WO2015015828A1 - 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板 - Google Patents

成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板 Download PDF

Info

Publication number
WO2015015828A1
WO2015015828A1 PCT/JP2014/057368 JP2014057368W WO2015015828A1 WO 2015015828 A1 WO2015015828 A1 WO 2015015828A1 JP 2014057368 W JP2014057368 W JP 2014057368W WO 2015015828 A1 WO2015015828 A1 WO 2015015828A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
cold
final
rolled
Prior art date
Application number
PCT/JP2014/057368
Other languages
English (en)
French (fr)
Inventor
鈴木 健太
安志 大和田
敏也 穴見
一光 水嶋
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201480003399.7A priority Critical patent/CN104838025A/zh
Priority to KR1020157016668A priority patent/KR101721785B1/ko
Publication of WO2015015828A1 publication Critical patent/WO2015015828A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum alloy plate excellent in formability, heat dissipation and weldability, which is used for a secondary battery container such as a lithium ion battery.
  • Al-Mn 3000 series alloys are relatively excellent in strength, formability, and laser weldability, and are therefore used as materials for manufacturing secondary battery containers such as lithium ion batteries. Yes. After forming into a desired shape, it is hermetically sealed by laser welding and used with a secondary battery container. Development has been made on an aluminum alloy plate for a secondary battery container, which is based on an existing 3000 series alloy as well as the 3000 series alloy and has further improved strength and formability.
  • the aluminum alloy plate has a composition defined by JIS A3003, the ear rate is 8% or less, the average grain size of recrystallized grains is 50 ⁇ m or less, and the conductivity is An aluminum alloy plate for a rectangular battery case characterized by being 45 IACS% or less is described.
  • Mn is contained in an amount of 0.8 to 2.0% (mass%, the same shall apply hereinafter), the amount of Fe as impurities is restricted to 0.6% or less, and the amount of Si is restricted to 0.3% or less.
  • the Mn solid solution amount is 0.75% or more, the ratio of the Mn solid solution amount to the Mn addition amount is 0.6 or more, and the proof stress value is 185 to 260 N / mm 2.
  • the aluminum alloy plate for battery cases, which is excellent in high-temperature blistering resistance, is characterized by being in the range.
  • Patent Document 3 contains 0.5 to 1.5% of Mn, 0.1 to 0.5% of Si, and 0.3 to 1.0% of Fe, and the balance is made of Al and inevitable impurities.
  • the resulting aluminum alloy ingot is subjected to hot rolling and cold rolling, and after the cold rolling, it is held at a temperature of 450 ° C. or higher, and then annealed to 200 ° C. at a cooling rate of 1 ° C./sec or higher.
  • a method for producing an aluminum alloy case material for a sealed rectangular battery having excellent formability and creep resistance is described.
  • Patent Document 4 describes an aluminum alloy plate excellent in laser weldability that does not generate irregular beads when laser welding an A1000 series aluminum material.
  • the aluminum alloy plate contains Si: 0.02 to 0.10% by mass, the Fe content is limited to 0.30% by mass or less, the balance is Al and inevitable impurities, and the equivalent circle diameter is 1
  • the number of intermetallic compound particles of 0.5 to 6.5 ⁇ m may be regulated to 1000 to 2400 / mm 2 .
  • the 1000 series has problems that the weldability is stable and the formability is excellent, but the strength is low. Therefore, as the size of the lithium ion battery is increased, it is expected that high strength characteristics are required, and there is a problem in applying the 1000 series aluminum material as it is.
  • a 3000 series alloy plate provides strength and resistance to swelling when subjected to high-temperature internal pressure, it has a tendency to be inferior to a 1000 series alloy plate and have a large number of abnormal beads.
  • the size of lithium ion batteries increases, it is expected that the amount of heat generated from the lithium ion batteries during charging and discharging will increase, and there is also a demand for batteries with excellent heat dissipation characteristics.
  • the 3000 series aluminum alloy plate generally has a high Mn solid solution amount, and depending on its component composition as a large lithium ion battery container, the proof stress may be too high, and spring back is likely to occur after press molding, There is also a problem of so-called shape freezing property that does not fit into a predetermined design shape.
  • the present invention has been devised to solve such problems, has heat dissipation characteristics applicable to large-sized lithium ion battery containers, and is excellent in moldability and shape freezing property.
  • An object of the present invention is to provide a 3000 series aluminum alloy plate having excellent laser weldability.
  • the aluminum alloy plate for battery cases having excellent formability and weldability according to the present invention is provided with Fe: more than 0.2 to less than 1.4% by mass, Mn: 0.5 to 2.0.
  • the 0.2% proof stress is 30 to less than 85 MPa
  • the number of second phase particles having an equivalent circle diameter of 2 ⁇ m or more in the metal structure is less than 1800 / mm 2 .
  • the 0.2% proof stress is less than 90 to 180 MPa
  • the number of second phase particles having an equivalent circle diameter of 2 ⁇ m or more in the metal structure is less than 1800 / mm 2 .
  • a method for producing the cold-rolled annealed material a molten aluminum alloy having the above chemical composition is cast into a thin slab of 5 to 10 mm by a twin belt type continuous casting machine, and directly applied to a roll without hot rolling. It is preferable to perform the final annealing treatment by winding and cold rolling to the final plate thickness.
  • a molten aluminum alloy having the above chemical composition is cast into a 5 to 10 mm thin slab by a twin belt type continuous casting machine, and directly subjected to hot rolling without being subjected to hot rolling. It is preferable to wind it on a roll, subject it to cold rolling, subject it to intermediate annealing at an appropriate thickness, and further subject it to final cold rolling at a final cold rolling rate of 5 to 20%.
  • the aluminum alloy plate of the present invention has high thermal conductivity, excellent formability, and excellent laser weldability. Therefore, the aluminum alloy plate has a low secondary battery container that has excellent sealing performance and improved heat dissipation characteristics. Can be manufactured at cost. In particular, in the case of cold-rolled annealed material, it exhibits an elongation of 10% or more, exhibits excellent weldability, and has a low yield strength of less than 30 to 85 MPa, thereby suppressing springback during press molding. Excellent shape freezing.
  • a cold-rolled material In the case of a cold-rolled material, it exhibits an elongation value of 3% or more, exhibits excellent formability, and has a low yield strength of less than 90 to 180 MPa, thereby suppressing spring back during press forming, and as a result It also has excellent shape freezing properties.
  • Secondary batteries are manufactured by putting an electrode body in a container and then sealing it with a lid by welding or the like.
  • the temperature inside the container may rise during charging.
  • the thermal conductivity of the material forming the container is low, the heat dissipation characteristics are inferior, which leads to a problem that the life of the lithium ion battery is shortened. Therefore, a material having high thermal conductivity is required as a material to be used.
  • a press method is generally used as a method for forming a container, the material itself is required to have excellent press formability.
  • it is expected that large-sized lithium ion battery containers will accelerate the material thinning in the future.
  • springback is likely to occur after press molding, and the problem that the material does not fit in a predetermined design shape may become apparent. Therefore, it is required that the material to be used has an excellent shape freezing property.
  • a welding method is used as a method of sealing with a lid, it is also required to have excellent weldability.
  • a laser welding method is used as a welding method for manufacturing a secondary battery container or the like.
  • the 3000 series aluminum alloy plate according to the present invention has high thermal conductivity, so when pulse laser joining a container and a lid obtained by press molding, the energy per pulse is increased, etc. It is necessary to perform bonding under severe conditions. However, when laser welding is performed under such relatively severe conditions, there is a problem in that welding defects called undercut and blowhole are generated in the weld bead.
  • the surface temperature of the weld bead during joining locally reaches a high temperature of 2000 ° C. or higher by irradiation with such a pulse laser.
  • Aluminum is considered to be a highly reflective material and reflects about 70% of the laser beam.
  • the second phase particles existing near the surface of the aluminum alloy plate for example, intermetallic compounds such as Al— (Fe ⁇ Mn) —Si, have a specific heat and heat conduction even at room temperature, compared with the parent phase aluminum. The rate is small and the temperature rises preferentially. The thermal conductivity of these intermetallic compounds further decreases with increasing temperature, the light absorption rate thereof increases at an accelerated rate, and only the intermetallic compounds are rapidly heated and dissolved.
  • the irradiation time of one pulse of the pulse laser is a very short time of nanoseconds or femtoseconds. Therefore, when the ⁇ -Al of the matrix dissolves and transitions to the liquid phase, the intermetallic compound such as Al— (Fe ⁇ Mn) —Si rapidly reaches the boiling point and evaporates. Inflates the volume.
  • a molten aluminum alloy having a specific chemical composition is cast into a thin slab of 5 to 10 mm by a twin belt type continuous casting machine, and without hot rolling.
  • the production method of directly winding on a roll was adopted. Since the cooling rate in the vicinity of 1/4 of the ingot thickness when casting into a thin slab of 5 to 10 mm by a twin belt type continuous casting machine is about 40 to 200 ° C./sec, Al— (Fe ⁇ Mn) — A thin slab having a metal structure in which an intermetallic compound such as Si is finely dispersed is obtained.
  • the number of second phase particles having a circle-equivalent diameter of 2 ⁇ m in the metal structure of the final plate can be restricted to less than 1800 / mm 2, and the number of welding defects generated in the laser weld can be reduced.
  • the final plate is inferior in formability and thermal conductivity although sufficient anti-swelling resistance at high temperature internal pressure load can be secured. Therefore, (1) a manufacturing method in which the rolled roll is cold-rolled to the final plate thickness and subjected to a final annealing treatment, or (2) the rolled roll is cold-rolled to an appropriate plate.
  • a production method was adopted in which intermediate annealing was performed on the thickness, and final cold rolling with a final cold rolling rate of 5 to 20% was performed.
  • the cold-rolled coil is subjected to intermediate annealing treatment or final annealing treatment, so that Mn, Si, etc. dissolved in the matrix are actively diffused and absorbed in the intermetallic compound, and Mn, Si, etc.
  • the amount of solid solution is reduced, the thermal conductivity of the final plate is increased, and at the same time, the elongation value is increased and the proof stress is kept low.
  • the content of Fe, Mn, Si, Cu is regulated, the intermetallic compound in the thin slab is finely dispersed and precipitated (crystallization), and the content of Mg as an impurity is kept low, thereby reducing the laser welded portion.
  • heat treatment is performed while keeping the yield strength low by reducing the amount of Mn, Si, etc. by subjecting the cold-rolled coil to intermediate annealing or final annealing.
  • the aluminum alloy plate is excellent in formability, heat dissipation and weldability.
  • the present inventors have intensively studied to obtain an aluminum alloy plate excellent in laser weldability through investigation of characteristics relating to thermal conductivity (conductivity) and press formability, and investigation of the number of weld defects generated in the weld. Again, the present invention has been reached. The contents will be described below.
  • Fe More than 0.2 to less than 1.4% by mass Fe is an essential element for increasing the strength of the aluminum alloy sheet. When the Fe content is 0.2% by mass or less, the strength of the aluminum alloy plate is lowered, which is not preferable. When the Fe content exceeds 1.4% by mass, coarse intermetallic compounds such as Al— (Fe ⁇ Mn) —Si and Al 6 (Fe ⁇ Mn) are precipitated during thin slab casting. The compound is not preferable because it is more likely to evaporate than the ⁇ -Al matrix during laser welding, and the number of welding defects increases to lower the weldability.
  • the Fe content is in the range of more than 0.2 to less than 1.4% by mass.
  • a more preferable Fe content is in the range of 0.25 to less than 1.3% by mass.
  • a more preferable Fe content is in the range of 0.3 to less than 1.2% by mass.
  • Mn 0.5 to 2.0% by mass
  • Mn is an essential element for increasing the strength of the aluminum alloy plate. If the Mn content is less than 0.5% by mass, the strength of the aluminum alloy plate is lowered, which is not preferable. If the Mn content exceeds 2.0% by mass, the Mn solid solution amount in the matrix becomes too high, not only the thermal conductivity of the final plate is lowered, but also the proof stress is too high and the shape freezing property is also lowered. To do. In addition, coarse intermetallic compounds such as Al- (Fe ⁇ Mn) -Si and Al 6 (Fe ⁇ Mn) crystallize during thin slab casting, and these intermetallic compounds evaporate in comparison with ⁇ -Al matrix during laser welding.
  • the Mn content is in the range of 0.5 to 2.0% by mass.
  • a more preferable Mn content is in the range of 0.5 to 1.9% by mass.
  • a more preferable Mn content is in the range of 0.6 to 1.8% by mass.
  • Si more than 0.2 to 1.1% by mass Si is an essential element that increases the strength of the aluminum alloy plate and improves the flow of molten metal during casting.
  • Si content is 0.2% by mass or less, the strength of the aluminum alloy plate is lowered and the hot water flowability is lowered, which is not preferable.
  • Si content exceeds 1.1% by mass, a relatively coarse intermetallic compound such as Al- (Fe ⁇ Mn) -Si crystallizes in the final solidified portion during thin slab casting. It is not preferable because it is more likely to evaporate than the ⁇ -Al matrix during welding, and the number of welding defects increases to lower weldability. Therefore, the Si content is in the range of more than 0.2 to 1.1% by mass. A more preferable Si content is in the range of 0.25 to 1.0% by mass. A more preferable Si content is in the range of 0.3 to 1.0% by mass.
  • Cu 0.05 to 1.0% by mass
  • Cu is an essential element for increasing the strength of the aluminum alloy plate. If the Cu content is less than 0.05% by mass, the strength of the aluminum alloy plate is lowered, which is not preferable.
  • the Cu content is in the range of 0.05 to 1.0 mass%. A more preferable Cu content is in the range of 0.05 to 0.9% by mass. A more preferable Cu content is in the range of 0.05 to 0.8% by mass.
  • Mg as an unavoidable impurity less than 0.05 mass% Mg as an unavoidable impurity may be contained less than 0.05 mass%. In the present invention, when the Mg content is less than 0.05% by mass, characteristics such as thermal conductivity, formability, and weldability are not deteriorated.
  • Elongation value and 0.2% yield strength Cold-rolled annealed material: elongation value of 10% or more and 0.2% proof stress of 30 to less than 85 MPa
  • Cold-rolled material When the elongation value is 3% or more and the 0.2% proof stress is less than 90 to 180 MPa , when applying the 3000 series aluminum alloy plate to a large lithium ion battery container, etc., it has high heat dissipation characteristics and excellent It is necessary not only to have laser weldability but also to be excellent in moldability and shape freezing property while maintaining an appropriate strength.
  • the shape freezing property and strength of the material can be known from the 0.2% proof stress when the tensile test is conducted, and the moldability can be known from the elongation value at the tensile test.
  • the elongation value is 10% or more in the cold-rolled annealed material, and 0 .2% proof stress is less than 30-85MPa, but for cold-rolled material, elongation is 3% or more and 0.2% proof stress is less than 90-180MPa. It is.
  • the cold-rolled coil is subjected to intermediate annealing treatment or final annealing treatment, It is expressed by reducing the solid solution amount of Mn, Si, etc. in the matrix. Specifically, for example, it is preferable to insert a cold-rolled coil into a batch annealing furnace, heat it, and perform an intermediate annealing process or a final annealing process in which it is maintained at 330 to 470 ° C. for 1 to 8 hours.
  • the intermediate annealing process or the final annealing process of the cold-rolled coil is performed in a batch annealing furnace, for example, at a holding temperature of 330 to 470 ° C. and a holding time of 1 to 8 hours.
  • Mn, Si, etc. are diffused and absorbed by intermetallic compounds such as Al- (Fe ⁇ Mn) -Si, which have already been finely dispersed and precipitated during the casting of thin slabs. It is possible to reduce well.
  • intermetallic compounds such as Al- (Fe ⁇ Mn) -Si absorb Mn, Si, etc., which are solid-solved in the matrix, and the size is reduced. Increasing the solid solution amount of Mn, Si, etc. in the matrix decreases.
  • the present inventors adopt a manufacturing method in which a 5-10 mm thin slab is cast by a twin-belt type continuous casting machine and directly wound on a roll without hot rolling.
  • an intermetallic compound such as Al— (Fe ⁇ Mn) —Si is uniformly and finely precipitated, and in the subsequent intermediate annealing step or the final annealing step, the solid solution of Mn, Si, etc. in the matrix efficiently. It was possible to reduce the amount and increase the conductivity.
  • an intermetallic compound such as Al— (Fe ⁇ Mn) —Si is uniformly and finely precipitated, and the number of second phase particles having an equivalent circle diameter of 2 ⁇ m or more in the metal structure of the final plate is 1800 / mm 2. By making it less than, it succeeded in reducing the number of welding defects in a laser welding part remarkably.
  • the molten aluminum alloy melted in the melting furnace may be cast after it is once transferred to the holding furnace, but may be cast directly from the melting furnace.
  • a more desirable sedation time is 45 minutes or more.
  • in-line degassing or filtering may be performed.
  • In-line degassing is mainly of a type in which an inert gas or the like is blown into a molten aluminum from a rotating rotor, and hydrogen gas in the molten metal is diffused and removed in bubbles of the inert gas.
  • nitrogen gas is used as the inert gas, it is important to control the dew point to, for example, ⁇ 60 ° C. or lower.
  • the amount of hydrogen gas in the ingot is preferably reduced to 0.20 cc / 100 g or less.
  • hydrogen gas that is supersaturated in the ingot may be deposited during laser welding after the final plate is formed, and a large number of blow holes may be generated in the bead. For this reason, the more preferable amount of hydrogen gas in the ingot is 0.15 cc / 100 g or less.
  • the cast ingot continuously casts a thin slab having a thickness of 5 to 10 mm by a twin belt type continuous casting machine.
  • the twin belt casting machine includes an endless belt and a pair of rotating belt portions facing each other up and down, a cavity formed between the pair of rotating belt portions, and a cooling means provided inside the rotating belt portion.
  • the molten metal is supplied into the cavity through a nozzle made of a refractory, and a thin slab is continuously cast.
  • the cooling rate in the vicinity of 1/4 of the ingot thickness when casting into a thin slab of 5 to 10 mm by a twin belt type continuous casting machine is about 40 to 200 ° C./sec, Al— (Fe ⁇ Mn) —
  • a thin slab having a metal structure in which an intermetallic compound such as Si is finely dispersed is obtained.
  • the thickness of the slab exceeds 10 mm, it is difficult to wind it on a roll.
  • the slab thickness is less than 5 mm, it becomes difficult to flow the molten metal uniformly into the cavity. Therefore, the slab thickness was limited to 5 to 10 mm.
  • the thin slab is directly wound on a roll without being subjected to hot rolling and homogenization, and is subjected to cold rolling.
  • the coil wound in the cold rolling process is passed through a cold rolling machine, and is usually subjected to several passes of cold rolling. At this time, work hardening occurs due to plastic strain introduced by cold rolling, and therefore, an intermediate annealing process is usually performed in consideration of the tempering of the final plate as necessary.
  • an intermediate annealing process between cold rolling processes is essential. For example, a cold rolled coil is inserted into a batch annealing furnace and heated to a temperature of 330. It is preferable to perform an intermediate annealing treatment that is held at ⁇ 470 ° C. for 1 to 8 hours.
  • the intermediate annealing treatment of the cold-rolled coil is performed in a batch annealing furnace at a holding temperature of 330 to 470 ° C. and a holding time of 1 to 8 hours, so that Mn, Si, etc. dissolved in the matrix Can be diffused and absorbed in an intermetallic compound such as Al- (Fe ⁇ Mn) -Si that has already been finely dispersed and precipitated during thin slab casting, and the amount of solid solution such as Mn and Si can be reduced efficiently. Become. If the holding temperature is less than 330 ° C., Mn, Si, etc., dissolved in the matrix are not sufficiently diffused and absorbed by the intermetallic compound, so that the solid solution amount of Mn, Si, etc.
  • preferable intermediate annealing conditions are a holding temperature of 330 to 470 ° C. and a holding time of 1 to 8 hours.
  • the coil that has been cold-rolled to the final plate thickness through the final annealing cold rolling step is preferably softened as much as possible in view of the moldability in the mold forming step, and therefore it is desirable to perform the final annealing.
  • final annealing is essential, and the final plate needs to be used as an annealing material.
  • the final annealing performed after the final cold rolling is performed, for example, by inserting a coil cold-rolled to the final sheet thickness into a batch annealing furnace and heating and holding at a temperature of 330 to 470 ° C. for 1 to 8 hours. It is preferable to perform a final annealing treatment.
  • the final annealing treatment of the cold-rolled coil is performed in a batch annealing furnace at a holding temperature of 330 to 470 ° C. and a holding time of 1 to 8 hours, so that Mn, Si, etc. dissolved in the matrix Can be diffused and absorbed in an intermetallic compound such as Al- (Fe ⁇ Mn) -Si that has already been finely dispersed and precipitated during thin slab casting, and the amount of solid solution such as Mn and Si can be reduced efficiently. Become. If the holding temperature is less than 330 ° C., Mn, Si, etc., dissolved in the matrix are not sufficiently diffused and absorbed by the intermetallic compound, so that the solid solution amount of Mn, Si, etc.
  • preferable final annealing conditions are a holding temperature of 330 to 470 ° C. and a holding time of 1 to 8 hours.
  • the final annealing may be a batch annealing treatment in which the temperature is kept at 330 to 470 ° C.
  • the temperature is 400 ° C. to 550 ° C. by the continuous annealing furnace. If it is kept within 15 seconds and then cooled rapidly, it can also serve as a solution treatment.
  • final annealing is not necessarily essential in the present invention, but it is desirable to use an annealing material in consideration of formability in the mold forming process. In the case where the mechanical strength is given priority over the formability, the intermediate annealing is performed between the cold rolling processes, and then cold rolling to the final sheet thickness is provided as a cold rolled material.
  • the final cold rolling rate is preferably in the range of 50 to 90%. If the final cold rolling rate is within this range, the average grain size of recrystallized grains in the final plate after annealing can be set to about 10 to 20 ⁇ m, and the elongation value can be set to 10% or more. Can be finished beautifully. A more preferable final cold rolling rate is in the range of 60 to 90%. On the other hand, the final cold rolling rate when the material is cold rolled without being subjected to final annealing is preferably in the range of 5 to 20%. If the ironing process increases during DI molding, it is necessary to provide a final plate that is slightly harder than the annealed material.
  • the final cold rolling rate is less than 5%, depending on the composition, it becomes difficult to make the proof stress in the final plate 90 MPa or more. If the final cold rolling rate exceeds 20%, it depends on the composition but in the final plate. It becomes difficult to make the elongation value 3% or more. When the final cold rolling rate is within this range, the elongation value in the final plate can be 3% or more and the proof stress can be 90 to less than 180 MPa while cold rolling. A more preferable final cold rolling rate is in the range of 5 to 15%.
  • An aluminum alloy plate for a secondary battery container can be obtained through the normal steps as described above.
  • each side was chamfered by 3 mm to obtain a thickness of 10 mm, and the thin slab was cold-rolled without being homogenized and hot-rolled.
  • the cold-rolled annealed material was first cold-rolled to a final thickness of 1.0 mm.
  • the final cold rolling rate in this case was 90%.
  • this cold-rolled sheet is inserted into an annealer, heated to 430 ° C. at a heating rate of 50 ° C./hr, and subjected to an annealing treatment of 430 ° C. ⁇ 2 hours, and then a cooling rate of 50 ° C./hr. At room temperature.
  • Example 10 This was used as a cold-rolled annealed material (tempered symbol: O).
  • this cold rolled plate was used as the final annealing.
  • the sample was inserted into an annealer, heated to 330 ° C. at a temperature rising rate of 50 ° C./hr, annealed at 330 ° C. for 2 hours, and then cooled to room temperature at a temperature lowering rate of 50 ° C./hr.
  • the cold-rolled material was first cold-rolled to a thickness of 1.18 mm.
  • this cold-rolled sheet is inserted into an annealer, heated to 430 ° C. at a heating rate of 50 ° C./hr, and subjected to an annealing treatment of 430 ° C. ⁇ 2 hours, and then a cooling rate of 50 ° C./hr. At room temperature.
  • cold rolling was performed to a final plate thickness of 1.0 mm, and this was used as a cold-rolled material (tempered symbol: H 12 ). The final cold rolling rate in this case was 15%.
  • Example 22 For some of the test materials (Examples 22 to 24), first, cold rolling was performed to a plate thickness of 1.05 mm, intermediate annealing was performed under the same conditions as the above annealing conditions, and then the final plate thickness 1 Cold-rolled to 0.0 mm and used as a cold-rolled material (tempered symbol: H 12 ). The final cold rolling rate in this case was 5%.
  • the final plate (each sample material) thus obtained was evaluated for formability, shape freezing property and strength, laser weldability, and thermal conductivity. Evaluation of formability Evaluation of formability of the obtained final plate was performed by elongation (%) of a tensile test. Specifically, a JIS No. 5 test piece was collected so that the tensile direction was parallel to the rolling direction, and a tensile test was performed according to JISZ2241, to obtain 0.2% proof stress and elongation (breaking elongation). In the final plate that was annealed after cold rolling, the test material having an elongation value of 10% or more was considered to have good moldability ( ⁇ ), and the test material that was less than 10% was considered to have poor moldability ( ⁇ ). did.
  • test material whose 0.2% proof stress was less than 90 to 180 MPa was defined as a shape freezing property and good strength ( ⁇ ), and the test material was 180 MPa or more.
  • shape freezing property and good strength
  • test material was 180 MPa or more.
  • defective shape freezing
  • a test material having a 0.2% proof stress of less than 90 MPa was regarded as insufficient in strength (x).
  • the final plate obtained was subjected to pulsed laser irradiation to evaluate laser weldability.
  • YAG laser welder JK701 manufactured by LUMONICS frequency 33.0 Hz, welding speed 400 mm / min, energy per pulse 6.5 J / p, pulse width 1.5 msec., Shielding gas (nitrogen) flow rate 15 (L / L min)
  • two plates of the same test material were brought into contact with each other without any gap between the end portions, and pulse laser welding having a total length of 100 mm was performed along the portion.
  • a black defect portion was detected by image editing software, and the area of the black portion defect was calculated by image analysis software.
  • the number of particles corresponding to each equivalent circle diameter was calculated from the black part defect area.
  • a test material in which the number of black part defects having an equivalent circle diameter of 0.1 mm or more was less than 5 was regarded as good ( ⁇ ) in the number of weld defects, and a black part having an equivalent circle diameter of 0.1 mm or more.
  • the test material in which the number of defects was 5 or more was defined as a defective weld defect evaluation (x).
  • the evaluation results are also shown in Tables 3 and 4.
  • IACS% Thermal conductivity evaluation Measurement / Evaluation of Conductivity Conductivity (IACS%) was measured with a conductivity meter (AUTOSIGMA 2000, manufactured by Nippon Hocking Co., Ltd.). A test material having an electrical conductivity exceeding 45 (IACS%) was defined as good conductivity (O), and a test material having an electrical conductivity of 45 (IACS%) or less was defined as poor conductivity (x). The evaluation results are also shown in Tables 3 and 4.
  • Examples 1 to 24 in Table 3 showing the evaluation results for the evaluation final plate of each test material are final plates (cold-rolled annealed material, cold-rolled material) within the composition range of the present invention, and laser weldability.
  • the evaluation black part defect
  • shape freezeability and strength evaluation (0.2% yield strength
  • moldability evaluation elongation
  • thermal conductivity evaluation (conductivity) were all good ( ⁇ ). Therefore, the overall evaluation for Examples 1 to 24 was good ( ⁇ ).
  • Comparative Examples 1 to 18 in Table 4 showing the evaluation results for the final plate are final plates (cold-rolled annealed material, cold-rolled material) outside the composition range of the present invention, and laser weldability evaluation (black part defects) Among the evaluations of shape freezing property and strength (0.2% yield strength), moldability evaluation (elongation), and thermal conductivity evaluation (conductivity), at least one evaluation was poor (x). Therefore, the overall evaluation for Comparative Examples 1 to 18 was poor ( ⁇ ).
  • Comparative Example 1 was a cold-rolled annealed material and the Si content was too low at 0.05% by mass, the thermal conductivity evaluation was poor (x).
  • Comparative Example 2 was a cold-rolled annealed material, and the Si content was too high at 1.18% by mass, resulting in poor weldability evaluation (x).
  • Comparative Example 3 was a cold-rolled annealed material, and the Fe content was too low at 0.06% by mass, resulting in poor thermal conductivity evaluation (x).
  • Comparative Example 4 was a cold-rolled annealed material, and the Fe content was too high at 1.50% by mass, resulting in poor weldability evaluation (x).
  • Comparative Example 5 was a cold-rolled annealed material, and the Cu content was too high at 1.2% by mass, resulting in poor thermal conductivity evaluation (x) and poor weldability evaluation (x).
  • Comparative Example 6 was a cold-rolled annealed material, and the Cu content was too high at 1.5% by mass, and thus was poor in thermal conductivity evaluation (x) and poor in weldability evaluation (x).
  • Comparative Example 7 was a cold-rolled annealed material, and the Mn content was too low at 0.30% by mass, resulting in poor shape freezeability and strength evaluation (x).
  • Comparative Example 8 was a cold-rolled annealed material, and the Mn content was too high at 2.20% by mass, and thus was poor in thermal conductivity evaluation (x) and poor in weldability evaluation (x).
  • Comparative Example 9 is a cold-rolled annealed material (final annealing temperature: 330 ° C.), and the Cu content was too high at 1.2% by mass. Therefore, poor thermal conductivity evaluation (x), shape freezing property and strength evaluation They were defective (x), formability evaluation failure (x), and weldability evaluation failure (x).
  • Comparative Example 10 is a cold-rolled annealed material (final annealing temperature: 330 ° C.), and the Cu content was too high at 1.5% by mass. Therefore, poor thermal conductivity evaluation (x), shape freezing property and strength evaluation They were defective (x), formability evaluation failure (x), and weldability evaluation failure (x).
  • Comparative Example 11 was a cold-rolled material and the Si content was too low at 0.05 mass%, it was a poor thermal conductivity evaluation (x). Since Comparative Example 12 was a cold-rolled material and the Si content was too high at 1.18% by mass, the weldability evaluation was poor (x). Since Comparative Example 13 was a cold-rolled material and the Fe content was too low at 0.06% by mass, it was a poor thermal conductivity evaluation (x). Since Comparative Example 14 was a cold-rolled material and the Fe content was too high at 1.50% by mass, the weldability evaluation was poor (x). Comparative Example 15 is a cold-rolled material, and the Cu content was too high at 1.2% by mass.
  • Comparative Example 16 is a cold-rolled material, and the Cu content was too high at 1.5% by mass. Therefore, thermal conductivity evaluation failure (x), shape freezeability and strength evaluation failure (x), and formability evaluation. They were defective (x) and poor weldability evaluation (x). Since Comparative Example 17 was a cold-rolled material and the Mn content was too low at 0.30% by mass, the shape freezing property and strength were poorly evaluated (x). Since Comparative Example 18 was a cold-rolled material and the Mn content was too high at 2.20% by mass, it was a poor thermal conductivity evaluation (x) and a poor weldability evaluation (x).
  • Results of image analysis Examples 3, 5, 15, and 17 in Table 5 showing the results of image analysis are the final plates (cold-rolled annealed material, cold-rolled material) within the composition range of the present invention, and in the metal structure
  • the number of second phase particles having an equivalent circle diameter of 2 ⁇ m or more is less than 1800 / mm 2 , and the presence of relatively coarse intermetallic compounds such as Al— (Fe ⁇ Mn) —Si The density was considered low.
  • Comparative Examples 4, 8, 14, and 18 are final plates (cold-rolled annealed material, cold-rolled material) outside the composition range of the present invention, and the number of black part defects in the evaluation of laser weldability.
  • the number of second phase particles having an equivalent circle diameter of 2 ⁇ m or more was 1800 particles / mm 2 or more, and the presence density of relatively coarse intermetallic compounds such as Al— (Fe ⁇ Mn) —Si was considered to be high.
  • the evaluation results of the image analysis of the second phase particles in these metal structures do not necessarily completely coincide with the above-mentioned evaluation results of laser weldability, at least direct generation of welding defects that occur during laser welding.
  • the cause was an intermetallic compound present in the metal structure, and its particle size distribution and type were considered important.
  • a 3000 series aluminum alloy having heat dissipation characteristics applicable to a large-sized lithium ion battery container, excellent in moldability, shape freezing property, and laser weldability.
  • a board is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

 大型リチウムイオン電池容器に適用可能な放熱特性を有しており、しかも成形性、形状凍結性にも優れ、さらにレーザー溶接性にも優れた3000系アルミニウム合金板を提供する。 Fe:0.2超~1.4質量%未満、Mn:0.5~2.0質量%、Si:0.2超~1.1質量%、Cu:0.05~1.0質量%を含有し、残部Alおよび不純物からなり、Mgが0.05質量%未満である成分組成を有し、 導電率45%IACSを超え、金属組織における円相当径2μm以上の第二相粒子数が1800個/mm未満であり、0.2%耐力が30~85MPa未満であり、10%以上の伸びの値を呈する冷延焼鈍材であるアルミニウム合金板。または導電率45%IACSを超え、金属組織における円相当径2μm以上の第二相粒子数が1800個/mm未満であり、0.2%耐力が90~180MPa未満であり、3%以上の伸びの値を呈する冷延まま材であるアルミニウム合金板。

Description

成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
 本発明は、リチウムイオン電池などの二次電池用容器に用いられる、成形性、放熱性及び溶接性に優れたアルミニウム合金板に関するものである。
 Al-Mn系の3000系合金は、強度、成形性及びレーザー溶接性が比較的優れているため、リチウムイオン電池などの二次電池用容器を製造する際の素材として使用されるようになっている。所望形状に成形後にレーザー溶接によって封止密封して二次電池用容器と使用とするものである。前記3000系合金とともに既存の3000系合金をベースとして、さらに強度及び成形性を高めた二次電池容器用アルミニウム合金板に関する開発もなされてきた。
 例えば特許文献1では、アルミニウム合金板の組成として、JIS A3003により規定される組成を有し、耳率が8%以下であり、再結晶粒の平均粒径が50μm以下であると共に、導電率が45IACS%以下であることを特徴とする角形電池ケース用アルミニウム合金板が記載されている。
 一方、電池ケースとして、高温内圧負荷時における耐フクレ性に優れた電池ケース用アルミニウム合金板も開発されている。特許文献2では、Mn0.8~2.0%(mass%、以下同じ)を含有し、かつ不純物としてのFe量が0.6%以下、Si量が0.3%以下に規制され、残部がAlおよび不可避的不純物よりなり、しかもMn固溶量が0.75%以上でかつMn添加量に対するMn固溶量の比が0.6以上であり、さらに耐力値が185~260N/mmの範囲内にあることを特徴とする、耐高温フクレ性に優れた電池ケース用アルミニウム合金板が記載されている。
 さらに、特許文献3では、Mnを0.5~1.5%、Siを0.1~0.5%、Feを0.3~1.0%含有し、残部がAlと不可避的不純物からなるアルミニウム合金鋳塊に熱間圧延および冷間圧延を施し、前記冷間圧延後に、450℃以上の温度で保持し、その後200℃まで1℃/sec以上の冷却速度で冷却する焼鈍処理を施すことを特徴とする成形性と耐クリープ性に優れた密閉型角型電池用アルミニウム合金製ケース材料の製造方法が記載されている。
 しかしながら、3000系合金をベースとしてその組成を改良したアルミニウム合金板では、異常ビードが発生する場合があり、レーザー溶接性に問題があることが知られている。そこで、1000系をベースとしたレーザー溶接性に優れる二次電池容器用アルミニウム合金板も開発されている。特許文献4では、A1000系アルミニウム材をレーザー溶接する際、とくに不揃いビードが発生しない、レーザー溶接性に優れたアルミニウム合金板が記載されている。これによると、アルミニウム合金板においてSi:0.02~0.10質量%を含有し、Fe含有量を0.30質量%以下に制限し、残部Alおよび不可避的不純物からなり、円相当直径1.5~6.5μmの金属間化合物粒子の個数を1000~2400個/mmに規制すればよいとのことである。
特許第3620955号公報 特許第3843368号公報 特許第4244252号公報 特開2009-256754号公報
 確かに、1000系では溶接性が安定し、成形性に優れるものの強度が低いという問題がある。したがって、リチウムイオン電池の大型化が進む中で、高強度特性も要求されることが予想され、1000系のアルミニウム材をそのまま適用することには問題がある。
 前述のように、3000系の合金板では強度や高温内圧負荷時における耐フクレ性が得られるものの、1000系の合金板にくらべ成形性が劣り、異常ビード数が多い傾向がある。また、リチウムイオン電池の大型化が進む中で、充放電時におけるリチウムイオン電池からの発熱量が増加することが予想され、放熱特性に優れたものも要求されている。しかも、3000系アルミニウム合金板は、一般的にMn固溶量が高く、大型リチウムイオン電池容器としてその成分組成にもよるが耐力が高すぎる場合もあり、プレス成形後にスプリングバックが発生しやすく、所定の設計形状に収まらないという、いわゆる形状凍結性の問題もある。
 本発明は、このような課題を解決するために案出されたものであり、大型リチウムイオン電池容器に適用可能な放熱特性を有しており、しかも成形性、形状凍結性にも優れ、さらにレーザー溶接性にも優れた3000系のアルミニウム合金板を提供することを目的とするものである。
 本発明の成形性、溶接性に優れた電池ケース用アルミニウム合金板は、その目的を達成するために、Fe:0.2超~1.4質量%未満、Mn:0.5~2.0質量%、Si:0.2超~1.1質量%、Cu:0.05~1.0質量%を含有し、残部Alおよび不純物からなり、Mgが0.05質量%未満である成分組成を有し、導電率が45%IACSを超えるものとする。
 冷延焼鈍材とした場合、0.2%耐力が30~85MPa未満であり、金属組織における円相当径2μm以上の第二相粒子数が1800個/mm未満であるものとする。また、冷延まま材である場合、0.2%耐力が90~180MPa未満であり、金属組織における円相当径2μm以上の第二相粒子数が1800個/mm未満であるものとする。
 上記冷延焼鈍材の製造方法としては、上記化学組成を有するアルミニウム合金溶湯を、双ベルト式連続鋳造機によって、5~10mmの薄スラブに鋳造し、熱間圧延を施すことなく、直接ロールに巻き取り、最終板厚まで冷間圧延を施して、最終焼鈍処理を施すことが好ましい。
 また、上記冷延まま材の製造方法としては、上記化学組成を有するアルミニウム合金溶湯を、双ベルト式連続鋳造機によって、5~10mmの薄スラブに鋳造し、熱間圧延を施すことなく、直接ロールに巻き取り、これに冷間圧延を施して、適切な板厚において中間焼鈍を施し、さらに最終冷延率5~20%の最終冷間圧延を施すことが好ましい。
 本発明のアルミニウム合金板は、高い熱伝導性を有するとともに成形性にも優れ、しかも優れたレーザー溶接性を備えているので、密閉性能に優れるとともに放熱特性が向上する二次電池用容器を低コストで製造することができる。
 特に冷延焼鈍材の場合には、10%以上の伸びを呈し、優れた溶接性を発現するとともに、耐力が30~85MPa未満と低いので、プレス成形時のスプリングバックが抑制され、その結果、形状凍結性にも優れている。
 また冷延まま材の場合には、3%以上の伸び値を呈し、優れた成形性を発現するとともに、耐力が90~180MPa未満と低いので、プレス成形時のスプリングバックが抑制され、その結果、形状凍結性にも優れている。
溶接欠陥数の測定/評価方法を説明する概念図
 二次電池は、容器に電極体を入れた後に、溶接等により蓋を付けて密封することによって製造されている。このような二次電池を携帯電話などに使用すると、充電する際、容器内部の温度が上昇することがある。このため、容器を形作っている材料の熱伝導性が低いと放熱特性に劣ることとなり、ひいてはリチウムイオン電池の短寿命化に繋がるという問題がある。したがって、用いる材料として高い熱伝導性を有するものが求められる。
 また、容器を形作る方法としてプレス法が用いられるのが一般的であるから、用いる材料自身に優れたプレス成形性を有することが要求される。さらに、大型リチウムイオン電池容器においても、今後は素材の薄肉化に拍車がかかることが予想される。もちろん、素材が薄肉化すれば、プレス成形後にスプリングバックが発生しやすくなり、所定の設計形状に収まらないという問題が顕在化する可能性もある。したがって、用いる材料自身に優れた形状凍結性を有することが要求される。
 しかも、蓋を付けて密封する方法として溶接法が用いられるので、溶接性に優れることも要求される。そして、二次電池用容器等を製造の際の溶接法としてレーザー溶接法が用いられる場合が多い。本発明に係る3000系のアルミニウム合金板は高い熱伝導性を有するため、プレス成形して得られた容器と蓋とをパルスレーザー接合する場合、1パルス当たりのエネルギーを高くする等して、より過酷な条件で接合を行う必要がある。しかしながら、このように比較的過酷な条件下でレーザー溶接を行うと、溶接ビードにアンダーカット、ブローホールと呼ばれる溶接欠陥が発生することが問題となる。
 このようなパルスレーザーの照射によって、接合中の溶接ビードの表面温度は、局部的に2000℃以上の高温に達すると推測されている。アルミニウムは、高反射材料とされ、レーザービームの約7割を反射するとされている。一方、アルミニウム合金板の表面近傍に存在していた第二相粒子、例えば、Al-(Fe・Mn)-Si等の金属間化合物は、母相のアルミニウムに比べ、室温においても比熱、熱伝導率が小さく、優先的に温度が上昇する。これら金属間化合物の熱伝導率は温度上昇とともにさらに低くなり、その光吸収率は加速度的に上昇して、金属間化合物のみが急激に加熱溶解される。パルスレーザーの1回のパルスの照射時間は、ナノ秒、フェムト秒という非常に短い時間である。したがって、マトリックスのα-Alが溶解して液相に相転移する頃には、Al-(Fe・Mn)-Si等の金属間化合物は、先に沸点に達して蒸発することにより、急激に体積を膨張させる。
 そこで本発明では、冷延焼鈍材にあっては、特定の化学組成を有するアルミニウム合金溶湯を、双ベルト式連続鋳造機によって、5~10mmの薄スラブに鋳造し、熱間圧延を施すことなく、直接ロールに巻き取るという製造方法を採用した。双ベルト式連続鋳造機によって、5~10mmの薄スラブに鋳造する際の鋳塊厚み1/4付近における冷却速度は、40~200℃/sec程度であるため、Al-(Fe・Mn)-Si等の金属間化合物が細かく分散した金属組織を有する薄スラブが得られる。その結果、最終板の金属組織における円相当径2μmの第二相粒子数を1800個/mm未満に規制することができ、レーザー溶接部に発生する溶接欠陥数を低減することができる。
 しかしながら、このままではマトリックスにおけるMn、Si等の固溶量が高すぎるため、高温内圧負荷時における耐フクレ性は十分に確保できるものの、成形性、熱伝導性に劣った最終板となる。そこで、(1)巻き取ったロールに、最終板厚まで冷間圧延を施して、最終焼鈍処理を施すという製造方法、または(2)巻き取ったロールに冷間圧延を施して、適切な板厚において中間焼鈍を施し、さらに最終冷延率5~20%の最終冷間圧延を施すという製造方法を採用した。このように冷延コイルに、中間焼鈍処理または最終焼鈍処理を施すことで、マトリックスに固溶しているMn、Si等を積極的に金属間化合物中に拡散吸収させて、Mn、Si等の固溶量を低減し、最終板の熱伝導性を高めると同時に、伸び値を高くし耐力を低く抑えている。この結果、高い放熱特性を有しており、しかも成形性、形状凍結性にも優れたアルミニウム合金板とすることができる。
 本発明では、Fe、Mn、Si、Cuの含有量を規定し、薄スラブにおける金属間化合物を細かく分散析出(晶出)させ、不純物としてのMgの含有量を低く抑えることで、レーザー溶接部に発生する溶接欠陥数を低減するとともに、冷延コイルに、中間焼鈍処理または最終焼鈍処理を施すことにより、Mn、Si等の固溶量を低減することで、耐力を低く抑えつつ、熱伝導性を高めて、成形性、放熱性および溶接性に優れたアルミニウム合金板とした。本発明者等は、熱伝導性(導電率)、プレス成形性に関する特性の調査や、溶接部に発生した溶接欠陥数の調査を通じてレーザー溶接性にも優れたアルミニウム合金板を得るべく鋭意検討を重ね、本発明に到達した。
 以下にその内容を説明する。
 まず、本発明の二次電池容器用アルミニウム合金板に含まれる各元素の作用、適切な含有量等について説明する。
Fe:0.2超~1.4質量%未満
 Feは、アルミニウム合金板の強度を増加させるため、必須の元素である。Fe含有量が0.2質量%以下であると、アルミニウム合金板の強度が低下するため、好ましくない。Feの含有量が1.4質量%を超えると、薄スラブ鋳造時にAl-(Fe・Mn)-Si系、Al(Fe・Mn)等の粗大な金属間化合物が析出し、これら金属間化合物はレーザー溶接時にα-Alマトリックスに比べ蒸発しやすく、溶接欠陥数が増加して溶接性を低下させるため、好ましくない。
 したがって、Fe含有量は、0.2超~1.4質量%未満の範囲とする。より好ましいFe含有量は、0.25~1.3質量%未満の範囲である。さらに好ましいFe含有量は、0.3~1.2質量%未満の範囲である。
Mn:0.5~2.0質量%
 Mnは、アルミニウム合金板の強度を増加させるため、必須の元素である。Mn含有量が0.5質量%未満であると、アルミニウム合金板の強度が低下するため、好ましくない。Mnの含有量が2.0質量%を超えると、マトリックスにおけるMn固溶量が高くなりすぎて、最終板の熱伝導性が低下するばかりでなく、耐力が高くなりすぎて形状凍結性も低下する。さらに、薄スラブ鋳造時にAl-(Fe・Mn)-Si系、Al(Fe・Mn)等の粗大な金属間化合物が晶出し、これら金属間化合物はレーザー溶接時にα-Alマトリックスに比べ蒸発しやすく、溶接欠陥数が増加して溶接性を低下させるため、好ましくない。
 したがって、Mn含有量は、0.5~2.0質量%の範囲とする。より好ましいMn含有量は、0.5~1.9質量%の範囲である。さらに好ましいMn含有量は、0.6~1.8質量%の範囲である。
Si:0.2超~1.1質量%
 Siは、アルミニウム合金板の強度を増加させ、鋳造時の湯流れ性を改善する必須元素である。Si含有量が0.2質量%以下であると、アルミニウム合金板の強度が低下するとともに、湯流れ性が低下するため好ましくない。Si含有量が1.1質量%を超えると、薄スラブ鋳造時の最終凝固部に比較的粗大なAl-(Fe・Mn)-Si等の金属間化合物が晶出し、これら金属間化合物はレーザー溶接時にα-Alマトリックスに比べ蒸発しやすく、溶接欠陥数が増加して溶接性を低下させるため、好ましくない。
 したがって、Si含有量は、0.2超~1.1質量%の範囲とする。より好ましいSi含有量は、0.25~1.0質量%の範囲である。さらに好ましいSi含有量は、0.3~1.0質量%の範囲である。
Cu:0.05~1.0質量%
 Cuは、アルミニウム合金板の強度を増加させるため、必須の元素である。Cu含有量が0.05質量%未満であると、アルミニウム合金板の強度が低下するため好ましくない。Cu含有量が1.0質量%を超えると、熱伝導性および溶接性が低下するため好ましくない。
 したがって、Cu含有量は、0.05~1.0質量%の範囲とする。より好ましいCu含有量は、0.05~0.9質量%の範囲である。さらに好ましいCu含有量は、0.05~0.8質量%の範囲である。
不可避的不純物としてのMg:0.05質量%未満
 不可避的不純物としてのMgは0.05質量%未満含有していてもよい。本発明において、Mg含有量が0.05質量%未満であれば、熱伝導性、成形性及び溶接性等の特性について低下することはない。
その他の不可避的不純物
 不可避的不純物は原料地金、返り材等から不可避的に混入するもので、それらの許容できる含有量は、例えば、Znの0.05質量%未満、Niの0.10質量%未満、Pb、Bi、Sn、Na、Ca、Srについては、それぞれ0.02質量%未満、Ga及びTiの0.01質量%未満、Nb及びVの0.1質量%未満、Coの0.3質量%未満、その他各0.05質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。
伸び値および0.2%耐力
冷延焼鈍材:伸びの値が10%以上、且つ0.2%耐力が30~85MPa未満
冷延まま材:伸びの値が3%以上、且つ0.2%耐力が90~180MPa未満
 ところで、3000系アルミニウム合金板を大型リチウムイオン電池容器等に適用するに当たっては、高い放熱特性と優れたレーザー溶接性を有するだけでなく、適度な強度を保ちつつ、成形性、形状凍結性にも優れることが必要である。材料の形状凍結性及び強度は引張り試験を行った時の0.2%耐力で、また成形性は引張り試験時の伸びの値で知ることができる。
 詳細は後記の実施例の記載に譲るとして、大型リチウムイオン電池容器等に適用する本発明の3000系アルミニウム合金板としては、冷延焼鈍材にあっては伸びの値が10%以上、且つ0.2%耐力が30~85MPa未満なる特性を有するものが、冷延まま材にあっては伸びの値が3%以上、且つ0.2%耐力が90~180MPa未満なる特性を有するものが好適である。
導電率が45%IACSを超え
 上記のような特性は、前記特定の成分組成を有する3000系アルミニウム合金板を製造する際に、冷延コイルに、中間焼鈍処理または最終焼鈍処理を施すことにより、マトリックス中のMn、Si等の固溶量を低減させることにより発現される。
 具体的には、例えば、冷延されたコイルをバッチ焼鈍炉内に挿入して、加熱し330~470℃×1~8時間保持する中間焼鈍処理または最終焼鈍処理を施すことが好ましい。
 このように、冷延コイルの中間焼鈍処理または最終焼鈍処理を、例えば、バッチ焼鈍炉内において、330~470℃の保持温度、1~8時間の保持時間で行うことで、マトリックスに固溶しているMn、Si等を、すでに薄スラブ鋳造時に細かく分散析出しているAl-(Fe・Mn)-Siなどの金属間化合物に拡散吸収させることで、Mn、Si等の固溶量を効率良く低減させることが可能となる。
 中間焼鈍工程または最終焼鈍工程、およびその加熱・冷却工程において、Al-(Fe・Mn)-Si等の金属間化合物がマトリックスに固溶しているMn、Si等を吸収して、そのサイズを大きくし、マトリックスのMn、Si等の固溶量は低減する。
 本発明者らは、本発明の合金組成範囲において、双ベルト式連続鋳造機によって、5~10mmの薄スラブに鋳造し、熱間圧延を施すことなく、直接ロールに巻き取るという製造方法を採用することにより、Al-(Fe・Mn)-Si等の金属間化合物を均一微細に析出させて、その後の中間焼鈍工程または最終焼鈍工程において、効率的にマトリックス中のMn、Si等の固溶量を低下せしめ、導電率を高めることを可能にした。
 一方、3000系合金の半連続鋳造スラブ(DC鋳造スラブ)において、特に最終凝固部のような箇所においては、その成分組成にもよるが、比較的粗大なAl(Fe・Mn)、Al-(Fe・Mn)-Siなどの金属間化合物が晶出している。これら比較的粗大な金属間化合物は、最終板のレーザー溶接時にα-Alマトリックスに比べ蒸発しやすく、溶接欠陥数が増加する原因となっていると考えられる。本発明者らは、本発明の組成範囲の溶湯を、双ベルト式連続鋳造機によって、5~10mmの薄スラブに鋳造し、熱間圧延を施すことなく、直接ロールに巻き取るという製造方法を採用することにより、Al-(Fe・Mn)-Si等の金属間化合物を均一微細に析出させて、最終板の金属組織における円相当径2μm以上の第二相粒子数を1800個/mm未満とすることにより、レーザー溶接部における溶接欠陥数を著しく低減させることに成功した。
 次に、上記のような二次電池容器用アルミニウム合金板を製造する方法について簡単に紹介する。
溶解・溶製
 溶解炉に原料を投入し、所定の溶解温度に到達したら、フラックスを適宜投入して攪拌を行い、さらに必要に応じてランス等を使用して炉内脱ガスを行った後、鎮静保持して溶湯の表面から滓を分離する。
 この溶解・溶製では、所定の合金成分とするため、母合金等再度の原料投入も重要ではあるが、前記フラックス及び滓がアルミニウム合金溶湯中から湯面に浮上分離するまで、鎮静時間を十分に取ることが極めて重要である。鎮静時間は、通常30分以上取ることが望ましい。
 溶解炉で溶製されたアルミニウム合金溶湯は、場合によって保持炉に一端移湯後、鋳造を行なうこともあるが、直接溶解炉から出湯し、鋳造する場合もある。より望ましい鎮静時間は45分以上である。
 必要に応じて、インライン脱ガス、フィルターを通してもよい。
 インライン脱ガスは、回転ローターからアルミニウム溶湯中に不活性ガス等を吹き込み、溶湯中の水素ガスを不活性ガスの泡中に拡散させ除去するタイプのものが主流である。不活性ガスとして窒素ガスを使用する場合には、露点を例えば-60℃以下に管理することが重要である。鋳塊の水素ガス量は、0.20cc/100g以下に低減することが好ましい。
 また、鋳塊に過飽和に固溶している水素ガスは、最終板の成形後のレーザー溶接時に析出して、ビードに多数のブローホールを発生させる場合もある。このため、より好ましい鋳塊の水素ガス量は、0.15cc/100g以下である。
鋳造
 鋳塊は、双ベルト式連続鋳造機によって、5~10mm厚さの薄スラブを連続的に鋳造する。双ベルト鋳造機は、エンドレスベルトを備え上下に対峙する一対の回転ベルト部と、当該一対の回転ベルト部の間に形成されるキャビティーと、前記回転ベルト部の内部に設けられた冷却手段とを備え、耐火物からなるノズルを通して前記キャビティー内に金属溶湯が供給されて連続的に薄スラブを鋳造するものである。
 双ベルト式連続鋳造機によって、5~10mmの薄スラブに鋳造する際の鋳塊厚み1/4付近における冷却速度は、40~200℃/sec程度であるため、Al-(Fe・Mn)-Si等の金属間化合物が細かく分散した金属組織を有する薄スラブが得られる。
 本発明の組成範囲内の合金スラブでは、スラブ厚さ10mmを超えるとロールに巻き取ることが困難となる。また、スラブ厚さ5mm未満であると、溶湯をキャビティー内に均一に流すことが困難となる。したがって、スラブ厚さは5~10mmに限定した。次に、この薄スラブに熱間圧延処理、均質化処理を施すことなく、直接ロールに巻き取って、冷間圧延を施す。
冷間圧延工程
 巻き取ったコイルは、冷延機に通され、通常何パスかの冷間圧延が施される。この際、冷間圧延によって導入される塑性歪により加工硬化が起こるため、通常は必要に応じて、最終板における調質を踏まえた上で、中間焼鈍処理が行なわれる。
 本願発明では、後述する最終焼鈍を行わない場合には、冷間圧延工程間の中間焼鈍処理が必須であり、例えば、冷延されたコイルをバッチ焼鈍炉内に挿入して、加熱し温度330~470℃で1~8時間保持する中間焼鈍処理を施すことが好ましい。
 このように、冷延されたコイルの中間焼鈍処理を、バッチ焼鈍炉によって330~470℃の保持温度、1~8時間の保持時間で行うことで、マトリックスに固溶しているMn、Si等を、すでに薄スラブ鋳造時に細かく分散析出しているAl-(Fe・Mn)-Si等の金属間化合物に拡散吸収させて、Mn、Si等の固溶量を効率良く低減させることが可能となる。保持温度が330℃未満であると、マトリックスに固溶しているMn、Si等が十分に金属間化合物に拡散吸収されないため、Mn、Si等の固溶量を十分に低減させることができない。保持温度が470℃を超えると、コイルの冷却に時間が掛りすぎて、生産性が低下するため、好ましくない。
 また、所定の保持温度におけるコイルの保持時間が1時間未満であると、コイルの実体温度が不均一となる可能性があるので、好ましくない。所定の保持温度におけるコイルの保持時間が8時間を超えると、生産性が低下するため、好ましくない。したがって、好ましい中間焼鈍条件は、保持温度330~470℃、保持時間1~8時間の範囲である。
最終焼鈍
 冷間圧延工程を経て、最終板厚まで冷延されたコイルは、金型成形工程における成形性も考慮すると、できるだけ軟化させておくことが好ましいため、最終焼鈍を行うことが望ましい。本発明において、特に冷間圧延工程間において中間焼鈍を行わない場合には、最終焼鈍は必須であり、最終板を焼鈍材としておく必要がある。
 本発明において、最終冷間圧延の後に行なわれる最終焼鈍は、例えば、最終板厚まで冷延されたコイルをバッチ焼鈍炉内に挿入して、加熱し温度330~470℃で1~8時間保持する最終焼鈍処理を施すことが好ましい。
 このように、冷延されたコイルの最終焼鈍処理を、バッチ焼鈍炉によって330~470℃の保持温度、1~8時間の保持時間で行うことで、マトリックスに固溶しているMn、Si等を、すでに薄スラブ鋳造時に細かく分散析出しているAl-(Fe・Mn)-Si等の金属間化合物に拡散吸収させて、Mn、Si等の固溶量を効率良く低減させることが可能となる。保持温度が330℃未満であると、マトリックスに固溶しているMn、Si等が十分に金属間化合物に拡散吸収されないため、Mn、Si等の固溶量を十分に低減させることができない。保持温度が470℃を超えると、コイルの冷却に時間が掛りすぎて、生産性が低下するため、好ましくない。
 また、所定の保持温度におけるコイルの保持時間が1時間未満であると、コイルの実体温度が不均一となる可能性があるので、好ましくない。所定の保持温度におけるコイルの保持時間が8時間を超えると、生産性が低下するため、好ましくない。したがって、好ましい最終焼鈍条件は、保持温度330~470℃、保持時間1~8時間の範囲である。
 本発明において、最終焼鈍は、このようにバッチ焼鈍炉によって温度330~470℃で1~8時間保持するバッチ焼鈍処理であってもよいが、連続焼鈍炉によって例えば、400℃~550℃の温度で15秒以内保持し、その後急速に冷却すれば、溶体化処理を兼ねることもできる。
 いずれにしても、本発明において最終焼鈍は必ずしも必須ということではないが、金型成形工程における成形性も考慮すると、焼鈍材としておくことが望ましい。成形性よりも機械的強度を優先する場合には、冷間圧延工程間において中間焼鈍を行った上で、最終板厚まで冷間圧延して冷延まま材で提供する。
最終冷延率
 最終焼鈍を施す場合の最終冷延率は、50~90%の範囲であることが好ましい。最終冷延率がこの範囲であれば、焼鈍後の最終板における再結晶粒の平均粒径を10~20μm程度にして、伸びの値を10%以上にすることができ、成形後の外観肌を綺麗に仕上げることができる。さらに好ましい最終冷延率は、60~90%の範囲である。
 一方、最終焼鈍を施さずに冷延まま材とするときの最終冷延率は、5~20%の範囲とすることが好ましい。DI成形時にしごき加工が多くなる場合には、焼鈍材よりも若干硬い最終板を提供する必要がある。最終冷延率が5%未満であると、組成にもよるが最終板における耐力を90MPa以上とすることが困難となり、最終冷延率が20%を超えると、組成にもよるが最終板における伸びの値を3%以上とすることが困難となる。
 最終冷延率がこの範囲であれば、冷延まま最終板における伸びの値を3%以上、且つ耐力を90~180MPa未満とすることができる。さらに好ましい最終冷延率は、5~15%の範囲である。
 以上のような通常の工程を経ることにより、二次電池容器用アルミニウム合金板を得ることができる。
最終板の作成
 所定の各種インゴットを計量、配合して、離型材を塗布した#20坩堝に6kgずつ(合計8つの供試材)のインゴットを挿入装填した。これら坩堝を電気炉内に挿入して、780℃で溶解して滓を除去し、その後、溶湯温度を740℃に保持し、次いで、溶湯中に小型ランスを挿入して、Nガスを流量1.0L/minで10分間吹き込んで脱ガス処理を行なった。その後30分間の鎮静を行なって溶湯表面に浮上した滓を攪拌棒にて除去し、さらにスプーンで成分分析用鋳型にディスクサンプルを採取した。
 次いで、治具を用いて順次坩堝を電気炉内から取り出し、内寸法200mm×200mm×16mmの水冷金型にアルミニウム溶湯を鋳込み、薄スラブを作製した。各供試材のディスクサンプルは、発光分光分析によって、組成分析を行なった。その結果を表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この薄スラブの押し湯を切断後、両面に各3mmの面削を施して、厚み10mmとして、この薄スラブに均質化処理、熱間圧延を施すことなく、冷間圧延を施した。
 冷延焼鈍材については、まず最終板厚である1.0mmまで冷間圧延を施した。この場合の最終冷延率は90%であった。最終焼鈍は、この冷延板をアニーラーに挿入して、50℃/hrの昇温速度で430℃まで加熱し、430℃×2時間の焼鈍処理を行った後、50℃/hrの降温速度で室温まで炉冷した。これを冷延焼鈍材(調質記号:O)とした。なお、一部の供試材(実施例10~12,比較例9~10)については、最終板厚である1.0mmまで冷間圧延を施した後、最終焼鈍として、この冷延板をアニーラーに挿入して、50℃/hrの昇温速度で330℃まで加熱し、330℃×2時間の焼鈍処理を行った後、50℃/hrの降温速度で室温まで炉冷した。これを冷延焼鈍材(調質記号:O)とした。
 また、冷延まま材については、まず板厚1.18mmまで冷間圧延を施した。中間焼鈍は、この冷延板をアニーラーに挿入して、50℃/hrの昇温速度で430℃まで加熱し、430℃×2時間の焼鈍処理を行った後、50℃/hrの降温速度で室温まで炉冷した。次に最終板厚1.0mmまで冷間圧延を施して、これを冷延まま材(調質記号:H12)とした。この場合の最終冷延率は15%であった。なお、一部の供試材(実施例22~24)については、まず板厚1.05mmまで冷間圧延を施し、上記焼鈍条件と同じ条件下で中間焼鈍を施した後、最終板厚1.0mmまで冷間圧延を施して、これを冷延まま材(調質記号:H12)とした。この場合の最終冷延率は5%であった。
 次に、このようにして得られた最終板(各供試材)について、成形性、形状凍結性及び強度、レーザー溶接性、熱伝導性の評価を行なった。
成形性の評価
 得られた最終板の成形性評価は、引張り試験の伸び(%)によって行った。
 具体的には、引張り方向が圧延方向と平行になるようにJIS5号試験片を採取し、JISZ2241に準じて引張り試験を行って、0.2%耐力、伸び(破断伸び)を求めた。
 冷延後に焼鈍を施した最終板において、伸びの値が10%以上であった供試材を成形性良好(○)とし、10%未満であった供試材を成形性不良(×)とした。評価結果を表3,4に示す。
 冷延ままの最終板において、伸びの値が3%以上であった供試材を成形性良好(○)とし、3%未満であった供試材を成形性不良(×)とした。評価結果を表3,4に示す。
形状凍結性及び強度の評価
 得られた最終板の形状凍結性及び強度の評価は、引張り試験の0.2%耐力(MPa)によって行った。
 冷延後に焼鈍を施した最終板(冷延焼鈍材)において、0.2%耐力が30~85MPa未満であった供試材を形状凍結性及び強度良好(○)とし、85MPa以上であった供試材を形状凍結性不良(×)とした。また、0.2%耐力が30MPa未満であった供試材を強度不足(×)とした。
 冷延ままの最終板(冷延まま材)において、0.2%耐力が90~180MPa未満であった供試材を形状凍結性及び強度良好(○)とし、180MPa以上であった供試材を形状凍結性不良(×)とした。また、0.2%耐力が90MPa未満であった供試材を強度不足(×)とした。評価結果を表3,4に示す。
レーザー溶接条件
 得られた最終板について、パルスレーザー照射を行なって、レーザー溶接性の評価を行なった。LUMONICS社製YAGレーザー溶接機JK701を用いて、周波数33.0Hz、溶接速度400mm/min、パルス当たりのエネルギー6.5J/p、パルス幅1.5msec.、シールドガス(窒素)流量15(L/min)の条件にて、同供試材の2枚の板を端部同士隙間なく、突き合わせて当該部分に沿って全長100mm長さのパルスレーザー溶接を行なった。
レーザー溶接性の評価
黒色部欠陥の測定/評価
 次に、レーザー溶接性の評価として、溶接部に発生した溶接欠陥数を測定した。まず、上記100mm長さの溶接線のうち、溶接スタート部の20mm長さの溶接線を除く、残りの80mm長さの領域を測定領域として決めた。溶接スタート近傍部は不安定なため除いたのである。
 そして、図1に示すように80mm長さの溶接線に沿って形成された溶接ビード断面をX線CT検査によって、溶接線に平行な板厚断面におけるX線CT画像を得た。さらにこのX線CT画像を基にして画像編集ソフトによって黒色欠陥部を検出し、画像解析ソフトにより黒色部欠陥の面積を算出した。この黒色部欠陥面積から各円相当径に対応する粒子数を算出した。
 本明細書において、円相当径0.1mm以上である黒色部欠陥の個数が5未満であった供試材を溶接欠陥数評価良好(○)とし、円相当径0.1mm以上である黒色部欠陥の個数が5以上であった供試材を溶接欠陥数評価不良(×)とした。評価結果を、併せて表3,4に示す。
熱伝導性の評価
導電率の測定/評価
 導電率(IACS%)は、導電率計(AUTOSIGMA 2000 日本ホッキング株式会社製)にて、測定を実施した。導電率が45(IACS%)を超えた供試材を導電率良好(○)とし、導電率が45(IACS%)以下であった供試材を導電率不良(×)とした。評価結果を、併せて表3,4に示す。
 表3に示す実施例3,5,15,17および表4に示す比較例4,8,14,18の最終板について、圧延方向に平行な縦断面(LT方向に垂直な断面)を切り出して、熱可塑性樹脂に埋め込んで鏡面研磨し、フッ化水素酸水溶液にてエッチングを施して、金属組織観察を行った。ミクロ金属組織を光学顕微鏡にて写真撮影し(1視野当たりの面積;0.0334mm、各試料15視野撮影)、写真の画像解析を行い、単位面積(1mm)当たりの円相当径3μm以上の第2相粒子数を測定した。測定結果を、表5に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
各供試材の評価
 最終板についての評価結果を示す表3における実施例1~24は、本発明の組成範囲内の最終板(冷延焼鈍材、冷延まま材)であり、レーザー溶接性評価(黒色部欠陥)、形状凍結性及び強度の評価(0.2%耐力)、成形性評価(伸び)、熱伝導性評価(導電率)とも全て良好(○)であった。したがって、実施例1~24についての総合評価は、良好(○)であった。
 最終板についての評価結果を示す表4における比較例1~18は、本発明の組成範囲外の最終板(冷延焼鈍材、冷延まま材)であり、レーザー溶接性評価(黒色部欠陥)、形状凍結性及び強度の評価(0.2%耐力)、成形性評価(伸び)、熱伝導性評価(導電率)のうち、少なくとも一つの評価が不良(×)であった。したがって、比較例1~18についての総合評価は、不良(×)であった。
 比較例1は、冷延焼鈍材であり、Si含有量が0.05質量%と低すぎたため、熱伝導性評価不良(×)であった。
 比較例2は、冷延焼鈍材であり、Si含有量が1.18質量%と高すぎたため、溶接性評価不良(×)であった。
 比較例3は、冷延焼鈍材であり、Fe含有量が0.06質量%と低すぎたため、熱伝導性評価不良(×)であった。
 比較例4は、冷延焼鈍材であり、Fe含有量が1.50質量%と高すぎたため、溶接性評価不良(×)であった。
 比較例5は、冷延焼鈍材であり、Cu含有量が1.2質量%と高すぎたため、熱伝導性評価不良(×)、溶接性評価不良(×)であった。
 比較例6は、冷延焼鈍材であり、Cu含有量が1.5質量%と高すぎたため、熱伝導性評価不良(×)、溶接性評価不良(×)であった。
 比較例7は、冷延焼鈍材であり、Mn含有量が0.30質量%と低すぎたため、形状凍結性及び強度の評価不良(×)であった。
 比較例8は、冷延焼鈍材であり、Mn含有量が2.20質量%と高すぎたため、熱伝導性評価不良(×)、溶接性評価不良(×)であった。
 比較例9は、冷延焼鈍材(最終焼鈍温度:330℃)であり、Cu含有量が1.2質量%と高すぎたため、熱伝導性評価不良(×)、形状凍結性及び強度の評価不良(×)、成形性評価不良(×)、溶接性評価不良(×)であった。
 比較例10は、冷延焼鈍材(最終焼鈍温度:330℃)であり、Cu含有量が1.5質量%と高すぎたため、熱伝導性評価不良(×)、形状凍結性及び強度の評価不良(×)、成形性評価不良(×)、溶接性評価不良(×)であった。
 比較例11は、冷延まま材であり、Si含有量が0.05質量%と低すぎたため、熱伝導性評価不良(×)であった。
 比較例12は、冷延まま材であり、Si含有量が1.18質量%と高すぎたため、溶接性評価不良(×)であった。
 比較例13は、冷延まま材であり、Fe含有量が0.06質量%と低すぎたため、熱伝導性評価不良(×)であった。
 比較例14は、冷延まま材であり、Fe含有量が1.50質量%と高すぎたため、溶接性評価不良(×)であった。
 比較例15は、冷延まま材であり、Cu含有量が1.2質量%と高すぎたため、熱伝導性評価不良(×)、成形性評価不良(×)、溶接性評価不良(×)であった。
 比較例16は、冷延まま材であり、Cu含有量が1.5質量%と高すぎたため、熱伝導性評価不良(×)、形状凍結性及び強度の評価不良(×)、成形性評価不良(×)、溶接性評価不良(×)であった。
 比較例17は、冷延まま材であり、Mn含有量が0.30質量%と低すぎたため、形状凍結性及び強度の評価不良(×)であった。
 比較例18は、冷延まま材であり、Mn含有量が2.20質量%と高すぎたため、熱伝導性評価不良(×)、溶接性評価不良(×)であった。
Figure JPOXMLDOC01-appb-T000005
画像解析の結果
 画像解析の結果を示す表5における実施例3,5,15,17は、本発明の組成範囲内の最終板(冷延焼鈍材、冷延まま材)であり、金属組織における第2相粒子の画像解析の結果、円相当径2μm以上の第二相粒子数は1800個/mm未満であり、比較的粗いAl-(Fe・Mn)-Si等の金属間化合物の存在密度が低いと考えられた。また、比較例4,8,14,18は、本発明の組成範囲外の最終板(冷延焼鈍材、冷延まま材)であり、かつ、レーザー溶接性の評価における黒色部欠陥の個数が多く、円相当径2μm以上の第二相粒子数は1800個/mm以上であり、比較的粗いAl-(Fe・Mn)-Si等の金属間化合物の存在密度が高いと考えられた。これら金属組織における第二相粒子の画像解析の評価結果は、前述のレーザー溶接性の評価結果と必ずしも完全に一致するものではないが、少なくともレーザー溶接の際に発生する溶接欠陥の直接的な生成原因は、金属組織中に存在する金属間化合物であり、その粒径分布や種類が重要であると考えられた。
 以上のように本発明によれば、大型リチウムイオン電池容器に適用可能な放熱特性を有しており、しかも成形性、形状凍結性にも優れ、さらにレーザー溶接性にも優れた3000系アルミニウム合金板が提供される。

Claims (2)

  1.  Fe:0.2超~1.4質量%未満、Mn:0.5~2.0質量%、Si:0.2超~1.1質量%、Cu:0.05~1.0質量%を含有し、残部Alおよび不純物からなり、Mgが0.05質量%未満である成分組成を有し、
    導電率45%IACSを超え、金属組織における円相当径2μm以上の第二相粒子数が1800個/mm未満であり、0.2%耐力が30~85MPa未満であり、10%以上の伸びの値を呈する冷延焼鈍材であることを特徴とする成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板。
  2.  Fe:0.2超~1.4質量%未満、Mn:0.5~2.0質量%、Si:0.2超~1.1質量%、Cu:0.05~1.0質量%を含有し、残部Alおよび不純物からなり、Mgが0.05質量%未満である成分組成を有し、
    導電率45%IACSを超え、金属組織における円相当径2μm以上の第二相粒子数が1800個/mm未満であり、0.2%耐力が90~180MPa未満であり、3%以上の伸びの値を呈する冷延まま材であることを特徴とする成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板。
PCT/JP2014/057368 2013-08-02 2014-03-18 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板 WO2015015828A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480003399.7A CN104838025A (zh) 2013-08-02 2014-03-18 成形性、散热性和焊接性优良的电池壳体用铝合金板
KR1020157016668A KR101721785B1 (ko) 2013-08-02 2014-03-18 성형성, 방열성 및 용접성이 우수한 전지 케이스용 알루미늄 합금판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013161248A JP5929855B2 (ja) 2013-08-02 2013-08-02 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP2013-161248 2013-08-02

Publications (1)

Publication Number Publication Date
WO2015015828A1 true WO2015015828A1 (ja) 2015-02-05

Family

ID=52431380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057368 WO2015015828A1 (ja) 2013-08-02 2014-03-18 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板

Country Status (5)

Country Link
JP (1) JP5929855B2 (ja)
KR (1) KR101721785B1 (ja)
CN (1) CN104838025A (ja)
TW (1) TWI583040B (ja)
WO (1) WO2015015828A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087413B1 (ja) * 2015-11-05 2017-03-01 株式会社神戸製鋼所 レーザー溶接性に優れた自動車バスバー用アルミニウム合金板
CN106521246B (zh) * 2016-10-10 2018-01-02 上海华峰新材料研发科技有限公司 用于电池外壳铝合金防爆阀的材料及其制造方法
US20200141434A1 (en) * 2017-07-25 2020-05-07 Sumitomo Electric Industries, Ltd. Method of manufacturing metal member-welded structure, and metal member-welded structure
JP6614293B1 (ja) * 2018-08-23 2019-12-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6614305B1 (ja) * 2018-09-21 2019-12-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
CN110747379A (zh) * 2019-11-27 2020-02-04 亚太轻合金(南通)科技有限公司 3xxx系铝合金及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134069A (ja) * 2000-10-23 2002-05-10 Sky Alum Co Ltd 耐高温フクレ性に優れたケース用アルミニウム合金板およびその製造方法
JP2009019223A (ja) * 2007-07-10 2009-01-29 Nippon Light Metal Co Ltd 耐熱性に優れたアルミニウム合金板、その製造方法、耐熱性および深絞り性に優れたアルミニウム合金板およびその製造方法
WO2014057707A1 (ja) * 2012-10-12 2014-04-17 日本軽金属株式会社 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3581963A (en) * 1969-02-14 1971-06-01 Rockford Servo Corp Web guide apparatus and method
JP3620955B2 (ja) 1997-12-09 2005-02-16 株式会社神戸製鋼所 角形電池ケース用アルミニウム合金板
JP4244252B2 (ja) 1999-02-22 2009-03-25 古河スカイ株式会社 成形性と耐クリープ性に優れた密閉型角型電池用アルミニウム合金製ケース材料の製造方法、密閉型角型電池用ケース及び密閉型角型電池。
JP5396701B2 (ja) * 2007-08-22 2014-01-22 日本軽金属株式会社 アルミニウム合金板製電池ケース
JP2009097029A (ja) * 2007-10-15 2009-05-07 Mitsubishi Alum Co Ltd 二次電池ケース用アルミニウム合金材、二次電池ケース用アルミニウム合金板およびその製造方法
JP2009256754A (ja) 2008-04-21 2009-11-05 Sumitomo Light Metal Ind Ltd レーザー溶接性に優れた電池ケース用アルミニウム板
JP5725344B2 (ja) * 2011-02-02 2015-05-27 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP5846032B2 (ja) * 2011-06-07 2016-01-20 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134069A (ja) * 2000-10-23 2002-05-10 Sky Alum Co Ltd 耐高温フクレ性に優れたケース用アルミニウム合金板およびその製造方法
JP2009019223A (ja) * 2007-07-10 2009-01-29 Nippon Light Metal Co Ltd 耐熱性に優れたアルミニウム合金板、その製造方法、耐熱性および深絞り性に優れたアルミニウム合金板およびその製造方法
WO2014057707A1 (ja) * 2012-10-12 2014-04-17 日本軽金属株式会社 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板

Also Published As

Publication number Publication date
TW201507243A (zh) 2015-02-16
KR20150088840A (ko) 2015-08-03
JP5929855B2 (ja) 2016-06-08
KR101721785B1 (ko) 2017-03-30
JP2015030878A (ja) 2015-02-16
CN104838025A (zh) 2015-08-12
TWI583040B (zh) 2017-05-11

Similar Documents

Publication Publication Date Title
JP5725344B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP5954099B2 (ja) 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP6780684B2 (ja) 一体型円形防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
TWI557234B (zh) Aluminum alloy fin sheet for heat exchangers with excellent weldability and sag resistance and its manufacturing method
JP5929855B2 (ja) 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
JP5846032B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP5725345B2 (ja) 成形性、溶接性に優れた電池ケース用アルミニウム合金板
JP6614305B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP6780679B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
TWI516608B (zh) Aluminum alloy plate with excellent formability and weldability for battery case
JP6614307B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6780685B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157016668

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833013

Country of ref document: EP

Kind code of ref document: A1