WO2014054769A1 - 円偏光板およびその製造方法、光学積層体 - Google Patents

円偏光板およびその製造方法、光学積層体 Download PDF

Info

Publication number
WO2014054769A1
WO2014054769A1 PCT/JP2013/077044 JP2013077044W WO2014054769A1 WO 2014054769 A1 WO2014054769 A1 WO 2014054769A1 JP 2013077044 W JP2013077044 W JP 2013077044W WO 2014054769 A1 WO2014054769 A1 WO 2014054769A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optically anisotropic
anisotropic layer
reb
rea
Prior art date
Application number
PCT/JP2013/077044
Other languages
English (en)
French (fr)
Inventor
慎平 吉田
直良 山田
洋行 海鉾
裕介 古木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2014539835A priority Critical patent/JP6216323B2/ja
Publication of WO2014054769A1 publication Critical patent/WO2014054769A1/ja
Priority to US14/677,292 priority patent/US20150212246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to a circularly polarizing plate, a method for producing the same, and an optical laminate.
  • circularly polarizing plates have been used in EL display devices, LCD display devices, and the like in order to suppress adverse effects due to external light reflection.
  • a circularly-polarizing plate for example, as described in Patent Document 1, a mode in which a retardation plate including an optically anisotropic layer and a linearly polarizing film (polarizing film) are combined is disclosed. More specifically, as the optically anisotropic layer, a laminate in which optically anisotropic layers A and B composed of rod-like liquid crystal compounds are laminated is used.
  • the present inventors manufactured an optically anisotropic layer having a laminated structure using a discotic liquid crystal compound. More specifically, when an optically anisotropic layer formed from a rod-like liquid crystal compound is produced on an optically anisotropic layer formed from a discotic liquid crystal compound, the optically anisotropic layer formed from the rod-like liquid crystal compound is produced. However, there was a problem that the alignment was poor and the liquid became cloudy.
  • the present invention includes an optically anisotropic layer formed using a discotic liquid crystal compound and an optically anisotropic layer formed using a rod-shaped liquid crystal compound, and the alignment failure of the rod-shaped liquid crystal compound Is intended to provide a circularly polarizing plate excellent in visibility and a method for producing the same.
  • Another object of the present invention is to provide an optical laminate that can be used for the circularly polarizing plate.
  • the present inventors have controlled the above-mentioned problem by controlling the amount of ultraviolet irradiation when the discotic liquid crystal compound having a polymerizable group is subjected to ultraviolet irradiation treatment to be immobilized. I found that it can be solved. That is, it has been found that the above object can be achieved by the following configuration.
  • a circularly polarizing plate having an optical laminate and a polarizing film The optical laminate has a transparent support, an optically anisotropic layer A, and an optically anisotropic layer B in this order,
  • Optically anisotropic layer A is formed from a composition containing a discotic liquid crystal compound having a polymerizable group
  • the optically anisotropic layer B is formed from a composition containing a rod-like liquid crystal compound having a polymerizable group, ReA (450), ReA (550) and ReA (650) which are retardation values of the optically anisotropic layer A measured at wavelengths of 450 nm, 550 nm and 650 nm, and an optically anisotropic layer measured at wavelengths of 450 nm, 550 nm and 650 nm ReB (450), ReB (550) and ReB (650) which are retardation values of B satisfy the following formula (1), When ReB (550)> ReA (550), the expression (2) is satisfied, When
  • Optically anisotropic layer A is formed from a composition containing a discotic liquid crystal compound having a polymerizable group
  • the optically anisotropic layer B is formed from a composition containing a rod-like liquid crystal compound having a polymerizable group, ReA (450), ReA (550) and ReA (650) which are retardation values of the optically anisotropic layer A measured at wavelengths of 450 nm, 550 nm and 650 nm, and an optically anisotropic layer measured at wavelengths of 450 nm, 550 nm and 650 nm ReB (450), ReB (550) and ReB (650) which are retardation values of B satisfy the following formula (1), When ReB (550)> ReA (550), the expression (2) is satisfied, When ReA (550)> ReB (550), the expression (3) is satisfied, Furthermore, the optical laminate
  • the present invention including an optically anisotropic layer formed using a discotic liquid crystal compound and an optically anisotropic layer formed using a rod-like liquid crystal compound, poor alignment of the rod-like liquid crystal compound is suppressed, A circularly polarizing plate excellent in visibility and a method for producing the same can be provided. Moreover, according to this invention, the optical laminated body which can be used for this circularly-polarizing plate can be provided.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at the wavelength ⁇ , respectively.
  • Re ( ⁇ ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments) by making light of wavelength ⁇ nm incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is Re ( ⁇ ) with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotary axis) (if there is no slow axis, the film surface Measurement is performed at a total of 6 points by injecting light of wavelength ⁇ nm from each inclined direction in steps of 10 degrees from the normal direction to 50 ° on one side with respect to the film normal direction (with any rotation direction as the rotation axis).
  • KOBRA 21ADH or WR calculates based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • the retardation value at a tilt angle larger than the tilt angle is After changing the sign to negative, KOBRA 21ADH or WR calculates.
  • the slow axis is the tilt axis (rotation axis) (if there is no slow axis, the arbitrary direction in the film plane is the rotation axis), the retardation value is measured from any two tilted directions, Rth can also be calculated from the following formula (A) and formula (B) based on the value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction orthogonal to nx in the plane
  • nz is the direction orthogonal to nx and ny.
  • d shows the thickness of a measurement film.
  • Rth ((nx + ny) / 2 ⁇ nz) ⁇ d (Equation (B)
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is the above-mentioned Re ( ⁇ )
  • the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotary axis) from ⁇ 50 ° to the normal direction of the film.
  • the light of wavelength ⁇ nm is incident from each inclined direction in 10 ° steps up to + 50 ° and measured at 11 points.
  • KOBRA is based on the measured retardation value, the assumed average refractive index, and the input film thickness value.
  • visible light means 380 nm to 780 nm.
  • a measurement wavelength is 550 nm.
  • an angle for example, an angle such as “90 °” and a relationship thereof (for example, “orthogonal”, “parallel”, “45 °”, “90 °”, “15 °”, “75 °”). ”Etc.) includes a range of errors allowed in the technical field to which the present invention belongs. For example, it means that the angle is within the range of strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less. That is, “45 °” intends a range of less than 45 ⁇ 10 ° (more than 35 ° and less than 55 °).
  • the circularly polarizing plate 10 includes a transparent support 12, an optically anisotropic layer A14, an optically anisotropic layer B16, and a polarizing film 18 in this order.
  • the optically anisotropic layer A14 is formed from a composition containing a discotic liquid crystal compound having a polymerizable group
  • the optically anisotropic layer B16 is formed from a composition containing a rod-like liquid crystal compound having a polymerizable group.
  • the transparent support 12, the optically anisotropic layer A14, and the optically anisotropic layer B16 constitute the optical laminate 20. Below, each member is explained in full detail.
  • the transparent support is a base material that supports an optically anisotropic layer A, an optically anisotropic layer B, and the like described later.
  • a material for forming the transparent support a polymer excellent in optical performance transparency, mechanical strength, thermal stability, moisture shielding property, isotropy and the like is preferable.
  • the term “transparent” as used in the present invention indicates that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.
  • the material for forming the transparent support examples include polycarbonate polymers, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymers such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer (AS resin), and the like. And styrene-based polymers.
  • Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers, polyethersulfone polymers , Polyether ether ketone polymers, polyphenylene sulfide polymers, vinylidene chloride polymers, vinyl alcohol polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers, or polymers mixed with the above polymers Take an example.
  • thermoplastic norbornene resin can be preferably used as a material for forming the transparent support.
  • thermoplastic norbornene-based resin examples include ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., and ARTON manufactured by JSR Corporation.
  • a cellulose polymer (particularly preferably, cellulose acylate) represented by triacetyl cellulose, which has been conventionally used as a transparent protective film of a polarizing plate, is preferably used. It can.
  • cellulose acylate will be mainly described in detail as an example of the transparent support.
  • additives for example, optical anisotropy adjusting agent, wavelength dispersion adjusting agent, fine particles, plasticizer, ultraviolet ray preventing agent, deterioration preventing agent, release agent, etc.
  • the addition time may be any in the dope preparation step (preparation step of the cellulose acylate solution), but an additive is added and prepared at the end of the dope preparation step. You may perform a process.
  • the transparent support preferably contains an ultraviolet absorber (UV absorber). By containing the ultraviolet absorber, ultraviolet absorptivity can be imparted. By including the ultraviolet absorber in the transparent support, the transparent support is yellowed (for example, observed as a decrease in transmittance at a wavelength of 400 nm) or the transparent support by being exposed to ultraviolet rays contained in external light. It is possible to prevent a retardation change (for example, observed as a Re change) of the optically anisotropic layer A laminated on one surface. Specific examples of the UV absorber include compounds described in JP-A-2006-199855, [0059] to [0135].
  • the transmittance at 380 nm of the transparent support is preferably 50% or less, more preferably 20% or less, still more preferably 10% or less, and particularly preferably 5% or less.
  • Specific examples of the compound that decreases the optical anisotropy of the transparent support include, for example, compounds described in JP-A-2006-199855, [0035] to [0058], but are not limited to these compounds.
  • optically anisotropic layer A and the optically anisotropic layer B are layers disposed on the transparent support and are layers that cause a phase difference.
  • materials and production conditions can be selected in accordance with various applications, one of which is a ⁇ / 4 film and the other is a ⁇ / 2 film. This is one of the preferred embodiments.
  • the retardation value (ReA (550)) of the optically anisotropic layer A at a wavelength of 550 nm and the retardation value (ReB (550)) of the optically anisotropic layer B at a wavelength of 550 nm are adjusted so as to satisfy the following formula (1). To do.
  • the retardation value (ReB (650) at a wavelength of 650 nm is adjusted so as to satisfy the relationship of the following formula (2) or formula (3). More specifically, when ReB (550)> ReA (550), Expression (2) is satisfied.
  • ReA (550)> ReB (550) the expression (3) is satisfied.
  • the relationship between the absorption axis of the polarizing film and the angle between the optically anisotropic layer A and the optically anisotropic layer B is not particularly limited, but the slow axis of the optically anisotropic layer A and the optically anisotropic layer B
  • the angle between one of the slow axes and the absorption axis of the polarizing film is 45 °, and the angle between the slow axis of the optically anisotropic layer A and the slow axis of the optically anisotropic layer B is It is preferable that both are arranged so as to be orthogonal.
  • the optically anisotropic layer is a ⁇ / 2 film.
  • the angle formed by the absorption axis of the polarizing film is 45 °, and the angle formed by the optically anisotropic layer A and the optically anisotropic layer B is orthogonal. For example, in FIG.
  • the optically anisotropic layer B is a ⁇ / 2 film and the optically anisotropic layer A is a ⁇ / 4 film
  • the absorption axis of the polarizing film and the slow axis of the optically anisotropic layer B In which the angle between the optically anisotropic layer A and the optically anisotropic layer B is orthogonal.
  • the axial relationship between the absorption axis of the polarizing film and the optically anisotropic layers A and B is not limited to the above relationship.
  • the optically anisotropic layer B is a ⁇ / 2 film in FIG.
  • the angle formed by the absorption axis of the polarizing film and the slow axis of the optically anisotropic layer B is 75 °, and the absorption axis of the polarizing film and the optically anisotropic layer It is also preferable that the angle between A and the slow axis is 15 °. In other words, the angle between the transmission axis of the polarizing film and the slow axis of the optically anisotropic layer B is 15 °, and the angle between the transmission axis of the polarizing film and the slow axis of the optically anisotropic layer B is 75. It is preferable to be °.
  • the ⁇ / 4 film ( ⁇ / 4 plate) is an optically anisotropic layer having a quarter wavelength with respect to light having a wavelength of at least 550 nm, and preferably satisfies the following formula (A).
  • the ⁇ / 2 film ( ⁇ / 2 plate) is a layer having optical anisotropy of 1 ⁇ 2 wavelength with respect to light having a wavelength of at least 550 nm, and preferably satisfies the following formula (B).
  • optically anisotropic layer A and the optically anisotropic layer B have the optical properties as described above, a broadband ⁇ / 4 plate can be obtained over the entire required wavelength region.
  • the required wavelength region is generally the visible light region. It is desirable that ⁇ / 4 can be achieved even in a wavelength range of 100 nm or more from the visible light region.
  • the optically anisotropic layer A and the optically anisotropic layer B are adjacent to each other, and the alignment film is not substantially provided between the optically anisotropic layer A and the optically anisotropic layer B.
  • substantially no alignment film means that a film formed only for functioning as an alignment film is not included. Even if the surface of the lower layer contributes to the alignment of the liquid crystal compound of the upper layer, as long as the lower layer is not formed only for use as an alignment film, this Included in the invention.
  • the optically anisotropic layer A has a non-sticky surface, and even when the optically anisotropic layer A is rubbed with a cloth, the components in the layer are not transferred to the cloth.
  • the rubbing process can be performed directly. Therefore, after the optically anisotropic layer A is formed, the surface is subsequently directly rubbed, and a composition containing a rod-like liquid crystal compound having a polymerizable group is applied to the rubbed surface. B can be formed. That is, you may arrange
  • the optically anisotropic layer A is formed from a composition containing a discotic liquid crystal compound having a polymerizable group
  • the optically anisotropic layer B is formed from a composition containing a rod-like liquid crystal compound having a polymerizable group.
  • the optically anisotropic layer A is a layer formed by fixing a discotic liquid crystal compound by polymerization or the like, and it is no longer necessary to exhibit liquid crystallinity after becoming a layer.
  • the optically anisotropic layer B is a layer formed by fixing a rod-like liquid crystal compound by polymerization or the like, and it is no longer necessary to exhibit liquid crystallinity after becoming a layer.
  • the optically anisotropic layer A is a layer obtained by applying a composition containing a discotic liquid crystal compound having a polymerizable group and polymerizing and curing the optically anisotropic layer B. It is a layer obtained by applying a composition containing a rod-shaped liquid crystal compound having a polymerizable group and polymerizing and curing it.
  • the discotic liquid crystal compound and the rod-shaped liquid crystal compound to be used may each be polyfunctional or monofunctional.
  • the kind of the polymerizable group contained in the discotic liquid crystal compound and the rod-like liquid crystal compound is not particularly limited, and a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring-opening polymerizable group is preferable. More specifically, a (meth) acryloyl group, a vinyl group, a styryl group, an allyl group, etc. are mentioned preferably, and a (meth) acryloyl group is more preferable.
  • the molecules of the liquid crystal compound are fixed in one of the alignment states of vertical alignment, horizontal alignment, hybrid alignment, and tilt alignment. It is preferable that In order to produce an optical laminated body (retardation plate) whose viewing angle dependency is symmetric, the disc surface of the discotic liquid crystal compound is substantially in relation to the transparent support surface (surface direction of the optically anisotropic layer A). And / or the long axis of the rod-like liquid crystal compound is preferably substantially horizontal to the transparent support surface (surface of the optically anisotropic layer B).
  • the discotic liquid crystal compound is substantially vertical” means that the average value of the angle formed by the transparent support surface (optically anisotropic layer A surface) and the disc surface of the discotic liquid crystal compound is in the range of 70 ° to 90 °. This means that 80 ° to 90 ° is more preferable, and 85 ° to 90 ° is still more preferable.
  • the rod-like liquid crystal compound being substantially horizontal means that the angle formed by the transparent support surface (the optically anisotropic layer B surface) and the director of the rod-like liquid crystal compound is in the range of 0 ° to 20 °, 0 ° to 10 ° is more preferable, and 0 ° to 5 ° is still more preferable.
  • the average inclination angle of the director of the liquid crystal compound is preferably 5 to 85 °, more preferably 10 to 80 °, More preferably, the angle is 15 to 75 °.
  • Each of the optically anisotropic layer A and the optically anisotropic layer B includes a discotic liquid crystal compound having a polymerizable group or a rod-like liquid crystal compound having a polymerizable group, and a polymerization initiator, an alignment control agent described later, It can form by apply
  • the preferred range of the content of the discotic liquid crystal compound having a polymerizable group or the rod-shaped liquid crystal compound having a polymerizable group in the composition used for forming the optically anisotropic layer A or the optically anisotropic layer B is
  • the total solid content of the composition (with respect to the composition excluding the solvent in the case of a coating solution) is preferably 50% by mass or more, more preferably 70 to 99% by mass, More preferably, it is 80 to 98% by mass.
  • composition used for forming the optically anisotropic layer A and the optically anisotropic layer B may contain an alignment control agent that controls the alignment of the liquid crystal.
  • alignment control agents that can be used include an alignment film interface alignment control agent that is unevenly distributed on the alignment film interface side and controls the alignment of the liquid crystal at the alignment film interface, and an alignment liquid crystal distribution unevenly on the air interface side.
  • An air interface orientation control agent for controlling the above is included.
  • Discotic liquid crystal compound Discotic liquid crystal compounds are disclosed in various documents (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); edited by The Chemical Society of Japan, Quarterly Chemical Review, No. 22, Liquid Crystal). Chemistry, Chapter 5, Chapter 10 Section 2 (1994); B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985); J. Zhang et al., J. Chem. Am. Chem. Soc., Vol. 116, page 2655 (1994)). The polymerization of discotic liquid crystal compounds is described in JP-A-8-27284.
  • the discotic liquid crystal compound used has a polymerizable group so that it can be fixed by polymerization.
  • a structure in which a polymerizable group is bonded as a substituent to the discotic core of a discotic liquid crystal compound is conceivable, provided that the alignment state is maintained in the polymerization reaction when the polymerizable group is directly connected to the discotic core. Becomes difficult. Therefore, a structure having a linking group between the discotic core and the polymerizable group is preferable. That is, the discotic liquid crystal compound having a polymerizable group is preferably a compound represented by the following formula.
  • D is a discotic core
  • L is a divalent linking group
  • P is a polymerizable group
  • n is an integer of 1 to 12.
  • Preferred specific examples of the discotic core (D), divalent linking group (L) and polymerizable group (P) in the formula are (D1) to (D15) described in JP-A No. 2001-4837, respectively.
  • (L1) to (L25), (P1) to (P18), and the contents described in the publication can be preferably used.
  • the discotic nematic liquid crystal phase-solid phase transition temperature of the liquid crystal compound is preferably 30 to 300 ° C., more preferably 30 to 170 ° C.
  • the discotic liquid crystal compound represented by the following general formula (I) has low in-plane retardation wavelength dispersibility, can exhibit high in-plane retardation, and is high without using a special alignment film or additive. Since it is possible to achieve vertical alignment with excellent uniformity at an average inclination angle, it is preferable to use it for forming the optically anisotropic layer A. Furthermore, the composition containing the liquid crystal compound tends to have a relatively low viscosity, and is preferable from the viewpoint of good coating properties.
  • Y 11 , Y 12 and Y 13 each independently represent a methine group or a nitrogen atom which may be substituted.
  • the hydrogen atom of methine may be replaced with a substituent.
  • substituent that methine may have include an alkyl group, an alkoxy group, an aryloxy group, an acyl group, an alkoxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, an alkylthio group, an arylthio group, a halogen atom, and A cyano group can be mentioned as a preferred example.
  • an alkyl group, an alkoxy group, an alkoxycarbonyl group, an acyloxy group, a halogen atom and a cyano group are more preferable, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and a carbon number A 2 to 12 alkoxycarbonyl group, an acyloxy group having 2 to 12 carbon atoms, a halogen atom and a cyano group are more preferred.
  • Y 11 , Y 12 and Y 13 are all preferably methine, and more preferably unsubstituted, from the viewpoint of ease of synthesis of the compound and cost.
  • L 1 , L 2 and L 3 each independently represents a single bond or a divalent linking group.
  • L 1 , L 2 and L 3 are divalent linking groups, each independently represents —O—, —S—, —C ( ⁇ O) —, —NR 7 —, —CH ⁇ CH—, —C
  • R 7 is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom, preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and more preferably a methyl group, an ethyl group or a hydrogen atom.
  • it is a hydrogen atom.
  • the divalent cyclic group in L 1 , L 2 and L 3 is a divalent linking group having at least one cyclic structure (hereinafter sometimes referred to as a cyclic group).
  • the cyclic group is preferably a 5-membered ring, a 6-membered ring, or a 7-membered ring, more preferably a 5-membered ring or a 6-membered ring, and most preferably a 6-membered ring.
  • the ring contained in the cyclic group may be a condensed ring. However, it is more preferably a monocycle than a condensed ring.
  • the ring contained in the cyclic group may be any of an aromatic ring, an aliphatic ring, and a heterocyclic ring.
  • Preferred examples of the aromatic ring include a benzene ring and a naphthalene ring.
  • a preferable example of the aliphatic ring is a cyclohexane ring.
  • Preferred examples of the heterocyclic ring include a pyridine ring and a pyrimidine ring.
  • the cyclic group is more preferably an aromatic ring or a heterocyclic ring.
  • the divalent cyclic group in the present invention is more preferably a divalent linking group consisting of only a cyclic structure (including a substituent) (hereinafter the same).
  • the cyclic group having a benzene ring is preferably a 1,4-phenylene group.
  • a naphthalene ring a naphthalene-1,5-diyl group and a naphthalene-2,6-diyl group are preferable.
  • the cyclic group having a cyclohexane ring is preferably a 1,4-cyclohexylene group.
  • the cyclic group having a pyridine ring is preferably a pyridine-2,5-diyl group.
  • the cyclic group having a pyrimidine ring is preferably a pyrimidine-2,5-diyl group.
  • the divalent cyclic group represented by L 1 , L 2 and L 3 may have a substituent.
  • substituents include a halogen atom (preferably a fluorine atom and a chlorine atom), a cyano group, a nitro group, an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, and 2 to 2 carbon atoms.
  • alkynyl group halogen-substituted alkyl group having 1 to 16 carbon atoms, alkoxy group having 1 to 16 carbon atoms, acyl group having 2 to 16 carbon atoms, alkylthio group having 1 to 16 carbon atoms, 2 carbon atoms And an acyloxy group having 2 to 16 carbon atoms, an alkoxycarbonyl group having 2 to 16 carbon atoms, a carbamoyl group, a carbamoyl group substituted with an alkyl group having 2 to 16 carbon atoms, and an acylamino group having 2 to 16 carbon atoms.
  • * represents a position bonded to the 6-membered ring side including Y 11 , Y 12 and Y 13 in the general formula (I).
  • H 1 , H 2 and H 3 each independently represent a group of general formula (IA) or (IB).
  • YA 1 and YA 2 each independently represents a methine or nitrogen atom which may have a substituent;
  • XA represents an oxygen atom, a sulfur atom, methylene or imino;
  • YB 1 and YB 2 each independently represent a methine or nitrogen atom which may have a substituent;
  • XB represents an oxygen atom, a sulfur atom, methylene or imino;
  • R 1 , R 2 and R 3 each independently represent the following general formula (IR).
  • L 21 represents a single bond or a divalent linking group.
  • L 21 is a divalent linking group, the group consisting of —O—, —S—, —C ( ⁇ O) —, —NR 8 —, —CH ⁇ CH—, —C ⁇ C—, and combinations thereof It is preferably a divalent linking group selected more.
  • R 8 is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom, preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, more preferably a methyl group, an ethyl group or a hydrogen atom. Preferably, it is a hydrogen atom.
  • Q 2 represents a divalent group (cyclic group) having at least one kind of cyclic structure.
  • a cyclic group is preferably a cyclic group having a 5-membered ring, a 6-membered ring, or a 7-membered ring, more preferably a cyclic group having a 5-membered ring or a 6-membered ring, and a cyclic group having a 6-membered ring.
  • the cyclic structure contained in the cyclic group may be a condensed ring. However, it is more preferably a monocycle than a condensed ring.
  • the ring contained in the cyclic group may be any of an aromatic ring, an aliphatic ring, and a heterocyclic ring.
  • Preferred examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring.
  • a preferable example of the aliphatic ring is a cyclohexane ring.
  • Preferred examples of the heterocyclic ring include a pyridine ring and a pyrimidine ring.
  • the cyclic group having a benzene ring is preferably a 1,3-phenylene group or a 1,4-phenylene group.
  • the cyclic group having a naphthalene ring include naphthalene-1,4-diyl group, naphthalene-1,5-diyl group, naphthalene-1,6-diyl group, naphthalene-2,5-diyl group, naphthalene-2,6.
  • a diylnaphthalene-2,7-diyl group is preferred.
  • the cyclic group having a cyclohexane ring is preferably a 1,4-cyclohexylene group.
  • the cyclic group having a pyridine ring is preferably a pyridine-2,5-diyl group.
  • the cyclic group having a pyrimidine ring is preferably a pyrimidine-2,5-diyl group.
  • 1,4-phenylene group, naphthalene-2,6-diyl group and 1,4-cyclohexylene group are particularly preferable.
  • the cyclic group having a 5-membered ring includes a 1,2,4-oxadiazole-2,5-diyl group, a 1,3,4-oxadiazole-2,5-diyl group, 1 2,4-thiadiazole-2,5-diyl group and 1,3,4-thiadiazole-2,5-diyl group are preferred.
  • Q 2 may have a substituent.
  • substituents include halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, iodine atoms), cyano groups, nitro groups, alkyl groups having 1 to 16 carbon atoms, alkenyl groups having 2 to 16 carbon atoms, carbon An alkynyl group having 2 to 16 atoms, an alkyl group substituted with a halogen having 1 to 16 carbon atoms, an alkoxy group having 1 to 16 carbon atoms, an acyl group having 2 to 16 carbon atoms, and 1 to 16 carbon atoms An alkylthio group having 2 to 16 carbon atoms, an alkoxycarbonyl group having 2 to 16 carbon atoms, a carbamoyl group, an alkyl-substituted carbamoyl group having 2 to 16 carbon atoms, and an acylamino group having 2 to 16 carbon atoms.
  • a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkyl group substituted with a halogen having 1 to 6 carbon atoms are preferable, and a halogen atom, an alkyl group having 1 to 4 carbon atoms, An alkyl group substituted with a halogen having 1 to 4 carbon atoms is more preferable, and a halogen atom, an alkyl group having 1 to 3 carbon atoms, and a trifluoromethyl group are more preferable.
  • N1 represents an integer of 0-4.
  • n1 is preferably an integer of 1 to 3, and more preferably 1 or 2.
  • L 22 is **-O-, **-O-CO-, **-CO-O-, **-O-CO-O-, **-S-, **-N (R 101 ).
  • -, **-SO2-, **-CH2-, **-CH CH- or **-C ⁇ C-
  • R 101 represents an alkyl group having 1 to 5 carbon atoms, and ** represents This represents the position to be coupled to the Q 2 side.
  • L 22 is preferably ** — O—, ** — O—CO—, ** — CO—O—, ** — O—CO—O—, ** — CH 2 —, ** — CH.
  • L 22 is a group containing a hydrogen atom
  • the hydrogen atom may be substituted with a substituent.
  • substituents include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkyl group substituted with a halogen having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms.
  • Preferred examples include a carbamoyl group substituted with 6 alkyls and an acylamino group having 2 to 6 carbon atoms, and a halogen atom and an alkyl group having 1 to 6 carbon atoms are more preferred.
  • L 23 represents —O—, —S—, —C ( ⁇ O) —, —SO 2 —, —NH—, —CH 2 —, —CH ⁇ CH—, —C ⁇ C—, and combinations thereof.
  • the hydrogen atom of —NH—, —CH 2 —, —CH ⁇ CH— may be substituted with a substituent.
  • substituent include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkyl group substituted with a halogen having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms.
  • Preferred examples include a carbamoyl group substituted with 6 alkyls and an acylamino group having 2 to 6 carbon atoms, and a halogen atom and an alkyl group having 1 to 6 carbon atoms are more preferred.
  • L 23 is preferably selected from the group consisting of —O—, —C ( ⁇ O) —, —CH 2 —, —CH ⁇ CH—, —C ⁇ C—, and combinations thereof.
  • L 23 preferably contains 1 to 20 carbon atoms, more preferably 2 to 14 carbon atoms. Further, L 23 preferably contains 1 to 16 —CH 2 —, and more preferably 2 to 12 —CH 2 —.
  • Q 1 represents a polymerizable group or a hydrogen atom.
  • the definition of the polymerizable group is as described above.
  • the polymerizable group is particularly preferably a functional group capable of addition polymerization reaction.
  • Such a polymerizable group is preferably a polymerizable ethylenically unsaturated group or a ring-opening polymerizable group.
  • Examples of the polymerizable ethylenically unsaturated group include the following formulas (M-1) to (M-6).
  • R represents a hydrogen atom or an alkyl group, preferably a hydrogen atom or a methyl group.
  • R represents a hydrogen atom or an alkyl group, preferably a hydrogen atom or a methyl group.
  • the ring-opening polymerizable group is preferably a cyclic ether group, and more preferably an epoxy group or an oxetanyl group.
  • Y 11 , Y 12 and Y 13 each independently represents a methine which may have a substituent or a nitrogen atom, preferably a methine which may have a substituent, It is preferably unsubstituted.
  • R 11 , R 12 and R 13 each independently represents the following general formula (I′-A), the following general formula (I′-B) or the following general formula (I′-C).
  • general formula (I′-A) or general formula (I′-C) is preferable, and general formula (I′-A) is more preferable.
  • a 11 , A 12 , A 13 , A 14 , A 15 and A 16 each independently represents a methine group or nitrogen atom which may have a substituent. At least one of A 11 and A 12 is preferably a nitrogen atom, and more preferably both are nitrogen atoms.
  • a 13 , A 14 , A 15 and A 16 are preferably methine which may have a substituent among them, and more preferably all methine which may have a substituent. preferable. Furthermore, the methine is preferably unsubstituted.
  • Examples of the substituent in the case of methine in which A 11 , A 12 , A 13 , A 14 , A 15 or A 16 may have a substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine Atom), a cyano group, a nitro group, an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, an alkynyl group having 2 to 16 carbon atoms, and a halogen having 1 to 16 carbon atoms.
  • a halogen atom fluorine atom, chlorine atom, bromine atom, iodine Atom
  • a cyano group a nitro group
  • an alkyl group having 1 to 16 carbon atoms an alkenyl group having 2 to 16 carbon atoms
  • an alkynyl group having 2 to 16 carbon atoms an alkynyl group having 2 to 16 carbon atoms
  • Alkyl groups alkoxy groups having 1 to 16 carbon atoms, acyl groups having 2 to 16 carbon atoms, alkylthio groups having 1 to 16 carbon atoms, acyloxy groups having 2 to 16 carbon atoms, and 2 to 16 carbon atoms.
  • a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkyl group substituted with a halogen having 1 to 6 carbon atoms are preferable, and a halogen atom, an alkyl group having 1 to 4 carbon atoms, An alkyl group substituted with a halogen having 1 to 4 carbon atoms is more preferable, and a halogen atom, an alkyl group having 1 to 3 carbon atoms, and a trifluoromethyl group are more preferable.
  • X 1 represents an oxygen atom, a sulfur atom, methylene or imino, preferably an oxygen atom.
  • a 21 , A 22 , A 23 , A 24 , A 25 and A 26 each independently represents a methine group or nitrogen atom which may have a substituent. At least one of A 21 and A 22 is preferably a nitrogen atom, and more preferably both are nitrogen atoms.
  • a 23 , A 24 , A 25 and A 26 are preferably methine which may have a substituent among them, and more preferably all methine which may have a substituent. preferable. Furthermore, the methine is preferably unsubstituted.
  • Examples of the substituent in the case of methine in which A 21 , A 22 , A 23 , A 24 , A 25 or A 26 may have a substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine Atom), a cyano group, a nitro group, an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, an alkynyl group having 2 to 16 carbon atoms, and a halogen having 1 to 16 carbon atoms.
  • a halogen atom fluorine atom, chlorine atom, bromine atom, iodine Atom
  • a cyano group a nitro group
  • an alkyl group having 1 to 16 carbon atoms an alkenyl group having 2 to 16 carbon atoms
  • an alkynyl group having 2 to 16 carbon atoms an alkynyl group having 2 to 16 carbon atoms
  • Alkyl groups alkoxy groups having 1 to 16 carbon atoms, acyl groups having 2 to 16 carbon atoms, alkylthio groups having 1 to 16 carbon atoms, acyloxy groups having 2 to 16 carbon atoms, and 2 to 16 carbon atoms.
  • a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkyl group substituted with a halogen having 1 to 6 carbon atoms are preferable, and a halogen atom, an alkyl group having 1 to 4 carbon atoms, An alkyl group substituted with a halogen having 1 to 4 carbon atoms is more preferable, and a halogen atom, an alkyl group having 1 to 3 carbon atoms, and a trifluoromethyl group are more preferable.
  • X 2 represents an oxygen atom, a sulfur atom, methylene or imino, preferably an oxygen atom.
  • a 31 , A 32 , A 33 , A 34 , A 35 and A 36 each independently represents a methine group or nitrogen atom which may have a substituent. At least one of A 31 and A 32 is preferably a nitrogen atom, and more preferably both are nitrogen atoms.
  • a 33 , A 34 , A 35 and A 36 are each preferably methine which may have a substituent, and more preferably all methine which may have a substituent. Furthermore, the methine is preferably unsubstituted. In the case where A 31 , A 32 , A 33 , A 34 , A 35 or A 36 is a methine which may have a substituent, the methine may have a substituent.
  • substituents include halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, iodine atoms), cyano groups, nitro groups, alkyl groups having 1 to 16 carbon atoms, alkenyl groups having 2 to 16 carbon atoms, carbon An alkynyl group having 2 to 16 atoms, an alkyl group substituted with a halogen having 1 to 16 carbon atoms, an alkoxy group having 1 to 16 carbon atoms, an acyl group having 2 to 16 carbon atoms, and 1 to 16 carbon atoms An alkylthio group having 2 to 16 carbon atoms, an alkoxycarbonyl group having 2 to 16 carbon atoms, a carbamoyl group, an alkyl-substituted carbamoyl group having 2 to 16 carbon atoms, and an acylamino group having 2 to 16 carbon atoms.
  • halogen atoms fluorine atoms, chlorine atoms, bromine
  • a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkyl group substituted with a halogen having 1 to 6 carbon atoms are preferable, and a halogen atom, an alkyl group having 1 to 4 carbon atoms, An alkyl group substituted with a halogen having 1 to 4 carbon atoms is more preferable, and a halogen atom, an alkyl group having 1 to 3 carbon atoms, and a trifluoromethyl group are more preferable.
  • X 3 represents an oxygen atom, a sulfur atom, methylene or imino, preferably an oxygen atom.
  • L 11 in the general formula (I′-A), L 21 in the general formula (I′-B), and L 31 in the general formula (I′-C) are each independently —O—, —C ( ⁇ O) —, —O—CO—, —CO—O—, —O—CO—O—, —S—, —NH—, —SO 2 —, —CH 2 —, —CH ⁇ CH— or —C ⁇ C— is represented.
  • L 11 in the general formula (I′-A) that can be expected to have small intrinsic birefringence wavelength dispersibility is particularly preferably —O—, —CO—O—, —C ⁇ C—.
  • CO-O- is preferable because it can exhibit a discotic nematic phase at a higher temperature.
  • the hydrogen atom may be replaced with a substituent.
  • substituents include a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, an alkyl group substituted with a halogen having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms.
  • Preferred examples include a carbamoyl group substituted with 6 alkyls and an acylamino group having 2 to 6 carbon atoms, and a halogen atom and an alkyl group having 1 to 6 carbon atoms are more preferred.
  • L 12 in the general formula (I′-A), L 22 in the general formula (I′-B), and L 32 in the general formula (I′-C) are each independently —O—, —S A divalent linking group selected from the group consisting of —, —C ( ⁇ O) —, —SO 2 —, —NH—, —CH 2 —, —CH ⁇ CH—, —C ⁇ C—, and combinations thereof.
  • —S divalent linking group selected from the group consisting of —, —C ( ⁇ O) —, —SO 2 —, —NH—, —CH 2 —, —CH ⁇ CH—, —C ⁇ C—, and combinations thereof.
  • the hydrogen atom of —NH—, —CH 2 —, —CH ⁇ CH— may be substituted with a substituent.
  • Examples of such a substituent include a halogen atom, a cyano group, a nitro group, a hydroxyl group, a carboxyl group, an alkyl group having 1 to 6 carbon atoms, an alkyl group substituted with a halogen having 1 to 6 carbon atoms, and 1 carbon atom.
  • Preferred examples include a carbamoyl group substituted with an alkyl having 2 to 6 carbon atoms and an acylamino group having 2 to 6 carbon atoms, and a halogen atom, a hydroxyl group and an alkyl group having 1 to 6 carbon atoms are more preferred, A halogen atom, a methyl group, and an ethyl group are preferable.
  • L 12 , L 22 , and L 32 are each independently selected from the group consisting of —O—, —C ( ⁇ O) —, —CH 2 —, —CH ⁇ CH—, —C ⁇ C—, and combinations thereof. It is preferable to be selected.
  • L 12 , L 22 , and L 32 each independently preferably have 1 to 20 carbon atoms, and more preferably 2 to 14 carbon atoms.
  • the number of carbon atoms is preferably 2 to 14, more preferably 1 to 16 —CH 2 —, and still more preferably 2 to 12 —CH 2 —.
  • the number of carbon atoms constituting L 12 , L 22 , and L 32 affects the phase transition temperature of the liquid crystal and the solubility of the compound in the solvent. In general, the higher the number of carbon atoms, the lower the transition temperature from the discotic nematic phase (ND phase) to the isotropic liquid. Further, the solubility in a solvent generally tends to improve as the number of carbon atoms increases.
  • Q 11 in the general formula (I′-A), Q 21 in the general formula (I′-B), and Q 31 in the general formula (I′-C) each independently represent a polymerizable group or a hydrogen atom.
  • Q 11 , Q 21 and Q 31 are preferably a polymerizable group. Examples of the polymerizable group are the same as described above, and preferred examples are also the same as described above.
  • rod-like liquid crystal compound examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • high-molecular liquid crystal compounds can also be used.
  • the alignment of the rod-like liquid crystal compound is fixed by polymerization.
  • the rod-like liquid crystal compound contains a polymerizable group capable of causing polymerization or crosslinking reaction by actinic rays, electron beams, heat, or the like.
  • the definition of the polymerizable group is as described above, and the number thereof is preferably 1 to 6, more preferably 1 to 3.
  • Examples of the polymerizable rod-like liquid crystal compound include Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648, and 5,770,107, International Publication WO95 / 22586. No. 95/24455, No. 97/00600, No.
  • the liquid crystal compound can be vertically controlled on the alignment film interface side and the air interface side in order to uniformly align the liquid crystal compound molecules vertically. It is preferable to use an orientation control agent.
  • an optically anisotropic composition using a composition containing, together with a liquid crystal compound, an alignment film, which will be described later, has a function of vertically aligning the liquid crystal compound by an excluded volume effect, an electrostatic effect or a surface energy effect. It is preferable to form a conductive layer.
  • a compound that is unevenly distributed at the air interface at the time of orientation of the liquid crystal compound and acts to align the liquid crystal compound vertically by its excluded volume effect, electrostatic effect, or surface energy effect is used. It is preferable to form an optically anisotropic layer using the composition contained together.
  • a compound (alignment film interface side vertical alignment agent) that promotes the vertical alignment of liquid crystal compound molecules on the alignment film interface side a pyridinium derivative is preferably used.
  • a fluoroaliphatic group that promotes the uneven distribution of the compound on the air interface side a carboxyl
  • a compound containing at least one hydrophilic group selected from the group consisting of a group (—COOH), a sulfo group (—SO 3 H), a phosphonoxy group ⁇ —OP ( ⁇ O) (OH) 2 ⁇ , and salts thereof is preferable.
  • a hydrophilic group selected from the group consisting of a group (—COOH), a sulfo group (—SO 3 H), a phosphonoxy group ⁇ —OP ( ⁇ O) (OH) 2 ⁇ , and salts thereof is preferable.
  • a liquid crystalline composition is prepared as a coating solution, the coating property of the coating solution is improved, and the occurrence of unevenness and repellency is suppressed.
  • a pyridinium derivative represented by the following general formula (II) is preferably used.
  • the molecules of the discotic liquid crystal compound can be aligned substantially vertically in the vicinity of the alignment film.
  • L 23 and L 24 each represent a divalent linking group.
  • L 23 represents a single bond, —O—, —O—CO—, —CO—O—, —C ⁇ C—, —CH ⁇ CH—, —CH ⁇ N—, —N ⁇ CH—, —N ⁇ .
  • AL is an alkylene group having 1 to 10 carbon atoms.
  • L 23 represents a single bond, —O—, —O—AL—O—, —O—AL—O—CO—, —O—AL—CO—O—, —CO—O—AL—O—, — CO-O-AL-O-CO-, -CO-O-AL-CO-O-, -O-CO-AL-O-, -O-COAL-O-CO- or -O-CO-AL- CO-O- is preferred, a single bond or -O- is more preferred, and -O- is most preferred.
  • R 22 is a hydrogen atom, an unsubstituted amino group, or a substituted amino group having 1 to 25 carbon atoms.
  • R 22 is a dialkyl-substituted amino group
  • two alkyl groups may be bonded to each other to form a nitrogen-containing heterocycle.
  • the nitrogen-containing heterocycle formed at this time is preferably a 5-membered ring or a 6-membered ring.
  • R 22 is more preferably a hydrogen atom, an unsubstituted amino group, or a dialkyl-substituted amino group having 2 to 12 carbon atoms, and a hydrogen atom, an unsubstituted amino group, or a dialkyl-substituted group having 2 to 8 carbon atoms. Even more preferred is an amino group.
  • R 22 is an unsubstituted amino group or a substituted amino group
  • the 4-position of the pyridinium ring is preferably substituted.
  • X is an anion.
  • X is preferably a monovalent anion.
  • anions include halogen anions (eg, fluorine ion, chlorine ion, bromine ion, iodine ion, etc.), sulfonate ions (eg, methanesulfonate ion, trifluoromethanesulfonate ion, methyl sulfate) Ion, p-toluenesulfonic acid ion, p-chlorobenzenesulfonic acid ion, 1,3-benzenedisulfonic acid ion, 1,5-naphthalenedisulfonic acid ion, 2,6-naphthalenedisulfonic acid ion), sulfate ion, carbonate ion , Nitrate ion, thiocyanate ion, perchlorate ion, tetrafluoroborate ion, picrate ion,
  • Y 22 and Y 23 are each a divalent linking group having a 5- or 6-membered ring as a partial structure.
  • the 5- or 6-membered ring may have a substituent.
  • at least one of Y 22 and Y 23 is a divalent linking group having a 5- or 6-membered ring having a substituent as a partial structure.
  • Y 22 and Y 23 are preferably each independently a divalent linking group having a 6-membered ring which may have a substituent as a partial structure.
  • the 6-membered ring includes an aliphatic ring, an aromatic ring (benzene ring) and a heterocyclic ring.
  • 6-membered aliphatic ring examples include a cyclohexane ring, a cyclohexene ring, and a cyclohexadiene ring.
  • 6-membered heterocyclic rings include pyran ring, dioxane ring, dithiane ring, thiin ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring. Including.
  • Another 6-membered ring or 5-membered ring may be condensed to the 6-membered ring.
  • the substituent include a halogen atom, cyano, an alkyl group having 1 to 12 carbon atoms, and an alkoxy group having 1 to 12 carbon atoms.
  • the alkyl group and alkoxy group may be substituted with an acyl group having 2 to 12 carbon atoms or an acyloxy group having 2 to 12 carbon atoms.
  • the substituent is preferably an alkyl group having 1 to 12 carbon atoms (more preferably 1 to 6, more preferably 1 to 3).
  • the number of substituents may be 2 or more.
  • the number of carbon atoms of 1 to 4 is 1 to 12 (more preferably 1 to 6, more preferably 1 to The alkyl group of 3) may be substituted.
  • n is 1 or 2, and is preferably 2.
  • the plurality of Y 23 and L 24 may be the same as or different from each other.
  • Z 21 is halogen-substituted phenyl, nitro-substituted phenyl, cyano-substituted phenyl, phenyl substituted with an alkyl group having 1 to 25 carbon atoms, phenyl substituted with an alkoxy group having 1 to 25 carbon atoms, carbon atoms
  • Z 21 is preferably cyano, an alkyl group having 1 to 25 carbon atoms, or an alkoxy group having 1 to 25 carbon atoms, and is an alkoxy group having 4 to 20 carbon atoms. Is more preferable.
  • Z 21 is an alkyl group having 7 to 25 carbon atoms, an alkoxy group having 7 to 25 carbon atoms, an acyl-substituted alkyl group having 7 to 25 carbon atoms, or 7 carbon atoms.
  • An acyl-substituted alkoxy group having ⁇ 25, an acyloxy-substituted alkyl group having 7 to 12 carbon atoms, or an acyloxy-substituted alkoxy group having 7 to 25 carbon atoms is preferable.
  • the acyl group is represented by —CO—R
  • the acyloxy group is represented by —O—CO—R
  • R is an aliphatic group (alkyl group, substituted alkyl group, alkenyl group, substituted alkenyl group, alkynyl group, substituted alkynyl group) or aromatic Group (aryl group, substituted aryl group).
  • R is preferably an aliphatic group, and more preferably an alkyl group or an alkenyl group.
  • C p H 2p means a chain alkylene group which may have a branched structure.
  • C p H 2p is preferably a linear alkylene group (— (CH 2 ) p —).
  • L 25 has the same meaning as L 24 , and the preferred range is also the same.
  • L 24 and L 25 are preferably —O—CO— or —CO—O—, preferably L 24 is —O—CO— and L 25 is —CO—O—.
  • R 23 , R 24 and R 25 are each an alkyl group having 1 to 12 (more preferably 1 to 6, more preferably 1 to 3) carbon atoms.
  • n23 represents 0 to 4
  • n24 represents 1 to 4
  • n25 represents 0 to 4. It is preferable that n23 and n25 are 0 and n24 is 1 to 4 (more preferably 1 to 3).
  • Specific examples of the compound represented by the general formula (II) include compounds described in [0058] to [0061] in JP-A-2006-113500.
  • Air interface side vertical alignment agent As the air interface side vertical alignment agent, the following fluorine-based polymer (including formula (II) as a partial structure) or a fluorine-containing compound represented by general formula (III) is preferably used.
  • the fluoropolymer is a copolymer containing a repeating unit derived from a fluoroaliphatic group-containing monomer and a repeating unit represented by the following formula (II). Is preferred.
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom or a substituent;
  • L is a divalent linking group selected from the following linking group group or 2 selected from the following linking group group.
  • Q represents a carboxyl group (—COOH) or a salt thereof, a sulfo group (—SO 3 H) or a salt thereof, or phosphonoxy ⁇ —OP ( ⁇ O) (OH) 2 ⁇ or a salt thereof.
  • the fluoropolymer usable in the present invention includes a fluoroaliphatic group, a carboxyl group (—COOH), a sulfo group (—SO 3 H), a phosphonoxy group ⁇ —OP ( ⁇ O) (OH) 2 ⁇ , and their It contains one or more hydrophilic groups selected from the group consisting of salts.
  • the types of polymers are described in “Revised Polymer Synthesis Chemistry” (written by Otsu Takayuki, published by Kagaku Dojin Co., 1968) on pages 1 to 4, for example, polyolefins, polyesters, polyamides, polyimides.
  • the fluoropolymer is preferably a polyolefin.
  • Fluoropolymer is a polymer having a fluoroaliphatic group in the side chain.
  • the fluoroaliphatic group preferably has 1 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • the aliphatic group may be linear or cyclic, and when it is linear, it may be linear or branched. Of these, linear fluoroaliphatic groups having 6 to 10 carbon atoms are preferred.
  • the degree of substitution with fluorine atoms is not particularly limited, but 50% or more of hydrogen atoms in the aliphatic group are preferably substituted with fluorine atoms, and more preferably 60% or more are substituted.
  • the fluoroaliphatic group is contained in a side chain bonded to the polymer main chain via an ester bond, an amide bond, an imide bond, a urethane bond, a urea bond, an ether bond, a thioether bond, an aromatic ring, or the like.
  • fluoroaliphatic group-containing copolymer preferably used as the fluorine-based polymer
  • fluorine-based polymer include compounds described in paragraphs [0110] to [0114] of JP-A-2006-113500. There is no limitation by example.
  • the mass average molecular weight of the fluoropolymer is preferably 1,000,000 or less, more preferably 500,000 or less, 100,000 or less, and even more preferably 10,000 or more. By setting it in this range, it is effective for controlling the alignment of the liquid crystal compound while satisfying the solubility.
  • the mass average molecular weight can be measured as a value in terms of polystyrene (PS) using gel permeation chromatography (GPC).
  • the preferred range of the content of the fluoropolymer in the composition varies depending on the use, but in the composition (a composition excluding the solvent in the case of a coating liquid) when used for forming the optically anisotropic layer. 0.005 to 8% by mass is preferable, 0.01 to 5% by mass is more preferable, and 0.05 to 3% by mass is still more preferable. If the addition amount of the fluorine-based polymer is less than 0.005% by mass, the effect is insufficient, and if it exceeds 8% by mass, the coating film may not be sufficiently dried or the performance as an optical film (for example, retardation) Adverse effects on the uniformity of
  • (III) (R 0 ) m -L 0- (W) n R 0 represents an alkyl group, an alkyl group having a CF 3 group at the terminal, or an alkyl group having a CF 2 H group at the terminal, and m represents an integer of 1 or more.
  • a plurality of R 0 may be the same or different, but at least one represents an alkyl group having a CF 3 group or a CF 2 H group at the terminal.
  • L 0 represents a (m + n) -valent linking group
  • W represents a carboxyl group (—COOH) or a salt thereof, a sulfo group (—SO 3 H) or a salt thereof, or phosphonoxy ⁇ —OP ( ⁇ O) (OH) 2 ⁇ Or a salt thereof
  • n represents an integer of 1 or more.
  • fluorine-containing compound represented by the formula (III) that can be used in the present invention include the compounds described in paragraphs [0136] to [0140] of JP-A-2006-113500. Is not limited by these specific examples.
  • the preferred range of the content of the fluorine-containing compound in the composition varies depending on the use, but in the composition (a composition excluding the solvent in the case of a coating solution) when used for forming the optically anisotropic layer. 0.005 to 8% by mass is preferable, 0.01 to 5% by mass is more preferable, and 0.05 to 3% by mass is still more preferable.
  • the fluorine-containing compound does not have a functional group (polymerizable group) that can be covalently bonded to a binder (a liquid crystal compound, an acrylate monomer, or the like) included in the optically anisotropic layer.
  • the aligned (preferably vertically aligned) liquid crystal compound is fixed while maintaining the alignment state.
  • the immobilization is preferably performed by a polymerization reaction of the polymerizable group (P) introduced into the liquid crystal compound.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator.
  • a photopolymerization reaction is preferred.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No.
  • the polymerizable monomer examples include radically polymerizable or cationically polymerizable compounds.
  • it is a polyfunctional radically polymerizable monomer and is preferably copolymerizable with the above-described polymerizable group-containing liquid crystal compound. Examples thereof include those described in paragraph numbers [0018] to [0020] in JP-A No. 2002-296423.
  • the amount of the compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the liquid crystal compound.
  • surfactant examples include conventionally known compounds, and fluorine compounds are particularly preferable. Specifically, for example, compounds described in paragraphs [0028] to [0056] in JP-A-2001-330725, and paragraphs [0069] to [0126] in Japanese Patent Application No. 2003-295212 are described. The compound of this is mentioned.
  • the polymer used with the liquid crystal compound is preferably capable of thickening the coating solution.
  • a cellulose ester can be mentioned as an example of a polymer.
  • Preferable examples of the cellulose ester include those described in paragraph [0178] of JP-A No. 2000-155216.
  • the addition amount of the polymer is preferably in the range of 0.1 to 10% by mass, and preferably in the range of 0.1 to 8% by mass with respect to the liquid crystal compound so as not to disturb the alignment of the liquid crystal compound. More preferred.
  • the discotic nematic liquid crystal phase-solid phase transition temperature of the liquid crystal compound is preferably 70 to 300 ° C, more preferably 70 to 170 ° C.
  • an organic solvent is preferably used as the solvent used for preparing the composition (coating liquid).
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • the composition it is preferable to apply the composition to the surface of the alignment film to align the molecules of the liquid crystal compound (for example, discotic liquid crystal compound). Since the alignment film has a function of defining the alignment direction of the liquid crystal compound, it is preferably used for realizing a preferred embodiment of the present invention. However, if the alignment state is fixed after the alignment of the liquid crystal compound, the alignment film plays the role and is not necessarily an essential component of the present invention. That is, it is also possible to produce the optical substrate for an optical film of the present invention by transferring only the optical anisotropic layer on the alignment film in which the alignment state is fixed onto another transparent support.
  • the alignment film plays the role and is not necessarily an essential component of the present invention. That is, it is also possible to produce the optical substrate for an optical film of the present invention by transferring only the optical anisotropic layer on the alignment film in which the alignment state is fixed onto another transparent support.
  • the alignment film is an organic compound (eg, ⁇ -tricosanoic acid) formed by rubbing treatment of an organic compound (preferably polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). , Dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known. The alignment film is preferably formed by polymer rubbing treatment.
  • an organic compound eg, ⁇ -tricosanoic acid
  • polymer examples include, for example, methacrylate copolymer, styrene copolymer, polyolefin, polyvinyl alcohol, modified polyvinyl alcohol, poly (N--N) described in paragraph No. [0022] of JP-A-8-338913.
  • Methylolacrylamide examples include, for example, methacrylate copolymer, styrene copolymer, polyolefin, polyvinyl alcohol, modified polyvinyl alcohol, poly (N--N) described in paragraph No. [0022] of JP-A-8-338913.
  • Methylolacrylamide methylolacrylamide
  • polyester polyimide
  • vinyl acetate copolymer carboxymethylcellulose
  • polycarbonate examples include, for example, polyimide, vinyl acetate copolymer, carboxymethylcellulose, polycarbonate and the like.
  • Silane coupling agents can be used as the polymer.
  • Water-soluble polymers eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol
  • gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred.
  • the saponification degree of polyvinyl alcohol is preferably 70 to 100%, more preferably 80 to 100%.
  • the degree of polymerization of polyvinyl alcohol is preferably 100 to 5,000.
  • the alignment film it is preferable to bond a side chain having a crosslinkable functional group (eg, a double bond) to the main chain, or to introduce a crosslinkable functional group having a function of aligning the liquid crystal compound into the side chain.
  • a side chain having a crosslinkable functional group eg, a double bond
  • a crosslinkable functional group having a function of aligning the liquid crystal compound into the side chain.
  • the polymer used for the alignment film either a polymer that can be crosslinked by itself or a polymer that is crosslinked by a crosslinking agent can be used, and a plurality of combinations thereof can be used.
  • the side chain having a crosslinkable functional group is bonded to the main chain of the alignment film polymer or the crosslinkable functional group is introduced into the side chain having a function of aligning the liquid crystal compound, the alignment film polymer and optical anisotropy are obtained.
  • the polyfunctional monomer contained in the layer can be copolymerized. As a result, not only between the polyfunctional monomer and the polyfunctional monomer, but also between the alignment film polymer and the alignment film polymer and between the polyfunctional monomer and the alignment film polymer is firmly bonded by a covalent bond. Therefore, the strength of the optical compensation sheet can be remarkably improved by introducing the crosslinkable functional group into the alignment film polymer.
  • the crosslinkable functional group of the alignment film polymer preferably contains a polymerizable group in the same manner as the polyfunctional monomer. Specific examples include those described in paragraphs [0080] to [0100] of JP-A No. 2000-155216.
  • the alignment film polymer can be cross-linked using a cross-linking agent separately from the cross-linkable functional group.
  • a cross-linking agent examples include aldehydes, N-methylol compounds, dioxane derivatives, compounds that act by activating carboxyl groups, active vinyl compounds, active halogen compounds, isoxazole, and dialdehyde starch.
  • Two or more kinds of crosslinking agents may be used in combination. Specific examples include compounds described in paragraphs [0023] to [0024] in JP-A-2002-62426. Aldehydes having high reaction activity, particularly glutaraldehyde are preferred.
  • the addition amount of the crosslinking agent is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass with respect to the polymer.
  • the amount of the unreacted crosslinking agent remaining in the alignment film is preferably 1.0% by mass or less, and more preferably 0.5% by mass or less.
  • the alignment film is basically formed by applying a solution containing the polymer, the cross-linking agent, and the additive, which is an alignment film forming material, onto a transparent support, followed by heat drying (cross-linking) and rubbing treatment. be able to.
  • the cross-linking reaction may be performed at any time after coating on the transparent support.
  • the coating solution is preferably a mixed solvent of an organic solvent (eg, methanol) having a defoaming action and water.
  • the weight ratio of water: methanol is preferably 0: 100 to 99: 1, and more preferably 0: 100 to 91: 9.
  • the coating method used when forming the alignment film is preferably a spin coating method, a dip coating method, a curtain coating method, an extrusion coating method, a rod coating method or a roll coating method.
  • a rod coating method is particularly preferable.
  • the film thickness after drying is preferably 0.1 to 10 ⁇ m. Heating and drying can be performed at 20 ° C to 110 ° C. In order to form a sufficient crosslink, 60 ° C to 100 ° C is preferable, and 80 ° C to 100 ° C is particularly preferable.
  • the drying time can be 1 minute to 36 hours, preferably 1 minute to 30 minutes.
  • the pH is preferably set to an optimum value for the cross-linking agent to be used, and when glutaraldehyde is used, the pH is preferably 4.5 to 5.5.
  • a treatment method widely adopted as a liquid crystal alignment treatment process of LCD can be applied. That is, a method of obtaining the orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber or the like can be used. In general, it is carried out by rubbing several times using a cloth in which fibers having a uniform length and thickness are flocked on average.
  • the polarizing film may be a member having a function of converting natural light into specific linearly polarized light, and an absorptive polarizer can be used.
  • the type of the polarizing film is not particularly limited, and a commonly used polarizing film can be used.
  • any of an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film Can also be used.
  • the iodine-based polarizing film and the dye-based polarizing film are generally produced by adsorbing iodine or a dichroic dye to polyvinyl alcohol and stretching it.
  • a polarizing film is used as a polarizing plate by which the protective film was bonded on both surfaces.
  • the haze value X of the optical laminate (optical film) containing the transparent support, the optically anisotropic layer A, and the optically anisotropic layer B satisfies the following formula (4).
  • Formula (4) X ⁇ 0.5%
  • the haze value X is preferably 0.4% or less, and more preferably 0.3% or less.
  • the haze value X is 0.5% or more
  • the optical laminate is bonded to a polarizing plate, mounted on a display device and evaluated, white turbidity is observed and visibility is deteriorated.
  • the haze value X corresponds to the total haze value (H) measured according to JIS-K7136.
  • As a measuring device Nippon Denshoku Industries Co., Ltd. haze meter NDH2000 is used.
  • the Rth of the optical laminate is not particularly limited, but it is preferable that the relationship of the following formula (5) is satisfied in that the viewing angle characteristics are more excellent.
  • Formula (5) ⁇ 100 nm ⁇ Rth (550) ⁇ 100 nm
  • Rth (550) is preferably ⁇ 80 nm to 80 nm, and more preferably ⁇ 60 nm to 60 nm, from the viewpoint of more excellent viewing angle characteristics.
  • the circularly polarizing plate of the present invention having the above configuration is used for antireflection of an image display device such as a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), or a cathode ray tube display device (CRT).
  • an image display device such as a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), or a cathode ray tube display device (CRT).
  • LCD liquid crystal display device
  • PDP plasma display panel
  • ELD electroluminescence display
  • CRT cathode ray tube display device
  • Step (1) Step of forming an alignment film on the transparent support (2) A composition containing a discotic liquid crystal compound having a polymerizable group is applied on the alignment film, and heat treatment is performed as necessary.
  • Step (3) for orienting a discotic liquid crystal compound An optical anisotropy is applied to a discotic liquid crystal compound having a polymerizable group at an ultraviolet irradiation amount of 100 mJ / cm 2 or more and less than 400 mJ / cm 2.
  • a composition containing a rod-like liquid crystal compound having a polymerizable group for the rod-like liquid crystal compound having a polymerizable group .
  • Hard Processing performed in the following step of the further arrangement process step (7) a polarizing film to form an optically anisotropic layer B, and described in order the steps of the process.
  • Step (1) is a step of forming an alignment film on the transparent support.
  • the method of forming the alignment film is as described above, and a method of obtaining an alignment film by crosslinking the polymer layer and then rubbing the surface thereof is preferable.
  • Step (2) is a step of applying a composition containing a discotic liquid crystal compound having a polymerizable group on the alignment film and performing a heat treatment as necessary to align the discotic liquid crystal compound.
  • the composition used is as described above.
  • the composition can be applied by a known method (eg, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method).
  • a known method eg, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method.
  • an optimal temperature is appropriately selected according to the type of the discotic liquid crystal compound to be used. It is preferable to perform the heat treatment for 2 seconds (preferably 30 to 300 seconds).
  • the discotic liquid crystal compound having a polymerizable group in an aligned state is subjected to ultraviolet irradiation treatment with an ultraviolet irradiation amount of 100 mJ / cm 2 or more and less than 400 mJ / cm 2 , and the optically anisotropic layer A Is a step of forming.
  • the reaction proceeds between the polymerizable groups, and the alignment state is fixed.
  • the ultraviolet irradiation amount is in the above range, the surface hardness of the formed optically anisotropic layer A becomes a suitable range for the subsequent rubbing treatment, and the alignment of the rod-like liquid crystal compound becomes more excellent.
  • the amount of ultraviolet irradiation is less than 100 mJ / cm 2 , sufficient immobilization of the optically anisotropic layer A does not proceed and the rubbing treatment cannot be performed. Further, when the ultraviolet irradiation amount is 400 mJ / cm 2 or more, the surface of the optically anisotropic layer A is hardened too much, and the alignment state is not formed well by the rubbing treatment, and the optical anisotropy laminated thereon is formed. An alignment defect of the rod-like liquid crystal compound in the layer B occurs.
  • light irradiation may be performed under heating conditions.
  • temperature for fixing orientation Generally 100 degreeC or less is preferable and 80 degreeC or less is more preferable.
  • the state in which the orientation state is fixed is a state in which the orientation is maintained, which is the most typical and preferred embodiment, but is not limited thereto.
  • the orientation state is usually 0 to 50 ° C.
  • the immobilized composition Under severe conditions, in the temperature range of ⁇ 30 to 70 ° C., the immobilized composition has no fluidity, and does not cause a change in the orientation form due to an external field or external force. This indicates a state where it can be kept stable.
  • Step (4) is a step of rubbing on the optically anisotropic layer A in a direction intersecting with the slow axis of the optically anisotropic layer A by 90 °.
  • a treatment method widely adopted as a liquid crystal alignment treatment process of the LCD can be applied. That is, a method of obtaining orientation by rubbing the surface of the optically anisotropic layer A in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber, or the like can be used. In general, it is carried out by rubbing several times using a cloth in which fibers having a uniform length and thickness are flocked on average.
  • Step (5) is a step of applying a composition containing a rod-like liquid crystal compound having a polymerizable group on the rubbed optically anisotropic layer A, and performing a heat treatment as necessary to align the rod-like liquid crystal compound. is there.
  • the composition used is as described above.
  • the coating method of a composition is the same as that of a process (2).
  • Step (6) is a step of forming the optically anisotropic layer B by subjecting the rod-like liquid crystal compound having a polymerizable group in an aligned state to a curing treatment.
  • the method of the curing treatment is not particularly limited as long as the reaction proceeds between the polymerizable groups, and examples thereof include heat treatment or light irradiation treatment (preferably ultraviolet irradiation treatment).
  • Step (7) is a step of further disposing a polarizing film. More specifically, it is a step of further disposing a polarizing film on the formed optically anisotropic layer B or transparent support.
  • the method for disposing the polarizing film is not particularly limited.
  • the polarizing film is disposed on the optically anisotropic layer B or the transparent support through an adhesive layer or an adhesive layer (not shown).
  • positioning (bonding) a polarizing film you may bond by what is called a roll-to-roll system.
  • a polyvinyl alcohol-type adhesive can be used.
  • an adhesive used for the adhesive layer for example, a polyvinyl alcohol resin (including a modified polyvinyl alcohol with an acetoacetyl group, a sulfonic acid group, a carboxyl group, or an oxyalkylene group) or an aqueous boron compound solution is used as the adhesive. be able to. Of these, polyvinyl alcohol resins are preferred.
  • the thickness of the pressure-sensitive adhesive layer and the adhesive layer is preferably in the range of 0.01 to 10 ⁇ m after drying, and particularly preferably in the range of 0.05 to 5 ⁇ m.
  • a protective film on the other surface of the polarizing film that is not bonded to the optically anisotropic layer B or the transparent support.
  • the circularly polarizing plate 100 includes the polarizing film 18, the transparent support 12, the optically anisotropic layer A14, and the optically anisotropic layer B16 in this order.
  • the relationship among the angles of the absorption axis of the polarizing film 18, the slow axis of the optically anisotropic layer A14, and the slow axis of the optically anisotropic layer B16 is not particularly limited, and the form of the first embodiment described above is not limited. Can be mentioned.
  • the optically anisotropic layer that is a ⁇ / 2 film and the polarizing film is preferably orthogonal. More specifically, for example, in the embodiment of FIG. 2, when the optically anisotropic layer A14 is a ⁇ / 2 film and the optically anisotropic layer B16 is a ⁇ / 4 film, the optical axis differs from the absorption axis of the polarizing film 18.
  • the circularly polarizing plate 100 shown in FIG. 2 has the same components as the circularly polarizing plate 10 shown in FIG. 1 except for the position of the polarizing film 18, and the same components are denoted by the same reference numerals. The description is omitted. As shown in FIG. 2, even when the polarizing film 18 is disposed at a position in contact with the transparent support 12, a desired effect is achieved.
  • ⁇ Example 1> ⁇ Preparation of transparent support A> The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acylate solution A.
  • Composition of Cellulose Acylate Solution A Cellulose acetate having a substitution degree of 2.86 100 parts by weight Triphenyl phosphate (plasticizer) 7.8 parts by weight Biphenyl diphenyl phosphate (plasticizer) 3.9 parts by weight Methylene chloride (first solvent) 300 parts by weight Methanol (second solvent) ) 54 parts by mass 1-butanol 11 parts by mass ⁇
  • composition of additive solution B ⁇ Composition of additive solution B ⁇
  • a dope was prepared by adding 40 parts by mass of the additive solution B to 477 parts by mass of the cellulose acylate solution A and stirring sufficiently.
  • the dope was cast from a casting port onto a drum cooled to 0 ° C.
  • the film is peeled off at a solvent content of 70% by mass, and both ends in the width direction of the film are fixed with a pin tenter (a pin tenter described in FIG. 3 of JP-A-4-1009), and the solvent content is 3 to 5% by mass. Then, it was dried while maintaining an interval at which the stretching ratio in the transverse direction (direction perpendicular to the machine direction) was 3%.
  • Transparent support body A did not contain an ultraviolet absorber, Re (550) was 0 nm, and Rth (550) was 12.3 nm.
  • Alkaline saponification treatment >> The cellulose acetate transparent support A is passed through a dielectric heating roll having a temperature of 60 ° C., and the film surface temperature is raised to 40 ° C. Then, an alkali solution having the composition shown below is applied to one side of the film using a bar coater. The coating was applied at a coating amount of 14 ml / m 2 , heated to 110 ° C., and conveyed for 10 seconds under a steam far-infrared heater manufactured by Noritake Company Limited. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Next, washing with a fountain coater and draining with an air knife were repeated three times, and then the sheet was transported to a drying zone at 70 ° C. for 10 seconds and dried to prepare an alkali saponified cellulose acetate transparent support A.
  • a coating solution for forming an alignment film having the following composition was continuously applied with a # 8 wire bar.
  • the alignment film was formed by drying with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds.
  • Composition of coating solution for alignment film formation ⁇ Polymer material for alignment film 4.0 parts by mass (PVA103, Kuraray Co., Ltd. polyvinyl alcohol) Methanol 36 parts by mass Water 60 parts by mass ⁇
  • ⁇ Preparation of optically anisotropic layer A> The prepared alignment film surface was rubbed continuously in the direction of 45 ° to the left with respect to the longitudinal direction of the transparent support A.
  • the following coating solution for optically anisotropic layer was applied onto the rubbing surface using a bar coater.
  • the film was cooled to 80 ° C. and irradiated with ultraviolet rays using an air-cooled metal halide lamp (produced by Eye Graphics Co., Ltd.) of 20 mW / cm 2 in air.
  • the optically anisotropic layer A was formed by irradiating to become cm 2 and fixing the alignment state.
  • the discotic liquid crystal was vertically aligned with the slow axis direction orthogonal to the rubbing direction.
  • the retardation values of wavelengths 450 nm, 550 nm and 650 nm of the optically anisotropic layer A were as follows.
  • the thickness of the optically anisotropic layer A was 2.5 ⁇ m.
  • composition of coating liquid for optically anisotropic layer (composition for forming optically anisotropic layer A1) ⁇ Discotic liquid crystal E-1 80 parts by weight Discotic liquid crystal 2 20 parts by weight alignment film interface alignment agent 1 0.55 parts by weight alignment film interface alignment agent 2 0.05 parts by weight fluorinated compound 0.1 part by weight modified trimethylolpropane Triacrylate 10 parts by weight Photopolymerization initiator 3.0 parts by weight (Irgacure 907, manufactured by Ciba Specialty Chemicals) Interlayer orientation agent 0.6 parts by weight Methyl ethyl ketone 180 parts by weight cyclohexanone 20 parts by weight ⁇
  • optically anisotropic layer B The surface of the optically anisotropic layer A was continuously rubbed in a direction perpendicular to the slow axis of the optically anisotropic layer A.
  • the following coating solution for optically anisotropic layer was applied onto the rubbing surface using a bar coater.
  • the film surface is aged at 60 ° C. for 60 seconds, and irradiated with ultraviolet rays using an air-cooled metal halide lamp (made by Eye Graphics Co., Ltd.) of 20 mW / cm 2 in the air to fix the alignment state.
  • an optically anisotropic layer B was formed.
  • the rod-like liquid crystal was horizontally aligned with the slow axis direction parallel to the rubbing direction.
  • the retardation values of wavelengths 450 nm, 550 nm and 650 nm of the optically anisotropic layer B were as follows.
  • the thickness of the optically anisotropic layer B was 1.0 ⁇ m.
  • the ReA (550) of the optically anisotropic layer A and the ReB (550) of the optically anisotropic layer B correspond to the relationship of ReA (550)> ReB (550), and the relationship of the above formula (3).
  • composition of coating liquid for optically anisotropic layer (composition for forming optically anisotropic layer B) ⁇ Rod-like liquid crystal compound 1 90 parts by mass Rod-like liquid crystal compound 2 10 parts by mass Photopolymerization initiator 3.0 parts by mass (Irgacure 907, manufactured by Ciba Specialty Chemicals Co., Ltd.) Sensitizer (Kayacure-DETX, manufactured by Nippon Kayaku Co., Ltd.) 1.0 part by mass fluorinated compound 0.5 part by weight methyl ethyl ketone 400 parts by weight ⁇ ⁇
  • a polarizing plate uses a polarizing plate having a polarizing film with a thickness of 20 ⁇ m that is protected on one side only by triacetyl cellulose (thickness: 40 ⁇ m), and the unprotected side of the polarizing plate (polarized light made of stretched polyvinyl alcohol).
  • Film) and a cellulose acetate transparent support are bonded together with an optically isotropic adhesive, and circularly polarized A plate was made.
  • the angle formed by the absorption axis of the polarizing film and the slow axis of the optically anisotropic layer A is 45 °
  • the slow axis of the optically anisotropic layer A and the slow axis of the optically anisotropic layer B are The angle between and was orthogonal.
  • Example 2 Except for changing the irradiation dose 200 mJ / cm 2 of ultraviolet rays 150 mJ / cm 2, according to the procedure as in Example 1 to produce a circularly polarizing plate.
  • ReB (450), ReB (550) and ReB (650) which are retardation values of the conductive layer B were the same as those in Example 1.
  • Example 3 Except for changing the irradiation dose 200 mJ / cm 2 of ultraviolet rays 300 mJ / cm 2, according to the procedure as in Example 1 to produce a circularly polarizing plate.
  • ReB (450), ReB (550) and ReB (650) which are retardation values of the conductive layer B were the same as those in Example 1.
  • Example 4 According to the same procedure as in Example 1, except that the manufacturing procedure of the optically anisotropic layer A was changed to the following procedure and the thickness of the optically anisotropic layer B was changed from 1.0 ⁇ m to 5.0 ⁇ m. A board was produced.
  • optically anisotropic layer A The surface of the prepared alignment film was continuously rubbed in a direction of 45 ° to the left with respect to the longitudinal direction of the transparent support.
  • the following coating solution for optically anisotropic layer was applied onto the rubbing surface using a bar coater.
  • the film was cooled to 80 ° C., and an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) of 20 mW / cm 2 was used in the air.
  • the optically anisotropic layer A was formed by fixing the alignment state.
  • the discotic liquid crystal compound was vertically aligned with the slow axis direction parallel to the rubbing direction.
  • the retardation values of wavelengths 450 nm, 550 nm and 650 nm of the optically anisotropic layer A were as follows.
  • the thickness of the optically anisotropic layer A was 2.5 ⁇ m.
  • ReB (450), ReB (550), and ReB (650), which are retardation values of the optically anisotropic layer B measured at wavelengths of 450 nm, 550 nm, and 650 nm, were as follows.
  • ReA (550) of the optically anisotropic layer A and ReB (550) of the optically anisotropic layer B correspond to the relationship of ReB (550)> ReA (550), and the relationship of the above formula (2).
  • composition of coating liquid for optically anisotropic layer (composition for forming optically anisotropic layer A2)
  • Discotic liquid crystal compound 90 parts by mass Fluorine-containing compound 0.1 part by mass Vertical alignment agent 0.5 part by mass Modified trimethylolpropane triacrylate 5 parts by mass Photopolymerization initiator 3.0 parts by mass (Irgacure 907, Ciba Specialty Chemicals (Made by Co., Ltd.) Sensitizer (Kayacure-DETX, manufactured by Nippon Kayaku Co., Ltd.) 1.0 part by weight interlayer alignment agent 0.6 part by weight methyl ethyl ketone 180 parts by weight cyclohexanone 20 parts by weight ⁇ ⁇
  • the thickness of the optical laminate represents the total value of the thickness of the transparent support, the thickness of the optically anisotropic layer A, and the thickness of the optically anisotropic layer B.
  • DLC1 in the column of optically anisotropic layer A is intended to be formed using the composition for forming optically anisotropic layer A1
  • DLC2 is the composition for forming optically anisotropic layer A2. Intended to be formed using.

Abstract

 本発明は、ディスコティック液晶化合物を用いて形成される光学異方性層と棒状液晶化合物を用いて形成される光学異方性層とを含み、棒状液晶化合物の配向不良が抑制され、視認性に優れた円偏光板およびその製造方法を提供することを目的とする。本発明の円偏光板は、光学積層体と偏光膜とを有する円偏光板であって、光学積層体が、透明支持体と、光学異方性層Aと、光学異方性層Bとをこの順で有し、光学異方性層Aが、重合性基を有するディスコティック液晶化合物を含有する組成物から形成され、光学異方性層Bが、重合性基を有する棒状液晶化合物を含有する組成物から形成され、光学積層体のヘイズ値Xが所定値未満である。

Description

円偏光板およびその製造方法、光学積層体
 本発明は、円偏光板およびその製造方法、並びに、光学積層体に関する。
 従来から、外光反射による悪影響を抑制するために、円偏光板がEL表示装置やLCD表示装置などに使用されている。
 円偏光板としては、例えば、特許文献1に記載されるように、光学異方性層を含む位相差板と直線偏光膜(偏光膜)とを組み合わせた態様が開示されている。より具体的には、光学異方性層としては、棒状液晶化合物から構成される光学異方性層AおよびBを積層した積層体が使用されている。
特開2005-84277号公報
 一方、近年、視野角特性がより優れる点から、光学異方性層を構成する液晶化合物として、ディスコティック液晶化合物を使用することが好まれている。
 本発明者らは、特許文献1の記載を参照して、ディスコティック液晶化合物を使用して積層構造を有する光学異方性層の製造を行った。より具体的には、ディスコティック液晶化合物から形成される光学異方性層上に棒状液晶化合物から形成される光学異方性層を作製したところ、棒状液晶化合物から形成される光学異方性層が配向不良を起こし、白濁してしまうという問題があった。
 本発明は、上記実情に鑑みて、ディスコティック液晶化合物を用いて形成される光学異方性層と棒状液晶化合物を用いて形成される光学異方性層とを含み、棒状液晶化合物の配向不良が抑制され、視認性に優れた円偏光板およびその製造方法を提供することを目的とする。
 また、本発明は、該円偏光板に使用できる光学積層体を提供することも目的とする。
 本発明者らは、従来技術の問題点について鋭意検討した結果、重合性基を有するディスコティック液晶化合物に紫外線照射処理を行って固定化する際の紫外線照射量を制御することにより、上記課題を解決できることを見出した。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
(1) 光学積層体と偏光膜とを有する円偏光板であって、
 光学積層体が、透明支持体と、光学異方性層Aと、光学異方性層Bとをこの順で有し、
 光学異方性層Aが、重合性基を有するディスコティック液晶化合物を含有する組成物から形成され、
 光学異方性層Bが、重合性基を有する棒状液晶化合物を含有する組成物から形成され、
 波長450nm、550nmおよび650nmで測定した光学異方性層Aのレタデーション値であるReA(450)、ReA(550)およびReA(650)と、波長450nm、550nmおよび650nmで測定した光学異方性層Bのレタデーション値であるReB(450)、ReB(550)およびReB(650)とが下記式(1)を満足すると共に、
 ReB(550)>ReA(550)の場合、式(2)を満足し、
 ReA(550)>ReB(550)の場合、式(3)を満足し、
 さらに光学積層体のヘイズ値Xが下記式(4)を満足する、円偏光板。
式(1)  100nm≦│ReB(550)-ReA(550)│≦180nm
式(2)  ReB(450)/ReB(650)<ReA(450)/ReA(650)
式(3)  ReA(450)/ReA(650)<ReB(450)/ReB(650)
式(4)  X<0.50%
(2)光学異方性層Aの遅相軸および光学異方性層Bの遅相軸のいずれか一方と偏光膜の吸収軸とのなす角が45°であり、かつ、光学異方性層Aの遅相軸と光学異方性層Bの遅相軸とのなす角が直交である、(1)に記載の円偏光板。
(3) (1)または(2)に記載の円偏光板の製造方法であって、
 重合性基を有するディスコティック液晶化合物に対して紫外線照射処理を施し、光学異方性層Aを形成する工程を少なくとも有し、
 紫外線照射処理の照射量が100mJ/cm2以上400mJ/cm2未満である、円偏光板の製造方法。
(4) 透明支持体と、光学異方性層Aと、光学異方性層Bとをこの順で有し、
 光学異方性層Aが、重合性基を有するディスコティック液晶化合物を含有する組成物から形成され、
 光学異方性層Bが、重合性基を有する棒状液晶化合物を含有する組成物から形成され、
 波長450nm、550nmおよび650nmで測定した光学異方性層Aのレタデーション値であるReA(450)、ReA(550)およびReA(650)と、波長450nm、550nmおよび650nmで測定した光学異方性層Bのレタデーション値であるReB(450)、ReB(550)およびReB(650)とが下記式(1)を満足すると共に、
 ReB(550)>ReA(550)の場合、式(2)を満足し、
 ReA(550)>ReB(550)の場合、式(3)を満足し、
 さらにヘイズ値Xが下記式(4)を満足する、光学積層体。
式(1)  100nm≦│ReB(550)-ReA(550)│≦180nm
式(2)  ReB(450)/ReB(650)<ReA(450)/ReA(650)
式(3)  ReA(450)/ReA(650)<ReB(450)/ReB(650)
式(4)  X<0.50%
(5) 光学異方性層Aの遅相軸と光学異方性層Bの遅相軸とのなす角が直交である、(4)に記載の光学積層体。
 本発明によれば、ディスコティック液晶化合物を用いて形成される光学異方性層と棒状液晶化合物を用いて形成される光学異方性層とを含み、棒状液晶化合物の配向不良が抑制され、視認性に優れた円偏光板およびその製造方法を提供することができる。
 また、本発明によれば、該円偏光板に使用できる光学積層体を提供することができる。
本発明の円偏光板の第1の実施態様の概略断面図である。 本発明の円偏光板の第2の実施態様の概略断面図である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。まず、本明細書で用いられる用語について説明する。
 Re(λ)、Rth(λ)は、各々、波長λにおける面内のレタデーション、及び、厚さ方向のレタデーションを表す。Re(λ)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)が算出される。なお、この測定方法は、後述する光学異方性層B中の棒状液晶分子の平均チルト角、その反対側の平均チルト角の測定においても一部利用される。
 Rth(λ)は、上記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレタデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレタデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレタデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレタデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値を基に、以下の式(A)、及び式(B)よりRthを算出することもできる。
Figure JPOXMLDOC01-appb-M000001
 なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレタデーション値を表す。また、式(A)におけるnxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。dは測定フィルムの厚みを示す。
Rth=((nx+ny)/2-nz)×d・・・・・・・・・・・式(B)
 測定されるフィルムが、1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法により、Rth(λ)は算出される。Rth(λ)は、上記Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して-50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレタデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。また、上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx-nz)/(nx-ny)が更に算出される。
 なお、本明細書では、「可視光」とは、380nm~780nmのことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 また、本明細書において、角度(例えば「90°」等の角度)、及びその関係(例えば「直交」、「平行」、「45°」、「90°」、「15°」、「75°」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることなどを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。つまり、「45°」とは、45±10°未満の範囲(35°超55°未満)を意図する。
<第1の実施態様>
 以下に、本発明の円偏光板の第1の実施態様について図面を参照して説明する。図1に、本発明の円偏光板の第1の実施態様の概略断面図を示す。
 円偏光板10は、透明支持体12と、光学異方性層A14と、光学異方性層B16と、偏光膜18とをこの順で有する。光学異方性層A14は重合性基を有するディスコティック液晶化合物を含有する組成物から形成されており、光学異方性層B16は重合性基を有する棒状液晶化合物を含有する組成物から形成されている。また、透明支持体12と、光学異方性層A14と、光学異方性層B16とは、光学積層体20を構成する。
 以下に、各部材について詳述する。
<透明支持体>
 透明支持体は、後述する光学異方性層Aおよび光学異方性層Bなどを支持する基材である。
 透明支持体を形成する材料としては、光学性能透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるポリマーが好ましい。本発明でいう透明とは、可視光の透過率が60%以上であることを示し、好ましくは80%以上であり、特に好ましくは90%以上である。
 透明支持体を形成する材料としては、例えば、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又は上記ポリマーを混合したポリマーも例としてあげられる。
 また、透明支持体を形成する材料としては、熱可塑性ノルボルネン系樹脂を好ましく用いることが出来る。熱可塑性ノルボルネン系樹脂としては、日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートン等があげられる。
 また、透明支持体を形成する材料としては、従来偏光板の透明保護フィルムとして用いられてきた、トリアセチルセルロースに代表される、セルロース系ポリマー(特に好ましくは、セルロースアシレート)を好ましく用いることができる。
 以下に、透明支持体の例として、主にセルロースアシレートについて詳細を説明する。
[透明支持体の添加剤]
 透明支持体には、種々の添加剤(例えば、光学的異方性調整剤、波長分散調整剤、微粒子、可塑剤、紫外線防止剤、劣化防止剤、剥離剤、など)を加えることができ、これらについて以下に説明する。また、透明支持体がセルロースアシレートフィルムである場合、その添加する時期はドープ作製工程(セルロースアシレート溶液の作製工程)における何れでもよいが、ドープ作製工程の最後に添加剤を添加し調製する工程を行ってもよい。
[紫外線吸収剤]
 透明支持体は、紫外線吸収剤(UV吸収剤)を含有することが好ましい。紫外線吸収剤を含有することで紫外線吸収性を付与することができる。透明支持体に紫外線吸収剤を含有させることで、外光に含まれる紫外線に曝されることで、透明支持体の黄変(例えば波長400nmの透過率低下として観察される。)や透明支持体の一方の面に積層される光学異方性層Aのレタデーション変化(例えばRe変化として観測される。)を防止することができる。UV吸収剤の具体例としては、例えば、特開2006-199855号公報の[0059]から[0135]に記載の化合物が挙げられる。
 透明支持体の380nmの透過率は50%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、5%以下であることが特に好ましい。
[光学的異方性を低下させる化合物]
 透明支持体の光学的異方性を低下させる化合物の具体例としては、例えば、特開2006-199855号公報の[0035]から[0058]記載の化合物が挙げられるが、これら化合物に限定されない。
[可塑剤、劣化防止剤、剥離剤]
 光学的異方性を低下させる化合物、UV吸収剤、マット剤の他に、前述のように、用途に応じた種々の添加剤(例えば、可塑剤、劣化防止剤、剥離剤、赤外吸収剤、など)を加えることができ、それらは固体でもよく油状物でもよい。これらの素材の詳細は、発明協会公開技報(公技番号2001-1745、2001年3月15日発行、発明協会)にて16頁~22頁に詳細に記載されている。
<光学異方性層>
 光学異方性層Aおよび光学異方性層Bは、透明支持体上に配置される層であり、位相差を生じさせる層である。
 光学異方性層Aおよび光学異方性層Bは、各種用途に合わせ材料及び製造条件を選択することができるが、いずれか一方がλ/4膜であり、他方がλ/2膜であることが好ましい態様の一つである。
 光学異方性層Aの波長550nmにおけるレタデーション値(ReA(550))および光学異方性層Bの波長550nmにおけるレタデーション値(ReB(550))は、下記式(1)を満足するように調節する。
 式(1)  100nm≦│ReB(550)-ReA(550)│≦180nm
 なかでも、正面の反射防止性能に関して光学異方性層Aおよび光学異方性層Bの積層光学異方性層がより広帯域化することから、ReA(550)とReB(550)との差の絶対値│ReB(550)-ReA(550)│は、110~170nmであることが好ましく、120~160nmであることがより好ましい。
 また、光学異方性層Aの波長450nmにおけるレタデーション値(ReA(450)および波長650nmにおけるレタデーション値(ReA(650)、並びに、光学異方性層Bの波長450nmにおけるレタデーション値(ReB(450)および波長650nmにおけるレタデーション値(ReB(650)は、以下の式(2)または式(3)の関係を満足するように調節する。
 より具体的には、ReB(550)>ReA(550)の場合、式(2)を満足する。
式(2)  ReB(450)/ReB(650)<ReA(450)/ReA(650)
 また、ReA(550)>ReB(550)の場合、式(3)を満足する。
式(3)  ReA(450)/ReA(650)<ReB(450)/ReB(650)
 また、偏光膜の吸収軸と光学異方性層Aおよび光学異方性層Bとの角度の関係は特に制限されないが、光学異方性層Aの遅相軸および光学異方性層Bの遅相軸のいずれか一方と偏光膜の吸収軸とのなす角が45°であり、かつ、光学異方性層Aの遅相軸と光学異方性層Bの遅相軸のなす角が直交になるように両者が配置されていることが好ましい。より具体的には、光学異方性層Aおよび光学異方性層Bの一方がλ/4膜であり、他方がλ/2膜である場合、λ/2膜である光学異方性層と偏光膜の吸収軸とのなす角が45°であり、光学異方性層Aと光学異方性層Bとのなす角が直交であることが好ましい。例えば、図1にて光学異方性層Bがλ/2膜で光学異方性層Aがλ/4膜である場合、偏光膜の吸収軸と光学異方性層Bの遅相軸とのなす角が45°であり、光学異方性層Aと光学異方性層Bとのなす角が直交である態様が挙げられる。
 また、偏光膜の吸収軸と光学異方性層AおよびBとの軸関係は、上記関係に限定されず、例えば、図1において光学異方性層Bがλ/2膜で、光学異方性層Aがλ/4である場合、偏光膜の吸収軸と光学異方性層Bの遅相軸とのなす角が75°であり、かつ、偏光膜の吸収軸と光学異方性層Aの遅相軸とのなす角が15°であることも好ましい。言い換えると、偏光膜の透過軸と光学異方性層Bの遅相軸とのなす角が15°で、偏光膜の透過軸と光学異方性層Bの遅相軸とのなす角が75°であることが好ましい。
 なお、λ/4膜(λ/4板)とは、少なくとも波長550nmの光に対して1/4波長の光学的異方性の層であり、下記式(A)を満たすことが好ましい。
 式(A) 110nm≦Re(550)≦165nm
 また、λ/2膜(λ/2板)とは、少なくとも波長550nmの光に対して1/2波長の光学的異方性の層であり、下記式(B)を満たすことが好ましい。
 式(B) 220nm≦Re(550)≦325nm
 光学異方性層Aと光学異方性層Bとが上記のような光学的性質を有することで、必要とされる波長領域全体で広帯域λ/4板となりうる。必要とされる波長領域とは、一般に可視光領域とされる。可視光領域から任意の100nm以上の波長範囲で調べてもλ/4が達成できることが望ましい。
 光学異方性層Aと光学異方性層Bとは隣接し、光学異方性層Aと光学異方性層Bとの間に、実質的に配向膜を有さないことが好ましい。本明細書において「実質的に配向膜がない」とは、配向膜として機能させるためだけに形成された膜を含んでいないことを意味する。下方に位置する層の表面が、上方に位置する層の液晶化合物が配向するのに寄与する場合であっても、下方に位置する層が配向膜としてのみ用いるために形成されていない限り、本発明に含まれる。
 光学異方性層Aは、表面がべとつかず、布などでこすった場合にも層中の成分が布に転写されることもない。従って、直接ラビング処理を施すことができる。従って、光学異方性層Aを形成した後、引き続きその表面に直接ラビング処理を施し、ラビング処理面に重合性基を有する棒状液晶化合物を含有する組成物を塗布して、光学異方性層Bを形成することができる。つまり、光学異方性層Aと光学異方性層Bとが直接接触するように、配置されていてもよい。
 光学異方性層Aは重合性基を有するディスコティック液晶化合物を含有する組成物から形成され、光学異方性層Bは重合性基を有する棒状液晶化合物を含有する組成物から形成される。言い換えると、光学異方性層Aは、ディスコティック液晶化合物が重合等によって固定されて形成された層であり、層となった後はもはや液晶性を示す必要はない。また、光学異方性層Bは、棒状液晶化合物が重合等によって固定されて形成された層であり、層となった後はもはや液晶性を示す必要はない。より具体的には、光学異方性層Aは、重合性基を有するディスコティック液晶化合物を含有する組成物を塗布して、重合硬化させて得られる層であり、光学異方性層Bは、重合性基を有する棒状液晶化合物を含有する組成物を塗布して、重合硬化させて得られる層である。
 なお、使用されるディスコティック液晶化合物および棒状液晶化合物は、それぞれ多官能性であってもよいし、単官能性であってもよい。
 ディスコティック液晶化合物および棒状液晶化合物に含まれる重合性基の種類は特に制限されず、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基又は開環重合性基が好ましい。より具体的には、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが好ましく挙げられ、(メタ)アクリロイル基がより好ましい。
 光学異方性層Aと光学異方性層Bにおいて、液晶化合物(ディスコティック液晶化合物または棒状液晶化合物)の分子は、垂直配向、水平配向、ハイブリッド配向および傾斜配向のいずれかの配向状態に固定化されていることが好ましい。視野角依存性が対称である光学積層体(位相差板)を作製するためには、ディスコティック液晶化合物の円盤面が透明支持体面(光学異方性層Aの面方向)に対して実質的に垂直であるか、及び/又は、棒状液晶化合物の長軸が透明支持体面(光学異方性層B面)に対して実質的に水平であることが好ましい。ディスコティック液晶化合物が実質的に垂直とは、透明支持体面(光学異方性層A面)とディスコティック液晶化合物の円盤面とのなす角度の平均値が70°~90°の範囲内であることを意味し、80°~90°がより好ましく、85°~90°が更に好ましい。棒状液晶化合物が実質的に水平とは、透明支持体面(光学異方性層B面)と棒状液晶化合物のダイレクターとのなす角度が0°~20°の範囲内であることを意味し、0°~10°がより好ましく、0°~5°が更に好ましい。
 ディスコティック液晶化合物または棒状液晶化合物の液晶化合物の分子をハイブリッド配向させる場合、液晶化合物のダイレクターの平均傾斜角は5~85°であることが好ましく、10~80°であることがより好ましく、15~75°であることが更に好ましい。
 光学異方性層Aおよび光学異方性層Bは、それぞれ、重合性基を有するディスコティック液晶化合物または重合性基を有する棒状液晶化合物と、所望により、後述する重合開始剤や配向制御剤や他の添加剤を含む組成物(塗布液)を、透明支持体上に塗布することで形成することができる。
 なお、後述するように、透明支持体上に配向膜を形成し、該配向膜表面に組成物(塗布液)を塗布して形成するのが好ましい。
 光学異方性層Aまたは光学異方性層Bを形成するために使用される組成物中における重合性基を有するディスコティック液晶化合物または重合性基を有する棒状液晶化合物の含有量の好ましい範囲は、組成物の全固形分に対して(塗布液である場合は溶媒を除いた組成物に対して)、50質量%以上であることが好ましく、70~99質量%であることがより好ましく、80~98質量%であることが更に好ましい。上記範囲にすることで充分な位相差を薄膜で発現させることができる。
 なお、光学異方性層Aおよび光学異方性層Bを形成するために使用される組成物は、液晶の配向を制御する配向制御剤を含有していてもよい。使用可能な配向制御剤の例には、配向膜界面側に偏在し、配向膜界面の液晶の配向を制御する配向膜界面配向制御剤、及び空気界面側に偏在し空気界面側の液晶の配向を制御する空気界面配向制御剤が含まれる。
 以下に、光学異方性層A14および光学異方性層B16の形成に使用される化合物について詳述する。
[ディスコティック液晶化合物]
 ディスコティック液晶化合物は、様々な文献(C.Destrade et al.,Mol.Crysr.Liq.Cryst.,vol.71,page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et al.,Angew.Chem.Soc.Chem.Comm.,page 1794(1985);J.Zhang et al.,J.Am.Chem.Soc.,vol.116,page2655(1994))に記載されている。ディスコティック液晶化合物の重合については、特開平8-27284号公報に記載がある。
 使用されるディスコティック液晶化合物は、重合により固定可能なように、重合性基を有する。例えば、ディスコティック液晶化合物の円盤状コアに、置換基として重合性基を結合させた構造が考えられるが、但し、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に連結基を有する構造が好ましい。即ち、重合性基を有するディスコティック液晶化合物は、下記式で表される化合物であることが好ましい。
D(-L-P)
 式中、Dは円盤状コアであり、Lは二価の連結基であり、Pは重合性基であり、nは1~12の整数である。式中の円盤状コア(D)、二価の連結基(L)及び重合性基(P)の好ましい具体例は、それぞれ、特開2001-4837号公報に記載の(D1)~(D15)、(L1)~(L25)、(P1)~(P18)であり、同公報に記載の内容を好ましく用いることができる。なお、液晶化合物のディスコティックネマティック液晶相-固相転移温度は、30~300℃が好ましく、30~170℃が更に好ましい。
 下記一般式(I)で表わされるディスコティック液晶化合物は、面内レタデーションの波長分散性が低く、高い面内レタデーションを発現可能であり、また特殊な配向膜や添加剤を使用しなくても高い平均傾斜角で均一性に優れた垂直配向を達成できるので、光学異方性層Aの形成に利用するのが好ましい。更に該液晶化合物を含有する組成物は、その粘度が比較的低くなる傾向があり、塗布性が良好である点でも好ましい。
Figure JPOXMLDOC01-appb-C000002
 式中、Y11、Y12及びY13は、それぞれ独立に置換されていてもよいメチン又は窒素原子を表す。
 Y11、Y12及びY13がメチンの場合、メチンの水素原子は置換基で置き換わってもよい。メチンが有していてもよい置換基としては、アルキル基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、ハロゲン原子及びシアノ基を好ましい例として挙げることができる。これらの置換基の中では、アルキル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、ハロゲン原子及びシアノ基が更に好ましく、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数2~12アルコキシカルボニル基、炭素数2~12アシルオキシ基、ハロゲン原子及びシアノ基がより好ましい。
 Y11、Y12及びY13は、化合物の合成の容易さ及びコストの点において、いずれもメチンであることがより好ましく、メチンは無置換であることが更に好ましい。
 L1、L2及びL3は、それぞれ独立に単結合又は二価の連結基を表す。
 L1、L2及びL3が二価の連結基の場合、それぞれ独立に、-O-,-S-、-C(=O)-、-NR7-、-CH=CH-、-C≡C-、二価の環状基及びこれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記R7は炭素原子数1~7のアルキル基又は水素原子であり、炭素原子数1~4のアルキル基又は水素原子であることが好ましく、メチル基、エチル基又は水素原子であることが更に好ましく、水素原子であることが最も好ましい。
 L1、L2及びL3における二価の環状基とは、少なくとも1種類の環状構造を有する二価の連結基(以下、環状基と呼ぶことがある)である。環状基は5員環、6員環、又は7員環であることが好ましく、5員環又は6員環であることが更に好ましく、6員環であることが最も好ましい。環状基に含まれる環は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。また、環状基に含まれる環は、芳香族環、脂肪族環、及び複素環のいずれでもよい。芳香族環としては、ベンゼン環及びナフタレン環が好ましい例として挙げられる。脂肪族環としては、シクロヘキサン環が好ましい例として挙げられる。複素環としては、ピリジン環及びピリミジン環が好ましい例として挙げられる。環状基は、芳香族環及び複素環がより好ましい。なお、本発明における2価の環状基は、環状構造のみ(但し、置換基を含む)からなる2価の連結基であることがより好ましい(以下、同じ)。
 L1、L2及びL3で表される二価の環状基のうち、ベンゼン環を有する環状基としては、1,4-フェニレン基が好ましい。ナフタレン環を有する環状基としては、ナフタレン-1,5-ジイル基及びナフタレン-2,6-ジイル基が好ましい。シクロヘキサン環を有する環状基としては1,4-シクロへキシレン基であることが好ましい。ピリジン環を有する環状基としてはピリジン-2,5-ジイル基が好ましい。ピリミジン環を有する環状基としては、ピリミジン-2,5-ジイル基が好ましい。
 L1、L2及びL3で表される二価の環状基は、置換基を有していてもよい。置換基としては、ハロゲン原子(好ましくは、フッ素原子、塩素原子)、シアノ基、ニトロ基、炭素原子数1~16のアルキル基、炭素原子数2~16のアルケニル基、炭素原子数が2~16アルキニル基、炭素原子数1~16のハロゲン置換アルキル基、炭素原子数1~16のアルコキシ基、炭素原子数2~16のアシル基、炭素原子数1~16のアルキルチオ基、炭素原子数2~16のアシルオキシ基、炭素原子数2~16のアルコキシカルボニル基、カルバモイル基、炭素原子数2~16のアルキル基で置換されたカルバモイル基及び炭素原子数2~16のアシルアミノ基が含まれる。
 L1、L2及びL3としては、単結合、*-O-CO-、*-CO-O-、*-CH=CH-、*-C≡C-、*-二価の環状基-、*-O-CO-二価の環状基-、*-CO-O-二価の環状基-、*-CH=CH-二価の環状基-、*-C≡C-二価の環状基-、*-二価の環状基-O-CO-、*-二価の環状基-CO-O-、*-二価の環状基-CH=CH-及び*-二価の環状基-C≡C-が好ましい。特に、単結合、*-CH=CH-、*-C≡C-、*-CH=CH-二価の環状基-及び*-C≡C-二価の環状基-が好ましく、単結合が最も好ましい。ここで、*は一般式(I)中のY11、Y12及びY13を含む6員環側に結合する位置を表す。
 一般式(I)中、H1、H2及びH3は、それぞれ独立に一般式(I-A)又は(IB)の基を表す。
Figure JPOXMLDOC01-appb-C000003
 一般式(I-A)中、YA1及びYA2は、それぞれ独立に置換基を有してもよいメチン又は窒素原子を表し;XAは、酸素原子、硫黄原子、メチレン又はイミノを表し;*は上記一般式(I)におけるL1~L3側と結合する位置を表し;**は上記一般式(I)におけるR1~R3側と結合する位置を表す。
Figure JPOXMLDOC01-appb-C000004
 一般式(I-B)中、YB1及びYB2は、それぞれ独立に置換基を有してもよいメチン又は窒素原子を表し;XBは、酸素原子、硫黄原子、メチレン又はイミノを表し;*は上記一般式(I)におけるL1~L3側と結合する位置を表し;**は上記一般式(I)におけるR1~R3側と結合する位置を表す。
 一般式(I)中、R1、R2及びR3は、それぞれ独立に下記一般式(I-R)を表す。
一般式(I-R)
 *-(-L21-Q2n1-L22-L23-Q1
 一般式(I-R)中、*は、一般式(I)におけるH1~H3側と結合する位置を表す。
 L21は単結合又は二価の連結基を表す。L21が二価の連結基の場合、-O-、-S-、-C(=O)-、-NR8-、-CH=CH-及び-C≡C-並びにこれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記R8は炭素原子数1~7のアルキル基又は水素原子であり、炭素原子数1~4のアルキル基又は水素原子であることが好ましく、メチル基、エチル基又は水素原子であることが更に好ましく、水素原子であることが最も好ましい。
 L21は単結合、***-O-CO-、***-CO-O-、***-CH=CH-及び***-C≡C-(ここで、***は一般式(I-R)中の*側を表す)のいずれかが好ましく、単結合がより好ましい。
 Q2は少なくとも1種類の環状構造を有する二価の基(環状基)を表す。このような環状基としては、5員環、6員環、又は7員環を有する環状基が好ましく、5員環又は6員環を有する環状基がより好ましく、6員環を有する環状基が更に好ましい。上記環状基に含まれる環状構造は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。また、環状基に含まれる環は、芳香族環、脂肪族環、及び複素環のいずれでもよい。芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環が好ましい例として挙げられる。脂肪族環としては、シクロヘキサン環が好ましい例として挙げられる。複素環としては、ピリジン環及びピリミジン環が好ましい例として挙げられる。
 上記Q2のうち、ベンゼン環を有する環状基としては、1,3-フェニレン基、1,4-フェニレン基が好ましい。ナフタレン環を有する環状基としては、ナフタレン-1,4-ジイル基、ナフタレン-1,5-ジイル基、ナフタレン-1,6-ジイル基、ナフタレン-2,5-ジイル基、ナフタレン-2,6-ジイルナフタレン-2,7-ジイル基が好ましい。シクロヘキサン環を有する環状基としては1,4-シクロへキシレン基であることが好ましい。ピリジン環を有する環状基としてはピリジン-2,5-ジイル基が好ましい。ピリミジン環を有する環状基としては、ピリミジン-2,5-ジイル基が好ましい。これらの中でも、特に、1,4-フェニレン基、ナフタレン-2,6-ジイル基及び1,4-シクロへキシレン基が好ましい。
 Q2のうち、5員環を有する環状基としては、1,2,4-オキサジアゾール-2,5-ジイル基、1,3,4-オキサジアゾール-2,5-ジイル基、1,2,4-チアジアゾール-2,5-ジイル基、1,3,4-チアジアゾール-2,5-ジイル基が好ましい。
 Q2は、置換基を有していてもよい。置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1~16のアルキル基、炭素原子数2~16のアルケニル基、炭素原子数2~16のアルキニル基、炭素原子数1~16のハロゲンで置換されたアルキル基、炭素原子数1~16のアルコキシ基、炭素原子数2~16のアシル基、炭素原子数1~16のアルキルチオ基、炭素原子数2~16のアシルオキシ基、炭素原子数2~16のアルコキシカルボニル基、カルバモイル基、炭素原子数2~16のアルキル置換カルバモイル基及び炭素原子数2~16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1~4のアルキル基、炭素原子数1~4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1~3のアルキル基、トリフルオロメチル基が更に好ましい。
 n1は、0~4の整数を表す。n1としては、1~3の整数が好ましく、1又は2が更に好ましい。
 L22は、**-O-、**-O-CO-、**-CO-O-、**-O-CO-O-、**-S-、**-N(R101)-、**-SO2-、**-CH2-、**-CH=CH-又は**-C≡C-を表し、R101は、炭素数1~5のアルキル基を表し、**はQ2側と結合する位置を表す。
 L22は、好ましくは、**-O-、**-O-CO-、**-CO-O-、**-O-CO-O-、**-CH2-、**-CH=CH-、**-C≡C-であり、より好ましくは、**-O-、**-O-CO-、**-O-CO-O-、**-CH2-である。L22が水素原子を含む基であるときは、該水素原子は置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲンで置換されたアルキル基、炭素原子数1~6のアルコキシ基、炭素原子数2~6のアシル基、炭素原子数1~6のアルキルチオ基、炭素原子数2~6のアシルオキシ基、炭素原子数2~6のアルコキシカルボニル基、カルバモイル基、炭素原子数2~6のアルキルで置換されたカルバモイル基及び炭素原子数2~6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1~6のアルキル基がより好ましい。
 L23は、-O-、-S-、-C(=O)-、-SO2-、-NH-、-CH2-、-CH=CH-及び-C≡C-並びにこれらの組み合わせからなる群より選ばれる二価の連結基を表す。ここで、-NH-、-CH2-、-CH=CH-の水素原子は、置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲンで置換されたアルキル基、炭素原子数1~6のアルコキシ基、炭素原子数2~6のアシル基、炭素原子数1~6のアルキルチオ基、炭素原子数2~6のアシルオキシ基、炭素原子数2~6のアルコキシカルボニル基、カルバモイル基、炭素原子数2~6のアルキルで置換されたカルバモイル基及び炭素原子数2~6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1~6のアルキル基がより好ましい。これらの置換基に置換されることにより、本発明の液晶化合物から液晶性組成物を調製する際に、使用する溶媒に対する溶解性を向上させることができる。
 L23は、-O-、-C(=O)-、-CH2-、-CH=CH-及び-C≡C-並びにこれらの組み合わせからなる群より選ばれることが好ましい。L23は、炭素原子を1~20個含有することが好ましく、炭素原子を2~14個を含有することがより好ましい。更に、L23は、-CH2-を1~16個含有することが好ましく、-CH2-を2~12個含有することが更に好ましい。
 Q1は重合性基又は水素原子を表す。重合性基の定義は、上述の通りである。
 更に、重合性基は付加重合反応が可能な官能基であることが特に好ましい。そのような重合性基としては、重合性エチレン性不飽和基又は開環重合性基が好ましい。
 重合性エチレン性不飽和基の例としては、下記の式(M-1)~(M-6)が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(M-3)、(M-4)中、Rは水素原子又はアルキル基を表し、水素原子又はメチル基が好ましい。
 上記式(M-1)~(M-6)の中でも、(M-1)又は(M-2)が好ましく、(M-1)がより好ましい。
 開環重合性基は、環状エーテル基が好ましく、エポキシ基又はオキセタニル基がより好ましい。
 一般式(I)の化合物の中でも、下記一般式(I’)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(I’)中、Y11、Y12及びY13は、それぞれ独立に置換基を有してもよいメチン又は窒素原子を表し、置換基を有してもよいメチンが好ましく、メチンは無置換であるのが好ましい。
 R11、R12及びR13は、それぞれ独立に下記一般式(I’-A)、下記一般式(I’-B)又は下記一般式(I’-C)を表す。固有複屈折の波長分散性を小さくしようとする場合、一般式(I’-A)又は一般式(I’-C)が好ましく、一般式(I’-A)がより好ましい。R11、R12及びR13は、R11=R12=R13であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(I’-A)中、A11、A12、A13、A14、A15及びA16は、それぞれ独立に置換基を有してもよいメチン又は窒素原子を表す。
 A11及びA12は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
 A13、A14、A15及びA16は、それらのうち、少なくとも3つが置換基を有してもよいメチンであることが好ましく、すべて置換基を有してもよいメチンであることがより好ましい。更に、該メチンは無置換であることが好ましい。
 A11、A12、A13、A14、A15又はA16が置換基を有してもよいメチンの場合の置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1~16のアルキル基、炭素原子数2~16のアルケニル基、炭素原子数2~16のアルキニル基、炭素原子数1~16のハロゲンで置換されたアルキル基、炭素原子数1~16のアルコキシ基、炭素原子数2~16のアシル基、炭素原子数1~16のアルキルチオ基、炭素原子数2~16のアシルオキシ基、炭素原子数2~16のアルコキシカルボニル基、カルバモイル基、炭素原子数2~16のアルキル置換カルバモイル基及び炭素原子数2~16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1~4のアルキル基、炭素原子数1~4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1~3のアルキル基、トリフルオロメチル基が更に好ましい。
 X1は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(I’-B)中、A21、A22、A23、A24、A25及びA26は、それぞれ独立に置換基を有してもよいメチン又は窒素原子を表す。
 A21及びA22は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
 A23、A24、A25及びA26は、それらのうち、少なくとも3つが置換基を有してもよいメチンであることが好ましく、すべて置換基を有してもよいメチンであることがより好ましい。更に、該メチンは無置換であることが好ましい。
 A21、A22、A23、A24、A25又はA26が置換基を有してもよいメチンの場合の置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1~16のアルキル基、炭素原子数2~16のアルケニル基、炭素原子数2~16のアルキニル基、炭素原子数1~16のハロゲンで置換されたアルキル基、炭素原子数1~16のアルコキシ基、炭素原子数2~16のアシル基、炭素原子数1~16のアルキルチオ基、炭素原子数2~16のアシルオキシ基、炭素原子数2~16のアルコキシカルボニル基、カルバモイル基、炭素原子数2~16のアルキル置換カルバモイル基及び炭素原子数2~16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1~4のアルキル基、炭素原子数1~4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1~3のアルキル基、トリフルオロメチル基が更に好ましい。
 X2は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(I’-C)中、A31、A32、A33、A34、A35及びA36は、それぞれ独立に置換基を有してもよいメチン又は窒素原子を表す。
 A31及びA32は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。
 A33、A34、A35及びA36は、少なくとも3つが置換基を有してもよいメチンであることが好ましく、すべて置換基を有してもよいメチンであることがより好ましい。更に、該メチンは無置換であることが好ましい。
 A31、A32、A33、A34、A35又はA36が置換基を有してもよいメチンの場合、メチンは置換基を有していてもよい。置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1~16のアルキル基、炭素原子数2~16のアルケニル基、炭素原子数2~16のアルキニル基、炭素原子数1~16のハロゲンで置換されたアルキル基、炭素原子数1~16のアルコキシ基、炭素原子数2~16のアシル基、炭素原子数1~16のアルキルチオ基、炭素原子数2~16のアシルオキシ基、炭素原子数2~16のアルコキシカルボニル基、カルバモイル基、炭素原子数2~16のアルキル置換カルバモイル基及び炭素原子数2~16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1~4のアルキル基、炭素原子数1~4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1~3のアルキル基、トリフルオロメチル基が更に好ましい。
 X3は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
 一般式(I’-A)中のL11、一般式(I’-B)中のL21、一般式(I’-C)中のL31はそれぞれ独立して、-O-、-C(=O)-、-O-CO-、-CO-O-、-O-CO-O-、-S-、-NH-、-SO2-、-CH2-、-CH=CH-又は-C≡C-を表す。好ましくは、-O-、-C(=O)-、-O-CO-、-CO-O-、-O-CO-O-、-CH2-、-CH=CH-、-C≡C-であり、より好ましくは、-O-、-O-CO-、-CO-O-、-O-CO-O-、-C≡C-である。特に、小さい固有複屈折の波長分散性が期待できる、一般式(I’-A)中のL11は、-O-、-CO-O-、-C≡C-が特に好ましく、この中でも-CO-O-が、より高温でディスコティックネマチック相を発現できるため、好ましい。上述の基が水素原子を含む基であるときは、該水素原子は置換基で置き換わってもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲンで置換されたアルキル基、炭素原子数1~6のアルコキシ基、炭素原子数2~6のアシル基、炭素原子数1~6のアルキルチオ基、炭素原子数2~6のアシルオキシ基、炭素原子数2~6のアルコキシカルボニル基、カルバモイル基、炭素原子数2~6のアルキルで置換されたカルバモイル基及び炭素原子数2~6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1~6のアルキル基がより好ましい。
 一般式(I’-A)中のL12、一般式(I’-B)中のL22、一般式(I’-C)中のL32はそれぞれ独立して、-O-、-S-、-C(=O)-、-SO2-、-NH-、-CH2-、-CH=CH-及び-C≡C-並びにこれらの組み合わせからなる群より選ばれる二価の連結基を表す。ここで、-NH-、-CH2-、-CH=CH-の水素原子は、置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、水酸基、カルボキシル基、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲンで置換されたアルキル基、炭素原子数1~6のアルコキシ基、炭素原子数2~6のアシル基、炭素原子数1~6のアルキルチオ基、炭素原子数2~6のアシルオキシ基、炭素原子数2~6のアルコキシカルボニル基、カルバモイル基、炭素原子数2~6のアルキルで置換されたカルバモイル基及び炭素原子数2~6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、水酸基、炭素原子数1~6のアルキル基がより好ましく、特にハロゲン原子、メチル基、エチル基が好ましい。
 L12、L22、L32はそれぞれ独立して、-O-、-C(=O)-、-CH2-、-CH=CH-及び-C≡C-並びにこれらの組み合わせからなる群より選ばれることが好ましい。
 L12、L22、L32はそれぞれ独立して、炭素数1~20であることが好ましく、炭素数2~14であることがより好ましい。炭素数2~14が好ましく、-CH2-を1~16個有することがより好ましく、-CH2-を2~12個有することが更に好ましい。
 L12、L22、L32を構成する炭素数は、液晶の相転移温度と化合物の溶媒への溶解性に影響を及ぼす。一般的に炭素数は多くなるほど、ディスコティックネマチック相(ND相)から等方性液体への転移温度が低下する傾向にある。また、溶媒への溶解性は、一般的に炭素数は多くなるほど向上する傾向にある。
 一般式(I’-A)中のQ11、一般式(I’-B)中のQ21、一般式(I’-C)中のQ31はそれぞれ独立して重合性基又は水素原子を表す。また、Q11、Q21、Q31は重合性基であることが好ましい。重合性基の例については、上記と同様であり、好ましい例も上記と同様である。
 一般式(I)で表される化合物の具体例としては、特開2009-97002号公報[0038]~[0069]記載の化合物が挙げられるが、本発明はこれらに限定されるものではない。
[棒状液晶化合物]
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類及びアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。棒状液晶化合物を重合によって配向を固定することがより好ましい。
 棒状液晶化合物には活性光線や電子線、熱などによって重合や架橋反応を起こしうる重合性基が含まれる。重合性基の定義は、上述の通りであり、その個数は好ましくは1~6個、より好ましくは1~3個である。重合性棒状液晶化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、及び特開2001-328973号公報などに記載の化合物を用いることができる。
[垂直配向促進剤]
 光学異方性層Aおよび光学異方性層Bを形成する際に、液晶化合物の分子を均一に垂直配向させるためには、配向膜界面側及び空気界面側において液晶化合物を垂直に配向制御可能な配向制御剤を用いるのが好ましい。この目的のために、後述する配向膜に、排除体積効果、静電気的効果又は表面エネルギー効果によって液晶化合物を垂直に配向させる作用を及ぼす化合物を、液晶化合物とともに含有する組成物を用いて光学異方性層を形成するのが好ましい。また、空気界面側の配向制御に関しては液晶化合物の配向時に空気界面に偏在し、その排除体積効果、静電気的効果、又は表面エネルギー効果によって液晶化合物を垂直に配向させる作用を及ぼす化合物を、液晶化合物とともに含有する組成物を用いて光学異方性層を形成するのが好ましい。このような配向膜界面側で液晶化合物の分子を垂直に配向させるのを促進する化合物(配向膜界面側垂直配向剤)としては、ピリジニウム誘導体が好適に用いられる。空気界面側で液晶化合物の分子を垂直に配向させるのを促進する化合物(空気界面側垂直配向剤)としては、該化合物が空気界面側に偏在するのを促進する、フルオロ脂肪族基と、カルボキシル基(-COOH)、スルホ基(-SO3H)、ホスホノキシ基{-OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含む化合物が好適に用いられる。また、これらの化合物を配合することによって、例えば、液晶性組成物を塗布液として調製した場合に、該塗布液の塗布性が改善され、ムラ、ハジキの発生が抑制される。
[配向膜界面側垂直配向剤]
 本発明に使用可能な配向膜界面側垂直配向剤としては、下記一般式(II)で表されるピリジニウム誘導体(ピリジニウム塩)が好適に用いられる。該ピリジニウム誘導体の少なくとも1種を上記組成物に添加することによって、ディスコティック液晶化合物の分子を配向膜近傍で実質的に垂直に配向させることができる。
Figure JPOXMLDOC01-appb-C000010
 式中、L23及びL24はそれぞれ二価の連結基を表す。
 L23は、単結合、-O-、-O-CO-、-CO-O-、-C≡C-、-CH=CH-、-CH=N-、-N=CH-、-N=N-、-O-AL-O-、-O-AL-O-CO-、-O-AL-CO-O-、-CO-O-AL-O-、-CO-O-AL-O-CO-、-CO-O-AL-CO-O-、-O-CO-AL-O-、-O-CO-AL-OCO-又は-O-CO-AL-CO-O-であるのが好ましく、ALは、炭素原子数が1~10のアルキレン基である。L23は、単結合、-O-、-O-AL-O-、-O-AL-O-CO-、-O-AL-CO-O-、-CO-O-AL-O-、-CO-O-AL-O-CO-、-CO-O-AL-CO-O-、-O-CO-AL-O-、-O-COAL-O-CO-又は-O-CO-AL-CO-O-が好ましく、単結合又は-O-が更に好ましく、-O-が最も好ましい。
 L24は、L4は、単結合、-O-、-O-CO-、-CO-O-、-C≡C-、-CH=CH-、-CH=N-、-N=CH-又は-N=N-であるのが好ましく、-O-CO-又は-CO-O-がより好ましい。mが2以上のとき、複数のL24が交互に、-O-CO-及び-CO-O-であるのが更に好ましい。
 R22は水素原子、無置換アミノ基、又は炭素原子数が1~25の置換アミノ基である。
 R22が、ジアルキル置換アミノ基である場合、2つのアルキル基が互いに結合して含窒素複素環を形成してもよい。このとき形成される含窒素複素環は、5員環又は6員環が好ましい。R22は水素原子、無置換アミノ基、又は炭素原子数が2~12のジアルキル置換アミノ基であるのが更に好ましく、水素原子、無置換アミノ基、又は炭素原子数が2~8のジアルキル置換アミノ基であるのがより更に好ましい。R22が無置換アミノ基及び置換アミノ基である場合、ピリジニウム環の4位が置換されていることが好ましい。
 Xはアニオンである。
 Xは、一価のアニオンであることが好ましい。アニオンの例には、アニオンの例には、ハロゲン陰イオン(例えば、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンなど)、スルホネートイオン(例えば、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、メチル硫酸イオン、p-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン、1,3-ベンゼンジスルホン酸イオン、1,5-ナフタレンジスルホン酸イオン、2,6-ナフタレンジスルホン酸イオンなど)、硫酸イオン、炭酸イオン、硝酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロほう酸イオン、ピクリン酸イオン、酢酸イオン、ギ酸イオン、トリフルオロ酢酸イオン、リン酸イオン(例えば、ヘキサフルオロリン酸イオン)、水酸イオンなどが挙げられる。Xは、好ましくは、ハロゲン陰イオン、スルホネートイオン、水酸イオンである。
 Y22及びY23はそれぞれ、5又は6員環を部分構造として有する2価の連結基である。
 5又は6員環が置換基を有していてもよい。好ましくは、Y22及びY23のうち少なくとも1つは、置換基を有する5又は6員環を部分構造として有する2価の連結基である。Y22及びY23は、それぞれ独立に、置換基を有していてもよい6員環を部分構造として有する2価の連結基であるのが好ましい。6員環は、脂肪族環、芳香族環(ベンゼン環)及び複素環を含む。6員脂肪族環の例は、シクロヘキサン環、シクロヘキセン環及びシクロヘキサジエン環を含む。6員複素環の例は、ピラン環、ジオキサン環、ジチアン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環及びトリアジン環を含む。6員環に、他の6員環又は5員環が縮合していてもよい。
 置換基の例は、ハロゲン原子、シアノ、炭素原子数が1~12のアルキル基及び炭素原子数が1~12のアルコキシ基を含む。アルキル基及びアルコキシ基は、炭素原子数が2~12のアシル基又は炭素原子数が2~12のアシルオキシ基で置換されていてもよい。置換基は、炭素原子数が1~12(より好ましくは1~6、更に好ましくは1~3)のアルキル基であるのが好ましい。置換基は2以上であってもよく、例えば、Y22及びY23がフェニレン基である場合は、1~4の炭素原子数が1~12(より好ましくは1~6、更に好ましくは1~3)のアルキル基で置換されていてもよい。
 なお、mは1又は2であり、2であるのが好ましい。mが2のとき、複数のY23及びL24は、互いに同一であっても異なっていてもよい。
 Z21は、ハロゲン置換フェニル、ニトロ置換フェニル、シアノ置換フェニル、炭素原子数が1~25のアルキル基で置換されたフェニル、炭素原子数が1~25のアルコキシ基で置換されたフェニル、炭素原子数が1~25のアルキル基、炭素原子数が2~25のアルキニル基、炭素原子数が1~25のアルコキシ基、炭素原子数が1~25のアルコキシカルボニル基、炭素原子数が7~26のアリールオキシカルボニル基及び炭素原子数が7~26のアリールカルボニルオキシ基からなる群より選ばれる一価の基である。
 mが2の場合、Z21は、シアノ、炭素原子数が1~25のアルキル基又は炭素原子数が1~25のアルコキシ基であることが好ましく、炭素原子数4~20のアルコキシ基であるのが更に好ましい。
 mが1の場合、Z21は、炭素原子数が7~25のアルキル基、炭素原子数が7~25のアルコキシ基、炭素原子数が7~25のアシル置換アルキル基、炭素原子数が7~25のアシル置換アルコキシ基、炭素原子数が7~12のアシルオキシ置換アルキル基又は炭素原子数が7~25のアシルオキシ置換アルコキシ基であることが好ましい。
 アシル基は-CO-R、アシルオキシ基は-O-CO-Rで表され、Rは脂肪族基(アルキル基、置換アルキル基、アルケニル基、置換アルケニル基、アルキニル基、置換アルキニル基)又は芳香族基(アリール基、置換アリール基)である。Rは、脂肪族基であることが好ましく、アルキル基又はアルケニル基であることが更に好ましい。
 pは、1~10の整数である。pは、1又は2であることが特に好ましい。Cp2pは、分岐構造を有していてもよい鎖状アルキレン基を意味する。Cp2pは、直鎖状アルキレン基(-(CH2p-)であることが好ましい。
 式(II)で表される化合物の中でも、下記式(II’)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(II’)中、式(II)と同一の符号は同一の意義であり、好ましい範囲も同様で
ある。L25はL24と同義であり、好ましい範囲も同様である。L24及びL25は、-O-CO-又は-CO-O-であるのが好ましく、L24が-O-CO-で、かつL25が-CO-O-であるのが好ましい。
 R23、R24及びR25はそれぞれ、炭素原子数が1~12(より好ましくは1~6、更に好ましくは1~3)のアルキル基である。n23は0~4、n24は1~4、及びn25は0~4を表す。n23及びn25が0で、n24が1~4(より好ましくは1~3)であるのが好ましい。
 一般式(II)で表される化合物の具体例としては、特開2006-113500号公報明細書中[0058]~[0061]に記載の化合物が挙げられる。
[空気界面側垂直配向剤]
 空気界面側垂直配向剤としては、下記フッ素系ポリマー(式(II)を部分構造として含む)又は一般式(III)で表される含フッ素化合物が好適に用いられる。
 まずフッ素系ポリマー(式(II)を部分構造として含む)について説明する。本発明の空気界面側垂直配向剤としては、フッ素系ポリマーが、フルオロ脂肪族基含有モノマーより誘導される繰り返し単位と下記式(II)で表される繰り返し単位とを含む共重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式中、R1、R2及びR3は、それぞれ独立に、水素原子又は置換基を表し;Lは下記の連結基群から選ばれる2価の連結基又は下記の連結基群から選ばれる2つ以上を組み合わせて形成される2価の連結基を表し、
(連結基群)
 単結合、-O-、-CO-、-NR4-(R4は水素原子、アルキル基、アリール基、又はアラルキル基を表す)、-S-、-SO2-、-P(=O)(OR5)-(R5はアルキル基、アリール基、又はアラルキル基を表す)、アルキレン基及びアリーレン基;
 Qはカルボキシル基(-COOH)若しくはその塩、スルホ基(-SO3H)若しくはその塩、又はホスホノキシ{-OP(=O)(OH)2}若しくはその塩を表す。
 本発明に使用可能なフッ素系ポリマーは、フルオロ脂肪族基と、カルボキシル基(-COOH)、スルホ基(-SO3H)、ホスホノキシ基{-OP(=O)(OH)2}及びそれらの塩からなる群より選ばれる1種以上の親水性基とを含有することを特徴とする。ポリマーの種類としては、「改訂 高分子合成の化学」(大津隆行著、発行:株式会社化学同人、1968)1~4ページに記載があり、例えば、ポリオレフィン類、ポリエステル類、ポリアミド類、ポリイミド類、ポリウレタン類、ポリカーボネート類、ポリスルホン類、ポリカーボナート類、ポリエーテル類、ポリアセタール類、ポリケトン類、ポリフェニレンオキシド類、ポリフェニレンスルフィド類、ポリアリレート類、PTFE類、ポリビニリデンフロライド類、セルロース誘導体などが挙げられる。フッ素系ポリマーは、ポリオレフィン類であることが好ましい。
 フッ素系ポリマーは、フルオロ脂肪族基を側鎖に有するポリマーである。フルオロ脂肪族基は、炭素数1~12であるのが好ましく、6~10であるのがより好ましい。脂肪族基は、鎖状であっても環状であってもよく、鎖状である場合は直鎖状であっても分岐鎖状であってもよい。中でも、直鎖状の炭素数6~10のフルオロ脂肪族基が好ましい。フッ素原子による置換の程度については特に制限はないが、脂肪族基中の50%以上の水素原子がフッ素原子に置換されているのが好ましく、60%以上が置換されているのがより好ましい。フルオロ脂肪族基は、エステル結合、アミド結合、イミド結合、ウレタン結合、ウレア結合、エーテル結合、チオエーテル結合、芳香族環などを介してポリマー主鎖と結合した側鎖に含まれる。
 フッ素系ポリマーとして好ましく用いられるフルオロ脂肪族基含有共重合体の具体例として、特開2006-113500公報の段落[0110]~[0114]に記載の化合物等が挙げられるが、本発明はそれら具体例によってなんら制限されるものではない。
 フッ素系ポリマーの質量平均分子量は1,000,000以下であるのが好ましく、500,000以下であるのがより好ましく、100,000以下であり、10000以上であるのが更に好ましい。この範囲にすることで、溶解性を満足しつつ液晶化合物の配向制御に有効である。質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて、ポリスチレン(PS)換算の値として測定可能である。
 組成物中におけるフッ素系ポリマーの含有量の好ましい範囲は、その用途によって異なるが、光学異方性層の形成に用いる場合は、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005~8質量%であるのが好ましく、0.01~5質量%であるのがより好ましく、0.05~3質量%であるのが更に好ましい。フッ素系ポリマーの添加量が0.005質量%未満では効果が不十分であり、また8質量%より多くなると、塗膜の乾燥が十分に行われなくなったり、光学フィルムとしての性能(例えばレターデーションの均一性等)に悪影響を及ぼす。
 下記式(III)で表される含フッ素化合物。
 (III) (R0m-L0-(W)n
 式中、R0はアルキル基、末端にCF3基を有するアルキル基、又は末端にCF2H基を有するアルキル基を表し、mは1以上の整数を表す。複数個のR0は同一でも異なっていてもよいが、少なくとも一つは末端にCF3基又はCF2H基を有するアルキル基を表す。L0は(m+n)価の連結基を表し、Wはカルボキシル基(-COOH)若しくはその塩、スルホ基(-SO3H)若しくはその塩、又はホスホノキシ{-OP(=O)(OH)2}若しくはその塩を表し、nは1以上の整数を表す。
 本発明に使用可能な式(III)にて表される含フッ素化合物の具体例として、特開2006-113500公報の段落[0136]~[0140]に記載の化合物等が挙げられるが、本発明はそれら具体例によってなんら制限されるものではない。
 組成物中における含フッ素化合物の含有量の好ましい範囲は、その用途によって異なるが、光学異方性層の形成に用いる場合は、組成物(塗布液である場合は溶媒を除いた組成物)中、0.005~8質量%であるのが好ましく、0.01~5質量%であるのがより好ましく、0.05~3質量%であるのが更に好ましい。
 なお、含フッ素化合物は、光学異方性層に含まれるバインダー(液晶化合物やアクリレートモノマー等)と共有結合し得る官能基(重合性基)を有さない。
[重合開始剤]
 配向(好ましくは垂直配向)させた液晶化合物は、配向状態を維持して固定する。固定化は、液晶化合物に導入した重合性基(P)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60-105667号公報、米国特許4239850号明細書記載)及びオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
 光重合開始剤の使用量は、組成物の固形分の0.01~20質量%であることが好ましく、0.5~5質量%であることが更に好ましい。
[光学異方性層の他の添加剤]
 上記の液晶化合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶化合物の配向性等を向上させることができる。これらの素材は液晶化合物と相溶性を有し、配向を阻害しないことが好ましい。
 重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002-296423号公報明細書中の段落番号[0018]~[0020]記載のものが挙げられる。上記化合物の添加量は、液晶化合物に対して一般に1~50質量%の範囲にあり、5~30質量%の範囲にあることが好ましい。
 界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001-330725号公報明細書中の段落番号[0028]~[0056]記載の化合物、特願2003-295212号明細書中の段落番号[0069]~[0126]記載の化合物が挙げられる。
 液晶化合物とともに使用するポリマーは、塗布液を増粘できることが好ましい。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000-155216号公報明細書中の段落番号[0178]記載のものが挙げられる。液晶化合物の配向を阻害しないように、上記ポリマーの添加量は、液晶化合物に対して0.1~10質量%の範囲にあることが好ましく、0.1~8質量%の範囲にあることがより好ましい。
 液晶化合物のディスコティックネマティック液晶相-固相転移温度は、70~300℃が好ましく、70~170℃が更に好ましい。
[塗布溶剤]
 組成物(塗布液)の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸エチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が含まれる。アルキルハライド及びケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
[配向膜]
 本発明では、配向膜の表面に上記組成物を塗布して、液晶化合物(例えば、ディスコティック液晶化合物)の分子を配向させるのが好ましい。配向膜は液晶化合物の配向方向を規定する機能を有するため、本発明の好ましい態様を実現する上で利用するのが好ましい。しかし、液晶化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを別の透明支持体上に転写して本発明の光学フィルム用光学基材を作製することも可能である。
 配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。更に、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
 配向膜は、ポリマーのラビング処理により形成することが好ましい。
 ポリマーの例には、例えば、特開平8-338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールが更に好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。
 ポリビニルアルコールの鹸化度は、70~100%が好ましく、80~100%が更に好ましい。ポリビニルアルコールの重合度は100~5000であることが好ましい。
 配向膜において、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶化合物を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。
 架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶化合物を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償シートの強度を著しく改善することができる。
 配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000-155216号公報明細書中段落番号[0080]~[0100]記載のもの等が挙げられる。
 配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。架橋剤としては、アルデヒド、N-メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾール及びジアルデヒド澱粉が含まれる。二種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002-62426号公報明細書中の段落番号[0023]~[0024]記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。
 架橋剤の添加量は、ポリマーに対して0.1~20質量%が好ましく、0.5~15質量%が更に好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることが更に好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。
 配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤及び添加剤を含む溶液を透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、透明支持体上に塗布した後、任意の時期に行なってよい。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100~99:1が好ましく、0:100~91:9であることが更に好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。
 配向膜形成時に利用する塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1乃至10μmが好ましい。加熱乾燥は、20℃~110℃で行なうことができる。充分な架橋を形成するためには60℃~100℃が好ましく、特に80℃~100℃が好ましい。乾燥時間は1分~36時間で行なうことができるが、好ましくは1分~30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5~5.5が好ましい。
 ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さ及び太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
<偏光膜>
 偏光膜(偏光子層)は、自然光を特定の直線偏光に変換する機能を有する部材であればよく、吸収型偏光子を利用することができる。
 偏光膜の種類は特に制限はなく、通常用いられている偏光膜を利用することができ、例えば、ヨウ素系偏光膜、二色性染料を利用した染料系偏光膜、及びポリエン系偏光膜のいずれも用いることができる。ヨウ素系偏光膜、及び染料系偏光膜は、一般に、ポリビニルアルコールにヨウ素又は二色性染料を吸着させ、延伸することで作製される。
 なお、偏光膜は、その両面に保護フィルムが貼合された偏光板として用いられることが一般的である。
<光学積層体>
 上記透明支持体、上記光学異方性層A、および、上記光学異方性層Bを含有する光学積層体(光学フィルム)は、そのヘイズ値Xが下記式(4)を満足する。
式(4)  X<0.5%
 なかでも、ヘイズ値Xは、0.4%以下が好ましく、0.3%以下がより好ましい。
 ヘイズ値Xが0.5%以上の場合、光学積層体を偏光板と貼合し、表示装置に実装して評価した際に白濁が観察され、視認性が低下する。
 なお、ヘイズ値Xは、JIS-K7136に準じて測定される全ヘイズ値(H)に該当する。測定装置としては、日本電色工業(株)製ヘーズメーターNDH2000を用いる。
 光学積層体のRthは特に制限されないが、視野角特性がより優れる点で、以下の式(5)の関係を満たすことが好ましい。
 式(5)  -100nm≦Rth(550)≦100nm
 なかでも、視野角特性がより優れる点で、Rth(550)は-80nm~80nmが好ましく、-60nm~60nmがより好ましい。
<円偏光板>
 上記構成を有する本発明の円偏光板は、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置の反射防止用途に好適に用いられる。
 例えば、有機EL表示装置の光取り出し面側に本発明の円偏光板を用いた態様が挙げられる。この場合、外光は偏光膜によって直線偏光となり、次に光学積層体を通過することで、円偏光となる。これが金属電極にて反射された際に円偏光状態が反転し、再び光学積層体を通過した際に、入射時から90°傾いた直線偏光となり、偏光膜に到達して吸収される。結果として、外光の影響を抑制することができる。
<円偏光板の製造方法>
 上記円偏光板の製造方法としては、以下の工程(1)~(7)の手順を実施することが好ましい。なかでも、少なくとも以下の工程(3)を実施することにより、上述した所望の効果を示す円偏光板を製造することができる。
工程(1) 透明支持体上に配向膜を形成する工程
工程(2) 配向膜上に重合性基を有するディスコティック液晶化合物を含む組成物を塗布して、必要に応じて加熱処理を行い、ディスコティック液晶化合物を配向させる工程
工程(3) 重合性基を有するディスコティック液晶化合物に対して、100mJ/cm2以上400mJ/cm2未満の紫外線照射量で紫外線照射処理を施し、光学異方性層Aを形成する工程
工程(4) 光学異方性層Aの遅相軸と90°交差した方向に光学異方性層A上をラビングする工程
工程(5) ラビングした光学異方性層A上に重合性基を有する棒状液晶化合物を含む組成物を塗布して、必要に応じて加熱処理を行い、棒状液晶化合物を配向させる工程
工程(6) 重合性基を有する棒状液晶化合物に対して、硬化処理を施し、光学異方性層Bを形成する工程
工程(7) 偏光膜をさらに配置する工程
 以下では、各工程の手順について順に説明する。
 工程(1)は、透明支持体上に配向膜を形成する工程である。配向膜の形成方法は、上述の通りであり、ポリマー層を架橋したのち、その表面にラビング処理を施し、配向膜を得る方法が好ましい。
 工程(2)は、配向膜上に重合性基を有するディスコティック液晶化合物を含む組成物を塗布して、必要に応じて加熱処理を行い、ディスコティック液晶化合物を配向させる工程である。
 使用される組成物は、上述の通りである。
 組成物の塗布方法は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
 加熱処理の条件は、使用されるディスコティック液晶化合物の種類に応じて、適宜最適な温度が選択されるが、通常、20~200℃(好ましくは、60~160℃)の温度で10~600秒(好ましくは、30~300秒)加熱処理を実施することが好ましい。
 工程(3)は、配向状態にある重合性基を有するディスコティック液晶化合物に対して、100mJ/cm2以上400mJ/cm2未満の紫外線照射量で紫外線照射処理を施し、光学異方性層Aを形成する工程である。紫外線照射を実施することにより、重合性基間で反応が進行し、配向状態が固定化される。特に、紫外線照射量が上記範囲であれば、形成される光学異方性層Aの表面硬度がその後実施されるラビング処理に好適な範囲となり、棒状液晶化合物の配向がより優れたものとなっていると推測される。
 なかでも、光学異方性層Bの配向性がより優れる点で、100~300mJ/cm2であることが好ましく、100~200mJ/cm2であることがより好ましい。
 紫外線照射量が100mJ/cm2未満の場合、光学異方性層Aの十分な固定化が進行せず、ラビング処理を施すことができない。また、紫外線照射量が400mJ/cm2以上の場合、光学異方性層A表面の硬化が進行しすぎ、ラビング処理により良好は配向状態が形成されず、その上に積層される光学異方性層B中の棒状液晶化合物の配向欠陥が生じる。
 また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。配向を固定するための温度としては、特に制限はないが、一般的には、100℃以下が好ましく、80℃以下がより好ましい。また、光学異方性層Aと支持体との密着性を維持するために、40℃以上で硬化することが好ましい。
 なお、配向状態が固定化された状態とは、その配向が保持された状態が最も典型的、且つ好ましい態様ではあるが、それだけには限定されず、具体的には、通常0~50℃、より過酷な条件下では-30~70℃の温度範囲において、該固定化された組成物に流動性が無く、また外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を指すものである。
 工程(4)は、光学異方性層Aの遅相軸と90°交差した方向に光学異方性層A上をラビングする工程である。
 ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、光学異方性層Aの表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法を用いることができる。一般的には、長さ及び太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
 工程(5)は、ラビングした光学異方性層A上に重合性基を有する棒状液晶化合物を含む組成物を塗布して、必要に応じて加熱処理を行い、棒状液晶化合物を配向させる工程である。
 使用される組成物は、上述の通りである。
 また、組成物の塗布方法は、工程(2)と同様である。
 工程(6)は、配向状態にある重合性基を有する棒状液晶化合物に対して、硬化処理を施し、光学異方性層Bを形成する工程である。
 硬化処理は、重合性基間で反応が進行すればその方法は特に制限されず、例えば、加熱処理または光照射処理(好ましくは、紫外線照射処理)が挙げられる。
 工程(7)は、さらに、偏光膜を配置する工程である。より具体的には、形成された光学異方性層Bまたは透明支持体上にさらに偏光膜を配置する工程である。
 偏光膜を配置する方法は特に制限されず、例えば、図示しない粘着層または接着層を介して光学異方性層B上または透明支持体上に配置される。なお、偏光膜を配置(貼り合わせる)する際には、いわゆるロール・ツー・ロール方式で貼合してもよい。
 粘着層とは、例えば、動的粘弾性測定装置で測定したG’とG”との比(tanδ=G”/G’)が0.001~1.5である物質から構成される層のことを表し、いわゆる、粘着剤やクリープしやすい物質等が含まれる。粘着層に含まれる粘着剤については特に制限はなく、例えば、ポリビニルアルコール系粘着剤を用いることができる。
 また、接着層に使用される接着剤としては、例えば、ポリビニルアルコール系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基による変性ポリビニルアルコールを含む)やホウ素化合物水溶液を接着剤として用いることができる。中でも、ポリビニルアルコール系樹脂が好ましい。
 粘着層及び接着層の厚みは、乾燥後に0.01~10μmの範囲にあることが好ましく、0.05~5μmの範囲にあることが特に好ましい。
 偏光膜の光学異方性層Bまたは透明支持体と貼合しない他方の表面には、保護フィルムを配置するのが好ましい。
<第2の実施態様>
 以下に、本発明の円偏光板の第2の実施態様について図面を参照して説明する。図2に、本発明の円偏光板の第2の実施態様の概略断面図を示す。
 円偏光板100は、偏光膜18と、透明支持体12と、光学異方性層A14と、光学異方性層B16とをこの順で有する。偏光膜18の吸収軸、光学異方性層A14の遅相軸、および、光学異方性層B16の遅相軸の角度の関係は特に制限されず、上述した第1の実施態様の形態が挙げられる。例えば、光学異方性層Aおよび光学異方性層Bの一方がλ/4膜であり、他方がλ/2膜である場合、λ/2膜である光学異方性層と偏光膜の吸収軸とのなす角が45°であり、光学異方性層Aと光学異方性層Bとのなす角が直交であることが好ましい。より具体的には、例えば、図2の態様において光学異方性層A14がλ/2膜で光学異方性層B16がλ/4膜である場合は、偏光膜18の吸収軸と光学異方性層A14の遅相軸とのなす角が45°であり、かつ、光学異方性層Aの遅相軸と光学異方性層Bの遅相軸とのなす角は直交である態様が好ましい。
 図2に示す円偏光板100は、偏光膜18の位置以外は、図1に示す円偏光板10と同様の構成要素を有しており、同一の構成要素には同一の参照符号を付し、その説明を省略する。
 図2に示すように、偏光膜18が透明支持体12と接する位置に配置される場合であっても、所望の効果が達成される。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
<実施例1>
<透明支持体Aの作製>
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液Aを調製した。
──────────────────────────────────
セルロースアシレート溶液Aの組成
──────────────────────────────────
 置換度2.86のセルロースアセテート         100質量部
 トリフェニルホスフェート(可塑剤)          7.8質量部
 ビフェニルジフェニルホスフェート(可塑剤)      3.9質量部
 メチレンクロライド(第1溶媒)            300質量部
 メタノール(第2溶媒)                 54質量部
 1-ブタノール                     11質量部
──────────────────────────────────
 別のミキシングタンクに、下記の組成物を投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液Bを調製した。
──────────────────────────────────
添加剤溶液Bの組成
──────────────────────────────────
 下記化合物B1(Re低下剤)              40質量部
 下記化合物B2(波長分散制御剤)             4質量部
 メチレンクロライド(第1溶媒)             80質量部
 メタノール(第2溶媒)                 20質量部
──────────────────────────────────
Figure JPOXMLDOC01-appb-C000013
<セルロースアセテート透明支持体の作製>
 セルロースアシレート溶液Aを477質量部に、添加剤溶液Bの40質量部を添加し、充分に攪拌して、ドープを調製した。ドープを流延口から0℃に冷却したドラム上に流延した。溶媒含有率70質量%の場外で剥ぎ取り、フィルムの巾方向の両端をピンテンター(特開平4-1009号の図3に記載のピンテンター)で固定し、溶媒含有率が3~5質量%の状態で、横方向(機械方向に垂直な方向)の延伸率が3%となる間隔を保ちつつ乾燥した。その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み60μmのセルロースアセテート保護フィルム(透明支持体A)を作製した。透明支持体Aは紫外線吸収剤を含有しておらず、Re(550)は0nmであり、Rth(550)は12.3nmであった。
<<アルカリ鹸化処理>>
 セルロースアセテート透明支持体Aを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱し、(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアセテート透明支持体Aを作製した。
─────────────────────────────────
アルカリ溶液の組成(質量部)
─────────────────────────────────
 水酸化カリウム                   4.7質量部
 水                        15.8質量部
 イソプロパノール                 63.7質量部
 界面活性剤
 SF-1:C1429O(CH2CH2O)20H         1.0質量部
 プロピレングリコール               14.8質量部
─────────────────────────────────
<ラビング配向膜付透明支持体の作製>
 上記作製した透明支持体Aの鹸化処理を施した面に、下記の組成の配向膜形成用塗布液を#8のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜を形成した。
──────────────────────────────────
配向膜形成用塗布液の組成
──────────────────────────────────
配向膜用ポリマー材料                  4.0質量部
(PVA103、クラレ(株)製ポリビニルアルコール)
メタノール                        36質量部
水                            60質量部
──────────────────────────────────
<光学異方性層Aの作製>
 上記作製した配向膜表面に、透明支持体Aの長手方向に対し左手45°の方向に連続的にラビング処理を施した。ラビング処理面上に下記の光学異方性層用塗布液を、バーコーターを用いて塗布した。次いで、膜面温度115℃で90秒間加熱熟成した後、80℃まで冷却し空気下にて20mW/cm2の空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射量200mJ/cm2となるよう照射して、その配向状態を固定化することにより光学異方性層Aを形成した。形成された光学異方性層Aは、ラビング方向に対し遅相軸方向が直交にディスコティック液晶が垂直配向していた。光学異方性層Aの波長450nm、550nmおよび650nmのレタデーション値は、以下の通りであった。なお、光学異方性層Aの厚みは2.5μmであった。
ReA(450):273nm
ReA(550):250nm
ReA(650):240nm
ReA(450)/ReA(650):1.14
──────────────────────────────────
光学異方性層用塗布液の組成(光学異方性層A1形成用組成物)
──────────────────────────────────
ディスコティック液晶E-1                 80質量部
ディスコティック液晶2                   20質量部
配向膜界面配向剤1                   0.55質量部
配向膜界面配向剤2                   0.05質量部
含フッ素化合物                     0.1質量部
変性トリメチロールプロパントリアクリレート        10質量部
光重合開始剤                       3.0質量部
(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)
層間配向剤                        0.6質量部
メチルエチルケトン                    180質量部
シクロヘキサノン                      20質量部
──────────────────────────────────
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
<光学異方性層Bの作製>
 上記光学異方性層Aの表面を、光学異方性層Aの遅相軸と直交する方向に連続的にラビング処理を施した。ラビング処理面上に下記光学異方性層用塗布液を、バーコーターを用いて塗布した。次いで、膜面温度60℃で60秒間加熱熟成し、空気下にて20mW/cm2の空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射して、その配向状態を固定化することにより光学異方性層Bを形成した。形成された光学異方性層Bは、ラビング方向に対し遅相軸方向が平行に棒状液晶が水平配向していた。光学異方性層Bの波長450nm、550nmおよび650nmのレタデーション値は、以下の通りであった。なお、光学異方性層Bの厚みは1.0μmであった。
ReB(450):141nm
ReB(550):125nm
ReB(650):120nm
ReB(450)/ReB(650):1.18
 なお、上記光学異方性層AのReA(550)および光学異方性層BのReB(550)は、ReA(550)>ReB(550)の関係に該当し、上記式(3)の関係を満たす。
──────────────────────────────────
光学異方性層用塗布液の組成(光学異方性層B形成用組成物)
──────────────────────────────────
棒状液晶化合物1                      90質量部
棒状液晶化合物2                      10質量部
光重合開始剤                      3.0質量部
(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)
増感剤(カヤキュア-DETX、日本化薬(株)製)    1.0質量部
含フッ素化合物                     0.5質量部
メチルエチルケトン                   400質量部
──────────────────────────────────
Figure JPOXMLDOC01-appb-C000016
<円偏光板の作製>
 偏光板は片面だけがトリアセチルセルロース(厚さ40μm)で保護された厚さ20μmの偏光膜を有す偏光板を用いて、該偏光板の保護されていない面(延伸したポリビニルアルコールよりなる偏光膜)とセルロースアセテート透明支持体(光学異方性層Aが配置される側とは反対側のセルロースアセテート透明支持体の表面)とを光学的に等方性の接着剤によって貼り合わせ、円偏光板を作製した。このとき、偏光膜の吸収軸と光学異方性層Aの遅相軸とのなす角は45°であり、光学異方性層Aの遅相軸と光学異方性層Bの遅相軸とのなす角は直交であった。
<ヘイズ値測定>
 上記で製造された透明支持体と、光学異方性層Aと、光学異方性層Bとを有する光学積層体の全ヘイズ値(H)を、JIS-K7136に準じて、日本電色工業(株)製ヘーズメーターNDH2000を用いて測定した。
<実施例2>
 紫外線の照射量200mJ/cm2を150mJ/cm2に変更した以外は、実施例1と同様の手順に従って、円偏光板を製造した。
 なお、波長450nm、550nmおよび650nmで測定した光学異方性層Aのレタデーション値であるReA(450)、ReA(550)およびReA(650)と、波長450nm、550nmおよび650nmで測定した光学異方性層Bのレタデーション値であるReB(450)、ReB(550)およびReB(650)は、実施例1と同じであった。
<実施例3>
 紫外線の照射量200mJ/cm2を300mJ/cm2に変更した以外は、実施例1と同様の手順に従って、円偏光板を製造した。
 なお、波長450nm、550nmおよび650nmで測定した光学異方性層Aのレタデーション値であるReA(450)、ReA(550)およびReA(650)と、波長450nm、550nmおよび650nmで測定した光学異方性層Bのレタデーション値であるReB(450)、ReB(550)およびReB(650)は、実施例1と同じであった。
<実施例4>
 光学異方性層Aの製造手順を以下の手順に変更し、光学異方性層Bの厚みを1.0μmから5.0μmに変更した以外は、実施例1と同様の手順に従って、円偏光板を製造した。
(光学異方性層Aの作製)
 上記作製した配向膜表面に、透明支持体の長手方向に対し左手45°の方向に連続的にラビング処理を施した。ラビング処理面上に下記の光学異方性層用塗布液を、バーコーターを用いて塗布した。次いで、膜面温度130℃で90秒間加熱熟成した後、80℃まで冷却し空気下にて20mW/cm2の空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射量200mJとなるよう照射して、その配向状態を固定化することにより光学異方性層Aを形成した。形成された光学異方性層Aは、ラビング方向に対し遅相軸方向が平行にディスコティック液晶化合物が垂直配向していた。光学異方性層Aの波長450nm、550nmおよび650nmのレタデーション値は、以下の通りであった。なお、光学異方性層Aの厚みは2.5μmであった。
ReA(450):476nm
ReA(550):400nm
ReA(650):376nm
ReA(450)/ReA(650):1.27
 また、波長450nm、550nmおよび650nmで測定した光学異方性層Bのレタデーション値であるReB(450)、ReB(550)およびReB(650)は、以下の通りであった。
ReB(450):610nm
ReB(550):540nm
ReB(650):518nm
ReB(450)/ReB(650):1.18
 なお、上記光学異方性層AのReA(550)および光学異方性層BのReB(550)は、ReB(550)>ReA(550)の関係に該当し、上記式(2)の関係を満たす。
──────────────────────────────────
光学異方性層用塗布液の組成(光学異方性層A2形成用組成物)
──────────────────────────────────
ディスコティック液晶化合物                90質量部
含フッ素化合物                      0.1質量部
垂直配向剤                                             0.5質量部
変性トリメチロールプロパントリアクリレート          5質量部
光重合開始剤                      3.0質量部
(イルガキュア907、チバ・スペシャルティ・ケミカルズ(株)製)
増感剤(カヤキュア-DETX、日本化薬(株)製)    1.0質量部
層間配向剤                       0.6質量部
メチルエチルケトン                   180質量部
シクロヘキサノン                     20質量部
──────────────────────────────────
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
<比較例1>
 紫外線の照射量200mJ/cm2を700mJ/cm2に変更した以外は、実施例1と同様の手順に従って、円偏光板を製造した。
<比較例2>
 紫外線の照射量200mJ/cm2を1000mJ/cm2に変更した以外は、実施例1と同様の手順に従って、円偏光板を製造した。
<比較例3>
 紫外線の照射量200mJ/cm2を400mJ/cm2に変更した以外は、実施例1と同様の手順に従って、円偏光板を製造した。
<比較例4>
 紫外線の照射量200mJ/cm2を50mJ/cm2に変更した以外は、実施例1と同様の手順に従って、円偏光板を製造した。
<表示性能の評価>
 有機ELパネル搭載のSAMSUNG社製GALAXY SIIを分解し、円偏光板を剥離して、上記実施例および比較例で製造された円偏光板を空気が入らないようにして貼合し、表示装置を作製した。作製した有機EL表示装置について、照度200ルクスの明室内にて視認性を評価した。
 表示装置に画像表示(黒表示)をさせて、正面および極角45度から蛍光灯を映し込んだときの画像鮮明度および白濁り度合いを観察し、以下の基準に従って評価した。結果を表1にまとめて示す。実用上、「4」または「5」であることが必要である。
 5:白濁りが全く視認されず、画像鮮明。
 4:白濁りは視認されないが、やや黒しまり悪い。画像鮮明
 3:部分的に白濁りがわずかに視認され、画像一部やや不鮮明。
 2:白濁りが全体にわずかに視認され、画像やや不鮮明。
 1:白濁りが全体にはっきりと視認され、画像不鮮明。
 なお、表1中、光学積層体厚は、透明支持体の厚みと、光学異方性層Aの厚みと、光学異方性層Bの厚みとの合計値を表す。
 表1中、光学異方性層A欄のDLC1は上記光学異方性層A1形成用組成物を用いて形成されたことを意図し、DLC2は上記光学異方性層A2形成用組成物を用いて形成されたことを意図する。
Figure JPOXMLDOC01-appb-T000019
 上記表より、光学異方性層Aを形成する際の紫外線照射処理の照射量が所定の範囲にある実施例1~4においては、視認性に優れる円偏光板が得られることが確認された。特に、ヘイズ値が0.40%以下の場合、視認性がより優れることが確認された。
 一方、紫外線照射処理の照射量が所定の範囲にない比較例1~4においては、視認性が劣る、または、ラビングが不良であることが確認された。
 10,100 円偏光板
 12 透明支持体
 14 光学異方性層A
 16 光学異方性層B
 18 偏光膜
 20 光学積層体

Claims (5)

  1.  光学積層体と偏光膜とを有する円偏光板であって、
     前記光学積層体が、透明支持体と、光学異方性層Aと、光学異方性層Bとをこの順で有し、
     前記光学異方性層Aが、重合性基を有するディスコティック液晶化合物を含有する組成物から形成され、
     前記光学異方性層Bが、重合性基を有する棒状液晶化合物を含有する組成物から形成され、
     波長450nm、550nmおよび650nmで測定した前記光学異方性層Aのレタデーション値であるReA(450)、ReA(550)およびReA(650)と、波長450nm、550nmおよび650nmで測定した前記光学異方性層Bのレタデーション値であるReB(450)、ReB(550)およびReB(650)とが下記式(1)を満足すると共に、
     ReB(550)>ReA(550)の場合、式(2)を満足し、
     ReA(550)>ReB(550)の場合、式(3)を満足し、
     さらに前記光学積層体のヘイズ値Xが下記式(4)を満足する、円偏光板。
    式(1)  100nm≦│ReB(550)-ReA(550)│≦180nm
    式(2)  ReB(450)/ReB(650)<ReA(450)/ReA(650)
    式(3)  ReA(450)/ReA(650)<ReB(450)/ReB(650)
    式(4)  X<0.50%
  2.  前記光学異方性層Aの遅相軸および前記光学異方性層Bの遅相軸のいずれか一方と前記偏光膜の吸収軸とのなす角が45°であり、かつ、前記光学異方性層Aの遅相軸と前記光学異方性層Bの遅相軸とのなす角が直交である、請求項1に記載の円偏光板。
  3.  請求項1または2に記載の円偏光板の製造方法であって、
     重合性基を有するディスコティック液晶化合物に対して紫外線照射処理を施し、光学異方性層Aを形成する工程を少なくとも有し、
     前記紫外線照射処理の照射量が100mJ/cm2以上400mJ/cm2未満である、円偏光板の製造方法。
  4.  透明支持体と、光学異方性層Aと、光学異方性層Bとをこの順で有し、
     前記光学異方性層Aが、重合性基を有するディスコティック液晶化合物を含有する組成物から形成され、
     前記光学異方性層Bが、重合性基を有する棒状液晶化合物を含有する組成物から形成され、
     波長450nm、550nmおよび650nmで測定した前記光学異方性層Aのレタデーション値であるReA(450)、ReA(550)およびReA(650)と、波長450nm、550nmおよび650nmで測定した前記光学異方性層Bのレタデーション値であるReB(450)、ReB(550)およびReB(650)とが下記式(1)を満足すると共に、
     ReB(550)>ReA(550)の場合、式(2)を満足し、
     ReA(550)>ReB(550)の場合、式(3)を満足し、
     さらに、ヘイズ値Xが下記式(4)を満足する、光学積層体。
    式(1)  100nm≦│ReB(550)-ReA(550)│≦180nm
    式(2)  ReB(450)/ReB(650)<ReA(450)/ReA(650)
    式(3)  ReA(450)/ReA(650)<ReB(450)/ReB(650)
    式(4)  X<0.50%
  5.  前記光学異方性層Aの遅相軸と前記光学異方性層Bの遅相軸とのなす角が直交である、請求項4に記載の光学積層体。
PCT/JP2013/077044 2012-10-04 2013-10-04 円偏光板およびその製造方法、光学積層体 WO2014054769A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014539835A JP6216323B2 (ja) 2012-10-04 2013-10-04 円偏光板およびその製造方法、光学積層体
US14/677,292 US20150212246A1 (en) 2012-10-04 2015-04-02 Circularly polarizing plate, method for manufacturing same, and optical laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-222572 2012-10-04
JP2012222572 2012-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/677,292 Continuation US20150212246A1 (en) 2012-10-04 2015-04-02 Circularly polarizing plate, method for manufacturing same, and optical laminate

Publications (1)

Publication Number Publication Date
WO2014054769A1 true WO2014054769A1 (ja) 2014-04-10

Family

ID=50435088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077044 WO2014054769A1 (ja) 2012-10-04 2013-10-04 円偏光板およびその製造方法、光学積層体

Country Status (3)

Country Link
US (1) US20150212246A1 (ja)
JP (1) JP6216323B2 (ja)
WO (1) WO2014054769A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960693A1 (en) * 2014-06-27 2015-12-30 Samsung Electronics Co., Ltd Optical film, manufacturing method thereof, and display device
WO2016002946A1 (ja) * 2014-07-04 2016-01-07 富士フイルム株式会社 光学機能性層作製用組成物、光学機能性層を含む光学フィルムの製造方法、および光学フィルム
JP2016051083A (ja) * 2014-08-29 2016-04-11 富士フイルム株式会社 偏光板、偏光板の製造方法および液晶表示装置
JP2016197219A (ja) * 2015-04-06 2016-11-24 富士フイルム株式会社 積層体及び光学フィルム
KR20170055968A (ko) * 2014-09-17 2017-05-22 니폰 제온 가부시키가이샤 원편광판, 광대역 λ/4 판, 및, 유기 일렉트로루미네선스 표시 장치
US9835780B2 (en) 2014-06-27 2017-12-05 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof, and display device
KR20190065895A (ko) * 2017-12-04 2019-06-12 삼성에스디아이 주식회사 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2019159887A1 (ja) * 2018-02-14 2019-08-22 住友化学株式会社 垂直配向液晶硬化膜
WO2019159888A1 (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
JP2019139219A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
WO2019159886A1 (ja) * 2018-02-14 2019-08-22 住友化学株式会社 組成物
WO2019159889A1 (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
WO2023162545A1 (ja) * 2022-02-28 2023-08-31 日本ゼオン株式会社 光学異方性積層体及びその製造方法、並びに、円偏光板及び画像表示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640847B2 (ja) 2015-05-29 2020-02-05 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置
JP6510655B2 (ja) * 2015-09-03 2019-05-08 富士フイルム株式会社 有機エレクトロルミネッセンス表示装置
TWI719177B (zh) * 2016-03-30 2021-02-21 日商日本瑞翁股份有限公司 光學異向性層積體、圓偏光板以及影像顯示裝置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133785A (ja) * 1999-11-10 2001-05-18 Fuji Photo Film Co Ltd ゲストホスト反射型液晶表示素子
JP2005227425A (ja) * 2004-02-12 2005-08-25 Fuji Photo Film Co Ltd 位相差板、ならびにそれを用いたλ/4板及び楕円偏光板
JP2005292781A (ja) * 2004-03-11 2005-10-20 Fuji Photo Film Co Ltd 光学補償素子、光学補償素子の製造方法、液晶表示装置及び液晶プロジェクタ
JP2009265597A (ja) * 2007-09-27 2009-11-12 Fujifilm Corp 光学補償フィルム、偏光板、及び液晶表示装置
JP2011253059A (ja) * 2010-06-02 2011-12-15 Mitsubishi Electric Corp 液晶表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284120A (ja) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd 位相差板および円偏光板
US6400433B1 (en) * 1998-11-06 2002-06-04 Fuji Photo Film Co., Ltd. Circularly polarizing plate comprising linearly polarizing membrane and quarter wave plate
JP4084519B2 (ja) * 1999-02-17 2008-04-30 富士フイルム株式会社 光学補償シート、楕円偏光板および液晶表示装置
JP2001183643A (ja) * 1999-12-27 2001-07-06 Fuji Photo Film Co Ltd 液晶表示装置
TWI417564B (zh) * 2005-02-21 2013-12-01 Dainippon Printing Co Ltd Manufacturing method and manufacturing apparatus for optical laminate
US20090079913A1 (en) * 2005-07-15 2009-03-26 Fujifilm Corporation Optically anisotropic film, polarizing film, producing process thereof, and application use thereof
JP2007093864A (ja) * 2005-09-28 2007-04-12 Fujifilm Corp 位相差板、偏光板および液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133785A (ja) * 1999-11-10 2001-05-18 Fuji Photo Film Co Ltd ゲストホスト反射型液晶表示素子
JP2005227425A (ja) * 2004-02-12 2005-08-25 Fuji Photo Film Co Ltd 位相差板、ならびにそれを用いたλ/4板及び楕円偏光板
JP2005292781A (ja) * 2004-03-11 2005-10-20 Fuji Photo Film Co Ltd 光学補償素子、光学補償素子の製造方法、液晶表示装置及び液晶プロジェクタ
JP2009265597A (ja) * 2007-09-27 2009-11-12 Fujifilm Corp 光学補償フィルム、偏光板、及び液晶表示装置
JP2011253059A (ja) * 2010-06-02 2011-12-15 Mitsubishi Electric Corp 液晶表示装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960693A1 (en) * 2014-06-27 2015-12-30 Samsung Electronics Co., Ltd Optical film, manufacturing method thereof, and display device
US9835780B2 (en) 2014-06-27 2017-12-05 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof, and display device
US10139534B2 (en) 2014-06-27 2018-11-27 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof, and display device
WO2016002946A1 (ja) * 2014-07-04 2016-01-07 富士フイルム株式会社 光学機能性層作製用組成物、光学機能性層を含む光学フィルムの製造方法、および光学フィルム
JP2016051083A (ja) * 2014-08-29 2016-04-11 富士フイルム株式会社 偏光板、偏光板の製造方法および液晶表示装置
KR20170055968A (ko) * 2014-09-17 2017-05-22 니폰 제온 가부시키가이샤 원편광판, 광대역 λ/4 판, 및, 유기 일렉트로루미네선스 표시 장치
JPWO2016043124A1 (ja) * 2014-09-17 2017-06-29 日本ゼオン株式会社 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置
KR102571446B1 (ko) * 2014-09-17 2023-08-25 니폰 제온 가부시키가이샤 원편광판, 광대역 λ/4 판, 및, 유기 일렉트로루미네선스 표시 장치
JP2016197219A (ja) * 2015-04-06 2016-11-24 富士フイルム株式会社 積層体及び光学フィルム
KR20190065895A (ko) * 2017-12-04 2019-06-12 삼성에스디아이 주식회사 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
KR102126052B1 (ko) 2017-12-04 2020-06-23 삼성에스디아이 주식회사 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
JP2019139221A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 組成物
JP7059035B2 (ja) 2018-02-14 2022-04-25 住友化学株式会社 垂直配向液晶硬化膜
WO2019159886A1 (ja) * 2018-02-14 2019-08-22 住友化学株式会社 組成物
JP2019139219A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
JP2019139220A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
WO2019159889A1 (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
WO2019159888A1 (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
CN111684326A (zh) * 2018-02-14 2020-09-18 住友化学株式会社 层叠体及其制造方法
CN111712740A (zh) * 2018-02-14 2020-09-25 住友化学株式会社 组合物
JP2019139168A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 垂直配向液晶硬化膜
CN111712740B (zh) * 2018-02-14 2022-08-23 住友化学株式会社 组合物
CN111684326B (zh) * 2018-02-14 2023-01-10 住友化学株式会社 层叠体及其制造方法
TWI808127B (zh) * 2018-02-14 2023-07-11 日商住友化學股份有限公司 積層體及其製造方法
JP7329926B2 (ja) 2018-02-14 2023-08-21 住友化学株式会社 積層体およびその製造方法
WO2019159887A1 (ja) * 2018-02-14 2019-08-22 住友化学株式会社 垂直配向液晶硬化膜
JP7398868B2 (ja) 2018-02-14 2023-12-15 住友化学株式会社 組成物
WO2023162545A1 (ja) * 2022-02-28 2023-08-31 日本ゼオン株式会社 光学異方性積層体及びその製造方法、並びに、円偏光板及び画像表示装置

Also Published As

Publication number Publication date
JP6216323B2 (ja) 2017-10-18
US20150212246A1 (en) 2015-07-30
JPWO2014054769A1 (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
JP6216323B2 (ja) 円偏光板およびその製造方法、光学積層体
JP6231293B2 (ja) 液晶組成物、位相差板、円偏光板および画像表示装置
JP4440817B2 (ja) 光学異方性膜、輝度向上フィルムおよび積層光学フィルムならびにこれらを用いた画像表示装置。
US9128322B2 (en) Phase difference plate for circularly polarizing plate, circularly polarizing plate, and organic electroluminescence display apparatus
JP5728298B2 (ja) 光学フィルム、偏光板、及び画像表示装置
WO2014073616A1 (ja) 位相差板、円偏光板、有機el表示装置
JP5677204B2 (ja) 立体画像認識装置
JP5518628B2 (ja) 長尺状光学フィルムの製造方法、及び長尺状円偏光板の製造方法
KR20180132644A (ko) 광학 이방성층 및 그 제조 방법, 광학 이방성 적층체 및 그 제조 방법, 광학 이방성 전사체, 편광판, 그리고 화상 표시 장치
JP6193192B2 (ja) 偏光板、偏光板の製造方法および液晶表示装置
US20140284582A1 (en) Phase difference plate for circularly polarizing plate, circularly polarizing plate, and organic electroluminescence display apparatus
JP2009053684A (ja) 位相差フィルム、偏光板、及びそれを用いた液晶表示装置
WO2013100115A1 (ja) 円偏光板、及び円偏光板を有する有機elディスプレイ
JP5876801B2 (ja) 光学フィルム、液晶表示装置、転写材、及び光学フィルムの製造方法
WO2014189041A1 (ja) 偏光板およびその製造方法ならびに光学フィルム材料
WO2015046399A1 (ja) 偏光板の製造方法
US11834600B2 (en) Liquid crystal composition, optical film, circularly polarizing plate for organic EL display, and method for producing optically anisotropic layer
JP4832796B2 (ja) 光学補償シート、偏光板および液晶表示装置
WO2014189040A1 (ja) 偏光板およびその製造方法ならびに転写材料
JP2005321527A (ja) 液晶表示装置
JP5699095B2 (ja) 3d表示装置、及び3d表示システム
JP2012215704A (ja) 光学フィルム、偏光板、及び画像表示装置
CN114222804B (zh) 液晶组合物、光学膜、有机el显示器用圆偏振片、光学各向异性层的制造方法
JP2005227425A (ja) 位相差板、ならびにそれを用いたλ/4板及び楕円偏光板
JP5552087B2 (ja) Ips又はffs型液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844511

Country of ref document: EP

Kind code of ref document: A1