WO2014050865A1 - 電解水製造装置、電解水の製造方法及び電解槽 - Google Patents

電解水製造装置、電解水の製造方法及び電解槽 Download PDF

Info

Publication number
WO2014050865A1
WO2014050865A1 PCT/JP2013/075865 JP2013075865W WO2014050865A1 WO 2014050865 A1 WO2014050865 A1 WO 2014050865A1 JP 2013075865 W JP2013075865 W JP 2013075865W WO 2014050865 A1 WO2014050865 A1 WO 2014050865A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic cell
water
electrolytic
electrolyzed water
electrolysis
Prior art date
Application number
PCT/JP2013/075865
Other languages
English (en)
French (fr)
Inventor
公喜 松山
雅康 白土
Original Assignee
森永乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012218856A external-priority patent/JP5836243B2/ja
Priority claimed from JP2012218855A external-priority patent/JP5871766B2/ja
Application filed by 森永乳業株式会社 filed Critical 森永乳業株式会社
Priority to CN201380050499.0A priority Critical patent/CN104662205B/zh
Priority to US14/431,551 priority patent/US20150259223A1/en
Priority to KR1020157005850A priority patent/KR101781012B1/ko
Priority to EP13842250.6A priority patent/EP2902532A4/en
Publication of WO2014050865A1 publication Critical patent/WO2014050865A1/ja
Priority to HK15111156.0A priority patent/HK1210506A1/xx
Priority to US15/943,933 priority patent/US20180222775A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46128Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4614Current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/4615Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/04Location of water treatment or water treatment device as part of a pitcher or jug
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/06Mounted on or being part of a faucet, shower handle or showerhead

Definitions

  • the present invention relates to an electrolyzed water production apparatus, an electrolyzed water production method, and an electrolyzer that produce electrolyzed water by electrolyzing raw water.
  • electrolyzed water obtained by electrolyzing raw water containing chlorine ions with an electrolyzed water production apparatus has a high bactericidal effect even when the chlorine concentration is low, and is highly safe for humans. It is known to have advantageous properties.
  • Such electrolyzed water is widely used in food-related fields and the like for sterilization of food or equipment for processing the food.
  • the awareness of hygiene management of foods or food handlers has increased, so the development of an electrolyzed water production device that can be easily used and maintained for general home use and business use in small and medium-sized facilities is expected. Has been.
  • the electrolyzed water production apparatus is configured to be able to attach and detach and replace the electrolyzer from the apparatus body in preparation for maintaining the electrolyzer after use, changing the electrolysis capability, or the like.
  • configurations described in Patent Documents 1 to 6 below have been proposed as configurations in which the electrolytic cell can be attached and detached.
  • the electrolyzed water production apparatus described in Patent Document 1 is configured to connect an electrolyzer to a flexible tube or a connection terminal in order to connect the electrolyzer to a raw water storage tank, a mixer, and a control device.
  • the replacement of the electrolytic cell is performed after the work of replacing the interior of each member from the chemical solution to water so that the chemical solution or gas inside the electrolytic cell or the like does not leak and adhere to the operator's body or clothes.
  • the electrolyzed water production apparatuses described in Patent Documents 2 to 4 have an electrolyzer fitted to a fitting portion of the apparatus body, and a water supply pipe, an acidic water discharge pipe, and an alkaline ion water discharge provided in the electrolyzer. Pipes and the like are inserted and connected to the water supply pipe insertion hole, the acid water discharge pipe insertion hole, the alkaline ion water discharge pipe insertion hole, and the like, respectively.
  • the electrolyzed water production apparatuses described in Patent Documents 5 and 6 are configured such that the electrolytic cell is detachably attached to the fitting portion of the apparatus main body, similar to the electrolyzed water production apparatuses described in Patent Documents 2 to 4. Yes.
  • the electrolyzed water production apparatuses described in Patent Documents 5 and 6 do not have a structure in which the water supply pipe of the electrolysis tank is fitted to a part of the apparatus main body, and the opening of the water supply pipe is provided outside the apparatus main body. As a result, raw water can be supplied at any time.
  • the electrolyzed water production apparatus electrolyzes raw water such as dilute hydrochloric acid in an electrolyzer to produce an electrolyzed product such as chlorine, and the electrolyzed product is diluted with diluting water to produce hypochlorous acid water (electrolyzed water) and It is a device to do.
  • the method there are a method called a continuous method and a method called a batch method.
  • the continuous electrolyzed water production apparatus is an apparatus using a method of continuously supplying raw water having a constant concentration to a supply port of an electrolytic cell and continuously taking out an electrolysis product from an outlet port.
  • a batch-type electrolyzed water production apparatus electrolyzes all raw material water supplied in a predetermined amount in an electrolytic cell at a time. It is configured to calculate the amount of electrolytic product obtained when all of a predetermined amount of raw material is electrolyzed, and dilute the obtained electrolytic product with a predetermined amount of dilution water to obtain a desired concentration of electrolytic water. ing. That is, in the case of the batch type, by decomposing all the raw materials in the electrolytic cell, the concentration of the electrolyzed water to be produced can be determined by determining the amount of the electrolytic product obtained (see, for example, Patent Document 8 below). .
  • the electrolyzed water production apparatus described in Patent Document 1 requires work such as replacing the inside of the electrolyzer with water when the electrolyzer is replaced. This work has no problem for the trader of the electrolyzed water production apparatus, but it may be complicated for users of general household use or business use of small and medium-sized facilities. In addition, the connection between the electrolytic cell and various flexible tubes and connection terminals may be complicated and difficult. In addition, in the electrolyzed water production apparatuses described in Patent Documents 2 to 6, there are many connection points between the electrolyzer and the apparatus main body, and when the electrolysis tank is mounted on the apparatus main body, the connection point is appropriate It may be damaged without fitting. Further, this may cause a connection failure or cause a failure.
  • the present invention has been made in view of the above-described circumstances, and provides an electrolyzed water production apparatus that can easily replace an electrolytic cell for general household use or business use in a small and medium-sized facility, and has high convenience. For the purpose.
  • the continuous electrolyzed water production apparatus described in Patent Document 7 although it is suitable for business use, it is a large storage tank for storing raw water, and raw water is supplied from this storage tank to the electrolytic tank. For this reason, a pump and a control mechanism are required, and the entire apparatus becomes large, so that it may be difficult to install in a general home. Furthermore, since the device is expensive, it may be difficult to adopt it in general households. Further, the performance of the continuous electrolyzed water production apparatus may be excessive for general households that use a relatively small amount. On the other hand, the batch-type electrolyzed water production apparatus described in Patent Document 8 is suitable for relatively small-scale production.
  • the entire amount of raw material water supplied to the electrolyzer is continuously electrolyzed at a time. Therefore, although it is a small scale, it is necessary to store more than the amount of electrolyzed water used at one time at home in the electrolytic cell. This amount may exceed the amount that is easy to carry for women and children and may be difficult to carry.
  • the amount of raw water in the electrolytic cell is small, it is necessary to refill the raw water every time electrolysis is performed. . This work is not particularly problematic for a trader who handles the electrolyzed water production apparatus for business use, but it may be difficult for general users who are unaccustomed to handling raw water such as hydrochloric acid.
  • conventional batch-type electrolyzed water production equipment can handle electrolyzed water little by little as an amount suitable for home use, and often requires filling of raw material water or replacement of electrolyzers. May become complicated.
  • one batch of raw water is increased, a large storage space for the generated electrolyzed water is taken or it becomes inconvenient to carry, so that it may be difficult to use for general household use.
  • the amount of electrolyzed water obtained is fixed depending on the specifications of the electrolyzer used in the electrolyzed water production apparatus, and it is very easy to adjust or change the amount of electrolyzed water or the concentration of electrolyzed water obtained at one time. Have difficulty.
  • the present invention has been made in view of the above-described circumstances, and is an electrolysis layer and electrolyzed water production that are easy to use and can be easily used and maintained in general homes where the amount of electrolyzed water used is small. It aims at providing an apparatus and the manufacturing method of electrolyzed water.
  • the electrolyzed water production apparatus includes an electrolyzer that electrolyzes raw water to generate an electrolyzed product and discharges the electrolyzed product from an outlet, and the electrolyzer obtained in the electrolyzer.
  • a mixing part that mixes the product with dilution water to form electrolyzed water
  • a connecting part that is provided between the electrolytic cell and the mixing part, and has a hole part that is connected to the outlet, and
  • the electrolytic cell and the mounting portion are configured such that the lead-out port and the hole portion are communicated or released from each other by moving the electrolytic cell or the connecting portion relative to each other.
  • the electrolytic cell is mounted on the mounting part in a state in which a predetermined amount of raw material water is prefilled and sealed in the electrolytic cell and the raw material water cannot be added to the inside of the electrolytic cell. It is configured.
  • an electrolytic cell is mounted
  • the structure of the electrolytic cell is simplified and the mounting of the electrolytic cell to the mounting portion is facilitated.
  • the mounting portion includes a guide portion that guides the electrolytic cell toward a connection position where the outlet port and the hole portion communicate with each other. Yes.
  • a locking portion for fixing the electrolytic cell to the mounting portion when the outlet port and the hole portion communicate with each other is provided in at least one of the electrolytic cell and the mounting portion.
  • the electrolytic cell includes a plurality of electrode plates inside the casing, and one plate surface of the plurality of electrode plates faces in one direction.
  • a bipolar electrolytic cell in which terminals that protrude toward the outside of the housing are provided on a pair of electrode plates that are arranged at intervals and are located at both ends of the plurality of electrode plates.
  • the said guide part is an insertion part provided with the terminal connection part which contacts with this terminal and supplies with electricity to the said electrolytic vessel while inserting the said terminal.
  • the guide portion is an insertion portion that includes the terminal connection portion that allows the terminal to pass through and contacts the terminal to energize the electrolytic cell. For this reason, by inserting the terminal into the guide portion, the electrolytic cell can be appropriately guided to the connection position, and the terminal can be connected to the terminal connection portion.
  • the mounting portion has a fixed latching portion that pivotably latches the electrolytic cell.
  • the said electrolytic cell has a movable latching part hooked on the said fixed latching
  • the electrolytic cell can be easily attached to the attachment portion.
  • the mounting portion includes a leaf spring to which the connecting portion is fixed.
  • the connecting portion is configured to connect or release the hole portion of the connecting portion and the outlet port by causing the leaf spring to approach or separate from the electrolytic cell attached to the mounting portion.
  • the hole of the connecting portion and the outlet can be easily communicated with each other by moving the leaf spring, to which the connecting portion is fixed, close to or away from the electrolytic cell.
  • the electrolyzed water production apparatus electrolyzes raw water to generate an electrolyzed product and discharges the electrolyzed product from the outlet, and a control for controlling the operation of the electrolyzed cell.
  • a mixing unit that mixes the electrolytic product obtained in the electrolytic cell with dilution water to form electrolytic water.
  • the electrolytic cell is configured to be connected to the mixing unit in a state where a predetermined amount of the raw water is filled in advance and the raw water cannot be added therein.
  • the control unit supplies a current having a constant current value to the electrolytic cell for a predetermined unit time in order to electrolyze a part of the predetermined amount of raw water prefilled in the electrolytic cell.
  • the predetermined amount of the raw water is electrolyzed in a plurality of times.
  • the electrolyzed water production apparatus includes a connecting portion in which a hole portion communicating with the outlet port is formed, and the electrolytic cell is detachably mounted.
  • the unit is further provided.
  • the electrolytic cell and the mounting portion are configured such that the lead-out port and the hole portion are communicated with each other or the communication is released by moving the electrolytic cell or the connecting portion relative to each other.
  • the mounting portion is provided with a guide portion that guides the electrolytic cell toward a connection position where the outlet port and the hole portion communicate with each other. Yes.
  • a locking portion for fixing the electrolytic cell to the mounting portion when the outlet port and the hole portion communicate with each other is provided in at least one of the electrolytic cell and the mounting portion.
  • control unit in any one of the sixth to eighth aspects, can set at least one of the constant current value and the unit time. Further, the control unit can set the number of times of electrolysis for the predetermined amount of electrolyzed water by setting at least one of the constant current value and the unit time.
  • control unit may perform the constant current value or the unit time when the electrical connection to the electrolytic cell is released. Can be changed.
  • the mixing section is a container for storing the dilution water. Moreover, the installation part which installs the said container so that attachment or detachment is possible is provided.
  • an electrolytic cell for electrolyzing internal raw water by energization to generate an electrolytic product includes a casing having a lead-out port through which the electrolytic product is discharged, A plurality of electrode plates provided inside, a spacer that arranges the plurality of electrode plates at intervals with one plate surface of the plurality of electrode plates oriented in one direction, and the electrode plate formed between adjacent electrode plates An electrolysis chamber in which electrolysis of the raw material water is performed.
  • the casing can be liquid-tightly sealed in a state filled with a predetermined amount of raw material water.
  • the casing is configured to discharge the electrolysis product from the outlet in a state where the raw water cannot be added to the casing when energization is possible.
  • a space for storing the raw water is formed outside the electrolysis chamber.
  • the space is provided on at least one of the side and the upper side of the electrolysis chamber.
  • the plurality of electrode plates and the plurality of spacers are alternately arranged.
  • the method for producing electrolyzed water supplies an electrolyzer filled with a predetermined amount of raw material water to the electrolyzer with a current having a constant current value for a preset unit time.
  • a manufacturing process for repeatedly producing the electrolyzed water by performing a plurality of times without adding to the electrolyzer, and an electrolyzer after the electrolysis process has been performed a plurality of times are filled with a predetermined amount of raw material water And an exchange process for exchanging with another electrolytic cell.
  • the method for producing electrolyzed water in the sixteenth aspect further includes a notifying step for notifying the replacement timing of the electrolytic cell after the producing step.
  • the replacement time of the electrolytic cell is notified based on a voltage value or a current value of a current flowing through the electrolytic cell.
  • the electrolytic cell replacement time is notified based on the number of the electrolysis steps performed or the accumulated time of the unit time. To do.
  • At least one of the constant current value and the unit time in the electrolysis step is set, and according to the set constant current value and the unit time. Then, the number of times of electrolysis process or the cumulative time of unit time until the electrolytic cell replacement time is set.
  • the method for producing electrolyzed water according to the nineteenth or twentieth aspect further includes a sealing step of filling the electrolytic cell with a predetermined amount and a predetermined concentration of raw water to be sealed. .
  • the number of electrolysis steps or the total time of unit time until the replacement time of the electrolytic cell is set according to at least one of the amount and concentration of the raw material water filled in the electrolytic cell.
  • the unit time in the electrolysis step is set according to the number of the plurality of electrode plates provided in the electrolytic cell. change.
  • the unit time in the first electrolysis step after replacing the electrolytic cell is the second or later electrolysis step. It is set to be longer than the unit time in.
  • the method for producing electrolyzed water according to any one of the sixteenth to twenty-third aspects further includes a sealing step of filling the electrolytic cell with a predetermined amount of raw material water and sealing it. Have. In the replacement step, the electrolytic cell sealed in the sealing step is replaced with an electrolytic cell attached to the electrolyzed water production apparatus.
  • the raw water is dilute hydrochloric acid having a concentration of 0.75 to 21% by mass.
  • the electrolytic cell is mounted on the mounting portion in a state where the raw water is sealed in the electrolytic cell so that it cannot be added. For this reason, the concern about the liquid leakage from the electrolytic cell is reduced, and the user can easily handle the electrolytic cell when the electrolytic cell is mounted on the mounting part.
  • the connecting portion having the hole communicating with the outlet of the electrolytic cell is provided in the mounting portion to which the electrolytic cell is mounted, the structure of the electrolytic cell is simplified, and the mounting portion of the electrolytic cell is Easy to install. Moreover, it can prevent the malfunction of the connection of the various connection parts at the time of mounting
  • electrolysis is performed for a predetermined unit time in an electrolytic cell pre-filled with a predetermined amount of raw material water.
  • the electrolytic product necessary for producing the electrolyzed water can be produced little by little. Therefore, the electrolyzed water can be divided into small parts.
  • a predetermined value of current can be applied to the electrolytic cell a plurality of times and electrolysis can be carried out a plurality of times for the predetermined amount of raw material water, the raw water is added to the electrolytic cell for each electrolysis or an electrolytic cell is installed. There is no need to replace it. Therefore, it is possible to easily produce electrolyzed water while suppressing the replacement frequency of the electrolytic cell.
  • FIG. 7B is a partially enlarged view of FIG. 7A. It is the perspective view which fractured
  • FIG. 16A It is a perspective view which shows the modification of the electrolytic vessel and mounting part of the electrolyzed water manufacturing apparatus which concerns on 1st Embodiment of this invention. It is a perspective view which shows the modification of the electrolytic vessel and mounting part of the electrolyzed water manufacturing apparatus which concerns on 1st Embodiment of this invention. It is a partially broken perspective view which shows the modification of the electrolytic vessel and mounting part of the electrolyzed water manufacturing apparatus which concerns on 1st Embodiment of this invention. It is a partially broken perspective view which shows the modification of the electrolytic vessel and mounting part of the electrolyzed water manufacturing apparatus which concerns on 1st Embodiment of this invention, and is the perspective view seen from the direction different from FIG. 16A.
  • FIG. 17B is a partially enlarged view of FIG. 17A. It is a partially broken perspective view which shows the modification of the electrolytic vessel and mounting part of the electrolyzed water manufacturing apparatus which concerns on 1st Embodiment of this invention.
  • FIG. 18B is a partially enlarged view of FIG. 18A. It is a partially broken perspective view which shows the modification of the electrolytic vessel and mounting part of the electrolyzed water manufacturing apparatus which concerns on 1st Embodiment of this invention. It is a side view which shows the operation state of the electrolytic vessel in FIG. 19A.
  • FIGS. 7A to 8B Details of the inside are omitted in FIGS. 7A to 8B, FIGS. 16A to 20, and FIG. ing.
  • the electrolyzed water production apparatus according to the present invention is generated by electrolyzing raw water containing chlorine ions such as sodium chloride aqueous solution and hydrochloric acid aqueous solution to generate chlorine gas (electrolytic product) by the action of electrolytic oxidation.
  • Electrolyzed water in which hypochlorous acid is generated in water is prepared by dissolving chlorine gas in diluted water such as water.
  • diluted water such as water.
  • an electrolyzed water producing apparatus that generates chlorine gas using dilute hydrochloric acid as raw water and dissolves chlorine gas in tap water to generate hypochlorous acid will be described as an example.
  • an electrolyzed water production apparatus 1 ⁇ / b> A includes an electrolyzer 3 that electrolyzes raw water to generate an electrolyzed product and discharges the electrolyzed product from an outlet 2, and an electrolyzer 3.
  • the electrolytic cell 3 includes a substantially rectangular parallelepiped casing 30, a plurality of electrode plates 31 disposed inside the casing 30, and a plurality of spacers in which hollow holes 32 are formed. 33 is a bipolar electrolytic cell.
  • the electrolytic cell 3 is configured to be liquid-tightly sealed in a state in which raw water (not shown, the same applies hereinafter) is filled in the housing 30 in advance.
  • the housing 30 includes side plates 34A and 34B and a body 35, which are formed of a synthetic resin such as vinyl chloride resin, carbonate resin, or acrylic resin.
  • the side plates 34 ⁇ / b> A and 34 ⁇ / b> B are rectangular plates having a predetermined thickness, and penetrate in the thickness direction at the center in the width direction (horizontal direction) and slightly below the center in the height direction (vertical direction). Electrode rod insertion holes 36 to be formed are respectively formed.
  • FIG. 5 is a longitudinal sectional view of the electrolytic cell 3 in an assembled state, and shows a cross section in a vertical plane passing through the center of the electrode rod insertion hole 36.
  • the fuselage 35 is a cylindrical member that is rectangular in cross-section and has a height dimension (length in the vertical direction) larger than that of the spacer 33, and has one end side (one end side in the central axis direction of the fuselage). ) Is fixed, and the side plate 34B is fixed to the other end side.
  • a substantially cylindrical projecting wall portion 37 is formed on one side portion 35a (side wall) of the body 35 orthogonal to the side plates 34A, 34B in which the electrode rod insertion holes 36, 36 are formed. ing.
  • a lead-out port 2 communicating with the space S of the body 35 is formed by the internal cavity of the protruding wall portion 37.
  • a groove 38 is formed in the side portion 35 a so as to surround the protruding wall portion 37, and an O (O) ring 39 is disposed in the groove 38.
  • a check valve 27 is provided in the outlet 2 (inside the protruding wall portion 37).
  • the check valve 27 is formed in an annular shape from a distal end of the protruding wall portion 37 and protrudes toward the base end side thereof from the base end side of the protruding wall portion 37.
  • a valve body 27B that contacts the valve seat 27A and seals the outlet 2 in a liquid-tight manner, and a spring 27C that biases the valve body 27B toward the valve seat 27A are provided.
  • the handle 40 is provided in the side part 35b facing the side part 35a.
  • Each electrode plate 31 is a metal plate such as a titanium alloy, and is formed in a rectangular shape (square).
  • the plurality of electrode plates 31 are arranged in one direction in which the side plates 34A and 34B face each other (the central axis direction of the body 35) between the side plates 34A and 34B facing each other at a predetermined interval. They are arranged side by side. That is, the plurality of electrode plates 31 are arranged in parallel with the side plates 34A and 34B.
  • a pair of electrode plates 31 disposed at both ends in the facing direction are fixed with metal electrode bars 45 (terminals) at substantially central portions thereof. As shown in FIG.
  • the electrode rod 45 has a head portion 46 formed at one end thereof and a male screw portion 47 formed on the outer surface of the other end portion.
  • a head 46 is fixed to the center of the electrode plate 31. That is, the electrode rod 45 is electrically connected to the electrode plate 31.
  • the spacer 33 is a plate-like member formed of a synthetic resin such as a vinyl chloride resin or a carbonate resin. As shown in FIGS. 5 and 6, the spacer 33 is formed with a height dimension such that the spacer 33 is accommodated in the upper portion of the housing 30 leaving the space S ⁇ b> 1.
  • a space S1 formed by housing the spacer 33 in the housing 30 communicates with the outlet port 2 of the projecting wall portion 37, and the electrolytic product collected in the space S1 can be discharged from the outlet port 2. It has become.
  • a hollow hole 32 is formed in the central portion of the spacer 33 so as to penetrate the plate surfaces of the spacer 33 in the opposite direction (thickness direction).
  • the hollow hole 32 has a rectangular outline (square), and is formed so that the dimension of each side is slightly smaller than that of the electrode plate 31.
  • a stepped portion 50 that is recessed in the thickness direction is formed on one plate surface 33 a of the spacer 33. The step portion 50 is recessed along each side of the hollow hole 32 with a certain width dimension, and the electrode plate 31 is fitted into the step portion 50 as shown in FIG.
  • each outer side of the step portion 50 is slightly larger than each side of the electrode plate 31. For this reason, the electrode plate 31 is fitted into the stepped portion 50 without a large gap, and the electrode plate 31 is prevented from moving greatly in the direction along the plate surface of the spacer 33.
  • the depth of the step portion 50 in the thickness direction is substantially the same as the thickness of the electrode plate 31. For this reason, when the electrode plate 31 is fitted to the step portion 50, the plate surface of the electrode plate 31 (the plate surface opposite to the step portion 50) and the plate surface 33 a of the spacer 33 are flush with each other.
  • fitting protrusions 51, 51 are formed on one plate surface 33a of the spacer 33 in the vicinity of a pair of corner portions of the spacer 33 that face each other.
  • fitting concave portions 52 and 52 are formed at positions corresponding to the pair of fitting convex portions 51 and 51.
  • the fitting convex portion 51 and the fitting concave portion 52 are used for coupling the adjacent spacers 33 and 33 to each other.
  • the spacers 33 are relatively positioned by fitting the fitting protrusions 51, 51 of the other spacer 33 into the fitting recesses 52, 52 of one spacer 33. .
  • the fitting convex portion 51 of the spacer 33 closest to the side plate 34B is fitted into a fitting concave portion (not shown) formed on the side plate 34B.
  • a fitting convex portion (not shown) formed on the side plate 34A is fitted into the fitting concave portion 52 of the spacer 33 closest to the side plate 34A.
  • the fitting convex portion 51 is a columnar portion protruding from the plate surface 33a of the spacer 33, and the peripheral edge portion of the tip is chamfered.
  • the fitting recess 52 is a circular hole in a plan view formed in the plate surface 33b so that the fitting protrusion 51 fits without a large gap.
  • a lower notch 53 is formed in the spacer 33 below the lower side of the hollow hole 32 and at a position corresponding to the central portion of the lower side in the left-right direction.
  • the lower notch 53 penetrates the spacer 33 in a direction (plate thickness direction of the spacer 33) in which the plate surfaces 33a and 33b face each other.
  • the lower notch 53 and the hollow hole 32 are connected by a lower flow path 53a formed in the plate surface 33b, and raw water flowing in the lower notch 53 passes through the lower flow path 53a as will be described later. Then, it is guided into the hollow hole 32.
  • the lower flow path 53 a is branched into three paths from the lower notch 53 toward the hollow hole 32.
  • the spacer 33 penetrates in a direction (above the plate thickness direction) above the upper side of the hollow hole 32 and at a position corresponding to the central portion of the upper side in the left-right direction.
  • An upper cutout 54 is formed.
  • the upper notch 54 and the hollow hole 32 are also connected by an upper flow path 54a formed on the plate surface 33b.
  • the electrolytic product guided from the hollow hole 32 to the upper flow path 54a is upward. It is possible to enter the notch 54.
  • the upper flow path 54 a has the same configuration as the lower flow path 53 a, and branches into three paths from the upper notch 54 toward the hollow hole 32.
  • side notches 55 and 55 are formed in the spacer 33 on the left and right sides of the hollow hole 32, at positions corresponding to the center portions in the vertical direction on both sides of the hollow hole 32.
  • the side notch 55 also penetrates in the direction (plate thickness direction) in which the plate surfaces 33a and 33b of the spacer 33 face each other, like the lower notch 53 and the upper notch 54 described above.
  • the side cutout 55 and the hollow hole 32 are also connected by a side flow path 55a formed in the plate surface 33b.
  • the side flow path 55 a has the same configuration as the lower flow path 53 a and the upper flow path 54 a, and branches into three paths from the side cutout 55 toward the hollow hole 32.
  • the electrolytic cell 3 composed of each of the above components is assembled by disposing an electrode plate 31 and a spacer 33 in a housing 30. That is, in the electrolytic cell 3, the electrode plate 31 is fitted into the step portion 50 of the spacer 33, and the other spacer 33 is brought into contact so as to cover the edge of the electrode plate 31 disposed on the step portion 50. In this state, the electrode plate 31 and the spacer 33 are disposed in the body 35. Further, both ends of the opening of the body 35 are sandwiched between the side plates 34A and 34B, thereby sealing the body 35 in a liquid-tight manner.
  • the body 35 is sealed by the side plates 34A and 34B by inserting the electrode rod 45 fixed to the electrode plate 31 closest to the side plate 34A into the electrode rod insertion hole 36 of the side plate 34A, and the electrode plate 31 closest to the side plate 34B.
  • the electrode rod 45 fixed to the electrode plate 45 is inserted into the electrode rod insertion hole 36 of the side plate 34B, and a washer 48A, a cylindrical spacer 48C, a washer 48A, and a spring washer 48B are interposed in the male screw portion 47 of each electrode rod 45 in this order.
  • the nut 49 is fastened.
  • the electrode rod insertion hole 36 is liquid-tightly sealed.
  • the fitting convex portion 51 of each spacer 33 shown in FIG. 4 is fitted in the fitting concave portion 52 of the adjacent spacer 33 shown in FIG.
  • the fitting convex portion 51 of the spacer 33 closest to the side plate 34B shown in FIG. 5 is fitted into a fitting concave portion (not shown) of the side plate 34B, and the fitting concave portion 52 of the spacer 33 closest to the side plate 34A is A fitting protrusion (not shown) of the side plate 34A is fitted.
  • the plurality of spacers 33 are in close contact with each other on the plate surfaces by the fitting of the fitting convex portion 51 and the fitting concave portion 52 described above.
  • each electrode plate 31 is fitted in the stepped portion 50 of the spacer 33, and the plate surfaces of the adjacent spacers 33 and 33 are in close contact with each other as described above. For this reason, the peripheral part of each electrode plate 31 is clamped by the stepped portion 50 with which the electrode plate 31 is fitted and the adjacent spacer 33, and the electrode plate 31 is held immovably in the stepped portion 50.
  • the electrode plate 31 closest to the side plate 34A is fitted in the step portion 56 of the side plate 34A (see FIG. 5).
  • the hollow hole 32 of each spacer 33 is partitioned by two adjacent electrode plates 31, and a space formed by arranging these electrode plates 31 and 31 at intervals is a raw material.
  • An electrolysis chamber C for electrolyzing water is configured. That is, the electrolysis chamber C is formed between the adjacent electrode plates 31 and 31. Raw water is held in the electrolysis chamber C.
  • the lower flow path 53 a and the upper flow path 54 a of each spacer 33 are both covered with the electrode plate 31 and the adjacent spacer 33. For this reason, the lower flow path 53a and the upper flow path 54a are configured as fluid passages that allow communication between the lower cutout 53 and the electrolysis chamber C and between the upper cutout 54 and the electrolysis chamber C, respectively.
  • the adjacent electrolysis chamber C passes through the lower flow path 53a and the lower notch 53, and the upper flow path 54a and the upper notch 54. Communicate with each other.
  • the side flow paths 55a of the spacers 33 are respectively covered with the electrode plates 31 and the adjacent spacers 33, and are configured as fluid passages that allow the side cutouts 55 and the electrolysis chamber C to communicate with each other.
  • the electrolysis chamber C of each spacer 33 communicates with each other via the side channel 55 a and the side notch 55.
  • the upper notch 54 opens toward the space S1 above the body 35 and the space S1 communicates with the outlet 2, the electrolytic product generated in the electrolysis chamber C is collected in the space S1. After that, the lead-out port 2 leads out of the housing 30.
  • the electrolytic cell 3 can be opened only at the outlet 2 communicating with the upper space S ⁇ b> 1 in the housing 30, and is always liquid-tightly sealed at other locations.
  • the interior of the casing 30 of the electrolytic cell 3 assembled in this manner is previously stored in a predetermined amount by a dedicated jig (not shown) that fills the raw material water from the tip of the outlet port 2 while venting the air inside.
  • Raw material water is filled.
  • the outlet 2 is used as a raw water supply port.
  • the lead-out port 2 is liquid-tightly sealed by the check valve 27 shown in FIGS. 7A and 7B before being installed in the mounting portion 6. ing. For this reason, liquid leakage of the raw material water from the electrolytic cell 3 (housing 30) can be prevented.
  • the check valve 27 is opened when the electrolytic cell 3 is mounted on the mounting portion 6, and the electrolysis product is discharged from the outlet 2 when the energization of the housing 30 is possible. It is possible. For this reason, the electrolytic cell 3 can be easily mounted on the mounting portion 6.
  • the raw water can be filled in the electrolytic cell 3 in advance by a contractor, and the outlet 2 can be liquid-tightly sealed and distributed to ordinary households. For this reason, even the user of a general household who is unaccustomed to the handling of the raw material water can easily handle the electrolytic cell 3.
  • the electrolytic cell 3 is attached to the attachment portion 6, if the protruding wall portion 37 is fitted to the fitting portion 25 of the connecting portion 19 (see FIGS. 7A and 7B), the outlet 2 is electrogenerated. Used to discharge objects to the outside. Moreover, in this state, since the piping etc.
  • the outlet 2 cannot be used as a raw water supply port. Furthermore, other portions of the outlet 2 in the housing 30 are always sealed. Therefore, the housing 30 is configured so that the raw water cannot be added to the interior when the housing 30 is attached to the attachment portion 6 (when energization is possible).
  • the supply port of raw material water is formed in the housing
  • opening restriction means such as a cap with a key may be provided at the supply port so that the user cannot easily open the supply port.
  • the electrolytic cell 3 When the electrolytic cell 3 is mounted on the mounting unit 6, at least a part of the surface of the electrolytic cell 3 is covered with the mounting unit 6.
  • the mounting unit 6 For example, when the raw material water supply port is formed at a location covered by the mounting portion 6 of the electrolytic cell 3, the supply port is not exposed to the outside in a state where the electrolytic cell 3 is mounted on the mounting portion 6, that is, new raw material water is provided. It is not possible to connect a pipe or the like for supplying water to the supply port.
  • the casing 30 may be configured such that the raw water cannot be added when the casing 30 is mounted on the mounting portion 6 (when energization is possible). In this embodiment, as shown in FIG.
  • the casing 30 of the electrolytic cell 3 attached to the attachment part 6 has only the side part 35b provided with the handle 40 exposed to the outside, and the other surface is attached. Covered with part 6. If the raw water supply port is provided on any surface other than the side portion 35b, new raw water cannot be added to the inside when the electrolytic cell 3 is mounted on the mounting portion 6.
  • the outlet port 2 may be used as an air vent hole when the raw material water is supplied from the supply port, or separately from the outlet port 2. An air vent hole that is opened only when the raw water is supplied may be provided in the housing.
  • the concentration of dilute hydrochloric acid charged in the electrolytic cell 3 is within a predetermined range in consideration of the desired concentration of electrolyzed water (effective chlorine concentration), the amount of electrolyzed water, the number of times of electrolysis, the current value, the efficiency of voltage, etc. Is set.
  • the plurality of electrolytic chambers C communicate with each other via these notches and the flow path. ing. Therefore, even if the amount of raw water is different among the plurality of electrolytic chambers C, when the electrolytic cell 3 is stopped in an appropriate posture as shown in FIGS. It flows and the water level (amount) of the raw water becomes uniform.
  • the mounting portion 6 is a substantially box-shaped member to which the electrolytic cell 3 is attached and fixed.
  • the mounting portion 6 includes a bottom wall 10 on which the electrolytic cell 3 is placed, a top wall 9 that guides the electrolytic cell 3 in the insertion direction (XY direction in FIGS. 7A and 8A), the bottom wall 10 and the top wall 9. , And a rear end wall (a wall located on the rear end side of the mounting portion 6, that is, the arrow Y direction side) 12 for positioning the electrolytic cell 3 in the insertion direction.
  • the front end side (arrow X direction side) of the mounting portion 6 is an opening 14 (see FIG. 8A) for inserting the electrolytic cell 3.
  • insertion portions 13 and 13 through which the electrode rods 45 and 45 of the electrolytic cell 3 are inserted are formed along the insertion direction of the electrolytic cell 3 at the center in the height direction of the side walls 11 and 11. Yes.
  • the insertion portion 13 is a slit formed to extend from the opening portion 14 of the mounting portion 6 to a substantially central portion in the width direction (XY direction) of the side wall 11.
  • the width of the insertion portion 13 in the vertical direction is set to a constant dimension slightly larger than the diameter of the electrode rod 45 from the central portion to a position in the vicinity of the opening portion 14, and gradually increases from the position toward the opening portion 14. So that it is cut out.
  • the insertion portion 13 is provided with a terminal connection portion 15 made of a conductive metal plate material.
  • the terminal connection portion 15 is bent in a substantially U shape along the wall surfaces 11 a and 11 b facing each other in the vertical direction of the side wall 11 forming the insertion portion 13.
  • the terminal connection portion 15 is bent at the end of the insertion portion 13 opposite to the opening 14.
  • the terminal connection portion 15 may be formed of an elastic member (plate spring).
  • the terminal connecting portion 15 contacts the electrode rod 45 from above and below when the electrode rod 45 is inserted through the insertion portion 13.
  • a protruding piece 15 p that protrudes outward from the side wall 11 is formed at the bent portion of the terminal connecting portion 15.
  • the terminal connection portion 15 and the protruding piece 15p are made of the same metal plate material.
  • the top wall 9, the bottom wall 10, the side wall 11, and the insertion portion 13 described above move the electrolytic cell 3 within the mounting portion 6 and guide the protruding wall portion 37 to a position (a connecting position) where the protruding wall portion 37 is fitted into the fitting portion 25.
  • the guide part G for this is comprised.
  • Locking portions 16 ⁇ / b> A and 16 ⁇ / b> B are provided at the front end portion of the top wall 9 and the front end portion of the bottom wall 10 facing the top wall 9 so as to protrude forward.
  • the locking portions 16A and 16B are formed by a pair of slits 17 and 17 formed so as to extend from the respective edge portions of the top wall 9 and the bottom wall 10 toward the center thereof.
  • the locking portions 16A and 16B are formed so as to be elastically deformable in the vertical direction.
  • claw portions 18 are provided near the front end of the top wall 9 and the front end of the bottom wall 10, respectively.
  • the claw portion 18 is used for fixing the electrolytic cell 3 to the mounting position in the mounting portion 6.
  • the claw portion 18 has an inclined surface that gradually inclines toward the center in the vertical direction of the mounting portion 6 toward the rear (arrow Y direction), and a vertical surface that is connected to the Y-direction end of the inclined surface. ing.
  • the electrolytic cell 3 When the electrolytic cell 3 is inserted into the mounting portion 6, the electrolytic cell 3 can be inserted by expanding the locking portions 16 ⁇ / b> A and 16 ⁇ / b> B while sliding on the inclined surface.
  • the locking portions 16A and 16B are elastically restored to their normal shapes, and the vertical surface is locked to the side portion 35b of the electrolytic cell 3, and the mounting portion of the electrolytic cell 3 is attached. Fix and prevent detachment from 6. Only one of the locking portions 16 ⁇ / b> A and 16 ⁇ / b> B may be formed on the top wall 9 or the bottom wall 10. In the present embodiment, the locking portions 16A and 16B for fixing the electrolytic cell 3 to the mounting portion 6 are provided in the mounting portion 6, but such a locking portion may be provided in the electrolytic cell 3.
  • a connecting portion 19 that protrudes rearward is formed at the upper end portion of the rear end wall 12 of the mounting portion 6.
  • the connecting portion 19 has a through hole 20 (hole) that opens toward the connecting portion 5T with the pipe 5.
  • the pipe 5 is fitted in the through hole 20 in an airtight state.
  • a fitting portion 25 is formed which is recessed from the inner surface of the rear end wall 12 in the protruding direction (arrow Y direction) of the connecting portion 19 to fit the protruding wall portion 37 of the electrolytic cell 3.
  • a connecting pipe 28 that protrudes in the direction of the arrow X is provided in the fitting portion 25.
  • the distal end side (X direction side) of the through hole 26 of the connection pipe 28 opens into the fitting portion 25.
  • a cutout 28a cut out so as to extend in the XY direction is formed in the peripheral wall forming the tip opening of the connection pipe 28.
  • the mounting portion 6 is designed so that when the electrolytic cell 3 is inserted into the mounting portion 6 from the opening 14 (that is, the electrolytic cell 3 is moved relative to the connecting portion 19), The electrolytic cell 3 is guided by the wall 9, the bottom wall 10, the side walls 11 and 11, and the insertion portions 13 and 13, and the protruding wall portion 37 is inserted into the fitting portion 25. Further, when the projecting wall portion 37 is inserted into the fitting portion 25, the mounting portion 6 brings the connection pipe 28 into contact with the valve body 27 ⁇ / b> B of the check valve 27, and the valve body 27 ⁇ / b> B is led out by the connection pipe 28.
  • the push-in check valve 27 is opened toward the base end side (arrow X direction), and the outlet 2 and the through hole 26 of the connection pipe 28 are communicated with each other via the notch 28 a of the connection pipe 28.
  • the outlet 2 and the through holes 20 and 26 are configured to communicate with each other.
  • the top wall 9, the bottom wall 10, the side walls 11, 11 and the insertion portion 13, 13 guides the electrolytic cell 3
  • the protruding wall portion 37 is pulled out from the fitting portion 25 in the direction of the arrow X
  • the valve body 27 ⁇ / b> B comes into contact with the valve seat 27 ⁇ / b> A again when the connecting pipe 28 is separated from the valve body 27 ⁇ / b> B.
  • the check valve 27 is closed, and the communication between the outlet 2 and the through holes 20 and 26 is released.
  • the electrolytic cell 3 preferably includes a sealing member that seals the outlet 2 in a liquid-tight manner, and the raw material water in the electrolytic cell 3 leaks from the outlet 2 by such a sealing member. Can be prevented.
  • the check valve 27 shown in FIG. 7B is an example of such a sealing member.
  • Another example of the sealing member is a film-shaped sealing material that covers the outlet 2. If such a sealing material is attached to the outlet 2 so as to cover the outlet 2, the sealing material can prevent the raw material water from leaking from the outlet 2.
  • the electrolytic cell 3 When the electrolytic cell 3 is mounted on the mounting unit 6, the electrolytic cell 3 is inserted into the opening 14 of the mounting unit 6 and the connecting pipe 28 is brought into contact with the sealing material covering the outlet port 2, so that the electrolytic cell 3 is further By inserting into the mounting portion 6, the connection pipe 28 is relatively pushed toward the base end side (arrow X direction) of the outlet 2, and the sealing material is broken by the tip of the connection pipe 28. If the connecting pipe 28 breaks the sealing material, the outlet port 2 and the through hole 20 communicate with each other through the connecting pipe 28.
  • the outlet 2 of the electrolytic cell 3 opens upward. That is, in FIG. 6, the outlet 2 of the electrolytic cell 3 is opened in the horizontal direction, but this outlet 2 is provided on the upper wall portion of the casing 30 of the electrolytic cell 3, You may comprise so that it may open toward.
  • the mounting part 6 is configured such that the opening 14 faces downward. In this case, the electrolytic cell 3 is moved upward and inserted into the opening 14 of the mounting portion 6 to be mounted, and moved downward to be removed from the mounting portion 6. If it is such a structure, when removing the electrolytic cell 3 from the mounting part 6, it will become difficult to spill an internal liquid from the outlet 2.
  • Modification 7 and Modification 8 (see FIGS. 20 to 23) of the first embodiment, which will be described later, since the outlet port is open upward, the sealing member can be suitably used.
  • the tank 4 is a container that stores the diluted water W during the production of the electrolyzed water and holds the electrolyzed water produced by mixing the electrolytic product with the diluted water W, and is installed.
  • the unit 4J is detachably installed.
  • An introduction port 8 for introducing chlorine gas (electrolysis product) into the tank 4 through the pipe 5 is provided at the lower portion of the installation portion 4J.
  • a pump 57 may be provided in the tank 4, and the diluted water W and the electrolytic product may be stirred and mixed by the operation of the pump 57.
  • the tank 4 is a resin bottle such as PET, and is configured to be removed from the installation portion 4J and carried after the electrolyzed water is manufactured.
  • the pipe 5 has one end detachably connected to the introduction port 8 and the other end connected to the mounting portion 6.
  • the pipe 5 may be a hard resin pipe or a metal pipe, or may be a resin or metal flexible pipe. Note that the pipe 5 is preferably a hard resin pipe or a resin-made flexible pipe.
  • the control unit 7 includes a constant current device 41 and a timer 42 as shown in FIG.
  • the constant current device 41, the timer 42, and the like may be configured as separate devices, and these devices may be combined to form the control unit 7.
  • the control unit 7 may have a sequencer, a computer, or the like having these functions collectively. May consist of a single device.
  • a display means 43a such as a lamp is added and configured with as simple parts as possible.
  • the electrolytic cell 3 is connected to the power source P via the control unit 7. That is, the timer 42 is connected to the power source P via the power switch SW, the constant current device 41 is connected to the output side of the timer 42, and the electrolytic cell 3 is connected to the output side of the constant current device 41.
  • the pump 57 is connected to the power source P via the power switch SW.
  • the timer 42 has a predetermined unit time after the power switch SW is turned ON and the supply of power from the constant current device 41 to the electrolytic cell 3 is started (that is, the time of one electrolysis that is continuously energized). Measure and automatically stop energization when this predetermined unit time has elapsed.
  • the constant current device 41 converts the electric power supplied from the power source P into a direct current, and supplies the electrolytic cell 3 with a current (a current having a constant current value) controlled so that the current value becomes constant.
  • the current value supplied to the electrolytic cell 3 is measured by an ammeter A provided between the electrolytic cell 3 and the constant current device 41.
  • a constant current value also referred to as a constant current
  • the current value of the current flowing through the electrolytic cell 3 is maintained at a preset value (also referred to as a constant current value).
  • the constant current device 41 controls the voltage (also referred to as electrolytic voltage) applied to the electrolytic cell 3 while referring to the measurement result of the ammeter A.
  • the value measured by the ammeter A is the current value flowing through the electrolytic cell 3.
  • the timer 42 when the timer 42 is also used as the function of the counter 43, the number of times that the electrolysis performed in the unit time is performed in the electrolytic cell 3 is defined as the number of times the timer 42 is operated. It is possible to determine that it is time to replace the electrolytic cell 3 when the predetermined number of times is reached.
  • the timer 42 (control unit 7) divides the time required for electrolyzing all the predetermined amount of raw material water charged in the electrolytic cell 3 every predetermined unit time, and electrolyzes the predetermined amount of raw material water. The number of times is set to a plurality of times, and a current having a constant current value is supplied to the electrolytic cell 3 every unit time.
  • the ammeter A provided between the electrolytic cell 3 and the constant current device 41 is also used as the function of the counter 43, the number of times the current flowing during the unit time is supplied to the electrolytic cell 3 is counted. However, it is also possible to determine that it is time to replace the electrolytic cell 3 when the predetermined number of times is reached.
  • the constant current device 41 and the timer 42 can change the current value and the length of the unit time according to the desired effective chlorine concentration and the amount of electrolyzed water, respectively.
  • the display means 43a can display the number of times energization (electrolysis) is performed per unit time. Since electrolyzed water having a desired effective chlorine concentration may not be obtained immediately after the electrolytic cell 3 is replaced, several times until the desired effective chlorine concentration is obtained by confirming the display on the display means 43a. Dilution water (electrolysis water) in electrolysis can also be discarded. Moreover, the display means 43a notifies the user that electrolyzed water having a desired effective chlorine concentration cannot be obtained when the number of energizations reaches the calculated number of times, and allows the user to recognize the replacement time of the electrolytic cell 3. it can.
  • the amount of electrolytic product generated when the raw water is electrolyzed by conducting current once correlates with the amount of electricity represented by the product of the current value of constant current and unit time. Therefore, it is necessary to calculate the amount of electrolytic product (chlorine gas) required according to the concentration of electrolytic water to be obtained (effective chlorine concentration) and the amount of electrolytic water, and to generate this amount of electrolytic product.
  • a constant current value and unit time can be set based on the amount of electricity. Therefore, the constant current device 41 and the timer 42 can set the current value and the length of the unit time to desired values, respectively, and can change them as necessary. That is, the control unit 7 is configured to be able to set at least one of a current value (a constant current value) and a unit time.
  • the amount of electricity required is calculated as follows.
  • the amount of electricity required to electrolyze 1 mol of monovalent ions (the amount of electricity (charge) of 1 mol of electrons) is represented by the Faraday constant F (unit: coulomb / mol) and is about 96500 coulombs.
  • the control unit 7 calculates the necessary amount of electricity Q as described above, and takes into account the number of electrode plates 31 and the current efficiency, and the current value (I) of the constant current to be applied and A unit time (t) can be set.
  • the current efficiency is the ratio of the current that has flowed through the electrolytic cell 3 that is used as a percentage of the current used for the electrode reaction, and the chlorine actually generated on the anode side with respect to the theoretical amount of chlorine generated. Defined by the ratio of quantities.
  • the current efficiency is a value based on the actually measured value, and is the same value in the electrolytic cell 3 (electrode plate) having the same configuration.
  • the amount of chlorine consumed by one energization is known from the amount of electricity flowing to the raw water by one energization
  • the chlorine concentration of the raw material water in the electrolytic cell 3 before the first energization is started, and one time The maximum number of times the electrolyzer 3 can be energized can be determined from the amount of chlorine consumed by the energization.
  • the electrolytic cell 3 in which a predetermined amount of dilute hydrochloric acid (raw water) was sealed was used with a DC stabilized power source (product name: PAS60-6, manufactured by Kikusui Electronics Co., Ltd.) as the power source.
  • Electrolysis was performed by energizing an electric current, and the generated chlorine gas was continuously supplied and mixed in water (diluted water) flowing at a flow rate of 4 liters per minute to produce electrolyzed water. 100 mL of electrolyzed water was sampled every 15 seconds for the first minute after the start of energization, and then 100 mL of electrolyzed water was sampled every minute, and the effective chlorine concentration of the collected electrolyzed water was examined.
  • the effective chlorine concentration was measured using a chlorine meter (manufactured by Shibata Chemical Co., Ltd., product name: Handy Water Quality Meter AQ-102) according to the following procedure.
  • a 10 mL sample of the collected electrolyzed water is placed in a sample cell (container).
  • a sample cell is set in a cell holder for measurement in the chlorine meter, and zero point adjustment is performed.
  • the sample cell is taken out and mixed with a coloring reagent (commercially available). Set the sample cell in the cell holder for measurement and measure the concentration.
  • the plate surface size of the electrode plate 31 is 50 mm ⁇ 50 mm, the distance between the adjacent electrode plates 31 and 31 is 3 mm, the number of cells (electrolytic chambers) is 9, and the current efficiency is 50%.
  • the amount of dilute hydrochloric acid (raw water) in the electrolytic cell was 52 ml, the hydrochloric acid concentration before starting the energization of this dilute hydrochloric acid (raw water) was 6 mass%, and the constant current value supplied to the electrolytic cell was 1.0 A.
  • the effective chlorine concentration shows a maximum value when the electrolysis voltage is in the vicinity of 17V to 18V, and in a range where the electrolysis voltage is higher than that, the effective chlorine concentration decreases as the electrolysis voltage increases.
  • the voltage range for obtaining 70% or more (30 ppm to 43 ppm) of the maximum effective chlorine concentration (43 ppm) is about 13 to 24 V (voltage between adjacent electrodes: about 1.44 V to 2.67 V), which is effective.
  • the voltage range in which 80% or more (34 ppm to 43 ppm) of the maximum value of the chlorine concentration is obtained is about 14 to 22 V (voltage between adjacent electrodes: about 1.56 V to 2.44 V).
  • FIG. 12 shows the test results of Test Example 2 and shows the relationship between the time lapse and the electrolysis voltage when a plurality of raw waters (dilute hydrochloric acid) having different hydrochloric acid concentrations before the start of energization are electrolyzed.
  • the hydrochloric acid concentration is preferably 1.5% by mass or more, more preferably 6% by mass or more. preferable.
  • the hydrochloric acid concentration is preferably 9% by mass or less.
  • the plate surface size of the electrode plate 31 is set to 50 mm ⁇ 50 mm, and the distance between the adjacent electrode plates 31 and 31 is set to 3 mm, 6 mm, 9 mm, or 12 mm. Cell).
  • the current efficiency is 50%.
  • the amount of dilute hydrochloric acid (raw material water) in the electrolytic cell 3 was 17 ml, 35 ml, 52 ml, or 70 ml, respectively.
  • FIG. 13 shows the test results of Test Example 3, and shows the relationship between the passage of time and the electrolysis voltage when electrolysis is performed using a plurality of electrolytic cells having different distances between adjacent electrode plates 31 and 31.
  • the user electrolyzes dilute hydrochloric acid in a housing 30 in advance.
  • the electrolytic cell 3 is inserted into the opening 14 of the mounting part 6 with the handle 40 of the tank 3, with the protruding wall part 37 facing the rear end wall 12 in the mounting part 6.
  • the upper wall portion and the lower wall portion of the casing 30 of the electrolytic cell 3 are in contact with the claw portions 18 and 18 of the locking portions 16A and 16B, respectively, and the locking portions 16A and 16B are moved up and down.
  • the electrolytic cell 3 By being elastically deformed and expanded, the electrolytic cell 3 can be inserted into the mounting part 6.
  • the electrolytic cell 3 is inserted straight (along the XY direction) toward the rear end wall 12 of the mounting portion 6 while being guided by the top wall 9, the bottom wall 10, and both side walls 11, 11 of the mounting portion 6.
  • the electrode rods 45, 45 enter the insertion portions 13, 13 and advance in the arrow Y direction while slidingly contacting the terminal connection portions 15, 15.
  • the O (O) ring 39 comes into close contact with the inner surface of the rear end wall 12 as shown in FIG. 7A and the protruding wall portion of the electrolytic cell 3. 37 is fitted into the fitting portion 25.
  • the connecting pipe 28 is inserted into the protruding wall portion 37, the check valve 27 shown in FIG. 7B is opened, and the through holes 20 and 26 and the outlet 2 are communicated with each other through the notch 28a.
  • the chlorine gas (electrolysis product) inside can be derived from the electrolytic cell 3.
  • the outlet port 2 cannot be used as the raw material water supply port, and new raw water cannot be added to the electrolytic cell 3.
  • the protruding wall portion 37 of the electrolytic cell 3 is fitted to the fitting portion 25 and the through holes 20 and 26 and the outlet port 2 communicate with each other in an airtight state, the upper wall portion and the lower wall portion of the electrolytic cell 3 are communicated. Passes through the installation position of the claw portion 18 and the entire electrolytic cell 3 is accommodated in the mounting portion 6, the locking portions 16 ⁇ / b> A and 16 ⁇ / b> B are elastically restored to the normal shape, and the claw portion 18 is in the electrolytic cell 3. The electrolytic cell 3 is locked by engaging with the front end surface (side portion 35b).
  • an electrolytic cell 3 shown in FIG. 5 is prepared. Specifically, the electrolytic cell 3 is filled with a predetermined amount of raw water (diluted hydrochloric acid having a predetermined concentration) and sealed (sealing step). In order to operate the electrolyzed water production apparatus 1A, the electrolytic cell 3 is mounted on the mounting part 6 as shown in FIG. 15, the electrolytic cell 3 can be energized (electrolytic cell mounting step).
  • the tank 4 is filled with a predetermined amount of dilution water W and installed in the installation section 4J. Subsequently, a current (constant current) having a constant current value is passed through the electrolytic cell 3 for a preset unit time to electrolyze the raw material water (dilute hydrochloric acid) (electrolysis step).
  • This unit time is a time during which a part of the reaction components in a predetermined amount of raw material water (dilute hydrochloric acid) filled in the electrolytic cell 3 is consumed by electrolysis.
  • this electrolysis process is performed a plurality of times without additionally supplying raw material water to the electrolytic cell 3.
  • the energization time (unit time) per time when the electrolysis process is performed a plurality of times is fixed, and the number of electrolysis processes performed is measured.
  • the timer 42 has a function of the counter 43. That is, as shown in FIGS. 1 and 9, first, after setting the current value of the constant current device 41 of the control unit 7 and the unit time of the timer 42, the power switch SW is turned on, and a constant current is applied to the electrolytic cell 3. start. Then, the timer 42 (counter 43) operates and counts the first energization.
  • the timer 42 When the timer 42 is energized, it starts measuring unit time and supplies power to the constant current device 41, and the constant current device 41 energizes the electrolytic cell 3 with a DC current having a constant current value.
  • the direct current flows to the plurality of electrode plates 31 through the electrode rods 45, 45 of the electrolytic cell 3
  • the dilute hydrochloric acid previously enclosed in the housing 30 is electrolyzed, and chlorine gas (electrolysis product) is generated. .
  • This electrolytic product flows upward in each electrolytic chamber C shown in FIG. 5 and fills the electrolytic cell 3 while pushing the air in the electrolytic cell 3 to the space S1 and the outlet 2.
  • the gas in the electrolytic cell 3 is pushed out toward the upper flow path 54 a and the outlet 2 formed between the plurality of spacers 33 by further generated chlorine gas (electrolytic product), and the connecting portion 19 of the mounting portion 6. It flows into the pipe 5 through the through hole 26 and the through hole 20 formed in the above.
  • the electrolytic product generated in the electrolytic cell 3 is supplied to the tank 4 connected to the electrolytic cell 3 through the pipe 5, and is stirred, mixed and dissolved in the dilution water W in the tank 4 by the pump 57.
  • Electrolyzed water is generated (mixing step). When a predetermined unit time elapses after the constant current device 41 is turned on and power is supplied, the timer 42 automatically turns off the constant current device 41 (power supply is terminated). That is, the first electrolysis (production of electrolyzed water) is completed. After the power is turned off, the tank 4 is removed and the electrolyzed water in the tank 4 is used for a desired application.
  • the tank 4 filled with a new predetermined amount of the dilution water W is installed in the installation unit 4J, and the electrolysis process and the mixing process are performed in the same manner as described above to perform the second electrolyzed water production.
  • the tank 4 filled with a predetermined amount of the dilution water W is installed in the installation unit 4J and the constant current device 41 is turned on again, the pump 57 and the timer 42 (counter 43) are operated in the same manner as described above.
  • a direct current having the same current value as that of the previous time is passed through the electrolytic cell 3 to generate an electrolytic product (electrolysis process).
  • the generated electrolytic product is filled in the electrolytic cell 3 together with the electrolytic product that has been filled in the electrolytic cell 3 by the first electrolysis, and is formed between the plurality of spacers 33 by the sequentially generated electrolytic product. It is pushed out toward the upper flow path 54a and the outlet 2 and flows to the pipe 5 through the through hole 26 and the through hole 20 formed in the connecting portion 19 of the mounting portion 6 shown in FIG. 7A.
  • the electrolytic product generated in the electrolytic cell 3 is supplied to the tank 4 connected to the electrolytic cell 3 through the pipe 5, and is stirred, mixed and dissolved in the dilution water W in the tank 4 by the pump 57. Electrolyzed water is generated (mixing step). Further, the tank 4 is replaced with another tank 4 filled with a new predetermined amount of dilution water W (exchange of dilution water), and the electrolysis process and the mixing process are repeated, whereby the electrolytic cell 3 is electrolyzed.
  • the electrolyzed water can be repeatedly produced without being exchanged every time of production, that is, without additionally supplying raw material water every time electrolyzed water is produced (manufacturing process).
  • the gas present in the space S1 and the outlet 2 in the electrolytic cell 3 is not an electrolytic product but normal air. Is likely. Therefore, in the first unit time (electrolysis), only air is supplied from the electrolytic cell 3 to the tank 4, and the dilution water W in the tank 4 may not be electrolytic water. Alternatively, in the first unit time (electrolysis), air and electrolysis products are supplied from the electrolytic cell 3 to the tank 4, and electrolyzed water having a concentration (effective chlorine concentration) lower than a desired value may be produced. is there.
  • the tank 4 is removed and the diluted water W or low concentration electrolysis is removed. Water may be discarded.
  • the electrolysis product is supplied to the tank 4 immediately after the start of electrolysis without additionally exchanging the dilution water W after the end of the first electrolysis and additionally conducting energization for one or more unit times. The operation may be continued a plurality of times until. The number of times electrolysis is required to obtain the desired concentration of electrolyzed water is performed in advance under the same conditions as in actual production, with experimental electrolysis performed while measuring the electrolyzed water concentration (effective chlorine concentration). You can know by doing.
  • the raw water supply port and the electrolytic product outlet 2 are made common, and dilute hydrochloric acid is enclosed in the housing 30 in advance from the outlet 2. Accordingly, since the connection between the electrolytic cell 3 and the dilute hydrochloric acid supply unit is not necessary, the electrolytic cell 3 and the mounting unit 6 are suppressed to the minimum when the electrolytic cell 3 is attached or detached.
  • the configuration can be simplified. In addition, by simplifying the configuration of the electrolytic cell 3 and the mounting unit 6, a general user at home or the like can easily mount the electrolytic cell 3 to the mounting unit 6.
  • the top wall 9, the bottom wall 10 and the side walls 11 and 11 of the mounting portion 6, the insertion portions 13 and 13, and the electrode rods 45 and 45 are connected to the electrolytic cell 3 as the mounting portion 6. It becomes the guide part G at the time of insertion. For this reason, since the electrolytic cell 3 is maintained in an appropriate posture, the protruding wall portion 37 of the electrolytic cell 3 can be easily inserted accurately facing the fitting portion 25 of the mounting portion 6, and the connecting pipe 28 is connected to the outlet 2. The lead-out port 2 can be opened by being inserted appropriately. Therefore, damage to the protruding wall portion 37 of the electrolytic cell 3, the fitting portion 25 formed on the mounting portion 6, and the connection pipe 28 can be avoided.
  • the unit time of each time is constant, but it is not necessarily constant.
  • the energization time in the first electrolysis step immediately after mounting the new electrolytic cell 3 to the mounting portion 6 is set to be longer than that in the second and subsequent electrolysis, a desired concentration can be obtained from the first electrolysis step. Electrolyzed water may be obtained.
  • the replacement time of the electrolytic cell 3 can be detected by referring to, for example, the number of electrolysis steps performed or the total energization time of the electrolytic cell 3. Preferably, it can be detected as follows.
  • the amount of electricity that flows into the raw material water per unit time is the current value (constant value) that flows through the electrolytic cell 3 if the structure of the electrolytic cell 3 (the structure of the electrolytic cell 3, the amount and concentration of the raw water (dilute hydrochloric acid)) is constant. It is changed by changing at least one of (current value) and energization time.
  • the maximum number of electrolysis processes is calculated according to these set values.
  • the threshold value N of the number of times of electrolysis process until the replacement time of the electrolytic cell 3 is set within the range of the maximum number of times.
  • the cumulative maximum energization time corresponding to the maximum number of electrolysis steps is calculated according to the current value and the set value of the energization time.
  • a threshold value T for the total energization time of the electrolysis process until the replacement time of the electrolytic cell 3 is set within a range equal to or less than the maximum value of the total energization time.
  • control unit 7 when the number of electrolysis processes or the cumulative energization time is measured and it is detected that the number of electrolysis processes has reached the threshold N, or the total energization time has reached the threshold T, The user is notified that the time for replacement of the electrolytic cell 3 has been reached by, for example, turning on a display lamp (notification process).
  • the electrolyzed water production apparatus 1A may have a configuration in which the configuration of the electrolytic cell 3, the current value (constant current value) and the energization time (unit time) in the electrolysis process are determined in advance and cannot be changed, and these can be changed. It may be configured. If the current value (constant current value) and unit time in the electrolysis process can be changed and set, the current value or unit time can be changed according to the changed set value. Thus, the threshold value N of the number of times of electrolysis process until the replacement time of the electrolytic cell 3 or the threshold value T of the cumulative energization time is newly set.
  • the total amount of chlorine gas (electrolytic product) obtained from a predetermined amount of raw water filled in the electrolytic cell 3 (maximum number of electrolysis steps) is Determined. Therefore, when the configuration of the electrolytic cell 3 is changed and at least one of the amount and concentration of the raw material water is changed, the number of electrolysis steps until the replacement time of the electrolytic cell 3 is changed according to the changed value. Threshold N or the cumulative threshold T of energization time is newly set. Further, the electrolysis efficiency varies depending on the number of electrode plates in the electrolytic cell 3. Therefore, if the effective chlorine concentration of the electrolyzed water to be obtained is constant, the electrolysis time (unit time) for obtaining the effective chlorine concentration is changed by changing the number of electrode plates in the electrolytic cell 3. be able to.
  • the replacement time of the electrolytic cell 3 can be detected by measuring a voltage value or a current value when a constant current is passed through the electrolytic cell 3. That is, when the amount of the reaction component present in the raw material water decreases by repeating the electrolysis for a unit time, the current becomes difficult to flow, and the voltage value necessary for supplying the constant current to the electrolytic cell 3 increases. Therefore, when it is detected that the voltage value applied to supply a constant current to the electrolytic cell 3 is higher than a preset threshold value, or the current value is lower than a preset threshold value. When this is detected, the user is notified that the time for replacement of the electrolytic cell 3 has been reached, for example, by turning on a display lamp.
  • the threshold value of the voltage value is preferably 2.7 V or more, more preferably 2.4 V or more, as a voltage between adjacent electrodes.
  • means and methods for measuring or detecting the effective chlorine concentration, pH, etc. of the generated electrolyzed water are adopted as means and methods for notifying the replacement time of the electrolytic cell. You can also
  • the electrolytic cell 3 is replaced by expanding the locking portions 16A and 16B of the mounting unit 6 to release the locking to the electrolytic cell 3, holding the handle 40 of the electrolytic cell 3 and pulling out the electrolytic cell 3 from the mounting unit 6. It replaces
  • a constant current is passed through the electrolytic cell 3 for a predetermined unit time.
  • the electrolytic cell 3 in a state of being filled with raw material water in advance can be attached to and detached from the mounting portion 6 and can be easily replaced with an electrolytic cell 3 filled with new raw material water after being electrolyzed a predetermined number of times. .
  • the electrolytic water can be used by removing the tank 4 from the installation portion 4J after the electrolytic water is manufactured and carrying it freely to a desired place.
  • capacitance can be installed or connected to the installation part 4J, and the electrolyzed water manufactured in this tank can be directly stored.
  • the concentration of electrolytic water that can be produced in the electrolytic cell 3, the number of times of production, etc. can be easily changed. . Therefore, the use of the electrolyzed water production apparatus at home becomes much more convenient.
  • the electrolyzer 3 is detachably installed, but dilute hydrochloric acid is enclosed in the electrolyzer 3 in advance, and the electrolytic tank 3 and the dilute hydrochloric acid supply unit Since the connection is not necessary, the connection location between the electrolytic cell 3 and the mounting portion 6 can be minimized when the electrolytic cell 3 is attached or detached.
  • the outlet port 2 is provided with a check valve 27 as a sealing member, and the outlet port 2 is opened only when the electrolytic cell 3 is mounted on the mounting portion 6. Therefore, the user can easily handle the electrolytic cell 3 regardless of the direction in which the outlet port 2 opens without worrying about the leakage of raw material water from the electrolytic cell 3.
  • the electrolytic cell 3 since the top wall 9, the bottom wall 10, the side walls 11 and 11, and the insertion parts 13 and 13 of the mounting part 6 serve as a guide part G when the electrolytic cell 3 is inserted into the mounting part 6, the electrolytic cell 3 is appropriately used. While maintaining the posture, the protruding wall portion 37 of the electrolytic cell 3 can be easily inserted so as to face the fitting portion 25 of the mounting portion 6 accurately. Therefore, damage to the projecting wall portion 37 of the electrolytic cell 3 or the fitting portion 25 formed on the mounting portion 6 can be avoided.
  • the electrolytic water can be used by removing the tank 4 from the installation portion 4J and carrying it freely after the electrolytic water is produced.
  • capacitance can be installed or connected to the installation part 4J, and the electrolyzed water manufactured in this tank can be directly stored.
  • the concentration and number of times of electrolyzed water that can be produced in the electrolyzer 3 can be selected by selecting the electrolyzer 3 having a different concentration or amount of the enclosed dilute hydrochloric acid and attaching it to the attachment part 6. Etc. can be easily changed. Therefore, the use of the electrolyzed water production apparatus at home becomes much more convenient.
  • the energizing time of the constant current device 41 can be automatically controlled by the timer 42, it is easy to make the concentration of the electrolyzed water produced constant, and electrolysis can be performed in one electrolyzer 3. The number of times can be set as calculated.
  • the counter 43 counts the number of times electrolysis is performed per unit time in one electrolytic cell 3, and the user can know this number. For this reason, the user can recognize that the diluted water in the tank 4 after the initial electrolysis in the electrolytic cell 3 is not electrolytic water having a desired chlorine concentration.
  • the electrolytic cell 3 can be replaced at an appropriate timing before the reaction raw material (hydrochloric acid) disappears in the electrolytic cell 3.
  • the mounting portion 6 can securely fix the mounted electrolytic cell 3.
  • the locking portions 16A and 16B are elastically deformable up and down, and elastically deform and expand when the electrolytic cell 3 is inserted, and return to the normal shape when the charging is completed and are locked to the electrolytic cell 3. . For this reason, it is easy for the user to confirm that the electrolytic cell 3 is securely attached to the attachment portion 6.
  • the terminal connection portion 15 is disposed in the insertion portion 13, and when the electrolytic cell 3 is attached to the attachment portion 6, the electrode rods 45, 45 are inserted into the insertion portions 13, 13, and the electrode rod 45 and the terminal connection portion 15 are inserted. And are connected. Accordingly, the connection work between the electrode rod 45 and the terminal connection portion 15 can be omitted when the electrolytic cell 3 is attached or detached. According to the electrolyzed water production apparatus 1A, the connection required for electrolysis, that is, the connection to the electrolytic cell 3 and the tank 4 is made by simply inserting the electrolytic cell 3 into the mounting unit 6 until the electrolytic cell 3 is locked to the locking portions 16A and 16B. The connection with the pipe 5 and the electrical connection between the electrode rod 45 and the terminal connection portion 15 can be performed simultaneously.
  • the first modified example is the electrolytic water according to the first embodiment in the method for locking and fixing the electrolytic cell 3 when the electrolytic cell 3 is completely inserted into the mounting portion 6 a and disposed at a predetermined installation position. It is different from the manufacturing apparatus 1A.
  • a slide lid 60 disposed between the top wall 9 and the bottom wall 10 of the mounting portion 6a is used instead of the locking portions 16A and 16B shown in FIG. 8A. It is done.
  • the slide lid 60 holds and fixes the electrolytic cell 3 in the mounting portion 6a.
  • an electrolytic cell having no handle 40 shown in FIG. 4 is used as the electrolytic cell 3.
  • the slide lid 60 is connected to the upper wall portion 61 that contacts the upper surface of the top wall 9, the side wall portion 62 that extends perpendicularly to the upper wall portion 61 and extends to the bottom wall 10, and is connected perpendicularly to the side wall portion 62. And a lower wall portion 63 facing the upper wall portion 61.
  • the front end portions of the upper wall portion 61 and the lower wall portion 63 are provided with engaging claws 61a and 63a that extend in directions approaching each other.
  • grooves 64 and 64 are formed in the top surface of the top wall 9 and the bottom surface of the bottom wall 10 of the mounting portion 6a.
  • the slide lid 60 is slid in the horizontal direction perpendicular to the front and rear XY directions of the mounting portion 6a, so that the side wall portion 62 is moved to the top wall 9 and the bottom wall. It is brought into contact with the front end of the wall 10.
  • the slide lid 60 is mounted in the opening 14 of the mounting part 6a, and the electrolytic cell 3 is attached to the mounting part 6a. It can be fixed easily and reliably.
  • the modified example 2 is a method for locking and fixing the electrolytic cell 3 when the electrolytic cell 3 is disposed at a predetermined installation position in the mounting portion 6 b. It is different from the apparatus 1A.
  • the locking portion of the second modification includes a rotating lid 70 that can be rotated around a horizontal axis in the vicinity of the front end portion of the bottom wall 10.
  • the rotating lid 70 holds and fixes the electrolytic cell 3 in the mounting portion 6b.
  • the rotating lid 70 includes a bearing portion 71, a holding and fixing portion 72 that rotates around the bearing portion 71 as a fulcrum and holds the electrolytic cell 3 across the vertical direction of the opening 14, and the top wall of the mounting portion 6 b. 9 and a locking claw portion 73 for locking the rotating lid 70 to the mounting portion 6b.
  • the bearing portion 71 is fixed in the vicinity of the lower surface of the front end of the bottom wall 10 and is rotatable about a shaft 74 that is supported by the bottom wall 10 and extends in the horizontal direction.
  • the holding and fixing part 72 is a flat plate-like body composed of a pair of strips extending in the vertical direction of the opening 14 with the handle 40 of the electrolytic cell 3 in between, and abuts on the electrolytic cell 3 and attaches it. Hold and fix in 6b.
  • the locking claw portion 73 extends in the front X direction from the end portion (upper end portion) of the holding and fixing portion 72 in a state in which the rotating lid 70 closes the opening portion 14, and then has a U shape in a side view. It is bent and extends in the rear Y direction.
  • the locking claw portion 73 has a claw portion 73b that can be locked to the top wall 9 on the lower surface of the flat plate portion 73a extending in the Y direction.
  • a recess 9t is formed on the front end side of the top surface of the top wall 9 of the mounting portion 6b to lock the locking claw 73b when the locking claw 73 is positioned above.
  • the rotating lid 70 is moved below the bottom wall 10 to open the opening 14.
  • the holding and fixing portion 72 and the locking claw portion 73 are rotated and moved upward with the bearing portion 71 as a fulcrum, and the recess 9t of the top wall 9 is The locking claw 73 is locked to the front edge.
  • the third modification is the method of locking and fixing the electrolytic cell 3 when the electrolytic cell 3 is arranged at a predetermined installation position in the mounting portion 6c. It is different from the water production apparatus 1A.
  • the locking portion of the third modification is a disc-shaped lid 82 that can be screwed into the opening 81 of the flange 80 provided in the mounting portion 6c.
  • the lid 82 holds and fixes the electrolytic cell 3 in the mounting portion 6c.
  • a flange 80 is provided at the front end portion of the mounting portion 6c in which the front end portions of the top wall 9, the bottom wall 10, and the side walls 11 and 11 of the mounting portion 6c project outward.
  • the inside of the flange 80 is a circular opening 81 having a size that allows the electrolytic cell 3 to pass in the insertion direction.
  • a small-diameter hole 83 and a large-diameter hole 84 are formed in the opening 81 in the direction of the arrow X in order.
  • a female screw portion 85 is formed on the inner peripheral surface of the large diameter hole 84.
  • the electrolytic cell 3 can be fixed in the mounting part 6c by screwing a disc-shaped lid 82 into the opening 81 of the flange 80.
  • the lid 82 includes a large diameter portion 86 and a small diameter portion 87.
  • a male screw portion 88 is formed on the outer peripheral surface of the large diameter portion 86.
  • a groove 89 is formed over the entire outer peripheral surface of the small diameter portion 87, and an O-ring 90 is attached to the groove 89.
  • a circular concave portion 91 and a linear grip portion 92 passing through the center of the concave portion 91 are formed on the outer plate surface 82a of the lid 82.
  • a concave portion 93 is formed on the plate surface 82 b inside the lid 82. Since the concave portion 93 is formed in the lid 82, when the lid 82 is screwed into the opening 81, the handle 40 of the electrolytic cell 3 comes into contact with the plate surface 82 b and is rubbed or worn out. When the screwing is completed, the inner surface of the recess 93 comes into contact with the handle 40 and the electrolytic cell 3 can be easily fixed.
  • Modification 4 of the electrolyzed water production apparatus 1A of the first embodiment will be described. As shown in FIGS. 17A and 17B, the modification 4 differs from the electrolyzed water production apparatus 1A of the first embodiment in the terminal connection part 100 provided in the mounting part 6d and the terminal 104 provided in the electrolytic cell 3. Yes.
  • the terminal connection part 100 of the modified example 4 is arranged along a groove 101 formed in the lower surface of the top wall 9 of the mounting part 6d so as to extend in the front-rear XY direction.
  • the terminal connection portion 100 is bent substantially vertically so that the rear end portion 102 protrudes above the top wall 9, and the front end portion 103 is bent so as to incline upward as it goes forward. Yes.
  • the terminal connection portion 100 is fixed to the top surface 101a (surface facing downward) of the groove 101.
  • a terminal 104 electrically connected to an electrode rod (not shown) via a lead wire or the like is provided on the upper surface of the electrolytic cell 3 so as to protrude.
  • the terminal 104 is formed of a metal plate material having a spring property, and is bent so that a central portion thereof bulges upward. The terminal 104 is in sliding contact with the terminal connection portion 100 when the electrolytic cell 3 is inserted into the mounting portion 6d to ensure electrical continuity with the terminal connection portion 100.
  • the terminal connection part 100 and the terminal 104 By making the terminal connection part 100 and the terminal 104 into the above-described configuration, it is possible to appropriately ensure electrical conduction between the electrolytic cell 3 and the control unit 7 shown in FIG. Therefore, the trouble of connecting the electrode rod (not shown) and the control unit 7 with wiring or the like can be saved.
  • the terminal connection portion 100 and the terminal 104 may be provided on the bottom wall 10 side or the side wall 11 side with the same configuration as described above, and in this case, the same effect can be obtained.
  • the modified example 5 differs from the electrolyzed water production apparatus 1A of the first embodiment in the terminal connection part 110 provided in the mounting part 6e and the terminal 114 provided in the electrolytic cell 3. Yes.
  • the terminal connection part 110 of the modified example 5 is formed using a strip-shaped metal plate member.
  • one end part 110b of the main body part 110a formed flat is bent perpendicularly to the main body part 110a, and a terminal holding part 111 is welded to the other end part 110c.
  • the main body 110a of the terminal connecting part 110 is embedded in the rear end wall 12 of the mounting part 6e.
  • One end 110b protrudes outward from the rear end wall 12 (outside the mounting portion 6e).
  • the terminal clamping part 111 of the terminal connection part 110 protrudes inside the mounting part 6e.
  • the terminal clamping portion 111 is formed by bending a conductive strip-shaped metal plate member into a substantially cylindrical shape and bending the vicinity of a pair of metal ends facing each other to form a constricted portion, and between the metal plates of the constricted portion A pair of metal ends is widened so as to be spaced apart from each other.
  • a cylindrical portion 113 bent into a substantially cylindrical shape is welded to the other end portion 110c of the main body portion 110a.
  • the terminal 114 of the electrolytic cell 3 is formed in a plate shape by a conductive metal member, and protrudes from the side portion 35a of the housing 30 at a position and orientation that can be inserted into the gap 112 of the terminal holding portion 111. It is fixed to.
  • the terminal 114 is electrically connected to the electrode rod 45 by a lead wire or the like (not shown).
  • the terminal 114 of the electrolytic cell 3 is fitted in the gap 112 of the terminal clamping unit 111 of the terminal connection unit 110 by inserting the electrolytic cell 3 to a predetermined position of the mounting portion 6e. And can be electrically connected to each other. For this reason, the effort which connects between the electrode rod 45 and the control part 7 shown in FIG. 1 by wiring etc. can be saved. Further, unless the electrolytic cell 3 is inserted to a predetermined position of the mounting portion 6e, that is, unless the protruding wall portion 37 of the electrolytic cell 3 is properly fitted to the fitting portion 25 of the mounting portion 6e, the terminal 114 is a terminal connection portion. 110 is not connected. For this reason, it can avoid supplying with electricity in the state which the electrolytic cell 3 is not mounted
  • the modified example 6 is different from the electrolyzed water production apparatus 1A in the mounting method of the electrolytic cell 3 to the mounting part 6f. That is, the mounting portion 6f has a fixed latching portion 120 that pivotably latches the electrolytic cell 3. On the other hand, the electrolytic cell 3 has a movable hook 121 that is hooked on the fixed hook 120, and rotates around the fixed hook 120 as a fulcrum and is mounted on the mounting portion 6f.
  • the fixed latching portion 120 rises from the upper end of the rear end wall 12 of the mounting portion 6f and is bent in the rear Y direction.
  • the fixed latch 120 extends in a horizontal direction orthogonal to the XY direction with a predetermined length.
  • the mounting portion 6f does not have the top wall 9 because it is configured to insert and fit the electrolytic cell 3 from above.
  • the insertion parts 124 provided with the metal terminal connection parts 123 are formed in the side walls 11 and 11, respectively.
  • the insertion part 124 is an electrode for rotating the electrolytic cell 3 around the distal end of the movable latching part 121 with the distal end part of the movable latching part 121 latched on the distal end part of the fixed latching part 120. It is arranged on the rotation locus of the bar 45.
  • the bottom wall 10 is formed with a claw portion 125 having the same configuration as the claw portion 18 of the electrolyzed water production apparatus 1A shown in FIG. 8A.
  • the movable latching portion 121 rises from the upper surface on the rear end side of the electrolytic cell 3 in the state of being mounted on the mounting portion 6f, then bends in the Y direction, and further wraps around the distal end portion of the fixed latching portion 120. It is bent downward.
  • the electrode rod can be obtained simply by hooking the movable hook 121 to the fixed hook 120 and rotating the electrolytic cell 3 downward with the fixed hook 120 as a fulcrum.
  • 45 is electrically connected to the terminal connection portion 123.
  • the side walls 11 and 11 and the insertion part 124 can guide
  • the protruding wall part 37 and the fitting part 25 can be fitted in an airtight state. Can be securely held and fixed without being moved up and down. Therefore, according to the modified example 6, the electrolytic cell 3 can be easily and reliably disposed in the mounting portion 6f, and the necessary connection can be completed easily and reliably only by installing the electrolytic cell 3 in the mounting portion 6f. be able to.
  • modified example 7 of the electrolyzed water production apparatus 1A of the first embodiment will be described.
  • modified example 7 is the first in the connecting part 131 of the outlet port 130 of the electrolytic cell 3 and the mounting part 6g. Different from the electrolyzed water production apparatus 1A of the embodiment.
  • the outlet 130 of the electrolytic cell 3 is formed to extend upward in the vertical direction from the space S1 shown in FIG. 6 formed in the horizontal direction, and is formed to be recessed downward on the upper wall portion of the housing 30.
  • An opening is formed in the landing recess 132 (bottom).
  • a bulging portion 139 bulging so as to form a circumferential surface around a virtual axis L1 orthogonal to the XY direction is formed on the upper side of the front end of the housing 30.
  • the axis L1 extends in the horizontal direction orthogonal to the XY direction.
  • the bulging portion 139 constitutes a locking portion that locks a later-described leaf spring 137 of the mounting portion 6g.
  • the mounting portion 6g has a connecting portion 131 including a protruding wall portion 133 that protrudes downward when connected to the electrolytic cell 3.
  • the connecting portion 131 is connected to one end of the elbow 134, and the flexible tube 135 is connected to the other end of the elbow 134.
  • the connecting portion 131 has a through hole 131R (hole) therein.
  • a leaf spring 137 is rotatably attached to a bearing portion 136 provided on the rear end wall 12. The connecting portion 131 is fixed to the leaf spring 137.
  • the leaf spring 137 extends in the forward X direction from the bearing portion 136 in a state where it is connected to the electrolytic cell 3, and then extends in the arrow X direction again after being curved so as to draw an arc at the tip portion.
  • the tip of the leaf spring 137 constitutes a locked portion 138 that fixes the electrolytic cell 3.
  • the connecting portion 131 moves together with the elbow 134 and the flexible tube 135 as the leaf spring 137 rotates.
  • the connecting portion 131 is easily fitted in the fitting recess 132 of the electrolytic cell 3, and the leaf spring 137 is rotated and separated from the electrolytic cell 3.
  • the connecting portion 131 is detached from the fitting recess 132.
  • the leaf spring 137 is lowered to fit the protruding wall portion 133 into the fitting recess 132 of the electrolytic cell 3, and the locked portion 138 is locked to the bulging portion 139. That is, by moving the connecting portion 131 relative to the electrolytic cell 3, the outlet 130 of the electrolytic cell 3 and the through hole 131 ⁇ / b> R of the connecting portion 131 are communicated or released. Also according to this modification, the electrolytic cell 3 can be easily attached to the attachment portion 6.
  • the casing 140 of the electrolytic cell 3 is formed in a cylindrical shape, and the top wall 141 and the side wall 142 in which the mounting portion 6 h is formed according to the external shape of the casing 140 are provided.
  • a substantially cylindrical protruding wall portion 143 is formed on the upper wall portion of the casing 140 of the electrolytic cell 3.
  • the protruding wall portion 143 is arranged such that the central axis thereof and the central axis of the housing 140 are the common axis L2.
  • the protruding wall portion 143 is formed with a lead-out port 144 communicating with a flow path (not shown). Further, a male screw portion 143 a is formed on the outer peripheral surface of the protruding wall portion 143.
  • the lower wall portion of the electrolytic cell 3 has a plurality of recesses for holding the lower wall portion with a finger to rotate the electrolytic cell 3 about the axis L2. 153 is formed.
  • a terminal 151 made of a circular conductive metal plate is disposed at the center of the lower wall portion of the electrolytic cell 3, and a terminal 152 made of a ring-shaped conductive metal plate is arranged at the peripheral edge of the lower wall portion. Is arranged.
  • These terminals 151 and 152 are respectively connected to a pair of electrodes inside the electrolytic cell 3.
  • a connecting portion 145 that protrudes upward is provided on the top wall 141 of the mounting portion 6h.
  • the connecting portion 145 is formed with a fitting portion 146 for fitting the protruding wall portion 143, and a female screw portion 147 for screwing the protruding wall portion 143 is formed on the inner peripheral surface of the fitting portion 146. ing.
  • a through hole 148 (hole) communicating with the outlet port 144 is formed in the upper part of the female screw part 147, and chlorine gas (electrolytic product) flows through the through hole 148 into the pipe 5 connected to the connection part 145.
  • chlorine gas electrolytic product
  • FIG. 23 shows that locking portions 149 and 149 similar to the locking portions 16A and 16B shown in FIGS. 8A and 8B are formed at the lower end portion of the side wall 142, and the electrolytic cells are formed by the locking portions 149 and 149. 3 can be held.
  • a rotating lid 150 formed in the same manner as the rotating lid 70 shown in FIG. 15 is provided in a direction orthogonal to the direction in which the locking portions 149 and 149 are opposed to each other. Can be held more securely.
  • the rotary lid 150 is provided with cylindrical terminal connection portions 150a and 150b penetrating through the rotation lid 150.
  • the terminal connection portions 150a and 150b are connected to the control unit 7 (see FIG. 1) by lead wires (not shown). Has been
  • the rotating lid 150 is rotated downward to open the mounting portion 6h, and the electrolytic cell 3 is connected to the side wall 142. Insert inside.
  • the protruding wall portion 143 comes into contact with the opening of the fitting portion 146, the user's finger is put into the recess 153 of the lower wall portion of the electrolytic cell 3 to grip the lower wall portion, and the electrolytic cell 3 is moved along the axis.
  • the projecting wall portion 143 is screwed into the fitting portion 146 by rotating around L2.
  • the entire electrolytic cell 3 is accommodated in the mounting portion 6h, and the locking portions 149 and 149 are engaged with and fixed to the electrolytic cell 3. Subsequently, the rotation lid 150 is rotated upward and is locked to the side wall 142 to complete the fixing of the electrolytic cell 3.
  • the terminal connecting portion 150 a provided through the rotating lid 150 comes into contact with the circular terminal 151 on the lower wall portion of the electrolytic cell 3, and the terminal connection is made.
  • the part 150 b contacts the ring-shaped terminal 152 on the lower wall part of the electrolytic cell 3. Thereafter, the terminals 151 and 152 are energized through the terminal connection portions 150a and 150b.
  • the electrolytic cell 3 can be easily mounted in the mounting portion 6h using the side wall 142 of the mounting portion 6h as a guide portion. Moreover, the projecting wall portion 143 is screwed into the fitting portion 146 only by rotating the electrolytic cell 3 in one direction, and the electrolytic cell 3 is securely fitted and fixed to the mounting portion 6h with the axis L2 as a common axis. Can do. In addition, the electrolytic cell 3 can be more reliably held by the locking portion 149 and the rotating lid 150.
  • a storage space M space for storing raw material water to be electrolyzed is formed in the casing 30i of the electrolytic cell 3i.
  • the storage space M is disposed outside a plurality of electrolytic chambers C (see FIG. 5; the same applies hereinafter) formed by alternately arranging a plurality of electrode plates 31 and a plurality of spacers 33 installed in the housing 30i. ing.
  • the storage space M is a state in which a plurality of spacers 33 in which the electrode plate 31 is fitted to the stepped portion 50 (see FIG. 4) are brought close to the side plate 34B and disposed adjacent to the housing 30i. These spacers 33 are formed between the spacer 33 located at the side end (closest to the side plate 34A) and the side plate 34A.
  • the electrolytic bath 3i is filled with raw water having a substantially uniform concentration in each electrolytic chamber C and the storage space M.
  • the reaction components in the electrolysis chamber C are reduced by electrolysis. Accordingly, the reaction components in the storage space M enter the electrolytic chamber C through the lower notch 53 (see FIG. 3), the lower flow path 53a, the side cutouts 55 and 55, and the side flow paths 55a and 55a. It diffuses and flows. Therefore, according to this modification, electrolysis can be performed for a long time and more electrolytic products can be generated than an electrolytic cell that does not have the storage space M inside. That is, it is possible to produce electrolyzed water little by little while prolonging the period of use until the electrolytic cell 3i is replaced and further reducing the replacement frequency.
  • the storage space M is provided on the side of the spacer 33 located at the side end, but the storage space M may be provided above the plurality of spacers 33.
  • the storage space M is provided above the spacer 33, when raw water containing a reaction component that has a specific gravity heavier than water and sinks below water, such as hydrochloric acid, is filled in the electrolytic cell, As the reaction component in the chamber C is electrolyzed, the reaction component in the storage space M can be sunk into the lower electrolysis chamber C. Therefore, the reaction component can be suitably moved into the electrolysis chamber C without using a pump or the like.
  • the storage space M may be provided on both the side and the upper side of the spacer 33 located at the side end.
  • the storage space M may be provided on both sides of the spacers 33 and 33 located at both ends of the plurality of spacers 33 arranged at positions separated from both of the side plates 34A and 34B of the housing 30i.
  • the storage space M may be provided on both sides and above the spacers 33 and 33 located at both ends.
  • the electrolytic cell 3 can obtain the same effects as those described above.
  • an opening 250 ⁇ / b> A is provided between the space S in which the plurality of spacers 33 fitted with the electrode plate 31 are adjacently disposed in the housing 30 and the storage space M.
  • the space S in which the plurality of spacers 33 are installed and the storage space M are respectively provided in two or more housings 30B and 30A that communicate with the internal space through at least one opening 250A. Also good.
  • the casings 30A and 30B are filled with raw material water in advance, and the casing 30A and the casing 30B are sealed in a state where the supply ports are sealed so that new raw water cannot be added to the casings 30A and 30B.
  • the body 30B is attached and detached integrally.
  • the outlet 2 for leading the electrolytic product is opened as high as possible in the electrolytic cell 3.
  • the outlet 2 can be opened at the top of the housing 30A.
  • an electrolyzed water production apparatus 1B will be described as a second embodiment of the present invention.
  • a tank 4 for storing dilution water is provided in a non-detachable manner above the electrolyzer 3 via a pipe 5 and connected to the bottom of the tank 4.
  • the electrolytic solution can be taken out from 160.
  • An openable / closable lid 162 is attached to the upper part of the tank 4, and the lid 162 can be opened to inject dilution water into the tank 4.
  • a water level sensor 161 is installed inside the tank 4, and when the water level detected by the water level sensor 161 falls below a predetermined threshold, the driving of the electrolytic cell 3 is regulated by a control unit (not shown). . Therefore, the electrolytic product is supplied into the tank 4 with little or no dilution water in the tank 4 to produce electrolytic water having a desired concentration or higher, or only the electrolytic product is filled in the tank 4. Can be prevented.
  • the electrolyzed water production apparatus 1C will be described as a third embodiment of the present invention.
  • the electrolyzed water production apparatus 1 ⁇ / b> C includes a storage unit 170 that stores dilution water and serves as a supply source of the dilution water, a mounting unit 6 that attaches and detaches the electrolytic cell 3, and dilution water in the storage unit 170.
  • Piping 5 mixing unit to which the electrolytic product from the electrolytic cell 3 is supplied, a control unit (not shown), a pot 171 for storing electrolytic water obtained by mixing the electrolytic product and dilution water, and storage And a housing 173 having a pedestal 172 on which the pot 171 is detachably mounted while accommodating the portion 170, the electrolytic cell 3, the mounting portion 6, and the pipe 5.
  • the storage unit 170 is a rectangular parallelepiped tank, and includes a pump 174 and a water level sensor 175 for sucking dilution water therein.
  • One end portion 5 a of the pipe 5 is connected to the storage portion 170 via the pump 174.
  • the pipe 5 is arranged such that its central axis extends in the vertical direction, and is bent at the upper end thereof and extends in the horizontal direction.
  • a branch pipe 5G is provided between the one end 5a and the other end 5b of the pipe 5.
  • the protruding wall portion 37 of the electrolytic cell 3 is connected to the branch pipe 5G.
  • the pot 171 includes a bottom plate portion 171a, a peripheral wall portion 171b rising from the periphery of the bottom plate portion 171a, a lid portion 171c provided so as to cover an upper opening of the peripheral wall portion 171b, and a handle 171d connected to the upper end of the peripheral wall portion 171b. And an injection / spout port 171e of electrolyzed water protruding from the upper end of the peripheral wall 171b on the opposite side of the handle 171d.
  • the housing 173 includes a pedestal portion 173A that accommodates the storage portion 170, and a drive mechanism portion 173B that accommodates the pipe 5, the control unit (not shown), the electrolytic cell 3, and the mounting portion 6.
  • the upper portion of the pedestal portion 173A is configured as a pedestal 172.
  • the power supply (not shown) is turned on to operate the pump 174, the control unit (not shown) and the electrolyzer 3, and the diluted water sucked up by the pump 174 and the electrolyzer
  • the electrolytic product from No. 3 is merged in the pipe 5, and diluted water and the electrolytic product can be injected while dropping from the other end 5 b of the pipe 5 into the pot 171. Therefore, the electrolyzed water production apparatus 1 ⁇ / b> C determines the amount of electrolysis product according to the supply amount of diluted water once, and further sets the unit time and current value for energizing the electrolyzer 3.
  • the diluting water and the electrolytic product can be injected while dropping into the pot 171. Therefore, by injecting in this way, the dilution water and the electrolytic product can be reliably mixed in the pot 171.
  • An electrolyzed water production apparatus 1D includes an electrolyzer that electrolyzes raw water to generate an electrolyzed product and discharges the electrolyzed product from an outlet, a mounting portion for mounting the electrolytic cell, A control unit for controlling the operation of the tank, a mixing unit connected to the electrolytic cell and mixing the electrolytic product obtained in the electrolytic cell with dilution water to form electrolytic water, and the dilution stored in the mixing unit
  • a water-absorbing pipe that absorbs water, a pump provided in the water-absorbing pipe, the diluting water absorbed by the water-absorbing pipe, and the electrolytic product derived from the electrolytic cell are combined to be derived into the mixing unit.
  • the electrolytic cell, the pump, and the outlet pipe are fixed in a casing.
  • This casing is detachably installed in the mixing unit.
  • the pipe of the water absorption pipe and the pipe of the outlet pipe are communicated with each other in the mixing section, and the water absorption pipe and the outlet pipe enter the mixing section.
  • the stored dilution water can be absorbed and derived.
  • the electrolytic cell is connected to the outlet pipe in a state in which a predetermined amount of the raw material water is filled in advance from the raw material water supply port formed in the electrolytic cell, and a new raw material is supplied from the supply port. Configured so that no water can be added.
  • the control unit divides the time required for electrolyzing the pre-filled raw material water every predetermined unit time, and sets the number of times of electrolyzing the pre-filled raw material water to a plurality of times,
  • the electrolytic cell is configured to pass a current having a constant current value every unit time. That is, the control unit supplies a current having a constant current value to the electrolytic cell for a predetermined unit time in order to electrolyze a part of the raw material water previously filled in the electrolytic cell, and The raw material water filled in advance is divided into a plurality of times and electrolyzed.
  • the electrolyzed water production apparatus 1D includes an electrolytic cell 3, a mounting unit 6 for mounting the electrolytic cell 3, a control unit 7, a pot 182 (mixing unit), a dilution unit.
  • a water absorption pipe 5B for absorbing water, a pump 180 provided in the water absorption pipe 5B, and a lead-out pipe 5A for returning the diluted water absorbed by the water absorption pipe 5B to the pot 182 are provided.
  • the mounting part 6, the control part 7, the pump 180, the outlet pipe 5 ⁇ / b> A, and the water absorption pipe 5 ⁇ / b> B to which the electrolytic cell 3 is attached are fixed in the casing 181.
  • a casing 181 is detachably installed on an upper portion of a pot 182 storing dilution water.
  • Pipes 5D and 5C respectively connected to the outlet pipe 5A and the water absorption pipe 5B protrude downward from the bottom of the casing 181 and are inserted into the pot 182.
  • the upper end of the outlet pipe 5A and the upper end of the water absorption pipe 5B are connected to each other to configure the pipe 5.
  • dilution water is stored in the pot 182 in advance.
  • the casing 181 includes a top plate portion 181a, a side plate portion 181b extending downward from the periphery of the top plate portion 181a, and a bottom plate portion 181c connected to the lower end of the side plate portion 181b. An opening is formed in a part of the bottom plate portion 181c.
  • the electrolytic cell 3, the pump 180, the outlet pipe 5A, and the water absorption pipe 5B are appropriately fixed to the casing 181.
  • An engaged portion (not shown) to be engaged with the pot 182 is provided at the lower end of the casing 181.
  • the upper end of the outlet pipe 5 ⁇ / b> A is connected to the outlet 2 of the electrolytic cell 3.
  • the electrolytic product generated in the electrolytic cell 3 can be derived into the outlet pipe 5A.
  • the pump 180 is provided in the water absorption pipe 5B.
  • the water absorption pipe 5 ⁇ / b> B is connected to a lead-out pipe 5 ⁇ / b> A connected to the electrolytic cell 3.
  • the dilution water W in the pot 182 is sucked up by the operation of the pump 180, flows upward in the water absorption pipe 5B, and flows into the outlet pipe 5A.
  • the pump 180 includes a detection unit (not shown) that detects the presence or absence of water absorption, and transmits the detection result to the control unit 7.
  • the controller 7 is set to energize the electrolytic cell 3 when water absorption is detected by the pump 180, and not to energize the electrolytic cell 3 when water absorption is not detected by the pump 180.
  • the pot 182 includes a container part 186 whose upper part is an opening part 182k, and a lid part 187 that is detachably provided in the opening part 182k of the container part 186.
  • the container part 186 includes a bottom plate part 182a and a side plate part 182b rising from the periphery of the bottom plate part 182a.
  • the container portion 186 has an internal volume capable of storing dilution water used for producing electrolyzed water having a predetermined concentration by energizing the electrolytic cell 3 at least once.
  • the container part 186 includes a water injection port 188 for pouring the produced electrolytic water to the outside at a part of its upper end.
  • the lid portion 187 is provided with connecting portions 189a and 189b.
  • the lid part 187 includes a pipe 5C fixed to the connecting part 189a and a pipe 5D fixed to the connecting part 189b.
  • the upper surface of the lid portion 187 is a mounting portion 187a that allows the casing 181 to be attached and detached.
  • the pipe 5C and the water absorption pipe 5B are connected via the connecting part 189a, both pipes communicate with each other, and the pipe 5D and the outlet pipe 5A are connected via the connecting part 189b. Connected, both pipes communicate.
  • the mounting portion 187a is provided with an engaging portion (not shown) that securely fixes the casing 181. Under this configuration, the casing 181 provided with the electrolytic cell 3 is stably attached to a pot 182 that is configured exclusively so that it can be mounted, and can be suitably used.
  • the pipe 5C is installed so that its tip (lower end) is positioned at a predetermined height in the pot 182, and is configured so that it cannot absorb the dilution water W when the dilution water W is not stored up to the height. Yes.
  • the pipe 5D is bent at its one end part 5a, and the dilution water W and the electrolytic product flowing downward in the outlet pipe 5A and the pipe 5D collide with the inner wall of the one end part 5a to cause turbulent flow. It is configured to be mixed efficiently by waking up.
  • the pipe 5D (or the lead-out pipe 5A) has a bent portion other than the one end portion 5a, and is configured so that the dilution water W and the electrolytic product can collide with the inner wall to be mixed better. Also good.
  • the pipe 5D is installed so that one end portion 5a thereof is located in the lower part of the pot 182, and the diluting water W and the electrolytic product are discharged into the diluting water W stored in the pot 182.
  • the dilution water in 182 can be stirred.
  • a pot 182 is stored up to a predetermined height, that is, a predetermined amount of diluted water W, the casing 181 is mounted on the pot 182 and a power switch (not shown) And the pump 180 and the electrolytic cell 3 are driven. Then, the pump 180 absorbs the dilution water W from the tip of the pipe 5C, and the dilution water W flows in the water absorption pipe 5B toward the connection portion with the outlet pipe 5A.
  • the electrolytic cell 3 generates an electrolytic product when a current having a constant current value is applied for a predetermined time (unit time), and sequentially guides the electrolytic product to the outlet pipe 5A.
  • the sucked dilution water W and the electrolytic product are mixed in the outlet pipe 5A, flow in the outlet pipe 5A and the pipe 5D toward the tip of the pipe 5D, and collide with the inner wall of the pipe 5D at one end portion 5a. Turbulent flow and further mixing. Thereafter, the mixed dilution water W and the electrolysis product are discharged to the lower part in the pot 182 from the tip of the pipe 5D.
  • the pump 180 detects that the dilution water W is not absorbed, and sends a signal to that effect to the control unit 7.
  • the operation of the electrolytic cell 3 is regulated by the control unit 7.
  • the control unit 7 Only when the diluted water W can be absorbed from the tip of the pipe 5C connected to the pump 180, the control unit 7 energizes the electrolytic cell 3, and the control unit 7 is placed in the pot 182 at the tip of the pipe 5C.
  • the dilution water W is stored only to the corresponding height or less, it is determined that the predetermined amount of dilution water is not satisfied, and the operation of the electrolytic cell 3 can be regulated. Therefore, it is possible to easily and appropriately produce electrolyzed water by preventing electrolyzed water having a predetermined concentration or more from being generated or supplying only the electrolyzed product into the pot 182.
  • the casing 181 is configured to be detachable from the pot 182, when the raw water in the electrolytic cell 3 is used up, the electrolytic cell 3 filled with new raw water is replaced with the casing 181. It can be a specification. Therefore, it is possible to easily and safely replace the casing 181 while avoiding the user from replacing only the electrolytic cell 3.
  • the outlet pipe 5A and the pipe 5D may be formed integrally, or the water absorption pipe 5B and the pipe 5C may be formed integrally. Moreover, when the raw material water in the electrolytic cell 3 is used up, the casing 181 may be removed and only the electrolytic cell 3 may be replaced.
  • the dilution water W is configured to be supplied to the tank 4 from a water supply or the like in advance.
  • the electrolyzed water production apparatus 1 ⁇ / b> E joins the pipe 190 a that supplies the diluting water W from the water or the like into the apparatus, the diluting water W, and the electrolysis product.
  • a branch pipe 192 is provided in the pipe 190b, and the pipe 5 connected to the electrolytic cell 3 is connected to the branch pipe 192 so that chlorine gas can be directly supplied to the pipe 190b.
  • the pump 191 is provided with detection means for detecting that water has been absorbed and notifying the controller 7 of the fact, and when the water absorption is detected, the controller 7 has a predetermined current value (constant current value). Is supplied to the electrolytic cell 3 for a unit time to generate an electrolysis product.
  • the electrolyzed water production apparatus 1E can be carried to any place and the electrolyzed water. Can be manufactured. For example, as shown in FIG. 29, electrolyzed water can be easily produced and stored in an arbitrary tank 4 such as a bathtub.
  • the structure by which the electrolyzed water manufacturing apparatus 1F is attached to the water outlet 201 of the water tap 200 so that attachment or detachment is possible may be sufficient.
  • the electrolytic cell 3 and the control part 7 are arrange
  • the control unit 7 includes a battery such as a dry battery and a power switch (not shown).
  • the control unit 7 may be connected to an external power source using wiring or the like, or may be supplied with power from the external power source to the control unit 7 instead of the battery.
  • the pipe 203 flows the tap water toward the connecting portion 206 to which the tap water supply port 204 connected to the water discharge port 201, the discharge port 205 for discharging the electrolytic water, and the outlet port 2 of the electrolytic cell 3 are connected. And a flow path 207R (mixing section) that leads to the discharge port 205 while mixing and mixing the chlorine gas (electrolytic product) derived from the outlet 2 and tap water.
  • a water absorption detection unit (not shown) is provided in the pipe 203, and when the water absorption is detected, a signal is transmitted to the control unit 7, and the control unit 7 supplies a current of a predetermined current value to the electrolytic cell 3. Energizes over time to produce electrolysis products.
  • This electrolyzed water production apparatus 1F installs a container (not shown) having a predetermined volume below the discharge port 205 without interrupting running water until a predetermined amount of water (electrolyzed water) is stored in the container. It can be used by discharging water containing electrolytic products.
  • the unit time for electrolysis in the electrolytic cell 3 is set according to the amount of electrolytic water stored in the container and the concentration of electrolytic water.
  • the capacity of the electrolytic chamber C and the distance between the electrode plates 31 and 31 can be changed. Good.
  • the size of the housing 30 may be changed, or a spacer that does not have the electrode plate 31 may be disposed between the adjacent spacers 33 and 33 that hold the electrode plate 31.
  • the electrolyzed water production apparatus 1A and the like in the first to sixth embodiments, modifications 1 to 9 thereof, and the other examples described above selectively select at least one of a constant current value (constant current value) and unit time. It is desirable that the production time of the electrolyzed water and the concentration of the electrolyzed water can be appropriately adjusted.
  • the constant current value or unit time is changed, that is, the setting of the constant current device 41 and the timer 42 of the control unit 7 and the counter 43 are reset when the electrolytic cell 3 is replaced, that is, the electrode rod 45 of the electrolytic cell 3. 45 and the terminal connection portions 15 and 15 of the mounting portion 6 are preferably separated and the electrical connection is released. Specifically, the setting change or selection is prevented except when the electrolytic cell 3 is replaced, and the constant current value or unit time can be changed or selected when the electrolytic cell 3 is replaced. preferable.
  • the current value and unit time are changed before the electrolysis cell 3 is energized a predetermined number of times, so that the set number of times of electrolysis cannot be performed or the unit time It can prevent that the quantity of the electrolysis product obtained changes unexpectedly, and electrolysis water of the desired chlorine concentration cannot be obtained.
  • liquid leakage from the electrolytic cell 3 may occur in the protruding wall portion 37, the fitting concave portion 132, or the protruding wall portion 143 provided in the electrolytic cell 3.
  • a gas permeable / hydrophobic filter that prevents the passage of liquid and allows only gas to pass therethrough may be provided.
  • the opening portions of the projecting wall portions 37 and 143 and the fitting recess 132 are closed by a sealing material or the like, and the sealing material is removed at the time of mounting on the mounting portion (mounting portion 6 or the like) of the electrolytic cell 3 and the opening.
  • the portion and the hole portion of the mounting portion can communicate with each other.
  • a supply port for supplying raw water to the electrolytic cell 3 may be provided separately from the outlet port 2.
  • the supply port may be closed by tightening a screw or the like in order to seal the liquid tightly and prevent easy opening.
  • You may comprise so that a supply port can be opened and closed only with a jig. Even if it is a case where it is such a structure, the fitting structure to the mounting part 6 of the electrolytic cell 3 is simplified.
  • a general user does not open and close the said supply port, it becomes unnecessary for a general user to consider opening and closing of the supply port of the electrolytic cell 3, and handling of the electrolytic cell 3 becomes easy for a user.
  • a sealing material is attached to the front end surfaces of the projecting wall portions 37 and 143 of the electrolytic cell 3 and the inside of the connecting portion 19 of the mounting portion 6.
  • a connecting pipe 28 having a tip portion capable of breaking the sealing material may be provided.
  • the mounting portion 6 is provided in order to easily mount the electrolytic cell 3 to the electrolyzed water production apparatus.
  • the electrolytic cell 3 may have a configuration similar to that of the electrolytic cell 3 of the first embodiment, and may be configured without using the mounting portion 6.
  • the electrode rods 45, 45 of the electrolytic cell 3 are connected to the terminal connection parts 15, 15 of the control unit 7, and the pipe 5 is directly connected to the outlet 2 of the electrolytic cell 3.
  • the effect similar to 1 A of electrolyzed water manufacturing apparatuses is acquired except the effect that the electrolytic vessel 3 can be easily mounted
  • the mounting portions 6a to 6h of the above-described modifications 1 to 8 can be used in appropriate combinations.
  • the terminal engagement structure shown in FIGS. 8A, 8B, 17A, 17B, 18A, 18B, etc. can be applied to the first embodiment, and can be applied to the second to sixth embodiments as appropriate. be able to.
  • Example 1 the apparatus shown in FIG. 2 was used. Similarly, Example 2 used FIG. 1, Example 3 used FIG. 29, and Examples 4 to 9 used FIG. 1.
  • Example 1 to 3 it was verified whether the effective chlorine concentration actually obtained can be estimated from the theoretically calculated effective chlorine concentration when a constant current is applied to the electrolytic cell 3 under predetermined conditions.
  • Examples 4 to 9 it was examined how many times 3 liters of slightly acidic electrolyzed water can be produced using one electrolytic cell 3 filled with dilute hydrochloric acid.
  • the effective chlorine concentration was measured by the measuring method shown in the official gazette No. 3378 (June 10, 2002) “component specification of hypochlorous acid water”.
  • the effective chlorine concentration can also be measured by an iodometric titration method (Japan Water Works Association, “Water Supply Test Method 1993”, pages 218 to 219, November 15, 1993).
  • Example 1 (Electrolyzed water production equipment)
  • the electrolytic cell 3 a cell having a capacity of 52 ml and having nine electrolysis chambers C partitioned by 10 electrode plates 31 was used.
  • the tank 4 a 2 liter capacity PET bottle was used.
  • dilute hydrochloric acid (raw water) 3% hydrochloric acid was sealed in the electrolytic cell 3.
  • the current efficiency of the electrolytic cell 3 is 50%.
  • the current value was configured to be selectively set from 0.8 A, 1.6 A, and 2.4 A.
  • the electrolytic cell 3 filled with 3% dilute hydrochloric acid and sealed was attached to the attachment part 6.
  • 2 liters of tap water was put in a PET bottle, and a backflow prevention valve was attached to the opening of the bottle, and the PET bottle was installed in the installation section 4J.
  • a constant current having a predetermined current value was supplied to the electrolytic cell 3, and dilute hydrochloric acid was electrolyzed for 15 seconds, and the backflow prevention valve was removed.
  • Example 2 (Electrolyzed water production equipment)
  • a tank having a capacity of 35 ml and having six electrolytic chambers C partitioned by seven electrode plates 31 was used as the electrolytic tank 3.
  • the tank 4 a tank having a capacity of 3 liters was used.
  • dilute hydrochloric acid (raw water) 6% hydrochloric acid was sealed in the electrolytic cell 3.
  • the current value was 2.5 A, and the unit time (electrolytic voltage application time) was configured to be selectively set from 10 seconds, 20 seconds, and 30 seconds.
  • Electrolysis time (seconds) (required effective chlorine concentration [ppm] ⁇ required production amount [L] / (35.5 / 96500 ⁇ 1000 ⁇ current value [A] ⁇ number of cells ⁇ current efficiency [%] / 100).
  • Example 3 (Electrolyzed water production equipment)
  • the electrolytic cell 3 a cell having a capacity of 140 ml and having 24 electrolysis chambers C partitioned by 25 electrode plates 31 was used.
  • the tank 4 a water tank having a capacity of 400 liters (inner size: 1000 ⁇ 850 ⁇ 500 mm) was used (used in an approximately 400 L water tank at 80% water level).
  • dilute hydrochloric acid raw water
  • 6% hydrochloric acid was sealed in the electrolytic cell 3.
  • the current value was 2.5 A, and the unit time (electrolytic voltage application time) was 150 seconds.
  • the electrolytic cell 3 filled with 6% dilute hydrochloric acid and sealed was installed in the electrolyzed water production apparatus 1E.
  • Tap water having a depth of 400 mm (about 340 liters) was placed in the water tank, and stirring was started with a submersible pump.
  • the diluted hydrochloric acid was electrolyzed by flowing a current value of 2.5 A for 150 seconds.
  • the inside of the water tank was stirred for 1 minute using a submersible pump, and the process was completed. Without replacing the electrolytic cell, the water tank as the tank 4 was replaced and the same electrolysis was performed again. This operation was repeated for a total of three times of electrolysis.
  • Example 4 to 9 (Electrolyzed water production equipment) In Examples 4 to 9, it was investigated how many times 3 liters of electrolyzed water (slightly acidic electrolyzed water) can be produced using one electrolytic cell 3 filled with dilute hydrochloric acid. Table 4 shows the conditions of the electrolytic cell 3, the current value [A], the unit time [second], and the hydrochloric acid concentration [%] in Examples 4 to 9.
  • electrolysis can be performed a plurality of times only by using one electrolytic cell 3 filled with dilute hydrochloric acid in advance, and electrolyzed water having a certain range of effective chlorine concentration can be used. It was confirmed that it could be generated. Moreover, it turned out that the chlorine concentration of the electrolyzed water manufactured can be adjusted by adjustment of an electric current value and unit time. Specifically, for example, hypochlorous acid water having a pH of 4.0 to 7.5 (preferably pH 4.0 to 7.5) and a chlorine concentration of 1 to 60 ppm (preferably 10 to 30 ppm, particularly preferably 10 to 20 ppm) is used. It was found that it can be produced in the tank 4.
  • the present invention can be applied to an electrolyzed water production apparatus, an electrolyzed water production method, and an electrolyzer that produce electrolyzed water by electrolyzing raw material water.
  • Electrolysis tank 1A, 1B, 1C, 1D, 1E, 1F Electrolyzed water production apparatus 2, 130, 144 Outlet 3 Electrolysis tank 4 Tank (mixing part, container) 4J Installation section 5 Piping (mixing section) 6, 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h Mounting part 7 Control part 9 Top wall (guide part) 10 Bottom wall (guide part) 11 Side wall (guide part) 13,124 Insertion part (guide part) 15,123 Terminal connecting portions 16A, 16B, 70, 82, 125, 139, 149 Locking portions 19, 131, 145, 106 Connecting portion 20 Through hole (hole) 30, 30i Housing 31 Electrode plate 33 Spacer 45 Electrode bar (terminal) 120 Fixed latching part 121 Movable latching part 131R Through hole (hole part) 137 Leaf spring 148 Through hole (hole) 182 pot (mixing part) 207R channel (mixing part) C Electrolysis chamber G Guide part M Storage space (space)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

 この電解水製造装置(1A)は、原料水の電気分解により発生した電解生成物を導出口(2)から排出させる電解槽(3)と、電解生成物を希釈水と混合して電解水とする混合部(4)と、導出口(2)と連結させる孔部(20)が形成された連結部(19)を有し且つ電解槽(3)を着脱可能に装着させる装着部(6)と、を備える。電解槽(3)又は連結部(6)を互いに相対的に移動させることによって、導出口(2)と孔部(20)とが連通し又は連通解除される。また、電解槽(3)は、この電解槽(3)内に所定量の原料水が予め充填されて封止された状態且つ原料水がその内部へ追加不能にされた状態で装着部(6)に装着される。

Description

電解水製造装置、電解水の製造方法及び電解槽
 この発明は、原料水を電気分解することによって電解水を製造する電解水製造装置、電解水の製造方法及び電解槽に関する。
 本願は、2012年9月28日に日本に出願された特願2012-218855号、及び2012年9月28日に日本に出願された特願2012-218856号に基づき優先権を主張し、その内容をここに援用する。
 従来、塩素イオンを含有する原料水を電解水製造装置により電気分解して得られる電解水は、低塩素濃度の場合でも高い殺菌効果を有し、且つ人に対しても安全性が高い等の有利な性質を持つことが知られている。このような電解水は、食品関連分野等において、食品又はこれを加工する機器の殺菌等に広く用いられている。近年では、食品又は食品を取り扱う者の衛生管理に対する意識が高まっていることから、一般家庭用や中小規模設備での業務用として簡単に利用及びメンテナンスすることのできる電解水製造装置の開発が期待されている。
 電解水製造装置は、使用後に電解槽をメンテナンスする場合や、電気分解の能力を変更する場合等に備えて、装置本体から電解槽を着脱して交換できる構成とされている。電解槽を着脱可能とする構成として、例えば下記特許文献1~6に記載された構成が提案されている。
 特許文献1に記載された電解水製造装置は、原料水の貯留槽、混合器及び制御装置に電解槽を接続するために、電解槽をフレキシブル管や接続端子に接続する構成とされている。電解槽の交換は、電解槽等の内部の薬液やガスが漏れて作業者の身体や衣服に付着したりしないように、各部材の内部を薬液から水に置換する作業を経た後に行われる。
 また、特許文献2~4に記載された電解水製造装置は、電解槽を装置本体の嵌合部に嵌合させて、電解槽に設けられた給水管、酸性水吐出管、アルカリイオン水吐出管等を、それぞれ給水管挿入孔、酸性水吐出管挿入孔、アルカリイオン水吐出管挿入孔等に挿入して接続する。
 また、特許文献5,6に記載された電解水製造装置は、特許文献2~4に記載された電解水製造装置と同様に、電解槽が装置本体の嵌合部に着脱可能に構成されている。しかし、特許文献5,6に記載された電解水製造装置は、電解槽の給水管が装置本体の一部に嵌合する構造を備えておらず、給水管の開口が装置本体の外部に設けられて原料水を随時供給可能となっている。
 また、近年、人が接触する物に対する殺菌・除菌の意識が高まっており、テーブル、椅子、寝具等の家具、布類、トイレその他、一般家庭又は店舗等において使用されるあらゆる物を殺菌・除菌する薬液、スプレーなどが広く利用されている。
 殺菌水としては、アルコールを水で希釈した液が一般家庭等に広く普及しており、その他にも、低塩素濃度の場合でも高い殺菌効果を有する電解水が知られている。この電解水は、電解水製造装置により製造することができ、人に対しても安全性が高く食品又は食品加工機器の他多くの用途に用いることができることから、業者間で広く用いられている。また、一般家庭等においても一層活用されることが期待されている。
 電解水製造装置は、電解槽において希塩酸等の原料水を電気分解して塩素等の電解生成物を生成し、この電解生成物を希釈水により希釈して次亜塩素酸水(電解水)とする装置である。その方式として、連続式と呼ばれる方式とバッチ式と呼ばれる方式とがある。
 連続式の電解水製造装置は、一定の濃度の原料水を電解槽の供給口に連続的に供給し、電解生成物を導出口より連続的に取り出す方法を用いた装置である。この方式では、電解槽内で一定濃度の原料水を電気分解するため、自動制御が容易で、均一な濃度の電解水を大量に得られる(例えば下記特許文献7参照)。
 バッチ式の電解水製造装置は、電解槽内に所定量供給された原料水を一度に全て電気分解する。所定量の原料を全て電気分解した際に得られる電解生成物の量を算定し、得られた電解生成物を所定量の希釈水によって希釈し、所望する濃度の電解水を得るように構成されている。すなわち、バッチ式の場合は、電解槽内の原料を全て分解してしまうことにより、得られる電解生成物の量を確定させて製造する電解水の濃度を定められる(例えば下記特許文献8参照)。 
特開2010-058052号公報 特開平5-329480号公報 実開昭62-90794号公報 特開昭56-152783号公報 実開昭56-20692号公報 特開2007-283167号公報 特開2010-058052号公報 特開平11-169856号公報
 しかし、特許文献1に記載された電解水製造装置については、電解槽の交換時に電解槽内部を水に置換する等の作業を必要とする。この作業は、電解水製造装置の取り扱い業者にとっては問題がないが、一般家庭利用や中小規模設備の業務利用のユーザーにとっては煩雑となる場合がある。また、電解槽と各種フレキシブル管や接続端子との接続が複雑で難しい場合がある。
 また、特許文献2~6に記載の電解水製造装置については、電解槽と装置本体との接続箇所が多く、電解槽を装置本体に装着する際に両者の位置ずれが生じると接続箇所が適切に嵌合せず損傷する場合がある。また、それにより接続不良が生じたり、故障の原因になったりする可能性がある。
 また、電解槽の供給口が常に開口している又は供給口に蓋部材が配されているだけであるので、電解槽の取り扱い時にユーザーが電解槽から液漏れをしないように常に留意する必要がある。したがって、このような取り扱いは電解水製造装置の取り扱い業者にとっては問題がないが、一般ユーザーにとっては、電解槽の取り扱いが容易ではなく煩雑となる場合がある。
 本発明は、上述した事情に鑑みてなされたものであり、一般家庭用や中小規模設備での業務用として簡単に電解槽を交換することができ、利便性の高い電解水製造装置を提供することを目的とする。
 また、特許文献7に記載された連続式の電解水製造装置では、業務用としては好適であるものの、原料水を貯めておく大型の貯留槽、この貯留槽から原料水を電解槽に供給するためのポンプ、及び制御機構が必要となり、装置全体が大型となるために一般家庭等では設置が困難となる場合がある。さらに、装置が高価になるために一般家庭等では採用が困難となる場合がある。
 また、連続式の電解水製造装置の性能は、比較的少量利用の一般家庭用等にとっては過剰になる場合がある。
 一方、特許文献8に記載されたバッチ式の電解水製造装置では、比較的小規模生産に適しているが、電解槽に供給された原料水全量を一度に連続して電気分解し電解水とするため、小規模ながらも家庭において1回で使用する量以上の電解水を電解槽に溜めておく必要がある。この量は女性や子供にとって持ち運びが容易な量を超え、その持ち運びが困難となる場合がある。一方、1バッチで生成される電解生成物の量を少量にするべく、電解槽内の原料水の量を少量にすると、電気分解をする毎に新たに原料水を充填することが必要である。この作業は、業務用電解水製造装置の取り扱いをする業者にとっては特に問題はないが、塩酸等の原料水の取り扱いに不慣れな一般のユーザーには難しい場合がある。すなわち、従来のバッチ式の電解水製造装置は、家庭での利用に適した量として少量ずつ電解水を製造できるようにすると、原料水の充填又は電解槽の交換が頻繁に必要となって取り扱いが煩雑となる場合がある。これに対して、1バッチ分の原料水を多めにすると生成された電解水の貯留スペースを多く取り、又は持ち運びに不便となるため、一般家庭用として利用され難くなる場合がある。
 また、電解水製造装置に用いられる電解槽の仕様によって、得られる電解水の量が固定されてしまい、1回で得られる電解水の量又は電解水の濃度を調整又は変更することが非常に困難である。
 本発明は、上述した事情に鑑みてなされたものであり、電解水の1回の使用量が少ない一般家庭等においても使い勝手が良く、簡単に利用及びメンテナンスすることのできる電解層及び電解水製造装置を提供すること並びに電解水の製造方法を提供することを目的とする。
 本発明の第1の態様に係る電解水製造装置は、原料水を電気分解し電解生成物を発生させこの電解生成物を導出口から排出させる電解槽と、前記電解槽で得られた前記電解生成物を希釈水と混合して電解水とする混合部と、前記電解槽と前記混合部との間に設けられ、前記導出口と連結させる孔部が形成された連結部を有し、且つ前記電解槽を着脱可能に装着させる装着部と、を備える。前記電解槽及び前記装着部は、前記電解槽又は前記連結部を互いに相対的に移動させることによって、前記導出口と前記孔部とが連通し又は連通解除されるように構成されている。また、前記電解槽は、この電解槽内に所定量の原料水が予め充填されて封止された状態且つ原料水がその内部へ追加不能にされた状態で前記装着部に装着されるように構成されている。
 本発明の第1の態様によれば、電解槽の供給口から新たな原料水が追加不能に封止された状態で電解槽が前記装着部に装着される。このため、電解槽における液漏れの懸念が軽減され、電解槽の装着部への装着時にユーザーが電解槽を容易に扱うことができる。また、電解槽の供給口と装着部との連結を考慮する必要がないため、電解槽の構造が簡略化されると共に、電解槽の装着部への装着が容易になる。
 本発明の第2の態様では、上記第1の態様において、前記装着部には、前記導出口と前記孔部とが連通する連結位置に向けて前記電解槽を誘導するガイド部が備えられている。また、前記導出口と前記孔部とが連通した際に前記電解槽を前記装着部に固定する係止部が、前記電解槽及び前記装着部の少なくともいずれか一方に設けられている。
 本発明の第2の態様によれば、電解槽の装着部への装着を容易且つ適切に行うことができる。また、電解槽を装着部に安定的に固定することができる。
 本発明の第3の態様では、上記第2の態様において、前記電解槽は、その筐体の内部に複数の電極板を備え、これら複数の電極板の一方の板面を一方向に向けて間隔をおいて配列され、前記複数の電極板において両端に位置する一対の電極板に前記筐体の外方に向けて突出する端子がそれぞれ設けられた複極式電解槽である。また、前記ガイド部は、前記端子を挿通させると共に、この端子と接触して前記電解槽に通電する端子接続部を具備した挿通部である。
 本発明の第3の態様によれば、ガイド部は、前記端子を挿通させると共に、この端子と接触して前記電解槽に通電する端子接続部を具備した挿通部とされている。このため、端子のガイド部への挿通によって、電解槽を前記連結位置に適切に誘導できると共に、端子を端子接続部と接続させることができる。
 本発明の第4の態様では、上記第1~第3のいずれか1つの態様において、前記装着部は、前記電解槽を回動可能に掛止させる固定掛止部を有している。また、前記電解槽は、前記固定掛止部に掛止し、この固定掛止部を支点としてこの電解槽を回動させて前記装着部に装着させる可動掛止部を有している。
 本発明の第4の態様によれば、電解槽を装着部に簡便に装着させることができる。
 本発明の第5の態様では、上記第1~第3のいずれか1つの態様において、前記装着部は、前記連結部が固定された板バネを備える。また、前記連結部は、前記板バネを前記装着部に装着された前記電解槽に接近又は離間させることにより、前記連結部の孔部と前記導出口とを連通させ又は連通解除させるように構成されている。
 本発明の第5の態様によれば、連結部が固定された板バネを電解槽に対して接近又は離間させて連結部の孔部と導出口とを容易に連通させることができる。
 本発明の第6の態様では、電解水製造装置は、原料水を電気分解し電解生成物を発生させこの電解生成物を導出口から排出させる電解槽と、前記電解槽の動作を制御する制御部と、前記電解槽で得られた前記電解生成物を希釈水と混合し電解水とする混合部と、を備える。前記電解槽は、内部に所定量の前記原料水が予め充填され、その内部に原料水が追加不能にされた状態で前記混合部に連結可能に構成されている。また、前記制御部は、前記電解槽に予め充填された前記所定量の原料水のうちの一部を電気分解するために所定の単位時間の間で一定電流値の電流を前記電解槽に供給すると共に、前記所定量の原料水を複数回に分けて電気分解するように構成されている。
 本発明の第7の態様では、上記第6の態様における電解水製造装置が、前記導出口と連通させる孔部が形成された連結部を有し且つ前記電解槽が着脱可能に装着される装着部をさらに備える。また、前記電解槽及び前記装着部は、前記電解槽又は前記連結部を互いに相対的に移動させることによって、前記導出口と前記孔部とが連通され又は連通解除されるように構成されている請求項6に記載の電解水製造装置。
 本発明の第8の態様では、上記第7の態様において、前記装着部には、前記導出口と前記孔部とが連通する連結位置に向けて前記電解槽を誘導するガイド部が備えられている。また、前記導出口と前記孔部とが連通した際に前記電解槽を前記装着部に固定する係止部が、前記電解槽及び前記装着部の少なくともいずれか一方に設けられている。
 本発明の第9の態様では、上記第6~第8のいずれか1つの態様において、前記制御部は、前記一定電流値及び前記単位時間の少なくともいずれか一方を設定可能とされている。また、前記制御部は、前記一定電流値及び前記単位時間の少なくともいずれか一方を設定することにより、前記所定量の電解水に対して電気分解をする回数を設定可能である。
 本発明の第10の態様では、上記第6~第9のいずれか1つの態様において、前記制御部は、前記電解槽に対する電気的な接続が解除された際に前記一定電流値又は前記単位時間を変更可能である。
 本発明の第11の態様では、上記第6~第10のいずれか1つの態様において、前記混合部は、前記希釈水を貯留する容器とされている。また、前記容器を着脱可能に設置する設置部が設けられている。
 本発明の第12の態様では、通電により内部の原料水を電気分解して電解生成物を発生する電解槽は、前記電解生成物が排出される導出口を有する筐体と、該筐体の内部に設けられた複数の電極板と、これら複数の電極板の一方の板面を一方向に向けてこれら複数の電極板を間隔をおいて配列させるスペーサと、隣り合う電極板の間に形成され前記原料水の電気分解が行われる電解室と、を備える。 前記筐体は、所定量の原料水が充填された状態で液密に封止可能である。また、前記筐体は、通電可能時において、その内部に前記原料水を追加不能とした状態で前記電解生成物を前記導出口から排出するように構成されている。
 本発明の第13の態様では、上記第12の態様において、前記電解室の外側に前記原料水を貯留する空間が形成されている。
 本発明の第14の態様では、上記第13の態様において、前記空間は、前記電解室の側方及び上方の少なくともいずれか一方に設けられている。
 本発明の第15の態様では、上記第12~第14のいずれか1つの態様において、前記複数の電極板と複数の前記スペーサとが交互に配置されている。
 本発明の第16の態様では、電解水の製造方法は、所定量の原料水が充填された電解槽に、予め設定された単位時間の間で一定電流値の電流を前記電解槽に供給して前記所定量の原料水のうちの一部の電気分解を行う電気分解工程、及び前記電気分解工程で発生した電解生成物を希釈水と混合して電解水を製造する混合工程を、原料水を前記電解槽に追加することなく複数回行うことによって前記電解水を繰り返し製造する製造工程と、前記電気分解工程が複数回行われた後の電解槽を、所定量の原料水が充填された別の電解槽に交換する交換工程と、を有する。
 本発明の第17の態様では、上記第16の態様における電解水の製造方法は、前記製造工程の後に、前記電解槽の交換時期を通知する通知工程をさらに有する。
 本発明の第18の態様では、上記第17の態様において、前記通知工程では、前記電解槽に流れる電流の電圧値又は電流値に基づいて、前記電解槽の交換時期を通知する。
 本発明の第19の態様では、上記第17の態様において、前記通知工程では、行われた前記電気分解工程の回数、又は前記単位時間の累計時間に基づいて、前記電解槽の交換時期を通知する。
 本発明の第20の態様では、上記第19の態様において、前記電気分解工程における前記一定電流値及び前記単位時間の少なくとも一方を設定すると共に、設定された前記一定電流値と前記単位時間に応じて、前記電解槽の交換時期までの、電気分解工程の回数又は単位時間の累計時間を設定する。
 本発明の第21の態様では、上記第19又は20の態様における電解水の製造方法は、所定量且つ所定濃度の原料水を、前記電解槽に充填して封止する封止工程をさらに有する。また、前記電解槽に充填されている原料水の量及び濃度の少なくとも一方に応じて、前記電解槽の交換時期までの、電気分解工程の回数又は単位時間の累計時間を設定する。
 本発明の第22の態様では、上記第16~第21のいずれか1つの態様において、前記電解槽の内部に設けられた複数の電極板の枚数に応じて、前記電気分解工程における単位時間を変更する。
 本発明の第23の態様では、上記第16~第22のいずれか1つの態様において、前記電解槽を交換した後の1回目の電気分解工程での単位時間は、2回目以降の電気分解工程での単位時間よりも長くなるように設定される。
 本発明の第24の態様では、上記第16~第23のいずれか1つの態様における電解水の製造方法は、前記電解槽に所定量の原料水を充填して封止する封止工程をさらに有する。また、前記交換工程では、前記封止工程で封止された電解槽を、前記電解水製造装置に装着されている電解槽と交換する。
 本発明の第25の態様では、上記第16~第24のいずれか1つの態様において、前記原料水が、濃度0.75~21質量%の希塩酸である。
 本発明によれば、電解槽の内部へ原料水が追加不能に封止された状態で、電解槽が装着部に装着される。このため、電解槽からの液漏れの懸念が軽減され、電解槽の装着部への装着時にユーザーが電解槽を容易に扱うことができる。また、電解槽が装着される装着部に、電解槽の導出口と連通する孔部を有する連結部が設けられているため、電解槽の構造が簡略化されると共に、電解槽の装着部への装着が容易になる。また、電解槽の装着時の各種接続部の接続の不具合が発生するのを防止できる。
 また、本発明によれば、所定量の原料水が予め充填された電解槽に、所定の単位時間の間で通電して電気分解を行うため、上記所定量の原料水の一部から所望濃度の電解水を製造するために必要な電解生成物を少量ずつ生成することができる。よって、電解水を小分けにして製造することができる。
 また、所定値の電流を電解槽に複数回数通電し、上記所定量の原料水に対して複数回の電気分解を実施できるため、電気分解毎に電解槽に原料水を追加したり電解槽を交換したりする必要がない。したがって、電解槽の交換頻度を抑えて簡便に電解水を製造することが可能となる。
本発明の第1実施形態に係る電解水製造装置の概略構成図である。 本発明の第1実施形態に係る電解水製造装置の斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽の分解斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽の分解斜視図であり、図3の反対側から視た斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽の縦断面図である。 本発明の第1実施形態に係る電解水製造装置における電解槽の一部を破断して内部を示す斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の一部を破断した斜視図である。 図7Aの一部拡大図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の一部を破断した斜視図である。 図8Aの一部拡大図である。 本発明の第1実施形態に係る電解水製造装置の回路図である。 試験例において原料水を電気分解した際の時間経過と電解電圧との関係並びに時間経過と有効塩素濃度との関係を示すグラフである。 試験例において原料水を電気分解した際の有効塩素濃度と電解電圧との関係を示すグラフである。 試験例において塩酸濃度が異なる複数の原料水を電気分解した際の時間経過と電解電圧との関係を示すグラフである。 試験例において電極板間の距離が異なる複数の電解槽により原料水を電気分解した際の時間経過と電解電圧との関係を示すグラフである。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図であり、図16Aとは異なる向きから視た斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図である。 図17Aの一部拡大図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図である。 図18Aの一部拡大図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図である。 図19Aにおける電解槽の動作状態を示す側面図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例の動作状態を示す側面図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図である。 本発明の第1実施形態に係る電解水製造装置における電解槽及び装着部の変形例の動作状態を示す斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽及び装着部の変形例を示す一部破断斜視図である。 本発明の第2実施形態に係る電解水製造装置の一部を断面視した側面図である。 本発明の第3実施形態に係る電解水製造装置の一部を断面視した側面図である。 本発明の第4実施形態に係る電解水製造装置の一部を断面視した側面図である。 本発明の第5実施形態に係る電解水製造装置の一部を破断した斜視図である。 本発明の第5実施形態に係る電解水製造装置の適用例を示す斜視図である。 本発明の第6実施形態に係る電解水製造装置の一部を破断した斜視図である。 本発明の第1実施形態に係る電解水製造装置の電解槽の接続構成における変形例を示す斜視図である。
<電解水製造装置>
 以下、本発明の電解水製造装置の第1実施形態について、図1~図9を参照して説明する。なお、電解槽の筐体内部の詳細は、図3~図6,図24A,24Bにおいてのみ示し、図7A~図8B,図16A~図20,図22においては、同内部の詳細は省略している。
 本発明に係る電解水製造装置は、例えば、塩化ナトリウム水溶液、塩酸水溶液等の塩素イオンを含有する原料水を電気分解し、電解酸化の作用により塩素ガス(電解生成物)を発生させ、発生した塩素ガスを水等の希釈水に溶解させて、水中に次亜塩素酸を生成させた電解水を製造する。以下に説明する各実施形態においては、希塩酸を原料水として塩素ガスを生成し、塩素ガスを水道水に溶解させて次亜塩素酸を生成させる電解水製造装置を例として説明する。
 図1,図2に示すように、電解水製造装置1Aは、原料水を電気分解し電解生成物を発生させると共にこの電解生成物を導出口2から排出させる電解槽3と、電解槽3で得られた電解生成物を希釈水と混合させて電解水とするタンク4(混合部)と、電解槽3とタンク4とを連結させる配管5と、電解槽3を装着させる装着部6と、電解槽3の動作を制御する制御部7とを備えている。
 図3,図4に示すように、電解槽3は、略直方体形状の筐体30と、筐体30の内部に配置された複数の電極板31と、中空孔32が形成された複数のスペーサ33とを備えた複極式電解槽である。電解槽3は、筐体30の内部に予め原料水(不図示。以下同様)が充填された状態で液密に封止可能に構成されている。
 筐体30は、側板34A,34Bと胴体35とを備えて構成され、これらは塩化ビニル樹脂、カーボネイト樹脂、アクリル樹脂等の合成樹脂により形成されている。
 側板34A,34Bは、所定の厚みを有する外観矩形の板状体であり、その幅方向(水平方向)中央部であって高さ方向(鉛直方向)中央よりやや下方に、厚さ方向に貫通する電極棒挿入孔36がそれぞれ形成されている。
 図5は、組み立てられた状態の電解槽3の縦断面図であり、電極棒挿入孔36の中心を通る鉛直面における断面を示している。
 胴体35は、断面視長方形でスペーサ33よりも高さ寸法(鉛直方向での長さ)が大きく形成された筒状の部材であって、その一端部側(胴体の中心軸方向での一端側)に側板34Aが固定され、他端部側に側板34Bが固定されている。
 図3に示すように、電極棒挿入孔36,36が形成された側板34A,34Bに直交する胴体35の一方の側部35a(側壁)には、略円筒形状の突出壁部37が形成されている。突出壁部37の内部空洞によって、胴体35の空間Sに連通する導出口2が形成されている。側部35aには、突出壁部37を取り囲むように溝38が形成されており、その溝38内にはO(オー)リング39が配されている。
 図7A,7Bに示すように、導出口2(突出壁部37の内部)には、逆止弁27が設けられている。逆止弁27は、環状に形成され突出壁部37の先端からその基端側に向けて突出した突条(環状の突部)からなる弁座27Aと、突出壁部37の基端側から弁座27Aに接触して導出口2を液密に封止する弁体27Bと、弁体27Bを弁座27Aに向かって付勢させるバネ27Cとを備えている。
 また、図4に示すように、側部35aに対向する側部35bには、取っ手40が設けられている。
 各電極板31は、チタン合金等の金属製の板体であり、矩形(正方形)に形成されている。
 複数の電極板31は、所定の間隔をおいて対向する側板34A,34B間に、それぞれの一方の板面を側板34A,34Bが互いに対向する方向(胴体35の中心軸方向)の一方向に向けて並べて配列されている。すなわち、複数の電極板31は、側板34A,34Bと平行に配置されている。複数の電極板31のうち、上記対向する方向での両端に配置される一対の電極板31には、その略中央部に金属製の電極棒45(端子)がそれぞれ固定されている。
 図5に示すように、電極棒45には、その一端部に頭部46が形成され、他端部外面に雄螺子部47が形成されている。頭部46が電極板31の中央部に固定されている。すなわち、電極棒45は、電極板31に電気的に接続されている。
 図3に示すように、スペーサ33は、塩化ビニル樹脂、カーボネイト樹脂等の合成樹脂により形成された板状の部材である。図5,図6に示すように、スペーサ33は、筐体30内の上部に空間S1を残して収納されるような高さ寸法で形成されている。スペーサ33を筐体30内に収納することにより形成される空間S1は、突出壁部37の導出口2と連通しており、空間S1で収集した電解生成物を導出口2から排出できる構成となっている。
 図3,図4に示すように、スペーサ33の中央部には、スペーサ33の板面が互いに対向する方向(厚さ方向)に貫通する中空孔32が形成されている。中空孔32は、その輪郭が矩形(正方形)であり、電極板31より各辺の寸法がやや小さくなるように形成されている。
 スペーサ33の一方の板面33aには、その厚み方向に凹む段部50が形成されている。段部50は、一定の幅寸法をもって中空孔32の各辺に沿って凹んでおり、この段部50内には、図5に示すように電極板31が嵌合される。
 段部50の外側各辺の寸法は、電極板31の各辺より僅かに大きい寸法となっている。このため、この段部50内に電極板31が大きな隙間なく嵌合し、電極板31がスペーサ33の板面に沿う方向に大きく動くことが防止されている。
 また、段部50の前記厚み方向の深さは、電極板31の厚みと略同一寸法とされている。このため、電極板31が段部50に嵌合されたときに、電極板31の板面(段部50と逆側の板面)とスペーサ33の板面33aとが面一となる。
 図3,図4に示すように、スペーサ33の一方の板面33aには、スペーサ33の互いに対向する一対の角部近傍に嵌合凸部51,51が形成されている。スペーサ33の他方の板面33bには、一対の嵌合凸部51,51と対応する位置に嵌合凹部52,52が形成されている。これら嵌合凸部51、嵌合凹部52は、隣り合うスペーサ33,33同士を結合させるために用いられる。隣り合うスペーサ33,33において、一方のスペーサ33の嵌合凹部52,52に他方のスペーサ33の嵌合凸部51,51を嵌合させることによって、これらのスペーサ33が相対的に位置決めされる。
 なお、複数のスペーサ33のうち、側板34Bに一番近いスペーサ33の嵌合凸部51は、側板34Bに形成された不図示の嵌合凹部に嵌合される。一方、側板34Aに一番近いスペーサ33の嵌合凹部52には、側板34Aに形成された不図示の嵌合凸部が嵌合される。
 嵌合凸部51は、スペーサ33の板面33aから突出する円柱状の部分であり、その先端周縁部は面取りが施されている。嵌合凹部52は、嵌合凸部51が大きな隙間なく嵌合するように板面33bに形成された平面視円形の穴である。
 図3に示すように、スペーサ33には、中空孔32の下辺の下方であって、この下辺の左右方向中央部に対応する位置に下方切欠53が形成されている。
 下方切欠53は、スペーサ33を板面33a,33bが対向する方向(スペーサ33の板厚方向)に貫通している。この下方切欠53と中空孔32との間は、板面33bに形成された下方流路53aによって接続されており、後述するように下方切欠53内を流動する原料水が下方流路53aを通って中空孔32内に導かれる。
 下方流路53aは、下方切欠53から中空孔32へ向けて3路に分岐している。
 また、スペーサ33には、中空孔32の上辺の上方であって、この上辺の左右方向中央部に対応する位置にスペーサ33の板面33a,33bが対向する方向(上記板厚方向)に貫通する上方切欠54が形成されている。この上方切欠54と中空孔32との間も板面33bに形成された上方流路54aによって接続されており、後述するように中空孔32から上方流路54aに導かれた電解生成物は上方切欠54内に進入することができる。
 上方流路54aも、下方流路53aと同様の構成であり、上方切欠54から中空孔32へ向けて3路に分岐している。
 また、スペーサ33には、中空孔32の左右両側であって、中空孔32の両側辺の上下方向中央部に対応する位置に側方切欠55,55が形成されている。
 側方切欠55も、上述した下方切欠53、上方切欠54と同様にスペーサ33の板面33a,33bが対向する方向(上記板厚方向)に貫通している。この側方切欠55と中空孔32との間も板面33bに形成された側方流路55aによって接続されている。
 側方流路55aも、下方流路53a、上方流路54aと同様の構成であり、側方切欠55から中空孔32へ向けて3路に分岐している。
 上記の各構成要素からなる電解槽3は、図5,図6に示すように、筐体30内に電極板31、スペーサ33を配置して組み立てられている。
 すなわち、電解槽3は、電極板31をスペーサ33の段部50に嵌合させ、この段部50に配された電極板31の端縁を覆うように、他のスペーサ33を当接させた状態でこれら電極板31及びスペーサ33を胴体35内に配置している。また、胴体35の開口両端を側板34A,34Bに挟み込ませて、胴体35を液密に封止している。
 胴体35の側板34A,34Bによる封止は、側板34Aに一番近い電極板31に固定された電極棒45を側板34Aの電極棒挿入孔36に挿通させ、側板34Bに一番近い電極板31に固定された電極棒45を側板34Bの電極棒挿入孔36に挿通させ、各電極棒45の雄螺子部47に、ワッシャ48A、円筒スペーサ48C、ワッシャ48A、及びスプリングワッシャ48Bを順に介在させた状態で、ナット49を締結することによって行っている。このため、電極棒挿入孔36は液密に封止されている。
 この場合、図4に示す各スペーサ33の嵌合凸部51は、図3に示す隣り合うスペーサ33の嵌合凹部52に嵌合している。図5に示す側板34Bに一番近いスペーサ33の嵌合凸部51は、側板34Bの不図示の嵌合凹部に嵌合され、側板34Aに一番近いスペーサ33の嵌合凹部52には、側板34Aの不図示の嵌合凸部が嵌合している。複数のスペーサ33は、上記の嵌合凸部51、嵌合凹部52の嵌合により互いに板面同士が密に接している。
 また、図5に示すように、各電極板31は、スペーサ33の段部50内に嵌合しており、上記のように隣接するスペーサ33,33同士の板面が密に接している。このため、各電極板31の周辺部分がその電極板31が嵌合する段部50と隣接するスペーサ33とによって挟持されて、電極板31は段部50内を移動不能に保持されている。
 なお、側板34Aに一番近い電極板31は、側板34Aの段部56内に嵌合している(図5参照)。
 以上の構成において、各スペーサ33の中空孔32は、隣り合う2枚の電極板31によって区画され、これら電極板31,31同士が間隔をおいて配列されることにより形成された空間が、原料水を電気分解する電解室Cを構成している。すなわち、電解室Cは隣り合う電極板31,31の間に形成されている。電解室C内には原料水が保持されている。
 また、各スペーサ33の下方流路53a及び上方流路54aは、いずれも電極板31及び隣接するスペーサ33によって覆われている。このため、下方流路53a及び上方流路54aは、下方切欠53と電解室Cとの間、及び上方切欠54と電解室Cとの間をそれぞれ連通させる流体通路として構成されている。互いに隣り合うスペーサ33,33の下方切欠53及び上方切欠54がそれぞれ連通しているため、隣り合う電解室Cは、下方流路53a及び下方切欠53並びに上方流路54a及び上方切欠54を介して互いに連通している。
 また、各スペーサ33の側方流路55aは、それぞれ電極板31及び隣接するスペーサ33によって覆われ、側方切欠55と電解室Cとを連通させる流体通路として構成されている。
 また、互いに隣り合うスペーサ33,33の側方切欠55が連通しているため、各スペーサ33の電解室Cは、側方流路55a及び側方切欠55を介して互いに連通している。
 更に、上方切欠54は、胴体35の上部の空間S1に向かって開口し、空間S1が導出口2に連通しているため、電解室Cにて生成された電解生成物は空間S1に収集された後、導出口2から筐体30の外部へ導出される。
 電解槽3は、筐体30内の上部の空間S1に連通した導出口2のみにおいて開口可能であり、その他の箇所においては常に液密に封止されている。
 このようにして組み立てられた電解槽3の筐体30の内部には、その内部の空気を抜きつつ原料水を導出口2の先端から充填する専用の冶具(不図示)によって、予め所定量の原料水が充填されている。この場合、導出口2は原料水の供給口として用いられている。この電解槽3は、筐体30内に原料水が充填された後、装着部6に設置される前において、導出口2が図7A,7Bに示す逆止弁27により液密に封止されている。このため、電解槽3(筐体30)からの原料水の液漏れを防止できる。また、電解槽3(筐体30)は、電解槽3の装着部6への装着時に逆止弁27が開弁され、筐体30への通電可能時において電解生成物が導出口2から排出可能とされている。このため、装着部6に電解槽3を簡単に装着できる。
 したがって、この電解槽3によれば、業者において予め原料水を電解槽3内に充填しておき、導出口2を液密に封止して一般家庭等に流通させることができる。このため、原料水の取り扱いに不慣れな一般家庭等のユーザーであっても電解槽3を簡便に取り扱うことができる。
 この構成において、電解槽3を装着部6に装着した際に、突出壁部37が連結部19(図7A,7B参照)の嵌着部25に嵌着されると、導出口2は電解生成物を外部へ排出するために用いられる。また、この状態では新たな原料水を筐体内部へ供給させるための配管等を導出口2に接続することはできないため、導出口2を原料水の供給口として用いることはできない。さらに、筐体30において導出口2の他の箇所は常に封止されている。よって、筐体30は、装着部6への装着時(通電可能時)において、原料水をその内部に追加不能に構成されている。
 また、上記構成でなくとも、原料水の供給口を導出口2とは別に筐体30に形成し、所定量の原料水が筐体30内に充填された後に蓋部材等で上記供給口を閉塞する構成であってもよい。この場合は、使用者が供給口を容易に開けられないように、鍵付きのキャップ等の開口制限手段を供給口に設けてもよい。
 電解槽3を装着部6に装着した際には、電解槽3の表面の少なくとも一部が装着部6によって覆われる。例えば、電解槽3の装着部6により覆われる箇所に原料水の供給口を形成した場合、電解槽3を装着部6に装着した状態では供給口が外部に露出されず、すなわち新たな原料水を供給させる配管等を上記供給口に接続することはできない。このような構成を用いて、筐体30を、装着部6への装着時(通電可能時)において、原料水が追加不能に構成してもよい。
 本実施形態では図8Aに示すように、装着部6へ装着された電解槽3の筐体30は、取っ手40が設けられた側部35bのみが外部へ露出しており、他の面は装着部6に覆われている。この側部35b以外の面のいずれかに原料水の供給口を設ければ、電解槽3を装着部6に装着した状態では新たな原料水がその内部に追加不能になる。
 なお、原料水の供給口を導出口2とは別に筐体に設けた場合、導出口2を供給口からの原料水の供給時の空気抜き穴として用いてもよく、又は導出口2とは別に原料水の供給時にのみ開口させる空気抜き穴が筐体に設けられていてもよい。
 電解槽3内に充填された希塩酸の濃度は、所望する電解水の濃度(有効塩素濃度)、電解水の量、電気分解の回数、電流値、電圧の効率等に鑑みて所定の範囲内で設定されている。
 スペーサ33には、下方切欠53、側方切欠55、下方流路53a、及び側方流路55aが形成されているため、複数の電解室Cはこれらの切欠及び流路を介して互いに連通している。よって、複数の電解室C間で原料水の分量が異なっていても、図5,図6に示すように電解槽3を適切な姿勢で静止させると、複数の電解室C間で原料水が流動し原料水の水位(分量)が均一になる。
 本実施形態では、電解槽3が装着部6に設置された際に、逆止弁27が開弁されて導出口2が開口される。この状態で、電極棒45を介して電極板31に通電すると、電気分解によって電解室Cで塩素ガス(電解生成物)が生成され、この塩素ガスは導出口2から取り出される。
 図7Aに示すように、装着部6は、電解槽3を取り付け固定する略箱型の部材である。装着部6は、電解槽3を載置させる底壁10、電解槽3を挿入方向(図7A,8AにおけるX-Y方向)に向かってガイドする天壁9、底壁10と天壁9とを互いに接続する側壁11,11、及び電解槽3を挿入方向で位置決めする後端壁(装着部6の後端側すなわち矢印Y方向側に位置する壁)12を備えている。装着部6の前端側(矢印X方向側)は電解槽3挿入のための開口部14(図8A参照)とされている。
 図8Aに示すように、側壁11,11の高さ方向中央部には、電解槽3の電極棒45,45を挿通させる挿通部13,13が電解槽3の挿入方向に沿って形成されている。
 挿通部13は、装着部6の開口部14から側壁11の幅方向(X-Y方向)の略中央部まで延びて形成されたスリットである。挿通部13の鉛直方向での幅は、上記中央部から開口部14近傍の位置までは電極棒45の直径よりも僅かに大きい一定寸法に設定され、上記位置から開口部14に向かうに従い漸次拡がるように切り欠かれて形成されている。
 図8Bに示すように、挿通部13には、導電性のある金属の板材からなる端子接続部15が配されている。端子接続部15は、挿通部13を形成する側壁11の上下方向で互いに対向する壁面11a,11bに沿って略U字状に折り曲げられている。端子接続部15は、挿通部13における開口部14と逆側の端部で折り曲げられている。端子接続部15は弾性を有する部材(板バネ)で形成されてもよい。端子接続部15は、電極棒45を挿通部13に挿通させた際に上下からこの電極棒45に当接する。また、端子接続部15の折り曲げ部には、側壁11の外方へ突出する突出片15pが形成されている。端子接続部15と突出片15pは同一の金属板材から構成されている。
 上記した天壁9、底壁10、側壁11、挿通部13は、電解槽3を装着部6内で移動させ、突出壁部37が嵌着部25に嵌入する位置(連結位置)まで誘導するためのガイド部Gを構成している。
 天壁9の前端部とこれに対向する底壁10の前端部には前方へ突出するように係止部16A,16Bが設けられている。係止部16A,16Bは、天壁9及び底壁10のそれぞれの縁部からその中央側に向けて延びるように形成された一対のスリット17,17によって形成されている。係止部16A,16Bは上下方向に弾性変形可能に形成されている。
 係止部16Aの下面,及び係止部16Bの上面には、天壁9の前端及び底壁10の前端近傍に爪部18がそれぞれ設けられている。
 爪部18は、電解槽3を装着部6における装着位置に固定するために用いられる。爪部18は、後方(矢印Y方向)に向かうに従い装着部6の上下方向での中央に向けて漸次傾斜する傾斜面と、この傾斜面のY方向端に接続される鉛直面とを有している。電解槽3の装着部6への挿入時には、電解槽3が上記傾斜面を摺動しつつ係止部16A,16Bが拡げられることでその挿入が可能となる。電解槽3の挿入が完了した時点で、係止部16A,16Bはその通常の形状に弾性復帰して上記鉛直面が電解槽3の側部35bに係止され、この電解槽3の装着部6からの離脱を防止して固定する。なお、この係止部16A,16Bの一方のみが、天壁9又は底壁10に形成されていてもよい。
 本実施形態では、電解槽3を装着部6に固定するための係止部16A,16Bを装着部6に設けているが、このような係止部を電解槽3に設けてもよい。
 図7Aに示すように、装着部6の後端壁12の上端部には、後方(矢印Y方向)に突出した連結部19が形成されている。連結部19は、配管5との接続部5Tに向かって開口した貫通孔20(孔部)を有している。接続部5Tでは、配管5が貫通孔20に気密状態で嵌合している。
 連結部19の内部には、後端壁12の内面から連結部19の突出方向(矢印Y方向)に凹み、電解槽3の突出壁部37を嵌着させる嵌着部25が形成されている。嵌着部25内には、矢印X方向に突出する接続管28が設けられている。接続管28の内部空洞である貫通孔26(孔部)の基端側(Y方向側)は、貫通孔20に連通している。接続管28の貫通孔26の先端側(X方向側)は嵌着部25内に開口している。また、接続管28の先端開口部を形成する周壁にはX-Y方向に延びるように切り欠かれた切欠28aが形成されている。
 以上の構成の下に、装着部6は、電解槽3が開口部14から装着部6内に挿入される(すなわち、電解槽3を連結部19に対し相対的に移動させる)際に、天壁9、底壁10、側壁11,11及び挿通部13,13によって電解槽3をガイドし、突出壁部37を嵌着部25に挿入させるように構成されている。また、装着部6は、突出壁部37を嵌着部25に挿入させた際に、接続管28を逆止弁27の弁体27Bに当接させ、接続管28によって弁体27Bを導出口2の基端側(矢印X方向)に向けて押し込み逆止弁27を開弁させ、接続管28の切欠28aを介して導出口2と接続管28の貫通孔26を連通させ、結果的に導出口2と貫通孔20,26とを連通させるように構成されている。
 また、電解槽3を装着部6から引き出す(すなわち、電解槽3を連結部19に対し相対的に移動させる)際には、天壁9、底壁10、側壁11,11及び挿通部13,13が電解槽3をガイドして、突出壁部37が嵌着部25から矢印X方向に引き抜かれ、弁体27Bから接続管28が離れることによって弁体27Bが弁座27Aに再び接触して逆止弁27を閉弁し、導出口2と貫通孔20,26との連通を解除する。
 なお、電解槽3には、導出口2を液密に封止する封止部材を備えることが好ましく、このような封止部材によって電解槽3内の原料水が導出口2から液漏れすることを防止できる。前記の図7Bに示す逆止弁27は、このような封止部材の一例である。
 封止部材の他の例としては、導出口2を覆う膜状のシール材が挙げられる。このようなシール材を導出口2を覆うように導出口2に装着すれば、シール材によって導出口2からの原料水の液漏れを防止することができる。電解槽3を装着部6に装着する際には、電解槽3を装着部6の開口部14に挿入すると共に導出口2を覆うシール材に接続管28を当接させ、電解槽3をさらに装着部6に挿入していくことにより接続管28が導出口2の基端側(矢印X方向)に向けて相対的に押し込まれ、接続管28の先端によってシール材を破断する。接続管28がシール材を破断すれば、接続管28を介して導出口2と貫通孔20とが連通する。
 なお、封止部材としてシール材を使用する場合には、電解槽3の導出口2は上向に開口することが好ましい。すなわち、図6においては電解槽3の導出口2は、水平方向に開口しているが、この導出口2を電解槽3の筐体30の上壁部に設け、電解槽3の上方向に向けて開口するように構成してもよい。一方で、装着部6は、開口部14が下を向くように構成する。この場合、電解槽3を上方向に移動させて装着部6の開口部14に挿入して装着し、下方向に移動させて装着部6より取り外す。このような構成であれば電解槽3を装着部6から取り外す際に導出口2から内部の液がこぼれ難くなる。なお、後述する第1実施形態の変形例7や変形例8(図20~図23参照)では、その導出口が上方向に開口しているので、上記シール部材を好適に用いることができる。
 図1,図2に示すように、タンク4は、電解水の製造時に希釈水Wを貯留し、電解生成物を希釈水Wに混合させて製造された電解水を保持する容器であり、設置部4Jに着脱可能に設置されている。設置部4Jの下部には、配管5を通じて塩素ガス(電解生成物)をタンク4へ導入する導入口8が設けられている。タンク4内にポンプ57を設け、ポンプ57の動作により希釈水Wと電解生成物とを撹拌・混合してもよい。
 タンク4は、図2に示すように、PET等の樹脂製ボトルであり、電解水の製造後に設置部4Jから取り外して持ち運べるように構成されている。
 配管5は、その一端が導入口8に着脱可能に接続され、他端が装着部6に接続されている。配管5は、硬質の樹脂管又は金属管であっても樹脂製又は金属製のフレキシブル管であってもよい。なお、配管5は、硬質の樹脂管又は樹脂製のフレキシブル管であることが好ましい。
 制御部7は、図1に示すように、定電流装置41及びタイマー42を有している。これらの定電流装置41及びタイマー42等を別々の装置で構成しこれらの装置を組み合わせて制御部7を構成してもよいが、シーケンサーやコンピュータ等にこれらの機能をまとめて備えさせ制御部7を単一の装置から構成してもよい。ただし、定電流装置41及びタイマー42を別々の装置で構成し、必要であればランプ等の表示手段43aを追加して、できるだけ簡単な部品で構成するとメンテナンス等の面で好ましい場合もある。
 図9に示すように、電解槽3は制御部7を介して電源Pと接続されている。すなわち、電源Pに電源スイッチSWを介してタイマー42が接続され、タイマー42の出力側に定電流装置41が接続され、定電流装置41の出力側に電解槽3が接続されている。また、ポンプ57は、電源スイッチSWを介して電源Pに接続されている。
 タイマー42は、電源スイッチSWがONにされ、定電流装置41から電解槽3に電力の供給が開始されてから所定の単位時間(すなわち連続して通電される1回の電気分解の時間)を測定し、この所定の単位時間が経過した時に通電を自動停止する。
 また、定電流装置41は、電源Pから供給される電力を直流電流に変換し、電流値が一定になるように制御された電流(一定電流値の電流)を電解槽3に供給する。
 電解槽3に供給される電流値は、電解槽3と定電流装置41との間に設けられた電流計Aによって計測される。電解槽3に一定電流値の電流(定電流ともいう)を供給するために、電解槽3に流れる電流の電流値が、予め設定された値(定電流値ともいう)に保持されるように、定電流装置41が電流計Aの計測結果を参照しつつ電解槽3に印加される電圧(電解電圧ともいう)を制御する。本実施形態において、電流計Aによって測定される値が、電解槽3に流れる電流値である。
 図9に示すように、タイマー42にカウンター43の機能を兼用させた場合は、単位時間の間で行われる電気分解が電解槽3で実施された回数を、タイマー42が作動した回数としてカウンター43の機能によってカウントし、所定の回数に達した時点で電解槽3の交換時期と判断することができる。
 タイマー42(制御部7)は、電解槽3に予め充填された所定量の原料水を全て電気分解するために必要な時間を所定の単位時間毎に区切り、上記所定量の原料水を電気分解する回数を複数回に設定すると共に、電解槽3に単位時間毎に一定電流値の電流を通電するように構成されている。
 または、電解槽3と定電流装置41との間に設けられた電流計Aにカウンター43の機能を兼用させた場合は、単位時間の間で流れる電流が電解槽3に供給された回数をカウントし、所定の回数に達した時点で電解槽3の交換時期と判断することもできる。
 一定の電流値及び単位時間は、所望する電解水の塩素濃度(有効塩素濃度)及び電解水の量に従って、塩酸(反応原料)から生成される必要な電解生成物(塩素ガス)の量を算定し、この量を生成するのに必要な電気量Qを算定することにより適宜設定することができる。そのために、定電流装置41とタイマー42は、それぞれ電流値と単位時間の長さを所望の有効塩素濃度及び電解水の量に応じて変更できる。
 具体的に説明すると、例えば3L(リットル)の水を有効塩素濃度20ppmの次亜塩素酸水にするには、次のようにして必要な電気量を算定することができ、その結果によって電流値と単位時間を設定することができる。
 すなわち、ファラデーの法則より、電気分解において電解槽3内を移動する電気量Q(単位:クーロン)は、電流I(単位:アンペア)を流した時間をt(単位:秒)とすると、Q=I・tであり、電子1モルの電気量は約96500クーロンである。
 希塩酸を充填した電解槽3に1アンペアの電流を1秒通電すると電気量は1クーロンとなるため、1クーロンの電気量で得られる塩素量は、35.5(塩素ガス(Cl2)の2分の1の分子量)×1/ファラデー定数=約0.368mgとなる。
 したがって、3L(リットル)の水を有効塩素濃度20ppmの電解水にするには、20×3/0.368=163となり、約163クーロンの電気量が必要になる。Q=I・tであるため、制御部7は、上記のとおり電気量Qを算定し、電極板31の枚数及び電流効率を考慮して、電流値(I)及び単位時間(t)を決定し、電解槽3に通電できる回数が決定される。
 表示手段43aは、単位時間毎の通電(電気分解)が実施された回数を表示できる。電解槽3を交換した直後は所望の有効塩素濃度を有する電解水が得られない場合があるため、表示手段43aの表示を確認することで、所望する有効塩素濃度が得られるまでの数回の電気分解における希釈水(電解水)を廃棄することもできる。
 また、表示手段43aは、算定された回数に通電回数が到達した時点で所望する有効塩素濃度を有する電解水が得られなくなったことをユーザーに知らせ、電解槽3の交換時期を認識させることができる。
 通電を1回行って原料水を電気分解したときに発生する電解生成物の量は、定電流の電流値と単位時間の積で表される電気量と相関する。したがって、得ようとする電解水の濃度(有効塩素濃度)及び電解水の量に応じて必要な電解生成物(塩素ガス)の量を算定し、この電解生成物の量を生成するのに必要な電気量に基づいて、定電流の電流値及び単位時間を設定することができる。
 そのために、定電流装置41とタイマー42は、それぞれ電流値と単位時間の長さを所望の値に設定することができ、また必要に応じてそれらを変更できる。すなわち、制御部7は、電流値(一定電流値)及び単位時間の少なくとも一方を設定可能に構成されている。
 具体的に説明すると、例えば3L(リットル)の水(希釈水)を有効塩素濃度20ppmの次亜塩素酸水(電解水)にするには、次のようにして必要な電気量を算定することができ、その結果によって電流値と単位時間を設定することができる。
 すなわち、ファラデーの法則より、電気分解において電解槽3内を移動する電気量Q(単位:クーロン)は、電流I(単位:アンペア)を流した時間をt(単位:秒)とすると、Q=I・tである。1価イオンの1モルを電気分解するのに要する電気量(電子1モルの電気量(電荷))はファラデー定数F(単位:クーロン/モル)で表され、約96500クーロンである。
 希塩酸を充填した電解槽3に1アンペアの電流が1秒通電されたときの電気量は1クーロンとなり、1クーロンの電気量で得られる塩素(Cl)の量は、35.5(塩素ガス(Cl2)の2分の1の分子量)×1/F=約0.368mgとなる。
 したがって、3L(リットル)の水を有効塩素濃度20ppmの電解水にするには、20×3/0.368=163となり、約163クーロンの電気量が必要になる。Q=I・tであるため、制御部7は、上記のとおり必要な電気量Qを算定し、電極板31の枚数及び電流効率を考慮して、通電する定電流の電流値(I)及び単位時間(t)を設定することができる。電流効率とは、電解槽3に流れた電流のうち、目的とする電極反応に利用された電流を百分率で表わした比であって、塩素の理論発生量に対する、陽極側で実際に発生した塩素量の比で定義される。電流効率は実測値に基づく値であり、同一構成の電解槽3(電極板)においては同一の値となる。
 また、1回の通電で原料水に流れる電気量から、1回の通電で消費される塩素量がわかるため、1回目の通電開始前における電解槽3内の原料水の塩素濃度と、1回の通電で消費される塩素量とから、電解槽3に通電できる最大回数を決定することができる。
 従来のバッチ式電解槽において、印加電圧を一定として電気分解を行う定電圧電気分解における塩素ガスの発生量は、時間の経過と共に減少することがわかっている。一方、電解槽3に流れる電流値が一定となるように電圧を印加して電気分解を行う定電流電気分解の場合の塩素ガスの発生量ついては知られていなかった。
 そこで本発明者等は、定電流電気分解における塩素発生量の経時変化を調べるために、下記試験例1~3を行った。
 試験例1~3においては、所定量の希塩酸(原料水)が封入された電解槽3に、電源として直流安定化電源(菊水電子工業社製、製品名:PAS60-6)を用いて、定電流を通電して電気分解し、発生した塩素ガスを毎分4リットルの流量で流れる水(希釈水)中に連続的に供給し混合して電解水を製造した。通電を開始してから最初の1分間は15秒毎に電解水を100mL採取し、その後は1分毎に電解水を100mL採取して、採取した電解水の有効塩素濃度を調べた。
 有効塩素濃度の測定は、塩素計(柴田化学社製、製品名:ハンディ水質計AQ-102)を用い、以下の手順で行った。まず、サンプルセル(容器)に、採取した電解水のサンプル10mLを入れる。次いで、上記塩素計における計測用のセルホルダーにサンプルセルをセットし、ゼロ点調整を行う。次に、サンプルセルを取り出して発色試薬(市販品)を入れて混合する。計測用のセルホルダーにサンプルセルをセットし、濃度を測定する。
<試験例1>
 本例で用いた電解槽3は、電極板31の板面寸法が50mm×50mmであり、隣り合う電極板31,31間の距離が3mm、セル(電解室)の数が9、電流効率は50%である。電解槽内の希塩酸(原料水)の量は52ml、この希塩酸(原料水)の通電開始前の塩酸濃度は6質量%、電解槽に供給される定電流値は1.0Aとした。
 通電を開始してからの時間経過(電解時間)と定電流を電解槽に供給しているときの電圧(電解電圧)との関係並びに時間経過と製造された電解水の有効塩素濃度との関係を図10に示す。
 図10に示すように、通電の開始直後の、原料水の塩酸濃度が高い状態では、電流が通りやすい(抵抗が低い)ため電解電圧が12.5Vと低く、有効塩素濃度は20ppm以下と低い。その後、電解電圧は徐々に上昇し、有効塩素濃度は電気分解の初期(電気分解開始後2分まで)において急に上昇する。
 原料水中の塩酸がある程度消費されるまで電圧の変化が少なく、塩素ガスは一定の範囲内で生成される。すなわち、電気分解開始後2分から開始後18分までは、有効塩素濃度は徐々に上昇する。電気分解開始後18分の時点で有効塩素濃度がピークに達した後、塩酸(反応成分)の不足に伴って有効塩素濃度が急激に下降する。
 この場合の電解電圧と有効塩素濃度との関係を図11に示す。図11に示されるように、有効塩素濃度は、電解電圧が17V~18V付近で最大値を示し、それよりも電解電圧が大きい範囲では、電解電圧の増大に伴って有効塩素濃度が低下する。有効塩素濃度の最大値(43ppm)の70%以上(30ppm~43ppm)が得られる電圧の範囲は約13~24V(隣り合う電極間電圧:約1.44V~2.67V)程度であり、有効塩素濃度の最大値の80%以上(34ppm~43ppm)が得られる電圧の範囲は約14~22V(隣り合う電極間電圧:約1.56V~2.44V)程度である。したがって、電解電圧が13V~24Vの範囲であると塩素ガス(電解生成物)を効率良く生成でき、14V~22Vの範囲であると、塩素ガス(電解生成物)を効率良く生成できると共に有効塩素濃度の経時変動をより小さくできる。
<試験例2>
 試験例1における希塩酸(原料水)の通電開始前の塩酸濃度を0.75質量%,1.5質量%,3質量%,6質量%,9質量%,又は21質量%に、定電流値を1.5Aに変更した。
 図12は、この試験例2の試験結果を示し、通電開始前の塩酸濃度が異なる複数の原料水(希塩酸)を電気分解した場合の時間経過と電解電圧との関係を示している。
 図12によれば、塩酸濃度が0.75~21質量%のいずれであっても、上記塩素ガス(電解生成物)が効率良く生成するのに好ましい電解電圧(約13V~24V)が得られることが分かる。また、好ましい電解電圧(約13V~24V、電極間電圧1.44V~2.67V)が得られる時間が長いという観点では、塩酸濃度は1.5質量%以上が好ましく、6質量%以上がより好ましい。一方、塩酸濃度が高すぎると、通電直後の電圧が低くなることで塩素ガスの生成効率が低く、上記好ましい電解電圧に達するまでの時間が長くなる場合がある。そのため、塩酸濃度は9質量%以下が好ましい。
<試験例3>
 本例で用いた電解槽3は、電極板31の板面寸法を50mm×50mmとし、隣り合う電極板31,31間の距離を3mm,6mm,9mm,又は12mmとし、3つの電解室C(セル)を設けた。電流効率は50%である。電解槽3内の希塩酸(原料水)の量はそれぞれ17ml,35ml,52ml,又は70ml、この希塩酸(原料水)の通電開始前の塩酸濃度は9質量%、定電流値は2.5Aとした。
 図13は、この試験例3の試験結果を示し、隣り合う電極板31,31間の距離が異なる複数の電解槽により電気分解した場合の時間経過と電解電圧との関係を示している。
 図13によれば、隣り合う電極板31,31間の距離が小さいほど、電解電圧の経時上昇率が大きく、上記好ましい電解電圧に達するまでの時間が短い。
 したがって、隣り合う電極板間の距離を変更することによって、塩素ガスが効率良く生成する電解電圧に達するまでの時間を調整することができる。
 以上の構成を有する電解水製造装置1Aにおいて、電解槽3を装着部6に装着する場合には、図7A,図8Aに示すように、ユーザーは筐体30内に予め希塩酸を封入させた電解槽3の取っ手40を持ち、突出壁部37を装着部6内の後端壁12に対向させて電解槽3を装着部6の開口部14に挿入する。図8Aに示すように、電解槽3の筐体30の上壁部と下壁部とがそれぞれ係止部16A,16Bの爪部18,18に当接して、係止部16A,16Bを上下に弾性変形させて拡げることで、電解槽3の装着部6内への挿入が可能となる。電解槽3は、装着部6の天壁9、底壁10及び両側壁11,11にガイドされつつ装着部6の後端壁12に向かって真っ直ぐに(X-Y方向に沿って)挿入される。
 この際、電極棒45,45は、挿通部13,13内に進入して端子接続部15,15に摺接しながら矢印Y方向に進行する。
 電解槽3が装着部6の後端壁12に当接すると、図7Aに示すようにO(オー)リング39が後端壁12の内面に密に当接すると共に、電解槽3の突出壁部37が嵌着部25に嵌着する。接続管28が突出壁部37内へ挿入
することにより、図7Bに示す逆止弁27が開弁され、切欠28aを介して貫通孔20,26と導出口2とが連通し、電解槽3の内部の塩素ガス(電解生成物)が電解槽3から導出可能となる。また、突出壁部37が嵌着部25に嵌着することにより、導出口2が原料水の供給口としては使用できなくなり、新たな原料水が電解槽3内に追加不能な状態となる。一方、電解槽3の突出壁部37が嵌着部25に嵌着して貫通孔20,26と導出口2とが気密状態で連通する際に、電解槽3の上壁部及び下壁部が爪部18の設置位置を通過して電解槽3の全体が装着部6内に収納されると、係止部16A,16Bは通常の形状に弾性復帰し、爪部18が電解槽3の前端面(側部35b)に係合してこの電解槽3を係止する。
<電解水の製造方法>
 次に、電解水製造装置1Aを用いた電解水の製造方法について説明する。
 まず図5に示す電解槽3を用意する。具体的には、電解槽3に所定量の原料水(所定濃度の希塩酸)を充填して封止する(封止工程)。
 電解水製造装置1Aを運転するには、図8Aに示すように電解槽3を装着部6に装着させて、図8Bに示すように電解槽3の電極棒45,45を端子接続部15,15に接続し、電解槽3に通電可能な状態とする(電解槽装着工程)。
 また、図1に示すようにタンク4に所定量の希釈水Wを充填して設置部4Jに設置する。
 続いて、電解槽3に一定電流値の電流(定電流)を、予め設定された単位時間だけ通電して原料水(希塩酸)の電気分解を行う(電気分解工程)。この単位時間(1回あたりの通電時間)は、電解槽3内に予め充填された所定量の原料水(希塩酸)中の反応成分の一部が電気分解により消費される時間である。また、電解槽3に原料水を追加供給することなく、この電気分解工程を複数回行う。
 本実施形態において、電気分解工程を複数回行う際の1回あたりの通電時間(単位時間)は一定とし、実施された電気分解工程の回数を計測する。この際、タイマー42がカウンター43の機能を有する。
 すなわち、図1,図9に示すように、まず、制御部7の定電流装置41の電流値及びタイマー42の単位時間を設定した後に電源スイッチSWを入れ、電解槽3に定電流を通電し始める。
 すると、タイマー42(カウンター43)が作動し、1回目の通電をカウントする。
 タイマー42は、通電されることにより単位時間の計測を開始すると共に、定電流装置41に電力を供給し、定電流装置41は、一定電流値の直流電流を電解槽3に通電する。電解槽3の電極棒45,45を介して複数の電極板31に上記直流電流が流れると、予め筐体30内に封入された希塩酸が電気分解され、塩素ガス(電解生成物)が発生する。この電解生成物は、図5に示す各電解室Cの上方に向けて流動し、電解槽3内の空気を空間S1及び導出口2に押し出しながら電解槽3内に充満する。
 電解槽3内の気体は、さらに生成される塩素ガス(電解生成物)によって複数のスペーサ33間に形成された上方流路54a及び導出口2に向けて押し出され、装着部6の連結部19に形成された貫通孔26及び貫通孔20を通って配管5に流動する。
 電解槽3内で発生した電解生成物は、配管5を介して電解槽3と連結されたタンク4内に供給され、ポンプ57によってタンク4内の希釈水Wに攪拌、混合されて溶解し、電解水が生成される(混合工程)。
 定電流装置41の電源を入れ電力が供給され始めてから所定の単位時間が経過すると、タイマー42によって定電流装置41の電源が自動的に切られる(電力供給が終了される)。すなわち、1回目の電気分解(電解水の製造)が終了する。電源が切られた後、タンク4を取り外し、タンク4内の電解水を所望の用途に使用する。
 続いて、新たな所定量の希釈水Wが充填されたタンク4を設置部4Jに設置して、上記と同様にして電気分解工程及び混合工程を行うことにより、2回目の電解水製造を行うことができる。
 すなわち、所定量の希釈水Wが充填されたタンク4を設置部4Jに設置し、再び定電流装置41の電源を入れると、上記と同様にポンプ57、タイマー42(カウンター43)が作動し、所定の単位時間だけ、前回と同じ電流値の直流電流が電解槽3に通電され、電解生成物が発生する(電気分解工程)。生成された電解生成物は、1回目の電気分解で電解槽3内に充満していた電解生成物と共に電解槽3内に充満し、順次生成される電解生成物によって複数のスペーサ33間に形成された上方流路54a、導出口2に向けて押し出され、図7Aに示す装着部6の連結部19に形成された貫通孔26及び貫通孔20を通って配管5に流動する。
 電解槽3内で発生した電解生成物は、配管5を介して電解槽3と連結されたタンク4内に供給され、ポンプ57によってタンク4内の希釈水Wに攪拌、混合されて溶解し、電解水が生成される(混合工程)。
 さらに、タンク4を、新たな所定量の希釈水Wが充填された他のタンク4に交換して(希釈水の交換)、電気分解工程及び混合工程を繰り返すことにより、電解槽3を電解水の製造のたびに交換することなく、すなわち電解水の製造のたびに原料水を追加供給することなく、電解水の製造を繰り返し行うことができる(製造工程)。
 電解槽装着工程において電解槽3を装着部6に装着した後、初めて電気分解を行う際には、電解槽3内の空間S1及び導出口2に存在する気体は電解生成物ではなく通常の空気である可能性が高い。したがって、1回目の単位時間(電気分解)では、電解槽3からタンク4へ空気のみが供給され、タンク4内の希釈水Wは電解水になっていない場合がある。又は、1回目の単位時間(電気分解)では、電解槽3からタンク4へ、空気と電解生成物が供給され、濃度(有効塩素濃度)が所望の値より低い電解水が製造される場合がある。したがって、かかる場合には、1回目の電気分解における単位時間が経過して定電流装置41への電力供給がタイマー42によって終了された後に、タンク4を取り外してその希釈水W又は低濃度の電解水を廃棄してもよい。又は、1回目の電気分解終了後に希釈水Wを交換せずに、さらに1回以上の単位時間の通電を追加的に行い、電気分解の開始直後にタンク4へ電解生成物が供給されるようになるまで複数回連続して運転を行ってもよい。
 所望濃度の電解水を得るために何回の電気分解が必要かは、実際の製造時と同条件で、電解水の濃度(有効塩素濃度)を測定しながら行う試験的な電気分解を予め実施することで知ることができる。
 電解水製造装置1Aによれば、原料水の供給口と電解生成物の導出口2とが共通化され、導出口2から筐体30内に予め希塩酸が封入されている。したがって、電解槽3と希塩酸の供給部との接続が不要となることから、電解槽3の着脱時に、電解槽3と装着部6との接続箇所を最小限に抑え電解槽3及び装着部6の構成を簡略化することができる。また、電解槽3及び装着部6の構成が簡略化されることにより、家庭等における一般ユーザーが電解槽3を装着部6に容易に装着することができる。
 また、図7A,図8Aに示すように、装着部6の天壁9、底壁10及び側壁11,11並びに挿通部13,13及び電極棒45,45が、電解槽3を装着部6に挿入する際のガイド部Gとなる。そのため、電解槽3が適切な姿勢に維持されるので、電解槽3の突出壁部37を装着部6の嵌着部25に正確に対向させて容易に挿入でき、接続管28を導出口2に適切に挿入させて導出口2を開口させることができる。したがって、電解槽3の突出壁部37,装着部6に形成された嵌着部25及び接続管28の損傷を回避することができる。また、電解槽3の装着部6への容易な装着が可能となると共に、電解槽3の電極棒45,45と端子接続部15,15との電気的な接続を行うことができる。すなわち、電解槽3の装着部6への装着により、電解槽3と装着部6との必要な接続を同時に行うことができる。
 なお、本実施形態では毎回の単位時間が一定であるが、必ずしも一定でなくてもよい。例えば、新しい電解槽3を装着部6へ装着した直後の、1回目の電気分解工程における通電時間を2回目以降の電気分解よりも長くすることによって、1回目の電気分解工程から所望の濃度の電解水が得られるようにしてもよい。
[電解槽の交換時期の通知]
 上記のように単位時間毎の電気分解を繰り返すと、電解槽3に予め充填された原料水中の反応成分は漸次消耗していくので、電解槽3の交換が必要となる。したがって、電解水を繰り返し製造する工程(製造工程)の後に、電解槽3の交換時期をユーザーに通知する工程(通知工程)を有することが好ましい。
 電解槽3の交換時期は、例えば、実施された電気分解工程の回数又は電解槽3への通電時間の累計を参照することで検知できる。好ましくは以下のようにして検知することができる。
 すなわち、上述したように電気分解反応においては、原料水に通電された電気量1クーロン当たり1/Fモルの塩素(Cl)が消費されて、1/2Fモルの塩素ガス(Cl2)が生成される。したがって、通電開始前の原料水中に存在するClの量と、単位時間に原料水に流れる電気量とから、電解槽3を交換せずに行うことができる電気分解工程の最大回数を求めることができる。
 単位時間に原料水に流れる電気量は、電解槽3の構成(電解槽3の構造、原料水(希塩酸)の量及び濃度)が一定であれば、電解槽3に通電される電流値(定電流値)と通電時間の少なくとも一方が変更されることよって変更される。
 電解槽3の構造、原料水(希塩酸)の量及び濃度が決まっているとき、1回の単位時間の電気分解で得ようとする電解水の量及び濃度(有効塩素濃度)に応じて、1回の電気分解工程で通電される電流値(定電流値)と通電時間(単位時間)が設定されると、これらの設定値に応じて電気分解工程の最大回数が算出される。この最大回数以下の範囲で、電解槽3の交換時期までの電気分解工程の回数の閾値Nを設定する。又は、上記電流値と通電時間の設定値に応じて、電気分解工程の最大回数に相当する通電時間の累計の最大値が算出される。この通電時間の累計の最大値以下の範囲で、電解槽3の交換時期までの電気分解工程の通電時間の累計の閾値Tを設定する。
 制御部7において、電気分解工程の回数又は通電時間の累計を計測し、前記電気分解工程の回数が閾値Nに達したこと、又は通電時間の累計が閾値Tに達したことを検知した場合、表示用のランプを点灯させるなどして、使用者に電解槽3がその交換時期に達したことを通知する(通知工程)。
 電解水製造装置1Aは、電解槽3の構成、電気分解工程における電流値(定電流値)及び通電時間(単位時間)が予め決められていて変更できない構成でもよいし、これらを変更できるように構成されていてもよい。
 電気分解工程における電流値(定電流値)と単位時間の少なくとも一方を変更して設定可能に構成されている場合は、上記電流値又は単位時間が変更されると、変更後の設定値に応じて、電解槽3の交換時期までの、電気分解工程の回数の閾値N又は通電時間の累計の閾値Tが新たに設定される。
 電解槽3の容量と希塩酸(原料水)の濃度によって、電解槽3に充填された所定量の原料水から得られる塩素ガス(電解生成物)の総生成量(電気分解工程の最大回数)が決まる。
 したがって、電解槽3の構成が変更されて、原料水の量と濃度の少なくとも一方が変更されたときは、変更後の値に応じて、電解槽3の交換時期までの、電気分解工程の回数の閾値N又は通電時間の累計の閾値Tが新たに設定される。
 また、電解槽3内の電極板の枚数によって電解効率が変化する。したがって、得ようとする電解水の有効塩素濃度が一定であれば、電解槽3内の電極板の枚数を変更することによって、上記有効塩素濃度を得るための電解時間(単位時間)を変更することができる。
 又は、電解槽3の交換時期を、電解槽3に定電流が通電されるときの電圧値、又は電流値を計測することで検知することもできる。
 すなわち、単位時間の電気分解を繰り返すことで原料水中に存在する反応成分の量が少なくなると、電流は流れ難くなり、定電流を電解槽3へ供給するために必要となる電圧値が上昇する。したがって、電解槽3に定電流を供給するために印可される電圧値が予め設定されたしきい値より高くなったことを検知した場合、又は電流値が予め設定されたしきい値より低くなったことを検知した場合に、表示用のランプを点灯させるなどして、使用者に電解槽3がその交換時期に達したことを通知する。上記電圧値のしきい値は、例えば上記試験例1の結果を参照すると、隣り合う電極間電圧で2.7V以上が好ましく、2.4V以上がより好ましい。
 なお、電解槽の交換時期を通知する手段・方法としては、以上述べてきた手段・方法のほか、生成する電解水の有効塩素濃度やpH等を測定する又は検知するなどの手段・方法を採用することもできる。
 電解槽3の交換は、装着部6の係止部16A,16Bを拡げて電解槽3に対する係止を解除し、電解槽3の取っ手40を把持して電解槽3を装着部6から引き出し、原料水(希塩酸)が充填された他の電解槽3と交換する(交換工程)。他の電解槽3を装着部6に装着させて配管5を介してタンク4と連結することにより、再度電解水を製造することが可能となる。
 本実施形態によれば、電解槽3内の原料水の全量を一度に連続して電気分解して電解水を製造するのではなく、電解槽3に定電流を所定の単位時間の間で通電することを複数回数実施することによって、原料水を電解槽に追加供給することなく、所定量の電解水の製造を繰り返し行うことができる。したがって、電解水の使用量が少なく多量の電解水を一度に製造する必要がない一般家庭等においても、電気分解毎に電解槽3を交換することなく所望の量の電解水を繰り返し製造できる。
 また、予め原料水が充填された状態の電解槽3が装着部6に着脱可能であり、所定回数で電気分解した後に新しい原料水が充填された電解槽3に、容易に交換することができる。
 また、タンク4が着脱可能となっているため、電解水の製造後にタンク4を設置部4Jから取り外して自由に所望の場所に持ち運んで電解水を利用することができる。また、所望の形状及び容量を有するタンクを設置部4Jに設置又は接続して、このタンクに製造した電解水を直接貯留することができる。
 また、封入された希塩酸の濃度又は量が異なる電解槽3を選択して装着部6に装着することにより、電解槽3で製造できる電解水の濃度、製造回数等を容易に変更することができる。したがって、家庭等での電解水製造装置の使用が格段に便利になる。
 また、本実施形態の電解水製造装置1Aによれば、電解槽3が着脱可能に設置される構成であるが、電解槽3に予め希塩酸が封入され、電解槽3と希塩酸の供給部との接続が不要となることから、電解槽3の着脱時に、電解槽3と装着部6との接続箇所を最小限に抑えられる。
 また、導出口2には封止部材として逆止弁27が設けられており、電解槽3を装着部6に装着したときにのみ導出口2が開口される。したがって、ユーザーは電解槽3から原料水が液漏れすることを懸念することなく、また導出口2が開口する方向に関係なく、容易に電解槽3を取り扱うことができる。
 また、装着部6の天壁9、底壁10、側壁11,11及び挿通部13,13が電解槽3を装着部6へ挿入する際のガイド部Gとなるため、電解槽3を適切な姿勢に維持して、容易に電解槽3の突出壁部37を装着部6の嵌着部25に正確に対向させて挿入することができる。したがって、電解槽3の突出壁部37又は装着部6に形成された嵌着部25の損傷を回避することができる。
 また、図1に示すタンク4が着脱可能となっているため、電解水の製造後にタンク4を設置部4Jから取り外して自由に持ち運んで電解水を利用することができる。また、所望の形状及び容量を有するタンクを設置部4Jに設置又は接続して、このタンクに製造した電解水を直接貯留することができる。
 また、電解水製造装置1Aによれば、封入された希塩酸の濃度又は量が異なる電解槽3を選択して装着部6に装着することにより、電解槽3で製造できる電解水の濃度、製造回数等を容易に変更することができる。したがって、家庭等での電解水製造装置の使用が格段に便利になる。
 また、タイマー42により定電流装置41の通電時間を自動的に制御することができるため、製造される電解水の濃度を一定にすることが容易となると共に、一つの電解槽3で電気分解できる回数を算定されたとおりに設定することができる。
 また、カウンター43により一つの電解槽3で単位時間毎に電気分解された回数をカウントし、この回数をユーザーが知ることができる。このため、電解槽3での初回の電気分解後におけるタンク4内の希釈水が、所望する塩素濃度の電解水となっていないことをユーザーは認識できる。また、電解槽3内に反応原料(塩酸)が無くなる前の適切なタイミングで電解槽3を交換することができる。
 また、図7A,7B,図8Aに示すように、電解槽3の側部35aが装着部6の後端壁12の内面に当接した際に、電解槽3の突出壁部37が嵌着部25に確実に嵌着する。更にこの時点で、装着部6の前端に設けられた上下の係止部16A,16Bが電解槽3に係止する。したがって、装着部6は、装着された電解槽3を確実に固定することができる。また、係止部16A,16Bが上下に弾性変形可能となっており、電解槽3の挿入時には弾性変形して拡がり、装入完了時に通常の形状に弾性復帰して電解槽3に係止する。このため、電解槽3が確実に装着部6へ装着されたことをユーザーが確認しやすい。
 また、端子接続部15が挿通部13に配されており、電解槽3の装着部6への装着において、電極棒45,45が挿通部13,13に挿通され電極棒45と端子接続部15とが接続される。したがって、電解槽3の着脱において電極棒45と端子接続部15との接続作業を省略することができる。
 電解水製造装置1Aによれば、電解槽3を係止部16A,16Bと係止するまで装着部6に挿入するだけで、電気分解に必要な接続、すなわち、電解槽3とタンク4に接続された配管5との接続及び電極棒45と端子接続部15との電気的接続を同時に行うことができる。
<変形例>
 次に、上記第1実施形態の変形例1~9について説明する。これらの変形例の説明においては、前述した第1実施形態の電解水製造装置1Aと異なる点についてのみ説明し、同一の構成については同一の符号を付してその説明を省略する。
 図14に示すように、変形例1は、電解槽3を装着部6aに挿入完了し所定の設置位置に配置した際の電解槽3の係止及び固定方法において、第1実施形態の電解水製造装置1Aと異なっている。
 本変形例1の係止部としては、図8Aに示す係止部16A,16Bの代わりに、装着部6aの天壁9と底壁10との間に跨って配置されるスライド蓋60が用いられる。スライド蓋60は、電解槽3を装着部6a内に保持して固定する。また、電解槽3として、図4に示す取っ手40を有しない電解槽が用いられる。
 スライド蓋60は、天壁9の上面に当接する上壁部61と、上壁部61に対して垂直に接続され底壁10まで延びる側壁部62と、側壁部62に対して垂直に接続され上壁部61に対向する下壁部63とを備えている。上壁部61及び下壁部63の先端部は、互いに近づく方向に延びる係合爪61a,63aをそれぞれ備えている。
 一方、装着部6aの天壁9の上面と底壁10の下面とには、溝64,64がそれぞれ形成されている。溝64,64に係合爪61a,63aが挿通された状態で、スライド蓋60を装着部6aの前後X-Y方向に直交する水平方向にスライドさせて、側壁部62を天壁9及び底壁10の前端に当接させる。
 以上の構成の下に、本変形例1においては、電解槽3を装着部6aに挿入した後に、スライド蓋60を装着部6aの開口部14に装着させて、電解槽3を装着部6aに容易且つ確実に固定することができる。
 次に、第1実施形態の電解水製造装置1Aの変形例2について説明する。
 図15に示すように、変形例2は、電解槽3を装着部6b内の所定の設置位置に配置した際に電解槽3を係止及び固定する方法において、第1実施形態の電解水製造装置1Aと異なっている。
 変形例2の係止部は、底壁10の前端部近傍の水平軸周りに回動可能とされた回動蓋70からなる。回動蓋70は、電解槽3を装着部6b内に保持して固定する。
 この回動蓋70は、軸受部71と、この軸受部71部を支点として回動し開口部14の上下方向に跨って電解槽3を保持する保持固定部72と、装着部6bの天壁9に係止して回動蓋70を装着部6bに固定する係止爪部73とを有している。
 軸受部71は、底壁10の前端下面近傍に固定されており、底壁10に支持され水平方向に延びる軸体74を中心として回動可能とされている。
 保持固定部72は、電解槽3の取っ手40を間に挟んで開口部14の上下方向に跨る一対の帯状体からなる平板の板状体であり、電解槽3に当接してこれを装着部6b内に保持して固定する。
 係止爪部73は、回動蓋70が開口部14を閉じた状態において保持固定部72の端部(上側の端部)から前方X方向に延出した後、側面視でU字状に折曲して後方Y方向に延びて形成されている。係止爪部73は、Y方向に延びている平板部73aの下面に、天壁9に係止可能な爪部73bを有している。
 一方、装着部6bの天壁9の上面前端側には、係止爪部73をその上方に位置させた際に係止爪部73bを係止させるための凹部9tが形成されている。
 この構成の下に、変形例2においては、電解槽3を装着部6bに挿入する際に、回動蓋70を底壁10の下方に移動させて開口部14を開口させる。電解槽3を開口部14から装着部6b内へ挿入した後に、軸受部71を支点として保持固定部72及び係止爪部73を回動させて上方に移動させ、天壁9の凹部9tの前端縁に係止爪部73を係止させる。この操作によって電解槽3を装着部6bに容易且つ確実に固定することができる。
 次に、第1実施形態の電解水製造装置1Aの変形例3について説明する。
 図16A,16Bに示すように、変形例3は、電解槽3を装着部6c内の所定の設置位置に配置した際に電解槽3を係止及び固定する方法において、第1実施形態の電解水製造装置1Aと異なっている。
 図16Aに示すように、変形例3の係止部は、装着部6cに設けられたフランジ80の開口部81に螺合可能な円板形状の蓋82とされる。蓋82は、電解槽3を装着部6c内に保持して固定する。
 装着部6cの前端部には、装着部6cの天壁9,底壁10及び両側壁11,11の各前端部が外方に張り出したフランジ80が設けられている。フランジ80の内側は、電解槽3がその挿入方向に通過可能な大きさの円形の開口部81とされている。開口部81には、矢印X方向に向かって小径孔83と大径孔84とが順に形成されている。大径孔84の内周面には、雌螺子部85が形成されている。
 装着部6c内に電解槽3を挿入した後に、フランジ80の開口部81に円板状の蓋82を螺入することで、電解槽3を装着部6c内に固定できる。
 蓋82は、大径部86と小径部87とにより構成されている。大径部86の外周面には雄螺子部88が形成されている。小径部87の外周面には全周に亘って溝89が形成され、この溝89にOリング90が装着されている。
 また、図16Bに示すように、蓋82の外側の板面82aには、円形の凹部91とこの凹部91の中心を通る直線状の把持部92が形成されている。また、蓋82の内側の板面82bには、凹部93が形成されている。蓋82に凹部93が形成されているので、蓋82を開口部81に螺入しているときは電解槽3の取っ手40が板面82bに当接して摩擦したり両者が磨耗したりするのを回避でき、螺入が完了する時点では凹部93の内面が取っ手40に当接して電解槽3を簡便に固定できる。
 次に、第1実施形態の電解水製造装置1Aの変形例4について説明する。
 図17A,17Bに示すように、変形例4は、装着部6dに設けられた端子接続部100と電解槽3に設けられた端子104において、第1実施形態の電解水製造装置1Aと異なっている。
 変形例4の端子接続部100は、装着部6dの天壁9の下面に前後X-Y方向に延びて形成された溝101内に沿うように配置されている。この端子接続部100は、その後端部102が天壁9の上方に突出するように略垂直に折曲されており、その前端部103が前方へ向かうに従い上方に傾斜するように折曲されている。端子接続部100は、溝101の天面101a(下方に対向する面)に固定されている。
 一方、電解槽3の上面には、図示しない電極棒にリード線等を介して電気的に接続された端子104が突出して設けられている。端子104はバネ性を有する金属製の板材により形成されており、その中央部が上方へ膨出するように折り曲げられている。端子104は、電解槽3が装着部6dに挿入された際に端子接続部100に摺接して端子接続部100との電気的導通を確保する。
 端子接続部100と端子104を上記の構成とすることにより、電解槽3の装着部6dへの挿入と同時に電解槽3と図1に示す制御部7との電気的導通を適切に確保できる。よって、不図示の電極棒と制御部7との間を配線等で接続する手間が省ける。
 なお、端子接続部100と端子104を、底壁10側又は側壁11側に上記と同様の構成で設けてもよく、この場合にも同様の効果が得られる。
 次に、第1実施形態の電解水製造装置1Aの変形例5について説明する。
 図18A,18Bに示すように、変形例5は、装着部6eに設けられた端子接続部110と電解槽3に設けられた端子114において、第1実施形態の電解水製造装置1Aと異なっている。
 変形例5の端子接続部110は、帯状の金属製板部材を用いて形成されている。端子接続部110において、平坦に形成された本体部110aの一端部110bは本体部110aに対して垂直に折り曲げられ、その他端部110cには端子挟持部111が溶接されている。端子接続部110の本体部110aは、装着部6eの後端壁12の内部に埋設されている。一端部110bが後端壁12の外方(装着部6eの外側)へ突出している。また、端子接続部110の端子挟持部111は、装着部6eの内側に突出している。
 端子挟持部111は、導電性を有する帯状の金属製板部材を略筒状に折曲し、互いに対向する一対の金属端の近傍を折り曲げてくびれ部を形成し、このくびれ部の金属板間に隙間112を設け、上記一対の金属端を互いに離間するように拡げて構成されている。略筒状に折曲された筒部113が本体部110aの他端部110cに溶接されている。
 一方、電解槽3の端子114は、導電性のある金属部材により板状に形成され、端子挟持部111の隙間112に挿入可能な位置及び向きで、筐体30の側部35aから突出するように固定されている。この端子114は、図示しないリード線等により電極棒45と電気的に接続されている。
 以上の構成の下に、変形例5においては、電解槽3を装着部6eの所定位置まで挿入することにより、端子接続部110の端子挟持部111の隙間112に電解槽3の端子114を嵌着させて互いに電気的に接続することができる。このため、電極棒45と図1に示す制御部7との間を配線等で接続する手間が省ける。また、電解槽3が装着部6eの所定位置まで挿入されない限り、すなわち、電解槽3の突出壁部37が装着部6eの嵌着部25に適切に嵌着しない限り、端子114は端子接続部110に接続されない。このため、電解槽3が確実に装着されていない状態で通電されることを回避し、誤動作を防止することができる。
 次に、第1実施形態の電解水製造装置1Aの変形例6について説明する。
 図19A,19Bに示すように、変形例6は、電解槽3の装着部6fへの装着方法において電解水製造装置1Aと異なっている。すなわち、装着部6fは、電解槽3を回動可能に掛止させる固定掛止部120を有している。一方、電解槽3は、固定掛止部120に掛止される可動掛止部121を有しており、固定掛止部120を支点として回動し装着部6fに装着される。
 固定掛止部120は、装着部6fの後端壁12の上端から立ち上がり、後方Y方向に折曲している。この固定掛止部120は、X-Y方向に直交する水平方向に所定の長さで延びている。
 装着部6fは、電解槽3を上方から挿入し嵌着させるように構成されているため、天壁9を有していない。また、図19Bに示すように、側壁11,11には、金属製の端子接続部123を備えた挿通部124がそれぞれ形成されている。挿通部124は、可動掛止部121の先端部を固定掛止部120の先端部に掛止させた状態で、可動掛止部121の先端を中心として電解槽3を回動させる際の電極棒45の回動軌跡上に配置されている。
 更に、底壁10には、図8Aに示す電解水製造装置1Aの爪部18と同様の構成を有する爪部125が形成されている。
 可動掛止部121は、装着部6fに装着された状態の電解槽3の後端側における上面から立ち上がった後、Y方向に折曲し、さらに固定掛止部120の先端部に巻きつくように下方に折曲している。
 この構成の下に、変形例6においては、固定掛止部120に可動掛止部121を掛止させて固定掛止部120を支点として電解槽3を下方に回動させるだけで、電極棒45が端子接続部123と電気的に接続される。また、側壁11,11及び挿通部124が電解槽3を装着部6fの所定位置に向かって確実に誘導することができる。更に、電解槽3が底壁10及び後端壁12に当接した際に、突出壁部37と嵌着部25とを気密状態で嵌着させることができ、更に爪部125により電解槽3を上下方向に移動させることなく確実に保持して固定することができる。したがって、変形例6によれば、電解槽3を簡便且つ確実に装着部6fに配置することができると共に、電解槽3を装着部6fに設置するだけで簡単且つ確実に必要な接続を完了することができる。
 次に、第1実施形態の電解水製造装置1Aの変形例7について説明する
 図20に示すように、変形例7は、電解槽3の導出口130と装着部6gの連結部131において第1実施形態の電解水製造装置1Aと異なる。
 電解槽3の導出口130は、水平方向に向けて形成される図6に示す空間S1から鉛直方向上向きに延びるように形成され、筐体30の上壁部に下方に凹んで形成される嵌着凹部132内(底部)で開口している。また、筐体30の前端上側には、X-Y方向に直交する仮想軸線L1の周りに円周面を形成するように膨出した膨出部139が形成されている。軸線L1は、X-Y方向に直交した水平方向に延びている。この膨出部139は、装着部6gの後述する板バネ137を係止する係止部を構成している。
 一方、装着部6gは、電解槽3と連結された状態において下方に向かって突出する突出壁部133を備えた連結部131を有している。連結部131がエルボ134の一端に接続され、エルボ134の他端にフレキシブル管135が接続されている。
 連結部131は、その内部に貫通孔131R(孔部)を有している。後端壁12に設けられた軸受部136に板バネ137が回動可能に取り付けられている。連結部131は、板バネ137に固定されている。
 板バネ137は、電解槽3と連結された状態において軸受部136から前方X方向に向かって延び、その先端部において円弧を描くように湾曲した後に再び矢印X方向に延びている。板バネ137の先端部は、電解槽3を固定する被係止部138を構成している。
 この構成の下に、図21に示すように、連結部131は、エルボ134及びフレキシブル管135と共に、板バネ137の回動に伴って移動する。板バネ137を回動させて電解槽3に接近させることで、連結部131は電解槽3の嵌着凹部132に簡便に嵌着し、板バネ137を回動させて電解槽3から離間させることで、連結部131は嵌着凹部132から離脱する。
 電解槽3を装着部6gに装着し、電解槽3の導出口130と連結部131の貫通孔131Rとを気密に連通させる際には、板バネ137を持ち上げて装着部6gを開口した状態で電解槽3を設置する。その後、板バネ137を下降させて電解槽3の嵌着凹部132に突出壁部133を嵌着させると共に、被係止部138を膨出部139に係止させる。すなわち、連結部131を電解槽3に対して相対的に移動させることで、電解槽3の導出口130と連結部131の貫通孔131Rとが連通し又は連通解除される。この変形例によっても、電解槽3を装着部6に簡便に装着することができる。
 次に、第1実施形態の電解水製造装置1Aの変形例8について説明する。
 図22に示すように、変形例8は、電解槽3の筐体140が円柱形に形成され、装着部6hが筐体140の外部形状に合わせて形成された天壁141と側壁142とを備えている。
 電解槽3の筐体140の上壁部には、略円柱形状の突出壁部143が形成されている。突出壁部143は、その中心軸線及び筐体140の中心軸線が共通の軸線L2となるように配置されている。突出壁部143には、不図示の流路に連通する導出口144が形成されている。
 また、突出壁部143の外周面上には、雄螺子部143aが形成されている。
 図22,図23に示すように、電解槽3の下壁部には、電解槽3を軸線L2を中心として回転させるために、指を掛けて下壁部を把持するための複数の凹所153が形成されている。
 また、電解槽3の下壁部の中心部分には円形の導電性金属板からなる端子151が配置されており、上記下壁部の周縁部にはリング状の導電性金属板からなる端子152が配置されている。これらの端子151及び152は、電解槽3内部の一対の電極にそれぞれ結線されている。
 図22に示すように、装着部6hの天壁141には、上方に突出する連結部145が設けられている。
 連結部145には、突出壁部143を嵌着させる嵌着部146が形成されており、突出壁部143を螺合させるための雌螺子部147が嵌着部146の内周面に形成されている。
 雌螺子部147の上部には導出口144と連通する貫通孔148(孔部)が形成され、連結部145に連結された配管5に貫通孔148を介して塩素ガス(電解生成物)を流動させることができる。
 図23に示すように、側壁142の下端部には、図8A,8Bに示す係止部16A,16Bと同様の係止部149,149が形成され、この係止部149,149により電解槽3を保持できる。また、係止部149,149が対向する方向に直交する方向には、図15に示す回動蓋70と同様に形成された回動蓋150が設けられ、この回動蓋150は電解槽3をより確実に保持できる。
 この回動蓋150には、円柱形状の端子接続部150a及び150bが貫通して設けられており、この端子接続部150a及び150bは不図示のリード線により制御部7(図1参照)に接続されている。
 以上の構成の下に、変形例8において、電解槽3を装着部6hに装着する場合には、回動蓋150を下方に回動させて装着部6hを開口し、電解槽3を側壁142の内部に挿入する。突出壁部143が嵌着部146の開口部に当接した際に、電解槽3の下壁部の凹所153にユーザーの指を入れてこの下壁部を把持し、電解槽3を軸線L2周りに回転させて突出壁部143を嵌着部146に螺入させる。突出壁部143が確実に嵌着部146に螺入されると、電解槽3の全体が装着部6h内に収まり、係止部149,149が電解槽3に係合して固定される。続いて、回動蓋150を上方へ向けて回動させ、側壁142に係止させて電解槽3の固定を完了させる。
 回動蓋150を側壁142に係止させると、回動蓋150を貫通して設けられている端子接続部150aは、電解槽3の下壁部の円形の端子151に接触し、また端子接続部150bは、電解槽3の下壁部のリング状の端子152に接触する。その後、端子151,152は端子接続部150a,150bを介して通電される。
 このような構成とすることで、電解槽3を装着部6hの側壁142をガイド部として容易にこの装着部6h内に装着することができる。また、電解槽3を一方向に回転させるだけで突出壁部143が嵌着部146に螺合し、軸線L2を共通の軸線として電解槽3を装着部6hに確実に嵌着及び固定することができる。
 また、係止部149及び回動蓋150によって電解槽3をより確実に保持することができる。
 次に、第1実施形態の電解水製造装置1Aの変形例9について説明する。
 図24Aに示すように、変形例9においては、電気分解の対象となる原料水を貯留させる貯留スペースM(空間)が、電解槽3iの筐体30i内に形成されている。貯留スペースMは、筐体30i内に設置された複数の電極板31及び複数のスペーサ33を交互に配置して形成される複数の電解室C(図5参照。以下同様)の外に配置されている。
 本変形例において、貯留スペースMは、電極板31を段部50(図4参照)に嵌合させた複数のスペーサ33を側板34Bに寄せて筐体30i内に隣接して配置させた状態で、これら複数のスペーサ33のうち側端(側板34Aの最も近く)に位置するスペーサ33と側板34Aとの間に形成されている。
 電解槽3iには、各電解室Cと貯留スペースMとに略均一な濃度の原料水が充填されている。
 電解槽3iに通電した場合には、電解室C内の反応成分が電気分解により減少する。これに伴い、貯留スペースM内の反応成分が、下方切欠53(図3参照。以下同様)及び下方流路53a並びに側方切欠55,55及び側方流路55a,55aを通じて電解室C内に拡散して流動する。したがって、本変形例によれば、内部に貯留スペースMを有していない電解槽よりも、長時間電気分解を行いより多くの電解生成物を生成することができる。すなわち、電解槽3iを交換するまでの使用期間を長期化させ、より一層交換頻度を低減させながらも、電解水を少量ずつ製造することができる。
 なお、本変形例では、貯留スペースMを側端に位置するスペーサ33の側方に設けたが、貯留スペースMは、複数のスペーサ33の上方に設けられてもよい。貯留スペースMがスペーサ33の上方に設けられた場合には、塩酸等のように、水よりも比重が重く、水の下方に沈下する反応成分を含んだ原料水を電解槽に充填すると、電解室C内の反応成分が電気分解されるに従い貯留スペースM内の反応成分を下方の電解室Cへ沈下させることができる。したがって、ポンプ等を使用することなく反応成分を電解室C内に好適に移動させることができる。
 また、貯留スペースMは、側端に位置するスペーサ33の側方及び上方の双方に設けられていてもよい。あるいは、貯留スペースMは、複数のスペーサ33を筐体30iの側板34A,34Bの双方から離間した位置に配置させて、それらの両端に位置するスペーサ33,33の両側方に設けてもよい。この場合、貯留スペースMは、上記両端に位置するスペーサ33,33の両側方及び上方に設けられてもよい。上記いずれの場合であっても、電解槽3は、上記した効果と同様の効果を得ることができる。
 なお、筐体30において、電極板31を嵌合させた複数のスペーサ33を隣接して配置する空間Sと、貯留スペースMとの間は、図24Bに示すように、開口部250Aを備えた仕切板30Rにより仕切られてもよい。またあるいは、複数のスペーサ33を設置する空間Sと、貯留スペースMとが、少なくとも一つの開口部250Aを介して内部空間を連通させた2以上の筐体30B,30A内にそれぞれ設けられていてもよい。後者の態様であっても、筐体30A,30Bに予め原料水が充填され、筐体30A,30Bに新たな原料水が追加不能に供給口が封止された状態で、筐体30Aと筐体30Bとが一体的に着脱して交換されればよい。
 なお、この場合、生成された電解生成物は原料水内を浮上するため、電解生成物を導出するための導出口2は電解槽3においてできるだけ高い位置に開口していることが好ましい。例えば筐体30Aの最上部に導出口2を開口させることができる。
 次に、本発明の第2実施形態として電解水製造装置1Bについて説明する。本実施形態の説明においては、第1実施形態の電解水製造装置1Aと異なる点についてのみ説明し、同一の構成については同一の符号を付してその説明を省略する。
 図25に示すように、電解水製造装置1Bでは、希釈水を貯留するタンク4が、配管5を介して電解槽3の上方に着脱不能に設けられ、タンク4の底部に連結された取水口160から電解液が取り出し可能となっている。
 タンク4の上部には、開閉可能な蓋部162が取り付けられており、この蓋部162を開けて希釈水をタンク4内に注入できる。タンク4の内部には、水位センサー161が設置されており、水位センサー161で検知される水位が所定の閾値以下となった場合に制御部(不図示)によって電解槽3の駆動が規制される。したがって、タンク4内の希釈水が少ない状態又は無い状態で電解生成物がタンク4内に供給され、所望の濃度以上の電解水が製造されたり、タンク4内に電解生成物のみが充満したりすることを防止できる。
 次に、本発明の第3実施形態として電解水製造装置1Cについて説明する。本実施形態の説明においては、第1実施形態の電解水製造装置1Aと異なる点についてのみ説明し、同一の構成については同一の符号を付してその説明を省略する。
 図26に示すように、電解水製造装置1Cは、希釈水を貯留し希釈水の供給源となる貯留部170と、電解槽3を着脱させる装着部6と、貯留部170内の希釈水及び電解槽3からの電解生成物が供給される配管5(混合部)と、不図示の制御部と、前記電解生成物と希釈水とを混合させてなる電解水を収容するポット171と、貯留部170、電解槽3、装着部6及び配管5を内部に収容すると共に、ポット171を着脱可能に載置させる台座172を有する筐体173と、を備えている。
 貯留部170は、直方体形状の槽であり、内部に希釈水を吸い上げるポンプ174と水位センサー175を備えている。
 配管5の一端部5aがポンプ174を介して貯留部170に接続されている。配管5は、その中心軸線が上下方向に延びるように配置され、その上端において折曲して水平方向に延びている。
 配管5の一端部5aと他端部5bとの間には、分岐管5Gが設けられている。この分岐管5Gに電解槽3の突出壁部37が接続されている。
 ポット171は、底板部171aと、底板部171aの周囲から立ち上がる周壁部171bと、周壁部171bの上部開口を覆うように設けられる蓋部171cと、周壁部171bの上端に接続される取っ手171dと、取っ手171dの反対側における周壁部171bの上端から突出する電解水の注入・注出口171eとを備える。
 筐体173は、貯留部170を収容する台座部173Aと、配管5、不図示の制御部、電解槽3及び装着部6を収容する駆動機構部173Bとを備えている。台座部173Aの上部が、台座172として構成されている。
 上記の構成の下に、電解水製造装置1Cの使用時には、不図示の電源を入れてポンプ174、不図示の制御部及び電解槽3を作動させ、ポンプ174により吸い上げられた希釈水と電解槽3からの電解生成物とを配管5内で合流させ、希釈水及び電解生成物を配管5の他端部5bからポット171内部に落下させつつ注入できる。
 したがって、電解水製造装置1Cは、希釈水の1回の供給量に応じて電解生成物の量を決定し、更に電解槽3へ通電する単位時間及び電流値を設定する。希釈水を配管5内を上方に向けて流動させ、配管5の途中で電解生成物と合流させた後に、希釈水及び電解生成物をポット171に落下させつつ注入することができる。したがって、このように注入することによって希釈水と電解生成物とをポット171内において確実に混合させることができる。
 次に、本発明の第4実施形態として電解水製造装置1Dについて説明する。
 第4実施形態に係る電解水製造装置は、原料水を電気分解し電解生成物を発生させこの電解生成物を導出口から排出させる電解槽と、この電解槽を装着させる装着部と、この電解槽の動作を制御する制御部と、前記電解槽と連結されこの電解槽で得られた前記電解生成物を希釈水と混合し電解水とする混合部と、この混合部に貯留された前記希釈水を吸水する吸水配管と、吸水配管に具備されたポンプと、前記吸水配管により吸水された前記希釈水と前記電解槽から導出された前記電解生成物とを合流させ前記混合部に導出する導出配管とを備える。
 前記電解槽と、前記ポンプと、前記導出配管とはケーシング内に固定されている。
 このケーシングは、前記混合部に着脱可能に設置される。このケーシングは、前記混合部に装着された際に、前記吸水配管の管路と前記導出配管の管路とがそれぞれ前記混合部内に連通されて、これら吸水配管と導出配管とにより前記混合部内に貯留された前記希釈水を吸水及び導出可能とされている。
 また、前記電解槽は、この電解槽に形成された前記原料水の供給口から内部に所定量の前記原料水が予め充填された状態で前記導出配管に接続され、前記供給口から新たな原料水が追加不能となるように構成される。前記制御部は、前記予め充填された原料水を電気分解するために必要な時間を所定の単位時間毎に区切り、前記予め充填された原料水を電気分解する回数を複数回に設定すると共に、前記電解槽に前記単位時間毎に一定電流値の電流を通電するように構成されている。すなわち、前記制御部は、前記電解槽に予め充填された原料水のうちの一部を電気分解するために所定の単位時間の間で一定電流値の電流を前記電解槽に供給すると共に、前記予め充填された原料水を複数回に分けて電気分解するように構成されている。
 具体的には、電解水製造装置1Dは、図27に示すように、電解槽3と、この電解槽3を装着させる装着部6と、制御部7と、ポット182(混合部)と、希釈水を吸水する吸水配管5Bと、吸水配管5Bに具備されたポンプ180と、吸水配管5Bにより吸水された希釈水をポット182に戻す導出配管5Aと、を備える。電解槽3が装着される装着部6、制御部7、ポンプ180、導出配管5A、及び吸水配管5Bは、ケーシング181内に固定されている。ケーシング181が、希釈水を貯留したポット182の上部に着脱可能に設置されている。導出配管5A,吸水配管5Bとそれぞれ接続された配管5D,5Cが、ケーシング181の底部から下方に突出してポット182内に挿入されている。導出配管5Aの上端と吸水配管5Bの上端とが互いに接続されて、配管5が構成されている。また、希釈水が予めポット182内に貯留されている。
 ケーシング181は、天板部181aと、天板部181aの周囲から下方に延びる側板部181bと、側板部181bの下端に接続される底板部181cとを備えている。底板部181cの一部には開口が形成されている。このケーシング181に、電解槽3、ポンプ180、導出配管5A及び吸水配管5Bが適宜固定されている。ケーシング181の下端には、ポット182に係合させる被係合部(不図示)が設けられている。
 電解槽3の導出口2には、導出配管5Aの上端が接続されている。この導出配管5A内に、電解槽3において生成された電解生成物を導出することができる。
 ポンプ180は、吸水配管5Bに設けられている。吸水配管5Bは、電解槽3に接続された導出配管5Aに接続されている。ポンプ180の作動によりポット182内の希釈水Wが吸い上げられ、吸水配管5B内を上方に向けて流動し、導出配管5A内に流入する。吸水配管5Bから流入した希釈水Wと電解槽3で得られた電解生成物とが導出配管5Aにおいて合流し、希釈水W及び電解生成物が導出配管5Aからポット182内に向けて導出される。また、ポンプ180は、吸水の有無を検出する検出部(不図示)を備えており、検出結果を制御部7に送信する。
 制御部7は、ポンプ180により吸水が検知された場合には電解槽3に通電し、ポンプ180により吸水が検知されなかった場合には電解槽3に通電しないように設定されている。
 ポット182は、上部が開口部182kとされた容器部186と、容器部186の開口部182kに着脱可能に設けられる蓋部187とを備えている。容器部186は、底板部182aと、底板部182aの周囲から立ち上がる側板部182bとを備えている。
 容器部186は、電解槽3に少なくとも1回通電して所定の濃度の電解水を製造するために用いられる希釈水を貯留できる内容積を有している。容器部186は、その上端の一部に、製造された電解水を外部に注水するための注水口188を備えている。
 蓋部187には、連結部189a,189bが設けられている。蓋部187は、連結部189aに固定された配管5Cと、連結部189bに固定された配管5Dとを備えている。
 蓋部187の上面は、ケーシング181を着脱可能とする装着部187aとされている。ケーシング181のポット182への装着時に、連結部189aを介して配管5Cと吸水配管5Bとが接続され、双方の管路が連通すると共に、連結部189bを介して配管5Dと導出配管5Aとが接続され、双方の管路が連通する。また、装着部187aには、ケーシング181を確実に固定させる係合部(不図示)が設けられている。この構成の下に、電解槽3を備えたケーシング181は、その装着ができるように専用に構成されたポット182に安定的に取り付けられ、好適に使用することができる。
 配管5Cは、その先端(下端)がポット182内の所定の高さに位置するように設置され、前記高さまで希釈水Wが貯留されていない場合に希釈水Wを吸水できないように構成されている。
 一方、配管5Dは、その一端部5aにおいて折曲し、導出配管5A及び配管5D内を下方に向けて流動する希釈水Wと電解生成物とが一端部5aの内壁に衝突し、乱流を起こすことによって効率よく混合されるように構成されている。なお、配管5D(又は導出配管5A)は、一端部5a以外においても屈曲した部分を有し、希釈水Wと電解生成物とを内壁に衝突させてよりよく混合させ得るように構成されていてもよい。
 また、配管5Dは、その一端部5aがポット182内の下部に位置するように設置され、希釈水Wと電解生成物とをポット182に貯留されている希釈水W内に放出することによってポット182内の希釈水を攪拌できる。
 上記の電解水製造装置1Dによって電解水を製造する場合、ポット182内に所定の高さまで、すなわち所定量の希釈水Wを貯留し、ケーシング181をポット182に装着し、電源スイッチ(不図示)を入れてポンプ180及び電解槽3を駆動させる。そうすると、ポンプ180が配管5Cの先端から希釈水Wを吸水し、希釈水Wが吸水配管5B内を導出配管5Aとの接続部に向かって流動する。
 一方、電解槽3は、一定電流値の電流が所定時間(単位時間)で通電されることにより電解生成物を生成し、この電解生成物を順次導出配管5Aに導出する。上記吸い上げられた希釈水Wと上記電解生成物とが導出配管5Aにおいて混合され、導出配管5A及び配管5D内を配管5Dの先端に向かって流動し、一端部5aにおいて配管5Dの内壁に衝突して乱流を起こしてさらに混合される。その後、混合された希釈水Wと電解生成物とは、配管5Dの先端からポット182内の下部に放出される。混合された希釈水W及び電解生成物が配管5Dからポット182の希釈水W内に所定時間連続して放出されると、ポット182の希釈水Wに水流ができて撹拌され、放出された希釈水W及び電解生成物がポット182の希釈水W全体に分散され、漸次所定濃度の電解生成物を含む電解水が製造される。
 一方、ポット182内に所定の高さまで希釈水Wが貯留されていない場合には、ポンプ180が希釈水Wを吸水していないことを検出して制御部7にその旨を示す信号を送り、制御部7によって電解槽3の作動が規制される。
 以上の構成により、電解水製造装置1Dによれば、ケーシング181を専用のポット182の装着部187aに装着し固定するだけで、ポット182における電解水の製造準備を容易に完了することができる。
 ポンプ180に接続された配管5Cの先端から希釈水Wを吸水することができた場合にのみ制御部7が電解槽3に通電し、また制御部7はポット182内に配管5Cの先端位置に対応する高さ以下までしか希釈水Wが貯留されていない場合に所定量の希釈水が満たされていないと判断して電解槽3の作動を規制することができる。したがって、所定濃度以上の電解水を生成したり、ポット182内に電解生成物のみを供給したりすることを防止して、簡単且つ適切に電解水を製造することができる。
 また、ケーシング181がポット182に着脱可能に構成されていることにより、電解槽3内の原料水が使用済みになった場合に、新たな原料水を充填させた電解槽3をケーシング181と共に取替える仕様とすることができる。したがって、ユーザーに電解槽3のみを交換させることを回避して、ケーシング181の交換作業を簡便且つ安全に行うことができる。
 なお、上記実施形態において、導出配管5Aと配管5Dとは一体的に形成されていてもよいし、吸水配管5Bと配管5Cとが一体的に形成されていてもよい。
 また、電解槽3内の原料水が使用済みになった場合に、ケーシング181を取り外して電解槽3のみを交換できるように構成されていてもよい。
 以上、第1~第4実施形態及びその変形例1~9においては、希釈水Wは予め水道等からタンク4に供給しておく構成となっている。なお、図28において、第5実施形態として示すように、電解水製造装置1Eは、水道等から希釈水Wを装置内部に供給する配管190aと、希釈水Wと電解生成物とを合流させてなる電解水を貯留させるタンク(不図示)に希釈水W及び電解生成物を導出する配管190bと、配管190a,190bの間に設けられ希釈水W及び電解生成物を上記タンクに送り出すポンプ191と、を備えてもよい。この場合、配管190bには分岐管192が設けられ、電解槽3に接続された配管5が分岐管192に接続されて、直接塩素ガスを配管190bに供給できる。また、ポンプ191には、吸水したことを検知してその旨を制御部7に通知する検知手段が設けられており、吸水を検知した際に制御部7が所定の電流値(一定電流値)の電流を単位時間の間で電解槽3に通電し、電解生成物を生成する。
 このような構成とすることで、フレキシブル管等を介して配管190aを水道に接続し、外部電源を装置1Eに接続できる環境であれば、電解水製造装置1Eを任意の場所に持ち運んで電解水を製造することができる。例えば図29に示すように、浴槽等の任意のタンク4に容易に電解水を製造して貯留させることができる。
 また、図30において第6実施形態として示すように、電解水製造装置1Fが、水道蛇口200の吐水口201に着脱可能に取り付けられる構成であってもよい。
 この場合、電解槽3及び制御部7は、水道水の吐水管202の下方等の、吐水口201からの取水を妨げない位置に配置されることが好ましい。制御部7は、乾電池等のバッテリ及び電源スイッチ(不図示)を備えている。制御部7は配線等を用いて外部電源に接続されてもよく、バッテリに代えて上記外部電源から制御部7へ給電されてもよい。
 配管203は、吐水口201に接続された水道水の供給口204と、電解水を吐出する吐出口205と、電解槽3の導出口2が連結された連結部206に向かって水道水を流動させると共に導出口2から導出される塩素ガス(電解生成物)と水道水を合流させて混合しつつ吐出口205に導く流路207R(混合部)とを備えている。この場合、配管203には不図示の吸水検知手段が設けられており、吸水を検知した際に制御部7に信号を送信し、制御部7が電解槽3に所定の電流値の電流を単位時間で通電し電解生成物を生成する。
 この電解水製造装置1Fは、所定の容積を有する容器(不図示)を吐出口205の下方に設置し、この容器に所定量の水(電解水)が貯留されるまで流水を中断させること無く電解生成物を含んだ水を吐出させて使用することができる。なお、電解槽3による電気分解の単位時間は、容器に貯留される電解水の量や電解水の濃度に応じて設定される。このような構成とすることで、水道水に簡便に電解水製造装置1Fを装着し、例えば手洗い時等、任意のときに不図示の電源スイッチを入れることにより簡便に電解水を製造して使用することができる。
 また、第1~第6実施形態、その変形例1~9及び前述したその他の例における電解槽3は、電解室Cの容量や電極板31,31間の距離が変更可能となっていてもよい。この変更を行うために、筐体30の大きさを変更したり、電極板31を保持して隣り合うスペーサ33,33の間に電極板31を有しないスペーサを配置したりしてもよい。
 このような構成とすることにより、電解槽3内に保持できる希塩酸(原料水)の量を変更することができるので、1つの電解槽3を用いて製造できる電解水の製造回数を容易に変更することができる。
 第1~第6実施形態、その変形例1~9及び前述したその他の例における電解水製造装置1A等は、一定電流値(定電流の電流値)及び単位時間の少なくともいずれか一方を選択的に変更できるようにして、電解水の製造時間や電解水の濃度を適宜調整できるように構成されるのが望ましい。
 この場合、一定電流値又は単位時間の変更、すなわち制御部7の定電流装置41及びタイマー42の設定変更並びにカウンター43のリセットは、電解槽3の交換時、すなわち電解槽3の電極棒45,45と装着部6の端子接続部15,15等とが離間して電気的な接続が解除された際に実施できることが好ましい。具体的には、電解槽3の交換時以外では設定の変更又は選択が防止され、電解槽3の交換時に一定電流値又は単位時間の変更又は選択が可能となるように構成されていることが好ましい。
 このように構成することで、予め設定した回数で電解槽3に通電し終える前に電流値や単位時間が変更されることによって、設定されていた回数の電気分解が行えなくなったり、単位時間で得られる電解生成物の量が不意に変動して所望する塩素濃度の電解水が得られなくなったりすることを防止できる。
 上記した第1~第6実施形態及びその変形例1~9において、電解槽3に設けられた突出壁部37、嵌着凹部132、又は突出壁部143には、電解槽3からの液漏れを防止するために液体の通過を防止し気体のみを透過させる気体透過性兼疎水性フィルターが設けられていてもよい。又は、突出壁部37,143、嵌着凹部132の開口部は、シール材等によって閉塞され、電解槽3の装着部(装着部6等)への装着時に上記シール材が取り除かれて上記開口部と装着部の孔部(貫通孔20,26等)とを連通できるように構成されていてもよい。
 かかる構成とすることにより、電解槽3において液漏れが起こり難くなるため、一般ユーザーが電解槽3からの液漏れを考慮することなく簡便に電解槽3を取り扱うことができる。
 また、電解槽3に原料水を供給する供給口は、導出口2とは別に設けられてもよい。この場合、供給口から所定量の原料水が充填された後、液密に封止し容易に開口できなくするために、供給口に螺子等を締結して閉塞してもよいし、専用の冶具のみによって供給口を開閉できるように構成してもよい。
 このような構成とした場合であっても、電解槽3の装着部6への嵌着構造が簡略化される。また、一般ユーザーは上記供給口の開閉を行わないため、一般ユーザーが電解槽3の供給口の開閉を考慮する必要がなくなり、ユーザーにとって電解槽3の取り扱いが容易になる。
 また、第1~第6実施形態及びその変形例1~9において、電解槽3の突出壁部37,143の先端面にシール材を貼着しておくと共に、装着部6の連結部19内に前記シール材を破断可能な先端部を有する接続管28を設けてもよい。このような構成とすることで、電解槽3の装着前に電解槽3から液漏れすることを防止することができ、装着時には接続管28がシール材を破断して容易に導出口2,144と貫通孔20,148とを連通させることができる。
 なお、第1~第6実施形態及びその変形例1~9においては、電解槽3を電解水製造装置に容易に装着するために装着部6を設けた構成とした。しかし、例えば図31に示すように、電解槽3は第1実施形態の電解槽3と同様の構成とし、装着部6を用いない構成であってもよい。この場合、電解槽3の装着時においては、電解槽3の電極棒45,45を制御部7の端子接続部15,15に接続すると共に、配管5を電解槽3の導出口2に直接連結する。
 このような構成であっても、電解槽3を電解水製造装置に容易に装着できるという効果を除いて、電解水製造装置1Aと同様の効果が得られる。
 なお、上記した変形例1~8の装着部6a~6hは、適宜組み合わせて使用することも可能である。
 例えば、図8A,8B,図17A,17B,図18A,18B等に示す端子の係合構造は、それぞれ第1実施形態に適用でき、また第2~第6実施形態に対しても適宜適用することができる。
 以下、実施例により、本発明を具体的に説明する。なお、実施例1では図2に示す装置を使用し、同様に実施例2では図1、実施例3では図29、実施例4~9では図1に装置を各々使用した。
 実施例1~3では、所定の条件で電解槽3に定電流を通電させた場合、実際に得られる有効塩素濃度を理論上算出される有効塩素濃度から推定することが可能かを検証した。また、実施例4~9では、希塩酸が封入された1つの電解槽3を用いて、3リットルの微酸性電解水を何回製造できるかを調べた。
 有効塩素濃度は、官報第3378号(平成14年6月10日)「次亜塩素酸水の成分規格」に示された測定方法によって測定した。なお、有効塩素濃度は、ヨウ素滴定法(社団法人日本水道協会、「上水試験方法 1993年版」、第218~219頁、平成5年11月15日)によっても測定することができる。
[実施例1]
(電解水製造装置)
 実施例1においては、電解槽3として、容量が52mlであり、10枚の電極板31によって区画された9つの電解室Cを有する槽を用いた。タンク4としては、2リットル容量のペットボトルを用いた。希塩酸(原料水)としては、3%の塩酸を電解槽3に封入した。電解槽3の電流効率は50%である。電流値は、0.8A,1.6A,2.4Aから選択的に設定できるように構成した。
(電気分解の方法)
 3%の希塩酸が充填され封止された電解槽3を装着部6に装着した。ペットボトルに2リットルの水道水を入れその開口部に逆流防止弁を取り付けて設置部4Jに設置した。この状態で、所定の電流値の定電流を電解槽3に通電し、希塩酸を15秒間電気分解して、逆流防止弁を外した。電流値[A]=(必要有効塩素濃度[ppm]×必要製造量[L]/(35.5/96500×1000×電解時間[sec]×セル数×電流効率[%]/100)であるので、10ppmの電解水を得るには0.805A、20ppmの電解水を得るには1.610A、30ppmの電解水を得るには、2.416Aの電流を電解槽3に流すことが必要となる。
 総塩素量の理論値は、総塩素量[mg]=電解電流値[A]×35.5/96500×1000×セル数×電解時間[sec]で求められる。
Figure JPOXMLDOC01-appb-T000001
 
(結果)
 電気分解の結果は、表1に示すように、電流値が0.8Aの場合、総塩素量の理論値が39.7mg、電流効率を考慮した有効塩素濃度の理論値が9.9ppmとなるところ、実際に測定された有効塩素濃度は、9.6ppmであった。
 また、電流値が1.6Aの場合、総塩素量の理論値が79.5mg、電流効率を考慮した有効塩素濃度の理論値が19.9ppmとなるところ、実際に測定された有効塩素濃度は、17.9ppmであった。
 また、電流値が2.4Aの場合、総塩素量の理論値が119.2mg、電流効率を考慮した有効塩素濃度の理論値が29.8ppmとなるところ、実際に測定された有効塩素濃度は、33.6ppmであった。
 以上のとおり、いずれの場合にも、ほぼ理論値から想定される範囲の有効塩素濃度の電解水が得られた。
[実施例2]
(電解水製造装置)
 本例においては、電解槽3として、容量が35mlであり、7枚の電極板31によって区画された6つの電解室Cを有する槽を用いた。タンク4としては、3リットル容量のタンクを用いた。希塩酸(原料水)としては、6%の塩酸を電解槽3に封入した。電流値は、2.5Aとし、単位時間(電解電圧印加時間)は、10秒,20秒,30秒から選択的に設定できるように構成した。
(電気分解の方法)
 6%の希塩酸が充填され封止された電解槽3を装着部6に装着した。タンクに3リットルの水道水を入れ水中ポンプで攪拌を開始した。電流値2.5Aを所定の単位時間で流して希塩酸を電気分解した。電解時間(秒)=(必要有効塩素濃度[ppm]×必要製造量[L]/(35.5/96500×1000×電流値[A]×セル数×電流効率[%]/100)であるので、10ppmの電解水を得るには10.9秒、20ppmの電解水を得るには21.7秒、30ppmの電解水を得るには、30.6秒の間電流を電解槽3に流すことが必要となる。
Figure JPOXMLDOC01-appb-T000002
 
(結果)
 電気分解の結果は、表2に示すように、単位時間が10秒の場合、総塩素量の理論値が55.2mg、電流効率を考慮した有効塩素濃度の理論値が9.2ppmとなるところ、実際に測定された有効塩素濃度は、13.3ppmであった。
 また、単位時間が20秒の場合、総塩素量の理論値が110.4mg、電流効率を考慮した有効塩素濃度の理論値が18.4ppmとなるところ、実際に測定された有効塩素濃度は、22.8ppmであった。
 また、単位時間が30秒の場合、総塩素量の理論値が165.6mg、電流効率を考慮した有効塩素濃度の理論値が27.6ppmとなるところ、実際に測定された有効塩素濃度は、31.5ppmであった。
 以上のとおり、いずれの場合にも、ほぼ理論値から想定される範囲の有効塩素濃度の電解殺菌水を製造することができた。
[実施例3]
(電解水製造装置)
 実施例3においては、電解槽3として、容量が140mlであり、25枚の電極板31によって区画された24の電解室Cを有する槽を用いた。タンク4としては、400リットル容量(内寸1000×850×500mm)の水槽を用いた(満水で約400Lの水槽に8割の水位で使用した)。希塩酸(原料水)としては、6%の塩酸を電解槽3に封入した。電流値は、2.5Aとし、単位時間(電解電圧印加時間)は150秒とした。
(電気分解の方法)
 6%の希塩酸が充填され封止された電解槽3を電解水製造装置1Eに設置した。水槽に深さ400mm(約340リットル)の水道水を入れ水中ポンプで攪拌を開始した。電流値2.5Aを150秒流して希塩酸を電気分解した。電気分解後、水中ポンプを用いて水槽内を1分間攪拌して終了した。電解槽を交換することなく、タンク4としての水槽を交換して再び同様の電気分解を行った。この操作を繰り返して合計3回の電気分解を行った。
 24セルの電解槽に2.5Aの電流を1秒流すと、総塩素量(理論値)は2.5×35.5/96500×1000×24×1=22.08mgとなる。340Lの水を5ppmの電解水にするには、5×340=1700mgの塩素が必要となる。
Figure JPOXMLDOC01-appb-T000003
 
(結果)
 電気分解の結果は、表3に示すように、単位時間を150秒として電気分解を行い、水槽の水道水に塩素を溶解させた場合、総塩素量の理論値が3312mg、電流効率を考慮した有効塩素濃度の理論値が4.9ppmとなるところ、1回目の電気分解で実際に測定された有効塩素濃度は、5.8ppmであった。
 また、水槽内の電解水を廃棄し新たに水道水を貯留して、上記と同条件で2回目の電気分解をしたところ、実際に測定された有効塩素濃度は、6.7ppmであった。
 また、同様にして3回目の電気分解をしたところ、実際に測定された有効塩素濃度は、6.2ppmであった。
 以上のとおり、いずれの場合にも、ほぼ理論値から想定される範囲の有効塩素濃度の電解殺菌水を製造することができた。
[実施例4~9]
(電解水製造装置)
 実施例4~9では、希塩酸が封入された1つの電解槽3を用いて、3リットルの電解水(微酸性電解水)を何回製造できるかを調べた。実施例4~9の電解槽3、電流値[A]、単位時間[秒]、塩酸濃度[%]の条件を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
(電気分解の方法)
 3リットルのタンク4に水道水を貯留させて、電解水製造装置の本体にタンク4を設置し、水中ポンプでタンク4内の攪拌を開始した。所定の電流値で所定の単位時間の間電気分解した。電気分解後、水中ポンプを用いてタンク4内を10秒間攪拌して終了した。その後、タンク4の電解水(次亜塩素酸水)をペットボトル等の別の容器に移して空にした。上記の手順を繰り返し、定電流が維持できなくなった時点で電解槽3の使用を終了した。
Figure JPOXMLDOC01-appb-T000005
 
(結果)
 表5に示すように、それぞれの実施例において、予め希塩酸が充填された1つの電解槽3を用いるのみで、複数回の電気分解が可能であり、さらに一定範囲の有効塩素濃度の電解水を生成できることが確認できた。
 また、電流値と単位時間の調整によって、製造される電解水の塩素濃度を調整できることが分かった。具体的に例えば、pH4.0~7.5(好ましくはpH4.0~7.5)、塩素濃度1~60ppm(好ましくは10~30ppm、とくに好ましくは10~20ppm)の次亜塩素酸水がタンク4に生成できることが分かった。
 本発明は、原料水を電気分解することによって電解水を製造する電解水製造装置、電解水の製造方法及び電解槽に適用することができる。
1A,1B,1C,1D,1E,1F 電解水製造装置
2,130,144 導出口
3 電解槽
4 タンク(混合部、容器)
4J 設置部
5 配管(混合部)
6,6a,6b,6c,6d,6e,6f,6g,6h 装着部
7 制御部
9 天壁(ガイド部)
10 底壁(ガイド部)
11 側壁(ガイド部)
13,124 挿通部(ガイド部)
15,123 端子接続部
16A,16B,70,82,125,139,149 係止部
19,131,145,106 連結部
20 貫通孔(孔部)
30,30i 筐体
31 電極板
33 スペーサ
45 電極棒(端子)
120 固定掛止部
121 可動掛止部
131R 貫通孔(孔部)
137 板バネ
148 貫通孔(孔部)
182 ポット(混合部)
207R 流路(混合部)
C 電解室
G ガイド部
M 貯留スペース(空間)

Claims (25)

  1.  原料水を電気分解し電解生成物を発生させこの電解生成物を導出口から排出させる電解槽と、
     前記電解槽で得られた前記電解生成物を希釈水と混合して電解水とする混合部と、
     前記電解槽と前記混合部との間に設けられ、前記導出口と連結させる孔部が形成された連結部を有し、且つ前記電解槽を着脱可能に装着させる装着部と、を備え、
     前記電解槽及び前記装着部は、前記電解槽又は前記連結部を互いに相対的に移動させることによって、前記導出口と前記孔部とが連通し又は連通解除されるように構成され、
     前記電解槽は、この電解槽内に所定量の原料水が予め充填されて封止された状態且つ原料水がその内部へ追加不能にされた状態で前記装着部に装着されるように構成されている電解水製造装置。
  2.  前記装着部には、前記導出口と前記孔部とが連通する連結位置に向けて前記電解槽を誘導するガイド部が備えられ、
     前記導出口と前記孔部とが連通した際に前記電解槽を前記装着部に固定する係止部が、前記電解槽及び前記装着部の少なくともいずれか一方に設けられている請求項1に記載の電解水製造装置。
  3.  前記電解槽は、その筐体の内部に複数の電極板を備え、これら複数の電極板の一方の板面を一方向に向けて間隔をおいて配列され、前記複数の電極板において両端に位置する一対の電極板に前記筐体の外方に向けて突出する端子がそれぞれ設けられた複極式電解槽であり、
     前記ガイド部は、前記端子を挿通させると共に、この端子と接触して前記電解槽に通電する端子接続部を具備した挿通部である請求項2に記載の電解水製造装置。
  4.  前記装着部は、前記電解槽を回動可能に掛止させる固定掛止部を有し、
     前記電解槽は、前記固定掛止部に掛止し、この固定掛止部を支点としてこの電解槽を回動させて前記装着部に装着させる可動掛止部を有している請求項1から3のいずれか一項に記載の電解水製造装置。
  5.  前記装着部は、前記連結部が固定された板バネを備え、
     前記連結部は、前記板バネを前記装着部に装着された前記電解槽に接近又は離間させることにより、前記連結部の孔部と前記導出口とを連通させ又は連通解除させるように構成されている請求項1から3のいずれか一項に記載の電解水製造装置。
  6.  原料水を電気分解し電解生成物を発生させこの電解生成物を導出口から排出させる電解槽と、
     前記電解槽の動作を制御する制御部と、
     前記電解槽で得られた前記電解生成物を希釈水と混合し電解水とする混合部と、を備え、
     前記電解槽は、内部に所定量の前記原料水が予め充填され、その内部に原料水が追加不能にされた状態で前記混合部に連結可能に構成され、
     前記制御部は、前記電解槽に予め充填された前記所定量の原料水のうちの一部を電気分解するために所定の単位時間の間で一定電流値の電流を前記電解槽に供給すると共に、前記所定量の原料水を複数回に分けて電気分解するように構成されている電解水製造装置。
  7.  前記導出口と連通させる孔部が形成された連結部を有し、且つ前記電解槽が着脱可能に装着される装着部をさらに備え、
     前記電解槽及び前記装着部は、前記電解槽又は前記連結部を互いに相対的に移動させることによって、前記導出口と前記孔部とが連通され又は連通解除されるように構成されている請求項6に記載の電解水製造装置。
  8.  前記装着部には、前記導出口と前記孔部とが連通する連結位置に向けて前記電解槽を誘導するガイド部が備えられ、
     前記導出口と前記孔部とが連通した際に前記電解槽を前記装着部に固定する係止部が、前記電解槽及び前記装着部の少なくともいずれか一方に設けられている請求項7に記載の電解水製造装置。
  9.  前記制御部は、前記一定電流値及び前記単位時間の少なくともいずれか一方を設定可能とされ、
     前記制御部は、前記一定電流値及び前記単位時間の少なくともいずれか一方を設定することにより、前記所定量の電解水に対して電気分解をする回数を設定可能である請求項6~8のいずれか一項に記載の電解水製造装置。
  10.  前記制御部は、前記電解槽に対する電気的な接続が解除された際に前記一定電流値又は前記単位時間を変更可能である請求項6~9のいずれか一項に記載の電解水製造装置。
  11.  前記混合部は、前記希釈水を貯留する容器とされ、
     前記容器を着脱可能に設置する設置部が設けられている請求項6~10のいずれか一項に記載の電解水製造装置。
  12.  通電により内部の原料水を電気分解して電解生成物を発生する電解槽であって、
     前記電解生成物が排出される導出口を有する筐体と、該筐体の内部に設けられた複数の電極板と、これら複数の電極板の一方の板面を一方向に向けてこれら複数の電極板を間隔をおいて配列させるスペーサと、隣り合う電極板の間に形成され前記原料水の電気分解が行われる電解室と、を備え、
     前記筐体は、所定量の原料水が充填された状態で液密に封止可能であり、
     前記筐体は、通電可能時において、その内部に前記原料水を追加不能とした状態で前記電解生成物を前記導出口から排出するように構成されている電解槽。
  13.  前記電解室の外側に前記原料水を貯留する空間が形成されている請求項12に記載の電解槽。
  14.  前記空間は、前記電解室の側方及び上方の少なくともいずれか一方に設けられている請求項13に記載の電解槽。
  15.  前記複数の電極板と複数の前記スペーサとが交互に配置されている請求項12~14のいずれか一項に記載の電解槽。
  16.  所定量の原料水が充填された電解槽に、予め設定された単位時間の間で一定電流値の電流を前記電解槽に供給して前記所定量の原料水のうちの一部の電気分解を行う電気分解工程と、前記電気分解工程で発生した電解生成物を希釈水と混合して電解水を製造する混合工程とを、原料水を前記電解槽に追加することなく複数回行うことによって前記電解水を繰り返し製造する製造工程と、
     前記電気分解工程が複数回行われた後の電解槽を、所定量の原料水が充填された別の電解槽に交換する交換工程と、を有する電解水の製造方法。
  17.  前記製造工程の後に、前記電解槽の交換時期を通知する通知工程をさらに有する請求項16に記載の電解水の製造方法。
  18.  前記通知工程では、前記電解槽に流れる電流の電圧値又は電流値に基づいて、前記電解槽の交換時期を通知する請求項17に記載の電解水の製造方法。
  19.  前記通知工程では、行われた前記電気分解工程の回数、又は前記単位時間の累計時間に基づいて、前記電解槽の交換時期を通知する請求項17記載の電解水の製造方法。
  20.  前記電気分解工程における前記一定電流値及び前記単位時間の少なくとも一方を設定すると共に、設定された前記一定電流値と前記単位時間に応じて、前記電解槽の交換時期までの、電気分解工程の回数又は単位時間の累計時間を設定する請求項19に記載の電解水の製造方法。
  21.  所定量且つ所定濃度の原料水を、前記電解槽に充填して封止する封止工程をさらに有し、
     前記電解槽に充填されている原料水の量及び濃度の少なくとも一方に応じて、前記電解槽の交換時期までの、電気分解工程の回数又は単位時間の累計時間を設定する請求項19又は20に記載の電解水の製造方法。
  22.  前記電解槽の内部に設けられた複数の電極板の枚数に応じて、前記電気分解工程における単位時間を変更する請求項16~21のいずれか一項に記載の電解水の製造方法。
  23.  前記電解槽を交換した後の1回目の電気分解工程での単位時間は、2回目以降の電気分解工程での単位時間よりも長くなるように設定される請求項16~22のいずれか一項に記載の電解水の製造方法。
  24.  前記電解槽に所定量の原料水を充填して封止する封止工程をさらに有し、
     前記交換工程では、前記封止工程で封止された電解槽を、前記電解水製造装置に装着されている電解槽と交換する請求項16~23のいずれか一項に記載の電解水の製造方法。
  25.  前記原料水が、濃度0.75~21質量%の希塩酸である請求項16~24のいずれか一項に記載の電解水の製造方法。
PCT/JP2013/075865 2012-09-28 2013-09-25 電解水製造装置、電解水の製造方法及び電解槽 WO2014050865A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380050499.0A CN104662205B (zh) 2012-09-28 2013-09-25 电解水制造装置、电解水的制造方法以及电解槽
US14/431,551 US20150259223A1 (en) 2012-09-28 2013-09-25 Electrolyzed water production device, electrolyzed water production method, and electrolytic bath
KR1020157005850A KR101781012B1 (ko) 2012-09-28 2013-09-25 전해수 제조 장치, 전해수의 제조 방법 및 전해조
EP13842250.6A EP2902532A4 (en) 2012-09-28 2013-09-25 DEVICE FOR PRODUCING ELECTROLYSED WATER, METHOD FOR THE PRODUCTION OF ELECTROLYSED WATER AND ELECTROLYTIC BATH
HK15111156.0A HK1210506A1 (en) 2012-09-28 2015-11-12 Electrolyzed water production device, electrolyzed water production method, and electrolytic bath
US15/943,933 US20180222775A1 (en) 2012-09-28 2018-04-03 Electrolyzed water production device, electrolyzed water production method, and electrolytic bath

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-218855 2012-09-28
JP2012-218856 2012-09-28
JP2012218856A JP5836243B2 (ja) 2012-09-28 2012-09-28 電解水製造装置
JP2012218855A JP5871766B2 (ja) 2012-09-28 2012-09-28 電解層、電解水製造装置及び電解水の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/431,551 A-371-Of-International US20150259223A1 (en) 2012-09-28 2013-09-25 Electrolyzed water production device, electrolyzed water production method, and electrolytic bath
US15/943,933 Division US20180222775A1 (en) 2012-09-28 2018-04-03 Electrolyzed water production device, electrolyzed water production method, and electrolytic bath

Publications (1)

Publication Number Publication Date
WO2014050865A1 true WO2014050865A1 (ja) 2014-04-03

Family

ID=50388262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075865 WO2014050865A1 (ja) 2012-09-28 2013-09-25 電解水製造装置、電解水の製造方法及び電解槽

Country Status (7)

Country Link
US (2) US20150259223A1 (ja)
EP (1) EP2902532A4 (ja)
KR (1) KR101781012B1 (ja)
CN (1) CN104662205B (ja)
HK (1) HK1210506A1 (ja)
TW (1) TWI485291B (ja)
WO (1) WO2014050865A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076158A1 (ja) * 2014-11-11 2016-05-19 森永乳業株式会社 組込装置及び、組込装置の制御方法
WO2018135079A1 (ja) * 2017-01-18 2018-07-26 株式会社日本トリム 電解水生成装置
CN108344772A (zh) * 2017-12-29 2018-07-31 宁波欧琳厨具有限公司 一种净化水槽电解片检测的方法及系统
JP6917553B1 (ja) * 2020-10-30 2021-08-11 パナソニックIpマネジメント株式会社 空間浄化装置及びこれを用いた空間浄化システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6578181B2 (ja) * 2015-10-08 2019-09-18 モレックス エルエルシー 電解水の製造装置
JP6209255B1 (ja) * 2016-07-21 2017-10-04 株式会社日本トリム 電解水生成装置
JP6870992B2 (ja) * 2017-01-18 2021-05-12 株式会社日本トリム 電解水生成装置
JP6853049B2 (ja) * 2017-01-18 2021-03-31 株式会社日本トリム 電解水生成装置
CN110195236A (zh) * 2018-02-24 2019-09-03 苏州倍爱尼生物技术有限公司 一种联结式电解水生成装置
CN112263196B (zh) * 2020-10-23 2022-02-25 珠海格力电器股份有限公司 一种电解控制方法、装置、电解设备及可读存储介质

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620692U (ja) 1979-07-24 1981-02-24
JPS56152783A (en) 1980-04-30 1981-11-26 Miyakawa Seisakusho:Kk Water ionizer
JPS6290794U (ja) 1985-11-26 1987-06-10
JPH01169856A (ja) 1987-12-25 1989-07-05 Hitachi Ltd ブラウン管のゲッタ装置
JPH05329480A (ja) 1992-05-28 1993-12-14 Funai Electric Co Ltd イオン水生成器
JP2000005757A (ja) * 1998-06-19 2000-01-11 Morinaga Milk Ind Co Ltd 経済的な電解殺菌水の製造方法
JP2006205144A (ja) * 2005-01-25 2006-08-10 Hokuetsu:Kk 回分式電解次亜塩素酸含有殺菌用水生成装置
JP2006346650A (ja) * 2005-06-20 2006-12-28 Sawada Kinji アルカリ殺菌水製造装置、アルカリ殺菌水製造方法
JP2007283167A (ja) 2006-04-13 2007-11-01 Hirose Electric Co Ltd 微酸性水生成装置
JP2009262116A (ja) * 2008-04-23 2009-11-12 Hokuetsu:Kk 回分式電解法
JP2010058052A (ja) 2008-09-03 2010-03-18 Morinaga Milk Ind Co Ltd 複極式電解槽及びこれに用いられるスペーサ
JP2011251212A (ja) * 2010-05-31 2011-12-15 Morinaga Milk Ind Co Ltd 電解水製造装置
WO2011157812A1 (en) * 2010-06-17 2011-12-22 Industrie De Nora S.P.A. System for electrochemical generation of hypochlorite
WO2012124384A1 (ja) * 2011-03-17 2012-09-20 セントラル硝子株式会社 フッ素化合物の電解合成用電極及び電解合成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085028A (en) * 1974-11-21 1978-04-18 Electro-Chlor Corporation Electrolytic chlorination device
JPS56152786A (en) * 1980-04-30 1981-11-26 Miyakawa Seisakusho:Kk Water ionizer
JPS56152787A (en) * 1980-04-30 1981-11-26 Miyakawa Seisakusho:Kk Water ionizer
US5133848A (en) * 1991-08-05 1992-07-28 Oxi Generators, Inc. On-site oxidant generator
US5836479A (en) * 1994-07-25 1998-11-17 Sprayex L.L.C. Rechargeable containers and dispensers
US5925240A (en) * 1997-05-20 1999-07-20 United States Filter Corporation Water treatment system having dosing control
US6964739B2 (en) * 2000-12-12 2005-11-15 Tersano Inc. Device and method for generating and applying ozonated water
US7008523B2 (en) * 2001-07-16 2006-03-07 Miox Corporation Electrolytic cell for surface and point of use disinfection
GB2393737B (en) * 2002-10-03 2005-08-17 Sterilox Tech Int Ltd Electronic treatment of an aqueous salt solution
JP2006239674A (ja) * 2005-03-02 2006-09-14 Hokuetsu:Kk 電解水生成装置
JP4668884B2 (ja) * 2006-11-06 2011-04-13 ヒロセ電機株式会社 微酸性水生成装置
FR2955842B1 (fr) * 2010-02-04 2012-03-16 Thea Lab Flacon de conditionnement d'un liquide a tete de distribution goutte a goutte
JP5156792B2 (ja) * 2010-05-31 2013-03-06 森永乳業株式会社 電解水製造装置
US20130112571A1 (en) * 2010-06-14 2013-05-09 Hocl Inc. Electrolytic apparatus and method for producing slightly acidic electrolyzed water

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620692U (ja) 1979-07-24 1981-02-24
JPS56152783A (en) 1980-04-30 1981-11-26 Miyakawa Seisakusho:Kk Water ionizer
JPS6290794U (ja) 1985-11-26 1987-06-10
JPH01169856A (ja) 1987-12-25 1989-07-05 Hitachi Ltd ブラウン管のゲッタ装置
JPH05329480A (ja) 1992-05-28 1993-12-14 Funai Electric Co Ltd イオン水生成器
JP2000005757A (ja) * 1998-06-19 2000-01-11 Morinaga Milk Ind Co Ltd 経済的な電解殺菌水の製造方法
JP2006205144A (ja) * 2005-01-25 2006-08-10 Hokuetsu:Kk 回分式電解次亜塩素酸含有殺菌用水生成装置
JP2006346650A (ja) * 2005-06-20 2006-12-28 Sawada Kinji アルカリ殺菌水製造装置、アルカリ殺菌水製造方法
JP2007283167A (ja) 2006-04-13 2007-11-01 Hirose Electric Co Ltd 微酸性水生成装置
JP2009262116A (ja) * 2008-04-23 2009-11-12 Hokuetsu:Kk 回分式電解法
JP2010058052A (ja) 2008-09-03 2010-03-18 Morinaga Milk Ind Co Ltd 複極式電解槽及びこれに用いられるスペーサ
JP2011251212A (ja) * 2010-05-31 2011-12-15 Morinaga Milk Ind Co Ltd 電解水製造装置
WO2011157812A1 (en) * 2010-06-17 2011-12-22 Industrie De Nora S.P.A. System for electrochemical generation of hypochlorite
WO2012124384A1 (ja) * 2011-03-17 2012-09-20 セントラル硝子株式会社 フッ素化合物の電解合成用電極及び電解合成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Japanese Standards for hydrochlorous acid water", 10 June 2002
JAPAN WATER WORKS ASSOCIATION: "Tapwater Test Method", 15 November 1993, pages: 218 - 219
See also references of EP2902532A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076158A1 (ja) * 2014-11-11 2016-05-19 森永乳業株式会社 組込装置及び、組込装置の制御方法
JP2016087591A (ja) * 2014-11-11 2016-05-23 森永乳業株式会社 組込装置及び、組込装置の制御方法
KR20170065654A (ko) * 2014-11-11 2017-06-13 모리나가 뉴교 가부시키가이샤 통합 장치 및 통합 장치의 제어 방법
CN107074592A (zh) * 2014-11-11 2017-08-18 森永乳业株式会社 组装装置和组装装置的控制方法
KR101962154B1 (ko) * 2014-11-11 2019-03-26 모리나가 뉴교 가부시키가이샤 통합 장치 및 통합 장치의 제어 방법
WO2018135079A1 (ja) * 2017-01-18 2018-07-26 株式会社日本トリム 電解水生成装置
CN108344772A (zh) * 2017-12-29 2018-07-31 宁波欧琳厨具有限公司 一种净化水槽电解片检测的方法及系统
CN108344772B (zh) * 2017-12-29 2023-07-11 宁波欧琳科技股份有限公司 一种净化水槽电解片检测的方法及系统
JP6917553B1 (ja) * 2020-10-30 2021-08-11 パナソニックIpマネジメント株式会社 空間浄化装置及びこれを用いた空間浄化システム
JP2022072529A (ja) * 2020-10-30 2022-05-17 パナソニックIpマネジメント株式会社 空間浄化装置及びこれを用いた空間浄化システム

Also Published As

Publication number Publication date
TW201418522A (zh) 2014-05-16
TWI485291B (zh) 2015-05-21
KR101781012B1 (ko) 2017-09-25
KR20150038613A (ko) 2015-04-08
US20150259223A1 (en) 2015-09-17
CN104662205A (zh) 2015-05-27
CN104662205B (zh) 2017-10-24
US20180222775A1 (en) 2018-08-09
HK1210506A1 (en) 2016-04-22
EP2902532A1 (en) 2015-08-05
EP2902532A4 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2014050865A1 (ja) 電解水製造装置、電解水の製造方法及び電解槽
JP5541588B2 (ja) スプレーディスペンサ
BRPI0707588A2 (pt) dispositivo de limpeza de superfÍcie màvel, e, mÉtodo para produzir um lÍquido eletroquimicamente ativado
BRPI0707587A2 (pt) mÉtodo e aparelho para receber um lÍquido de limpeza
MXPA04011401A (es) Dispspositivos electroliticos autocontenidos, autoalimentados para mejorar el desmpeno de los lavaplatos automaticos.
BRPI0707585B1 (pt) Dispositivo de limpeza de superfície móvel, e, método de limpeza de superfície
WO2008035868A1 (en) Apparatus for producing antiseptic solution including chlorine
CN208328131U (zh) 可提高反应速率的新型次氯酸钠发生器
JP2006239674A (ja) 電解水生成装置
JP5871766B2 (ja) 電解層、電解水製造装置及び電解水の製造方法
JP5836243B2 (ja) 電解水製造装置
CN210582268U (zh) 清洗组件和果蔬清洗机
WO2006008877A1 (ja) 電解水生成・希釈供給装置および電解水生成・希釈供給方法
KR100904682B1 (ko) 차아염소산나트륨 발생 장치
JP5877031B2 (ja) 次亜塩素酸水の製造装置
KR101919551B1 (ko) 전해기능을 갖는 펌프가 구비된 차아염소산수 생성기
CN213357769U (zh) 一种生成微酸次氯酸与碱性水的生成装置
CN113699545A (zh) 消毒液制造装置
KR200250783Y1 (ko) 전해수 생성시스템
KR200459389Y1 (ko) 전해소독수 공급장치
KR200432443Y1 (ko) 차아염소산나트륨 발생장치용 염수 저장조의 소금량표시장치
CN215828881U (zh) 消毒液制造装置
JP2002192158A (ja) 電解装置
KR20020094226A (ko) 전해수 생성시스템
CN214529264U (zh) 一种次氯酸消毒水自动生成设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005850

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431551

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013842250

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201502432

Country of ref document: ID