WO2014045780A1 - 水素生成触媒及び水素の製造法 - Google Patents

水素生成触媒及び水素の製造法 Download PDF

Info

Publication number
WO2014045780A1
WO2014045780A1 PCT/JP2013/072182 JP2013072182W WO2014045780A1 WO 2014045780 A1 WO2014045780 A1 WO 2014045780A1 JP 2013072182 W JP2013072182 W JP 2013072182W WO 2014045780 A1 WO2014045780 A1 WO 2014045780A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen
ammonia
powder
reaction
Prior art date
Application number
PCT/JP2013/072182
Other languages
English (en)
French (fr)
Inventor
細野 秀雄
文隆 林
壽治 横山
喜丈 戸田
亨和 原
政明 北野
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to EP13839735.1A priority Critical patent/EP2898946B1/en
Priority to KR1020157006778A priority patent/KR102159678B1/ko
Priority to CN201380048498.2A priority patent/CN104640628B/zh
Priority to CA2883503A priority patent/CA2883503C/en
Priority to US14/429,274 priority patent/US20150217278A1/en
Priority to JP2014536695A priority patent/JP6143761B2/ja
Publication of WO2014045780A1 publication Critical patent/WO2014045780A1/ja
Priority to US15/211,599 priority patent/US9981845B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen production catalyst and a method for producing hydrogen from ammonia using this catalyst.
  • ammonia Since ammonia has odor properties, it is necessary to detoxify ammonia contained in various exhaust gases into the environment. For example, a method of oxidizing and decomposing oxygen and ammonia by contacting them, A method of directly decomposing into hydrogen has been proposed.
  • the ammonia decomposition reaction is industrially used for the production of an atmosphere gas composed of nitrogen and hydrogen used for bright annealing of stainless steel, nickel steel and the like.
  • the decomposition reaction of ammonia is a volume expansion type endothermic reaction represented by 2NH 3 ⁇ 3H 2 + N 2 , it is advantageous in terms of reaction equilibrium that the reaction pressure is lower and the reaction temperature is higher.
  • Thermal decomposition of ammonia requires a high temperature of 800 ° C. or higher, desirably 1000 ° C. or higher.
  • catalytic cracking using a catalyst enables decomposition at a reaction temperature of 300 to 700 ° C.
  • an ammonia synthesis catalyst for the ammonia decomposition reaction, it is fundamentally different from ammonia synthesis for the following two reasons, and therefore, development of an ammonia decomposition catalyst is required.
  • the ammonia synthesis reaction is in equilibrium, and low temperature and high pressure conditions such as 300 ° C. to 500 ° C. and 30 MPa are preferable, while the reverse ammonia decomposition reaction is preferably low pressure and high temperature reaction conditions.
  • the activation of nitrogen molecules is the rate-determining process, but in the decomposition reaction, the desorption of nitrogen adsorbed species on the catalyst surface caused by ammonia decomposition is considered to be the rate-limiting step. Yes.
  • the optimum catalytic metal for catalytic cracking of ammonia is ruthenium (Ru).
  • Ru ruthenium
  • a method using a catalyst in which a basic compound is added to Ru supported on alumina Patent Document 1
  • a method of using a catalyst substituted with a catalytically active metal such as Ru at a reaction temperature of 400 to 900 ° C. Patent Document 3
  • Patent Document 3 A method of using a catalyst substituted with a catalytically active metal such as Ru at a reaction temperature of 400 to 900 ° C.
  • the iron group metal compound was supported on at least one metal oxide selected from the group consisting of ceria, zirconia, yttria, lanthanum oxide, alumina, magnesia, tungsten oxide and titania
  • the compound was reduced.
  • a method using a catalyst having an iron group metal as an active metal at a reaction temperature of 180 to 950 ° C. Patent Document 4
  • a long period type period on a support made of a complex oxide containing ceria and alumina and optionally zirconia.
  • Patent Document 5 a metal component of Ni, Cu or Zn, calcia and alumina
  • Non-patent Document 1 a metal component of Ni, Cu or Zn, calcia and alumina
  • Non-patent Document 1 a method using a catalyst in which an alumina cement composed of
  • Ni and alumina are likely to react, and a solid solution of NiO—Al 2 O 3 is formed, so that a mayenite type structure cannot be obtained.
  • Patent Document 6 discloses that noble metal catalysts such as Pt, Rh, Pd, and Ru are preferable as a hydrogen generation catalyst that exhibits stable performance in the case of an ammonia decomposition reaction for a fuel cell vehicle in which the reaction is started or stopped repeatedly. Are disclosed.
  • a hydrogen production catalyst based on Ni is a preferred catalyst, but requires a longer contact time to achieve the same conversion efficiency as a catalyst based on Ru.
  • a catalyst that is based on the present invention can be used with a fraction of the contact time, and other desirable ammonia decomposition catalysts include Fe, Rh, Ir, Pd, Pt and Re catalysts or compounds containing these elements. ing.
  • Patent Document 8 discloses that an ammonia decomposition catalyst in which Na metal or K metal, or Na compound or K compound is present on the surface of a composite oxide particle containing La, Ni, Co, and Fe has a high conversion rate from ammonia. It is disclosed that it is suitable as a catalyst for efficiently producing hydrogen and nitrogen.
  • the mayenite type compound has a representative composition of 12CaO ⁇ 7Al 2 O 3 (hereinafter referred to as “C12A7”), and the C12A7 crystal has two out of 66 oxygen ions in a unit cell containing two molecules.
  • Non-patent Document 2 Non-patent Document 2
  • a part or all of Ca constituting the formula of the above representative composition is Li, Na, K, Mg, Sr, Ba, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu , Ir, Ru, Rh, Pt may be substituted with at least one kind of typical metal elements selected from the group consisting of Pt, or transition metal elements.
  • a part or all of Al constituting the above formula of the representative composition is replaced with at least one kind of typical metal element selected from the group consisting of B, Ga, C, Si, Fe, and Ge, or a transition metal element. May be.
  • a part or all of O constituting the above-described representative composition formula may be substituted with at least one kind of typical element or metal element selected from the group consisting of H, F, Cl, Br, and Au. .
  • Non-patent Documents 3 and 9 a substance in which electrons are replaced with anions
  • electride has a characteristic of exhibiting good electron conduction characteristics
  • the electrons in the cage easily react with hydrogen in the gas phase and are taken into C12A7 as hydrogen anions (hydrides)
  • Non-patent Document 4 hydrogen anion inclusion C12A7 can be easily synthesized by reducing C12A7 using Ca and Ca (OH) 2 , CaH 2 or the like as a reducing agent (Non-patent Document 5).
  • the hydrogen anion taken into C12A7 releases hydrogen and returns to electride by light irradiation, heating, or the like (Non-Patent Document 4).
  • a mayenite type compound containing hydrogen anions (H ⁇ , H 2 ⁇ ) at a concentration of 1 ⁇ 10 18 cm ⁇ 3 or more and a method for producing the same have been reported (Patent Documents 10 to 12, Non-Patent Document 5). Few applications of ion inclusion C12A7 are known.
  • the present inventors have prepared a catalyst for an ammonia synthesis reaction in which a metal such as Ru or Fe is supported on a conductive mayenite type compound, and a reaction temperature of room temperature to 600 ° C. or lower and a reaction pressure of 10 kPa to 20 MPa using this catalyst.
  • Patent applications were filed for an invention relating to a method for synthesizing ammonia (Patent Document 13) and an invention relating to a method for reducing carbon dioxide to carbon monoxide using a conductive mayenite type compound (Patent Document 14).
  • C12A7 has no conductivity, it has applications as a catalyst and a catalyst carrier.
  • a catalyst obtained by calcining a complex solution of raw materials at 1300 to 1400 ° C. for 2 hours or more after spray drying is used. It is known to be used as a steam cracking reaction catalyst for producing a soft olefin (Patent Document 15).
  • Patent Document 15 a method of obtaining C12A7 powder having a high specific surface area by a method in which a precursor is synthesized by a hydrothermal method or a sol-gel method and then calcined has been proposed (Non-patent Documents 6 and 7).
  • Japanese Patent Laid-Open No. 01-119341 Japanese Unexamined Patent Publication No. 08-084910 Patent No. 3688314) JP 2010-110697 A JP 2010-094668 A JP 2010-207783 A Japanese Patent Laid-Open No. 2003-040602 JP 2008-536795 (Patent No. 4990267) JP 2012-161713 A WO2005 / 000741 WO2003 / 089373 JP 2012-101945 A WO2008 / 088774 WO2012 / 077658 JP 2012-025636 A US Pat. No. 6,696,614
  • Exhaust gas from semiconductor manufacturing equipment, LCD manufacturing equipment, etc. contains a high concentration of ammonia.
  • ammonia with a low volume fraction of about several to several tens of ppm is contained in the air.
  • hydrogen generated by decomposing ammonia generated from organic waste is used as an energy source, hydrogen is stored as a liquid ammonia in a cylinder, etc., and hydrogen generated by decomposing vaporized ammonia gas is generated.
  • a method for use in a fuel cell has also been proposed. As described above, when hydrogen generated by the decomposition of ammonia is used, it is required that impurities in the generated gas are small. In particular, when hydrogen is produced from liquid ammonia as a raw material for automobile fuel cells, the heat resistance problem of the equipment and residual ammonia in the H 2 / N 2 product are reduced to produce high-purity hydrogen. Therefore, there is a need for a hydrogen production catalyst that efficiently decomposes ammonia into hydrogen at a low temperature and at a high space velocity.
  • heat-resistant ceramics having a melting point of about 2000 ° C. or higher, such as alumina, zirconia, magnesia, titania, etc., are used as the carrier for the ammonia decomposition catalyst.
  • the catalytic activity is reduced due to aggregation of the metal, and in the decomposition reaction at a relatively low temperature, there is a problem that the NH 3 conversion is low in the case of a high concentration ammonia raw material.
  • the present invention provides a supported metal catalyst that is high-performance and inexpensive as a hydrogen generation catalyst for decomposing ammonia into hydrogen and nitrogen, and that is advantageous from the viewpoint of resources, and efficient ammonia using this supported metal catalyst. It is an object to provide a method for producing hydrogen by decomposition.
  • the inventors of the present invention have used a substrate made of a mayenite type compound containing oxygen ions, 10 15 cm ⁇ 3 or more of conduction electrons or hydrogen anions as an ammonia decomposition catalyst. It has been found that the supported metal catalyst used as a carrier has a high ammonia decomposition efficiency, and an NH 3 conversion rate that is twice or more that obtained when alumina is used as a carrier, for example.
  • a hydrogen generation catalyst that catalytically decomposes ammonia gas to generate hydrogen is used. From a low volume fraction of 0.1% to a high volume fraction of ammonia from 20% to 100%, Even at a low decomposition reaction temperature, ammonia can be decomposed at a high conversion rate.
  • the type of balance gas is not particularly limited, and the balance gas may include an inert gas such as nitrogen, He, or Ar, oxygen that does not affect the decomposition reaction, or a reducing gas.
  • the present invention relates to a catalyst for catalytically decomposing ammonia gas to generate hydrogen, and a powder or molded body of a mayenite type compound containing oxygen ions or conductive electrons or hydrogen anions of 10 15 cm -3 or more.
  • the present invention relates to a hydrogen generation catalyst by ammonia decomposition, wherein the catalyst metal particles for ammonia decomposition are attached to the surface of the substrate, and a method for producing hydrogen by ammonia decomposition reaction using the catalyst.
  • the mayenite compound contains conductive electrons or hydrogen anions of 10 15 cm -3 or more, more preferably 10 17 cm -3 or more, and 10 18 cm -3 or more. More preferred are those containing conduction electrons or hydrogen anions.
  • These mayenite type compounds can be produced using known methods described in [Background Art], and in the present invention, the compounds obtained by these methods can be appropriately used.
  • the catalytically active metal is at least one selected from Group 8, Group 9 and Group 10 metal elements of the long-period group periodic table.
  • a catalyst in which a catalytically active metal is supported on a carrier such as an oxide is usually used for the ammonia decomposition reaction after being once reduced with hydrogen or the like.
  • the hydrogen generation catalyst of the present invention is also preferably used after reduction treatment in the same manner, but in the reduction treatment process, electrons in the cage of the mayenite compound reacted with hydrogen and included as hydrogen anions (hydrides). It doesn't matter.
  • Transition metal elements are used in various catalytic reactions as homogeneous and heterogeneous catalyst components.
  • Group 6, 8, or 9 transition metals such as Fe, Ru, Os, Co, and Mo are suitable as catalysts for synthesizing ammonia by direct reaction of hydrogen and nitrogen.
  • Group 8 and Group 10 transition metals such as Ru and Ni exhibit activity against ammonia decomposition. While it is accepted by researchers that the rate-limiting process of ammonia synthesis is the dissociation of nitrogen molecules with triple bonds, the rate-limiting process of decomposition is the process of breaking NH bonds and recombining N atoms. A process has been proposed. Thus, although both reactions are in the relationship between rightward and leftward reactions, the rate-limiting process is completely different. Therefore, it cannot be easily determined whether the mayenite type compound-supported catalyst is effective as a catalyst for catalytically decomposing ammonia gas to generate hydrogen.
  • the carrier powder or molded body supported on the surface of the conductive mayenite-type compound with the catalytically active metal particles adhering to the surface contains the same amount of electrons as the original after the supporting process. Since the function is small, the electron donating ability to the catalytically active metal particles is large. The same is expected for hydrogen anions.
  • This supported metal catalyst can be produced by a method such as an impregnation method, a physical mixing method, a thermal decomposition method, a liquid phase method, or a vapor deposition method.
  • a catalyst active metal compound as a metal component raw material is supported or mixed on a mayenite type compound substrate by the above-described methods to obtain a catalyst precursor.
  • the obtained precursor is heated in a reducing atmosphere to reduce the catalytically active metal compound to catalytically active metal particles and adhere to the substrate surface.
  • the catalytically active metal particles may be directly formed on the surface of the substrate by a sputtering method.
  • the impregnation method comprises a step of dispersing or immersing a mayenite type compound powder or molded body as a base material in a solvent solution of a catalytically active metal compound, and evaporating the solvent of the solvent solution to dry the catalyst active metal compound. Forming a catalyst precursor on the surface of the substrate, heating in a reducing atmosphere to reduce the catalytically active metal compound, and attaching the catalytically active metal particles to the surface of the substrate.
  • Ammonia gas having a volume fraction of 0.1 to 100% is continuously supplied to the catalyst layer in which the supported metal catalyst is packed in the reactor, and the reaction pressure is 0.01 MPa to 1.0 MPa and the reaction is 300 to 800 ° C.
  • Hydrogen can be produced at a high NH 3 conversion by carrying out a catalytic cracking reaction at a temperature hourly space velocity (WHSV) of 500 / mlg ⁇ 1 h ⁇ 1 or higher under temperature.
  • WHSV temperature hourly space velocity
  • the representative composition of the mayenite type compound containing conduction electrons is the formula [Ca 24 Al 28 O 64 ] 4+ (O 2 ⁇ ) 2 ⁇ x (e ⁇ ) 2x (0 ⁇ x ⁇ 2).
  • electrons substituted for oxide ions (O 2 ⁇ , O 2 2 ⁇ ) included in the structure become conduction electrons, and in the case of C12A7, the composition formula ([Ca 24 Al 28 O 64 ] 4+ (O 2 ⁇ ) 2 ⁇ x (e ⁇ ) 2x ) (0 ⁇ x ⁇ 2)
  • the conduction electron concentration becomes 1 ⁇ 10 15 cm ⁇ 3 or more.
  • the mayenite type compound containing conduction electrons can be referred to as a “conductive mayenite type compound”.
  • the theoretical maximum concentration of conduction electrons in C12A7: e ⁇ is 2.3 ⁇ 10 21 cm ⁇ 3 .
  • the composition of the hydrogen anion inclusion C12A7 is represented by the formula [Ca 24 Al 28 O 64 ] 4+ (O 2 ⁇ ) 2 ⁇ x (H ⁇ ) 2x (0 ⁇ x ⁇ 2).
  • C12A7 generates light absorption at 2.8 eV and 0.4 eV.
  • the electron concentration can be obtained by measuring the light absorption coefficient.
  • the electron concentration can be easily obtained by using the diffuse reflection method.
  • ESR electron spin resonance
  • C12A7 containing conduction electrons can reduce iodine molecules
  • the electron concentration in the cage can be measured by iodometry.
  • the hydrogen anion concentration can be quantified by using solid nuclear magnetic resonance spectroscopy ( 1 H NMR) of hydrogen nuclei.
  • a mayenite type compound which is an inexpensive and non-toxic compound that is easy to synthesize and consists of only elements having higher Clark numbers such as calcium, aluminum, and oxygen, is used as a base material.
  • Ammonia can be catalytically decomposed even under mild conditions such as 350 ° C. and 0.1 MPa, and even at high weight space velocity (Weight Hourly Space Velocity; WHSV). It is also possible to produce high-purity hydrogen by decomposing at a high conversion rate using a transition metal element other than an expensive rare metal such as Ru, such as Co or Ni, as a catalytically active metal. It is also useful from the viewpoint of effective use. Further, since the alkali metal or alkaline earth metal compound or the like may not be added as an accelerator in order to improve the conversion rate as in the conventional alumina supported catalyst, the production process of the supported metal catalyst is simplified.
  • FIG. 1 is a schematic view of a reaction line used in performing NH 3 decomposition shown in Examples 1 to 8 and Comparative Examples 1 and 2.
  • C12A7 which is a representative composition of mayenite type compounds, will be described in detail.
  • the present invention is not limited to C12A7, and may be the same type of mayenite as C12A7 such as 12SrO ⁇ 7Al 2 O 3 in which Ca is replaced with Sr. Applicable to all type compounds.
  • the substrate made of C12A7 used as a starting material for the catalyst production method of the present invention may be a powder, a molded body such as a porous body, a solid sintered body, a thin film, a solid single crystal, etc. Good.
  • C12A7 supported on a carrier made of another substance may be used as a base material.
  • the substrate functions as a carrier for catalytically active metal particles.
  • the raw material of C12A7 is synthesized by a solid phase method, a hydrothermal method, or the like.
  • the hydrothermal reaction is a reaction involving water at a high temperature and high pressure of 100 ° C. or higher and 5 MPa or higher, and the ceramic powder can be synthesized by a short time reaction at a low temperature.
  • C12A7 powder having a large specific surface area about 20 to 60 m 2 g ⁇ 1 ) can be obtained.
  • Ca 3 Al 2 (OH) 12 which is a hydroxide serving as a precursor of C12A7, is a mixture of water, calcium hydroxide, and aluminum hydroxide in a stoichiometric composition and heated at, for example, 150 ° C. for about 6 hours. Can be obtained.
  • this powder is evacuated at 750 to 900 ° C., adsorbed water, surface hydroxyl groups, OH ⁇ in the cage, and the like can be removed, so that deactivation of the reducing agent in the step of injecting electrons can be prevented.
  • the C12A7 raw material powder having a chemical equivalent composition may be heated in a reducing atmosphere.
  • the C12A7 porous body and solid sintered body containing conduction electrons may be heated in a reducing atmosphere with Ca, CaH 2, etc. after forming the C12A7 raw material powder having a chemical equivalent composition.
  • a substrate other than the thin film and the solid single crystal can produce a C12A7 substrate containing conduction electrons directly from the raw material without going through the production of a C12A7 substrate containing no conduction electrons.
  • a C12A7 base material containing a hydrogen anion can be synthesized in the form of a powder, a porous body, or a solid sintered body by heating in a hydrogen stream or a reducing atmosphere with Ca or the like.
  • the C12A7 thin film containing conduction electrons is formed on a substrate such as MgO, Y 3 Al 5 O 12 by a pulse laser deposition (PLD) method, sputtering method, plasma spraying method, etc. using a solid sintered body of C12A7 as a target. It can be produced by depositing and integrating the C12A7 thin film by the PLD method again while heating the formed C12A7 thin film at 500 ° C. or higher. In the second PLD method, plasmaized C12A7 acts as a reducing agent, and conduction electrons are contained in the thin film. A C12A7 thin film containing a hydrogen anion can be synthesized in the same manner.
  • PLD pulse laser deposition
  • a C12A7 solid single crystal containing conduction electrons was produced by pulling a melt obtained by melting C12A7 raw material powder at about 1600 ° C. (CZ method), and the C12A7 single crystal was placed in a vacuumed glass tube.
  • the single crystal may be encapsulated with metallic Ca powder or Ti powder and heated in a reducing atmosphere so that conduction electrons are included in the solid single crystal.
  • a C12A7 solid single crystal containing a hydrogen anion can be synthesized in the same manner.
  • C12A7 containing solid sintered body or solid single crystal conduction electrons or hydrogen anions into powder.
  • Powder processing can be performed using pulverization in a mortar, pulverization with a jet mill, or the like.
  • the size of the powder is not particularly limited, but particles having a particle size distributed in the range of about 100 nm to 1 mm can be obtained by these methods.
  • C12A7 containing 1 ⁇ 10 15 cm ⁇ 3 or more of conduction electrons or hydrogen anions can be produced.
  • conduction electrons may be missing from the surface portion of the base material regardless of whether it is powder, porous body, solid sintered body, thin film, or solid single crystal.
  • heating is performed at 500 ° C. or higher to less than the melting point (1250 ° C.) of the compound in a vacuum, an inert gas, or a reducing atmosphere, and conductive electrons of 1 ⁇ 10 15 cm ⁇ 3 or higher are applied to the outermost surface of the substrate. It is desirable to include.
  • a transition metal element selected from Group 8, 9 or 10 of the long-period group periodic table can be used as the catalytic active metal, but Group 8 selected from Fe, Ru, and Os. It is particularly preferable to use a group 9 element selected from Ni, Pd, Pt, alone or in combination, a group 9 selected from Co, Rh, and Ir.
  • C12A7 When using C12A7 powder or porous material as a substrate, C12A7: e ⁇ powder or porous material containing 1 ⁇ 10 15 cm ⁇ 3 or more of the conduction electrons obtained in the above step, a compound of a catalytically active metal and various methods, for example, Then, mixing is performed using a CVD method (chemical vapor deposition method) or an impregnation method.
  • CVD method chemical vapor deposition method
  • an impregnation method When using a solid sintered body, a thin film, a solid single crystal, etc., the impregnation method or catalytically active metal compound is deposited on the surface by the CVD method, the sputtering method, etc.
  • the compound is thermally decomposed in a reducing atmosphere, preferably at a temperature of 150 to 800 ° C., to deposit the catalytically active metal and adhere to the substrate surface.
  • a reducing atmosphere preferably at a temperature of 150 to 800 ° C.
  • thermally nitriding and then nitriding with ammonia gas can be used.
  • the catalytically active metal compound is not particularly limited.
  • the carrier powder is dispersed in a catalytically active metal compound solution (for example, a hexane solution of Ru carbonyl complex) and stirred.
  • a catalytically active metal compound solution for example, a hexane solution of Ru carbonyl complex
  • the compound of the catalytically active metal is about 0.01 to 40 wt%, preferably about 0.02 to 30 wt%, more preferably about 0.05 to 20 wt% with respect to the carrier powder.
  • the solvent is evaporated to dryness by heating for 30 minutes to 5 hours in an inert gas stream such as nitrogen, argon or helium or under vacuum at 50 to 200 ° C.
  • the dried catalyst precursor composed of the catalytically active metal compound is reduced.
  • a supported metal catalyst in which the catalytically active metal is highly dispersed and firmly adhered as fine particles having a particle diameter of several to several hundreds of nanometers on the surface of the carrier powder can be obtained.
  • the catalyst of the present invention may use an accelerator as an additive as necessary.
  • the supported metal catalyst using the 12CaO ⁇ 7Al 2 O 3 powder as a carrier has a BET specific surface area of about 1 to 100 m 2 g ⁇ 1 , and the amount of catalytically active metal is preferably 0.01 to 30 wt% with respect to the carrier powder. Is 002 to 20 wt%, more preferably 0.05 to 10 wt%. If it is less than 0.01 wt%, there are too few active sites and it is not efficient, and if it exceeds 30 wt%, the increase in catalyst activity is scarce and not preferable in terms of cost.
  • C12A7 powder containing conductive electrons of 1 ⁇ 10 15 cm ⁇ 3 or more and catalytically active metal compound powder are solid-phase mixed by a physical mixing method under the same conditions, and then reduced by heating.
  • the supported metal catalyst can be used as a molded body using a normal molding technique. Specific examples include granular shapes, spherical shapes, tablet shapes, ring shapes, macaroni shapes, four-leaf shapes, dice shapes, honeycomb shapes, and the like. It can also be used after coating the support with a supported metal catalyst.
  • ammonia decomposition the above-mentioned supported metal catalyst is filled into a reactor and used as a catalyst layer, and ammonia gas as a raw material is continuously supplied at a reaction temperature of 350 to 800 ° C. to contact the catalyst layer to generate hydrogen and nitrogen.
  • the reaction is represented by the following formula 1. 2NH 3 ⁇ 3H 2 + N 2 (Formula 1)
  • the ammonia decomposition reaction is an equilibrium reaction and is an endothermic reaction and a reaction that increases in volume, high temperature and low pressure conditions are advantageous.
  • the reaction pressure is preferably from 0.01 Mpa to 1.0 Mpa, and the temperature is preferably from 300 to 800 ° C.
  • the reaction pressure is less than 0.1 Mpa, the decomposition reaction proceeds efficiently, but a decompression facility is required, which is disadvantageous in terms of cost. In the case of 0.10 MPa (normal pressure), it is preferable in terms of equipment.
  • the reaction pressure is more than 1.0 Mpa, the equilibrium is advantageous to the raw material side, so that a sufficient decomposition rate cannot be obtained.
  • reaction rates below 300 ° C. the reaction rate is slow and impractical.
  • the temperature exceeds 800 ° C. a high decomposition rate can be obtained, but an expensive heat-resistant device is required and the catalyst life is affected, which is not preferable.
  • 400 to 750 ° C. is more preferable, 400 to 600 ° C. is more preferable in the case of a Ru catalyst, and 500 to 750 ° C. is more preferable in the case of a Ni or Co catalyst.
  • C12A7 has a melting point of 1250 ° C. and does not sinter at about 800 ° C.
  • ammonia diluted with a balance gas or ammonia alone that is, ammonia gas having a volume fraction of 0.1 to 100% can be used as a raw material.
  • ammonia volume fraction is preferably high, and the volume fraction is preferably 5% or more, more preferably 20% or more, even more preferably. 70% or more is suitable.
  • a decomposition reaction is performed at a weight space velocity (WHSV) of 500 mlg ⁇ 1 h ⁇ 1 or more, and a high NH 3 conversion rate is obtained.
  • WHSV weight space velocity
  • the gas generated by the ammonia decomposition method of the present invention is theoretically obtained in a molar ratio of hydrogen and nitrogen of 3: 1.
  • a molar ratio of hydrogen and nitrogen of 3: 1. For example, bright annealing of stainless steel, nickel steel, nickel, nickel-copper, nickel-chromium alloy, etc. Can be used as a finishing gas.
  • the hydrogen obtained in the present invention does not contain CO or CO 2 harmful to the fuel cell, it can be used, for example, as fuel cell hydrogen by separating and purifying the produced hydrogen and nitrogen.
  • the ammonia decomposition reaction can be performed using a normal gas phase-solid phase contact reaction apparatus using a corrosion resistant material such as stainless steel.
  • the reaction format may be any of a batch reaction format, a closed circulation reaction format, and a circulation reaction format, but the circulation reaction format is most preferable from a practical viewpoint. Since this reaction is an endothermic reaction, it is advantageous to carry out the reaction while supplying reaction heat. Industrially, various measures for supplying reaction heat have been made in order to increase the yield. For example, a method of performing an ammonia decomposition reaction while oxidizing a part of an ammonia raw material with air to obtain combustion heat has been proposed.
  • the ammonia decomposition reaction can be carried out using one kind of reactor filled with a catalyst or a plurality of reactors, as in the conventional method.
  • any of a method of connecting a plurality of reactors and a reactor having a plurality of reaction layers in the same reactor can be used.
  • the catalyst to be used either the catalyst of the present invention alone, a combination of two or more kinds of catalysts selected from the catalysts of the present invention, or a combination of the catalyst of the present invention and a known catalyst can be used.
  • the catalyst is preferably exposed to an atmosphere of a reducing gas such as hydrogen at 300 to 700 ° C. for about 30 minutes to 2 hours to activate the catalytic metal from the viewpoint of improving the conversion rate.
  • FIG. 1 shows an outline of the apparatus used in the experiment.
  • a quartz reactor 1 inner diameter 6 mm, length 24 cm, inner volume 6.8 ml
  • the supported metal catalyst prepared in the following examples and comparative examples is packed.
  • H 2 is supplied from the cylinder 3 to the reactor 1 to reduce the supported metal catalyst in advance.
  • NH 3 is flowed from the cylinder 4 to the reactor 1.
  • a predetermined amount of He is supplied from the cylinder 2 and mixed with H 2 .
  • the ammonia flow rate is controlled by the ball flow meter 5 so as to obtain a predetermined weight space velocity.
  • the reaction system is heated to a predetermined temperature and an activity test is performed.
  • the reaction product flowing out from the reactor 1 is discharged from the exhaust port 6 (vent), partly collected by a calibration tube 7 (Sampling loop), and then carrier gas from the carrier gas inlet 8 (carrier in) of the gas chromatograph.
  • C12A7 pulverized, specific surface area of 40 m 2 g ⁇ 1 , particle diameter of 0.1 mm to C12A7 (hereinafter referred to as C12A7: O) powder containing 0.5 mm conduction electrons and oxygen ions not containing hydrogen anions was prepared.
  • the C12A7: O powder prepared by the above method was inserted into a silica glass tube and pretreated by vacuum heating at 800 ° C. for 15 hours in a vacuum of 1 ⁇ 10 ⁇ 4 Pa.
  • C12A7 having a conduction electron concentration of 1.5 ⁇ 10 21 cm ⁇ 3 : e ⁇ was obtained.
  • the specific surface area of the powder after preparation was as small as 14 m 2 g ⁇ 1 (particle diameter 0.2 mm to 1 mm).
  • C12A7 Powder 1g of e inserted with Ru 3 (CO) 12 43mg silica glass tube, by reducing the 2-hour heating to Ru 3 (CO) 12 at 400 ° C.
  • C12A7 e powder Ru particles were deposited on the surface by chemical vapor deposition.
  • a supported metal catalyst (2 wt% Ru / C12A7: e) made of electride powder supporting 2 wt% as Ru metal was obtained.
  • the specific surface area was measured with a fully automatic BET surface area measuring device.
  • the particle size was judged from the CO dispersion degree measurement result.
  • the particle size of Ru metal after hydrogen reduction was 15 nm, and the degree of dispersion determined by CO adsorption was 8.6%.
  • a catalyst layer was formed by packing 60 to 100 mg of the Ru-supported catalyst obtained by the above method in a quartz reaction tube, and an ammonia decomposition reaction was carried out using the ammonia decomposition apparatus shown in FIG.
  • the Ru-supported catalyst Prior to the decomposition reaction, the Ru-supported catalyst was subjected to a reduction treatment for 2 hours in a quartz reaction tube heated to 400 to 450 ° C. in a hydrogen stream to activate Ru. Subsequently, the temperature in the quartz reaction tube was set to 350 to 700 ° C., and ammonia gas with an ammonia volume fraction of 100% was passed through the catalyst layer at 5 to 100 ml ⁇ min ⁇ 1 at normal pressure. Table 1 shows the reaction results.
  • the conversion rates of NH 3 at 350 ° C., 440 ° C., and 700 ° C. are 51.9%, 79.8%, and 99.8%, respectively, and the NH 3 decomposition rates are 1.11, 8.2, and 82. 3 (kg NH3 kg cat -1 h -1 ).
  • the weight space velocity is 3000, 15000, and 120,000 mlg ⁇ 1 h ⁇ 1 , respectively.
  • a 5 wt% Ru / C12A7: e powder was prepared in the same manner as in Example 1 except that the amount of Ru supported was 5 wt%, and an ammonia decomposition reaction was performed. The results are shown in Table 1. The conversion of NH 3 at 440 ° C. was 67.2%, and the NH 3 decomposition rate was 6.9 (kg NH 3 kg cat ⁇ 1 h ⁇ 1 ).
  • a 2 wt% Ru / C12A7: H powder was prepared in the same manner as in Example 1 except that C12A7: H was used as a carrier, and an ammonia decomposition reaction was performed.
  • the results are shown in Table 1.
  • the conversion of NH 3 at 440 ° C. was 76.5%, and the NH 3 decomposition rate was 7.9 (kg NH 3 kg cat ⁇ 1 h ⁇ 1 ).
  • C12A7 A 2 wt% Ru / CaO powder was prepared by the method shown in Example 1 except that CaO powder (High Purity Chemical Laboratory Co., Ltd., particle diameter: 5 mm to 10 mm) was used instead of C12A7e powder. Examined. The particle size of Ru metal after hydrogen reduction was 4 nm, and the degree of dispersion determined by CO adsorption was 40%. The results are shown in Table 1. The conversion rate of NH 3 at 440 ° C. was 42.1%, and the NH 3 decomposition rate was 4.3 (kg NH 3 kg cat ⁇ 1 h ⁇ 1 ).
  • a 5 wt% Co / C12A7: O powder was prepared in the same manner as in Example 6 except that C12A7: O powder containing oxygen ions not containing conduction electrons was used instead of C12A7: e powder, and the ammonia decomposition activity was examined. It was. The results are shown in Table 2. The conversion rate of NH 3 at 600 ° C. was 28.0%, and the NH 3 decomposition rate was 2.9 (kg NH 3 kg cat ⁇ 1 h ⁇ 1 ).
  • ammonia is decomposed at a high conversion rate in a wide reaction temperature range of 350 to 800 ° C. around normal pressure for ammonia with a low volume fraction to a high volume fraction. Since hydrogen can be generated, it can be said to be a preferable method from the viewpoint of reducing energy consumption. In addition, ammonia can be decomposed and hydrogen can be generated with extremely high efficiency by using an inexpensive material compared to a conventional Ru-supported catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

【課題】アンモニアを水素と窒素に分解するための高性能でかつ安価であり、資源の観点からも有利な担持金属触媒と、この触媒を用いた効率的な水素生成方法を提供すること。 【解決手段】アンモニアガスを接触分解し水素を生成させるための触媒において、酸素イオンを内包するマイエナイト型化合物又は1015cm-3以上の伝導電子若しくは水素陰イオンを内包するマイエナイト型化合物を担体とし、その担体表面にアンモニア分解用金属粒子が担持されていることを特徴とする水素生成触媒。この触媒からなる触媒層に、体積分率0.1~100%のアンモニアガスを連続的に供給し、0.01MPa~1.0MPaの反応圧力及び300~800℃の反応温度下、重量空間速度(WHSV)500/mlg-1-1以上で反応させ水素を製造する。

Description

水素生成触媒及び水素の製造法
 本発明は、水素生成触媒及びこの触媒によるアンモニアからの水素製造方法に関する。
 アンモニアは臭気性を有するため、各種排ガスに含有されるアンモニアを環境中に排出する際には無害化することが必要であり、例えば、酸素とアンモニアとを接触させて酸化分解する方法、アンモニアを水素へ直接分解する方法等が提案されている。アンモニアの分解反応は工業的にはステンレス鋼、ニッケル鋼等の光輝焼鈍等に使用される窒素と水素からなる雰囲気ガスの製造に利用されている。
 また、近年、水素をクリーンエネルギー源として用いることが環境保護の観点から注目されており、例えば、有機性廃棄物から生じるアンモニアから水素を回収する方法や、水素を燃料とする燃料電池車の開発が活発に行われている。水素はクリーンエネルギーとして好ましいものの、貯蔵するために大きな体積が必要とされるため、特に自動用の燃料電池の原料として使用する場合には燃料電池への水素の供給方法が課題とされてきた。この課題を解決する方法として、液体アンモニアとして水素を貯蔵して、気化したアンモニアの接触分解により水素を製造する方法が最近注目されている。
 アンモニアの分解反応は、2NH3→3H2+N2で示される体積膨張型の吸熱反応であるから、反応圧力が低く、反応温度が高い方が反応平衡上有利である。アンモニアの熱分解は800℃以上、望ましくは1000℃以上の高温が必要であるが、触媒を使用した接触分解では300~700℃の反応温度で分解が可能となる。
  アンモニア合成用触媒を、アンモニア分解反応に使用することが考えられるが、下記二つの理由より、アンモニア合成とは基本的に異なるため、アンモニア分解用触媒の開発が必要とされている。一つ目に、アンモニア合成反応は平衡の関係で、300℃~500℃、30MPaといった、低温、高圧条件が好ましいのに対し、逆反応のアンモニア分解反応は、低圧、高温反応条件が好ましい。二つ目に、アンモニア合成では、窒素分子の活性化が反応の律速過程であるが、分解反応では、アンモニア分解で生じた触媒表面上の窒素吸着種の脱離が律速段階であるとされている。
 アンモニアの接触分解の最適触媒金属は、ルテニウム(Ru)であり、例えば、コークス炉から回収したアンモニアを400~500℃の中温、大気圧下で水素と窒素に分解するのに適した触媒として、アルミナに担持したRuに塩基性化合物を添加した触媒を用いる方法(特許文献1)、α-アルミナにRuを担持させてなる比表面積が8.5~100m2/gの触媒を300~800℃の反応温度で用いる方法(特許文献2)、原料混合物を1000℃以上の高温で焼成して形成した、一般式ABO3で表されるペロブスカイト型複合酸化物のAサイト又はBサイトの一部をRu等の触媒活性金属で置換した触媒を反応温度400~900℃で用いる方法(特許文献3)、等が提案されている。
 さらに、セリア、ジルコニア、イットリア、酸化ランタン、アルミナ、マグネシア、酸化タングステン及びチタニアよりなる群から選択される少なくとも1種の金属酸化物に鉄族金属の化合物を担持させた後に前記化合物を還元処理した、鉄族金属を活性金属とする触媒を180~950℃の反応温度で用いる方法(特許文献4)、セリアとアルミナ、必要に応じてジルコニアを含有する複合酸化物からなる担体に長周期型周期表の8族~10族に属する少なくとも1種の金属元素を担持させた触媒を150~650℃の反応温度で用いる方法(特許文献5)、Ni、Cu、又はZnの金属成分とカルシアとアルミナから成るアルミナセメントとを複合化した触媒を用いる方法(非特許文献1)等も提案されている。しかし、当該方法の触媒においては、Niとアルミナは反応しやすく、NiO-Al23の固溶体が生成するために、マイエナイト型構造は得られない。
 液体アンモニアを分解して生成した水素を燃料電池に供給する水素発生装置においては、できるだけ低い反応温度で高い転化率で高純度の水素を生成できる水素生成触媒の使用が望ましい。特許文献6に、反応の開始又は停止が繰り返される燃料電池自動車用のアンモニア分解反応の場合に、安定した性能を発現する水素生成触媒として、Pt、Rh、Pd、Ru等の貴金属触媒が好ましいこと、が開示されている。
 また、特許文献7においては、Niに基づく水素生成触媒は、好ましい触媒であるが、Ruに基づく触媒と同様の転換効率を達成するためにより長い接触時間を必要とし、Ruに基づく触媒は、Niに基づく触媒の十分の一の接触時間でよいこと、他の望ましいアンモニア分解触媒としては、Fe、Rh、Ir、Pd、Pt及びRe触媒又はこれらの元素を含む化合物が挙げられること、が開示されている。
 特許文献8には、La、Ni、Co、及びFeを含有する複合酸化物粒子の表面にNa金属若しくはK金属、又はNa化合物若しくはK化合物が存在するアンモニア分解触媒が高い転化率で、アンモニアから水素と窒素を効率的に製造する触媒として適すること、が開示されている。
 一方、CaO、Al23、及びSiO2を構成成分とするアルミノケイ酸カルシウム中に、鉱物名をマイエナイトと呼ぶ物質があり、その結晶と同型の結晶構造を有する化合物を「マイエナイト型化合物」という。マイエナイト型化合物は、12CaO・7Al23(以下、「C12A7」と記す)なる代表組成を有し、C12A7結晶は、2分子を含む単位胞にある66個の酸素イオンの内の2個が、結晶骨格で形成されるケージ内の空間に「フリー酸素」として包接されているという、特異な結晶構造(空間群I4-3d)を持つことが報告されている(化学式で、[Ca24Al2864]4+(O2-2(以下、「C12A7:O」と記す)(非特許文献2)。
 マイエナイト型化合物は、上記の代表組成の式を構成するCaの一部又は全てがLi、Na、K、Mg、Sr、Ba、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ir、Ru、Rh、Ptからなる群から選ばれる少なくとも一種類以上の典型金属元素、又は遷移金属元素で置換されていてもよい。また、上記の代表組成の式を構成するAlの一部又は全てがB、Ga、C、Si、Fe、Geからなる群から選ばれる少なくとも一種類以上の典型金属元素、又は遷移金属元素で置換されていてもよい。さらに、上記の代表組成の式を構成するOの一部又は全てがH、F、Cl、Br、Auからなる群から選ばれる少なくとも一種類以上の典型元素又は金属元素で置換されていてもよい。
 2003年以降、このフリー酸素イオンが種々の陰イオンで置換できることが本発明者らにより明らかにされた。特に、強い還元雰囲気にC12A7を保持すると、全てのフリー酸素イオンを電子で置換することができる。フリー酸素イオンを電子で置換したC12A7は、化学式で、[Ca24Al2864]4+(e-4(以下、「C12A7:e-」と記すこともある)と記すことができる。
 このように、陰イオンに対し電子が置き換わった物質をエレクトライドと呼び、エレクトライドは良好な電子伝導特性を示す特徴を有する(非特許文献3、特許文献9)。また、前記ケージ中の電子は容易に気相中の水素と反応し、水素陰イオン(ハイドライド)としてC12A7に取り込む性質を持つ(非特許文献4)。あるいは、CaとCa(OH)2やCaH2等を還元剤として用いてC12A7を還元すれば、水素陰イオン包接C12A7は容易に合成できる(非特許文献5)。C12A7に取り込まれた水素陰イオンは光照射や加熱等により、水素を放出しエレクトライドに戻る(非特許文献4)。
 水素陰イオン(H-,H2 -)を濃度1×1018cm-3以上含むマイエナイト型化合物及びその製造方法が報告されているが(特許文献10~12、非特許文献5)、水素陰イオン包接C12A7の応用例は殆ど知られていない。
 本発明者らは、導電性マイエナイト型化合物に、RuやFe等の金属を担持したアンモニア合成反応の触媒及びこの触媒を用いて室温から600℃以下の反応温度、10kPa~20MPaの反応圧力条件で、アンモニアを合成する方法に関する発明(特許文献13)及び導電性マイエナイト型化合物を用いて二酸化炭素を一酸化炭素に還元する方法に関する発明(特許文献14)について特許出願した。
 なお、C12A7は、導電性を有しないものでも触媒や触媒担体としての用途を有し、例えば、原料の錯体溶液を噴霧乾燥後1300~1400℃で2時間以上仮焼して得られた触媒を軟質オレフィン生成用の水蒸気分解反応触媒として使用することが知られている(特許文献15)。最近では、水熱法やゾルーゲル法で前駆体を合成後、焼成する方法により高比表面積のC12A7粉末を得る方法が提案されている(非特許文献6,7)。
特開平01-119341号公報 特開平08-084910号(特許第3688314号)公報 特開2010-110697号公報 特開2010-094668号公報 特開2010-207783号公報 特開2003-040602号公報 特表2008-536795号(特許第4990267号)公報 特開2012-161713号公報 WO2005/000741 WO2003/089373 特開2012-101945公報 WO2008/087774 WO2012/077658 特開2012-025636号公報 米国特許第6,696,614号明細書
V.I.Yakerso and E.Z.Golosman,"Studies in surface science and catalysis",91、879(1995) Von Hans Bartl und Thomas Scheller,"N.Jahrbuch F.Mineralogie.Monatshefte ",35,547-552,(1970) S.Matsuishi,Y.Toda,M.Miyakawa,K.Hayashi,T.Kamiya,M.Hirano,I.Tanaka and H.Hosono,"Science",301,626-629,(2003) K.Hayashi,P.V.Sushko,A.L.Shluger,M.Hirano,and H.Hosono,"Journal of Physical Chemistry B",109,23886-23842,(2005) K.Hayashi,"Journal of Solid State Chemistry",184,1428-1432,(2011) L.Gong,Z.Lin,S.Ning,J.Sun,J.Shen,Y.Torimoto and Q.Li,"Material Letters",64,1322-1324,(2010) C.Li,D.Hirabayashi and K.Suzuki,"Materials Research Bulletin",46,1307-1310,(2011)
 半導体製造装置、LCD製造装置等からの排ガスには高濃度のアンモニアが含有されている。また、屋内の便所付近等では、空気中に例えば、数~数十ppm程度の低い体積分率のアンモニアが含有されている。このように、排ガス中や環境中の高濃度から低濃度のアンモニアに適用して効率のよいアンモニア分解触媒が求められている。
 さらに、有機性廃棄物から発生するアンモニアを分解して生成する水素をエネルギー源として用いることや、液体アンモニアとして水素をボンベ等に貯蔵し、気化させたアンモニアガスを分解して発生させた水素を燃料電池に用いる方法も提案されている。このように、アンモニアの分解により生成する水素を使用する場合は生成ガス中の不純物が少ないことが求められる。特に、自動車の燃料電池の原料として液体アンモニアから水素を製造する場合、装置の耐熱性の問題やH2/N2生成物中の残留アンモニアを低減して高純度の水素を生成させるため、比較的低温でかつ、高い空間速度で効率よくアンモニアを分解して水素に転化する水素生成触媒が求められている。
 アンモニア分解触媒の担体としては、従来、アルミナ、ジルコニア、マグネシア、チタニア等の融点が2000℃程度以上の耐熱セラミックスが用いられているが、800℃以上の高温環境下の分解反応では担体や担持された金属が凝集して触媒活性が低下するという問題があり、また、比較的低温での分解反応では高濃度のアンモニア原料の場合、NH3転化率が低いという問題があった。
 本発明は、アンモニアを水素と窒素に分解するための水素生成触媒として高性能でかつ安価であり、資源の観点からも有利な担持金属触媒と、この担持金属触媒を用いた効率的なアンモニアの分解による水素製造方法を提供することを課題とする。
 本発明者らは、上記目的を達成すべく鋭意検討を行った結果、酸素イオン、又は1015cm-3以上の伝導電子若しくは水素陰イオンを含むマイエナイト型化合物からなる基材をアンモニア分解触媒の担体とした担持金属触媒が、高いアンモニア分解効率を有し、例えばアルミナを担体とした場合に比べて2倍以上のNH3転化率が得られることを見出した。
 本発明では、アンモニアガスを接触分解して水素を生成させる水素生成触媒を用い、0.1%の低体積分率から、20%以上から100%までの高体積分率のアンモニアを、比較的低い分解反応温度であっても高い転化率でアンモニアを分解することができる。バランスガスの種類は特に限定されず、バランスガスとして、窒素やHe、Arなどの不活性ガスや分解反応に影響を及ぼさない酸素や還元性ガスを含んでも構わない。
 本発明は、アンモニアガスを接触分解して水素を生成させるための触媒に関するもので、酸素イオン、又は1015cm-3以上の伝導電子若しくは水素陰イオンを含むマイエナイト型化合物の粉末又は成型体を基材とし、基材の表面にアンモニア分解用触媒金属粒子が付着していることを特徴とするアンモニア分解による水素生成触媒、及び該触媒を用いてアンモニア分解反応により水素を製造する方法に関する。
 C12A7に代表される酸素イオン、又は、1015cm-3未満の伝導電子若しくは水素陰イオンを含むマイエナイト化合物は高い分解活性を示すが、より多量の伝導電子又は水素陰イオンを含むマイエナイト化合物ほどアンモニア分解効率が高くなる。さらに、本発明の担持金属触媒において、マイエナイト化合物は、1015cm-3以上、より好ましくは1017cm-3以上の伝導電子又は水素陰イオンを含むものであり、1018cm-3以上の伝導電子又は水素陰イオンを含むものがさらに好ましい。これらのマイエナイト型化合物は、[背景技術]に記載した公知の方法を用いて製造可能であり、本発明ではこれらの方法で得られた該化合物を適宜使用できる。
 本発明の水素生成触媒において、触媒活性金属は、長周期族周期表の8族、9族及び10族金属元素から選ばれる少なくとも1種である。従来のアンモニア分解反応では、酸化物等の担体に触媒活性金属を担持した触媒は、通常、一度、水素等で還元処理してからアンモニア分解反応に使用される。本発明の水素生成触媒も、同様に還元処理してから使用することが好ましいが、その還元処理過程でマイエナイト化合物のケージ中の電子が水素と反応し水素陰イオン(ハイドライド)として包接されたとしてもかまわない。
 遷移金属の元素は均一系・不均一系の触媒成分として各種触媒反応に使用されている。一般に、Fe、Ru、Os、Co、Mo等の6族、8族又は9族遷移金属は水素と窒素との直接反応によりアンモニアを合成する触媒として適することが知られている。また、Ru、Ni等の8族及び10族遷移金属は、アンモニア分解に対しても活性を示すことが報告されている。研究者間では、アンモニア合成の律速過程は三重結合をもつ窒素分子の解離であることが受け入れられているのに対し、分解の律速過程はN-H結合が切断する過程とN原子が再結合する過程が提案されている。このように、両反応は右向きと左向きの反応の関係にあるが、律速過程は全く異なる。したがって、マイエナイト型化合物担持触媒がアンモニアガスを接触分解して水素を生成させるための触媒において有効であるどうかは、容易に判断がつかない。
 導電性マイエナイト型化合物を基材とし、その表面に触媒活性金属粒子が付着して担持された担体粉末又は成型体は、担持工程後も当初と同程度の電子を包接しており、担体として仕事関数が小さいので触媒活性金属粒子への電子供与能が大きい。水素陰イオンでも同様のことが期待される。
 本発明の水素生成触媒が高い転化率を奏する機構は解明されてはいないが、高活性を与えた要因として、(1)ケージ中の電子又は水素陰イオンがRu等の活性金属粒子の電子状態に変化を与え、アンモニアの活性化を促進しているか、又は(2)電子又は水素陰イオンが保持されているケージが、反応中間体(例えば、NH2 -やH-等)の貯蔵庫として機能しRu等の活性サイトの被毒を防いでいること等が現時点で考えられる。この電子又は水素陰イオンの供与性及び貯蔵性という二つの機能により、アンモニア分解速度が向上したと理解される。このような特異な機能をもつ基材は従来の担体の概念を超えたものであるといえる。
 この担持金属触媒は、含浸法、物理的混合法、熱分解法、液相法、又は蒸着法等の方法を用いて製造できる。はじめに、金属成分原料として触媒活性金属の化合物を前記各方法によりマイエナイト型化合物基材に担持又は混合し、触媒前駆体を得る。次いで、得られた前駆体を還元雰囲気中で加熱し該触媒活性金属の化合物を触媒活性金属粒子に還元して基材表面に付着させることで製造される。スパッタリング法で直接触媒活性金属粒子を基材の表面に形成してもよい。
 含浸法は、基材としてマイエナイト型化合物粉末又は成型体を触媒活性金属の化合物の溶媒溶液に分散するか浸漬する工程、該溶媒溶液の溶媒を蒸発させて乾固した該触媒活性金属の化合物からなる触媒前駆体を基材の表面に形成する工程、還元雰囲気中で加熱して該触媒活性金属の化合物を還元して基材の表面に前記触媒活性金属粒子を付着させる工程からなる。
 この担持金属触媒を反応器に充填した触媒層に、体積分率0.1~100%のアンモニアガスを連続的に供給し、0.01MPa~1.0MPaの反応圧力及び300~800℃の反応温度下、重量時空間速度(WHSV)500/mlg-1-1以上で接触分解反応させることにより高いNH3転化率で水素を製造することができる。
 伝導電子を含むマイエナイト型化合物の代表組成は、式[Ca24Al28644+(O2-2-x(e-2x(0<x≦2)である。伝導電子を含むマイエナイト型化合物は、構造中に内包する酸化物イオン(O2 -,O2 2-)を置換した電子が伝導電子となり、C12A7の場合、組成式([Ca24Al28644+(O2-2-x(e-2x)(0<x≦2)で示される。更に、酸化物イオンを電子で置換することにより、伝導電子濃度は1×1015cm-3以上になる。したがって、伝導電子を含むマイエナイト型化合物は、「導電性マイエナイト型化合物」と称することができる。C12A7:e-の伝導電子の理論的最大濃度は、2.3×1021cm-3である。水素陰イオン内包C12A7の組成は、式[Ca24Al28644+(O2-2-x(H-2x(0<x≦2)で表される。
 C12A7は、2.8eV及び0.4eVに光吸収を生じる。この光吸収係数を測定することにより電子濃度が得られる。試料が粉末体であるとき、拡散反射法を用いると簡便に電子濃度が得られる。また、ケージ中の電子はスピン活性があるので、電子スピン共鳴(ESR)を用いてケージ中の電子濃度を測定することも可能である。さらに、伝導電子を含むC12A7は、ヨウ素分子を還元可能なため、ヨードメトリーでケージ中の電子濃度を測定できる。水素陰イオン濃度は、水素核の固体核磁気共鳴分光法(1H NMR)を用いれば、定量できる。
 本発明の水素生成触媒を用いるアンモニア分解方法により、カルシウム、アルミニウム、酸素といったクラーク数上位の元素のみで構成された合成が容易で、安価で無毒な化合物であるマイエナイト型化合物を基材として用い、350℃、0.1MPaのような温和な条件下でも、かつ、高い重量空間速度(Weight Hourly Space Velocity; WHSV)でもアンモニアを接触分解できる。また、Ruのような高価な希少金属以外の遷移金属元素、例えば、CoやNi等を触媒活性金属に用いて高い転化率で分解して高純度の水素を生成することも可能であり、資源の有効利用の観点からも有用である。また、従来のアルミナ担持触媒のように転化率を向上させるために促進剤としてアルカリ金属又はアルカリ土類金属化合物等を添加しないでもよいため、担持金属触媒の製造工程が簡略化される。
図1は、実施例1~8及び比較例1~2で示すNH分解を行う際に用いた反応ラインの概略図である。
 以下、本発明の水素生成触媒の構造及び該触媒の製造方法並びに該触媒を用いたアンモニア分解による水素の製造方法について詳細に説明する。
<マイエナイト型化合物基材の製造>
 以下、マイエナイト型化合物の代表組成であるC12A7について具体的に説明するが、本発明は、C12A7に限らず、CaをSrに置換した12SrO・7Al23等のC12A7と結晶構造が同型のマイエナイト型化合物の全てに適用できる。本発明の触媒の製造方法の出発材料に用いるC12A7からなる基材は、粉末の他、多孔体、固体焼結体、薄膜、固体単結晶等の成型体でもよく、成型体の形状はいずれでもよい。また、他の物質からなる担体に担持されているC12A7を基材として用いてもよい。基材は、触媒活性金属粒子の担体として機能する。
 C12A7の原料は固相法、水熱法等で合成される。水熱反応は100℃以上、5MPa以上の高温高圧下の水が関与する反応であり、低温で短時間の反応によりセラミックス粉末を合成できる。水熱合成法を用いることで、比表面積の大きな(20~60m2-1程度)C12A7粉末が得られる。例えば、C12A7の前駆体となる水酸化物であるCa3Al2(OH)12は水と水酸化カルシウム、水酸化アルミニウムを化学量論組成で混合し、例えば、150℃、6時間程度加熱することで得ることができる。この粉末を750~900℃で真空排気処理すると、吸着水、表面水酸基、ケージ内のOH-等を除去できるため、電子を注入する工程での還元剤の失活を防止できる。
<C12A7基材に伝導電子や水素陰イオンを含ませる工程>
 伝導電子を含んだC12A7の粉末を作製する場合、化学当量組成のC12A7の原料の粉末を還元雰囲気下で加熱すればよい。伝導電子を含んだC12A7の多孔体、固体焼結体は、化学当量組成のC12A7の原料粉末を成形後にCaやCaH2等と還元雰囲気下で加熱すればよい。薄膜、固体単結晶以外の基材は伝導電子を含まないC12A7基材の製造を経由することなく、原料から直接伝導電子を含んだC12A7基材を製造できる。水素陰イオンを含むC12A7基材も、同様に、水素気流下やCa等と還元雰囲気下で加熱すれば、粉末、多孔体、固体焼結体を合成できる。
 伝導電子を含んだC12A7の薄膜は、C12A7の固体焼結体をターゲットに用い、パルスレーザー堆積(PLD)法、スパッタ法、プラズマ溶射法等によりMgO、Y3Al512等の基板上に成膜したC12A7の薄膜を500℃以上で加熱しながら再度PLD法によりC12A7薄膜を堆積して一体化させれば作製できる。再度のPLD法ではプラズマ化されたC12A7が還元剤として働き該薄膜に伝導電子が含まれる。水素陰イオンを含むC12A7の薄膜も、同様に合成できる。
 また、伝導電子を含んだC12A7の固体単結晶は、C12A7の原料粉末を1600℃程度で融解した融液を引き上げること(CZ法)によりC12A7単結晶を作製し、真空にしたガラス管中に該単結晶を金属Ca粉末又はTi粉末等と共に封入し還元雰囲気下で加熱して該固体単結晶に伝導電子を含ませればよい。水素陰イオンを含むC12A7の固体単結晶も、同様に合成できる。
 固体焼結体又は固体単結晶の伝導電子又は水素陰イオンを含んだC12A7を粉末に加工することも可能である。乳鉢中での粉砕、ジェットミルによる粉砕等を用いて、粉末加工できる。粉末の大きさは特に限定されないが、これらの方法により粒子径が100nm~1mm程度の範囲に分布する粒子が得られる。これらの方法により、伝導電子又は水素陰イオンを1×1015cm-3以上含むC12A7を作製することができる。
 なお、作製法により粉末、多孔体、固体焼結体、薄膜、固体単結晶に関わらず、それらの基材の表面部から伝導電子が抜けていることがある。その場合、真空、不活性ガス中、又は還元雰囲気下において500℃以上~該化合物の融点(1250℃)未満で加熱し、基材の最表面まで1×1015cm-3以上の伝導電子を含ませることが望ましい。
<活性金属成分の担持工程>
 本発明のアンモニア分解においては、長周期族周期表の8族、9族又は10族から選ばれる遷移金属元素を触媒活性金属として使用することができるが、Fe、Ru、Osから選ばれる8族、Co、Rh、Irから選ばれる9族、Ni、Pd、Ptから選ばれる10族元素を単独又は組み合わせて使用することが特に好ましい。
 C12A7粉末や多孔体を基材として用いる場合、前記工程で得られた伝導電子を1×1015cm-3以上含むC12A7:e-粉末や多孔体を、触媒活性金属の化合物と各種方法、例えば、CVD法(化学蒸着法)や含浸法、を用い混合する。固体焼結体、薄膜、固体単結晶等を用いる場合、粉末や多孔体と同様に含浸法や、触媒活性金属の化合物をその表面にCVD法、スパッタ法等で堆積させ、該触媒活性金属の化合物を還元雰囲気において好ましくは150~800℃の温度で熱分解して触媒活性金属を析出させて基材表面に付着させる。前記の触媒活性金属の化合物を用いる場合は、例えば、それぞれの金属原料をC12A7上にCVD法等で堆積させ、熱分解した後にアンモニアガスにより窒化させる方法等も使用できる。
 前記触媒活性金属の化合物は特に限定されないが、例えば、トリルテニウムドデカカルボニル[Ru3(CO)12]、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム(II)[RuCl2(PPh3)4]、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)[RuCl2(PPh3)3]、トリス(アセチルアセトナト)ルテニウム(III)[Ru(acac)3]、ルテノセン[Ru(C5H5)]、塩化ルテニウム[RuCl3]、ペンタカルボニル鉄[Fe(CO)5]、テトラカルボニル鉄ヨウ化物[Fe(CO)4I2)]、塩化鉄[FeCl3]、フェロセン[Fe(C5H5)2]、トリス(アセチルアセトナト)鉄(III)[Fe(acac)3]、ドデカカルボニル三鉄[Fe3(CO)12]、塩化コバルト[CoCl3]、トリス(アセチルアセトナト)コバルト(III)[Co(acac)3]、コバルト(II)アセチルアセトナト[Co(acac)2]、コバルトオクタカルボニル[Co2(CO)8]、コバルトセン[Co(C5H5)2]、トリオスミウムドデカカルボニル[Os3(CO)12]、アセチルアセトナートニッケル(II)二水和物[C10H14NiO4.xH2O]等の熱分解し易い無機金属化合物又は有機金属錯体等を例示できる。
 含浸法としては、次の工程を採用できる。例えば、担体粉末を触媒活性金属の化合物溶液(例えば、Ruカルボニル錯体のヘキサン溶液)に分散し、撹拌する。この際、触媒活性金属の化合物は、担体粉末に対して0.01~40wt%、好ましくは0.02~30wt%、より好ましくは0.05~20wt%程度である。その後、窒素、アルゴン、ヘリウム等の不活性ガス気流中、又は真空下、50~200℃で30分から5時間の間、加熱して溶媒を蒸発させ乾固する。次に、乾固した触媒活性金属の化合物からなる触媒前駆体を還元する。以上の工程により担体粉末の表面に数nm~数百nmの粒子径の微粒子として触媒活性金属を高分散し強固に付着した担持金属触媒が得られる。本発明の触媒は、必要に応じて促進剤を添加物として用いてもかまわない。
 この12CaO・7Al23粉末を担体とする担持金属触媒のBET比表面積は1~100m2-1程度であり、触媒活性金属の量は担体粉末に対して0.01~30wt%、好ましくは002~20wt%、より好ましくは0.05~10wt%である。0.01wt%未満では、活性点が少なすぎて、効率的ではなく、30wt%超では触媒活性の増大が乏しくコスト面で好ましくない
 また、上記の方法に代えて、同様の条件で伝導電子を1×1015cm-3以上含むC12A7粉末と触媒活性金属の化合物粉末とを物理混合法により固相混合した後、加熱還元することによっても同様の形態の担持金属触媒を得ることができる。
 また、担持金属触媒は通常の成型技術を用い成型体として使用することができる。具体的に、粒状、球状、タブレット状、リング状、マカロニ状、四葉状、サイコロ状、ハニカム状等の形状が挙げられる。支持体に担持金属触媒をコーティングしてから使用することもできる。
<アンモニアの分解>
 アンモニア分解は、前記の担持金属触媒を反応器に充填して触媒層として用い、反応温度350~800℃で原料のアンモニアガスを連続的に供給して触媒層に接触させ、水素と窒素を生成する下記の式1で示される反応である。
   2NH3→3H2+N2                  (式1)
 アンモニア分解反応は平衡反応であり、且つ吸熱反応であると共に体積が増加する反応であるため、高温かつ低圧条件が有利である。本発明の触媒を用いる場合、反応圧力は0.01Mpaから1.0Mpa、温度は300~800℃の範囲が好ましい。反応圧力が0.1Mpa未満の場合は分解反応が効率よく進行するが、減圧設備を必要とするためコスト面で不利になる。0.10MPa(常圧)の場合は、設備の面で好ましい。一方、反応圧力が1.0Mpa超の場合、平衡は原料側に有利になるため、十分な分解率は得られない。300℃未満の反応温度では反応速度が遅く、実用的でない。一方、800℃超では、高い分解速度が得られるが、高価な耐熱装置が必要になり、かつ触媒寿命に影響を及ぼすので好ましくない。400~750℃がより好ましく、Ru触媒の場合は、400~600℃がさらに好ましく、Ni又はCo触媒の場合は、500~750℃がさらに好ましい。C12A7の融点は1250℃であり、800℃程度ではシンタリングしない。
 本発明法では、原料としてバランスガスで希釈したアンモニア又はアンモニア単独の何れも、すなわち、体積分率0.1~100%のアンモニアガスを使用できる。アンモニア分解反応により水素を製造する場合、生成した水素と窒素を分離する必要があるので、アンモニア体積分率は高い方が好ましく、体積分率で5%以上、より好ましくは20%以上、さらに好ましくは70%以上が適する。重量空間速度(WHSV)は500mlg-1-1以上で分解反応を行い、高いNH3転化率が得られる。
 本発明のアンモニア分解方法により生成するガスは理論的に水素と窒素が3:1のモル比で得られ、例えばステンレス鋼やニッケル鋼、ニッケル、ニッケル-銅、又はニッケル-クロム合金等の光輝焼鈍仕上げ用ガスとして使用できる。更に、本発明で得られる水素は燃料電池に有害なCOやCO2を含まないので、生成した水素と窒素を分離・精製することにより、例えば燃料電池用水素として使用できる。
 アンモニア分解反応は、ステンレス鋼等の耐食性材料を用いた通常の気相-固相接触反応装置を用いて行うことができる。反応形式は、バッチ式反応形式、閉鎖循環系反応形式、流通系反応形式のいずれでもかまわないが、実用的な観点からは流通系反応形式が最も好ましい。本反応は吸熱反応のため、反応熱を供給しながら反応させると有利であり、工業的には収率をあげるため、反応熱を供給するための様々な工夫がなされている。例えば、アンモニア原料の一部を、空気により酸化させて燃焼熱を得ながら、アンモニア分解反応を行う方法等が提案されている。
 本発明において、従来行われている方法と同様に、触媒を充填した一種類の反応器、又は複数の反応器を用いて、アンモニア分解反応を行うことができる。また、複数の反応器を連結させる方法や、同一反応器内に複数の反応層を有する反応器の何れの方法も使用することができる。使用する触媒は本発明の触媒単独、又は本発明の触媒から選ばれる二種類以上の触媒の組み合わせ、若しくは本発明の触媒と公知触媒との組み合わせの何れも使用することができる。アンモニア分解反応の前に触媒を水素等の還元性のガスの雰囲気に300~700℃で、30分~2時間程度暴露して触媒金属を活性化することが転化率の向上の点で好ましい。
 以下に、実施例に基づいて、本発明をより詳細に説明する。常圧固定床流通反応装置(図1)を用い、NH3の生成量をガスクロマトグラフにより定量してアンモニア分解速度を求めることにより、アンモニア分解活性を評価した。転化率a(%)は下記の式により求めた。ここで、PNH3、P'NH3はそれぞれ、反応前と反応後のアンモニア分圧を示している。
 NH3転化率: a(%)=100PNH3 (PNH3-P'NH3)/(PNH3+P'NH3)
 図1に、実験で使用した装置の概要を示す。石英製反応器1(内径 6mm,長さ 24cm,内容積 6.8ml)の内部に、下記の実施例、比較例で調製した担持金属触媒を充填する。その後、ボンベ3よりH2を反応器1に流して担持金属触媒を予め還元処理する。次いで、ボンベ4よりNH3を反応器1に流す。H2を希釈する場合は、ボンベ2から所定量のHeを供給してH2に混合する。所定の重量空間速度になるように、アンモニア流量を玉流量計5で制御する。その後、反応系を所定温度に昇温し、活性試験を行う。反応器1から流出した反応生成物は、排気口6(vent)から排出し、一部を検量管7(Sampling loop)で捕集し、ガスクロマトグラフのキャリアーガス入口8(carrier in)からキャリアーガスを供給し、熱伝導検出器付きガスクロマトグラフ9(On-line TCD-GC)で分析した。
<酸素イオンを含むC12A7基材の調製>
 Ca(OH)2(守随彦太郎商店、23.1g)及びAl(OH)3(株式会社高純度化学研究所、28.4g)の各粉末をCaとAlのモル比が12:14となるように混合し、水449mlを加えた後、オートクレーブ中にて150℃で5時間かけて水熱処理した。得られた粉末を、ろ過後、水500mlで洗浄した後、150℃で乾燥後、酸素気流中800℃で2時間焼成し、粉砕し、比表面積40m2-1、粒子径0.1mm~0.5mmの伝導電子及び水素陰イオンを含まない酸素イオンを含むC12A7(以下、C12A7:Oと表記)粉末を調製した。
<伝導電子を含むC12A7基材の調製>
 上記方法で調製したC12A7:O粉末を、シリカガラス管内に挿入し1×10-4Paの真空中、800℃で15時間真空加熱し前処理した。得られた粉末2.5gを、シリカガラス管内に金属Ca粉末0.1gとともに挿入し、700℃で15時間加熱することにより伝導電子濃度が1.5×1021cm-3のC12A7:e-(C12A7:eと表記)の粉末を得た。調製後の粉末の比表面積は14m2-1(粒子径0.2mm~1mm)と小さくなった。
<水素陰イオンを含むC12A7基材の調製>
 上記方法で調製したC12A7:O粉末を、シリカガラス管内に挿入し1×10-4Paの真空中、750℃で15時間真空加熱し前処理した。得られた粉末1.5gを、シリカガラス管内に金属Ca粉末45mgとともに挿入し、700℃で15時間加熱することにより水素陰イオン濃度が2.5×1020cm-3のC12A7:H-(C12A7:Hと表記)の粉末を得た。水素陰イオンが内包されていることは、1H NMRとヨードメトリーから確かめた。調製後の粉末の比表面積は16m2-1(粒子径0.2~1mm)と小さくなった。
<担体粉末へのRuの担持>
 得られたC12A7:eの粉末1gをシリカガラス管内にRu3(CO)12 43mgとともに挿入し、400℃で2時間加熱してRu3(CO)12を還元することによりC12A7:eの粉末の表面にRu粒子を化学蒸着により付着した。これによりRu金属として2重量%を担持したエレクトライド粉末からなる担持金属触媒(2wt%Ru/C12A7:e)を得た。比表面積は全自動BET表面積測定装置で測定した。粒子径はCO分散度測定結果から判断した。水素還元後の、Ruメタルの粒子径は15nmであり、CO吸着によりもとめた分散度は8.6%であった。
<アンモニア分解反応>
 上記の方法で得られたRu担持触媒60~100mgを石英製反応管に詰めて触媒層を形成し、図1に示すアンモニア分解装置を使用し、アンモニア分解反応を実施した。分解反応前に、Ru担持触媒を水素気流中、400~450℃に昇温した石英製反応管内で2時間還元処理を実施しRuを活性化した。続いて、石英製反応管内の温度を350~700℃とし、常圧で、アンモニア体積分率100%のアンモニアガスを触媒層に5~100ml・min-1で流通させた。表1に反応結果を示した。350℃、440℃、700℃におけるNH3の転化率はそれぞれ51.9%、79.8%、99.8%であり、NH3分解速度はそれぞれ、1.11、8.2、82.3(kgNH3kgcat -1h-1)であった。このとき重量空間速度はそれぞれ、3000、15000、120000mlg-1-1である。
 Ru担持量を5wt%とした以外は、実施例1と同様な方法で5wt%Ru/C12A7:e粉末を調製し、アンモニア分解反応を実施した。結果を表1に示す。440℃におけるNH3の転化率は67.2%であり、NH3分解速度は、6.9(kgNH3kgcat -1h-1)であった。
 担体として、C12A7:Hを使用した以外は、実施例1と同様な方法で2wt%Ru/C12A7:H粉末を調製し、アンモニア分解反応を実施した。結果を表1に示す。440℃におけるNH3の転化率は76.5%であり、NH3分解速度は、7.9(kgNH3kgcat -1h-1)であった。
 実施例1で試験した触媒と同じものを使用し、アンモニア体積分率(VNH3)1.7%(Heバランス)、ガス総流量180ml/min(WHSV 216000mlg-1-1)で試験した。結果を表1に示す。440℃におけるNH3の転化率は100%であり、NH3分解速度は、2.1(kgNH3kgcat -1h-1)であった。
 C12A7:e粉末の代わりに、伝導電子を含まない酸素イオンを含むC12A7:O粉末を用いる以外は実施例1に示す方法で、2wt%Ru/C12A7:O粉末を調製し、アンモニア分解活性を調べた。結果を表1に示した。440℃におけるNH3の転化率は54.3%であり、NH3分解速度は、5.6(kgNH3kgcat -1h-1)であった。
[比較例1]
 C12A7:e粉末の代わりにCaO粉末(株式会社高純度化学研究所、粒子径5mm~10mm)を用いる以外は実施例1に示す方法で、2wt%Ru/CaO粉末を調製し、アンモニア分解活性を調べた。
 水素還元後の、Ruメタルの粒子径は4nmであり、CO吸着によりもとめた分散度は40%であった。結果を表1に示した。440℃におけるNH3の転化率は42.1%であり、NH3分解速度は、4.3(kgNH3kgcat -1h-1)であった。
[比較例2]
 C12A7:e粉末の代わりにγ-Al23粉末(株式会社高純度化学研究所、粒子径0.1mm~0.5mm)を用いる以外は実施例1に示す方法で、6wt%Ru/γ-Al23粉末を調製し、アンモニア分解活性を調べた。水素還元後の、Ruメタルの粒子径は11nmであり、CO吸着により求めた分散度は13%であった。結果を表1に示した。440℃におけるNH3の転化率は31.9%であり、NH3分解速度は、3.3(kgNH3kgcat -1h-1)であった。
Figure JPOXMLDOC01-appb-T000001
 実施例1に示すC12A7:e粉末を使用し、Ru3(CO)12の代わりに、Co4(CO)12原料を用いて、Ruと同様に化学蒸着法で、5wt%Co/C12A7:e粉末を調製した。試験結果を表2に示す。600℃におけるNH3の転化率は54.6%であり、NH3分解速度は、5.6(kgNH3kgcat -1
h-1)であった。
 C12A7:e粉末の替わりに、伝導電子を含まない酸素イオンを含むC12A7:O粉末を用いる以外は、実施例6と同じ方法で5wt%Co/C12A7:O粉末を調製し、アンモニア分解活性を調べた。結果を表2に示す。600℃におけるNH3の転化率は28.0%であり、NH3分解速度は、2.9(kgNH3kgcat -1h-1)であった。
 実施例1に示すC12A7:e粉末を使用し、Ru3(CO)12の代わりに、アセチルアセトナートニッケル(II)二水和物[C10H14NiO4.xH2O]を用いて、Ruと同様に化学蒸着法で、5wt%Ni/C12A7:e粉末を調製し、アンモニア分解活性を調べた。結果を表2に示す。600℃におけるNH3の転化率は86.4%であり、NH3分解速度は、8.9(kgNH3kgcat -1h-1)であった。
Figure JPOXMLDOC01-appb-T000002
 本発明の水素生成触媒を用いる接触分解法により、低い体積分率から高い体積分率のアンモニアに対して、常圧前後、350~800℃の広い反応温度範囲で、高い転化率でアンモニアを分解し水素を生成することが出来るため、エネルギー消費の削減からも好ましい方法といえる。また、従来のRu担持触媒と比べて安価な材料を用いて、著しく高効率でアンモニアを分解し水素を生成することができる。

Claims (8)

  1. 1015cm-3以上の伝導電子又は水素陰イオンを内包するマイエナイト型化合物を担体とし、その担体表面にアンモニア分解用金属粒子が担持されていることを特徴とする水素生成触媒。
  2. 1015cm-3以上の伝導電子又は水素陰イオンを内包させる前の酸素イオンを内包するマイエナイト型化合物を担体とし、その担体表面にアンモニア分解用金属粒子が担持されていることを特徴とする水素生成触媒。
  3. 前記触媒活性金属が、8族、9族及び10族金属元素から選ばれる少なくとも1種であることを特徴とする請求項1又は2に記載の水素生成触媒。
  4. 前記担体は、マイエナイト型化合物粉末又は成型体であり、かつ触媒活性金属粒子量が0.01~30wt%、BET比表面積が1~100m2-1であることを特徴とする請求項1又は2に記載の水素生成触媒。
  5. 前記担体に活性金属の化合物を含浸法、物理的混合法、熱分解法、液相法、又は蒸着法により担持させた後、還元雰囲気中で加熱して該触媒活性金属の化合物を還元して前記担体表面に金属粒子を担持させるか、スパッタリングにより直接担持させる工程からなることを特徴とする請求項1又は2に記載の水素生成触媒の製造方法。
  6. 請求項5に記載の含浸法は、粉末又は成型体を触媒活性金属の化合物の溶媒溶液に分散する工程、該溶媒溶液の溶媒を蒸発させて乾固した該触媒活性金属の化合物からなる触媒前駆体を形成する工程、還元雰囲気中で加熱して該触媒活性金属の化合物を還元して前記触媒活性金属粒子を粉末又は成型体の表面に担持させる工程からなることを特徴とする水素生成触媒の製造方法。
  7. マイエナイト型化合物粉末は、水熱法により合成されたものであることを特徴とする請求項6に記載の触媒の製造方法。
  8. 請求項1又は2に記載の触媒からなる触媒層に、体積分率0.1~100%のアンモニアガスを連続的に供給し、0.01MPa~1.0MPaの反応圧力及び300~800℃の反応温度下、重量空間速度(WHSV)500/mlg-1-1以上で接触分解反応させることを特徴とする水素の製造方法。
PCT/JP2013/072182 2012-09-20 2013-08-20 水素生成触媒及び水素の製造法 WO2014045780A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13839735.1A EP2898946B1 (en) 2012-09-20 2013-08-20 Methods for producing hydrogen
KR1020157006778A KR102159678B1 (ko) 2012-09-20 2013-08-20 수소생성촉매 및 수소의 제조법
CN201380048498.2A CN104640628B (zh) 2012-09-20 2013-08-20 生成氢气用催化剂以及氢气的制造方法
CA2883503A CA2883503C (en) 2012-09-20 2013-08-20 Catalyst for producing hydrogen and method for producing hydrogen
US14/429,274 US20150217278A1 (en) 2012-09-20 2013-08-20 Catalyst for producing hydrogen and method for producing hydrogen
JP2014536695A JP6143761B2 (ja) 2012-09-20 2013-08-20 水素生成触媒及び水素の製造法
US15/211,599 US9981845B2 (en) 2012-09-20 2016-07-15 Catalyst for producing hydrogen and method for producing hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-207548 2012-09-20
JP2012207548 2012-09-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/429,274 A-371-Of-International US20150217278A1 (en) 2012-09-20 2013-08-20 Catalyst for producing hydrogen and method for producing hydrogen
US15/211,599 Division US9981845B2 (en) 2012-09-20 2016-07-15 Catalyst for producing hydrogen and method for producing hydrogen

Publications (1)

Publication Number Publication Date
WO2014045780A1 true WO2014045780A1 (ja) 2014-03-27

Family

ID=50341104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072182 WO2014045780A1 (ja) 2012-09-20 2013-08-20 水素生成触媒及び水素の製造法

Country Status (7)

Country Link
US (2) US20150217278A1 (ja)
EP (1) EP2898946B1 (ja)
JP (1) JP6143761B2 (ja)
KR (1) KR102159678B1 (ja)
CN (1) CN104640628B (ja)
CA (1) CA2883503C (ja)
WO (1) WO2014045780A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217384A (ja) * 2014-05-21 2015-12-07 株式会社Ihi 触媒、触媒の製造方法、アンモニア合成方法、アンモニア分解方法
WO2016143313A1 (ja) * 2015-03-09 2016-09-15 学校法人 工学院大学 Mayenite構造を有する12SrO・7Al2O3化合物にRuを担持した炭化水素の水蒸気改質触媒
JP2016198720A (ja) * 2015-04-09 2016-12-01 国立大学法人宇都宮大学 アンモニア分解触媒、アンモニア分解触媒の製造方法、水素の製造方法及び水素の製造装置
JP2018143941A (ja) * 2017-03-03 2018-09-20 太平洋マテリアル株式会社 水素製造用触媒及び水素の製造方法
JP2018143940A (ja) * 2017-03-03 2018-09-20 太平洋マテリアル株式会社 触媒担体の製造方法
WO2018221701A1 (ja) 2017-05-31 2018-12-06 古河電気工業株式会社 アンモニア分解触媒構造体及び燃料電池
WO2022153719A1 (ja) * 2021-01-14 2022-07-21 三菱重工エンジニアリング株式会社 アンモニア分解装置
WO2022153720A1 (ja) * 2021-01-14 2022-07-21 三菱重工エンジニアリング株式会社 アンモニア分解装置
JP2023517265A (ja) * 2019-12-30 2023-04-25 株式会社 圓▲益▼マテリアルズ ルテニウム前駆体、それを用いたアンモニア反応触媒及びその製造方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170253492A1 (en) 2016-03-01 2017-09-07 Joseph Beach Electrically enhanced haber-bosch (eehb) anhydrous ammonia synthesis
JP6943524B2 (ja) * 2016-03-07 2021-10-06 昭和電工株式会社 アンモニア分解装置及び水素ガス製造装置
CN105688876A (zh) * 2016-03-24 2016-06-22 天津大学 应用于CO2光还原的催化剂[Ca24Al28O64]4+(e-)4及其制备方法
TWI752072B (zh) * 2016-08-08 2022-01-11 國立大學法人東京工業大學 氨合成用催化劑之製造方法及氨之製造方法
CN106178948A (zh) * 2016-08-25 2016-12-07 国网河南省电力公司电力科学研究院 一种基于氨逃逸催化脱除的新型scr脱硝系统
JP7231157B2 (ja) 2017-03-17 2023-03-01 国立研究開発法人科学技術振興機構 金属担持物、担持金属触媒、アンモニアの製造方法、水素の製造方法及びシアナミド化合物の製造方法
US11125133B2 (en) 2017-04-04 2021-09-21 Basf Corporation Hydrogen-assisted integrated emission control system
WO2018185660A1 (en) 2017-04-04 2018-10-11 Basf Corporation On-board vehicle hydrogen generation and use in exhaust streams
BR112019020841A2 (pt) 2017-04-04 2020-04-28 Basf Corp artigo catalítico de filtro de fluxo de parede monolítico, veículos, sistemas de tratamento de gases de escape e métodos para tratar uma corrente de escape
JP2020515765A (ja) 2017-04-04 2020-05-28 ビーエーエスエフ コーポレーション 触媒的汚染除去のための水素還元剤
EP3607182B1 (en) 2017-04-04 2021-10-27 BASF Corporation On-board vehicle ammonia and hydrogen generation
BR112019020432A2 (pt) 2017-04-04 2020-04-28 Basf Corp sistemas de controle de emissões e de tratamento de emissões e método para tratar uma corrente de gás de escape
JP2020516569A (ja) 2017-04-11 2020-06-11 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se エレクトライド化合物を製造する方法
WO2018189216A1 (en) 2017-04-11 2018-10-18 Basf Se Composite material comprising an electride compound
WO2018213305A1 (en) 2017-05-15 2018-11-22 Starfire Energy Metal-decorated barium calcium aluminum oxide and related materials for nh3 catalysis
EP3766835A4 (en) * 2018-03-14 2021-12-22 Japan Science and Technology Agency ELECTRON OR HYDRIDE ION ABSORBENT / DESORBANT MATERIAL, HYDRIDE ELECTRON OR ION ABSORBENT / DESORBANT COMPOSITION, TRANSITION METAL SUPPORT AND CATALYST, AND THEIR USE
EP3805159A4 (en) * 2018-05-07 2021-07-07 Japan Science and Technology Agency COMPOSITE OXIDE, METAL-BACKED MATERIAL AND AMMONIA SYNTHESIS CATALYST
WO2020160500A1 (en) * 2019-01-31 2020-08-06 Starfire Energy Metal-decorated barium calcium aluminum oxide catalyst for nh3 synthesis and cracking and methods of forming the same
JP7519655B2 (ja) * 2019-02-26 2024-07-22 つばめBhb株式会社 成形焼結体および成形焼結体の製造方法
CN110327957A (zh) * 2019-06-20 2019-10-15 福州大学化肥催化剂国家工程研究中心 一种氨分解催化剂的制备方法
CN114097120A (zh) * 2019-07-12 2022-02-25 学校法人东洋大学 燃料电池催化剂用组合物及包含其的燃料电池
CN111013584B (zh) * 2019-12-02 2022-07-08 浙江工业大学 一种高温质子膜催化剂及其制备方法和应用
CN111389404A (zh) * 2020-01-21 2020-07-10 天津大学 一种氧化铈负载镍催化剂的制备方法及其用途
CN111558376B (zh) * 2020-05-12 2023-02-07 中国石油天然气集团有限公司 一种铁基加氢催化剂及其制备方法与应用
CN111558377B (zh) * 2020-05-12 2023-02-03 中国石油天然气集团有限公司 一种加氢精制催化剂及其制备方法与应用
CN112473680B (zh) * 2020-12-10 2021-10-08 华中科技大学 一种双功能钙基催化剂及其制备方法和应用
CN114921823B (zh) * 2021-02-01 2024-07-19 芜湖美的厨卫电器制造有限公司 一种镀层的制备方法、应用该制备方法的电极、家电设备
KR20230154201A (ko) 2021-03-11 2023-11-07 토프쉐 에이/에스 암모니아 분해로부터 수소를 생성하기 위한 방법 및 시스템
CA3203636A1 (en) * 2021-04-19 2022-10-27 Nikolaus Spyra Internal combustion engine
KR20230071317A (ko) * 2021-11-16 2023-05-23 아주대학교산학협력단 암모니아 분해 반응용 루테늄 촉매, 이의 제조 방법 및 이를 이용하여 수소를 생산하는 방법
WO2024107776A1 (en) * 2022-11-18 2024-05-23 Amogy Inc. Systems and methods for processing ammonia
US20240166502A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
US20240166505A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
US20240166504A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
US20240166503A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
US20240166506A1 (en) 2022-11-21 2024-05-23 Air Products And Chemicals, Inc. Process and apparatus for cracking ammonia
KR102581476B1 (ko) 2023-02-06 2023-09-20 순천대학교 산학협력단 액상 플라즈마 반응에 의한 수소 생성용 촉매 및 이의 제조방법

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119341A (ja) 1987-10-30 1989-05-11 Nkk Corp アンモニア分解用触媒
JPH0884910A (ja) 1994-07-21 1996-04-02 Japan Pionics Co Ltd アンモニアの分解方法
JP2003040602A (ja) 2001-07-30 2003-02-13 Toyota Central Res & Dev Lab Inc 燃料電池用水素製造装置
WO2003089373A1 (en) 2002-04-19 2003-10-30 Japan Science And Technology Agency Hydrogen-containing electrically conductive organic compound
US6696614B2 (en) 1999-12-17 2004-02-24 Enichem S.P.A. Catalyst for steam cracking reactions and related preparation process
WO2005000741A1 (ja) 2003-06-26 2005-01-06 Japan Science And Technology Agency 電気伝導性12CaO・7Al 2O3 及び同型化合物とその製造方法
WO2008087774A1 (ja) 2007-01-18 2008-07-24 Fancl Corporation 抗酸化剤
JP2008536795A (ja) 2005-04-18 2008-09-11 インテリジェント エナジー インコーポレイテッド アンモニアに基づく水素発生装置及びその使用方法
JP2010094668A (ja) 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd アンモニア分解触媒およびその製造方法、ならびに、アンモニア処理方法
JP2010110697A (ja) 2008-11-06 2010-05-20 Hitachi Zosen Corp アンモニア分解触媒
JP2010207783A (ja) 2009-03-12 2010-09-24 Toyota Central R&D Labs Inc アンモニア分解触媒、それを用いたアンモニア分解方法、およびアンモニア分解反応装置
JP2012025636A (ja) 2010-07-26 2012-02-09 Tokyo Institute Of Technology 二酸化炭素の吸着還元剤及び還元方法
JP2012101945A (ja) 2009-02-17 2012-05-31 Asahi Glass Co Ltd マイエナイト含有酸化物の製造方法
WO2012077658A1 (ja) 2010-12-07 2012-06-14 国立大学法人東京工業大学 アンモニア合成触媒及びアンモニア合成方法
JP2012161713A (ja) 2011-02-03 2012-08-30 Agc Seimi Chemical Co Ltd アンモニア分解触媒およびアンモニアの分解方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039847A1 (en) * 2004-08-23 2006-02-23 Eaton Corporation Low pressure ammonia synthesis utilizing adsorptive enhancement
EP1900689B1 (en) * 2005-05-30 2016-03-30 Asahi Glass Company, Limited Process for producing electroconductive mayenite compound
PL388518A1 (pl) * 2009-07-10 2011-01-17 Instytut Nawozów Sztucznych Katalizator do wysokotemperaturowego rozkładu podtlenku azotu
BR112015003948A8 (pt) * 2012-08-30 2021-09-14 Japan Science & Tech Agency Método para produção de pó e composto maienite condutivo, método para produção de um catalisador metálico apoiado, e método para sintetizar amônia

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119341A (ja) 1987-10-30 1989-05-11 Nkk Corp アンモニア分解用触媒
JPH0884910A (ja) 1994-07-21 1996-04-02 Japan Pionics Co Ltd アンモニアの分解方法
US6696614B2 (en) 1999-12-17 2004-02-24 Enichem S.P.A. Catalyst for steam cracking reactions and related preparation process
JP2003040602A (ja) 2001-07-30 2003-02-13 Toyota Central Res & Dev Lab Inc 燃料電池用水素製造装置
WO2003089373A1 (en) 2002-04-19 2003-10-30 Japan Science And Technology Agency Hydrogen-containing electrically conductive organic compound
WO2005000741A1 (ja) 2003-06-26 2005-01-06 Japan Science And Technology Agency 電気伝導性12CaO・7Al 2O3 及び同型化合物とその製造方法
JP2008536795A (ja) 2005-04-18 2008-09-11 インテリジェント エナジー インコーポレイテッド アンモニアに基づく水素発生装置及びその使用方法
WO2008087774A1 (ja) 2007-01-18 2008-07-24 Fancl Corporation 抗酸化剤
JP2010094668A (ja) 2008-09-17 2010-04-30 Nippon Shokubai Co Ltd アンモニア分解触媒およびその製造方法、ならびに、アンモニア処理方法
JP2010110697A (ja) 2008-11-06 2010-05-20 Hitachi Zosen Corp アンモニア分解触媒
JP2012101945A (ja) 2009-02-17 2012-05-31 Asahi Glass Co Ltd マイエナイト含有酸化物の製造方法
JP2010207783A (ja) 2009-03-12 2010-09-24 Toyota Central R&D Labs Inc アンモニア分解触媒、それを用いたアンモニア分解方法、およびアンモニア分解反応装置
JP2012025636A (ja) 2010-07-26 2012-02-09 Tokyo Institute Of Technology 二酸化炭素の吸着還元剤及び還元方法
WO2012077658A1 (ja) 2010-12-07 2012-06-14 国立大学法人東京工業大学 アンモニア合成触媒及びアンモニア合成方法
JP2012161713A (ja) 2011-02-03 2012-08-30 Agc Seimi Chemical Co Ltd アンモニア分解触媒およびアンモニアの分解方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
C. LI; D. HIRABAYASHI; K. SUZUKI, MATERIALS RESEARCH BULLETIN, vol. 46, 2011, pages 1307 - 1310
HANS BARTL; THOMAS SCHELLER, N. JAHRBUCH F. MINERALOGIE. MONATSHEFTE, vol. 35, 1970, pages 547 - 552
K. HAYASHI, JOURNAL OF SOLID STATE CHEMISTRY, vol. 184, 2011, pages 1428 - 1432
K. HAYASHI; P. V. SUSHKO; A. L. SHLUGER; M. HIRANO; H. HOSONO, JOURNAL OF PHYSICAL CHEMISTRY B, vol. 109, 2005, pages 23886 - 23842
L. GONG; Z. LIN; S. NING; J. SUN; J. SHEN; Y. TORIMOTO; Q. LI, MATERIAL LETTERS, vol. 64, 2010, pages 1322 - 1324
S. MATSUISHI; Y. TODA; M. MIYAKAWA; K. HAYASHI; T. KAMIYA; M. HIRANO; I. TANAKA; H. HOSONO, SCIENCE, vol. 301, 2003, pages 626 - 629
V. I. YAKERSO; E. Z. GOLOSMAN, STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 91, 1995, pages 879

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015217384A (ja) * 2014-05-21 2015-12-07 株式会社Ihi 触媒、触媒の製造方法、アンモニア合成方法、アンモニア分解方法
WO2016143313A1 (ja) * 2015-03-09 2016-09-15 学校法人 工学院大学 Mayenite構造を有する12SrO・7Al2O3化合物にRuを担持した炭化水素の水蒸気改質触媒
JP2016198720A (ja) * 2015-04-09 2016-12-01 国立大学法人宇都宮大学 アンモニア分解触媒、アンモニア分解触媒の製造方法、水素の製造方法及び水素の製造装置
JP2018143941A (ja) * 2017-03-03 2018-09-20 太平洋マテリアル株式会社 水素製造用触媒及び水素の製造方法
JP2018143940A (ja) * 2017-03-03 2018-09-20 太平洋マテリアル株式会社 触媒担体の製造方法
WO2018221701A1 (ja) 2017-05-31 2018-12-06 古河電気工業株式会社 アンモニア分解触媒構造体及び燃料電池
JP2023517265A (ja) * 2019-12-30 2023-04-25 株式会社 圓▲益▼マテリアルズ ルテニウム前駆体、それを用いたアンモニア反応触媒及びその製造方法
JP7400111B2 (ja) 2019-12-30 2023-12-18 株式会社 圓▲益▼マテリアルズ ルテニウム前駆体、それを用いたアンモニア反応触媒及びその製造方法
WO2022153719A1 (ja) * 2021-01-14 2022-07-21 三菱重工エンジニアリング株式会社 アンモニア分解装置
WO2022153720A1 (ja) * 2021-01-14 2022-07-21 三菱重工エンジニアリング株式会社 アンモニア分解装置
JP7389065B2 (ja) 2021-01-14 2023-11-29 三菱重工業株式会社 アンモニア分解装置
JP7389066B2 (ja) 2021-01-14 2023-11-29 三菱重工業株式会社 アンモニア分解装置

Also Published As

Publication number Publication date
US20150217278A1 (en) 2015-08-06
US20160340182A1 (en) 2016-11-24
EP2898946A1 (en) 2015-07-29
CN104640628B (zh) 2016-11-16
US9981845B2 (en) 2018-05-29
JP6143761B2 (ja) 2017-06-07
EP2898946B1 (en) 2020-07-22
KR20150058219A (ko) 2015-05-28
JPWO2014045780A1 (ja) 2016-08-18
KR102159678B1 (ko) 2020-09-24
EP2898946A4 (en) 2016-04-27
CA2883503C (en) 2020-08-11
CN104640628A (zh) 2015-05-20
CA2883503A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP6143761B2 (ja) 水素生成触媒及び水素の製造法
JP6675619B2 (ja) アンモニア合成用触媒の製造方法及びアンモニアの製造方法
JP5820817B2 (ja) アンモニア合成触媒及びアンモニア合成方法
EP3395441B1 (en) Transition-metal-supported intermetallic compound, supported metallic catalyst, and ammonia producing method
Li et al. Influence of zirconia crystal phase on the catalytic performance of Au/ZrO2 catalysts for low-temperature water gas shift reaction
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
Dasireddy et al. Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT)
JPWO2006137358A1 (ja) 均一型高分散金属触媒及びその製造方法
Gu et al. CO x-free hydrogen production via ammonia decomposition over mesoporous Co/Al 2 O 3 catalysts with highly dispersed Co species synthesized by a facile method
Li et al. Revealing hydrogen migration effect on ammonia synthesis activity over ceria-supported Ru catalysts
CN110732335B (zh) 一种用于甲烷干气重整反应的过渡金属@BOx核-壳结构纳米催化剂及其制备方法
JP2002224570A (ja) Coシフト反応用触媒
JP7418849B2 (ja) 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒
JP7410507B2 (ja) 複合物、触媒及びアンモニアの製造方法
Albeladi et al. Zn deposited nickel silicate nanotubes as efficient CO2 methanation catalysts
JP6344052B2 (ja) アンモニア合成触媒およびアンモニア合成方法
Jiang et al. AuPt/3DOM CoCr2O4: Highly Active Catalysts for the Combustion of Methane
Zhang et al. Selective Hydrogenation of Furfural to Furfuryl Alcohol Over Oxygen Vacancies Enriched Layered Double Hydroxide Supported Ru Nanoparticles Catalyst
Wang et al. Catalytic Ammonia Decomposition Over Co Supported on Ceo2-Al2o3 For Hydrogen Production
WOJCIESZAK Doetor at Henri Poincaré University, Naney-I

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2883503

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014536695

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006778

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14429274

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE