WO2014061075A1 - 半導体装置およびその製造装置 - Google Patents

半導体装置およびその製造装置 Download PDF

Info

Publication number
WO2014061075A1
WO2014061075A1 PCT/JP2012/076599 JP2012076599W WO2014061075A1 WO 2014061075 A1 WO2014061075 A1 WO 2014061075A1 JP 2012076599 W JP2012076599 W JP 2012076599W WO 2014061075 A1 WO2014061075 A1 WO 2014061075A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
semiconductor device
respect
trench
magnetic field
Prior art date
Application number
PCT/JP2012/076599
Other languages
English (en)
French (fr)
Inventor
雄斗 黒川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201280076428.3A priority Critical patent/CN104718623A/zh
Priority to PCT/JP2012/076599 priority patent/WO2014061075A1/ja
Priority to US14/430,655 priority patent/US9356107B2/en
Priority to JP2014541826A priority patent/JP5800097B2/ja
Priority to DE112012007020.8T priority patent/DE112012007020T5/de
Publication of WO2014061075A1 publication Critical patent/WO2014061075A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • the technology described in this specification relates to a semiconductor device and a manufacturing apparatus thereof.
  • the on-voltage of the semiconductor device can be reduced by arranging a plurality of trench gates so that the interval between adjacent trench gates is narrowed.
  • the semiconductor substrate is in contact with the surface electrode in the region between the trench gates, the contact area between the semiconductor substrate and the surface electrode is reduced when the interval between adjacent trench gates is reduced.
  • problems such as an increase in contact resistance between the semiconductor substrate and the surface electrode may occur.
  • Patent Document 1 Japanese Patent Publication No. 2006-324488 (Patent Document 1), only the width of the bottom portion of the trench gate is widened to narrow the interval between the bottom portions of adjacent trench gates.
  • the semiconductor device disclosed in this specification includes a semiconductor substrate and a plurality of trench gates that extend in the first direction and are spaced apart from each other in a second direction orthogonal to the first direction.
  • the plurality of trench gates include a first portion opening on the surface of the semiconductor substrate, a second portion extending from the first portion in a direction inclined in the positive direction of the second direction with respect to the depth direction of the semiconductor substrate, A third portion extending from the portion in a direction inclined in the negative direction of the second direction with respect to the depth direction of the semiconductor substrate.
  • each of the plurality of trench gates has a first portion opening on the surface of the semiconductor substrate, and a positive direction and a negative direction in the second direction from the first portion to the depth direction of the semiconductor substrate, respectively. It has the 2nd part and 3rd part extended in the direction which inclines. Since the second portion of one trench gate and the third portion of another trench gate adjacent thereto extend in a direction approaching each other along the depth direction of the semiconductor substrate, in the adjacent trench gate, It is possible to achieve both a sufficiently wide interval between the first portions and a narrow interval between the second portion and the third portion. Since the second part and the third part can have the same shape as a trench extending along the depth direction of a conventional semiconductor substrate, the manufacturing process is simple, and a gap is likely to be generated in the gate electrode. Absent.
  • the inclination angle of the second portion with respect to the depth direction of the semiconductor substrate is preferably equal to the inclination angle of the third portion with respect to the depth direction of the semiconductor substrate.
  • the semiconductor substrate includes a first conductivity type drift layer, and a second conductivity type body layer provided on the surface side of the semiconductor substrate with respect to the drift layer, and includes a first portion, a second portion, and a third portion. It is preferable that a body layer exists below the connection position.
  • the present specification discloses a semiconductor device manufacturing apparatus useful for manufacturing the above semiconductor device.
  • the manufacturing apparatus includes a chamber, a stage on which a semiconductor substrate is placed, a generator that generates etching ions in the chamber, a magnetic field generator that applies a magnetic field to etching ions in the chamber, A drive mechanism capable of adjusting the direction of the magnetic field by adjusting the position of the magnetic field generator with respect to the stage.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to Example 1.
  • FIG. 6 is a figure which shows notionally the carrier concentration distribution of the semiconductor device of FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device of Example 1.
  • FIG. 1 is a diagram conceptually illustrating an apparatus for manufacturing a semiconductor device of Example 1.
  • FIG. 1 is a diagram conceptually illustrating an apparatus for manufacturing a semiconductor device of Example 1.
  • FIG. It is sectional drawing of the conventional semiconductor device. It is a figure which shows notionally carrier concentration distribution of the semiconductor device of FIG.
  • the semiconductor device according to the present specification is not particularly limited as long as it includes a trench gate, and examples thereof include an IGBT, a MOSFET, and a diode.
  • the semiconductor device 10 includes a semiconductor substrate 100, a trench gate 150, a front surface electrode 131, and a back surface electrode 132.
  • An IGBT is formed on the semiconductor substrate 100.
  • the semiconductor substrate 100 includes a p-type collector layer 101, an n-type buffer layer 103 provided on the surface of the collector layer 101, an n-type drift layer 105 provided on the surface of the buffer layer 103, and a drift layer 105 A p-type body layer 107 provided on the surface, an n-type emitter layer 109 and a p-type body contact layer 111 provided on the surface of the body layer 107.
  • the collector layer 101 is provided on the back surface of the semiconductor substrate 100 and is in contact with the back electrode 132.
  • the emitter layer 109 and the body contact layer 111 are provided on the surface of the semiconductor substrate 100 and are in contact with the surface electrode 131.
  • the plurality of trench gates 150 are formed in a region from the surface of the semiconductor substrate 100 to a position deeper than the boundary between the body layer 107 and the drift layer 105.
  • the plurality of trench gates 150 are arranged with the longitudinal direction extending in the first direction (y direction) and spaced in the second direction (x direction).
  • the trench gate 150 has a first portion 152 opening on the surface of the semiconductor substrate 100 and a third direction having an angle in the positive direction of the x axis with respect to the depth direction (z direction) of the semiconductor substrate 100 from the first portion 152. And a third portion 153 extending in a fourth direction having an angle in the negative direction of the x-axis with respect to the z direction.
  • the first portion 152 extends substantially linearly along the z direction from the surface of the semiconductor substrate 100 into the body layer 107, and branches into a second portion 151 and a third portion 153 within the body layer 107.
  • the second portion 151 and the third portion 153 extend in a straight line from a position branched from each other in the body layer 107 to a position having the same depth reaching the drift layer 105.
  • the angle formed by the third direction and the z direction is equal to the angle formed by the fourth direction and the z direction.
  • the angle formed by the third direction and the fourth direction with respect to the z direction can be adjusted as appropriate depending on the interval of the trench pitch (first portion 152) of the semiconductor device 10, the thickness of the body layer 107, and the like. It is preferably greater than 45 °.
  • An insulating layer 155 is provided on the surface of the semiconductor substrate 100 so as to cover the first portion 152.
  • the gate electrodes 151c and 153c and the surface electrode 131 are insulated by the insulating layer 155.
  • the second portion 151 includes a trench 151a, a gate insulating film 151b formed on the inner wall surface of the trench 151a, and a gate electrode 151c filled in the trench 151a so as to be in contact with the gate insulating film 151b.
  • the third portion 153 includes a trench 153a, a gate insulating film 153b formed on the inner wall surface of the trench 153a, and a gate electrode 153c filled in the trench 153a so as to be in contact with the gate insulating film 153b.
  • the trenches 151a and 153a, the gate insulating films 151b and 153b, and the gate electrodes 151c and 153c extend to the first portion 152 and reach the surface of the semiconductor substrate 100.
  • the third direction and the fourth direction are directions that are symmetric with respect to the yz plane, and the shape and size of the second portion 151 and the third portion 153 are substantially the same. That is, the second portion 151 and the third portion 153 are substantially symmetrical with respect to the yz plane passing through the center position in the x direction of the trench gate 150.
  • the trench 151a and the trench 153a are connected at the center position of the trench gate 150 in the x-axis direction.
  • the connection position between the trench 151a and the trench 153a is in the body layer 107, and the body layer 107 and the drift layer 105 exist between the trenches 151a and 153a.
  • the gate insulating film 151b and the gate insulating film 153b are formed of one insulating film.
  • the gate electrode 151 c and the gate electrode 153 c are formed of one polysilicon layer and are integrated on the surface side of the semiconductor substrate 100.
  • the semiconductor device 10 when the front electrode 131 is grounded, the back electrode 132 is set to a positive potential, and the gate electrodes 151c and 153c are set to a positive potential, the semiconductor device 10 includes the back electrode 132 side to the front electrode 131 side. Current flows through
  • FIG. 2 shows the carrier concentration distribution of the semiconductor device 10.
  • the vertical axis indicates the position of the semiconductor substrate 100 in the depth direction.
  • A1 is the position of the upper end of the body layer 107
  • B1 is the position of the boundary between the body layer 107 and the drift layer 105
  • C1 is the position of the boundary between the drift layer 105 and the buffer layer 103
  • D1 is the buffer layer 103 is a boundary position between the collector layer 101 and the collector layer 101.
  • FIG. 12 shows the carrier concentration distribution of the conventional semiconductor device 70 shown in FIG.
  • the semiconductor device 70 has a trench gate 750 extending in the depth direction of the semiconductor substrate 700.
  • the trench gate 750 includes a trench 750a, a gate insulating film 750b formed on the inner wall surface of the trench 750a, and a gate electrode 750c filled in the trench 750a so as to be in contact with the gate insulating film 750b. Since other configurations are the same as those of the semiconductor device 10 shown in FIG. 1, the reference numbers of the 100th series of the semiconductor device 10 are replaced with the 700th series, and the description is omitted.
  • the carrier concentration decreases uniformly from the surface of the semiconductor substrate 700 to the boundary between the body layer 707 and the drift layer 705. For this reason, the carrier concentration in the drift layer 705 in the vicinity of the body layer 707 layer is low.
  • the trench gate 150 includes a second portion 151 and a third portion 153 that extend in opposite directions with respect to the x direction. For this reason, the distance between the adjacent trench gates 150 gradually decreases from the surface of the semiconductor substrate 100 toward the vicinity of the surface of the drift layer 705 where the bottom of the trench gate 150 is located. For this reason, as shown in FIG. 2, the carrier concentration of the semiconductor device 10 gradually decreases from the surface of the semiconductor substrate 100 in the depth direction, but is shallower than the boundary between the body layer 107 and the drift layer 105. Thus, the decrease in carrier concentration is temporarily stopped. Then, the carrier concentration gradually increases until reaching the drift layer 105. For this reason, in the semiconductor device 10, the carrier concentration in the drift layer 105 in the vicinity of the body layer 107 is high, and the on-resistance is reduced.
  • a semiconductor substrate 500 is prepared.
  • a p layer 501 that becomes the collector layer 101, an n layer 505 that becomes the drift layer 105, and a p layer 507 that becomes the body layer 107 are stacked in this order from the back surface side.
  • An n layer 509 to be the emitter layer 109 and a p layer 511 to be the body contact layer 111 are formed on the surface.
  • an oxide film mask 590 having an opening in the region where the trench gate 150 is to be formed is formed on the surface of the semiconductor substrate 500.
  • the semiconductor substrate 500 is irradiated with etching ions along the fourth direction.
  • a trench 553 a extending in the fourth direction can be formed in the semiconductor substrate 500.
  • the semiconductor substrate 500 can be formed with a trench having one opening, the bottom is branched, and extends in two directions.
  • an apparatus 8 used for etching includes a chamber (not shown), a generator 810 that generates etching ions in the chamber, a magnetic field generator 821 that accelerates etching ions by applying a magnetic field, and a stage. 823 and a drive mechanism 850 capable of adjusting the position of the magnetic field generator 821 with respect to the stage 823.
  • the stage 823 is connected to an RF power source.
  • a semiconductor substrate 830 to be etched can be placed on the stage 823.
  • the magnetic field generator 821 is one cylindrical coil, and FIG. 9 shows a cross section along the longitudinal direction of the cylindrical shape.
  • the drive mechanism 850 can rotate the magnetic field generator 821 around the center of the substantially circular track 824 in the chamber, and the track 824 indicates a track on which the coil portion of the magnetic field generator 821 can move.
  • the drive mechanism 850 can be operated from outside the chamber, and can rotate and move the magnetic field generator 821 without changing the atmosphere in the chamber by opening the chamber or the like.
  • the magnetic field generator 821 can generate a magnetic field oriented along the central axis of the cylindrical shape. As shown in FIG.
  • the chamber is adjusted by adjusting the angle of the magnetic field generator 821 with respect to the stage 823 so that the direction of the central axis of the magnetic field generator 821 is the third direction in which the second portion 151 of the trench gate 150 extends.
  • the magnetic field in the third direction can be generated in the inside.
  • the etching ions 841 generated by the generator 810 become etching ions 843 directed in the third direction by the magnetic field in the third direction provided by the magnetic field generator 821, and are irradiated to the semiconductor substrate 830.
  • the semiconductor substrate 500 can be irradiated with etching ions in the third direction.
  • the magnetic field generator 821 After irradiating etching ions in the third direction, the magnetic field generator 821 is rotationally moved along the track 824.
  • the magnetic field generator 821 can be rotated along the track 824 in the chamber without opening the chamber.
  • the drive mechanism 850 adjusts the angle of the magnetic field generator 821 with respect to the stage 823 so that the direction of the central axis of the magnetic field generator 821 is the fourth direction in which the third portion 153 of the trench gate 150 extends. To do. Thereby, the magnetic field generator 821 can generate a magnetic field in the fourth direction in the chamber.
  • the etching ions 841 generated by the generator 810 become etching ions 842 directed in the fourth direction by the magnetic field in the fourth direction provided by the magnetic field generator 821, and are irradiated to the semiconductor substrate 830.
  • the semiconductor substrate 500 can be irradiated with etching ions in the fourth direction.
  • gate insulating films 551b and 553b are integrally formed as one insulating film.
  • a polysilicon layer 551 to be the gate electrodes 151c and 153c is formed.
  • the polysilicon layer 551 is filled in the trenches 551 a and 553 a while being covered with the gate insulating films 551 b and 553 b, and a part thereof is deposited on the surface of the semiconductor substrate 500. Since the trenches 551a and 553a extend linearly from the opening on the surface of the semiconductor substrate 500 along the third direction and the fourth direction, respectively, the polysilicon layer 551 does not include voids and can be easily trenched. 551a and 553a are filled.
  • the semiconductor device 10 can be formed by forming the surface insulating film 155, the surface electrode 131, the back electrode 132, and the like shown in FIG.
  • each of the plurality of trench gates 150 has the first portion 152 opened on the surface of the semiconductor substrate, and the second portion extending from the first portion 152 in the third direction and the fourth direction, respectively.
  • a portion 151 and a third portion 153 are included.
  • the third direction and the fourth direction are angled with respect to the depth direction (z direction) of the semiconductor substrate 100 in the positive direction of the second direction (the positive direction of the x axis) and the negative direction (negative direction of the x axis), respectively.
  • the second portion 151 of one trench gate 150 and the third portion 153 of another trench gate 150 adjacent thereto extend in a direction approaching each other along the depth direction of the semiconductor substrate 100.
  • the first portion 152 extends substantially linearly along the z direction from the surface of the semiconductor substrate 100 to the inside of the body layer 107, but is not limited to such a shape. For example, it is inclined in the same manner as the second portion 151 on the positive direction side of the x axis, is inclined in the same manner as the third portion 153 on the negative direction side of the x axis, and gradually increases from the negative direction side of the z axis toward the positive direction side.
  • the first portion may have a shape such that the trench width (width in the x direction) is narrow.
  • the second portion 151 and the third portion 153 have substantially the same shape and size, are opposite to each other with respect to the yz plane passing through the center position of the trench gate 150 in the x direction, and have the same inclination angle. It extends in the direction of forming. Since the second portion 151 and the third portion 153 branched from the first portion 152 make a pair and are symmetrical with respect to the yz plane, the current path when the semiconductor device 10 is on is also the same as the second portion 151 side. The third portion 153 side has substantially the same length, and there is no variation in the current path.
  • the trench gate 150 when the trench gate 150 is branched into three and further includes a central portion extending along the negative direction of the z-axis between the second portion 151 and the third portion 153, The length of the current path is different from the length of the current path of the second portion 151 and the third portion 153. If there is variation in the current path, a large current flows in a path through which current more easily flows, which may cause element destruction. Since the semiconductor device 10 does not vary in the current path, element destruction is unlikely to occur.
  • the body layer 107 exists below the connection position between the first portion 152, the second portion 151, and the third portion 153. For this reason, when the semiconductor device 10 is turned off, the carrier below the connection position with the second portion 151 and the third portion 153 is quickly discharged. As a result, the on-voltage when the semiconductor device 10 is turned on again is stabilized.
  • each of the second portion 151 and the third portion 153 has a shape extending linearly along one direction like the trench gate 750 extending in the depth direction of the semiconductor substrate 700 like the conventional semiconductor device 700. It can be. For this reason, the manufacturing process is simple, and the gate electrodes 151c and 151c can be filled in the trenches 151a and 153a without including a gap.
  • the direction of the magnetic field generated by the movable magnetic field generator 821 can be easily adjusted, and the irradiation angle of etching ions can be easily adjusted. Therefore, in the manufacturing process of the semiconductor device 10, the trenches 551a and 553a extending in the third direction and the fourth direction can be easily formed in the semiconductor substrate 500.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 本明細書が開示する半導体装置は、半導体基板と、第1方向に伸びるとともに、第1方向に直交する第2方向に間隔を空けて配置された複数のトレンチゲートとを備えている。複数のトレンチゲートは、半導体基板の表面に開口する第1部分と、第1部分から半導体基板の深さ方向に対して第2方向の正方向に傾斜する方向に伸びる第2部分と、第1部分から半導体基板の深さ方向に対して第2方向の負方向に傾斜する方向に伸びる第3部分とを有する。

Description

半導体装置およびその製造装置
 本明細書に記載の技術は、半導体装置およびその製造装置に関する。
 トレンチゲート型の半導体装置では、隣接するトレンチゲートの間隔が狭くなるように複数のトレンチゲートを配置することで、半導体装置のオン電圧を低減できる。しかしながら、トレンチゲートの間の領域において半導体基板は表面電極と接しているため、隣接するトレンチゲートの間隔を狭くすると、半導体基板と表面電極との接触面積が小さくなる。その結果、半導体基板と表面電極との間のコンタクト抵抗が大きくなる等の課題が生じ得る。このため、日本国特許公開公報2006-324488号(特許文献1)では、トレンチゲートの底部の幅のみを広くすることで、隣接するトレンチゲートの底部の間隔を狭くしている。
特開2006-324488号公報
 日本国特許公開公報2006-324488号に記載されているように、トレンチゲートの底部の幅のみを広くする場合、次のような課題が生じ得る。第1に、底部のみ広い形状のトレンチを形成するために工程が多くなり、複雑化する。第2に、トレンチにゲート電極を充填する際に、幅の広い底部においてゲート電極に空隙が生じ易くなる。ゲート電極に空隙が含まれていると、その後の熱処理工程において半導体基板にストレスを与える原因となるため、結晶欠陥が生じ、リークが発生し易くなる。
 本明細書が開示する半導体装置は、半導体基板と、第1方向に伸びるとともに、第1方向に直交する第2方向に間隔を空けて配置された複数のトレンチゲートとを備えている。複数のトレンチゲートは、半導体基板の表面に開口する第1部分と、第1部分から半導体基板の深さ方向に対して第2方向の正方向に傾斜する方向に伸びる第2部分と、第1部分から半導体基板の深さ方向に対して第2方向の負方向に傾斜する方向に伸びる第3部分とを有する。
 上記の半導体装置では、複数のトレンチゲートのそれぞれが、半導体基板の表面に開口する第1部分と、第1部分から半導体基板の深さ方向に対してそれぞれ第2方向の正方向および負方向に傾斜する方向に伸びる第2部分および第3部分とを有している。一のトレンチゲートの第2部分と、これに隣接する他のトレンチゲートの第3部分とは、半導体基板の深さ方向に沿って互いに近づく方向に伸びているため、隣接するトレンチゲートにおいて、その第1部分の間隔を十分広く確保することと、第2部分および第3部分の間隔を狭くすることとを両立できる。第2部分と第3部分は、従来の半導体基板の深さ方向に沿って伸びるトレンチと同様の形状とすることができるため、製造工程が簡易であり、ゲート電極に空隙が生じ易くなることもない。
 第2部分の半導体基板の深さ方向に対する傾斜角は、第3部分の半導体基板の深さ方向に対する傾斜角に等しいことが好ましい。
 半導体基板は、第1導電型のドリフト層と、ドリフト層に対して半導体基板の表面側に設けられた第2導電型のボディ層とを備え、第1部分と第2部分および第3部分との接続位置の下方に、ボディ層が存在することが好ましい。
 また、本明細書は、上記の半導体装置の製造に有用な半導体装置の製造装置を開示する。この製造装置は、チャンバと、チャンバ内に設置された、半導体基板を載置するステージと、チャンバ内にエッチングイオンを発生させる発生器と、チャンバ内でエッチングイオンに磁場を与える磁場発生器と、ステージに対する磁場発生器の位置を調整して磁場の方向を調整可能な駆動機構とを備える。
実施例1に係る半導体装置の断面図である。 図1の半導体装置のキャリア濃度分布を概念的に示す図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置の製造方法を説明する図である。 実施例1の半導体装置を製造するための装置を概念的に示す図である。 実施例1の半導体装置を製造するための装置を概念的に示す図である。 従来の半導体装置の断面図である。 図11の半導体装置のキャリア濃度分布を概念的に示す図である。
 本明細書に係る半導体装置は、トレンチゲートを備えていればよく、特に限定されないが、例えば、IGBT、MOSFET、ダイオード等を挙げることができる。
 図1に示すように、半導体装置10は、半導体基板100と、トレンチゲート150と、表面電極131と、裏面電極132とを備えている。半導体基板100には、IGBTが形成されている。
 半導体基板100は、p型のコレクタ層101と、コレクタ層101の表面に設けられたn型のバッファ層103と、バッファ層103の表面に設けられたn型のドリフト層105と、ドリフト層105の表面に設けられたp型のボディ層107と、ボディ層107の表面に設けられたn型のエミッタ層109およびp型のボディコンタクト層111とを備えている。コレクタ層101は、半導体基板100の裏面に設けられ、裏面電極132と接触している。エミッタ層109およびボディコンタクト層111は、半導体基板100の表面に設けられており、表面電極131と接触している。
 複数のトレンチゲート150は、半導体基板100の表面からボディ層107とドリフト層105との境界より深い位置までの領域に形成されている。複数のトレンチゲート150は、長手方向が第1方向(y方向)に伸びるとともに、第2方向(x方向)に間隔を空けて配置されている。
 トレンチゲート150は、半導体基板100の表面に開口する第1部分152と、第1部分152から半導体基板100の深さ方向(z方向)に対してx軸の正方向に角度を有する第3方向に伸びる第2部分151と、z方向に対してx軸の負方向に角度を有する第4方向に伸びる第3部分153とを有している。第1部分152は半導体基板100の表面からボディ層107内までz方向に沿ってほぼ直線状に伸びており、ボディ層107内で、第2部分151と第3部分153に分岐している。第2部分151と第3部分153とは、ボディ層107内で互いに分岐した位置から、ドリフト層105内に達する同じ深さとなる位置まで直線状に伸びている。第3方向とz方向とが成す角の角度は、第4方向とz方向とが成す角の角度に等しい。なお、第3方向および第4方向がz方向と成す角度は、半導体装置10のトレンチピッチ(第1部分152)の間隔やボディ層107の厚さ等によって適宜調整することができるが、0°より大きく45°以下であることが好ましい。
半導体基板100の表面に、第1部分152を覆うように絶縁層155が設けられている。絶縁層155によって、ゲート電極151c,153cと表面電極131とは絶縁されている。
 第2部分151は、トレンチ151aと、トレンチ151aの内壁面に形成されたゲート絶縁膜151bと、ゲート絶縁膜151bに接するようにトレンチ151a内に充填されたゲート電極151cとを備えている。第3部分153は、トレンチ153aと、トレンチ153aの内壁面に形成されたゲート絶縁膜153bと、ゲート絶縁膜153bに接するようにトレンチ153a内に充填されたゲート電極153cとを備えている。なお、トレンチ151a,153aと、ゲート絶縁膜151b,153bと、ゲート電極151c,153cは、第1部分152まで伸びており、半導体基板100の表面に達している。
 第3方向と第4方向は、yz平面について互いに対称となる方向であり、第2部分151と第3部分153の形状および大きさはほぼ同一である。すなわち、第2部分151と第3部分153とは、トレンチゲート150のx方向の中央位置を通るyz平面について、ほぼ対称の関係にある。
 トレンチ151aとトレンチ153aとは、トレンチゲート150のx軸方向の中央位置において接続している。トレンチ151aとトレンチ153aとの接続位置は、ボディ層107内にあり、トレンチ151aと153aとの間には、ボディ層107およびドリフト層105が存在している。ゲート絶縁膜151bとゲート絶縁膜153bとは1つの絶縁膜で形成されている。ゲート電極151cとゲート電極153cとは、1つのポリシリコン層で形成されており、半導体基板100の表面側で一体となっている。
 例えば、図1に示すように、表面電極131を接地し、裏面電極132を正電位とし、ゲート電極151c,153cを正電位とすると、半導体装置10には、裏面電極132側から表面電極131側に電流が流れる。
 図2は、半導体装置10のキャリア濃度分布を示している。縦軸は半導体基板100の深さ方向の位置を示している。A1はボディ層107の上端の位置であり、B1はボディ層107とドリフト層105との境界の位置であり、C1はドリフト層105とバッファ層103との境界の位置であり、D1はバッファ層103とコレクタ層101との境界の位置である。
 比較のため、図11に示す従来の半導体装置70について、そのキャリア濃度分布を図12に示す。図11に示すように、半導体装置70は、半導体基板700の深さ方向に伸びるトレンチゲート750を有している。トレンチゲート750は、トレンチ750aと、トレンチ750aの内壁面に形成されたゲート絶縁膜750bと、ゲート絶縁膜750bに接するようにトレンチ750a内に充填されたゲート電極750cとを備えている。その他の構成は、図1に示す半導体装置10と同様であるため、半導体装置10の100番台の参照番号を700番台に読み替えて説明を省略する。
 図12に示すように、従来の半導体装置70では、半導体基板700の表面からボディ層707とドリフト層705との境界まで一様にキャリア濃度が低下する。このため、ボディ層707層の近傍のドリフト層705におけるキャリア濃度が低い。
 これに対して、実施例1に係る半導体装置10では、トレンチゲート150は、x方向について互いに逆方向に伸びる第2部分151と第3部分153とを有している。このため、半導体基板100の表面からトレンチゲート150の底部が位置するドリフト層705の表面近傍に向かって、隣接するトレンチゲート150の間の距離は徐々に狭くなる。このため、図2に示すように、半導体装置10のキャリア濃度は、半導体基板100の表面から深さ方向に向かって徐々に低くなるが、ボディ層107とドリフト層105との境界よりも浅い位置でキャリア濃度の低下が一旦停止する。そして、ドリフト層105に達する位置までキャリア濃度は徐々に高くなる。このため、半導体装置10では、ボディ層107の近傍のドリフト層105におけるキャリア濃度が高くなっており、オン抵抗が低減される。
 半導体装置10の製造方法および製造装置について、図3~10を参照しながら説明する。まず、図3に示すように、半導体基板500を準備する。半導体基板500は、裏面側から順に、コレクタ層101となるp層501と、ドリフト層105となるn層505と、ボディ層107となるp層507が積層されており、さらに、p層507の表面には、エミッタ層109となるn層509と、ボディコンタクト層111となるp層511が形成されている。半導体基板500の表面には、トレンチゲート150を形成する領域が開口した酸化膜のマスク590が形成されている。この状態で、図3に示すように、トレンチゲート150の第2部分151の伸びる第3方向に沿って、エッチングイオンを照射すると、図4に示すように、半導体基板500に、第3方向に伸びるトレンチ551aを形成することができる。
 次に、図4に示すように、半導体基板500に第4方向に沿ってエッチングイオンを照射する。これによって、図5に示すように、半導体基板500に、第4方向に伸びるトレンチ553aを形成することができる。半導体基板500に、1つの開口部を有し、底部が分岐して2方向に伸びるトレンチを形成することができる。
 ここで、半導体基板500に第3方向または第4方向にエッチングイオンを照射する方法および装置の一例について、図9,10を用いて説明する。図9に示すように、エッチングに用いる装置8は、チャンバ(図示しない)と、チャンバ内でエッチングイオンを発生する発生器810と、磁場を与えてエッチングイオンを加速する磁場発生器821と、ステージ823と、ステージ823に対する磁場発生器821の位置を調整可能な駆動機構850とを備えている。ステージ823はRF電源に接続されている。ステージ823上にエッチング処理を行う半導体基板830を載置できる。
 磁場発生器821は、1つの円筒状のコイルであり、図9には、円筒形状の長手方向に沿った断面が図示されている。駆動機構850は、磁場発生器821をチャンバ内で略円形の軌道824の中心周りに回転移動させることができる軌道824は、磁場発生器821のコイル部分が移動し得る軌道を示している。駆動機構850は、チャンバの外から操作することができ、チャンバを開放する等によってチャンバ内の雰囲気を変えることなく、磁場発生器821を回転移動させることができる。磁場発生器821は、その円筒形状の中心軸に沿う向きの磁場を発生させることができる。図9に示すように、磁場発生器821の中心軸の方向がトレンチゲート150の第2部分151が伸びる第3方向となるように磁場発生器821のステージ823に対する角度を調整することによって、チャンバ内で第3方向の磁場を発生させることができる。発生器810によって発生したエッチングイオン841は、磁場発生器821が与える第3方向の磁場によって、第3方向に方向付けられたエッチングイオン843となり、半導体基板830に照射される。これによって、図3に示すように、半導体基板500に第3方向のエッチングイオンを照射できる。
 第3方向にエッチングイオンを照射した後、磁場発生器821を軌道824に沿って回転移動させる。チャンバ内を開放することなく、チャンバ内で軌道824に沿って磁場発生器821を回転させることができる。図10に示すように、駆動機構850は、磁場発生器821の中心軸の方向がトレンチゲート150の第3部分153が伸びる第4方向となるように磁場発生器821のステージ823に対する角度を調整する。これによって、磁場発生器821は、チャンバ内で第4方向の磁場を発生させることができる。発生器810によって発生したエッチングイオン841は、磁場発生器821が与える第4方向の磁場によって、第4方向に方向付けられたエッチングイオン842となり、半導体基板830に照射される。これによって、図4に示すように、半導体基板500に第4方向のエッチングイオンを照射できる。
 図5の半導体基板500について、表面酸化処理を行って、図6に示すように、トレンチ551a,553aの内部にゲート絶縁膜551b,553bを形成する。ゲート絶縁膜551b,553bは、1つの絶縁膜として一体に形成される。
 次に、図7に示すように、ゲート電極151c,153cとなるポリシリコン層551を成膜する。ポリシリコン層551は、トレンチ551a,553a内にゲート絶縁膜551b,553bに覆われた状態で充填され、その一部は半導体基板500の表面に堆積される。トレンチ551a,553aは、半導体基板500の表面の開口部から、それぞれ第3方向、第4方向に沿って直線状に延びているため、ポリシリコン層551は空隙を包含することなく、容易にトレンチ551a,553a内に充填される。
 次に、図8に示すように、半導体基板500の表面のポリシリコン層551をエッチング等によって除去する。さらに、図1に示す表面絶縁膜155、表面電極131、裏面電極132等を形成することによって、半導体装置10を形成することができる。
 上記のとおり、半導体装置10によれば、複数のトレンチゲート150のそれぞれが、半導体基板の表面に開口する第1部分152と、第1部分152からそれぞれ第3方向および第4方向に伸びる第2部分151および第3部分153とを有している。第3方向と第4方向は、それぞれ半導体基板100の深さ方向(z方向)に対して第2方向の正方向(x軸の正方向)、負方向(x軸の負方向)に角度を有する方向である。一のトレンチゲート150の第2部分151と、これに隣接する他のトレンチゲート150の第3部分153とは、半導体基板100の深さ方向に沿って互いに近づく方向に伸びている。このため、隣接するトレンチゲート150において、その第1部分152の間隔を十分広く確保することと、第2部分および第3部分の間隔を狭くすることとを両立できる。なお、第1部分152は、半導体基板100の表面からボディ層107内までz方向に沿ってほぼ直線状に伸びていたが、このような形状に限定されない。例えば、x軸の正方向側で第2部分151と同様に傾斜し、x軸の負方向側で第3部分153と同様に傾斜し、z軸の負方向側から正方向側に向かって徐々にトレンチ幅(x方向の幅)が狭くなるような形状を有する第1部分であってもよい。
 また、第2部分151と第3部分153とは、形状および大きさがほぼ同じであり、トレンチゲート150のx方向の中央位置を通るyz平面に対して、互いに逆向きであり、同じ傾斜角を成す方向に伸びている。第1部分152から分岐した第2部分151と第3部分153が対を成し、かつ、yz平面について対称であるため、半導体装置10のオン時の電流経路についても、第2部分151側と第3部分153側でほぼ同じ長さとなり、電流経路にばらつきが生じない。例えば、トレンチゲート150が3つに分岐しており、第2部分151と第3部分153との間に、z軸の負方向に沿って伸びる中央部分をさらに備える場合には、この中央部分の電流経路の長さと、第2部分151および第3部分153の電流経路の長さとが相違する。電流経路にばらつきがあると、より電流が流れ易い経路に大電流が流れ、素子破壊の原因となる場合がある。半導体装置10は、電流経路にばらつきが生じないため、素子破壊が起こりにくい。
 また、半導体装置10では、第1部分152と、第2部分151および第3部分153との接続位置の下方にボディ層107が存在している。このため、半導体装置10のオフ時に、第2部分151および第3部分153との接続位置の下方のキャリアが速やかに排出される。これによって、その後、半導体装置10を再度ターンオンする際のオン電圧が安定する。
 また、第2部分151と第3部分153のそれぞれの形状は、従来の半導体装置700のような半導体基板700の深さ方向に伸びるトレンチゲート750と同様に一方向に沿って直線状に延びる形状とすることができる。このため、製造工程が簡易であり、ゲート電極151c,151cは空隙を包含することなくトレンチ151a,153a内に充填できる。
 また、半導体装置10の製造工程において、装置8を用いれば、可動式の磁場発生器821が発生する磁場の方向を容易に調整でき、エッチングイオンの照射角度を容易に調整できる。このため、半導体装置10の製造工程において、半導体基板500に第3方向、第4方向に伸びるトレンチ551a,553aを容易に形成することができる。
 以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (4)

  1.  半導体基板と、
     第1方向に伸びるとともに、第1方向に直交する第2方向に間隔を空けて配置された複数のトレンチゲートとを備え、
     複数のトレンチゲートは、
     半導体基板の表面に開口する第1部分と、
     第1部分から半導体基板の深さ方向に対して第2方向の正方向に傾斜する方向に伸びる第2部分と、
     第1部分から半導体基板の深さ方向に対して第2方向の負方向に傾斜する方向に伸びる第3部分とを有する、半導体装置。
  2.  第2部分の半導体基板の深さ方向に対する傾斜角は、第3部分の半導体基板の深さ方向に対する傾斜角に等しい、請求項1に記載の半導体装置。
  3.  半導体基板は、第1導電型のドリフト層と、ドリフト層に対して半導体基板の表面側に設けられた第2導電型のボディ層とを備え、
     第1部分と第2部分および第3部分との接続位置の下方に、ボディ層が存在する、請求項1または2に記載の半導体装置。
  4.  請求項1~3のいずれか一項に記載の半導体装置の製造装置であって、
     チャンバと、
     チャンバ内に設置された、半導体基板を載置するステージと、
     チャンバ内にエッチングイオンを発生させる発生器と、
     チャンバ内でエッチングイオンに磁場を与える磁場発生器と、
     ステージに対する磁場発生器の位置を調整して磁場の方向を調整可能な駆動機構と、を備える、半導体装置の製造装置。
PCT/JP2012/076599 2012-10-15 2012-10-15 半導体装置およびその製造装置 WO2014061075A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280076428.3A CN104718623A (zh) 2012-10-15 2012-10-15 半导体装置及其制造装置
PCT/JP2012/076599 WO2014061075A1 (ja) 2012-10-15 2012-10-15 半導体装置およびその製造装置
US14/430,655 US9356107B2 (en) 2012-10-15 2012-10-15 Semiconductor device and production device therefor
JP2014541826A JP5800097B2 (ja) 2012-10-15 2012-10-15 半導体装置およびその製造装置
DE112012007020.8T DE112012007020T5 (de) 2012-10-15 2012-10-15 Halbleitereinrichtung und Herstellungseinrichtung dafür

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076599 WO2014061075A1 (ja) 2012-10-15 2012-10-15 半導体装置およびその製造装置

Publications (1)

Publication Number Publication Date
WO2014061075A1 true WO2014061075A1 (ja) 2014-04-24

Family

ID=50487665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076599 WO2014061075A1 (ja) 2012-10-15 2012-10-15 半導体装置およびその製造装置

Country Status (5)

Country Link
US (1) US9356107B2 (ja)
JP (1) JP5800097B2 (ja)
CN (1) CN104718623A (ja)
DE (1) DE112012007020T5 (ja)
WO (1) WO2014061075A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349019B2 (en) 2018-01-17 2022-05-31 Fuji Electric Co., Ltd. Semiconductor device with an expanded doping concentration distribution in an accumulation region

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453634B2 (ja) 2014-12-10 2019-01-16 トヨタ自動車株式会社 半導体装置
DE102018211825A1 (de) * 2018-07-17 2020-01-23 Robert Bosch Gmbh Vertikaler Leistungstransistor und Verfahren zur Herstellung des vertikalen Leistungstransistors
CN114566553B (zh) * 2022-02-21 2022-10-14 先之科半导体科技(东莞)有限公司 一种大功率防击穿的肖特基二极管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273849A (ja) * 2003-03-10 2004-09-30 Toyota Motor Corp 電力用半導体装置およびその製造方法
JP2006324488A (ja) * 2005-05-19 2006-11-30 Nec Electronics Corp 半導体装置及びその製造方法
JP2009027139A (ja) * 2007-04-30 2009-02-05 Infineon Technologies Ag 固定用構造および嵌合構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285853B2 (ja) 1999-09-08 2009-06-24 東京エレクトロン株式会社 処理方法
US6784505B2 (en) * 2002-05-03 2004-08-31 Fairchild Semiconductor Corporation Low voltage high density trench-gated power device with uniformly doped channel and its edge termination technique
JP4979309B2 (ja) 2006-08-29 2012-07-18 三菱電機株式会社 電力用半導体装置
JP2011055017A (ja) * 2010-12-17 2011-03-17 Toshiba Corp 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273849A (ja) * 2003-03-10 2004-09-30 Toyota Motor Corp 電力用半導体装置およびその製造方法
JP2006324488A (ja) * 2005-05-19 2006-11-30 Nec Electronics Corp 半導体装置及びその製造方法
JP2009027139A (ja) * 2007-04-30 2009-02-05 Infineon Technologies Ag 固定用構造および嵌合構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349019B2 (en) 2018-01-17 2022-05-31 Fuji Electric Co., Ltd. Semiconductor device with an expanded doping concentration distribution in an accumulation region

Also Published As

Publication number Publication date
US9356107B2 (en) 2016-05-31
JPWO2014061075A1 (ja) 2016-09-05
DE112012007020T5 (de) 2015-07-09
US20150243749A1 (en) 2015-08-27
CN104718623A (zh) 2015-06-17
JP5800097B2 (ja) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5920970B2 (ja) 半導体装置
JP6181597B2 (ja) 半導体装置及び半導体装置の製造方法
JP5800097B2 (ja) 半導体装置およびその製造装置
CN108962749B (zh) 绝缘栅双极晶体管器件和半导体器件
WO2012063342A1 (ja) 半導体装置の製造方法
JP2016072482A (ja) 半導体装置およびその製造方法
US10164025B2 (en) Semiconductor device having termination trench
JP5742962B2 (ja) 半導体装置およびその製造方法
JP2007165657A (ja) 半導体装置の製造方法および半導体装置
JP2010219258A (ja) 半導体装置
JP2015207784A (ja) 電力半導体素子及びその製造方法
JP5983658B2 (ja) 半導体装置
JP2010067901A (ja) 半導体装置とその製造方法
JP6232089B2 (ja) 半導体装置
JP2011134861A (ja) 半導体装置及びその製造方法
JP2015076544A5 (ja)
JP2009081411A (ja) 半導体装置
JP2015225872A (ja) 半導体装置
JP6608461B2 (ja) 絶縁ゲートバイポーラトランジスタ及びその製造方法
WO2013080641A1 (ja) 半導体装置
JP2020031155A (ja) 半導体装置
JP2012064717A (ja) 半導体装置
JP2015222787A (ja) イオン注入方法および半導体装置の製造方法
WO2014109188A1 (ja) 電力用半導体装置
JP2018501626A (ja) 担体発生空間から電荷担体を抽出する装置及びその装置の動作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014541826

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14430655

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012007020

Country of ref document: DE

Ref document number: 1120120070208

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886820

Country of ref document: EP

Kind code of ref document: A1