WO2014057707A1 - 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板 - Google Patents

成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板 Download PDF

Info

Publication number
WO2014057707A1
WO2014057707A1 PCT/JP2013/064385 JP2013064385W WO2014057707A1 WO 2014057707 A1 WO2014057707 A1 WO 2014057707A1 JP 2013064385 W JP2013064385 W JP 2013064385W WO 2014057707 A1 WO2014057707 A1 WO 2014057707A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
aluminum alloy
cold
weldability
Prior art date
Application number
PCT/JP2013/064385
Other languages
English (en)
French (fr)
Inventor
鈴木 健太
安志 大和田
堀 久司
一光 水嶋
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CA2871843A priority Critical patent/CA2871843C/en
Priority to EP13844640.6A priority patent/EP2835436B1/en
Priority to US14/404,313 priority patent/US9885097B2/en
Priority to CN201380012746.8A priority patent/CN104204249B/zh
Priority to MX2014012730A priority patent/MX2014012730A/es
Priority to KR1020167012646A priority patent/KR101900581B1/ko
Priority to KR1020147029840A priority patent/KR20140139067A/ko
Publication of WO2014057707A1 publication Critical patent/WO2014057707A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum alloy plate excellent in formability, heat dissipation and weldability, which is used for a secondary battery container such as a lithium ion battery.
  • Al-Mn 3000 series alloys are relatively excellent in strength, formability, and laser weldability, and are therefore used as materials for manufacturing secondary battery containers such as lithium ion batteries. Yes. After forming into a desired shape, it is hermetically sealed by laser welding and used with a secondary battery container. Development has been made on an aluminum alloy plate for a secondary battery container, which is based on an existing 3000 series alloy as well as the 3000 series alloy and has further improved strength and formability.
  • the aluminum alloy plate has a composition defined by JIS A3003, the ear rate is 8% or less, the average grain size of recrystallized grains is 50 ⁇ m or less, and the conductivity is An aluminum alloy plate for a rectangular battery case characterized by being 45 IACS% or less is described.
  • an aluminum alloy plate for a battery case that is excellent in resistance to blistering under a high temperature internal pressure load has been developed.
  • Mn is contained in an amount of 0.8 to 2.0% (wt%, the same applies hereinafter), and Si is 0.04 to 0.2% and Fe is 0.04 to 0.6% as impurity elements.
  • the balance is made of Al and inevitable impurities, the Mn solid solution amount is 0.25% or more, the proof stress is in the range of 150 to 220 N / mm 2 , and the cross section is parallel to the rolling direction.
  • an aluminum alloy plate for a battery case which has an excellent resistance to blistering under a high-temperature internal pressure load, characterized in that the average area of the crystal grains is in the range of 500 to 8000 ⁇ m 2 .
  • Patent Document 3 describes an aluminum alloy plate excellent in laser weldability that does not generate irregular beads when laser welding an A1000 series aluminum material.
  • the aluminum alloy plate contains Si: 0.02 to 0.10% by mass, the Fe content is limited to 0.30% by mass or less, the balance is Al and inevitable impurities, and the equivalent circle diameter is 1
  • the number of intermetallic compound particles of 0.5 to 6.5 ⁇ m may be regulated to 1000 to 2400 / mm 2 .
  • the 1000 series has problems that the weldability is stable and the formability is excellent, but the strength is low. Therefore, as the size of the lithium ion battery is increased, it is expected that high strength characteristics are required, and there is a problem in applying the 1000 series aluminum material as it is.
  • a 3000 series alloy plate provides strength and resistance to swelling when subjected to high-temperature internal pressure, it has a tendency to be inferior to a 1000 series alloy plate and have a large number of abnormal beads.
  • the size of lithium ion batteries increases, it is expected that the amount of heat generated from the lithium ion batteries during charging and discharging will increase, and there is also a demand for batteries with excellent heat dissipation characteristics.
  • the 3000 series aluminum alloy plate generally has a high Mn solid solution amount, and depending on its component composition as a large lithium ion battery container, the proof stress may be too high, and spring back is likely to occur after press molding, There is also a problem of so-called shape freezing property that does not fit into a predetermined design shape.
  • the present invention has been devised to solve such problems, has heat dissipation characteristics applicable to large-sized lithium ion battery containers, and is excellent in moldability and shape freezing property.
  • An object of the present invention is to provide a 3000 series aluminum alloy plate having excellent laser weldability.
  • the aluminum alloy plate for battery case having excellent formability and weldability according to the present invention has Fe: 0.05 to less than 0.3% by mass, Mn: 0.6 to 1.5% by mass. %, Si: 0.05 to 0.6% by mass, consisting of the balance Al and impurities, with Cu as the impurity being less than 0.35% by mass and Mg being less than 0.05% by mass. And the electrical conductivity exceeds 45% IACS.
  • the 0.2% proof stress is 40 to less than 60 MPa, and exhibits an elongation value of 20% or more.
  • the 0.2% proof stress is 60 to less than 150 MPa, and exhibits an elongation value of 3% or more.
  • the aluminum alloy plate of the present invention has high thermal conductivity, excellent formability, and excellent laser weldability. Therefore, the aluminum alloy plate has a low secondary battery container that has excellent sealing performance and improved heat dissipation characteristics. Can be manufactured at cost.
  • cold-rolled annealed material it exhibits an elongation value of 20% or more, exhibits excellent formability, and has a low yield strength of less than 40 to 60 MPa, thereby suppressing springback during press molding. Excellent shape freezing.
  • a cold-rolled material it exhibits an elongation value of 3% or more, exhibits excellent moldability, and has a low yield strength of less than 60 to 150 MPa, thereby suppressing springback during press molding. Excellent shape freezing.
  • Secondary batteries are manufactured by putting an electrode body in a container and then sealing it with a lid by welding or the like.
  • the temperature inside the container may rise during charging.
  • the thermal conductivity of the material forming the container is low, the heat dissipation characteristics are inferior, which leads to a problem that the life of the lithium ion battery is shortened. Therefore, a material having high thermal conductivity is required as a material to be used.
  • a press method is generally used as a method for forming a container, the material itself is required to have excellent press formability.
  • it is expected that large-sized lithium ion battery containers will accelerate the material thinning in the future.
  • springback is likely to occur after press molding, and the problem that the material does not fit in a predetermined design shape may become apparent. Therefore, it is required that the material to be used has an excellent shape freezing property.
  • a welding method is used as a method of sealing with a lid, it is also required to have excellent weldability.
  • a laser welding method is used as a welding method for manufacturing a secondary battery container or the like.
  • the Mn solid solution amount is increased to increase the proof stress. Therefore, the swell resistance at high temperature internal pressure load can be sufficiently secured.
  • the thermal conductivity is inferior and the heat dissipation characteristics of the container are inferior.
  • the present invention by setting the starting temperature of hot rolling of the slab lower than the homogenization temperature, Mn, Si dissolved in the matrix is actively diffused and absorbed in the intermetallic compound, By reducing the amount of Mn solid solution and the amount of Si solid solution, the thermal conductivity of the final plate is increased, and at the same time, the elongation value is increased and the yield strength is kept low. As a result, it is possible to obtain an aluminum alloy plate having high heat dissipation characteristics and excellent in formability and shape freezing property.
  • the 3000 series aluminum alloy plate according to the present invention has high thermal conductivity, when the container obtained by press molding and the lid are subjected to pulse laser bonding, the energy per pulse is increased. It is necessary to perform bonding under more severe conditions. However, when laser welding is performed under such relatively severe conditions, there is a problem in that welding defects called undercut and blowhole are generated in the weld bead.
  • the surface temperature of the weld bead during joining locally reaches a high temperature of 2000 ° C. or higher by irradiation with such a pulse laser.
  • Aluminum is considered to be a highly reflective material and reflects about 70% of the laser beam.
  • the second phase particles that existed in the vicinity of the surface of the aluminum alloy plate for example, intermetallic compounds such as ⁇ -Al- (Fe ⁇ Mn) -Si, have a specific heat even at room temperature, compared to the parent phase aluminum. The thermal conductivity is small and the temperature rises preferentially.
  • the thermal conductivity of these intermetallic compounds further decreases with increasing temperature, the light absorption rate thereof increases at an accelerated rate, and only the intermetallic compounds are rapidly heated and dissolved.
  • the irradiation time of one pulse of the pulse laser is a very short time of nanoseconds or femtoseconds. Therefore, when the matrix ⁇ -Al dissolves and transitions to the liquid phase, the intermetallic compound such as ⁇ -Al- (Fe ⁇ Mn) -Si first reaches the boiling point and evaporates. Rapidly expands volume.
  • the contents of Fe, Mn, and Si are defined, the contents of Cu and Mg as impurities are kept low, and the homogenization temperature of the slab is set to a relatively high temperature, thereby allowing Solid solution was promoted to some extent, and the number of welding defects generated in laser welds was also reduced.
  • the present inventors have intensively studied to obtain an aluminum alloy plate excellent in laser weldability through investigation of characteristics relating to thermal conductivity (conductivity) and press formability, and investigation of the number of weld defects generated in the weld. Again, the present invention has been reached. The contents will be described below.
  • Fe 0.05 to less than 0.3% by mass
  • Fe is an essential element for increasing the strength of the aluminum alloy sheet. If the Fe content is less than 0.05% by mass, the strength of the aluminum alloy plate is lowered, which is not preferable.
  • coarse intermetallic compounds such as ⁇ -Al- (Fe ⁇ Mn) -Si and Al 6 (Fe ⁇ Mn) crystallize during ingot casting. Intermetallic compounds are not preferred because they are more likely to evaporate during laser welding than the Al matrix, increasing the number of welding defects and reducing weldability. Therefore, the Fe content is in the range of 0.05 to less than 0.3% by mass. A more preferable Fe content is in the range of 0.07 to less than 0.3% by mass. A more preferable Fe content is in the range of 0.1 to less than 0.3% by mass.
  • Mn 0.6 to 1.5% by mass
  • Mn is an essential element for increasing the strength of the aluminum alloy plate. If the Mn content is less than 0.6% by mass, the strength of the aluminum alloy plate is lowered, which is not preferable. If the Mn content exceeds 1.5% by mass, the solid solution amount of Mn in the matrix becomes too high, and not only the thermal conductivity of the final plate is lowered, but also the yield strength becomes too high and the shape freezing property is also increased. descend. In addition, coarse intermetallic compounds such as ⁇ -Al- (Fe ⁇ Mn) -Si and Al 6 (Fe ⁇ Mn) crystallize during ingot casting, and these intermetallic compounds evaporate compared to the Al matrix during laser welding.
  • the Mn content is in the range of 0.6 to 1.5% by mass.
  • a more preferable Mn content is in the range of 0.6 to 1.4% by mass.
  • a more preferable Mn content is in the range of 0.6 to 1.3% by mass.
  • Si 0.05 to 0.6% by mass Si is an essential element that increases the strength of the aluminum alloy plate and improves the flow of molten metal during casting.
  • Si content is less than 0.05% by mass, the strength of the aluminum alloy plate is lowered and the hot water flowability is lowered, which is not preferable.
  • Si content exceeds 0.6% by mass, a relatively coarse intermetallic compound such as ⁇ -Al- (Fe ⁇ Mn) -Si crystallizes in the final solidified portion during ingot casting, and these intermetallic compounds Is not preferable because it is more likely to evaporate than the Al matrix during laser welding, and the number of welding defects increases to lower weldability. Therefore, the preferable Si content is in the range of 0.05% by mass to 0.6% by mass. A more preferable Si content is in the range of 0.07 mass% to 0.6 mass%. A more preferable Si content is in the range of 0.07% by mass to 0.55% by mass.
  • Co has the effect of increasing the electrical conductivity of the final plate and also increasing the elongation value in the alloy composition range of the present invention. It is unclear what mechanism is currently manifesting the effect when Co: 0.001 to 0.5 mass% is contained.
  • the inventors have included Co: 0.001 to 0.5% by mass, and in the homogenization treatment or in the furnace cooling process after the homogenization treatment, Al is contained in the matrix. 6 (Fe.Mn) is presumed to precipitate more uniformly and finely.
  • the Co content is less than 0.001% by mass, the above effects are not exhibited. If the Co content exceeds 0.5% by mass, the production cost simply increases, which is not preferable. Therefore, a preferable Co content is in the range of 0.001 to 0.5 mass%.
  • a more preferable Co content is in the range of 0.001 to 0.3% by mass.
  • a more preferable Co content is in the range of 0.001 to 0.1% by mass.
  • Nb 0.005 to 0.05 mass%
  • Nb has the effect of increasing the electrical conductivity of the final plate and also increasing the elongation value in the alloy composition range of the present invention.
  • Nb 0.005 to 0.05% by mass
  • the present inventors have included Nb: 0.005 to 0.05% by mass, and in the homogenization treatment or in the furnace cooling process after the homogenization treatment, Al is contained in the matrix. 6 (Fe.Mn) is presumed to precipitate more uniformly and finely.
  • the Nb content is less than 0.005% by mass, the above effects are not exhibited.
  • a preferable Nb content is in the range of 0.005 to 0.05 mass%.
  • a more preferable Nb content is in the range of 0.007 to 0.05 mass%.
  • a more preferable Nb content is in the range of 0.01 to 0.05% by mass.
  • V 0.005 to 0.05 mass%
  • V has the effect of increasing the conductivity of the final plate in the alloy composition range of the present invention.
  • V 0.005 to 0.05% by mass
  • Al is contained in the matrix. 6 (Fe.Mn) is presumed to precipitate more uniformly and finely.
  • V content is less than 0.005% by mass, the above effects are not exhibited. If the V content exceeds 0.05% by mass, the electrical conductivity is lowered, which is not preferable. Therefore, the preferable V content is in the range of 0.005 to 0.05 mass%.
  • a more preferable V content is in the range of 0.005 to 0.03% by mass.
  • a more preferable V content is in the range of 0.01 to 0.03% by mass.
  • Cu as an unavoidable impurity less than 0.35 mass% Cu as an unavoidable impurity may be contained less than 0.35 mass%. In this invention, if Cu content is less than 0.35 mass%, about characteristics, such as heat conductivity, a moldability, and weldability, will not fall. If Cu content is 0.35 mass% or more, since heat conductivity falls, it is not preferable. Mg as an unavoidable impurity: less than 0.05 mass% Mg as an unavoidable impurity may be contained less than 0.05 mass%. In the present invention, when the Mg content is less than 0.05% by mass, characteristics such as thermal conductivity, formability, and weldability are not deteriorated.
  • Elongation value and 0.2% yield strength Cold-rolled annealed material: elongation value of 20% or more and 0.2% proof stress of 40 to less than 60 MPa
  • Cold-rolled material When the elongation value is 3% or more and the 0.2% proof stress is less than 60 to 150 MPa , when applying the 3000 series aluminum alloy plate to a large lithium ion battery container, etc., it has high heat dissipation characteristics and excellent It is necessary not only to have laser weldability but also to be excellent in moldability and shape freezing property while maintaining an appropriate strength.
  • the shape freezing property and strength of the material can be known from the 0.2% proof stress when the tensile test is conducted, and the moldability can be known from the elongation value at the tensile test.
  • the elongation value is 20% or more in the cold-rolled annealed material, and 0 .2% proof stress is less than 40-60MPa, but for cold-rolled material, elongation is 3% or more and 0.2% proof stress is less than 60-150MPa. It is.
  • the rolling start temperature is set lower than the homogenization treatment temperature. It is expressed by reducing the Mn solid solution amount and Si solid solution amount. Specifically, for example, a slab is inserted into a soaking furnace, heated and subjected to a homogenization treatment of holding at 600 ° C. for 1 hour or longer, and then cooled to a predetermined temperature, for example, 500 ° C., at that temperature. The slab may be removed from the soaking furnace and hot rolling may be started. Alternatively, the slab is inserted into a soaking furnace, heated and subjected to a homogenization treatment of 600 ° C.
  • the slab may be taken out of the soaking furnace and hot rolling may be started.
  • the slab homogenization is performed at a holding temperature of 520 to 620 ° C. for a holding time of 1 hour or more, and the hot rolling start temperature is set to less than 520 ° C.
  • the amount and the amount of Si solid solution can be reduced. If the starting temperature of hot rolling is less than 420 ° C., the roll pressure necessary for plastic deformation during hot rolling becomes high, and the reduction rate per pass becomes too low, which decreases productivity. . Accordingly, the preferred hot rolling start temperature is in the range of 420 to less than 520 ° C.
  • the high temperature side absorbs Mn in which the Al 6 (Fe ⁇ Mn) crystal precipitate is dissolved in the matrix.
  • the size is increased, and the Al 6 (Fe ⁇ Mn) crystal precipitates absorb Mn and Si dissolved in the matrix on the low temperature side, and are diffused and transformed into ⁇ -Al- (Fe ⁇ Mn) -Si.
  • the alloy composition range according to the present invention when a predetermined amount of Co, Nb or V is contained, Al 6 (Fe ⁇ Mn) is contained in the homogenization treatment or in the furnace cooling process after the homogenization treatment. Presumed to precipitate more uniformly and finely.
  • the molten aluminum alloy melted in the melting furnace may be cast after it is once transferred to the holding furnace, but may be cast directly from the melting furnace.
  • a more desirable sedation time is 45 minutes or more.
  • in-line degassing or filtering may be performed.
  • In-line degassing is mainly of a type in which an inert gas or the like is blown into a molten aluminum from a rotating rotor, and hydrogen gas in the molten metal is diffused and removed in bubbles of the inert gas.
  • nitrogen gas is used as the inert gas, it is important to control the dew point to, for example, ⁇ 60 ° C. or lower.
  • the amount of hydrogen gas in the ingot is preferably reduced to 0.20 cc / 100 g or less.
  • the amount of hydrogen gas in the ingot is large, porosity is generated in the final solidified portion of the ingot. Therefore, the reduction rate per pass in the hot rolling process is restricted to, for example, 7% or more, and the porosity is crushed. There is a need.
  • hydrogen gas that is supersaturated in the ingot is deposited during laser welding after forming the final plate, depending on the conditions of the homogenization treatment before the hot rolling process, and a large number of blown gases are blown into the beads. In some cases, holes are generated. For this reason, the more preferable amount of hydrogen gas in the ingot is 0.15 cc / 100 g or less.
  • the cast ingot is manufactured by semi-continuous casting (DC casting).
  • DC casting semi-continuous casting
  • the solidification cooling rate at the center portion of the ingot is about 1 ° C./sec.
  • Al 6 (Fe ⁇ Mn), ⁇ -Al— (Fe ⁇ Mn) — A relatively coarse intermetallic compound such as Si tends to crystallize from the molten aluminum alloy.
  • the casting speed in semi-continuous casting depends on the width and thickness of the ingot, it is usually 50 to 70 mm / min in consideration of productivity.
  • the flow rate of molten aluminum depends on the degassing conditions such as the flow rate of the inert gas. The smaller the (supply amount), the better the degassing efficiency in the tank, and it is possible to reduce the amount of hydrogen gas in the ingot.
  • a more desirable casting speed is 30 to 40 mm / min.
  • productivity is lowered, which is not desirable.
  • the casting speed is slower, the slope of the sump (solid phase / liquid phase interface) in the ingot becomes gentler, and casting cracks can be prevented.
  • Homogenization treatment is performed on an ingot obtained by casting by a semi-continuous casting method at 520 to 620 ° C. for 1 hour or longer .
  • the homogenization process is a process in which the ingot is kept at a high temperature to facilitate rolling, and casting segregation and elimination of residual stress inside the ingot are performed.
  • it is necessary to hold at a holding temperature of 520 to 620 ° C. for 1 hour or longer.
  • it is also a process for dissolving the transition elements constituting the intermetallic compound crystallized during casting to some extent in the matrix. If the holding temperature is too low or the holding temperature is short, the solid solution does not progress, and the appearance skin after DI molding may not be finished cleanly.
  • the holding temperature is too high, the eutectic portion which is the micro final solidified portion of the ingot may be melted, so-called burning may occur.
  • a more preferable homogenization temperature is 520 to 610 ° C.
  • Hot rolling start temperature 420 to less than 520 ° C.
  • the slab homogenization treatment is performed at a holding temperature of 520 to 620 ° C. with a holding time of 1 hour or more, and the starting temperature of hot rolling is less than 520 ° C.
  • the start temperature of hot rolling exceeds 520 ° C., it becomes difficult to reduce Mn and Si dissolved in the matrix.
  • the starting temperature of hot rolling is less than 420 ° C., the roll pressure necessary for plastic deformation during hot rolling becomes high, and the reduction rate per pass becomes too low, which decreases productivity.
  • the preferred hot rolling start temperature is in the range of 420 to less than 520 ° C.
  • the slab taken out from the soaking furnace is hung with a crane and brought to a hot rolling mill. Depending on the type of hot rolling mill, it is usually hot rolled by several rolling passes. Then, it is wound around a coil as a hot rolled plate having a predetermined thickness, for example, about 4 to 8 mm.
  • the coil wound with the hot rolled sheet is passed through a cold rolling machine and usually subjected to several passes of cold rolling.
  • an intermediate annealing treatment is performed as necessary.
  • the intermediate annealing is also a softening treatment, so that depending on the material, a cold rolled coil may be inserted into the batch furnace and kept at a temperature of 300 to 450 ° C. for 1 hour or longer.
  • the holding temperature is lower than 300 ° C., softening is not promoted, and when the holding temperature exceeds 450 ° C., the processing cost increases.
  • the intermediate annealing can also serve as a solution treatment if it is maintained within a temperature of, for example, 450 ° C. to 550 ° C. within 15 seconds by a continuous annealing furnace and then rapidly cooled.
  • a temperature of, for example, 450 ° C. to 550 ° C. within 15 seconds by a continuous annealing furnace and then rapidly cooled.
  • the holding temperature is lower than 450 ° C., softening is not promoted, and when the holding temperature exceeds 550 ° C., burning may occur.
  • the final annealing performed after the final cold rolling may be, for example, a batch process in which an annealing furnace is maintained at a temperature of 350 to 500 ° C. for 1 hour or longer. If it is kept at a temperature of 550 ° C. within 15 seconds and then cooled rapidly, it can also serve as a solution treatment.
  • final annealing is not necessarily essential in the present invention, but it is desirable to make the final plate as soft as possible in view of formability in normal DI molding. Considering the moldability in the mold forming process, it is desirable to use an annealed material or a solution treated material. When the mechanical strength is prioritized over the moldability, it is provided as a cold rolled material.
  • the final cold rolling rate is preferably in the range of 50 to 90%. If the final cold rolling rate is within this range, the average grain size of recrystallized grains in the final plate after annealing can be set to 20 to 100 ⁇ m, and the elongation value can be set to 20% or more. I can finish it neatly. A more preferable final cold rolling rate is in the range of 60 to 90%. On the other hand, the final cold rolling rate when the material is cold rolled without being subjected to final annealing is preferably in the range of 5 to 20%. If the ironing process increases during DI molding, it is necessary to provide a final plate that is slightly harder than the annealed material.
  • the final cold rolling rate is less than 5%, although it depends on the composition, it becomes difficult to make the yield strength in the final plate 60 MPa or more. If the final cold rolling rate exceeds 20%, it depends on the composition, but on the final plate. It becomes difficult to make the elongation value 3% or more. When the final cold rolling rate is within this range, the elongation value in the final plate can be 3% or more and the proof stress can be 60 to less than 150 MPa with cold rolling. A more preferable final cold rolling rate is in the range of 5 to 15%.
  • An aluminum alloy plate for a secondary battery container can be obtained through the normal steps as described above.
  • the ingot was chamfered by 2 mm on each side after cutting the hot water to a thickness of 26 mm.
  • This ingot is inserted into an electric heating furnace, heated to 600 ° C. at a temperature rising rate of 100 ° C./hr, homogenized for 600 ° C. ⁇ 1 hour, and then the slab is taken out from the heating furnace at that temperature. Then, hot rolling is performed until the thickness reaches 6 mm with a hot rolling mill, or after the homogenization treatment at 600 ° C. ⁇ 1 hour, the output of the electric heating furnace is turned off and the furnace is cooled as it is, and a predetermined temperature is reached.
  • the slab was taken out from the heating furnace and subjected to hot rolling with a hot rolling mill until the thickness reached 6 mm.
  • This hot-rolled sheet was cold-rolled to obtain cold-rolled sheets having thicknesses of 1.25 mm and 1.11 mm.
  • This cold-rolled sheet was inserted into an annealer, and after annealing at 400 ° C. for 1 hour, the annealed sheet was taken out from the annealer and air-cooled. Next, this annealed plate was cold-rolled to obtain a cold-rolled plate having a thickness of 1.0 mm. This is a cold-rolled material (tempered symbol: H 12 ).
  • the final cold rolling rates in this case were 20% (Example 16) and 10% (Examples 17 to 21, Comparative Examples 9 to 12), respectively.
  • the hot-rolled sheet was cold-rolled without intermediate annealing to obtain a 1 mm cold-rolled sheet.
  • the final cold rolling rate in this case was 83.3%.
  • the cold-rolled plate was inserted into the annealer, and after annealing at 400 ° C. for 1 hour, the cold-rolled plate was taken out from the annealer and air-cooled. This was used as a cold-rolled annealed material (tempered symbol: O).
  • the final plate (each sample material) thus obtained was evaluated for formability, shape freezing property and strength, laser weldability, and thermal conductivity. Evaluation of formability Evaluation of formability of the obtained final plate was performed by elongation (%) of a tensile test. Specifically, a JIS No. 5 test piece was collected so that the tensile direction was parallel to the rolling direction, and a tensile test was performed according to JISZ2241, to obtain 0.2% proof stress and elongation (breaking elongation). In the final plate that was annealed after cold rolling, the test material having an elongation value of 20% or more was considered as good moldability ( ⁇ ), and the test material that was less than 20% was considered as poor moldability ( ⁇ ). did.
  • test material whose 0.2% proof stress was less than 60 to 150 MPa was defined as shape freezing property and good strength ( ⁇ ), and the test material was 150 MPa or more.
  • shape freezing property
  • test material was 150 MPa or more.
  • defective shape freezing
  • a test material having a 0.2% proof stress of less than 60 MPa was regarded as insufficient in strength (x).
  • a black defect portion was detected by image editing software, and the area of the black portion defect was calculated by image analysis software.
  • the number of particles corresponding to each equivalent circle diameter was calculated from the black part defect area.
  • a test material in which the number of black part defects having an equivalent circle diameter of 0.1 mm or more was less than 5 was regarded as good ( ⁇ ) in the number of weld defects, and a black part having an equivalent circle diameter of 0.1 mm or more.
  • the test material in which the number of defects was 5 or more was defined as a defective weld defect evaluation (x).
  • the evaluation results are also shown in Tables 3 and 4.
  • Examples 1 to 21 in Tables 3 and 4 showing the evaluation results for the evaluation final plate of each test material are final plates (cold-rolled annealed material, cold-rolled material) within the composition range of the present invention, Starting temperature of hot rolling is 500 ° C or 450 ° C, laser weldability evaluation (black part defect), shape freezeability and strength evaluation (0.2% yield strength), formability evaluation (elongation), thermal conductivity evaluation Both (conductivity) were good ( ⁇ ).
  • Examples 9 to 14 contain a predetermined amount of Co, Nb, or V, although the contents of Si, Fe, Cu, Mn and the like are almost the same as in Example 3. Therefore, the conductivity increases in the range of 0.5 to 1.3% IACS.
  • Examples 9 to 13 contain predetermined amounts of Co, Nb, and V as compared with Example 3, the elongation value is also high.
  • Comparative Example 1 is a cold-rolled annealed material, the Fe content is as high as 0.31% by mass, and the V content is too high as 0.42, so the weldability evaluation failure (x) and the thermal conductivity evaluation failure.
  • Comparative Example 2 was a cold-rolled annealed material with a high Si content of 0.72% by mass and poor weldability evaluation (x).
  • Comparative Example 3 was a cold-rolled annealed material, and the Fe content was too high at 0.51% by mass, resulting in poor weldability evaluation (x).
  • Comparative Example 4 is a cold-rolled annealed material, and the Mn content was too high at 1.6% by mass.
  • Comparative Example 5 was a cold-rolled annealed material, and the Mn content was too low at 0.5% by mass, resulting in poor strength evaluation (x). Comparative Example 6 is a cold-rolled annealed material, and the Cu content was too high at 0.5% by mass, so that the shape freezeability evaluation failure (x), the moldability evaluation failure (x), and the thermal conductivity evaluation failure (x )Met.
  • Comparative Example 7 is a cold-rolled annealed material within the composition range of the present invention, but the hot-rolling start temperature was too high at 600 ° C., so the thermal conductivity evaluation was poor (x).
  • Comparative Example 8 is a cold-rolled annealed material within the composition range of the present invention, but the hot-rolling start temperature was too high at 550 ° C., resulting in poor thermal conductivity evaluation (x).
  • Comparative Example 9 was a cold-rolled material with a high Si content of 0.72% by mass, indicating poor weldability evaluation (x). Since Comparative Example 10 was a cold-rolled material and the Fe content was too high at 0.51% by mass, the weldability evaluation was poor (x).
  • Comparative Example 11 is a cold-rolled material and the Mn content was too high at 1.6% by mass, poor weldability evaluation (x), poor formability evaluation (x), poor thermal conductivity evaluation (x). Met. Since Comparative Example 12 was a cold-rolled material and the Cu content was too high at 0.5% by mass, the thermal conductivity evaluation was poor (x).
  • a 3000 series aluminum alloy having heat dissipation characteristics applicable to a large-sized lithium ion battery container, excellent in moldability, shape freezing property, and laser weldability.
  • a board is provided.

Abstract

 大型リチウムイオン電池容器に適用可能な放熱特性を有しており、しかも成形性、形状凍結性にも優れ、さらにレーザー溶接性にも優れた3000系アルミニウム合金板を提供する。Fe:0.05~0.3質量%未満、Mn:0.6~1.5質量%、Si:0.05~0.6質量%を含有し、残部Alおよび不純物からなり、不純物としてのCuが0.35質量%未満、Mgが0.05質量%未満である成分組成を有し、導電率45%IACSを超え、0.2%耐力が40~60MPa未満であり、20%以上の伸びの値を呈する冷延焼鈍材であるアルミニウム合金板。または導電率45%IACSを超え、0.2%耐力が60~150MPa未満であり、3%以上の伸びの値を呈する冷延まま材であるアルミニウム合金板。さらに導電率を高めるため、Co:0.001~0.5質量%、Nb:0.005~0.05質量%、V:0.005~0.05質量%のうち一種または二種以上を含有してもよい。

Description

成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
 本発明は、リチウムイオン電池などの二次電池用容器に用いられる、成形性、放熱性及び溶接性に優れたアルミニウム合金板に関するものである。
 Al-Mn系の3000系合金は、強度、成形性及びレーザー溶接性が比較的優れているため、リチウムイオン電池などの二次電池用容器を製造する際の素材として使用されるようになっている。所望形状に成形後にレーザー溶接によって封止密封して二次電池用容器と使用とするものである。前記3000系合金とともに既存の3000系合金をベースとして、さらに強度及び成形性を高めた二次電池容器用アルミニウム合金板に関する開発もなされてきた。
 例えば特許文献1では、アルミニウム合金板の組成として、JIS A3003により規定される組成を有し、耳率が8%以下であり、再結晶粒の平均粒径が50μm以下であると共に、導電率が45IACS%以下であることを特徴とする角形電池ケース用アルミニウム合金板が記載されている。
 一方、電池ケースとして、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板も開発されている。特許文献2では、Mn0.8~2.0%(重量%、以下同じ)を含有し、かつ不純物元素として、Siが0.04~0.2%、Feが0.04~0.6%に規制され、残部がAlおよび不可避的不純物よりなり、かつMn固溶量が0.25%以上で、耐力値が150~220N/mmの範囲内にあり、しかも圧延方向に平行な断面での結晶粒の平均面積が500~8000μmの範囲内にあることを特徴とする、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板が記載されている。
 しかしながら、3000系合金をベースとしてその組成を改良したアルミニウム合金板では、異常ビードが発生する場合があり、レーザー溶接性に問題があることが知られている。そこで、1000系をベースとしたレーザー溶接性に優れる二次電池容器用アルミニウム合金板も開発されている。特許文献3では、A1000系アルミニウム材をレーザー溶接する際、とくに不揃いビードが発生しない、レーザー溶接性に優れたアルミニウム合金板が記載されている。これによると、アルミニウム合金板においてSi:0.02~0.10質量%を含有し、Fe含有量を0.30質量%以下に制限し、残部Alおよび不可避的不純物からなり、円相当直径1.5~6.5μmの金属間化合物粒子の個数を1000~2400個/mmに規制すればよいとのことである。
特許第3620955号公報 特許第3763088号公報 特開2009-256754号公報
 確かに、1000系では溶接性が安定し、成形性に優れるものの強度が低いという問題がある。したがって、リチウムイオン電池の大型化が進む中で、高強度特性も要求されることが予想され、1000系のアルミニウム材をそのまま適用することには問題がある。
 前述のように、3000系の合金板では強度や高温内圧負荷時における耐フクレ性が得られるものの、1000系の合金板にくらべ成形性が劣り、異常ビード数が多い傾向がある。また、リチウムイオン電池の大型化が進む中で、充放電時におけるリチウムイオン電池からの発熱量が増加することが予想され、放熱特性に優れたものも要求されている。しかも、3000系アルミニウム合金板は、一般的にMn固溶量が高く、大型リチウムイオン電池容器としてその成分組成にもよるが耐力が高すぎる場合もあり、プレス成形後にスプリングバックが発生しやすく、所定の設計形状に収まらないという、いわゆる形状凍結性の問題もある。
 本発明は、このような課題を解決するために案出されたものであり、大型リチウムイオン電池容器に適用可能な放熱特性を有しており、しかも成形性、形状凍結性にも優れ、さらにレーザー溶接性にも優れた3000系のアルミニウム合金板を提供することを目的とするものである。
 本発明の成形性、溶接性に優れた電池ケース用アルミニウム合金板は、その目的を達成するために、Fe:0.05~0.3質量%未満、Mn:0.6~1.5質量%、Si:0.05~0.6質量%を含有し、残部Alおよび不純物からなり、不純物としてのCuが0.35質量%未満、Mgが0.05質量%未満である成分組成を有し、導電率が45%IACSを超えるものとする。
 冷延焼鈍材とした場合、0.2%耐力が40~60MPa未満であり、20%以上の伸び値を呈するものとする。また、冷延まま材である場合、0.2%耐力が60~150MPa未満であり、3%以上の伸びの値を呈するものとする。
 さらに導電率を高めるため、Co:0.001~0.5質量%、Nb:0.005~0.05質量%、V:0.005~0.05質量%のうちの一種または二種以上を含有してもよい。
 本発明のアルミニウム合金板は、高い熱伝導性を有するとともに成形性にも優れ、しかも優れたレーザー溶接性を備えているので、密閉性能に優れるとともに放熱特性が向上する二次電池用容器を低コストで製造することができる。
 特に冷延焼鈍材の場合には20%以上の伸び値を呈し、優れた成形性を発現するとともに、耐力が40~60MPa未満と低いので、プレス成形時のスプリングバックが抑制され、その結果、形状凍結性にも優れている。
 また冷延まま材の場合には3%以上の伸び値を呈し、優れた成形性を発現するとともに、耐力が60~150MPa未満と低いので、プレス成形時のスプリングバックが抑制され、その結果、形状凍結性にも優れている。
溶接欠陥数の測定/評価方法を説明する概念図。
 二次電池は、容器に電極体を入れた後に、溶接等により蓋を付けて密封することによって製造されている。このような二次電池を携帯電話などに使用すると、充電する際、容器内部の温度が上昇することがある。このため、容器を形作っている材料の熱伝導性が低いと放熱特性に劣ることとなり、ひいてはリチウムイオン電池の短寿命化に繋がるという問題がある。したがって、用いる材料として高い熱伝導性を有するものが求められる。
 また、容器を形作る方法としてプレス法が用いられるのが一般的であるから、用いる材料自身に優れたプレス成形性を有することが要求される。さらに、大型リチウムイオン電池容器においても、今後は素材の薄肉化に拍車がかかることが予想される。もちろん、素材が薄肉化すれば、プレス成形後にスプリングバックが発生しやすくなり、所定の設計形状に収まらないという問題が顕在化する可能性もある。したがって、用いる材料自身に優れた形状凍結性を有することが要求される。
 しかも、蓋を付けて密封する方法として溶接法が用いられるので、溶接性に優れることも要求される。そして、二次電池用容器等を製造の際の溶接法としてレーザー溶接法が用いられる場合が多い。
 前述のように、3000系の板材では、一般的に耐フクレ性を付与するため、Mn固溶量を高くして耐力を高めているため、高温内圧負荷時における耐フクレ性は十分に確保できるものの、熱伝導性に劣り、容器の放熱特性に劣るという問題がある。そこで本発明では、スラブの熱間圧延の開始温度を均質化処理温度よりも低く設定することにより、マトリックスに固溶しているMn、Siを積極的に金属間化合物中に拡散吸収させて、Mn固溶量、Si固溶量を低減することにより、最終板の熱伝導性を高めると同時に、伸び値を高くし耐力を低く抑えている。この結果、高い放熱特性を有しており、しかも成形性、形状凍結性にも優れたアルミニウム合金板とすることができる。
 したがって、本発明に係る3000系のアルミニウム合金板は高い熱伝導性を有するため、プレス成形して得られた容器と蓋とをパルスレーザー接合する場合、1パルス当たりのエネルギーを高くする等して、より過酷な条件で接合を行う必要がある。しかしながら、このように比較的過酷な条件下でレーザー溶接を行うと、溶接ビードにアンダーカット、ブローホールと呼ばれる溶接欠陥が発生することが問題となる。
 このようなパルスレーザーの照射によって、接合中の溶接ビードの表面温度は、局部的に2000℃以上の高温に達すると推測されている。アルミニウムは、高反射材料とされ、レーザービームの約7割を反射するとされている。一方、アルミニウム合金板の表面近傍に存在していた第2相粒子、例えば、α-Al-(Fe・Mn)-Si等の金属間化合物は、母相のアルミニウムに比べ、室温においても比熱、熱伝導率が小さく、優先的に温度が上昇する。これら金属間化合物の熱伝導率は温度上昇とともにさらに低くなり、その光吸収率は加速度的に上昇して、金属間化合物のみが急激に加熱溶解される。パルスレーザーの1回のパルスの照射時間は、ナノ秒、フェムト秒という非常に短い時間である。したがって、マトリックスのα-Alが溶解して液相に相転移する頃には、α-Al-(Fe・Mn)-Si等の金属間化合物は、先に沸点に達して蒸発することにより、急激に体積を膨張させる。
 そこで本発明では、Fe、Mn、Siの含有量を規定し、不純物としてのCu、Mgの含有量を低く抑えるとともに、スラブの均質化処理温度を比較的高温に設定することにより、遷移元素の固溶をある程度促進して、レーザー溶接部に発生する溶接欠陥数をも低減した。本発明者等は、熱伝導性(導電率)、プレス成形性に関する特性の調査や、溶接部に発生した溶接欠陥数の調査を通じてレーザー溶接性にも優れたアルミニウム合金板を得るべく鋭意検討を重ね、本発明に到達した。
 以下にその内容を説明する。
 まず、本発明の二次電池容器用アルミニウム合金板に含まれる各元素の作用、適切な含有量等について説明する。
Fe:0.05~0.3質量%未満
 Feは、アルミニウム合金板の強度を増加させるため、必須の元素である。Fe含有量が0.05質量%未満であると、アルミニウム合金板の強度が低下するため、好ましくない。Feの含有量が0.3質量%を超えると、鋳塊鋳造時にα-Al-(Fe・Mn)-Si系、Al(Fe・Mn)等の粗大な金属間化合物が晶出し、これら金属間化合物はレーザー溶接時にAlマトリックスに比べ蒸発しやすく、溶接欠陥数が増加して溶接性を低下させるため、好ましくない。
 したがって、Fe含有量は、0.05~0.3質量%未満の範囲とする。より好ましいFe含有量は、0.07~0.3質量%未満の範囲である。さらに好ましいFe含有量は、0.1~0.3質量%未満の範囲である。
Mn:0.6~1.5質量%
 Mnは、アルミニウム合金板の強度を増加させるため、必須の元素である。Mn含有量が0.6質量%未満であると、アルミニウム合金板の強度が低下するため、好ましくない。Mnの含有量が1.5質量%を超えると、マトリックスにおけるMnの固溶量が高くなりすぎて、最終板の熱伝導性が低下するばかりでなく、耐力が高くなりすぎて形状凍結性も低下する。さらに、鋳塊鋳造時にα-Al-(Fe・Mn)-Si系、Al(Fe・Mn)等の粗大な金属間化合物が晶出し、これら金属間化合物はレーザー溶接時にAlマトリックスに比べ蒸発しやすく、溶接欠陥数が増加して溶接性を低下させるため、好ましくない。
 したがって、Mn含有量は、0.6~1.5質量%の範囲とする。より好ましいMn含有量は、0.6~1.4質量%の範囲である。さらに好ましいMn含有量は、0.6~1.3質量%の範囲である。
Si:0.05~0.6質量%
 Siは、アルミニウム合金板の強度を増加させ、鋳造時の湯流れ性を改善する必須元素である。Si含有量が0.05質量%未満であると、アルミニウム合金板の強度が低下するとともに、湯流れ性が低下するため好ましくない。Si含有量が0.6質量%を超えると、鋳塊鋳造時の最終凝固部に比較的粗大なα-Al-(Fe・Mn)-Si等の金属間化合物が晶出し、これら金属間化合物はレーザー溶接時にAlマトリックスに比べ蒸発しやすく、溶接欠陥数が増加して溶接性を低下させるため、好ましくない。
 したがって、好ましいSi含有量は、0.05質量%~0.6質量%の範囲である。より好ましいSi含有量は、0.07質量%~0.6質量%の範囲である。さらに好ましいSi含有量は、0.07質量%~0.55質量%の範囲である。
Co:0.001~0.5質量%
 Coは、本発明の合金組成範囲において、最終板の導電率を高め、さらに伸び値をも高める効果がある。Co:0.001~0.5質量%を含有させた場合の効果について、現在どのようなメカニズムで発現しているのか不明である。本発明者らは、本発明の合金組成範囲において、Co:0.001~0.5質量%を含有させた場合、均質化処理或いは均質化処理後の炉内冷却過程において、マトリックス中にAl(Fe・Mn)がより均一微細に析出するのではないかと推定している。
 Co含有量が0.001質量%未満であると上記のような効果が発現しない。Co含有量が0.5質量%を超えると、単に製造コストが増加するため、好ましくない。したがって、好ましいCo含有量は、0.001~0.5質量%の範囲である。より好ましいCo含有量は、0.001~0.3質量%の範囲である。さらに好ましいCo含有量は、0.001~0.1質量%の範囲である。
Nb:0.005~0.05質量%
 Nbは、本発明の合金組成範囲において、最終板の導電率を高め、さらに伸び値をも高める効果がある。Nb:0.005~0.05質量%を含有させた場合の効果についても、現在どのようなメカニズムで発現しているのか不明である。本発明者らは、本発明の合金組成範囲において、Nb:0.005~0.05質量%を含有させた場合、均質化処理或いは均質化処理後の炉内冷却過程において、マトリックス中にAl(Fe・Mn)がより均一微細に析出するのではないかと推定している。
 Nb含有量が0.005質量%未満であると上記のような効果が発現しない。Nb含有量が0.05質量%を超えると、単に製造コストが増加するため、好ましくない。したがって、好ましいNb含有量は、0.005~0.05質量%の範囲である。より好ましいNb含有量は、0.007~0.05質量%の範囲である。さらに好ましいNb含有量は、0.01~0.05質量%の範囲である。
V:0.005~0.05質量%
 Vは、本発明の合金組成範囲において、最終板の導電率を高める効果がある。V:0.005~0.05質量%を含有させた場合の効果についても、現在どのようなメカニズムで発現しているのか不明である。本発明者らは、本発明の合金組成範囲において、V:0.005~0.05質量%を含有させた場合、均質化処理或いは均質化処理後の炉内冷却過程において、マトリックス中にAl(Fe・Mn)がより均一微細に析出するのではないかと推定している。
 V含有量が0.005質量%未満であると上記のような効果が発現しない。V含有量が0.05質量%を超えると、かえって導電率が低下するため、好ましくない。したがって、好ましいV含有量は、0.005~0.05質量%の範囲である。より好ましいV含有量は、0.005~0.03質量%の範囲である。さらに好ましいV含有量は、0.01~0.03質量%の範囲である。
不可避的不純物としてのCu:0.35質量%未満
 不可避的不純物としてのCuは0.35質量%未満含有していてもよい。本発明において、Cu含有量が0.35質量%未満であれば、熱伝導性、成形性及び溶接性等の特性について低下することはない。Cu含有量が0.35質量%以上であれば、熱伝導性が低下するため、好ましくない。
不可避的不純物としてのMg:0.05質量%未満
 不可避的不純物としてのMgは0.05質量%未満含有していてもよい。本発明において、Mg含有量が0.05質量%未満であれば、熱伝導性、成形性及び溶接性等の特性について低下することはない。
その他の不可避的不純物
 不可避的不純物は原料地金、返り材等から不可避的に混入するもので、それらの許容できる含有量は、例えば、Znの0.05質量%未満、Niの0.10質量%未満、Pb、Bi、Sn、Na、Ca、Srについては、それぞれ0.02質量%未満、Ga及びTiの0.01質量%未満、Nb及びVの0.005質量%未満、Coの0.001質量%未満、その他各0.05質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。
伸び値および0.2%耐力
冷延焼鈍材:伸びの値が20%以上、且つ0.2%耐力が40~60MPa未満
冷延まま材:伸びの値が3%以上、且つ0.2%耐力が60~150MPa未満
 ところで、3000系アルミニウム合金板を大型リチウムイオン電池容器等に適用するに当たっては、高い放熱特性と優れたレーザー溶接性を有するだけでなく、適度な強度を保ちつつ、成形性、形状凍結性にも優れることが必要である。材料の形状凍結性及び強度は引張り試験を行った時の0.2%耐力で、また成形性は引張り試験時の伸びの値で知ることができる。
 詳細は後記の実施例の記載に譲るとして、大型リチウムイオン電池容器等に適用する本発明の3000系アルミニウム合金板としては、冷延焼鈍材にあっては伸びの値が20%以上、且つ0.2%耐力が40~60MPa未満なる特性を有するものが、冷延まま材にあっては伸びの値が3%以上、且つ0.2%耐力が60~150MPa未満なる特性を有するものが好適である。
導電率が45%IACSを超え
 上記のような特性は、前記特定の成分組成を有する3000系アルミニウム合金板を製造する際に、圧延開始温度を均質化処理温度よりも低く設定することにより、マトリックス中のMn固溶量、Si固溶量を低減させることにより発現される。
 具体的には、例えば、スラブをソーキング炉内に挿入して、加熱し600℃×1時間以上保持する均質化処理を施した後、所定の温度、例えば500℃まで炉冷し、その温度でスラブをソーキング炉から取り出して熱間圧延を開始すればよい。または、スラブをソーキング炉内に挿入して、加熱し600℃×1時間以上保持する均質化処理を施した後、所定の温度、例えば500℃まで炉冷し、引き続き500℃×1時間以上保持する第2段の均質化処理を施した後、スラブをソーキング炉から取り出して熱間圧延を開始してもよい。
 このように、スラブの均質化処理を520~620℃の保持温度、1時間以上の保持時間で行うとともに、熱間圧延の開始温度を520℃未満に設定することで、マトリックス中のMn固溶量、Si固溶量を低減させることが可能となる。
 熱間圧延の開始温度が420℃未満であると、熱間圧延時の塑性変形に必要なロール圧力が高くなり、1パス当たりの圧下率が低くなりすぎて生産性が低下するため、好ましくない。したがって、好ましい熱間圧延の開始温度は、420~520℃未満の範囲である。
 均質化処理後の炉内冷却過程(第2段の均質化処理を含む)において、高温側でAl(Fe・Mn)晶析出物がマトリックスに固溶しているMnを吸収して、そのサイズを大きくし、低温側でAl(Fe・Mn)晶析出物がマトリックスに固溶しているMn、Siを吸収して、α-Al-(Fe・Mn)-Siに拡散変態する。
 本発明者らは、本発明の合金組成範囲において、Co、NbまたはVを所定量含有させた場合、均質化処理或いは均質化処理後の炉内冷却過程において、Al(Fe・Mn)がより均一微細に析出すると推定している。このような場合、マトリックスに固溶していたMn、Siが拡散吸収されるサイト数が増加していることになるので、より効率的にマトリックスのMn、Siの固溶量を低下せしめ、導電率を高めることが可能になる。
 一方、3000系合金の鋳造時において、特に最終凝固部のような箇所においては、その成分組成にもよるが、比較的粗大なAl(Fe・Mn)、α-Al-(Fe・Mn)-Siなどの金属間化合物が晶出している。これら比較的粗大な金属間化合物は、最終板のレーザー溶接時にAlマトリックスに比べ蒸発しやすく、溶接欠陥数が増加する原因となっていると考えられる。しかしながら、本発明の組成範囲の溶湯にCo、NbまたはVを所定量含有させても、レーザー溶接部における溶接欠陥数を顕著に低減させるという効果は確認できなかった。したがって、本発明の組成範囲の溶湯にCo、NbまたはVを所定量含有させても、比較的粗大なAl(Fe・Mn)、α-Al-(Fe・Mn)-Siなどの金属間化合物の晶出形態には影響を及ぼさないと推察される。
 次に、上記のような二次電池容器用アルミニウム合金板を製造する方法について簡単に紹介する。
溶解・溶製
 溶解炉に原料を投入し、所定の溶解温度に到達したら、フラックスを適宜投入して攪拌を行い、さらに必要に応じてランス等を使用して炉内脱ガスを行った後、鎮静保持して溶湯の表面から滓を分離する。
 この溶解・溶製では、所定の合金成分とするため、母合金等再度の原料投入も重要ではあるが、前記フラックス及び滓がアルミニウム合金溶湯中から湯面に浮上分離するまで、鎮静時間を十分に取ることが極めて重要である。鎮静時間は、通常30分以上取ることが望ましい。
 溶解炉で溶製されたアルミニウム合金溶湯は、場合によって保持炉に一端移湯後、鋳造を行なうこともあるが、直接溶解炉から出湯し、鋳造する場合もある。より望ましい鎮静時間は45分以上である。
 必要に応じて、インライン脱ガス、フィルターを通してもよい。
 インライン脱ガスは、回転ローターからアルミニウム溶湯中に不活性ガス等を吹き込み、溶湯中の水素ガスを不活性ガスの泡中に拡散させ除去するタイプのものが主流である。不活性ガスとして窒素ガスを使用する場合には、露点を例えば-60℃以下に管理することが重要である。鋳塊の水素ガス量は、0.20cc/100g以下に低減することが好ましい。
 鋳塊の水素ガス量が多い場合には、鋳塊の最終凝固部にポロシティが発生するため、熱間圧延工程における1パス当たりの圧下率を例えば7%以上に規制してポロシティを潰しておく必要がある。
 また、鋳塊に過飽和に固溶している水素ガスは、熱間圧延工程前の均質化処理の条件にもよるが、最終板の成形後のレーザー溶接時に析出して、ビードに多数のブローホールを発生させる場合もある。このため、より好ましい鋳塊の水素ガス量は、0.15cc/100g以下である。
鋳造
 鋳塊は、半連続鋳造(DC鋳造)によって製造する。通常の半連続鋳造の場合は、鋳塊の厚みが一般的には400~600mm程度であるため、鋳塊中央部における凝固冷却速度が1℃/sec程度である。このため、特にFe、Mn、Siの含有量が高いアルミニウム合金溶湯を半連続鋳造する場合には、鋳塊中央部にはAl(Fe・Mn)、α-Al-(Fe・Mn)-Siなどの比較的粗い金属間化合物がアルミニウム合金溶湯から晶出する傾向がある。
 半連続鋳造における鋳造速度は鋳塊の幅、厚みにもよるが、通常は生産性も考慮して、50~70mm/minである。しかしながら、インライン脱ガスを行なう場合、脱ガス処理槽内における実質的な溶湯の滞留時間を考慮すると、不活性ガスの流量等脱ガス条件にもよるが、アルミニウム溶湯の流量(単位時間当たりの溶湯供給量)が小さいほど槽内での脱ガス効率が向上し、鋳塊の水素ガス量を低減することが可能である。鋳造の注ぎ本数等にもよるが、鋳塊の水素ガス量を低減するために、鋳造速度を30~50mm/minと規制することが望ましい。さらに望ましい鋳造速度は、30~40mm/minである。勿論、鋳造速度が30mm/min未満であると、生産性が低下するため望ましくない。なお、鋳造速度の遅い方が、鋳塊におけるサンプ(固相/液相の界面)の傾斜が緩やかになり、鋳造割れを防止できることは言うまでもない。
均質化処理:520~620℃×1時間以上
 半連続鋳造法により鋳造して得た鋳塊に均質化処理を施す。
 均質化処理は、圧延を容易にするために鋳塊を高温に保持して、鋳造偏析、鋳塊内部の残留応力の解消を行なう処理である。本発明において、保持温度520~620℃で1時間以上保持することが必要である。この場合、鋳造時に晶析出した金属間化合物を構成する遷移元素等をマトリックスにある程度固溶させるための処理でもある。この保持温度が低すぎ、或いは保持温度が短い場合には、上記固溶が進まず、DI成形後の外観肌が綺麗に仕上がらない虞がある。また、保持温度が高すぎると、鋳塊のミクロ的な最終凝固部である共晶部分が溶融する、いわゆるバーニングを起こすおそれがある。より好ましい均質化処理温度は、520~610℃である。
熱間圧延の開始温度:420~520℃未満
 このように、スラブの均質化処理を520~620℃の保持温度、1時間以上の保持時間で行うとともに、熱間圧延の開始温度を520℃未満に設定することで、マトリックスに固溶しているMn、Siを低減させることが可能となる。熱間圧延の開始温度が520℃を超えると、マトリックスに固溶しているMn、Siを低減させることが困難となる。熱間圧延の開始温度が420℃未満であると、熱間圧延時の塑性変形に必要なロール圧力が高くなり、1パス当たりの圧下率が低くなりすぎて生産性が低下するため、好ましくない。したがって、好ましい熱間圧延の開始温度は、420~520℃未満の範囲である。ソーキング炉内から取り出されたスラブは、そのままクレーンで吊るされて、熱間圧延機に持ち来たされ、熱間圧延機の機種にもよるが、通常何回かの圧延パスによって熱間圧延されて所定の厚み、例えば4~8mm程度の熱延板としてコイルに巻き取る。
冷間圧延工程
 熱間圧延板を巻き取ったコイルは、冷延機に通され、通常何パスかの冷間圧延が施される。この際、冷間圧延によって導入される塑性歪により加工硬化が起こるため、必要に応じて、中間焼鈍処理が行なわれる。通常中間焼鈍は軟化処理でもあるので、材料にもよるがバッチ炉に冷延コイルを挿入し、300~450℃の温度で、1時間以上の保持を行なってもよい。保持温度が300℃よりも低いと、軟化が促進されず、保持温度が450℃をこえると、処理コストの増大を招く。また、中間焼鈍は、連続焼鈍炉によって例えば450℃~550℃の温度で15秒以内保持し、その後急速に冷却すれば、溶体化処理を兼ねることもできる。保持温度が450℃よりも低いと、軟化が促進されず、保持温度が550℃をこえると、バーニングを起こすおそれがある。
最終焼鈍
 本発明において、最終冷間圧延の後に行なわれる最終焼鈍は、例えば焼鈍炉によって温度350~500℃で1時間以上保持するバッチ処理であってもよいが、連続焼鈍炉によって例えば400℃~550℃の温度で15秒以内保持し、その後急速に冷却すれば、溶体化処理を兼ねることもできる。
 いずれにしても、本発明において最終焼鈍は必ずしも必須ということではないが、通常のDI成形における成形性を考慮すると、最終板をできるだけ軟化させておくことが望ましい。金型成形工程における成形性も考慮すると、焼鈍材、若しくは溶体化処理材としておくことが望ましい。
 成形性よりも機械的強度を優先する場合には冷延まま材で提供する。
最終冷延率
 最終焼鈍を施す場合の最終冷延率は、50~90%の範囲であることが好ましい。最終冷延率がこの範囲であれば、焼鈍後の最終板における再結晶粒の平均粒径を20~100μmにして、伸びの値を20%以上にすることができ、成形後の外観肌を綺麗に仕上げることができる。さらに好ましい最終冷延率は、60~90%の範囲である。
 一方、最終焼鈍を施さずに冷延まま材とするときの最終冷延率は、5~20%の範囲とすることが好ましい。DI成形時にしごき加工が多くなる場合には、焼鈍材よりも若干硬い最終板を提供する必要がある。最終冷延率が5%未満であると、組成にもよるが最終板における耐力を60MPa以上とすることが困難となり、最終冷延率が20%を超えると、組成にもよるが最終板における伸びの値を3%以上とすることが困難となる。
 最終冷延率がこの範囲であれば、冷延まま最終板における伸びの値を3%以上、且つ耐力を60~150MPa未満とすることができる。さらに好ましい最終冷延率は、5~15%の範囲である。
 以上のような通常の工程を経ることにより、二次電池容器用アルミニウム合金板を得ることができる。
最終板の作成
 所定の各種インゴットを計量、配合して、離型材を塗布した#20坩堝に6kgずつ(合計8つの供試材)のインゴットを挿入装填した。これら坩堝を電気炉内に挿入して、780℃で溶解して滓を除去し、その後、溶湯温度を760℃に保持し、次いで脱滓用フラックス各6gをアルミニウム箔に包んでフォスフォライザーにて押し込み添加した。
 次いで、溶湯中にランスを挿入して、Nガスを流量1.0L/minで10分間吹き込んで脱ガス処理を行なった。その後30分間の鎮静を行なって溶湯表面に浮上した滓を攪拌棒にて除去し、さらにスプーンで成分分析用鋳型にディスクサンプルを採取した。
 次いで、治具を用いて順次坩堝を電気炉内から取り出し、予熱しておいた金型(250mm×200mm×30mm)にアルミニウム溶湯を鋳込んだ。各供試材のディスクサンプルは、発光分光分析によって、組成分析を行なった。その結果を表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 鋳塊は、押し湯を切断後、両面を2mmずつ面削して、厚み26mmとした。
 この鋳塊を電気加熱炉に挿入して、100℃/hrの昇温速度で600℃まで加熱し、600℃×1時間の均質化処理を行った後、その温度で加熱炉からスラブを取りだして熱間圧延機にて6mm厚さとなるまで熱間圧延を施すか、或いは、600℃×1時間の均質化処理後に電気加熱炉の出力をOFFとして、そのまま炉内冷却して、所定の温度(550℃、500℃、450℃)に到達した際に、加熱炉からスラブを取りだして熱間圧延機にて6mm厚さとなるまで熱間圧延を施した。
 この熱間圧延板に冷間圧延を施して、厚さ1.25mm、1.11mmの冷延板を得た。この冷延板をアニーラーに挿入して、400℃×1時間保持の中間焼鈍処理後、アニーラーから焼鈍板を取り出して空冷した。次にこの焼鈍板に冷間圧延を施して、厚さ1.0mmの冷延板を得た。これを冷延まま材(調質記号:H12)とする。この場合の最終冷延率は、それぞれ20%(実施例16)、10%(実施例17~21、比較例9~12)であった。
 冷延焼鈍材については、まず前記熱間圧延板に中間焼鈍を施すことなく冷間圧延を施して、1mmの冷延板を得た。この場合の最終冷延率は83.3%であった。最終焼鈍は、冷延板をアニーラーに挿入して、400℃×1時間焼鈍処理後、アニーラーから冷延板を取り出して空冷した。これを冷延焼鈍材(調質記号:O)とした。
 次に、このようにして得られた最終板(各供試材)について、成形性、形状凍結性及び強度、レーザー溶接性、熱伝導性の評価を行なった。
成形性の評価
 得られた最終板の成形性評価は、引張り試験の伸び(%)によって行った。
 具体的には、引張り方向が圧延方向と平行になるようにJIS5号試験片を採取し、JISZ2241に準じて引張り試験を行って、0.2%耐力、伸び(破断伸び)を求めた。
 冷延後に焼鈍を施した最終板において、伸びの値が20%以上であった供試材を成形性良好(○)とし、20%未満であった供試材を成形性不良(×)とした。評価結果を表3,4に示す。
 冷延ままの最終板において、伸びの値が3%以上であった供試材を成形性良好(○)とし、3%未満であった供試材を成形性不良(×)とした。評価結果を表3,4に示す。
形状凍結性及び強度の評価
 得られた最終板の形状凍結性及び強度の評価は、引張り試験の0.2%耐力(MPa)によって行った。
 冷延後に焼鈍を施した最終板(冷延焼鈍材)において、0.2%耐力が40~60MPa未満であった供試材を形状凍結性及び強度良好(○)とし、60MPa以上であった供試材を形状凍結性不良(×)とした。また、0.2%耐力が40MPa未満であった供試材を強度不足(×)とした。
 冷延ままの最終板(冷延まま材)において、0.2%耐力が60~150MPa未満であった供試材を形状凍結性及び強度良好(○)とし、150MPa以上であった供試材を形状凍結性不良(×)とした。また、0.2%耐力が60MPa未満であった供試材を強度不足(×)とした。評価結果を表3,4に示す。
レーザー溶接条件
 得られた最終板について、パルスレーザー照射を行なって、レーザー溶接性の評価を行なった。LUMONICS社製YAGレーザー溶接機JK701を用いて、周波数33.0Hz、溶接速度400mm/min、パルス当たりのエネルギー6.5J、パルス幅1.5msec、シールドガス(窒素)流量15(L/min)の条件にて、同供試材の2枚の板を端部同士隙間なく、突き合わせて当該部分に沿って全長100mm長さのパルスレーザー溶接を行なった。
レーザー溶接性の評価
黒色部欠陥の測定/評価
 次に、レーザー溶接性の評価として、溶接部に発生した溶接欠陥数を測定した。まず、上記100mm長さの溶接線のうち、溶接スタート部の20mm長さの溶接線を除く、残りの80mm長さの領域を測定領域として決めた。溶接スタート近傍部は不安定なため除いたのである。
 そして、図1に示すように80mm長さの溶接線に沿って形成された溶接ビード断面をX線CT検査によって、溶接線に平行な板厚断面におけるX線CT画像を得た。さらにこのX線CT画像を基にして画像編集ソフトによって黒色欠陥部を検出し、画像解析ソフトにより黒色部欠陥の面積を算出した。この黒色部欠陥面積から各円相当径に対応する粒子数を算出した。
 本明細書において、円相当径0.1mm以上である黒色部欠陥の個数が5未満であった供試材を溶接欠陥数評価良好(○)とし、円相当径0.1mm以上である黒色部欠陥の個数が5以上であった供試材を溶接欠陥数評価不良(×)とした。評価結果を、併せて表3,4に示す。
熱伝導性の評価
導電率の測定/評価
 導電率(IACS%)は、導電率計(AUTOSIGMA 2000 日本ホッキング株式会社製)にて、測定を実施した。導電率が45(IACS%)を超えた供試材を導電率良好(○)とし、導電率が45(IACS%)以下であった供試材を導電率不良(×)とした。評価結果を、併せて表3,4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
各供試材の評価
 最終板についての評価結果を示す表3,4における実施例1~21は、本発明の組成範囲内の最終板(冷延焼鈍材、冷延まま材)であり、熱間圧延の開始温度が500℃または450℃であり、レーザー溶接性評価(黒色部欠陥)、形状凍結性及び強度の評価(0.2%耐力)、成形性評価(伸び)、熱伝導性評価(導電率)とも全て良好(○)であった。
 また、実施例9~14は、実施例3と比較して、Si、Fe、Cu、Mn等の含有量が殆ど同じであるにも関らず、所定量のCo、NbまたはVを含有しているため、導電率が0.5~1.3%IACSの範囲で上昇している。特に、実施例9~13は、実施例3と比較して、所定量のCo、Nb、Vを含有しているため、伸びの値も高くなっている。
 比較例1は、冷延焼鈍材であり、Fe含有量が0.31質量%と高く、またV含有量が0.42と高すぎたため、溶接性評価不良(×)及び熱伝導性評価不良(×)であった。
 比較例2は、冷延焼鈍材であり、Si含有量が0.72質量%と高く、溶接性評価不良(×)であった。
 比較例3は、冷延焼鈍材であり、Fe含有量が0.51質量%と高すぎたため、溶接性評価不良(×)であった。
 比較例4は、冷延焼鈍材であり、Mn含有量が1.6質量%と高すぎたため、溶接性評価不良(×)、形状凍結性評価不良(×)、熱伝導性評価不良(×)であった。
 比較例5は、冷延焼鈍材であり、Mn含有量が0.5質量%と低すぎたため、強度評価不良(×)であった。
 比較例6は、冷延焼鈍材であり、Cu含有量が0.5質量%と高すぎたため、形状凍結性評価不良(×)、成形性評価不良(×)、熱伝導性評価不良(×)であった。
 比較例7は、本発明の組成範囲内の冷延焼鈍材であるが、熱間圧延の開始温度が600℃と高すぎたため、熱伝導性評価不良(×)であった。
 比較例8は、本発明の組成範囲内の冷延焼鈍材であるが、熱間圧延の開始温度が550℃と高すぎたため、熱伝導性評価不良(×)であった。 
 比較例9は、冷延まま材であり、Si含有量が0.72質量%と高く、溶接性評価不良(×)であった。
 比較例10は、冷延まま材であり、Fe含有量が0.51質量%と高すぎたため、溶接性評価不良(×)であった。
 比較例11は、冷延まま材であり、Mn含有量が1.6質量%と高すぎたため、溶接性評価不良(×)、成形性評価不良(×)、熱伝導性評価不良(×)であった。
 比較例12は、冷延まま材であり、Cu含有量が0.5質量%と高すぎたため、熱伝導性評価不良(×)であった。
 以上のように本発明によれば、大型リチウムイオン電池容器に適用可能な放熱特性を有しており、しかも成形性、形状凍結性にも優れ、さらにレーザー溶接性にも優れた3000系アルミニウム合金板が提供される。

Claims (3)

  1.  Fe:0.05~0.3質量%未満、Mn:0.6~1.5質量%、Si:0.05~0.6質量%を含有し、残部Alおよび不純物からなり、不純物としてのCuが0.35質量%未満、Mgが0.05質量%未満である成分組成を有し、
     導電率45%IACSを超え、0.2%耐力が40~60MPa未満であり、20%以上の伸びの値を呈する冷延焼鈍材であることを特徴とする成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板。
  2.  Fe:0.05~0.3質量%未満、Mn:0.6~1.5質量%、Si:0.05~0.6質量%を含有し、残部Alおよび不純物からなり、不純物としてのCuが0.35質量%未満、Mgが0.05質量%未満である成分組成を有し、
     導電率45%IACSを超え、0.2%耐力が60~150MPa未満であり、3%以上の伸びの値を呈する冷延まま材であることを特徴とする成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板。
  3.  さらに、Co:0.001~0.5質量%、Nb:0.005~0.05質量%、V:0.005~0.05質量%のうち一種または二種以上を含有する請求項1又は2に記載の成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板。
PCT/JP2013/064385 2012-10-12 2013-05-23 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板 WO2014057707A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2871843A CA2871843C (en) 2012-10-12 2013-05-23 Aluminum alloy sheet for battery case use excellent in formability, heat dissipation, and weldability
EP13844640.6A EP2835436B1 (en) 2012-10-12 2013-05-23 Aluminum alloy sheet for electric cell case, having excellent moldability, heat dissipation, and weldability
US14/404,313 US9885097B2 (en) 2012-10-12 2013-05-23 Aluminum alloy sheet for battery case use excellent in formability, heat dissipation, and weldability
CN201380012746.8A CN104204249B (zh) 2012-10-12 2013-05-23 成形性、散热性和焊接性优良的电池壳体用铝合金板
MX2014012730A MX2014012730A (es) 2012-10-12 2013-05-23 Lamina de aleacion de aluminio para cubiertas de bateria que tiene excelente formabilidad, disipacion de calor, y soldabilidad.
KR1020167012646A KR101900581B1 (ko) 2012-10-12 2013-05-23 성형성, 방열성 및 용접성이 우수한 전지 케이스용 알루미늄 합금판
KR1020147029840A KR20140139067A (ko) 2012-10-12 2013-05-23 성형성, 방열성 및 용접성이 우수한 전지 케이스용 알루미늄 합금판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012226968A JP5954099B2 (ja) 2012-10-12 2012-10-12 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP2012-226968 2012-10-12

Publications (1)

Publication Number Publication Date
WO2014057707A1 true WO2014057707A1 (ja) 2014-04-17

Family

ID=50477185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064385 WO2014057707A1 (ja) 2012-10-12 2013-05-23 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板

Country Status (9)

Country Link
US (1) US9885097B2 (ja)
EP (1) EP2835436B1 (ja)
JP (1) JP5954099B2 (ja)
KR (2) KR101900581B1 (ja)
CN (2) CN104204249B (ja)
CA (1) CA2871843C (ja)
MX (1) MX2014012730A (ja)
TW (1) TWI531105B (ja)
WO (1) WO2014057707A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015828A1 (ja) * 2013-08-02 2015-02-05 日本軽金属株式会社 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536885B2 (ja) * 2015-06-15 2019-07-03 トヨタ自動車株式会社 電池容器の製造方法および電池容器
CN106521246B (zh) * 2016-10-10 2018-01-02 上海华峰新材料研发科技有限公司 用于电池外壳铝合金防爆阀的材料及其制造方法
CN107393718B (zh) * 2017-08-16 2019-09-20 韶关东阳光电容器有限公司 耐高温铝电解电容器
JP6780664B2 (ja) * 2017-12-05 2020-11-04 日本軽金属株式会社 一体型円形防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
CN108206315A (zh) * 2017-12-24 2018-06-26 中山市榄商置业发展有限公司 一种新能源汽车电池组散热装置
JP6614293B1 (ja) * 2018-08-23 2019-12-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6614305B1 (ja) * 2018-09-21 2019-12-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
CN109652681A (zh) * 2018-12-29 2019-04-19 安徽鑫铂铝业股份有限公司 一种利于高效散热的铝型材料及其制备方法
CN112210698B (zh) * 2020-09-14 2021-09-10 中国石油天然气股份有限公司 一种用于井下定时移除工具的铝基可溶合金及其制备方法
CN112195373A (zh) * 2020-11-09 2021-01-08 江苏常铝铝业集团股份有限公司 一种电池壳体用铝合金带材及其制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329908A (ja) * 1995-06-02 1996-12-13 Sanyo Electric Co Ltd アルミニウム外装缶の二次電池
JPH117922A (ja) * 1997-06-18 1999-01-12 Mitsubishi Cable Ind Ltd 密閉型電池の密閉構造
JPH11214856A (ja) * 1998-01-20 1999-08-06 Sumitomo Electric Ind Ltd ハードケース
JPH11350057A (ja) * 1998-06-10 1999-12-21 Sky Alum Co Ltd ケース用Al−Mn系合金板およびその製造方法
JP2000273593A (ja) * 1999-03-23 2000-10-03 Kobe Steel Ltd 開缶性が優れたアルミニウム合金板の製造方法
JP2000328166A (ja) * 1999-05-12 2000-11-28 Furukawa Electric Co Ltd:The 密閉型角型電池外装缶用アルミニウム合金板およびその製造方法
JP2002134069A (ja) * 2000-10-23 2002-05-10 Sky Alum Co Ltd 耐高温フクレ性に優れたケース用アルミニウム合金板およびその製造方法
JP2003003226A (ja) * 2001-06-21 2003-01-08 Nippon Light Metal Co Ltd パルスレーザー溶接性に優れたアルミニウム合金板およびその製造方法
JP3620955B2 (ja) 1997-12-09 2005-02-16 株式会社神戸製鋼所 角形電池ケース用アルミニウム合金板
JP3763088B2 (ja) 1998-06-26 2006-04-05 古河スカイ株式会社 耐フクレ性に優れた電池ケース用アルミニウム合金板およびその製造方法
JP2009256754A (ja) 2008-04-21 2009-11-05 Sumitomo Light Metal Ind Ltd レーザー溶接性に優れた電池ケース用アルミニウム板

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3986688B2 (ja) * 1998-09-29 2007-10-03 株式会社神戸製鋼所 微細な再結晶粒組織を有するAl−Mn系合金圧延材の製造方法
JP4105404B2 (ja) 2001-05-15 2008-06-25 三菱アルミニウム株式会社 二次電池ケース用アルミニウム合金板の製造方法
EP1300480A1 (en) 2001-10-05 2003-04-09 Corus L.P. Aluminium alloy for making fin stock material
JP4114342B2 (ja) * 2001-11-12 2008-07-09 松下電器産業株式会社 角型リチウムイオン二次電池
JP3702840B2 (ja) * 2001-11-26 2005-10-05 松下電器産業株式会社 角型リチウムイオン二次電池
JP4242225B2 (ja) * 2002-10-18 2009-03-25 住友軽金属工業株式会社 電池ケース用アルミニウム合金板およびその製造方法
JP2004232009A (ja) * 2003-01-29 2004-08-19 Kobe Steel Ltd 電池ケース用アルミニウム合金板およびその製造方法ならびにアルミニウム合金製電池ケース
JP2006037129A (ja) * 2004-07-23 2006-02-09 Kobe Steel Ltd 二次電池ケースの封口板用アルミニウム合金板
JP4281727B2 (ja) * 2005-10-13 2009-06-17 日本軽金属株式会社 電池蓋用アルミニウム合金板
CN100590214C (zh) * 2006-04-13 2010-02-17 深圳市比克电池有限公司 一种用于制造电池外壳的铝合金
CN101100716B (zh) * 2006-07-03 2011-04-06 杰出材料科技股份有限公司 具有纳米复合相的铝合金及其应用
JP5396701B2 (ja) * 2007-08-22 2014-01-22 日本軽金属株式会社 アルミニウム合金板製電池ケース
CN102400015B (zh) * 2010-09-14 2015-05-06 株式会社神户制钢所 电池箱用铝合金板和电池箱
CN102453819B (zh) 2010-10-26 2014-05-07 上海中天铝线有限公司 导电率为59%的中强度铝合金线的制造方法
KR101321666B1 (ko) * 2011-02-01 2013-10-23 가부시키가이샤 고베 세이코쇼 전지 케이스용 알루미늄 합금판 및 전지 케이스
JP5725344B2 (ja) * 2011-02-02 2015-05-27 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP5725345B2 (ja) * 2011-02-02 2015-05-27 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP5684617B2 (ja) 2011-03-22 2015-03-18 三菱アルミニウム株式会社 レーザ溶接性に優れる二次電池大型角型缶用高強度アルミニウム合金板及びその製造方法
CN102925758A (zh) 2012-10-25 2013-02-13 苏州有色金属研究院有限公司 锂离子电池壳用铝合金

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329908A (ja) * 1995-06-02 1996-12-13 Sanyo Electric Co Ltd アルミニウム外装缶の二次電池
JPH117922A (ja) * 1997-06-18 1999-01-12 Mitsubishi Cable Ind Ltd 密閉型電池の密閉構造
JP3620955B2 (ja) 1997-12-09 2005-02-16 株式会社神戸製鋼所 角形電池ケース用アルミニウム合金板
JPH11214856A (ja) * 1998-01-20 1999-08-06 Sumitomo Electric Ind Ltd ハードケース
JPH11350057A (ja) * 1998-06-10 1999-12-21 Sky Alum Co Ltd ケース用Al−Mn系合金板およびその製造方法
JP3763088B2 (ja) 1998-06-26 2006-04-05 古河スカイ株式会社 耐フクレ性に優れた電池ケース用アルミニウム合金板およびその製造方法
JP2000273593A (ja) * 1999-03-23 2000-10-03 Kobe Steel Ltd 開缶性が優れたアルミニウム合金板の製造方法
JP2000328166A (ja) * 1999-05-12 2000-11-28 Furukawa Electric Co Ltd:The 密閉型角型電池外装缶用アルミニウム合金板およびその製造方法
JP2002134069A (ja) * 2000-10-23 2002-05-10 Sky Alum Co Ltd 耐高温フクレ性に優れたケース用アルミニウム合金板およびその製造方法
JP2003003226A (ja) * 2001-06-21 2003-01-08 Nippon Light Metal Co Ltd パルスレーザー溶接性に優れたアルミニウム合金板およびその製造方法
JP2009256754A (ja) 2008-04-21 2009-11-05 Sumitomo Light Metal Ind Ltd レーザー溶接性に優れた電池ケース用アルミニウム板

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Aluminum Kako Gijutsu Binran", THE NIKKAN KOGYO SHINBUN, LTD, 5 March 1970 (1970-03-05), pages 117, XP008175113 *
ALUMINUM HANDBOOK, 31 January 2007 (2007-01-31), pages 16, 32, 46, XP008175269 *
See also references of EP2835436A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015015828A1 (ja) * 2013-08-02 2015-02-05 日本軽金属株式会社 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP2015030878A (ja) * 2013-08-02 2015-02-16 日本軽金属株式会社 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板

Also Published As

Publication number Publication date
EP2835436B1 (en) 2019-03-13
KR20140139067A (ko) 2014-12-04
JP5954099B2 (ja) 2016-07-20
EP2835436A4 (en) 2016-03-23
US9885097B2 (en) 2018-02-06
KR101900581B1 (ko) 2018-11-02
JP2014077189A (ja) 2014-05-01
KR20160058975A (ko) 2016-05-25
CA2871843A1 (en) 2014-04-17
CN107475570B (zh) 2019-06-04
CN104204249B (zh) 2017-10-13
MX2014012730A (es) 2015-01-15
TWI531105B (zh) 2016-04-21
US20150167126A1 (en) 2015-06-18
CA2871843C (en) 2017-04-18
EP2835436A1 (en) 2015-02-11
CN107475570A (zh) 2017-12-15
CN104204249A (zh) 2014-12-10
TW201415695A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5954099B2 (ja) 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP5725344B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP6780783B2 (ja) 一体型円形防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP5846032B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP5725345B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP6780679B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6614305B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP5929855B2 (ja) 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP6780680B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6614307B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
TWI516608B (zh) Aluminum alloy plate with excellent formability and weldability for battery case
JP6780685B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013844640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/012730

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20147029840

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2871843

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14404313

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE