  • a Zr-containing coating layer is formed.
  • the chromate film layer is composed of hydrated Cr oxide, or composed of hydrated Cr oxide and metal Cr, and is formed by chromate treatment.
  • the chromate treatment method may be performed by any method such as immersion treatment with various aqueous solutions of Cr acid such as sodium salt, potassium salt, and ammonium salt, spray treatment, and electrolytic treatment.
  • Cr acid such as sodium salt, potassium salt, and ammonium salt
  • spray treatment and electrolytic treatment.
  • the method of performing cathodic electrolysis in an aqueous solution in which sulfate ion, fluoride ion (including complex ions) or a mixture thereof is added as a plating aid to Cr acid is particularly excellent industrially. .
  • the Zr-containing coating layer is formed by, for example, immersing the steel plate after the Ni plating layer is formed in an acidic solution containing Zr fluoride, phosphoric acid Zr, or hydrofluoric acid as a main component, or cathodic electrolytic treatment.
  • a known method such as a method may be employed.
  • the steel plate for containers according to this embodiment can be manufactured.
  • the piercing corrosion resistance of the steel plate for containers can be improved, and the weldability, adhesion to the resin film, and adhesion to the resin film after processing can be improved.
  • the present invention will be described in more detail with reference to examples, but the conditions in this example are one example of conditions used to confirm the feasibility and effects of the present invention. It is not limited to only one example of these conditions.
  • the present invention can adopt various conditions or combinations of conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 First, Examples and Comparative Examples of the present invention are described, and the results are shown in Table 1. In this example, a sample was prepared by the method shown in (1) below, and performance evaluation was performed for each item (A) to (D) in (2).
  • Ni plating condition 1 Cathodic electrolysis was performed at a current density of 25 A / dm 2 exceeding the limit current density using an aqueous solution of 35 ° C. adjusted to nickel sulfate with a concentration of 20%, nickel chloride with a concentration of 10% and pH 2, and a Ni plating layer was formed on the steel sheet. . The amount of Ni deposited was controlled by the electrolysis time.
  • Ni plating condition 2 Cathodic electrolysis was performed at a current density of 55 A / dm 2 exceeding the limit current density using a 3% boric acid, 10% nickel sulfate, 10% nickel chloride, and a 45 ° C. aqueous solution adjusted to pH 4. A Ni plating layer was formed on the substrate. The amount of Ni deposited was controlled by the electrolysis time.
  • Ni plating condition 3 Cathodic electrolysis was performed at 10 A / dm 2 lower than the limiting current density using nickel sulfate with a concentration of 20%, nickel chloride with a concentration of 10%, and an aqueous solution at 35 ° C. adjusted to pH 2 to form a Ni plating layer on the steel sheet. The amount of Ni deposited was controlled by the electrolysis time.
  • Ni plating condition 4 Cathodic electrolysis was performed at a current density of 20 A / dm 2 exceeding the limit current density using a 3% boric acid, 10% nickel sulfate, 10% nickel chloride, and a 45 ° C. aqueous solution adjusted to pH 4. A Ni plating layer was formed on the substrate. The amount of Ni deposited was controlled by the electrolysis time.
  • the amount of adhesion of Ni plating (g / m 2 ) and the oxygen atom concentration (atomic%) of Ni hydroxide or Ni oxide in the Ni plating layer are X-rays of the sample after Ni plating. It was specified by measuring by photoelectron spectroscopy (XPS).
  • Comparative Example 1 was particularly deteriorated in weldability and corrosion resistance because the amount of the Ni plating layer deposited was low.
  • Comparative Examples 2 and 3 are examples in which a sample was prepared under [Ni plating condition 3] and [Ni plating condition 4], and the current density is an example outside the scope of the present invention.
  • Comparative Examples 2 and 3 since the current density was too low, the oxygen atom concentration in the Ni plating layer was outside the range of the present invention, and the corrosion resistance was lowered.
  • Comparative Example 4 the oxygen atom concentration in the Ni plating layer was outside the range of the present invention, and the weldability was lowered.
  • Comparative Examples 5 and 6 the adhesion amount of the chromate film layer was out of the range of the present invention. In Comparative Example 5, the secondary adhesion was lowered, and in Comparative Example 6, the weldability was lowered.
  • Example 2 Next, a plurality of temper grade 3 (T-3) cold-rolled steel sheets for tin with a thickness of 0.2 mm were prepared as plating original sheets, and plated under the same Ni plating conditions as in “Example 1”. A Ni plating layer was formed on each steel plate. The Ni adhesion amount was unified to 0.7 g / m 2 .
  • a chromate film layer was formed on the Ni plating layer under the same chromate treatment conditions as in Example 1.
  • the Cr adhesion amount of the chromate film layer was unified to 8 g / m 2 .
  • Example 1 The obtained various plated steel sheets were subjected to the same (D) corrosion resistance test as in “Example 1”, and the depth of perforated corrosion was measured.
  • the obtained results are shown in FIG. “Condition 1”, “Condition 3”, and “Condition 4” shown in FIG. 1 indicate “Ni plating condition 1”, “Ni plating condition 3”, and “Ni plating condition 4”, respectively.
  • Example 1 of the present invention shown in Table 1 the oxygen atom concentration (atomic%) of Ni hydroxide or Ni oxide in the Ni plating layer was measured using X-ray photoelectron spectroscopy (XPS). The obtained results are shown in FIG.
  • XPS X-ray photoelectron spectroscopy
  • the perforation depth is 0.02 to 0.05 mm. It can be seen that the corrosion resistance against perforation corrosion is greatly improved.
  • the oxygen atom concentration was in the range of 1 to 20 atomic%, corrosion proceeded along the interface between the Ni plating layer and the ground iron.
  • the oxygen atom concentration is less than 1 atomic%, the corrosion progressed along the thickness direction of the steel sheet.
  • the oxygen atom concentration is 1 to 10 atomic% in the Ni plating layer. It turns out that it is the range of.
  • the oxygen atom concentration is high. This is because the surface of the Ni plating layer is oxidized and a natural oxide film is formed. it is conceivable that.
  • the horizontal axis shown in FIG. 2 has shown the sputtering time in XPS, this time is equivalent to the depth from Ni plating layer surface layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Laminated Bodies (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 この容器用鋼板は、Niめっき層の上層に、クロメート皮膜層またはZr含有皮膜層を有する鋼板であって、前記Niめっき層は、水酸化Niおよび酸化Niの少なくとも一方を含有し、前記Niめっき層は、Ni換算量で0.3g/m以上の付着量であり、かつ、前記水酸化Niおよび前記酸化Niに起因する酸素原子濃度が1~10原子%の範囲であり、前記クロメート皮膜層は、Cr換算量で1~40mg/mの付着量であり、前記Zr含有皮膜層は、Zr換算量で1~40mg/mの付着量である。

Description

容器用鋼板およびその製造方法
 本発明は容器用鋼板およびその製造方法に関し、特に、2ピース缶および3ピース缶に使用されるものであって、耐食性、密着性、溶接性に優れた容器用鋼板およびその製造方法に関する。
 本願は、2012年10月15日に、日本に出願された特願2012-228196号に基づき優先権を主張し、その内容をここに援用する。
 主に飲料缶分野で使用されている鋼製の容器には、2ピース缶と3ピース缶とが存在する。
 2ピース缶とは、缶底と缶胴部が一体になった缶体のことで、DrD缶、DI缶等が知られており、絞り加工、しごき加工、曲げ曲げ戻し加工、あるいはこれらの加工を組み合わせて成形され製造される。2ピース缶の缶体に用いられる鋼板には、ブリキ(Snめっき鋼板)やTFS(電解クロム酸処理鋼板(ティンフリースチール))があり、用途や加工方法によって使い分けが為されている。
 一方、3ピース缶は、缶胴部と底部が別々になった缶体のことで、缶胴部の製造を、薄鋼板を円筒形に成形し、継ぎ目を溶接により接合で行う方法が主流であり、このように缶胴部を溶接により製造したものを溶接缶という。また、3ピース缶の缶胴部の素材には、薄目付けSnめっき鋼板やNiめっき鋼板が使用されている。また、3ピース缶の底部の素材にはTFS等が使用されている。
 2ピース缶においても3ピース缶においても、消費者にむけて缶内の内容物の価値(商品価値)をアピールする為、缶外面には印刷が施されている。また、缶内面には、耐食性を確保する為、樹脂がコーティングされている。
 従来の2ピース缶は、缶体の成形を行った後に、缶内面側がスプレー等で塗装され、缶外面側には、曲面印刷が施されていた。また、最近では、予めPETフィルムをラミネートした鋼板を缶に成形するラミネート2ピース缶が台頭している(特許文献1、特許文献2)。
 また、3ピース缶を構成する溶接缶についても、従来は、缶内面に塗装が施されるとともに缶外面に印刷が施された鋼板を溶接して缶体を製造していたが、塗装、印刷に代えて予め印刷済みのPETフィルムが積層されたラミネート鋼板を用いて製造された3ピース缶も台頭している(特許文献3、特許文献4)。
 2ピース缶を製造する際には、容器用鋼板に絞り加工やしごき加工、曲げ曲げ戻し加工が施される。また、3ピース缶を製造する際にも容器用鋼板に対してネック加工やフランジ加工、場合によっては意匠性の為のエキスパンド加工が施される。従って、容器用鋼板として用いられるラミネート鋼板には、これらの加工に追従できる優れたフィルム密着性が求められるようになった。
 容器用鋼板としてSnめっき鋼板を用いた場合は、Snの優れた犠牲防食作用により、缶内の内容物が酸性でも優れた耐食性を発揮する。しかし、Snめっきの最表層には脆弱なSn酸化物が存在する為、めっき上に成膜するフィルムの密着性が不安定である。そのため、上記の絞り加工等を受けた際に、フィルム剥離が生じ、さらにはフィルムと容器用鋼板の密着力が不十分な箇所が、腐食発生の起点になるなどの問題がある。
 そこで、加工性及び密着性に優れ、しかも溶接が可能な容器用のラミネート鋼板として、Niめっき鋼板が使用されている(特許文献5)。
 Niめっき鋼板に関しては、従来より様々な技術が開示されている(例えば特許文献9)。また、Niめっき鋼板には、Snめっき鋼板のように表面が無光沢なものがある一方で、光沢剤を添加したNiめっき方法によって光沢めっきを施したものも知られている(特許文献6、特許文献7)。
 ところが、Niは酸性溶液中ではSnのような犠牲防食作用を有していない。その為、Niめっき鋼板を酸性飲料等の腐食性の高い内容物を充填する容器に用いた場合には、Niめっき層のピンホール等の欠陥部から、板厚方向に腐食が進行する穿孔腐食が発生し、短期間で穴空きに至ることが知られている。このため、Niめっき鋼板の耐食性の向上が求められていた。
 このような問題に対し、穿孔腐食を軽減する為に、めっきされる鋼板の電位を貴な方向へ近づけるように、めっき原板(母材鋼板)の鋼成分を調整したNiめっき鋼板が開示されている(特許文献8)。
 また、Niめっき鋼板を製造する際、めっき浴中の溶存酸素あるいは大気中の酸素によりNiめっき層中のNiが酸化されて、Niめっき層表面に酸化Ni皮膜が形成されることが知られている。しかし、Niめっき層上に耐食性の向上を目的としてクロメート処理する場合、前述の酸化Ni皮膜の成膜状態によってクロメート析出量が変動してしまい、容器の外観不良を招く問題がある。
 このような問題に対し、Niめっきを施した後、熱処理を制御しNiめっき層上に均一な酸化Ni皮膜を形成することで、良好な外観を確保する方法が開示されている(特許文献10)。
日本国特開2000-263696号公報 日本国特開2000-334886号公報 日本国特許3060073号 日本国特許2998043号 日本国特開2007-231394号公報 日本国特開2000-26992号公報 日本国特開2005-149735号公報 日本国特開昭60-145380号公報 日本国特開昭56-169788号公報 日本国特開平10-265966号公報
 特許文献8に記載の発明では、穿孔腐食の軽減に一定の効果が得られているが、めっき原板の鋼成分を調整するだけではその効果は不十分であり、更なる耐食性の向上が望まれていた。また、特許文献8に記載の発明はめっき原板の鋼成分が限定される為、一部の用途に適用されるのみであった。そこで、多岐の内容物や缶形状に適用可能なNiめっき鋼板が求められていた。
 また、特許文献10に記載の発明は、良好な外観性を確保できるものの、Niめっき層の穿孔腐食に対しては考慮されておらず、めっき鋼板の耐食性は不十分であった。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、耐食性、密着性、溶接性に優れた容器用鋼板およびその製造方法を提供することにある。
 本発明者等は、穿孔腐食の軽減に対応する為に検討した結果、Niめっき層の表面ではなく、その内部に水酸化Niおよび酸化Niの少なくとも一方を含ませることで、穿孔腐食に対する耐食性を向上させうることを見出した。具体的には、めっき原板上に、水酸化Niおよび酸化Niの少なくとも一方を含有するNiめっき層を鋼板上に形成すると、Niめっき層のピンホール等の欠陥部から腐食が進行する際に、穿孔腐食速度が低下する現象を見出した(図1を参照。図1については、以下で詳述する。)。
 この現象は、次のようなメカニズムにより進行するものと推測される。
 水酸化Niおよび酸化Niは、酸性溶液中では溶解し易い。つまり、腐食の初期段階ではNiめっき層中の水酸化Niおよび酸化Niが優先的に溶解されるため、腐食の進行が進むにつれ、Niめっき層の内部は空隙が多い状態になると考えられる。そして、Niめっき層中において空隙が多く出現することで、従来、ピンホールに集中していた腐食(穿孔腐食)が当該空隙に分散され、腐食形態が、穿孔腐食から全面腐食あるいはNiめっき層と地鉄との界面における腐食(界面腐食)へと変化し、進行していた穿孔腐食の速度が低下したものと考えられる。
 さらに、このような知見に基づきさらに検討した結果、水酸化Niおよび酸化Niの少なくとも一方を、Niめっき層の深さ方向に分散して分布させることで、より穿孔腐食を軽減できることを見出した。
 本発明者らは、これらの現象を利用することで、耐食性、密着性、溶接性に優れた容器用鋼板を発明するに至った。
 即ち、以上の知見により得られた本発明は、以下に示すとおりである。
(1)本発明の一態様に係る容器用鋼板は、Niめっき層の上層に、クロメート皮膜層またはZr含有皮膜層を有する鋼板であって、前記Niめっき層は、水酸化Niおよび酸化Niの少なくとも一方を含有し、前記Niめっき層は、Ni換算量で0.3g/m以上の付着量であり、かつ、前記水酸化Niおよび前記酸化Niに起因する酸素原子濃度が1~10原子%の範囲であり、前記クロメート皮膜層は、Cr換算量で1~40mg/mの付着量であり、前記Zr含有皮膜層は、Zr換算量で1~40mg/mの付着量である。
(2)上記(1)に記載の容器用鋼板では、前記Niめっき層表層に形成された自然酸化膜を除く前記Niめっき層の厚み全域において、前記酸素原子濃度を1~10原子%の範囲としてもよい。
(3)本発明の一態様に係る容器用鋼板の製造方法は、上記(1)に記載の容器用鋼板の製造方法であって、硫酸Ni及び塩化Niの少なくとも一方を溶解させた水溶液からなるめっき浴に母材鋼板を浸漬させた後、Ni析出の限界電流密度を超える電流密度でカソード電解して、水酸化Niまたは酸化Niの少なくとも一方を含有するNiめっき層を形成する工程と、
 前記Niめっき層上に、Cr換算量で1~40mg/mの付着量であるクロメート皮膜層を形成する工程、もしくは前記Niめっき層上に、Zr換算量で1~40mg/mの付着量であるZr含有皮膜層を形成する工程と、

を備える。
 本発明によれば、Niめっき層の内部に水酸化Niおよび酸化Niの少なくとも一方を含ませ、このようなNiめっき層上にクロメート皮膜層またはZr含有皮膜層を形成することで、穿孔腐食に対する耐食性に優れ、更に、ラミネートした樹脂フィルムとの密着性及び溶接性に優れた容器用鋼板を提供することができる。
本発明の実施例2における、Niめっき層中の酸素原子濃度と穿孔食深さとの関係を示すグラフである。 本発明の実施例1の本発明例1における、Niめっき層中のニッケル原子濃度および酸素原子濃度と、X線光電子分光法(XPS)のスパッタリング時間との関係を示すグラフである。
 本発明は、Niめっき層の上層に、クロメート皮膜層またはZr含有皮膜層を有する鋼板であって、前記Niめっき層は、水酸化Niおよび酸化Niの少なくとも一方を含有する。なお、本発明における容器用鋼板において、Niめっき層は、Ni換算量で0.3g/m以上の付着量であり、かつ、Niめっき層に含有する水酸化Niおよび酸化Niに起因する酸素原子濃度が1~10原子%の範囲である。また、Niめっき層の上層に形成されるクロメート皮膜層は、Cr換算量で1~40mg/mの付着量であり、Zr含有皮膜層は、Zr換算量で1~40mg/mの付着量である。
 以下に、本発明の一実施形態である容器用鋼板について、詳細に説明する。
 本実施形態に係る容器用鋼板は、鋼板の表面に、水酸化Niおよび酸化Niの少なくとも一方が含まれたNiめっき層が形成されており、当該Niめっき層は、Ni付着量が0.3g/m以上であり、水酸化Niまたは酸化Niの酸素原子濃度が1~10原子%の範囲である。
 また、Niめっき層の表面にが、クロメート皮膜層またはZr含有皮膜層が設けられている。クロメート皮膜層は、Cr換算量で1~40mg/mの付着量で、Niめっき層上に形成されている。また、前記クロメート皮膜層に変えてZr含有皮膜層が形成される場合は、Zr量で1~40mg/mの付着量で、Niめっき層上に形成されている。
 本実施形態の容器用鋼板に使用される鋼板は、めっき原板である。このような鋼板として、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造された冷延鋼板を例示できる。ここで、本実施形態にかかる鋼板の成分や特性については特に限定されるものではなく、例えば、容器用鋼板として通常用いられる低炭素鋼等を使用することが可能である。
 本実施形態では、めっき原板としての上記鋼板上に、耐食性、密着性、溶接性を確保する為に、水酸化Niおよび酸化Niの少なくとも一方が含まれたNiめっき層が形成されている。
 なお、以下、本実施形態に係るめっき原板(母材鋼板)を単に「鋼板」とも称する。
<Niめっき層>
 Niは、鋼板に対する密着性と鍛接性(融点以下の温度で接合する特性)に優れ、良好な溶接性を享受できる金属であり、鋼板にNiめっきを施す際の付着量としてNi換算量で0.3g/m以上にすることで、実用的な密着性や溶接性、鍛接性を発揮し始める。従って、Niめっき層においては、Ni換算量を、0.3g/m以上とすることが必要である。好ましくは、Ni換算量を0.4g/m以上とし、さらに好ましくは、0.6g/m以上とする。
 なお、Niめっきの付着量を増加させると、密着性や溶接性が向上するが、Ni換算量が3g/mを超えると、密着性及び溶接性の向上効果が飽和し、経済的には不利益である。従って、Niめっきの付着量の上限は、Ni換算量で3g/mとすることが好ましい。さらに好ましくは、2.5g/m以下である。
 Niめっき層は、水酸化Niおよび酸化Niの少なくとも一方を含有する。つまり、Niめっき層中に、水酸化Niと酸化Niの両方が含有されてもよく、いずれか一方が含有されてもよい。なお、酸化Niの化学的な形態は複数存在しており、本実施形態において、いかなる形態の酸化Niが含有しているのか特定することは困難であるが、その中でも主として、NiOやNiを含有する。
 また、従来(特に、特許文献10)では、Niめっき層の表層を酸化させて、Niめっき層上に酸化Niを形成する技術は検討されてきたが、本実施形態は当該従来技術とは異なり、Niめっき層中に水酸化Niおよび酸化Niを含有することを特徴とする。つまり、従来では、Niめっき層の表層部は酸化Ni層が形成され、一方Niめっき層のめっき原板側は純Ni層が形成された2層構造のめっき層であったのに対し、本実施形態に係るNiめっき層は、厚み方向全域にわたって水酸化Niおよび酸化Niを含有することを特徴とする。
 Niめっき層に含有する水酸化Niおよび/または酸化Niに起因する酸素原子濃度は、1~10原子%の範囲とする。
 Niめっき層中の水酸化Niおよび/または酸化Niの含有率が低過ぎると、上述したような穿孔腐食の低減効果が十分に発揮されない。Niめっき層中に含まれた水酸化Niおよび/または酸化Niに起因する酸素原子濃度が1原子%以上で、穿孔腐食速度が抑制され始め、穿孔腐食を低減できる。このような観点から、Niめっき層に含有する水酸化Niおよび/または酸化Niに起因する酸素原子濃度は、1原子%以上とする。好ましくは、2原子%以上とし、さらに好ましくは、3.5原子%以上である。
 一方、Niめっき層中の水酸化Niおよび/または酸化Niの含有率が過剰になると、Niの鍛接性が阻害され、その結果、溶接性が劣化する。従って、Niめっき層中の水酸化Niおよび/または酸化Niに起因する酸素原子濃度は、10原子%以下にする必要がある。好ましくは、8.5原子%以下とし、さらに好ましくは、8原子%以下である。
 Niめっき層中の水酸化Niまたは酸化Niに起因する酸素原子濃度は、後述のクロメート皮膜層またはZr含有皮膜層の無いNiめっき後の試料をX線光電子分光法(XPS)により測定することで、測定可能である。
 また、本実施形態に係るNiめっき層には、上述したような水酸化Niまたは酸化Niの他に、本発明の効果を損なわない範囲で不可避的不純物が含まれていてもよい。
 また、本実施形態に係るNiめっき層は、Niめっき層表層に形成された自然酸化膜を除くNiめっき層の厚み全域において、水酸化Niまたは酸化Niに起因する酸素原子濃度が1~10原子%の範囲であることが好ましい。
 本実施形態に係る容器用鋼板は、めっき原板にNiめっきを施した後、後述するクロメート皮膜層またはZr含有皮膜層を形成することで得られる。しかしながら、Niめっきを施す工程と、クロメート皮膜層またはZr含有皮膜層を形成する工程との間で、Niめっき鋼板が大気に曝され、大気中の空気とNiめっき層の表層部とが反応し、Niめっき層の表層部のNiが酸化され自然酸化膜が形成される場合がある。このような場合、Niめっき層内の酸素濃度分布は、めっき層の表層部にて高くなる。しかし、本実施形態において重要なことは、Niめっき層表層に自然酸化膜が形成されているか否かに因らず、Niめっき層内部全域にわたって水酸化Niおよび酸化Niの少なくとも一方を含有させることである。
 したがって、本実施形態に係るNiめっき層は、Niめっき層表層に形成された酸化Ni層(自然酸化膜)を除いたNiめっき層の厚み全域において、水酸化Niおよび/または酸化Niに起因する酸素原子濃度が1~10原子%の範囲であることが好ましい。このように、水酸化Niおよび酸化Niの少なくとも一方を、Niめっき層表層の酸化Ni層(自然酸化膜)を除いたNiめっき層の厚み全域において均一に分散させることで、Niめっき層のピンホールに集中していた穿孔腐食を、水酸化Niおよび酸化Niが溶解することで生じる空隙により分散することができ、穿孔腐食速度を抑制することが可能となる。
<クロメート皮膜層>
 クロメート皮膜層を構成する金属Crまたは水和酸化Crは、優れた化学的安定性を有するので、クロメート皮膜の付着量に比例して容器用鋼板の耐食性が向上する。また、水和酸化Crは、樹脂フィルムの官能基と強固な化学的な結合を形成することによって加熱水蒸気雰囲気でも優れた密着性を発揮することから、クロメート皮膜層の付着量が多くなる程、樹脂フィルムとの密着性が向上する。これらの観点から、実用上、十分な耐食性及び密着性を発揮せしめるには、金属Cr換算量で1mg/m以上のクロメート皮膜層が必要である。好ましくは、金属Cr換算量で2.5mg/m以上とする。
 一方、クロメート皮膜層の付着量の増加により耐食性、密着性の向上効果も増大するが、クロメート皮膜層中の水和酸化Crは電気的に絶縁体のため、クロメート被膜層の付着量が増大すると容器用鋼板の電気抵抗が非常に高くなり、溶接性を劣化せしめる要因になる。具体的には、クロメート皮膜層の付着量が金属Cr換算で40mg/mを超えると、溶接性が極めて劣化する。従って、クロメート皮膜層の付着量は、金属Cr換算で40mg/m以下にする必要がある。好ましくは、金属Cr換算量で30mg/m以下とする。
<Zr含有皮膜層>
 また、上記のクロメート皮膜層に代えて、Niめっき層にZr含有皮膜層を形成してもよい。Zr含有皮膜層は、酸化Zr、リン酸Zr、水酸化Zr、フッ化Zr等のZr化合物からなる皮膜またはこれらの複合皮膜である。Zr含有皮膜層を、金属Zr換算量で1mg/m以上の付着量で形成すると、先述したクロメート皮膜層と同様に、樹脂フィルムとの密着性や耐食性の飛躍的な向上が認められる。そのため、Zr含有皮膜層は、Zr換算量で1mg/m以上の付着量とする。好ましくは、Zr換算量で2.5mg/m以上とする。
 一方、Zr含有皮膜層の付着量が金属Zr量で40mg/mを超えると、溶接性及び外観性が劣化する。特に、Zr含有皮膜層は電気的に絶縁体のため、Zr含有皮膜層の付着量が増大すると容器用鋼板の電気抵抗が非常に高くなり、溶接性を劣化せしめる要因になる。具体的には、Zr含有皮膜層の付着量が金属Zr換算で40mg/mを超えると、溶接性が極めて劣化する。従って、Zr皮膜層の付着量は、金属Zr量で1~40mg/mにする必要がある。好ましくは、金属Zr換算量で30mg/m以下とする。
 次に、本発明の一実施形態である容器用鋼板の製造方法について、説明する。
 本実施形態に係る容器用鋼板の製造方法は、まず、硫酸Ni及び塩化Niの少なくとも一方を溶解させた水溶液からなるめっき浴にめっき原板(母材鋼板)を浸漬させた後、Ni析出の限界電流密度を超える電流密度でカソード電解して、水酸化Niまたは酸化Niの少なくとも一方を含有するNiめっき層を形成する工程と、得られたNiめっき層上に、Cr換算量で1~40mg/mの付着量であるクロメート皮膜層を形成する工程、もしくは得られたNiめっき層上に、Zr換算量で1~40mg/mの付着量であるZr含有皮膜層を形成する工程と、を備える。
 上記の水酸化Niおよび酸化Niの少なくとも一方が含まれたNiめっき層を鋼板に形成する方法について説明する。
 まず、公知の硫酸Niおよび塩化Niの少なくとも一方を溶解させた水溶液からなるめっき浴にめっき原板を浸漬させた後、Ni析出の限界電流密度を超える電流密度でカソード電解をする。このように、電流密度を、限界電流密度を超える値に設定してカソード電解することにより、めっき層界面のpH上昇による水酸化ニッケルまたは酸化ニッケルの発生を促進させることができ、水酸化Niおよび酸化Niの少なくとも一方が含まれたNiめっき層を得ることが出来る。
 なお、硫酸Niおよび塩化Niの濃度については特に限定しないが、硫酸Niについては5~30%、塩化Niについては5~30%の範囲とすることができる。
 また、めっき浴のpHについては特に限定しないが、液安定性の観点から、pH2~pH4とすることができる。
 本発明の限界電流密度とは、電流密度を徐々に増加させた際にNi付着効率が低下し始める電流密度のことであり、めっき浴の、Niイオン濃度、pH、液流速および浴温度に依存することが知られている。即ち、Niイオン濃度、pH、液流速および浴温度が高い程、限界電流密度は高い値となる傾向にある。なお、Ni付着効率は、Ni付着量と通電量から算出できる。
 例えば、上記特許文献8、9では3~300A/dmとの幅広い電流密度の記載がある。高い電流密度のカソード電解によって水酸化Niまたは酸化Niが含まれたNiめっき層を形成する場合は、めっき浴の条件によっては300A/dmを超える電流密度で得ることが出来る。
 一方、Niイオン濃度やpHを下げることで限界電流密度は低下する傾向にある。すなわち、めっき浴の条件によっては、より低い電流密度10A/dmでも限界電流密度を超過し、水酸化Niまたは酸化Niが含まれたNiめっき層を得ることが可能である。
 つまり、水酸化Niおよび酸化Niの少なくとも一方が含まれたNiめっき層を形成するためには、カソード電解における電流密度を限界電流密度よりも高く設定することが非常に重要である。電流密度が限界電流密度よりも下回る条件でNiめっきを施した場合、めっき層界面のpHの上昇が不十分となり、水酸化Niまたは酸化Niの発生を促進することが困難となる。その結果、Niめっき層中に含有する水酸化Niおよび酸化Niを十分に確保することができない。
 また、水酸化Niまたは酸化Niが含まれたNiめっき層をより容易かつ安定的に形成するためには、界面のpH上昇を抑制するホウ酸や塩化Niを使用しない浴を用いてもよい。ホウ酸や塩化Niを使用しない浴では、限界電流密度が低下する為、水酸化Niまたは酸化Niが含まれたNiめっき層を比較的低い電流密度で得ることが出来る。
 なお、ホウ酸を含むめっき浴を用いてめっきを行う場合は、界面のpHが上昇する傾向にあるため、ホウ酸を含まないめっき浴を用いる場合に比べ、電流密度をより高く設定する必要がある。
 なお、めっき浴中に、ホウ酸を含む方法または含まない方法の何れのNiめっき方法を選択するかは、適用するめっき処理設備での処理時間に応じて、適宜選択することが出来る。また、使用する電流密度を、限界電流密度を少なくとも10%以上、好ましくは20%超えた値とした上で、カソード電解することで、上記のような水酸化Niおよび酸化Niの少なくとも一方が含まれたNiめっき層を工業的に安定して製造することが出来る。
 なお、Ni付着量、後述するクロメート皮膜層の付着量およびZr含有皮膜層の付着量は、蛍光X線装置やX線光電子分光装置など公知の分析機器で容易に測定できる。
 次に、上記の方法によって得られたNiめっき層上に、Cr換算量で1~40mg/mの付着量であるクロメート皮膜層、もしくはZr換算量で1~40mg/mの付着量であるZr含有皮膜層を形成する。
 Niめっき層の上に、クロメート皮膜層を形成することで、耐食性、樹脂フィルムとの密着性、特に加工後の二次密着性を高めることができる。クロメート皮膜層は、水和酸化Crから構成されるか、または水和酸化Crと金属Crとから構成され、クロメート処理によって形成される。
 クロメート処理方法は、各種のCr酸のナトリウム塩、カリウム塩、アンモニウム塩などの水溶液による浸漬処理、スプレー処理、電解処理などいずれの方法で行っても良い。この中でも特に、Cr酸に、めっき助剤として硫酸イオン、フッ化物イオン(錯イオンを含む。)あるいはそれらの混合物を添加した水溶液中で陰極電解処理を施す方法が、工業的にも優れている。
 Zr含有皮膜層を形成する方法は、例えば、フッ化Zr、リン酸Zr、フッ酸を主成分とする酸性溶液に、上記Niめっき層形成後の鋼板を浸漬処理方法や、またはカソード電解処理する方法など、公知の方法を採用すればよい。
 以上の製造方法によって、本実施形態に係る容器用鋼板を製造することができる。なお、上記で説明した製造方法の条件以外の条件については、用いるめっき設備等を考慮し、本発明の効果を損なわない範囲で適宜決定してよい。
 本実施形態によれば、容器用鋼板の耐穿孔腐食性を向上するとともに、溶接性、樹脂フィルムに対する密着性及び加工後における樹脂フィルムに対する密着性を高めることができる。
 次に、本発明について、実施例により更に詳細に説明するが、本実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、これらの一条件例のみに限定されるものではない。

 本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件ないし条件の組み合わせを採用し得るものである。   
「実施例1」
 先ず、本発明の実施例及び比較例について述べ、その結果を表1に示す。
 本実施例では、以下の(1)に示す方法で試料を作製し、(2)の(A)~(D)の各項目について性能評価を行った。
(1)試料作製方法
[鋼板(めっき原板)]
 板厚0.2mmのテンパーグレード3(T-3)のブリキ用冷延鋼板を、めっき原板として使用した。
[Niめっき条件1]
 濃度20%の硫酸ニッケル、濃度10%の塩化ニッケル、pH2に調整した35℃の水溶液を用い、限界電流密度を超える電流密度25A/dmでカソード電解を行い、鋼板にNiめっき層を形成した。Ni付着量は、電解時間で制御した。
[Niめっき条件2]
 濃度3%のホウ酸、濃度10%の硫酸ニッケル、濃度10%の塩化ニッケル、pH4に調整した45℃の水溶液を用い、限界電流密度を超える電流密度55A/dmでカソード電解を行い、鋼板にNiめっき層を形成した。Ni付着量は、電解時間で制御した。
[Niめっき条件3]
 濃度20%の硫酸ニッケル、濃度10%の塩化ニッケル、pH2に調整した35℃の水溶液を用い、限界電流密度を下回る10A/dmでカソード電解を行い、鋼板にNiめっき層を形成した。Ni付着量は、電解時間で制御した。
[Niめっき条件4]
 濃度3%のホウ酸、濃度10%の硫酸ニッケル、濃度10%の塩化ニッケル、pH4に調整した45℃の水溶液を用い、限界電流密度を超える電流密度20A/dmでカソード電解を行い、鋼板にNiめっき層を形成した。Ni付着量は、電解時間で制御した。
[クロメート皮膜層の処理条件]
 濃度10%の酸化クロム(VI)、濃度0.2%の硫酸、濃度0.1%のフッ化アンモニウムを含む水溶液中で、10A/dmのカソード電解を行い、10秒間水洗して、Niめっき層にクロメート皮膜層を形成した。クロメート皮膜層のCr付着量は、電解時間で制御した。
[Zr含有皮膜層の処理条件]
 濃度5%のフッ化ジルコニウム、濃度4%のリン酸、濃度5%のフッ酸の水溶液中で、10A/dmのカソード電解を行い、Niめっき層にZr含有皮膜層を形成した。Zr含有皮膜層のZr付着量は、電解時間で制御した。
(2)試料評価方法
(A)溶接性
 まず、上記の方法で得られた試料(めっき鋼板)を試験片として、この試験片に厚さ15μmのPETフィルムをラミネートし、ラップ代0.5mm、加圧力45kgf(1kgfは、約9.8Nである。)、溶接ワイヤースピード80m/minの条件で、電流を変更して溶接を実施した。十分な溶接強度が得られる最小電流値、及び散りなどの溶接欠陥が目立ち始める最大電流値からなる適正電流範囲の広さと、溶接安定状態と、から適性溶接条件の範囲を総合的に判断し、4段階(A:非常に広い、B:広い、C:実用上問題なし、D:狭い)で評価した。
(B)密着性
 上記の方法で得られた試料に15μm厚のPETフィルムをラミネートし、DrDプレスでカップを作製した。そのカップをDIマシンでDI缶に成形した。成形後のDI缶の缶壁部のフィルムの剥離状況を観察し、総合的に4段階(A:全く剥離が認められない、B:僅かなフィルム浮きが認められる、C:大きな剥離が認められる、D:フィルムがDI成形中に剥離し、破胴に至る)で評価した。
(C)二次密着性
 上記の方法で得られた試料に15μm厚のPETフィルムをラミネートし、DrDプレスでカップを作製した。そのカップをDIマシンでDI缶に成形した。その後、PETフィルムの融点を超える温度(240℃程度)で10分間の熱処理を行い、更に125℃、30分の加熱水蒸気雰囲気で処理(レトルト処理)した。そして、レトルト処理後のDI缶の缶壁部のフィルムの剥離状況を観察し、総合的に4段階(A:全く剥離が認められない、B:僅かなフィルム浮きが認められる、C:大きな剥離が認められる、D:フィルムがDI成形中に剥離し、破胴に至る)で評価した。
(D)耐食性
 上記の方法で得られた試料を用いて、15μm厚のPETフィルムをラミネートした溶接缶を作製し、溶接部は補修塗料を塗布した。その後、1.5%クエン酸-1.5%食塩混合液からなる試験液を溶接缶内に充填し、蓋を取付け密閉し、55℃の環境で、1ヶ月間、恒温室に安置した。その後、溶接缶内部におけるフィルム疵付き部の腐食状況を4段階(A:穿孔腐食が認められない、B:実用上問題無い程度の僅かな穿孔腐食が認められる、C:穿孔腐食の進行が認められる、D:穿孔腐食により穴明きが発生している)で判断して評価した。
 Niめっきの付着量、水酸化Niまたは酸化Niの酸素原子濃度、クロメート皮膜層またはZr含有皮膜層を形成した実施例1~11及び比較例1~7について、溶接性、密着性、二次密着性及び耐食性の評価結果を表1に示す。表1において、本発明の範囲外となる数値に下線を付す。
 なお、下記表1において、Niめっきの付着量(g/m)と、Niめっき層中の水酸化Niまたは酸化Niの酸素原子濃度(原子%)とは、Niめっき後の試料をX線光電子分光法(XPS)により測定することで特定した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明例1~11の鋼板は、何れも、溶接性、密着性、二次密着性及び耐食性に優れていることがわかる。
 比較例1は、Niめっき層の付着量が低いため、溶接性と耐食性が特に低下した。
 比較例2及び3は、[Niめっき条件3]及び[Niめっき条件4]にて試料を作製した例であり、電流密度が本発明の範囲外の例である。比較例2、3は、電流密度が低すぎたため、Niめっき層中の酸素原子濃度が本発明の範囲外となり、耐食性が低下した。
 比較例4は、Niめっき層中の酸素原子濃度が本発明の範囲外であり、溶接性が低下した。
 比較例5、6は、クロメート皮膜層の付着量が本発明の範囲外であり、比較例5では二次密着性が、比較例6では溶接性がそれぞれ低下した。
 比較例7、8では、Zr含有皮膜層の付着量が本発明の範囲外であり、比較例7では二次密着性が、比較例8では溶接性がそれぞれ低下した。
「実施例2」
 次に、めっき原板として、板厚0.2mmのテンパーグレード3(T-3)のブリキ用冷延鋼板を複数用意し、「実施例1」と同様の各Niめっき条件下でめっきを行い、各鋼板にNiめっき層を形成した。Ni付着量は、0.7g/mに統一した。
 続いて、「実施例1」と同様なクロメート処理条件下で、Niめっき層にクロメート皮膜層を形成した。クロメート皮膜層のCr付着量は、8g/mに統一した。
 得られた各種のめっき鋼板について、「実施例1」と同様の(D)耐食性試験を行い、穿孔食の深さを測定した。得られた結果を、図1に示す。なお、図1中に記した「条件1」、「条件3」、「条件4」はそれぞれ、「Niめっき条件1」、「Niめっき条件3」、「Niめっき条件4」を指す。
 また、表1に示す本発明例1について、X線光電子分光法(XPS)を用いて、Niめっき層中の水酸化Niまたは酸化Niの酸素原子濃度(原子%)を測定した。得られた結果を、図2に示す。
 図1に示すように、Niめっき層中のNiめっき層中の水酸化Niまたは酸化Niの酸素原子濃度が1~10原子%の範囲で、穿孔食深さが0.02~0.05mmの範囲になっており、穿孔腐食に対する耐食性が大幅に向上していることが分かる。酸素原子濃度が1~20原子%の範囲では、腐食がNiめっき層と地鉄との界面に沿って進行していた。一方、酸素原子濃度が1原子%未満の範囲では、腐食が鋼板の厚み方向に沿って進行していた。
 また、図2に示すように、本発明の範囲内である製造方法によって製造したNiめっき層を備える鋼板(本発明例1)では、Niめっき層内部において、酸素原子濃度が1~10原子%の範囲であることが分かる。なお、Niめっき層表層部(スパッタリング時間が10分までの領域)では、酸素原子濃度が高くなっているが、これは、Niめっき層の表面が酸化されて自然酸化膜が形成されているためと考えられる。
 なお、図2に示す横軸はXPSにおけるスパッタリング時間を示しているが、この時間は、Niめっき層表層からの深さに相当する。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。

Claims (3)

  1.  Niめっき層の上層に、クロメート皮膜層またはZr含有皮膜層を有する鋼板であって、
     前記Niめっき層は、水酸化Niおよび酸化Niの少なくとも一方を含有し;
     前記Niめっき層は、Ni換算量で0.3g/m以上の付着量であり、かつ、前記水酸化Niおよび前記酸化Niに起因する酸素原子濃度が1~10原子%の範囲であり;
     前記クロメート皮膜層は、Cr換算量で1~40mg/mの付着量であり;
     前記Zr含有皮膜層は、Zr換算量で1~40mg/mの付着量である;

    ことを特徴とする容器用鋼板。  
  2.  前記Niめっき層表層に形成された自然酸化膜を除く前記Niめっき層の厚み全域において、前記酸素原子濃度が1~10原子%の範囲であることを特徴とする請求項1に記載の容器用鋼板。
  3.  請求項1に記載の容器用鋼板の製造方法であって、
     硫酸Ni及び塩化Niの少なくとも一方を溶解させた水溶液からなるめっき浴に母材鋼板を浸漬させた後、Ni析出の限界電流密度を超える電流密度でカソード電解して、水酸化Niまたは酸化Niの少なくとも一方を含有するNiめっき層を形成する工程と、
     前記Niめっき層上に、Cr換算量で1~40mg/mの付着量であるクロメート皮膜層を形成する工程、もしくは前記Niめっき層上に、Zr換算量で1~40mg/mの付着量であるZr含有皮膜層を形成する工程と、
    を備えることを特徴とする容器用鋼板の製造方法。
PCT/JP2013/077917 2012-10-15 2013-10-15 容器用鋼板およびその製造方法 WO2014061640A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13846467.2A EP2835447B1 (en) 2012-10-15 2013-10-15 Steel sheet for container, and method for manufacturing same
ES13846467.2T ES2635612T3 (es) 2012-10-15 2013-10-15 Lámina de acero para recipiente, y método para su fabricación
IN8245DEN2014 IN2014DN08245A (ja) 2012-10-15 2013-10-15
KR1020167025763A KR20160113739A (ko) 2012-10-15 2013-10-15 용기용 강판 및 그 제조 방법
CN201380022205.3A CN104254643B (zh) 2012-10-15 2013-10-15 容器用钢板及其制造方法
KR1020147029591A KR101929086B1 (ko) 2012-10-15 2013-10-15 용기용 강판 및 그 제조 방법
US14/391,655 US9945037B2 (en) 2012-10-15 2013-10-15 Steel sheet used to manufacture a container and method of manufacturing the same
JP2013558839A JP5594443B1 (ja) 2012-10-15 2013-10-15 容器用鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-228196 2012-10-15
JP2012228196 2012-10-15

Publications (1)

Publication Number Publication Date
WO2014061640A1 true WO2014061640A1 (ja) 2014-04-24

Family

ID=50488202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077917 WO2014061640A1 (ja) 2012-10-15 2013-10-15 容器用鋼板およびその製造方法

Country Status (10)

Country Link
US (1) US9945037B2 (ja)
EP (1) EP2835447B1 (ja)
JP (1) JP5594443B1 (ja)
KR (2) KR20160113739A (ja)
CN (1) CN104254643B (ja)
ES (1) ES2635612T3 (ja)
IN (1) IN2014DN08245A (ja)
MY (1) MY166901A (ja)
TW (1) TWI488980B (ja)
WO (1) WO2014061640A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179441A (ja) * 2016-03-30 2017-10-05 新日鐵住金株式会社 表面にニッケルが配された金属板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016207967A1 (ja) * 2015-06-23 2016-12-29 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
WO2017122560A1 (ja) 2016-01-12 2017-07-20 Jfeスチール株式会社 NiおよびO含有被膜を表面に有するステンレス鋼板およびその製造方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169788A (en) 1980-06-03 1981-12-26 Nippon Steel Corp Steel sheet useful as welded can
JPS60145380A (ja) 1984-01-07 1985-07-31 Nippon Steel Corp 耐食性に優れたΝiメツキ鋼板
JPH02500602A (ja) * 1987-08-27 1990-03-01 キシネフスキー、ポリチェフニチェスキー、インスチツート、イメーニ、エス、ラゾ 金属基材上に複合酸化物‐ニッケル被膜を付着する方法及び酸化物‐ニッケル電極
JPH042795A (ja) * 1990-04-19 1992-01-07 Sumitomo Electric Ind Ltd 金属多孔体の連続製造方法
JPH10265966A (ja) 1997-03-27 1998-10-06 Nippon Steel Corp 外観安定性に優れた溶接缶用表面処理鋼板およびその製造方法
JPH11138096A (ja) * 1997-11-06 1999-05-25 Nippon Steel Corp 燃料タンク用有機被覆鋼板
JP2998043B2 (ja) 1991-06-06 2000-01-11 新日本製鐵株式会社 意匠性に優れた有機皮膜積層鋼板及びその鋼板より成るスリーピース缶
JP2000026992A (ja) 1989-08-31 2000-01-25 Katayama Tokushu Kogyo Kk Niメッキ鋼板
JP3060073B2 (ja) 1991-05-17 2000-07-04 新日本製鐵株式会社 コイルコーティングラインにおける3ピース缶用有機積層鋼板の製造方法
JP2000263696A (ja) 1999-03-19 2000-09-26 Toyo Kohan Co Ltd 容器用樹脂被覆鋼板およびそれを用いた容器
JP2000334886A (ja) 1999-05-25 2000-12-05 Tsutsumi Yotaro 製缶用積層体およびそれを用いたシームレス缶
JP2005149735A (ja) 2003-11-11 2005-06-09 Nippon Steel Corp 電池缶用Niメッキ鋼板
JP2007231394A (ja) 2006-03-02 2007-09-13 Nippon Steel Corp 溶接缶用鋼板
JP2013204054A (ja) * 2012-03-27 2013-10-07 Nisshin Steel Co Ltd 化成処理Zn系めっき鋼板の製造方法、それによって得られる化成処理Zn系めっき鋼板、および塗装Zn系めっき鋼板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE451976B (sv) 1980-06-03 1987-11-09 Nippon Steel Corp Stalband med beleggingsskikt samt behallare framstelld av ett dylikt stalband
JPS581076A (ja) * 1981-06-26 1983-01-06 Nisshin Steel Co Ltd Lng又はlpgタンク用高ニッケル―鉄合金鋼板の表面処理方法
JPH0360073A (ja) 1989-07-27 1991-03-15 Nec Corp 光半導体装置
JP2810245B2 (ja) * 1991-01-25 1998-10-15 日本鋼管株式会社 プレス成形性および燐酸塩処理性に優れた冷延鋼板およびその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169788A (en) 1980-06-03 1981-12-26 Nippon Steel Corp Steel sheet useful as welded can
JPS60145380A (ja) 1984-01-07 1985-07-31 Nippon Steel Corp 耐食性に優れたΝiメツキ鋼板
JPH02500602A (ja) * 1987-08-27 1990-03-01 キシネフスキー、ポリチェフニチェスキー、インスチツート、イメーニ、エス、ラゾ 金属基材上に複合酸化物‐ニッケル被膜を付着する方法及び酸化物‐ニッケル電極
JP2000026992A (ja) 1989-08-31 2000-01-25 Katayama Tokushu Kogyo Kk Niメッキ鋼板
JPH042795A (ja) * 1990-04-19 1992-01-07 Sumitomo Electric Ind Ltd 金属多孔体の連続製造方法
JP3060073B2 (ja) 1991-05-17 2000-07-04 新日本製鐵株式会社 コイルコーティングラインにおける3ピース缶用有機積層鋼板の製造方法
JP2998043B2 (ja) 1991-06-06 2000-01-11 新日本製鐵株式会社 意匠性に優れた有機皮膜積層鋼板及びその鋼板より成るスリーピース缶
JPH10265966A (ja) 1997-03-27 1998-10-06 Nippon Steel Corp 外観安定性に優れた溶接缶用表面処理鋼板およびその製造方法
JPH11138096A (ja) * 1997-11-06 1999-05-25 Nippon Steel Corp 燃料タンク用有機被覆鋼板
JP2000263696A (ja) 1999-03-19 2000-09-26 Toyo Kohan Co Ltd 容器用樹脂被覆鋼板およびそれを用いた容器
JP2000334886A (ja) 1999-05-25 2000-12-05 Tsutsumi Yotaro 製缶用積層体およびそれを用いたシームレス缶
JP2005149735A (ja) 2003-11-11 2005-06-09 Nippon Steel Corp 電池缶用Niメッキ鋼板
JP2007231394A (ja) 2006-03-02 2007-09-13 Nippon Steel Corp 溶接缶用鋼板
JP2013204054A (ja) * 2012-03-27 2013-10-07 Nisshin Steel Co Ltd 化成処理Zn系めっき鋼板の製造方法、それによって得られる化成処理Zn系めっき鋼板、および塗装Zn系めっき鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2835447A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179441A (ja) * 2016-03-30 2017-10-05 新日鐵住金株式会社 表面にニッケルが配された金属板

Also Published As

Publication number Publication date
KR20160113739A (ko) 2016-09-30
KR20140139038A (ko) 2014-12-04
IN2014DN08245A (ja) 2015-05-15
ES2635612T3 (es) 2017-10-04
US20150064495A1 (en) 2015-03-05
EP2835447A4 (en) 2015-12-30
TWI488980B (zh) 2015-06-21
CN104254643A (zh) 2014-12-31
KR101929086B1 (ko) 2018-12-13
CN104254643B (zh) 2016-09-21
TW201430146A (zh) 2014-08-01
MY166901A (en) 2018-07-24
JPWO2014061640A1 (ja) 2016-09-05
US9945037B2 (en) 2018-04-17
EP2835447A1 (en) 2015-02-11
EP2835447B1 (en) 2017-05-17
JP5594443B1 (ja) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5158267B2 (ja) 耐食性に優れた容器用鋼板
KR101318545B1 (ko) 주석 도금 강판의 제조 방법 및 주석 도금 강판 그리고 화성 처리액
JP5594443B1 (ja) 容器用鋼板およびその製造方法
JP5093409B2 (ja) 耐食性に優れた飲料缶用鋼板
JP6119931B2 (ja) 容器用鋼板及び容器用鋼板の製造方法
JPS624879A (ja) 耐食性、溶接性及び塗装性能にすぐれたSn系多層被覆鋼板とその製造法
JP5673389B2 (ja) 酸性飲料用3ピースリシール缶
JP5994960B1 (ja) 容器用鋼板及び容器用鋼板の製造方法
JP6635761B2 (ja) 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器
JP6565308B2 (ja) 容器用鋼板及び容器用鋼板の製造方法
JP6123847B2 (ja) 容器用鋼板およびその製造方法
JP6164206B2 (ja) 容器用鋼板およびその製造方法
JP2014231631A (ja) 容器用鋼板
WO2015020053A1 (ja) 容器用鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013558839

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846467

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013846467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14391655

Country of ref document: US

Ref document number: 2013846467

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147029591

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE