WO2012124384A1 - フッ素化合物の電解合成用電極及び電解合成方法 - Google Patents

フッ素化合物の電解合成用電極及び電解合成方法 Download PDF

Info

Publication number
WO2012124384A1
WO2012124384A1 PCT/JP2012/051766 JP2012051766W WO2012124384A1 WO 2012124384 A1 WO2012124384 A1 WO 2012124384A1 JP 2012051766 W JP2012051766 W JP 2012051766W WO 2012124384 A1 WO2012124384 A1 WO 2012124384A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolysis
fluoride
fluorine compound
electrolytic
Prior art date
Application number
PCT/JP2012/051766
Other languages
English (en)
French (fr)
Inventor
勇 毛利
章史 八尾
亜紀応 菊池
正明 米倉
大嗣 堀内
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US13/985,242 priority Critical patent/US9238872B2/en
Priority to CN2012800135027A priority patent/CN103429790A/zh
Priority to EP12757386.3A priority patent/EP2671973A1/en
Priority to KR1020137026813A priority patent/KR20130143650A/ko
Publication of WO2012124384A1 publication Critical patent/WO2012124384A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/043Carbon, e.g. diamond or graphene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes

Definitions

  • the present invention relates to an electrode for electrolytic synthesis and an electrolytic synthesis method for synthesizing a fluorine compound using an electrolytic bath made of a molten salt containing hydrogen fluoride.
  • Patent Document 1 discloses a technique for self-stabilizing an electrode by forming a fluorinated graphite layer in an exposed portion where the diamond layer is not coated.
  • the fluorinated graphite layer is an insulating film and has low surface energy and poor wettability with the molten salt in the electrolytic bath
  • the electrode that contributes to electrolysis is effective as the fluorinated graphite layer grows.
  • the area decreases, causing an increase in electrolysis voltage due to an increase in electrical resistance of the electrode itself, abnormal heat generation, poor conduction, and the like.
  • the volume change of the electrode itself occurs due to the formation and growth of the fluorinated graphite layer, cracks or cracks may occur in the electrode itself, which may lead to electrolysis failure.
  • Patent Document 1 it is possible to preferentially form a fluorinated graphite layer such as (CF) n on the exposed portion of the electrode, thereby self-stabilizing the electrode and improving electrolysis failure. From the viewpoint of the effective electrolytic area of the electrode, it is desirable to suppress the formation of the fluorinated graphite layer as much as possible.
  • the surface of the electrode substrate is not completely coated with conductive diamond. It is difficult to suppress the formation of a fluorinated graphite layer on the exposed surface of the electrode, and in a long-term electrolytic reaction, the fluorinated graphite layer grows gradually, making it difficult to avoid a decrease in the effective electrolytic area of the electrode. there were.
  • the present invention has been made in view of the above problems, and suppresses the formation of a fluorinated graphite layer on the electrode surface for electrolytic synthesis of a fluorine compound, prevents a decrease in the effective electrolytic area of the electrode, and is stable. It is an object of the present invention to provide an electrode for electrolytic synthesis of a fluorine compound that can be electrolyzed. Another object of the present invention is to provide a stable electrolytic synthesis method for fluorine compounds.
  • the present inventors reduced the effective electrolytic area of the electrode by coating a metal fluoride-containing film on the surface of the electrode substrate that is not coated with the conductive diamond layer.
  • An electrode for electrolytic synthesis of a fluorine compound that can be prevented and stably electrolyzed has been found, and the present invention has been achieved.
  • an electrode for electrolysis for synthesizing a fluorine compound using a molten salt electrolysis bath containing hydrogen fluoride, and at least the surface of the electrode for electrolysis is made of a conductive carbon material.
  • the metal fluoride-containing film is made of potassium metal fluoride represented by the general formula KnMFm (M is Ni, Fe, Cu, Zn, Al; n is 1 to 3; m is 1 to 7). preferable.
  • a fluorine compound electrolysis electrode comprising: an electrode base material having at least a surface thereof made of a conductive carbon material; and a conductive diamond layer coated on a part of the surface of the electrode base material.
  • the exposed surface of the electrode base material that is not coated with the conductive diamond layer is coated with a conductive and highly durable metal fluoride-containing film. Therefore, it is possible to prevent a reduction in the effective electrolysis area of the electrode, and it is possible to perform electrolysis stably in a molten salt electrolysis bath containing hydrogen fluoride.
  • the electrode for electrolysis according to the present invention is an electrode for electrolysis for synthesizing fluorine compounds such as fluorine gas and nitrogen trifluoride gas using a molten salt electrolysis bath containing hydrogen fluoride.
  • FIG. 1 shows an enlarged cross-sectional view of an electrode for electrolysis (anode 7) according to an embodiment of the present invention.
  • the electrode for electrolysis (anode 7) of the present invention has at least a surface of an electrode base material 70 made of a conductive carbon material, a conductive diamond layer 70b coated on a part of the surface of the electrode base material 70, and the conductive material. And a metal fluoride-containing film 70c coated on the surface of the exposed portion 70a on the surface of the electrode substrate 70 that is not coated with the conductive diamond layer 70b.
  • a metal fluoride-containing film 70c is formed on the exposed portion 70a, and a fluorinated graphite layer such as (CF) n is deposited on the exposed portion 70a. It is characterized by preventing this.
  • the surface of the conductive diamond layer 70b is also covered with the metal fluoride-containing film 70c. With this configuration, it is possible to perform the electrolytic reaction more stably than in the case where only the conductive diamond layer 70b is coated on the surface of the electrode base material 70.
  • the electrode substrate 70 used in the present invention is particularly limited as long as at least the surface thereof is conductive and has chemical durability and stability against fluoride ions contained in the molten salt in the electrolytic bath.
  • the material of the electrode substrate surface includes amorphous carbon, graphite, silicon nitride, and the like.
  • the shape of the electrode base material 70 should be appropriately set depending on the shape of the electrolytic cell to be operated, the space, and the like, and is not particularly limited. The shape is mentioned.
  • the method for coating the electrode base material 70 with conductive diamond is not particularly limited, and generally known methods such as a hot filament CVD method, a microwave plasma CVD method, and a plasma arc jet method can be used.
  • a hot filament CVD method well known as a typical method for synthesizing conductive diamond may be used.
  • a mixed gas obtained by diluting a carbon-containing gas with hydrogen is used as a raw material for diamond.
  • the carbon-containing gas organic compounds such as methane, acetone, and alcohol can be used.
  • a small amount of dopant is added to impart conductivity to diamond.
  • the dopant boron, phosphorus, nitrogen and the like are preferable.
  • the addition rate may be appropriately adjusted within a range of 1 to 50000 ppm.
  • the procedure for coating the electrode base material 70 with the conductive diamond layer 70b will be described.
  • a filament installed in a hot filament CVD apparatus is heated to a temperature at which hydrogen radicals are generated (1800 ° C. to 2800 ° C.).
  • the electrode base material 70 is placed in a temperature region (700 ° C. to 1000 ° C.) where diamond is deposited, and the electrode base material 70 is coated with conductive diamond.
  • the supply speed and flow rate of the mixed gas are appropriately set depending on the size and shape of the apparatus used.
  • the film forming pressure is preferably 15 to 760 Torr.
  • the surface roughness Ra is preferably 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the surface roughness Ra mentioned here refers to the arithmetic average roughness described in JIS B0601: 2001, and can be measured using a stylus type surface roughness measuring instrument.
  • the nucleation promotion treatment method is not particularly limited, and may be performed, for example, by immersing the electrode base material 70 in an aqueous solution such as ethanol in which diamond particles are dispersed.
  • FIG. 2 shows a schematic diagram of an example of an electrolytic cell to which the electrolytic electrode of the present invention can be applied.
  • the electrolytic electrode of the present invention will be described as the anode 7.
  • the electrolytic bath 1 stores a molten salt containing hydrogen fluoride (HF).
  • HF hydrogen fluoride
  • the composition of the fluorine compound gas generated from the electrolytic cell 1 can be appropriately changed.
  • NF 3 nitrogen trifluoride
  • F 2 and NF 3 are mixed. A mixture is obtained.
  • the inside of the electrolytic cell 1 is partitioned into an anode chamber 11 and a cathode chamber 12 by a partition wall 6 immersed in the molten salt.
  • the anode 7 and the cathode 8 are immersed, respectively.
  • a main gas mainly composed of fluorine gas (F 2 ) is generated at the anode 7, and hydrogen gas (H 2 ) is generated at the cathode 8.
  • F 2 fluorine gas
  • H 2 hydrogen gas
  • By-product gas as a main component is generated.
  • An electrode for electrolysis according to the present invention is used for the anode 7, and soft iron, monel, or nickel is used for the cathode 8.
  • a first gas chamber 11a into which fluorine gas generated at the anode 7 is guided, and a second gas chamber 12a into which hydrogen gas generated at the cathode 8 is guided. are partitioned by the partition wall 6 so that the mutual gas cannot pass.
  • the first air chamber 11a and the second air chamber 12a are completely separated by the partition wall 6 in order to prevent a reaction due to the contact of fluorine gas and hydrogen gas.
  • the molten salt in the anode chamber 11 and the cathode chamber 12 is not separated by the partition wall 6 but communicates through the lower portion of the partition wall 6.
  • each of the fluorine gas and the hydrogen gas generated from the anode 7 and the cathode 8 of the electrolytic cell 1 hydrogen fluoride is vaporized from the molten salt by the vapor pressure and mixed.
  • each of the fluorine gas generated at the anode 7 and guided to the first air chamber 11a and the hydrogen gas generated at the cathode 8 and guided to the second air chamber 12a includes hydrogen fluoride gas. Yes.
  • a raw material supply system 5 for supplying and replenishing hydrogen fluoride, which is a raw material of fluorine gas, to the molten salt of the electrolytic cell 1 is also provided. Below, the raw material supply system 5 is demonstrated.
  • the electrolytic cell 1 is connected through a raw material supply passage 41 and a hydrogen fluoride supply source 40 in which hydrogen fluoride for replenishing the electrolytic cell 1 is stored. Hydrogen fluoride stored in the hydrogen fluoride supply source 40 is supplied into the molten salt of the electrolytic cell 1 through the raw material supply passage 41.
  • a carrier gas supply passage 46 that guides the carrier gas supplied from the carrier gas supply source 45 into the raw material supply passage 41 is connected to the raw material supply passage 41.
  • the carrier gas is a gas for introducing hydrogen fluoride into the molten salt, and nitrogen gas which is an inert gas is used. Nitrogen gas is supplied together with hydrogen fluoride into the molten salt in the cathode chamber 12, hardly dissolves in the molten salt, and is discharged from the second air chamber 12 a through the second main passage 30.
  • Fluorine compound is electrolytically synthesized in the electrolytic cell 1 configured as described above using the electrode for electrolysis according to the present invention as the anode 7 of the electrolytic cell 1.
  • the metal ion concentration in the molten salt in the electrolytic cell 1 is adjusted to a predetermined concentration [1] in advance, and the electrode for electrolysis (anode 7) is immersed in the molten salt in which the metal ion concentration is adjusted to the predetermined concentration.
  • Step [1] is a step in which metal ions coexist in the molten salt bath stored in the electrolytic cell 1 and the metal ion concentration in the molten salt is adjusted to a predetermined concentration in advance.
  • metal fluoride ions are formed.
  • the method of allowing the metal ions to coexist in the molten salt is not particularly limited, but a method of immersing and dissolving a metal salt such as fluoride or a certain amount of metal may be performed.
  • the concentration of metal ions in the molten salt is preferably 10 ppm to 5%.
  • any metal ions that can form higher-order metal fluoride ions can be used.
  • Ni can be cited, and as others, Fe, Cu, Zn, Al , Etc. are also applicable.
  • fluoride metal salts include nickel fluoride, iron fluoride, copper fluoride, and zinc fluoride. These metals are suitable for forming fluorine and higher-order metal ions and forming a highly corrosion-resistant film by electrolytic reaction.
  • Ni has a smooth surface, sufficient film strength, and This is preferable because a nickel fluoride compound film having good conductivity can be formed.
  • Step [2] is an electrode for electrolysis (anode 7) in which metal ions are allowed to coexist in the molten salt bath stored in the electrolytic cell 1 and a conductive salt is coated in a molten salt in which the metal ion concentration is adjusted to a predetermined concentration.
  • the metal fluoride-containing film 70c can be coated only by immersing the electrode for electrolysis (anode 7) in the molten salt, but by performing an electrolytic reaction at a predetermined current density, The fluoride-containing film 70c may be covered.
  • the electrolytic reaction may be performed with a current density of 0.1 to 5 A / dm 2 .
  • a metal fluoride represented by the general formula KnMFm (M is Ni, Fe, Cu, Zn; n is 1 to 3; m is 1 to 7).
  • a film composed mainly of potassium is formed.
  • nickel is particularly preferable.
  • Specific examples of the nickel fluoride potassium compound include KNiF 3 , K 2 NiF 4 , K 0.12 NiF 3 , K 3 NiF 6 , K 2 NiF 6 , K 3 Ni 2 F 7 , K 2 NiF 4 , and K 3 NiF 7. , K 3 NiF 5 , KNiF 4 , KNiF 5 , KNiF 6 , K 2 NiF 7 , K 2 NiF 5 , K 4 NiF 6 and the like.
  • K 3 FeF 6 K 0.25 FeF 3 , K 0.6 FeF 3 , K 2 FeF 4 , K 2 Fe 2 F 7 , KFeF 3 , K 2 FeF 6 , K 2 Fe 5 F 17 , K 2 FeF 5 , KFeF 4 , K 5.25 Fe 10 F 30 , K 42 Fe 80 F 240 , K 10.5 Fe 20 F 60 , K 2 FeF 5 , KFeF 6 , K 3 FeF 4 for zinc (Zn), KZnF 3 , K 2 ZnF 4 , K 3 Zn 2 F 7 , KZnF 4 , K 2 ZnF 6 , for copper (Cu), KCuF 3 , K 2 CuF 4 , K 3 CuF 6, K 2 CuF 3, K 3 Cu 2 F 7, KCuF 5 can be exemplified.
  • KnMFm (M is Ni, Fe, Cu, Zn; n is 1 to 3; m is 1 to 7), potassium (K) May be lithium (Li).
  • step [3] will be described.
  • an electrolytic reaction is performed at a predetermined current density, and the surface of the metal fluoride-containing film 70c covered with the exposed portion 70a in the step [2] further contains a metal fluoride.
  • This is a step of electrolytically synthesizing a fluorine compound while forming the film 70c.
  • the metal fluoride-containing film 70c is preferentially formed on the surface of the exposed portion 70a of the electrode base material 70 while the formation of the fluorinated graphite layer is suppressed, and the fluorine compound is electrolytically synthesized.
  • step [3] is preferably performed after step [2] is performed, but step [2] is not performed, and step [3] is performed after step [1].
  • the metal fluoride-containing film 70c may be formed on the exposed portion 70a before synthesizing the fluorine compound by the electrolytic reaction, but the step [1] and the step [3] Instead of forming the metal fluoride-containing film 70c in the exposed portion in advance, the fluorine compound and synthesis by the electrolytic reaction and the formation and coating of the metal fluoride-containing film 70c in the exposed portion 70a may be performed simultaneously.
  • the nickel ions form higher-order metal fluoride ions, and the exposed portions 70a of the electrode base 70 that are not covered with the conductive diamond 70b are covered with the above-listed fluoride ions.
  • a coating film composed mainly of a mixture of potassium nickel iodide is formed. Further, a film mainly composed of nickel potassium fluoride is also formed on the surface of the conductive diamond 70b.
  • a method of adding nickel fluoride (NiF 2 ) as a metal salt of fluoride to the molten salt, a metal rod made of nickel, etc. is immersed in the molten salt and dissolved.
  • NiF 2 nickel fluoride
  • Examples thereof include a method, or a method of eluting nickel from the material of the electrolytic cell using a container of the electrolytic cell 1 as a cathode and using a metal such as monel containing a nickel component as a material.
  • the concentration of nickel ions in the molten salt prepared in advance is preferably 10 ppm to 5%, particularly preferably 30 ppm to 1000 ppm.
  • the nickel fluoride potassium film may not be sufficiently formed. If it is 5% or more, nickel fluoride sludge is generated in the molten salt bath of the electrolytic cell, and it tends to accumulate at the bottom of the electrolytic cell. It is not preferable.
  • the electrode base material 70 can be covered only by immersing it in a molten salt in which metal ions are adjusted to a predetermined concentration.
  • the nickel fluoride compound film may be coated by performing an electrolytic reaction at a predetermined current density.
  • the exposed portion 70a of the electrode substrate 70 is coated with a nickel fluoride potassium film by an electrolytic reaction
  • a direct current is applied to the anode 7 and the cathode 8 of the electrolytic cell, and the current density is 0.1. -5 A / dm 2 , particularly preferably 0.1-1 A / dm 2 .
  • the energization time varies depending on the size of the electrode to be used, the number of electrodes, the size of the electrolytic cell, and the like. For example, constant current electrolysis for 0.1 hour or more is recommended.
  • the current density is higher than 5 A / dm 2 , it is not preferable because the graphite fluoride layer is easily formed before the nickel fluoride potassium film is deposited on the surface of the exposed portion 70a.
  • the current density can be freely adjusted according to the target production amount.
  • the current density is set between 0.1 and 1000 A / dm2.
  • the current density (A / dm 2 ) mentioned here represents applied current (A) / apparent electrode area (dm 2 ).
  • Example 1 Using a hot filament CVD apparatus, an electrode for electrolysis (anode 7) coated with conductive diamond doped with boron (hereinafter abbreviated as boron-doped diamond) was produced under the following conditions.
  • an electrode base material 70 an amorphous carbon substrate was used.
  • the surface of the electrode base material 70 was polished on the entire surface of the front surface and the back surface using an abrasive containing diamond particles.
  • the polished electrode base material 70 is immersed in an ultrasonic cleaning tank into which an ethanol aqueous solution in which diamond particles having a particle diameter of 5 nm are dispersed is placed, and the entire surface of the electrode base material 70 is subjected to diamond nucleation promotion treatment. It was.
  • the electrode substrate 70 was dried, and the electrode substrate 70 was placed below the filament in the hot filament CVD apparatus. Further, the filament was maintained at 2200 ° C. or more, the pressure inside the apparatus was maintained at 30 Torr, and a mixed gas in which 1.0 vol% methane gas and 3000 ppm trimethyl boron gas were added to hydrogen gas was allowed to flow in the CVD apparatus for 8 hours. A film was formed, and the electrode substrate 70 was coated with boron-doped diamond. In addition, the substrate temperature of the electrode base material 70 was 850 degreeC. Similar operations were repeated to coat the front and back surfaces of the electrode base material 70 with boron-doped diamond (conductive diamond layer 70b).
  • Nickel fluoride was added as a metal fluoride to the KF-2HF molten salt to adjust the nickel ion concentration to 100 ppm in advance.
  • the electrode for electrolysis electrode base material 70 coated with boron-doped diamond
  • a nickel plate is used as the cathode 8 at a current density of 1 A / dm 2 .
  • Constant-time electrolysis was performed, and a nickel fluoride potassium film (metal fluoride-containing film 70c) was deposited on the exposed portion 70a of the electrode substrate 70 not covered with boron-doped diamond.
  • the current density was increased to 20 A / dm 2 and electrolysis was performed for 24 hours.
  • the electrolysis voltage around 24 hours was 8 V ⁇ 0.1 V.
  • Example 2 An electrode (anode 7) coated with boron-doped diamond was produced in the same manner as in Example 1 except that the nickel ion concentration in the KF-2HF molten salt prepared in advance was 30 ppm. When the produced electrode was used for electrolysis under the same electrolysis conditions as in Example 1, the electrolysis voltage around 24 hours was 8V ⁇ 0.1V.
  • Electrolysis tank 2 Fluorine gas supply system 3: By-product gas supply system 5: Raw material supply system 7: Anode 8: Cathode 11a: First air chamber 12a: Second air chamber 15: First main passage 30: Second Main passage 70: Electrode base material 70a: Exposed portion 70b: Conductive diamond layer 70c: Metal fluoride-containing film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 本発明のフッ素化合物の電解合成用電極は、少なくともその表面が導電性炭素材料から成る電極基材と、前記電極基材表面の一部に被覆された導電性ダイヤモンド層と、前記導電性ダイヤモンド層が被覆されていない前記電極基材の露出部に被覆された金属フッ化物含有膜と、を備える。該電解合成用電極では、電極表面でのフッ化黒鉛層の生成を抑制して、電極の有効電解面積の減少を防ぎ、フッ化水素を含む溶融塩電解浴において安定的に電解を実施することができる。

Description

フッ素化合物の電解合成用電極及び電解合成方法
 本発明は、フッ化水素を含む溶融塩からなる電解浴を用いてフッ素化合物を合成するための電解合成用電極及び電解合成方法に関する。
 従来のフッ化水素を含む溶融塩からなる電解浴中でフッ化水素を電気分解することによってフッ素や三フッ化窒素等のフッ素化合物を合成する電解法では、主に、陽極として炭素電極が使用されてきた。上記のフッ素化合物を合成する電解法において、炭素材料を電極として使用する場合、炭素表面に(CF)n等で表される絶縁性のフッ化黒鉛層が成長することが知られている。しかしながら、フッ化黒鉛層が炭素表面に厚く成長すると、電極と電解浴中の電解液との接触する面積が減少し、電流が流れなくなる(所謂、陽極効果と呼ばれる)という問題がある。そこで、フッ化黒鉛層の成長が起こりにくい導電性ダイヤモンドを炭素質基材の表面に被膜する方法が用いられている。
 従来の導電性ダイヤモンドを炭素質基材の表面に被覆する方法では、導電性ダイヤモンドが多結晶であるため、炭素質基材を極めて小さな欠陥もなく完全に被覆することは現実的に困難である。そのため、ダイヤモンド層の極めて小さな欠陥から、電解液が進入して、基材が消耗する結果、ダイヤモンド層の剥離が進行してしまうという問題点があった。
 この問題点を改善するために、例えば、特許文献1にダイヤモンド層が被覆されていない露出部にフッ化黒鉛層を形成することによって、電極を自己安定化させる技術が開示されている。
特開2006-249557号公報
 しかしながら、フッ化黒鉛層は、絶縁膜であり、かつ、表面エネルギーが低く電解浴中の溶融塩との濡れ性が良くないため、フッ化黒鉛層の成長に伴い、電解に寄与する電極の有効面積は減少し、電極自体の電気抵抗増加による電解電圧の上昇や異常な発熱、導通不良などを生じる原因となる。また、フッ化黒鉛層の形成、成長により、電極自体の体積変化が発生するため、電極自体にひび割れやクラックなどが発生し、電解不良に陥るという恐れもある。特許文献1に記載のように、電極の露出部に(CF)n等のフッ化黒鉛層を優先的に形成することによって、電極を自己安定化させ電解不良を改善することは可能であるが、電極の有効電解面積の観点からフッ化黒鉛層の生成はできるだけ抑制することが望ましい。
 このように、従来の導電性ダイヤモンドが被覆されたフッ素化合物の電解合成用電極では、電極基材の表面に完全に導電性ダイヤモンドが被覆されていないので、電解反応を行うに伴い、電極基材の露出表面においてフッ化黒鉛層の生成を抑制することが難しく、長期間の電解反応では、フッ化黒鉛層が次第に成長し、電極の有効電解面積の減少を避けることが困難となる問題点があった。
 本発明は、上記の問題点に鑑みてなされたものであり、フッ素化合物の電解合成用の電極表面において、フッ化黒鉛層の生成を抑制し、電極の有効電解面積の減少を防ぎ、安定的に電解可能なフッ素化合物の電解合成用電極を提供することを目的とする。また、本発明は、フッ素化合物の安定的な電解合成方法を提供することを目的とする。
 本発明者らは、上記の課題を解決するために、導電性ダイヤモンド層が被覆されていない電極基材の表面に、金属フッ化物含有膜を被覆することによって、電極の有効電解面積の減少を防ぎ、安定的に電解可能なフッ素化合物の電解合成用電極を見出し、本発明に至った。
 すなわち、本発明によれば、フッ化水素を含む溶融塩電解浴を用いてフッ素化合物を合成するための電解用電極であって、前記電解用電極は、少なくともその表面が導電性炭素材料から成る電極基材と、前記電極基材表面の一部に被覆された導電性ダイヤモンド層と、前記導電性ダイヤモンド層が被覆されていない前記電極基材の露出部に形成された金属フッ化物含有膜と、を備える電解用電極が提供される。
 特に、金属フッ化物含有膜は、一般式KnMFm(MはNi、Fe、Cu、Zn、Al;nは1~3;mは1~7である)で示されるフッ化金属カリウムからなることが好ましい。
 また、本発明によれば、少なくともその表面が導電性炭素材料から成る電極基材と、前記電極基材表面の一部に被覆された導電性ダイヤモンド層と、を有するフッ素化合物の電解用電極を、フッ化水素を含む溶融塩電解浴に浸漬させ陽極として使用しフッ素化合物を合成する電解合成方法であって、前記導電性ダイヤモンド層が被覆されていない露出部に金属フッ化物含有膜を形成させながらフッ素化合物を合成することを特徴とする、フッ素化合物の電解合成方法が提供される。
 本発明のフッ素化合物の電解合成用電極では、導電性ダイヤモンド層が被覆されていない電極基材の露出表面に、導電性を有し、かつ、耐久性の高い金属フッ化物含有膜が被覆されているため、電極の有効電解面積の減少を防ぐことができ、フッ化水素を含む溶融塩電解浴において安定的に電解を実施することが可能となる。
本発明の一実施形態に係る電解用電極の拡大断面図である。 図1の電解用電極を適用可能な電解槽の一例を示す概略図である。
 以下、本発明に係るフッ素化合物の電解合成用電極について詳細に説明する。
 本発明に係る電解用電極は、フッ化水素を含む溶融塩電解浴を用いてフッ素ガスや三フッ化窒素ガスなどのフッ素化合物を合成するための電解用電極である。
 図1に本発明の実施形態に係る電解用電極(陽極7)の拡大断面図を示す。本発明の電解用電極(陽極7)は、少なくともその表面が導電性炭素材料から成る電極基材70と、前記電極基材70表面の一部に被覆された導電性ダイヤモンド層70bと、前記導電性ダイヤモンド層70bが被覆されていない電極基材70表面の露出部70aの表面に被覆される金属フッ化物含有膜70cとから構成される。
 図1に示すように、本発明の電解用電極(陽極7)は、露出部70aに金属フッ化物含有膜70cを形成させ、露出部70aに(CF)n等のフッ化黒鉛層を堆積させることを防止することを特徴としている。また、導電性ダイヤモンド層70b表面にも、金属フッ化物含有膜70cが被覆される。この構成によって、電極基材70表面に導電性ダイヤモンド層70bのみ被覆した場合に比べ、より安定的に電解反応を行うことが可能となる。
 本発明に用いる電極基材70は、少なくともその表面が導電性を有しており、電解浴中の溶融塩に含まれるフッ化物イオンに対する化学的耐久性、安定性を有するものであれば特に限定されない。例えば、電極基材表面の材質としては、非晶質炭素(アモルファスカーボン)、黒鉛、窒化珪素、などが挙げられる。
 また、電極基材70の形状は、操業する電解槽の形状、スペース等によって適宜設定されるべきものであり特に限定されないが、例えば、板状、円筒状、棒状、球状、多孔質状、などの形状が挙げられる。
 電極基材70に導電性ダイヤモンドを被覆する方法は、熱フィラメントCVD法、マイクロ波プラズマCVD法、プラズマアークジェット法、など一般的に公知の方法を用いることができ特に限定されない。例えば、導電性ダイヤモンドの代表的な合成方法としてよく知られている熱フィラメントCVD法を用いるとよい。
 熱フィラメントCVD法などの気相合成法によって、導電性ダイヤモンドを合成する場合、ダイヤモンドの原料として含炭素気体を水素で希釈した混合ガスを用いる。含炭素気体としては、メタン、アセトン、アルコールなどの有機化合物を用いることができる。さらに、ダイヤモンドに導電性を付与するために、ドーパントが微量添加される。ドーパントとしては、ボロン、リン、窒素等が好ましく、例えば、添加率は、1~50000ppmの範囲で適宜調整するとよい。
 電極基材70に導電性ダイヤモンド層70bを被覆する手順を説明する。熱フィラメントCVD法の装置内に設置されたフィラメントを水素ラジカルが発生する温度(1800℃~2800℃)程度に加熱する。電極基材70をこの装置内において、ダイヤモンドが析出する温度領域(700℃~1000℃)に設置し、電極基材70に導電性ダイヤモンドを被覆する。なお、混合ガスの供給速度、流量は使用する装置の大きさや形状によって適宜設定される。また、成膜圧力は15~760Torrとすることが好ましい。
 電極基材70とダイヤモンド層の密着性を向上させるために、ダイヤモンドを含んだ研磨剤等を用いて電極基材70の表面を研磨することが好ましい。例えば、表面粗さRaは、0.1μm以上、20μm以下とすることが好ましい。ここで言う表面粗さRaとは、JIS B0601:2001に記載されている算術平均粗さを指しており、触針式表面粗さ測定器を用いて測定可能である。
 また、均一なダイヤモンド層の成長を促すために、研磨した電極基材70の表面において、ダイヤモンドの核発生促進処理を行うことが好ましい。核発生促進処理方法は、特に限定されないが、例えば、ダイヤモンド粒子を分散させたエタノールなどの水溶液中に電極基材70を浸漬させることによって行うとよい。
 次に、本発明の電解用電極を適用可能なフッ素化合物合成用の電解槽について説明する。
 図2に、本発明の電解電極が適用可能な電解槽の一例の概略図を示す。以下、本発明の電解電極を陽極7として称して説明する。
 電解槽1には、フッ化水素(HF)を含む溶融塩が貯留される。電解槽1に貯留される溶融塩の組成を変えることによって、電解槽1から発生するフッ素化合物ガスの組成を適宜変更することができる。溶融塩としては、一般式KF・nHF(n=0.5~5.0)で示される組成が用いられる。例えば、NH4F・HF溶融塩を用いた場合には、三フッ化窒素(NF3)が得られ、又はNH4F・KF・HF溶融塩を用いた場合にはF2とNF3の混合物が得られる。
 本実施形態では、溶融塩として、フッ化水素とフッ化カリウム(KF)の混合物(KF・2HF)を用いF2を発生させる場合について説明する。
 電解槽1の内部は、溶融塩中に浸漬された区画壁6によって陽極室11と陰極室12とに区画される。陽極室11及び陰極室12の溶融塩中には、それぞれ陽極7及び陰極8が浸漬される。陽極7と陰極8の間に電源9から電流が供給されることによって、陽極7ではフッ素ガス(F2)を主成分とする主生ガスが生成され、陰極8では水素ガス(H2)を主成分とする副生ガスが生成される。陽極7には本発明に係る電解用電極が用いられ、陰極8には軟鉄、モネル、又はニッケルが用いられる。
 電解槽1内の溶融塩液面上には、陽極7にて生成されたフッ素ガスが導かれる第1気室11aと、陰極8にて生成された水素ガスが導かれる第2気室12aとが互いのガスが行き来不能に区画壁6によって区画される。このように、第1気室11aと第2気室12aは、フッ素ガスと水素ガスとの混触による反応を防ぐため、区画壁6によって完全に分離される。これに対して、陽極室11と陰極室12の溶融塩は、区画壁6によって分離されず区画壁6の下方を通じて連通している。
 KF・2HFの融点は71.7℃であるため、溶融塩の温度は91~93℃に調節される。電解槽1の陽極7及び陰極8から生成したフッ素ガス及び水素ガスのそれぞれには、溶融塩からフッ化水素が蒸気圧分だけ気化して混入する。このように、陽極7にて生成され第1気室11aに導かれるフッ素ガス及び陰極8にて生成され第2気室12aに導かれる水素ガスのそれぞれには、フッ化水素ガスが含まれている。
 電解槽1の溶融塩中にフッ素ガスの原料であるフッ化水素を供給して補充するための原料供給系統5も備える。以下では、原料供給系統5について説明する。
 電解槽1は、電解槽1に補充するためのフッ化水素が貯留されたフッ化水素供給源40と原料供給通路41を介して接続される。フッ化水素供給源40に貯留されたフッ化水素は、原料供給通路41を通じて電解槽1の溶融塩中に供給される。
 また、原料供給通路41には、キャリアガス供給源45から供給されるキャリアガスを原料供給通路41内に導くキャリアガス供給通路46が接続される。キャリアガスは、フッ化水素を溶融塩中に導くためのガスであり、不活性ガスである窒素ガスが用いられる。窒素ガスは、フッ化水素と共に陰極室12の溶融塩中に供給され、溶融塩中にはほとんど溶けず、第2気室12aから第2メイン通路30を通じて排出される。
 上記のように構成される電解槽1に、本発明に係る電解用電極を電解槽1の陽極7として用いてフッ素化合物を電解合成する。電解合成は、電解槽1の溶融塩中の金属イオン濃度を予め所定濃度に調整する工程[1]、金属イオン濃度を所定濃度に調整した溶融塩中に電解用電極(陽極7)を浸漬させ、電極基材70の露出部70aに金属フッ化物含有膜70cを形成させる工程[2]、電解反応を行い、電極基材70の露出部70aに金属フッ化物含有膜70cを形成させながら、フッ素化合物を電解合成する工程[3]により実施される。
 まず、工程[1]について説明する。工程[1]は電解槽1に貯留された溶融塩浴中に金属イオンを共存させ、溶融塩中の金属イオン濃度を予め所定濃度に調整する工程である。溶融塩中に、金属イオンを共存させることによって、金属フッ化物イオンを形成させる。溶融塩中に金属イオンを共存させる方法としては、特に限定されないが、フッ化物などの金属塩、又は、一定量の金属を浸漬させて溶解させる方法を行うとよい。溶融塩中の金属イオンの濃度は10ppm~5%とすることが好ましい。
 金属イオンとしては、高次の金属フッ化物イオンを形成させるものであれば適用可能であり、例えば、好ましい金属元素としては、Ni、を挙げることができ、その他として、Fe、Cu、Zn、Al、なども適用可能である。例えば、適用可能なフッ化物の金属塩としては、フッ化ニッケル、フッ化鉄、フッ化銅、フッ化亜鉛などの一般的なものを挙げることができる。これらの金属は、フッ素と高次の金属イオンを形成し、電解反応により耐食性の高い被膜を形成させるため好適であり、特に、金属元素として、Niは、表面平滑、十分な膜強度、かつ、良好な導電性を有するフッ化ニッケル化合物被膜を形成させることができるため好ましい。
 次に、工程[2]について説明する。工程[2]は、電解槽1に貯留された溶融塩浴中に金属イオンを共存させ、金属イオン濃度を所定濃度に調整した溶融塩中に導電性ダイヤモンドを被覆した電解用電極(陽極7)を浸漬させ、電極基材70の露出部70aに金属フッ化物含有膜70cを形成させる工程である。工程[2]において、電解用電極(陽極7)を溶融塩中に浸漬させるだけで、金属フッ化物含有膜70cを被覆させることができるが、所定の電流密度で電解反応を行うことによって、金属フッ化物含有膜70cを被覆させるようにしてもよい。例えば、電流密度は0.1~5A/dm2として電解反応を行うとよい。
 露出部70aに形成される金属フッ化物含有膜70cとしては、一般式KnMFm(MはNi、Fe、Cu、Zn;nは1~3;mは1~7である)で示されるフッ化金属カリウムを主成分とした被膜が形成される。金属としては、特にニッケルが好ましい。具体的なフッ化ニッケルカリウム化合物としては、KNiF3、K2NiF4、K0.12NiF3、K3NiF6、K2NiF6、K3Ni27、K2NiF4、K3NiF7、K3NiF5、KNiF4、KNiF5、KNiF6、K2NiF7、K2NiF5、K4NiF6などが挙げられる。
 また、他のフッ化金属カリウムとしては、鉄(Fe)の場合、K3FeF6、K0.25FeF3、K0.6FeF3、K2FeF4、K2Fe27、KFeF3、K2FeF6、K2Fe517、K2FeF5、KFeF4、K5.25Fe1030、K42Fe80240、K10.5Fe2060、K2FeF5、KFeF6、K3FeF4、亜鉛(Zn)の場合、KZnF3、K2ZnF4、K3Zn27、KZnF4、K2ZnF6、銅(Cu)の場合、KCuF3、K2CuF4、K3CuF6、K2CuF3、K3Cu27、KCuF5を挙げることができる。
 また、上記の一般式KnMFm(Mは、Ni、Fe、Cu、Zn;nは、1~3;mは、1~7である)で示される金属フッ化物含有膜70cにおいて、カリウム(K)はリチウム(Li)としてもよい。
 さらに、工程[3]について説明する。工程[3]は、工程[2]に次いで、所定電流密度にて、電解反応を行い、工程[2]において露出部70aに被覆された金属フッ化物含有膜70cの表面にさらに金属フッ化物含有膜70cを形成させながら、フッ素化合物を電解合成する工程である。工程[3]によって、フッ化黒鉛層の形成を抑制しながら、電極基材70の露出部70aの表面に金属フッ化物含有膜70cを優先的に形成してフッ素化合物の電解合成をすることができる利点がある。
 なお、工程[3]は、工程[2]を行った後、行うようにすることが好ましいが、工程[2]を行わず、工程[1]に次いで工程[3]を行うようにしてもよい。すなわち、工程[2]に示すように、電解反応によってフッ素化合物を合成する前に、露出部70aに金属フッ化物含有膜70cを形成させてもよいが、工程[1]と工程[3]によって、前もって露出部に金属フッ化物含有膜70cを形成させずに、電解反応によるフッ素化合物と合成と露出部70aの金属フッ化物含有膜70cの形成、被覆を同時に行うようにしてもよい。
 以下、本発明の実施形態に好適な一例として、電極基材70の露出部70aにフッ化ニッケルカリウム膜(金属フッ化物含有膜70c)を形成させる場合について説明する。
 溶融塩中にニッケルイオンを共存させることによって、ニッケルイオンは高次の金属フッ化物イオンを形成し、電極基材70の導電性ダイヤモンド70bが被覆されていない露出部70aに、上記に列記したフッ化ニッケルカリウムの混合物を主成分とする被覆膜が形成される。また、導電性ダイヤモンド70bの表面にもフッ化ニッケルカリウムを主成分とする被膜が形成される。これらの被膜は耐食性や密着強度が強く、かつ、良好な導電性の被膜である。
 溶融塩中にニッケルイオンを共存させる方法については、溶融塩にフッ化物の金属塩としてフッ化ニッケル(NiF2)を添加する方法、ニッケルからなる金属棒などを溶融塩中に浸漬させて溶解させる方法、又は、電解槽1の容器を陰極とし、材質として、ニッケル成分を含むモネルなどの金属を用いて、電解槽の材質からニッケルを溶出させる方法、などが挙げられる。なお、あらかじめ調整された溶融塩中のニッケルイオンの濃度は、10ppm~5%、特に好ましくは30ppm~1000ppmにすることが好ましい。10ppm以下だと、フッ化ニッケルカリウム膜が十分に形成されない場合があり、5%以上だと、電解槽の溶融塩浴中にニッケルフッ化物スラッジが発生し、電解槽の底部に蓄積しやすいので好ましくない。
 電極基材70の露出部70aにフッ化ニッケルカリウム膜を被覆させる方法としては、電極基材70を、金属イオンを所定濃度に調整した溶融塩中に浸漬させるだけで被覆することができる。なお、所定の電流密度で電解反応を行うことによって、フッ化ニッケル化合物膜を被覆するようにしてよい。
 電解反応によって、電極基材70の露出部70aにフッ化ニッケルカリウム膜を被覆させる場合、電解槽の陽極7と陰極8に直流電流を通電して、通電条件としては、電流密度を0.1~5A/dm2、特に好ましくは、0.1~1A/dm2である。また、通電時間は、使用する電極の大きさや、枚数、電解槽のサイズ等によって異なるが、例えば、目安として、0.1時間以上の定電流電解を行うとよい。電流密度が5A/dm2より高い場合、フッ化ニッケルカリウム膜が露出部70a表面に堆積する前にフッ化黒鉛層が形成しやすくなるため好ましくない。
 また、上記の電流密度において、通電時間を少なくとも1時間とした場合、十分に安定なフッ化ニッケルカリウム膜を形成させることができるので好ましい。
 通電時間は特に制約はないが、10時間より長く通電すると、電力の消費や生産性の低下を生じるため好ましくない。
 上記の工程によって、電極基材70の露出部70a表面に十分に安定なフッ化ニッケルカリウム膜を形成させた後は、目的の生産量に合わせて、自由に電流密度を調整可能である。例えば、電流密度は0.1~1000A/dm2の間で設定される。なお、ここで言う電流密度(A/dm2)とは、印加電流(A)/見かけ上の電極面積(dm2)を表す。
 以下、実施例により本発明を詳細に説明するが、本発明はかかる実施例に限定されるものではない。
 [実施例1]
 熱フィラメントCVD装置を用いて、以下の条件で、ボロンをドープした導電性ダイヤモンド(以下、ボロンドープダイヤモンドと略する)を被覆した電解用電極(陽極7)を作製した。なお、電極基材70としては、アモルファスカーボン基板を用いた。
 電極基材70の表面を、ダイヤモンド粒子を含んだ研磨剤を用いて、表面及び裏面の全面を研磨した。次いで、研磨した電極基材70を、粒子径5nmのダイヤモンド粒子を分散させたエタノール水溶液を投入した超音波洗浄槽に浸漬させ、電極基材70の全面に対してダイヤモンドの核発生促進処理を行った。
 その後、電極基材70を乾燥させ、電極基材70を熱フィラメントCVD装置内のフィラメント下方に設置した。さらに、フィラメントを2200℃以上、装置内の圧力を30Torrに維持し、水素ガス中に1.0vol%のメタンガスと3000ppmのトリメチルボロンガスを添加した混合ガスをCVD装置内に流しながら、8時間成膜を行い、電極基材70にボロンドープダイヤモンドを被覆した。なお、電極基材70の基板温度は850℃であった。同様な操作を繰り返して、電極基材70の表面及び裏面にボロンドープダイヤモンド(導電性ダイヤモンド層70b)を被覆させた。
 ボロンドープダイヤモンド(導電性ダイヤモンド層70b)を被覆させた電極基材70を走査型電子顕微鏡(SEM)によって観察したところ、電極基材70の一部の表面において、ダイヤモンドが被覆されていない露出部70aが観察された。
 KF-2HF系溶融塩中に、金属フッ化物としてフッ化ニッケルを加えて、ニッケルイオン濃度を100ppmにあらかじめ調整した。該溶解塩中に、上記成膜工程後の電解用電極(ボロンドープダイヤモンドを被覆させた電極基材70)を陽極として取り付け、陰極8にニッケル板を使用して電流密度1A/dm2で5時間定電流電解を行い、ボロンドープダイヤモンドが被覆されていない電極基材70の露出部70aにフッ化ニッケルカリウム膜(金属フッ化物含有膜70c)を堆積させた。
 次いで、電流密度を20A/dm2に上昇させ、24時間電解を行った。その結果、24時間経過前後での、電解電圧は8V±0.1Vであった。
 この結果より、電解反応前後において、電解電圧の変化は少なく、フッ化黒鉛層の生成を抑制しながら、安定して電解可能であることが分かった。また、電解反応後の電極基材70の一部を取り出してSEM観察を行ったところ、導電性ダイヤモンド層の剥離や電極基材70の腐食は観察されなかった。
 [実施例2]
 あらかじめ調整したKF-2HF系溶融塩中のニッケルイオン濃度を30ppmとする以外は実施例1と同様な方法で、ボロンドープダイヤモンドを被覆した電極(陽極7)を作製した。作製した電極を用い、実施例1と同様な電解条件で電解操作を行ったところ、24時間経過前後での、電解電圧は8V±0.1Vであった。
 この結果より、ニッケルイオン濃度を30ppmにした場合においても、電解反応前後において、電解電圧の変化は少なく、フッ化黒鉛層の生成を抑制しながら、安定して電解可能であることが分かった。また、同様に、電解反応後の電極基材の一部を取り出してSEM観察を行ったところ、ダイヤモンド層の剥離や電極基材の腐食は観察されなかった。
 [比較例1]
 あらかじめ調整したKF-2HF系溶融塩中のニッケルイオン濃度を5ppmとする以外は実施例1と同様な方法で、ボロンドープダイヤモンドを被覆した電解用電極(陽極7)を作製した。作製した電極を用い、実施例1と同様な電解条件で電解操作を行ったところ、電解開始時の電解電圧は8Vであったのに対し、24時間経過後の電解電圧は9Vであった。
 この結果より、ニッケルイオン濃度を5ppmとした場合、フッ化ニッケルカリウム膜が電極基材70表面に堆積するのに比べ、フッ化黒鉛層の堆積が優先的に起こり、電解電圧の上昇が生じていることが分かった。
 以上、本発明の実施形態について説明したが、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し適宜変更、改良可能であることはいうまでもない。
 1: 電解槽
 2: フッ素ガス供給系
 3: 副生ガス供給系
 5: 原料供給系
 7: 陽極
 8: 陰極
 11a: 第1気室
 12a: 第2気室
 15: 第1メイン通路
 30: 第2メイン通路
 70: 電極基材
 70a: 露出部
 70b: 導電性ダイヤモンド層
 70c: 金属フッ化物含有膜

Claims (5)

  1. フッ化水素を含む溶融塩電解浴を用いてフッ素化合物を合成するための電解用電極であって、前記電解用電極は、少なくともその表面が導電性炭素材料から成る電極基材と、前記電極基材表面の一部に被覆された導電性ダイヤモンド層と、前記導電性ダイヤモンド層が被覆されていない前記電極基材の露出部に形成された金属フッ化物含有膜と、を備える電解用電極。
  2. 前記金属フッ化物含有膜が、一般式KnMFm(MはNi、Fe、Cu、Zn、Al;nは1~3;mは1~7である)で示されるフッ化金属カリウムからなることを特徴とする請求項1に記載の電解用電極。
  3. 少なくともその表面が導電性炭素材料から成る電極基材と、前記電極基材表面の一部に被覆された導電性ダイヤモンド層と、を有するフッ素化合物の電解用電極を、フッ化水素を含む溶融塩電解浴に浸漬させ陽極として使用しフッ素化合物を合成する電解合成方法であって、前記導電性ダイヤモンド層が被覆されていない露出部に金属フッ化物含有膜を形成させながらフッ素化合物を合成することを特徴とする、フッ素化合物の電解合成方法。
  4. 前記フッ素化合物の電解合成方法が、フッ化水素を含む溶融塩電解浴中の金属イオン濃度を10ppm~5%に調整する工程[1]と、前記溶融塩電解浴中に前記フッ素化合物の電解電極を浸漬させ、前記導電性ダイヤモンド層が被覆されていない電極基材の露出部に金属フッ化物含有膜を被覆させる工程[2]と、前記工程[2]に次いで、電解反応を行い、前記露出部にさらに金属フッ化物含有膜を形成させながらフッ素化合物を合成する工程[3]と、を含む、ことを特徴とする請求項3に記載のフッ素化合物の電解合成方法。
  5.  前記金属がニッケルであることを特徴とする請求項4に記載のフッ素化合物の電解合成方法。
PCT/JP2012/051766 2011-03-17 2012-01-27 フッ素化合物の電解合成用電極及び電解合成方法 WO2012124384A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/985,242 US9238872B2 (en) 2011-03-17 2012-01-27 Method for synthesizing fluorine compound by electrolysis and electrode therefor
CN2012800135027A CN103429790A (zh) 2011-03-17 2012-01-27 氟化合物的电解合成用电极以及电解合成方法
EP12757386.3A EP2671973A1 (en) 2011-03-17 2012-01-27 Method for synthesizing fluorine compound by electrolysis and electrode therefor
KR1020137026813A KR20130143650A (ko) 2011-03-17 2012-01-27 불소 화합물의 전해 합성용 전극 및 전해 합성 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011058633A JP5772102B2 (ja) 2011-03-17 2011-03-17 フッ素化合物の電解合成用電極
JP2011-058633 2011-03-17

Publications (1)

Publication Number Publication Date
WO2012124384A1 true WO2012124384A1 (ja) 2012-09-20

Family

ID=46830465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051766 WO2012124384A1 (ja) 2011-03-17 2012-01-27 フッ素化合物の電解合成用電極及び電解合成方法

Country Status (7)

Country Link
US (1) US9238872B2 (ja)
EP (1) EP2671973A1 (ja)
JP (1) JP5772102B2 (ja)
KR (1) KR20130143650A (ja)
CN (1) CN103429790A (ja)
TW (1) TW201245495A (ja)
WO (1) WO2012124384A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050865A1 (ja) * 2012-09-28 2014-04-03 森永乳業株式会社 電解水製造装置、電解水の製造方法及び電解槽
JP2014070258A (ja) * 2012-09-28 2014-04-21 Morinaga Milk Ind Co Ltd 電解層、電解水製造装置及び電解水の製造方法
CN114717533A (zh) * 2022-02-25 2022-07-08 中国地质大学(北京) 一种利用仿生结构制备传感器电极保护薄膜的方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091150B2 (ja) * 2011-10-14 2017-03-08 アイ’エムセップ株式会社 フッ化処理による表面改質方法
JP6141679B2 (ja) * 2013-05-15 2017-06-07 進 池田 導電性電極活物質、導電性電極活物質製造方法、及びマグネシウム回収方法
CN105002518B (zh) * 2015-08-13 2017-07-28 哈尔滨理工大学 一种氟化碳素材料的制备方法
CN108649211B (zh) * 2018-05-15 2021-04-13 杭州诺麦科科技有限公司 基于镓基液态合金的纳米级锡粉制备方法
EP3831984A4 (en) * 2018-08-03 2021-09-29 Showa Denko K.K. ANODE FOR ELECTROLYTIC SYNTHESIS AND PROCESS FOR MANUFACTURING FLUORINE GAS OR A COMPONENT CONTAINING FLUORINE
WO2020240890A1 (ja) * 2019-05-30 2020-12-03 パナソニックIpマネジメント株式会社 フッ化物イオン二次電池用活物質、及びそれを用いたフッ化物イオン二次電池
CN110887882B (zh) * 2019-12-05 2021-01-22 广西师范大学 一种无酶葡萄糖传感器及其制备方法
CN112981435B (zh) * 2020-12-10 2024-02-09 中核二七二铀业有限责任公司 一种处理电解槽阳极效应的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249557A (ja) 2005-03-14 2006-09-21 Permelec Electrode Ltd 電解用陽極および該電解用陽極を使用するフッ素含有物質の電解合成方法
JP2010018849A (ja) * 2008-07-10 2010-01-28 Permelec Electrode Ltd 三フッ化窒素の電解合成方法
JP2011046994A (ja) * 2009-08-26 2011-03-10 Yokogawa Electric Corp 電解用陽極と該電解用陽極を使用する電気分解装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2196293B1 (ja) * 1972-08-18 1975-03-07 Armand Michel
JPH03232988A (ja) * 1990-02-06 1991-10-16 Toyo Tanso Kk 炭素電極ならびにそれを用いるhf含有溶融塩の電解方法及び装置
JP2004011001A (ja) * 2002-06-10 2004-01-15 Central Glass Co Ltd フッ素電解槽
JP4535822B2 (ja) * 2004-09-28 2010-09-01 ペルメレック電極株式会社 導電性ダイヤモンド電極及びその製造方法
TW200738911A (en) * 2006-01-20 2007-10-16 Toyo Tanso Co Electrolytic apparatus for producing fluorine or nitrogen trifluoride
JP4460590B2 (ja) * 2007-06-22 2010-05-12 ペルメレック電極株式会社 導電性ダイヤモンド電極構造体及びフッ素含有物質の電解合成方法
CN101878329B (zh) * 2007-09-20 2012-07-11 东洋炭素株式会社 碳质基材和产生氟的电解用电极

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249557A (ja) 2005-03-14 2006-09-21 Permelec Electrode Ltd 電解用陽極および該電解用陽極を使用するフッ素含有物質の電解合成方法
JP2010018849A (ja) * 2008-07-10 2010-01-28 Permelec Electrode Ltd 三フッ化窒素の電解合成方法
JP2011046994A (ja) * 2009-08-26 2011-03-10 Yokogawa Electric Corp 電解用陽極と該電解用陽極を使用する電気分解装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050865A1 (ja) * 2012-09-28 2014-04-03 森永乳業株式会社 電解水製造装置、電解水の製造方法及び電解槽
JP2014070258A (ja) * 2012-09-28 2014-04-21 Morinaga Milk Ind Co Ltd 電解層、電解水製造装置及び電解水の製造方法
CN104662205A (zh) * 2012-09-28 2015-05-27 森永乳业株式会社 电解水制造装置、电解水的制造方法以及电解槽
CN114717533A (zh) * 2022-02-25 2022-07-08 中国地质大学(北京) 一种利用仿生结构制备传感器电极保护薄膜的方法和应用
CN114717533B (zh) * 2022-02-25 2023-03-10 中国地质大学(北京) 一种利用仿生结构制备传感器电极保护薄膜的方法和应用

Also Published As

Publication number Publication date
CN103429790A (zh) 2013-12-04
JP5772102B2 (ja) 2015-09-02
TW201245495A (en) 2012-11-16
JP2012193415A (ja) 2012-10-11
EP2671973A1 (en) 2013-12-11
US20130341202A1 (en) 2013-12-26
KR20130143650A (ko) 2013-12-31
US9238872B2 (en) 2016-01-19

Similar Documents

Publication Publication Date Title
JP5772102B2 (ja) フッ素化合物の電解合成用電極
JP3893397B2 (ja) 電解用陽極および該電解用陽極を使用するフッ素含有物質の電解合成方法
KR100803931B1 (ko) 도전성 다이아몬드 전극 및 이의 제조방법
TWI421378B (zh) 導電性鑽石電極結構及含氟材料之電解合成方法
JP2015124423A (ja) 電解アルミニウム箔、それを用いた電池用電極、及び蓄電デバイス、並びに電解アルミニウム箔の製造方法
TWI496953B (zh) 電解用陽極及使用該電解用陽極進行含氟物質之電解合成方法
KR20100007758A (ko) 삼불화 질소의 전해 합성 방법
KR20130108435A (ko) 도전성 다이아몬드 전극, 이것을 이용한, 황산 전해방법 및 황산 전해장치
CA1062202A (en) Rhenium coated cathodes
TWI714202B (zh) 電解合成用陽極,及氟氣體的製造方法
JP5520280B2 (ja) 電解用陽極を使用するフッ素含有物質の電解合成方法
WO2020026854A1 (ja) 電解合成用陽極、及び、フッ素ガス又は含フッ素化合物の製造方法
JP2012001798A (ja) 電解装置用電極の製造方法
JP2015098626A (ja) 精製金属の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13985242

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012757386

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137026813

Country of ref document: KR

Kind code of ref document: A