WO2014045625A1 - 絶縁樹脂フィルム、予備硬化物、積層体及び多層基板 - Google Patents

絶縁樹脂フィルム、予備硬化物、積層体及び多層基板 Download PDF

Info

Publication number
WO2014045625A1
WO2014045625A1 PCT/JP2013/059662 JP2013059662W WO2014045625A1 WO 2014045625 A1 WO2014045625 A1 WO 2014045625A1 JP 2013059662 W JP2013059662 W JP 2013059662W WO 2014045625 A1 WO2014045625 A1 WO 2014045625A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin film
insulating resin
silica
epoxy resin
Prior art date
Application number
PCT/JP2013/059662
Other languages
English (en)
French (fr)
Inventor
英寛 出口
貴至 西村
裕也 林
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020157006744A priority Critical patent/KR20150059741A/ko
Priority to JP2014536620A priority patent/JP5799174B2/ja
Priority to CN201380048999.0A priority patent/CN105051094B/zh
Priority to TW102123043A priority patent/TWI612537B/zh
Publication of WO2014045625A1 publication Critical patent/WO2014045625A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0269Non-uniform distribution or concentration of particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/002Etching of the substrate by chemical or physical means by liquid chemical etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Definitions

  • the present invention relates to an insulating resin film that can be suitably used for forming an insulating layer in a multilayer substrate, for example. Moreover, this invention relates to the precured material, laminated body, and multilayer substrate using the said insulating resin film.
  • a resin composition is used in order to form an insulating layer for insulating inner layers or to form an insulating layer located in a surface layer portion.
  • Wiring which is generally a metal layer, is laminated on the surface of the insulating layer.
  • the resin composition is often mixed with an inorganic filler for the purpose of reducing the linear expansion coefficient.
  • the electronic components are also required to have finer wiring and further reduced linear expansion coefficient in an insulating layer.
  • the insulating layer of the multilayer printed wiring board is strongly required to hardly peel off from other insulating layers or circuits laminated on the insulating layer. For this reason, in the said insulating layer, it is desired that a dimension does not change a lot with heat. In order to meet such a demand, a large amount of inorganic filler may be blended in the resin composition for forming the insulating layer.
  • Patent Document 1 listed below includes a resin composition comprising an epoxy resin, a curing agent, a phenoxy resin, and an inorganic filler having an average particle diameter of 0.01 to 2 ⁇ m. Is disclosed. Further, Patent Document 1 discloses a resin composition containing an epoxy resin, a curing agent, and an inorganic filler having an average particle size of 0.1 to 10 ⁇ m.
  • each layer of a multilayer film having a two-layer laminated structure is formed using two different types of resin compositions described above. It is described that this multilayer film is satisfactorily embedded in a gap or the like provided on the substrate.
  • Patent Document 2 discloses an insulating resin material containing a curable resin, an inorganic filler, and a curing accelerator.
  • the inorganic filler contains at least two kinds of fillers having different volume average particle diameters.
  • the particle size of the small particle (b1) is 0.01 to 1.0 ⁇ m, and the particle size of the next small particle (b2) is 0.30 to 10 ⁇ m.
  • the ratio of the volume average particle diameter of the particles (b1) and the particles (b2) is 1/2 to 1/100, and the ratio of the weight content is 90/10 to 10/90.
  • At least one of the particles (b1) and the particles (b2) is surface-treated with a silane coupling agent.
  • Patent Document 1 since two types of resin compositions are prepared and a multilayer film is produced, there is a problem that it takes time to produce the multilayer film and the cost is increased. There is also a problem that peeling is likely to occur between the layers of the multilayer fill. Further, when two types of resin layers are bonded together by lamination or the like, the physical properties of the two types of resin layers are different, so that there is a problem that stress is applied and warpage occurs.
  • the surface roughness of the cured product may not be sufficiently reduced. Furthermore, when a metal layer is formed on the surface of the cured product by plating or the like, it may be difficult to sufficiently increase the adhesive strength between the cured product and the metal layer.
  • the dimensional change due to heat of the cured product may not be sufficiently reduced, and the linear expansion coefficient of the insulating layer is compared. May be high.
  • An object of the present invention is to provide an insulating resin capable of reducing a dimensional change due to heat of a cured product, and further improving the adhesive strength between the cured product and the metal layer when a metal layer is formed on the surface of the cured product.
  • a film, and a precured product, a laminate, and a multilayer substrate using the insulating resin film are provided.
  • a limited object of the present invention is to provide an insulating resin film capable of reducing the surface roughness of the surface of the cured product after the roughening treatment, and a precured product, a laminate and a multilayer substrate using the insulating resin film. Is to provide.
  • an insulating resin film that is used after being roughened, and has a first main surface and a second main surface, and the first main surface is roughened.
  • the silica is unevenly distributed such that the silica content is less than the silica content in 100% by weight of the second region excluding the first region, and the weight of the second region is 100%.
  • An insulating resin film having a content of silica in% of more than 30% by weight is provided.
  • the content of the silica in 100% by weight of the second region is more than 60% by weight.
  • region is 10 weight rather than content of the said silica in said 2nd area
  • the epoxy resin includes two or more types of first epoxy resins, the two or more types of first epoxy resins have the same structural unit, and The number of repeating structural units of two or more of the first epoxy resins is different, or the epoxy resin has a second epoxy resin having a carbon-carbon unsaturated bond and a carbon-carbon unsaturated bond. 3rd epoxy resin which does not have.
  • the content of the silica is 30% by weight or more and 85% by weight or less in the entire 100% by weight of the insulating resin film.
  • the content of the silica is 60% by weight or more and 85% by weight or less in the entire 100% by weight of the insulating resin film.
  • the first main surface is a surface that is subjected to a swelling treatment and is subjected to a roughening treatment after the swelling treatment.
  • a precured product obtained by roughening the first main surface of the insulating resin film described above.
  • a circuit board and an insulating layer disposed on the circuit board are provided, and the insulating layer is formed by roughening and curing the insulating resin film described above.
  • a multilayer substrate is provided.
  • the insulating resin film according to the present invention contains an epoxy resin, a curing agent, and silica, and the surface of the first main surface side, which is a surface to be roughened, has a thickness of 0.3 ⁇ m in the first region 100 weight.
  • the silica is unevenly distributed so that the content of the silica in% is less than the content of the silica in 100% by weight of the second area excluding the first area, and the second area Since the content of the silica in 100% by weight is more than 30% by weight, the dimensional change due to heat of the cured product of the insulating resin film can be reduced. Furthermore, when a metal layer is formed on the surface of the cured product whose surface has been roughened, the adhesive strength between the cured product and the metal layer can be increased.
  • FIG. 1 is a cross-sectional view schematically showing an insulating resin film according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a multilayer substrate using an insulating resin film according to an embodiment of the present invention.
  • the insulating resin film according to the present invention is used after being roughened.
  • the insulating resin film according to the present invention has a first main surface and a second main surface.
  • the first main surface is a surface to be roughened.
  • the insulating resin film according to the present invention includes an epoxy resin, a curing agent, and silica.
  • the content of the silica in the 100% by weight of the first region having a thickness of 0.3 ⁇ m of the surface portion on the first main surface side, which is a surface to be roughened is The silica is unevenly distributed so as to be less than the content of the silica in 100% by weight of the second region excluding the first region.
  • the content of the silica in 100% by weight of the second region is more than 30% by weight.
  • the insulating resin film according to the present invention is a single layer film, not a multilayer film. Therefore, delamination which becomes a problem when a multilayer film is used does not occur.
  • the insulating resin film 1 shown in FIG. 1 is laminated on the surface 6 a of the lamination target member 6.
  • the insulating resin film 1 has a first main surface 1a and a second main surface 1b.
  • the first main surface 1a and the second main surface 1b are opposed to each other.
  • the first main surface 1a is a surface to be roughened.
  • the second main surface 1 b is in contact with the surface 6 a of the stacking target member 6.
  • the insulating resin film 1 is used by being laminated on the surface 6a of the lamination target member 6 from the second main surface 1b side.
  • the insulating resin film 1 includes an epoxy resin, a curing agent, and silica 2. Therefore, the dimensional change due to heat of the cured product of the insulating resin film can be reduced. If the content of silica in 100% by weight of the entire insulating resin film is 30% by weight or more, the dimensional change due to heat of the cured product of the insulating resin film can be considerably reduced.
  • the first main surface 1a which is the surface to be roughened, is unevenly distributed so that there is less silica 2 than the second main surface 1b. That is, in the insulating resin film 1, the content of silica 2 in 100% by weight of the first region R1 having a thickness of 0.3 ⁇ m on the surface portion on the first main surface 1a side, which is a surface to be roughened, Silica 2 is unevenly distributed so as to be less than the content of silica 2 in 100% by weight of the second region R2 excluding the first region R1. As a result, the first main surface 1a side is unevenly distributed so that more components except for the silica 2 in the insulating resin film 1 are present than the second main surface 1b side.
  • the silica 2 is made so that the content of the component excluding silica 2 in 100% by weight of the first region R1 is larger than the content of the component excluding silica 2 in 100% by weight of the second region R2. Excluding components are unevenly distributed. Further, it is preferable that the first main surface 1a side is unevenly distributed so that more epoxy resin and curing agent are present in the insulating resin film 1 than the second main surface 1b side. In the insulating resin film 1, the content of silica 2 in 100% by weight of the second region R2 is more than 30% by weight.
  • the silica is unevenly distributed as described above, and the component excluding silica or the epoxy resin and the curing agent are unevenly distributed as described above, so that the cured resin resin film Not only can the dimensional change due to heat be reduced, but also when the metal layer is formed on the surface of the cured product, the adhesive strength between the cured product and the metal layer can be increased. This may be because the contact area between the first main surface and the metal layer in the cured product is increased.
  • silica When silica is filled at a high density, the silica is also detached when the resin is etched by roughening.
  • silica When silica is packed at a high density, the longer the time it is immersed in the roughening solution, the more the silica is exposed to the surface due to the etching of the resin compared to the silica desorption speed. The speed at which a large amount of silica becomes present is faster.
  • silica when silica is filled at a high density, a large amount of silica is present on the surface after roughening, so that the surface roughness of the surface increases due to the unevenness of the silica, and the adhesive strength does not appear.
  • the epoxy resin includes two or more first epoxy resins, and the two or more first epoxy resins are the same structural unit. And the number of repeating structural units of the two or more types of the first epoxy resins is different (hereinafter, the epoxy resin used in the constitution of the epoxy resin of (1) Or (2) a second epoxy resin having a carbon-carbon unsaturated bond and a third epoxy resin having no carbon-carbon unsaturated bond (hereinafter referred to as ( The epoxy resin used in the configuration of the epoxy resin of 2) may be described as an epoxy resin (2) as a whole).
  • the second epoxy resin preferably has 5 or more carbon-carbon unsaturated bonds and has a molecular weight of 500 or more.
  • the epoxy resin (2) When the epoxy resin (2) is used, it is easy to phase-separate microscopically.
  • the reason for this is that since the second epoxy resin has an epoxy group, compatibility with other epoxy resins and curing agents can be enhanced, while it has a carbon-carbon unsaturated bond, The SP value of the epoxy resin tends to be low, and the difference in SP value from other epoxy resins and curing agents tends to be large. As a result, phase separation occurs somewhat in the process of thermosetting, and a fine anchor shape can be formed with resin.
  • the etching speed with respect to the roughening liquid is changed due to the difference in the number of repeating structural units, and a fine anchor shape can be formed with the resin. Further, since the two or more types of the first epoxy resins have the same structural unit and have different numbers of repeating structural units, the entire resin has good compatibility and can form a micro anchor shape. it can.
  • the epoxy resin (1) or the epoxy resin (2) is easily phase-separated microscopically. Moreover, since the content of silica in the first region is relatively small, the epoxy resin (1) or the epoxy resin (2) is easily phase-separated microscopically in the first region. Therefore, the first region includes the epoxy resin (1) or the epoxy resin (2), and the silica content in the first region is greater than the silica content in the second region. Since the component (organic component) excluding silica increases in the first region, the surface roughness of the surface of the cured product after the roughening treatment can be effectively reduced. It is possible to effectively increase the adhesive strength between the metal layer and the metal layer.
  • the second region preferably includes the epoxy resin (1) or the epoxy resin (2).
  • the content of the silica in 100% by weight of the first region Is preferably less than 10% by weight, more preferably less than 30% by weight, and even more preferably less than 40% by weight than the content of the silica in 100% by weight of the second region.
  • the thickness of the small region is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, regardless of the thickness of the entire insulating resin film.
  • the thickness of the region with less silica is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the thickness of the insulating resin film is not particularly limited.
  • the thickness of the insulating resin film is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the thickness of the insulating resin film may be 5 ⁇ m or more, 10 ⁇ m or more, or 20 ⁇ m or more.
  • epoxy resin If the silica is unevenly distributed in the insulating resin film as described above, the epoxy resin contained in the insulating resin film is not particularly limited. A conventionally well-known epoxy resin can be used as this epoxy resin.
  • the epoxy resin refers to an organic compound having at least one epoxy group. As for the said epoxy resin, only 1 type may be used and 2 or more types may be used together.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin.
  • examples thereof include an epoxy resin having a skeleton.
  • the epoxy resin In order to easily disperse silica in the insulating resin film as described above, the epoxy resin generates a ketone or a carboxylic acid by a roughening treatment using an epoxy resin having a repeating structural unit or a roughening solution having a pH of 12 or more. It is preferable to include a possible epoxy resin.
  • a novolac type epoxy resin may be mentioned. Specifically, naphthalene type novolac epoxy resin, phenol aralkyl type novolac epoxy resin, naphthol aralkyl type novolac epoxy resin, dicyclopentadiene type novolac epoxy resin, novolak type epoxy resin having tricyclodecane skeleton, and novolak having triazine skeleton Type epoxy resin, bisphenol A type novolac epoxy resin, bisphenol F type novolac epoxy resin and the like.
  • An epoxy resin having a carbon-carbon unsaturated bond is an example of an epoxy resin capable of generating a ketone or a carboxylic acid by a roughening treatment using a roughening solution having a pH of 12 or higher.
  • Specific examples of commercially available products include Epolide PB3600 (manufactured by Daicel Chemical Industries), Epolido PB4700 (manufactured by Daicel Chemical Industries), AT501 (manufactured by Daicel Chemical Industries), and CT310 (manufactured by Daicel Chemical Industries).
  • the epoxy resin includes two or more types of first epoxy resins, and the two or more types of first epoxy resins have the same structural unit. And the number of repeating structural units of the two or more types of the first epoxy resins is preferably different, and the epoxy resin includes three or more types of the first epoxy resins and three or more types of the first epoxy resins. More preferably, the epoxy resins have the same structural unit, and the number of repeating structural units of the three or more types of the first epoxy resins is different. It is preferable that two or more types of the first epoxy resins and three or more types of the first epoxy resins have different numbers of epoxy groups.
  • the epoxy resin preferably includes a second epoxy resin having 5 or more carbon-carbon unsaturated bonds and a molecular weight of 500 or more.
  • the insulating resin film includes the epoxy resin (1) or the epoxy resin (2)
  • the insulating resin film further includes an epoxy resin different from the epoxy resin (1) and the epoxy resin (2). You may go out.
  • the second epoxy resin preferably has a butadiene skeleton.
  • two or more kinds of the first epoxy resins are novolak-type epoxy.
  • Resin bisphenol A type epoxy resin, biphenyl type epoxy resin, bisphenol F type epoxy resin, dicyclopentadiene type epoxy resin or naphthalene type epoxy resin are preferred, novolak type epoxy resin, bisphenol A type epoxy resin, biphenyl type epoxy A resin, a bisphenol F type epoxy resin or a dicyclopentadiene type epoxy resin is more preferable, and a novolak type epoxy resin, a biphenyl type epoxy resin, a dicyclopentadiene type epoxy resin or a naphthalene type epoxy resin is more preferable.
  • the first epoxy resin is particularly preferably a novolac type epoxy resin.
  • the epoxy resin contains three or more kinds of the first epoxy resins, and the three or more kinds of the first epoxy resins contain the same structural unit.
  • the content of the first epoxy resin in which the number of repeating structural units is 1 (only one structural unit is not repeated) in 100% by weight of the first epoxy resin is 1% by weight or more.
  • the content of the first epoxy resin in which the number of repeating structural units is 2 (the number of the structural units is 2) is 10% by weight or more, and the number of repeating the structural units is 3 or more (the number of structural units is 3 or more).
  • the content of the first epoxy resin is preferably 25% by weight or more.
  • the first epoxy resin since the first epoxy resin has a relatively large number of epoxy groups (a component having a large number of repeating structural units), the method of scraping the resin with the roughening liquid is differentiated, and the microscopic An anchor can be formed and a higher adhesive strength can be expressed.
  • the component excluding the silica in the first region is 100% by weight.
  • the content of the whole first epoxy resin (content of the epoxy resin (1)) is 10% by weight or more and 80% by weight or less, or the silica in the first region is excluded.
  • the total content of the second epoxy resin and the third epoxy resin (the content of the epoxy resin (2)) is 0.3% by weight or more and 30% by weight or less. It is preferable.
  • the component excluding the silica in the first region is 100% by weight.
  • the content of the entire first epoxy resin (content of the epoxy resin (1)) is preferably 70% by weight or less.
  • the content of the entire first epoxy resin is 10% by weight or more and 80% by weight, or a component excluding the silica in the second region
  • the total content of the second epoxy resin and the third epoxy resin is 0.3% by weight or more and 30% by weight or less. Is preferred.
  • the content of the entire first epoxy resin is preferably 70% by weight or less.
  • the epoxy resin may be liquid at normal temperature (23 ° C.) or may be solid.
  • the epoxy equivalent of the epoxy resin is preferably 90 or more, more preferably 100 or more. , Preferably 1000 or less, more preferably 800 or less. It is preferable that the said epoxy resin contains the epoxy resin whose epoxy equivalent is more than the said minimum and below the said upper limit.
  • the molecular weight of the epoxy resin is preferably 1000 or less. In this case, it is easy to increase the content of silica in the entire insulating resin film. Furthermore, even if the content of silica is large, an insulating resin film having high fluidity can be obtained. Moreover, the excessive fall of the melt viscosity of an insulating resin film is suppressed by combined use with the epoxy resin and thermoplastic resin whose weight average molecular weight is 1000 or less.
  • the molecular weight of the epoxy resin and the molecular weight of the curing agent described below can be calculated from the structural formula when the epoxy resin or the curing agent is not a polymer and when the structural formula of the epoxy resin or the curing agent can be specified. Means. Moreover, when the said epoxy resin or a hardening
  • the weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the curing agent contained in the insulating resin film is not particularly limited.
  • a conventionally known curing agent can be used as the curing agent.
  • curing agent only 1 type may be used and 2 or more types may be used together.
  • cyanate ester compound cyanate ester curing agent
  • phenol compound phenol curing agent
  • amine compound amine curing agent
  • thiol compound thiol curing agent
  • imidazole compound phosphine compound, acid anhydride
  • examples include active ester compounds and dicyandiamide.
  • curing agent is a cyanate ester compound or a phenol compound.
  • the curing agent is preferably a cyanate ester compound, and is preferably a phenol compound.
  • the curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy resin.
  • the curing agent is A cyanate ester compound, a phenol compound or an active ester compound is preferred. Furthermore, from the viewpoint of imparting better insulation reliability with a curing agent, the curing agent is more preferably a cyanate ester compound.
  • the cyanate ester compound is not particularly limited.
  • a conventionally known cyanate ester compound can be used as the cyanate ester compound.
  • the said cyanate ester compound only 1 type may be used and 2 or more types may be used together.
  • cyanate ester compounds include novolak type cyanate ester resins, bisphenol type cyanate ester resins, and prepolymers in which these are partly trimerized.
  • novolak-type cyanate ester resin a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned.
  • the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.
  • cyanate ester compounds Commercially available products of the above-mentioned cyanate ester compounds include phenol novolac type cyanate ester resins (Lonza Japan “PT-30” and “PT-60”), and prepolymers (Lonza Japan) in which bisphenol type cyanate ester resins are trimmed. "BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S”) manufactured by the company.
  • the molecular weight of the cyanate ester compound is preferably 3000 or less. In this case, the content of silica in the entire insulating resin film can be increased, and an insulating resin film having high fluidity can be obtained even if the content of silica is large.
  • the use of the above phenol compound further increases the adhesive strength between the cured product and the metal layer. Further, by using the phenol compound, for example, when the surface of copper provided on the surface of the cured product is blackened or Cz treated, the adhesive strength between the cured product and copper is further increased.
  • the phenol compound is not particularly limited.
  • a conventionally well-known phenol compound can be used as this phenol compound.
  • As for the said phenol compound only 1 type may be used and 2 or more types may be used together.
  • phenol compound examples include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, and dicyclopentadiene type phenol.
  • phenol compounds examples include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (" LA1356 “and” LA3018-50P "manufactured by DIC).
  • the phenol compound is , A biphenyl novolac type phenol compound or an aralkyl type phenol compound is preferable.
  • the phenol compound preferably has two or more phenolic hydroxyl groups.
  • the active ester compound is specifically a compound represented by the following formula (1).
  • the active ester compound has an ester group as shown by the formula (1), the ester group exhibits reactivity with an epoxy group, and the active ester compound does not generate a secondary hydroxyl group after the reaction.
  • a network can be formed.
  • R1 in the above formula R (1) is a group represented by the following formula (11), (12) or (13).
  • a and B each represent a halogen atom or an alkyl group
  • m1 represents 0 to 5
  • m2 represents 0 to 4
  • m3 represents 0 to 3.
  • each of the plurality of A and B may be the same or different.
  • k is an integer of 2 to 4.
  • R2 is represented by the following formula (21), (22), (23), (24), (25), (26), (27), (28) or (29). It is a group.
  • D, E and G each represent a halogen atom or an alkyl group
  • X represents a sulfur atom, an oxygen atom, SO 2 or CO
  • n1, n2 and n3 each represent 0 N4 and n5 each represents 0 to 3
  • n6 represents 0 to 2.
  • each of the plurality of D, E, and G may be the same or different.
  • the active ester compound is not particularly limited.
  • Examples of commercially available active ester compounds include “HPC-8000”, “HPC-8000-65T”, and “EXB9416-70BK” manufactured by DIC.
  • the curing agent preferably includes a curing agent having an equivalent weight of 250 or less.
  • the equivalent of the curing agent is, for example, a cyanate ester group equivalent when the curing agent is a cyanate ester compound, a phenolic hydroxyl group equivalent when the curing agent is a phenol compound, and the curing agent is an active ester compound. Is the active ester group equivalent.
  • the content of a curing agent having an equivalent weight of 250 or less in 100% by weight of the entire curing agent is preferably 30% by weight or more, more preferably 50% by weight or more.
  • the total amount of the curing agent may be a curing agent having an equivalent weight of 250 or less.
  • the content of the curing agent having an equivalent weight of 250 or less is not less than the above lower limit, the surface roughness of the surface of the cured product is further reduced, and finer wiring is formed on the surface of the insulating layer. Furthermore, the glass transition temperature of hardened
  • the molecular weight of the curing agent is preferably 1000 or less. It is preferable that the said hardening
  • the mixing ratio of the epoxy resin and the curing agent is not particularly limited.
  • the compounding ratio of the epoxy resin and the curing agent is appropriately determined depending on the types of the epoxy resin and the curing agent.
  • the ratio of the epoxy equivalent of the epoxy resin to the equivalent of the curing agent is preferably 1: 0.2 to 1: 2, preferably 1: 0.3 to 1: 1. .5 is more preferable.
  • the equivalent ratio satisfies the above range, the adhesive strength between the cured product and the metal layer is further increased.
  • the total content of the epoxy resin and the curing agent is preferably 50% by weight or more, more preferably 70% by weight or more, and 100% by weight (in 100% by weight of the total components excluding silica of the insulating resin film). Total amount) or less, preferably 99.9% by weight or less, more preferably 99.8% by weight or less.
  • silica When the insulating resin film contains silica, the linear expansion coefficient of the cured product is lowered, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively improved. Get higher.
  • the silica is not particularly limited. Conventionally known silica can be used as the silica. As for the said silica, only 1 type may be used and 2 or more types may be used together.
  • the silica is preferably fused silica.
  • the average particle diameter of the silica is preferably 1 nm or more, more preferably 10 nm or more, still more preferably 50 nm or more, particularly preferably 150 nm or more, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less, particularly preferably. Is 1 ⁇ m or less.
  • the average particle size of the silica is not less than the above lower limit and not more than the above upper limit, the size of the pores formed after the roughening treatment becomes fine, and the number of the pores increases moderately. As a result, the adhesive strength between the cured product and the metal layer is further increased.
  • the average particle diameter of the silica As the average particle diameter of the silica, a median diameter (d50) value of 50% is adopted.
  • the average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the silica is preferably spherical and more preferably spherical silica.
  • the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the insulating layer and the metal layer is effectively increased.
  • the melt viscosity of an insulating resin film can be reduced by using spherical silica, and the content of silica in the insulating resin film can be increased.
  • the aspect ratio of the silica is preferably 2 or less, more preferably 1.5 or less.
  • the silica is preferably surface-treated, and more preferably surface-treated with a coupling agent. Thereby, the surface roughness of the surface of the cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and finer wiring is formed on the surface of the cured product, and even better. High inter-wiring insulation reliability and interlayer insulation reliability are imparted to the cured product.
  • Examples of the coupling agent include silane coupling agents, titanate coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include amino silane, imidazole silane, vinyl silane, and epoxy silane.
  • the content of the silica is preferably 25% by weight or more, more preferably 30% by weight or more, still more preferably 35% by weight or more, still more preferably 40% by weight or more, particularly preferably. 50% by weight or more, most preferably 60% by weight or more, preferably 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less.
  • the content of the silica is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, the adhesive strength between the cured product and the metal layer is further increased, and At the same time as the finer wiring is formed on the surface, the amount of silica can reduce the linear expansion coefficient of the cured product as well as metal copper.
  • the content of silica in 100% by weight of the insulating resin film is 30% by weight or more, the presence state of silica on the first main surface side and the second main surface side is further improved. be able to.
  • the insulating resin film does not contain or contains a thermoplastic resin.
  • the insulating resin film preferably contains a thermoplastic resin.
  • the thermoplastic resin is not particularly limited. A conventionally known thermoplastic resin can be used as the thermoplastic resin. As for the said thermoplastic resin, only 1 type may be used and 2 or more types may be used together.
  • thermoplastic resin examples include imide resins, phenoxy resins, polyvinyl acetal resins, rubber components, and organic fillers.
  • the thermoplastic resin is particularly preferably a phenoxy resin.
  • the melt viscosity can be adjusted, so that the dispersibility of silica is improved, and the insulating resin film is difficult to wet and spread in an unintended region during the curing process.
  • the use of the thermoplastic resin can suppress the deterioration of the embedding property and the non-uniformity of the silica with respect to the holes or irregularities of the circuit board of the insulating resin film.
  • phenoxy resins examples include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton.
  • Examples of commercially available imide resins include “SOXR-C” manufactured by Nippon Kogyo Paper Industry Co., Ltd.
  • phenoxy resins examples include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 “,” YX6954BH30 “,” YX8100BH30 “, and the like.
  • the weight average molecular weight of the thermoplastic resin is preferably 5000 or more, and preferably 100,000 or less.
  • the thermoplastic resin preferably contains a thermoplastic resin having a weight average molecular weight of not more than the upper limit.
  • the weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the content of the thermoplastic resin is not particularly limited.
  • the content of the thermoplastic resin in 100% by weight of the insulating resin film (the content of the phenoxy resin when the thermoplastic resin is a phenoxy resin) is preferably 1% by weight or more, more preferably 5% by weight or more. , Preferably 30% by weight or less, more preferably 20% by weight or less, and even more preferably 15% by weight or less.
  • cured material becomes still lower that content of the said thermoplastic resin is more than the said minimum and below the said upper limit.
  • corrugation of the circuit board of an insulating resin film becomes favorable.
  • the content of the thermoplastic resin is not less than the above lower limit, the film formability of the insulating resin film is increased, and an even better cured product is obtained.
  • the content of the thermoplastic resin is not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • the insulating resin film does not contain or contains a curing accelerator.
  • the insulating resin film preferably contains a curing accelerator.
  • the curing rate is further increased.
  • the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinking density increases.
  • the said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
  • curing accelerator examples include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • the content of the curing accelerator is not particularly limited. In 100% by weight of the insulating resin film, the content of the curing accelerator is preferably 0.01% by weight or more, and preferably 3% by weight or less. When the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the insulating resin film is efficiently cured. When the content of the curing accelerator is not less than the above lower limit, curing failure is less likely to occur, a more uniform rough surface can be formed after the roughening treatment, and the adhesive strength between the cured product and the metal layer is further increased. Get higher. When the content of the curing accelerator is not more than the above upper limit, the storage stability of the insulating resin film is further improved.
  • the insulating resin film includes a flame retardant, a coupling agent, a colorant, an antioxidant, an ultraviolet degradation inhibitor, and an antifoaming agent.
  • Thickeners, thixotropic agents and other resins other than those mentioned above may be added.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
  • the content of the coupling agent is not particularly limited. In 100% by weight of the insulating resin film, the content of the coupling agent is preferably 0.01% by weight or more, and preferably 5% by weight or less.
  • Examples of the other resin include polyphenylene ether resin, divinyl benzyl ether resin, polyarylate resin, diallyl phthalate resin, benzoxazine resin, benzoxazole resin, bismaleimide resin, and acrylate resin.
  • the insulating resin film can be obtained by using a resin composition containing the epoxy resin, the curing agent, the silica, and a solvent, heating the resin composition to 60 to 140 ° C., and molding it into a film. It is. Further, the first region and the second region can be formed during the drying process of the resin composition.
  • the resin composition contains a solvent.
  • the solvent By using the solvent, the viscosity of the resin composition can be controlled within a suitable range, and the coatability of the resin composition can be improved.
  • the solvent may be used to obtain a slurry containing the silica. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
  • Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
  • the boiling point of the solvent is preferably 160 ° C. or less, more preferably 140 ° C. or less, still more preferably 120 ° C. or less, and particularly preferably 100 ° C. or less.
  • the insulating resin film does not contain or contains a solvent.
  • the content of the solvent is preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 1% by weight or less in 100% by weight of the insulating resin film. is there.
  • the content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coating property of the resin composition.
  • an extrusion machine is used to melt-knead and extrude the resin composition, and then extrusion is performed into a film with a T die or a circular die.
  • a casting molding method in which the resin composition containing a solvent is cast to form a film, and other conventionally known film molding methods. Especially, since it can respond to thickness reduction, the extrusion molding method or the casting method is preferable, and the casting method is more preferable.
  • the film includes a sheet.
  • the insulating resin film can be obtained by forming the resin composition into a film and drying it by heating, for example, at 90 to 200 ° C. for 1 to 180 minutes so that curing by heat does not proceed excessively.
  • the insulating resin film according to the present invention may be an insulating resin film before preliminary curing or an insulating resin film after preliminary curing.
  • the content of the silica in 100% by weight of the first region is less than the content of the silica in 100% by weight of the second region excluding the first region.
  • the silica is unevenly distributed, and the content of the silica in 100% by weight of the second region is more than 30% by weight.
  • the insulating resin film that can be obtained by the drying process as described above is called a B-stage film.
  • the insulating resin film is a semi-cured product in a semi-cured state.
  • the semi-cured product is not completely cured and curing can proceed further.
  • the insulating resin film is preferably not a prepreg.
  • the insulating resin film is not a prepreg, migration does not occur along a glass cloth or the like. Further, when laminating or pre-curing the insulating resin film, the surface is not uneven due to the glass cloth.
  • the insulating resin film may be used in a state of a laminated film laminated on one surface of the base material.
  • the laminated film includes the base material and the insulating resin film laminated on one surface of the base material.
  • Examples of the base material of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, polyimide resin film, metal foil such as copper foil and aluminum foil, and the like. Can be mentioned.
  • the surface of the base material may be subjected to a release treatment as necessary.
  • the thickness of the insulating layer formed by the insulating resin film is preferably equal to or greater than the thickness of the conductor layer (metal layer) that forms the circuit.
  • the thickness of the insulating layer formed by the insulating resin film is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • a roughened pre-cured product is obtained by roughening the first main surface of the insulating resin film.
  • the insulating resin film is an insulating resin film before preliminary curing
  • the first main surface is roughened to obtain a roughened preliminary. It is preferable to obtain a cured product.
  • the first main surface of the insulating resin film is subjected to a swelling treatment, followed by a roughening treatment after the swelling treatment, whereby a precured product that has been subjected to the swelling treatment and the roughening treatment is obtained.
  • the preliminary-cured product is preferably subjected to a swelling treatment before the roughening treatment.
  • the precured product is preferably subjected to a swelling treatment after the precuring and before the roughening treatment.
  • the preliminary-cured product may not necessarily be subjected to swelling treatment.
  • the first main surface is subjected to the swelling treatment and the roughening treatment.
  • the insulating resin film before pre-curing is laminated on the member to be laminated by laminating from the second main surface side, and then the pre-curing insulating resin. It is preferable to advance the curing of the film.
  • the laminating temperature is preferably 55 ° C. or higher, more preferably 65 ° C. or higher, preferably 130 ° C. or lower, more preferably 120 ° C. or lower.
  • the laminating pressure is preferably 0.5 MPa or more, more preferably 0.8 MPa or more, preferably 1.5 MPa or less, more preferably 1.2 MPa or less.
  • the method of laminating by laminating the insulating resin film before pre-curing can be a known method and is not particularly limited.
  • the insulating resin film before pre-curing is laminated on a member to be laminated such as a circuit board and pressed using a pressure laminator. At this time, it may be heated or not heated.
  • the above-mentioned lamination object member and the above-mentioned pre-cured insulating resin film are heated and pressurized using a parallel plate press type heat press.
  • the insulating resin film before pre-curing may be pre-cured by heating and pressurizing to form the pre-cured insulating resin film.
  • the heating temperature and the pressurizing pressure can be appropriately changed and are not particularly limited.
  • the insulating resin film before pre-curing can be pre-cured to obtain an insulating resin film after pre-curing.
  • the laminated film substrate may be removed before forming the pre-cured insulating resin film, or removed after forming the pre-cured insulating resin film. Also good. After laminating under such conditions, a roughening treatment is performed to obtain a roughened preliminary-cured material, and fine irregularities can be formed on the surface of the preliminary-cured material.
  • the precured product is preferably cured at a temperature lower by 10 to 60 ° C. than the glass transition temperature of the final cured product.
  • a parallel plate heating press machine may be used after roll lamination to improve the smoothness of the surface of the insulating resin film after the pre-curing.
  • a parallel plate heating press may be used to heat and press the laminate of the lamination object member and the pre-cured insulating resin film with a 1 mm thick stainless steel plate.
  • a commercially available apparatus can be used as a pressurizing laminator such as a hot pressurizing roll laminator and a press machine such as a parallel plate heating press.
  • Lamination with a roll laminator is preferably performed in a vacuum state.
  • the material of the roll of the roll laminator can be appropriately selected from a rubber roll having a soft surface and a metal roll having a hard surface.
  • the material of the flat plate of the parallel plate heating press is a hard metal.
  • a film having a mold release function for example, aluminum, between a roll laminator roll and the lamination target member and the insulating resin film, or between a flat plate of a parallel plate heating press and the lamination target member and the insulating resin film.
  • a foil, copper foil, polyester resin film, fluororesin film, or the like may be used.
  • a flexible material such as a rubber sheet may be used for the purpose of improving the adhesion between the member to be laminated and the insulating resin film.
  • the step of forming the pre-cured insulating resin film is performed by laminating the pre-cured insulating resin film from the second main surface side on the lamination target member and pressurizing using a roll laminator. It is preferably a step of forming an insulating resin film after pre-curing by heating and pressurizing using a parallel plate press type heat press. Moreover, when using the said laminated
  • the laminate according to the present invention uses a precured product obtained by roughening the first main surface of the insulating resin film, and a cured product obtained by curing the precured product; And a metal layer laminated on the roughened surface of the cured product.
  • the adhesive strength between the cured product and the metal layer is preferably 4.9 N / cm or more, more preferably 5.9 N / cm or more.
  • the metal layer is preferably a copper layer, and more preferably a copper plating layer.
  • the said insulating resin film is used suitably in order to form an insulating layer in a printed wiring board.
  • the printed wiring board can be obtained, for example, by heat-pressing the insulating resin film.
  • the metal foil can be laminated on one side or both sides of the insulating resin film.
  • the method for laminating the insulating resin film and the metal foil is not particularly limited, and a known method can be adopted.
  • the insulating resin film can be laminated on the metal foil using an apparatus such as a parallel plate press or a roll laminator while applying pressure while heating or without heating.
  • the insulating resin film is preferably used for obtaining a copper-clad laminate.
  • An example of the copper-clad laminate is a copper-clad laminate comprising a copper foil and the insulating film laminated on one surface of the copper foil.
  • the thickness of the copper foil of the copper-clad laminate is not particularly limited.
  • the thickness of the copper foil is preferably 1 ⁇ m or more, and preferably 50 ⁇ m or less.
  • the said copper foil has a fine unevenness
  • the method for forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a formation method by treatment using a known chemical solution.
  • the insulating resin film is preferably used for obtaining a multilayer substrate.
  • a multilayer substrate including a circuit substrate and an insulating layer stacked on the surface of the circuit substrate can be given.
  • the insulating layer of the multilayer substrate is formed by roughening and curing the insulating resin film.
  • the insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. Part of the insulating layer is preferably embedded between the circuits.
  • the surface of the insulating layer opposite to the surface on which the circuit substrate is laminated is preferably roughened.
  • the roughening method can be any conventionally known roughening method and is not particularly limited.
  • the surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment.
  • the multilayer board preferably further includes a copper plating layer laminated on the roughened surface of the insulating layer.
  • the multilayer substrate As another example of the multilayer substrate, a circuit board, an insulating layer stacked on the surface of the circuit board, and a surface of the insulating layer opposite to the surface on which the circuit board is stacked are stacked.
  • a multilayer substrate provided with copper foil is mentioned.
  • the insulating layer and the copper foil are roughened and cured using a copper-clad laminate including a copper foil and an insulating resin film laminated on one surface of the copper foil. It is preferable that it is formed by.
  • the copper foil is etched and is a copper circuit.
  • the multilayer substrate is a multilayer substrate including a circuit board and a plurality of insulating layers stacked on the surface of the circuit board. At least one layer among the plurality of insulating layers arranged on the circuit board is formed by roughening and curing the insulating resin film.
  • the multilayer substrate preferably further includes a circuit laminated on at least one surface of the insulating layer formed by roughening and curing the insulating resin film.
  • FIG. 2 schematically shows a partially cutaway front sectional view of a multilayer substrate using an insulating resin film according to an embodiment of the present invention.
  • a plurality of insulating layers 13 to 16 are laminated on the upper surface 12 a of the circuit substrate 12.
  • the insulating layers 13 to 16 are insulating layers.
  • a metal layer 17 is formed in a partial region of the upper surface 12 a of the circuit board 12.
  • the metal layer 17 is formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side.
  • the metal layer 17 is a circuit.
  • Metal layers 17 are respectively arranged between the circuit board 12 and the insulating layer 13 and between the stacked insulating layers 13 to 16.
  • the lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via hole connection and through hole connection (not shown).
  • the insulating layers 13 to 16 are formed by roughening and curing the insulating resin film according to the present invention.
  • FIG. 2 the insulating layers 13 to 16 are schematically shown.
  • the metal layer 17 reaches the inside of the fine hole.
  • the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the part in which the metal layer 17 is not formed can be made small.
  • good insulation reliability is imparted between an upper metal layer and a lower metal layer that are not connected by via-hole connection and through-hole connection (not shown).
  • the swelling treatment for example, a method of treating the insulating resin film with an aqueous solution or an organic solvent dispersion solution of a compound mainly composed of ethylene glycol or the like is used.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is performed by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 to 85 ° C. for 1 to 30 minutes.
  • the swelling treatment temperature is preferably in the range of 50 to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the cured product and the metal layer tends to be low.
  • a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening solution preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
  • the method for the roughening treatment is not particularly limited.
  • As the roughening treatment method for example, 30 to 90 g / L permanganic acid or permanganate solution and 30 to 90 g / L sodium hydroxide solution are used, and the treatment temperature is 30 to 85 ° C. and 1 to 30 minutes.
  • a method of treating a cured product under conditions is preferable.
  • This roughening treatment is preferably performed once or twice.
  • the temperature of the roughening treatment is preferably in the range of 50 to 85 ° C.
  • the arithmetic average roughness Ra of the surface of the cured product is preferably 20 nm or more, and preferably 200 nm or less. In this case, the adhesive strength between the cured product and the metal layer or wiring is increased, and further finer wiring is formed on the surface of the insulating layer.
  • Bisphenol A type epoxy resin (corresponding to the above third epoxy resin, “RE410S” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 178)
  • Biphenyl type epoxy resin 1 (only biphenyl type epoxy resin 1 corresponds to the first epoxy resin, corresponds to the third epoxy resin, “NC3000” manufactured by Nippon Kayaku Co., epoxy equivalent 275)
  • Biphenyl type epoxy resin 2 (only biphenyl type epoxy resin 2 corresponds to the first epoxy resin, corresponds to the third epoxy resin, “NC3000H” manufactured by Nippon Kayaku Co., epoxy equivalent 288) *
  • Combined use of biphenyl type epoxy resin 1 and biphenyl type epoxy resin 2 is equivalent to two or more types of the above first epoxy resins.
  • Rubber skeleton-containing epoxy resin 1 (only the rubber skeleton-containing epoxy resin is the first epoxy resin.
  • Rubber skeleton-containing epoxy resin 2 (corresponding to the first epoxy resin with only rubber skeleton-containing epoxy resin, corresponding to the second epoxy resin, “PB3600” manufactured by Daicel Chemical Industries, epoxy equivalent 200, containing butadiene skeleton)
  • silica-containing slurry (“Advertex Corporation SC2050HNK”, silica average particle size 0.5 ⁇ m, silica surface-treated with aminosilane, silica content 70 wt%, cyclohexanone content 30 wt%)
  • Thermoplastic resin Imide resin-containing liquid (“SOXR-C” manufactured by Nippon Kogyo Paper Industries Co., Ltd., solid content 20% by weight, cyclopentanone content 80% by weight)
  • Example 1 13.3 parts by weight of a biphenyl type epoxy resin 1 (“NC3000” manufactured by Nippon Kayaku Co., Ltd.), 1.5 parts by weight of an epoxy resin 1 containing rubber skeleton (“AT-501” manufactured by Daicel Chemical Industries), and an aminotriazine skeleton cresol 10 parts by weight (5 parts by weight in solid content) of a novolac curing agent-containing liquid (“LA3018-50P” manufactured by DIC), 0.1 part by weight of an imidazole compound (“2P4MZ” manufactured by Shikoku Chemicals), and a silica-containing slurry ( ADMATEX "SC2050HNK”) 69.9 parts by weight (solid content 48.9 parts by weight) and imide resin-containing liquid (Nippon Kogyo Paper Industries "SOXR-C”) 5.2 parts by weight (solid content 1 part by weight) was mixed and stirred at room temperature until a uniform solution was obtained, to obtain a resin composition.
  • NC3000 manufactured by Nippon Kayaku Co.,
  • a release-treated transparent second polyethylene terephthalate (PET) film (“PET5011” manufactured by Lintec Corporation, thickness 50 ⁇ m) was prepared. The obtained resin composition was applied on a die coater so that the thickness after drying on the release-treated surface of this PET film was 50 ⁇ m, and then dried at 60 to 120 ° C. before pre-curing. An insulating resin film was obtained. Thereafter, a first PET film (“PET T60” manufactured by Toray Industries, Inc., thickness 38 ⁇ m) as a protective film was thermally laminated at 60 ° C. on the surface of the insulating resin film before the preliminary curing to obtain a laminated film.
  • PET transparent second polyethylene terephthalate
  • the pre-cured insulating resin film has a second main surface on the second PET film (PET 5011) side and is roughened on the first PET film (PET T60) side. It has the 1st main surface which is a surface.
  • a laminate having a glass epoxy substrate, an insulating resin film before precuring, and a first PET film by pressurizing and heating at a lamination temperature of 70 ° C. for 20 seconds and further at a press pressure of 1 MPa and a press temperature of 90 ° C. for 40 seconds. It was. Thereafter, the first PET film was peeled off and precured in an oven at 140 ° C. for 30 minutes. Thus, the laminated body A of the glass epoxy board
  • the obtained pre-cured insulating resin film has a second main surface on the glass epoxy substrate side, and has a first main surface that is a surface to be roughened opposite to the glass epoxy substrate.
  • Examples 2 to 15 and Comparative Examples 1 and 2 The resin composition, the first and second PET films and the pre-cured material were the same as in Example 1 except that the types and amounts of the compounding components used were changed as shown in Tables 1 to 3 below.
  • a laminated film A having an insulating resin film and a laminated body A having a glass epoxy substrate and an insulating resin film after preliminary curing were obtained.
  • the first main surface which is the surface to be roughened by SEM-EDX analysis of the cross section
  • the silica content in the first region having a thickness of 0.3 ⁇ m on the side surface portion and the silica content in the second region excluding the first region were measured.
  • the presence state of silica in the first and second regions in the insulating resin film before pre-curing is the same as the presence state of silica in the first and second regions in the insulating resin film after pre-curing. I did it.
  • the arithmetic average roughness Ra of the roughened surface of the precured product was measured in accordance with JIS B0601-1994.
  • the arithmetic average roughness Ra was determined according to the following criteria.
  • (C) Copper plating treatment The surface of the preliminary-cured product was treated with an alkali cleaner at 60 ° C. (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the precured product was treated with a predip solution at 25 ° C. (“Predip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the precured product was treated with an activator solution at 40 ° C. (“Activator Neogant 834” manufactured by Atotech Japan) for 5 minutes, and a palladium catalyst was attached. Next, the precured material was treated for 5 minutes with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan).
  • an alkali cleaner at 60 ° C. (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the precured product was treated with a predip solution at 25 °
  • the pre-cured product is put in a chemical copper solution (“Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, and “Reducer Cu” manufactured by Atotech Japan Co.) and electroless plating Was carried out until the plating thickness reached about 0.5 ⁇ m.
  • annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas. All the steps up to the electroless plating step were performed with a treatment liquid of 2 L on a beaker scale and the pre-cured product being swung.
  • electroplating was performed on the precured material that had been subjected to electroless plating until the plating thickness reached 25 ⁇ m.
  • a copper sulfate solution (“Wood sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, “Sulfuric acid” manufactured by Wako Pure Chemical Industries, “Basic Leveler Capacid HL” manufactured by Atotech Japan, " A current of 0.6 A / cm 2 was applied using the corrector Kaparaside GS ”).
  • the pre-cured product was heated at 190 ° C. for 90 minutes and cured to obtain a cured product on which a copper plating layer was formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 硬化物の熱による寸法変化を小さくすることができ、更に硬化物と金属層との接着強度を高めることができる絶縁樹脂フィルムを提供する。 本発明に係る絶縁樹脂フィルム1は、粗化処理されて用いられる。本発明に係る絶縁樹脂フィルム1は、第1の主面1aと第2の主面1bとを有する。第1の主面1aは、粗化処理される面である。本発明に係る絶縁樹脂フィルム1は、エポキシ樹脂と硬化剤とシリカ2とを含む。粗化処理される面である第1の主面1a側の表面部分の厚み0.3μmの第1の領域R1の100重量%中のシリカ2の含有量が、第1の領域R1を除く第2の領域R2の100重量%中のシリカ2の含有量よりも少ないようにシリカ2が偏在している。第2の領域R2の100重量%中のシリカ2の含有量は30重量%よりも多い。

Description

絶縁樹脂フィルム、予備硬化物、積層体及び多層基板
 本発明は、例えば、多層基板において絶縁層を形成するために好適に用いることができる絶縁樹脂フィルムに関する。また、本発明は、上記絶縁樹脂フィルムを用いた予備硬化物、積層体及び多層基板に関する。
 従来、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂組成物が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂組成物が用いられている。上記絶縁層の表面には、一般に金属層である配線が積層される。
 また、上記樹脂組成物には、線膨張率を低くすることなどを目的として、無機充填材が配合されることが多い。近年、電子機器の小型化及び高性能化に伴って、上記電子部品においても、配線の微細化や絶縁層における線膨張率の更なる低下などが求められている。また、多層プリント配線板の絶縁層には、該絶縁層に積層される他の絶縁層又は回路などと剥離が生じ難いことが強く求められる。このため、上記絶縁層では、熱により寸法が大きく変化しないことが望まれる。このような要求に対応するために、絶縁層を形成するための上記樹脂組成物に無機充填材が多く配合されることがある。
 また、上記樹脂組成物の一例として、下記の特許文献1には、エポキシ樹脂と、硬化剤と、フェノキシ樹脂と、平均粒径が0.01~2μmである無機充填材とを含む樹脂組成物が開示されている。さらに、特許文献1には、エポキシ樹脂と、硬化剤と、平均粒径が0.1~10μmである無機充填材とを含む樹脂組成物も開示されている。
 特許文献1では、2層の積層構造を有する多層フィルムの各層が、上述の異なる2種類の樹脂組成物を用いて形成されている。この多層フィルムは、基板に設けられた隙間などに良好に埋め込まれることが記載されている。
 下記の特許文献2には、硬化性樹脂と、無機フィラーと、硬化促進剤とを含む絶縁樹脂材料が開示されている。該無機フィラーは、異なる体積平均粒径を有する少なくとも2種のフィラーを含有する。小さい粒径の粒子(b1)の粒径は0.01~1.0μmであり、次に小さい粒子(b2)の粒径は0.30~10μmである。粒子(b1)と粒子(b2)との体積平均粒径の比は1/2~1/100であり、重量含有量の比は90/10~10/90である。粒子(b1)と粒子(b2)との内の少なくとも一方は、シランカップリング剤により表面処理されている。
特開2008-302677号公報 特開2004-277735号公報
 特許文献1では、2種類の樹脂組成物を用意し、多層フィルムを作製しているため、多層フィルムの作製に手間がかかり、コストが高くなるという問題がある。また、多層フィルの層間で剥離が生じやすいという問題もある。さらに2種類の樹脂層をラミネート等で貼り合わせた場合、2種類の樹脂層の物性が異なるため、応力がかかり、反りが発生するという問題もある。
 また、特許文献1に記載の多層フィルム及び特許文献2に記載の絶縁樹脂材料では、硬化物の表面の表面粗さが十分に小さくならないことがある。さらに、上記硬化物の表面に、めっき処理などにより金属層を形成すると、硬化物と金属層との接着強度を十分に高くすることが困難なことがある。
 また、線膨張率の低下を目的として、絶縁層を形成するための従来の樹脂組成物に無機充填剤を多く配合した場合にも、樹脂組成物の硬化物の表面にめっき処理などにより金属層を形成すると、硬化物と金属層との接着強度が低くなりやすいという問題がある。
 さらに、特許文献1に記載の多層フィルム及び特許文献2に記載の絶縁樹脂材料では、硬化物の熱による寸法変化を十分に小さくすることができないことがあり、上記絶縁層の線膨張率が比較的高くなることがある。
 本発明の目的は、硬化物の熱による寸法変化を小さくすることができ、更に硬化物の表面に金属層を形成した場合に、硬化物と金属層との接着強度を高めることができる絶縁樹脂フィルム、並びに該絶縁樹脂フィルムを用いた予備硬化物、積層体及び多層基板を提供することである。
 本発明の限定的な目的は、粗化処理後の硬化物の表面の表面粗さを小さくすることができる絶縁樹脂フィルム、並びに該絶縁樹脂フィルムを用いた予備硬化物、積層体及び多層基板を提供することである。
 本発明の広い局面によれば、粗化処理されて用いられる絶縁樹脂フィルムであって、第1の主面と第2の主面とを有し、前記第1の主面が粗化処理される面であり、エポキシ樹脂と、硬化剤と、シリカとを含有し、粗化処理される面である前記第1の主面側の表面部分の厚み0.3μmの第1の領域100重量%中の前記シリカの含有量が、前記第1の領域を除く第2の領域100重量%中の前記シリカの含有量よりも少ないように前記シリカが偏在しており、前記第2の領域100重量%中の前記シリカの含有量が30重量%よりも多い、絶縁樹脂フィルムが提供される。
 本発明に係る絶縁樹脂フィルムのある特定の局面では、前記第2の領域100重量%中の前記シリカの含有量が60重量%よりも多い。
 本発明に係る絶縁樹脂フィルムのある特定の局面では、前記第1の領域100重量%中の前記シリカの含有量が、前記第2の領域100重量%中の前記シリカの含有量よりも10重量%以上少ない。
 本発明に係る絶縁樹脂フィルムのある特定の局面では、前記エポキシ樹脂が、2種以上の第1のエポキシ樹脂を含み、2種以上の前記第1のエポキシ樹脂が同じ構造単位を有し、かつ2種以上の前記第1のエポキシ樹脂の前記構造単位の繰返し数が異なるか、又は、前記エポキシ樹脂が、炭素-炭素不飽和結合を有する第2のエポキシ樹脂と、炭素-炭素不飽和結合を有さない第3のエポキシ樹脂とを含む。
 本発明に係る絶縁樹脂フィルムのある特定の局面では、該絶縁樹脂フィルムの全体100重量%中、前記シリカの含有量が30重量%以上、85重量%以下である。
 本発明に係る絶縁樹脂フィルムのある特定の局面では、該絶縁樹脂フィルムの全体100重量%中、前記シリカの含有量が60重量%以上、85重量%以下である。
 本発明に係る絶縁樹脂フィルムのある特定の局面では、前記第1の主面が、膨潤処理され、かつ膨潤処理後に粗化処理される表面である。
 本発明の広い局面によれば、上述した絶縁樹脂フィルムの前記第1の主面を粗化処理することにより得られる、予備硬化物が提供される。
 本発明の広い局面によれば、上述した絶縁樹脂フィルムの前記第1の主面を粗化処理することにより得られる予備硬化物を用いて、前記予備硬化物を硬化させることにより得られる硬化物と、前記硬化物の粗化処理された表面に積層された金属層とを有する、積層体が提供される。
 本発明の広い局面によれば、回路基板と、前記回路基板上に配置された絶縁層とを備え、前記絶縁層が、上述した絶縁樹脂フィルムを粗化処理しかつ硬化させることにより形成されている、多層基板が提供される。
 本発明に係る絶縁樹脂フィルムは、エポキシ樹脂と硬化剤とシリカとを含有し、粗化処理される面である第1の主面側の表面部分の厚み0.3μmの第1の領域100重量%中の上記シリカの含有量が、上記第1の領域を除く第2の領域100重量%中の上記シリカの含有量よりも少ないように上記シリカが偏在しており、かつ上記第2の領域100重量%中の上記シリカの含有量が30重量%よりも多いので、絶縁樹脂フィルムの硬化物の熱による寸法変化を小さくすることができる。さらに、上記第1の主面が粗化処理された硬化物の表面に金属層を形成した場合に、硬化物と金属層との接着強度を高めることができる。
図1は、本発明の一実施形態に係る絶縁樹脂フィルムを模式的に示す断面図である。 図2は、本発明の一実施形態に係る絶縁樹脂フィルムを用いた多層基板を模式的に示す断面図である。
 以下、本発明を詳細に説明する。
 (絶縁樹脂フィルム)
 本発明に係る絶縁樹脂フィルムは、粗化処理されて用いられる。本発明に係る絶縁樹脂フィルムは、第1の主面と第2の主面とを有する。該第1の主面は、粗化処理される面である。本発明に係る絶縁樹脂フィルムは、エポキシ樹脂と硬化剤とシリカとを含む。本発明に係る絶縁樹脂フィルムでは、粗化処理される面である上記第1の主面側の表面部分の厚み0.3μmの第1の領域100重量%中の上記シリカの含有量が、上記第1の領域を除く第2の領域100重量%中の上記シリカの含有量よりも少ないように上記シリカが偏在している。さらに、本発明に係る絶縁樹脂フィルムでは、上記第2の領域100重量%中の上記シリカの含有量が30重量%よりも多い。
 本発明に係る絶縁樹脂フィルムは、単層フィルムであり、多層フィルムではない。従って、多層フィルムを用いた場合に問題となる層間剥離が生じない。
 以下、図面を参照しつつ、本発明の具体的な実施形態及び実施例を説明することにより本発明を明らかにする。
 図1に示す絶縁樹脂フィルム1は、積層対象部材6の表面6aに積層されている。絶縁樹脂フィルム1は、第1の主面1aと第2の主面1bとを有する。第1の主面1aと第2の主面1bとは対向している。第1の主面1aは粗化処理される面である。第2の主面1bは、積層対象部材6の表面6aと接している。絶縁樹脂フィルム1は、第2の主面1b側から、積層対象部材6の表面6aに積層されて用いられている。
 絶縁樹脂フィルム1は、エポキシ樹脂と、硬化剤と、シリカ2とを含む。従って、絶縁樹脂フィルムの硬化物の熱による寸法変化を小さくすることができる。絶縁樹脂フィルムの全体100重量%中のシリカの含有量が30重量%以上であれば、絶縁樹脂フィルムの硬化物の熱による寸法変化をかなり小さくすることができる。
 絶縁樹脂フィルム1中で、粗化処理される面である第1の主面1a側において、第2の主面1b側よりも、シリカ2が少なく存在するように偏在している。すなわち、絶縁樹脂フィルム1では、粗化処理される面である第1の主面1a側の表面部分の厚み0.3μmの第1の領域R1の100重量%中のシリカ2の含有量が、第1の領域R1を除く第2の領域R2の100重量%中のシリカ2の含有量よりも少ないようにシリカ2が偏在している。この結果として、第1の主面1a側において、第2の主面1b側よりも、絶縁樹脂フィルム1中のシリカ2を除く成分が多く存在するように偏在している。すなわち、第1の領域R1の100重量%中のシリカ2を除く成分の含有量が、第2の領域R2の100重量%中のシリカ2を除く成分の含有量よりも多いようにシリカ2を除く成分が偏在している。また、第1の主面1a側において、第2の主面1b側よりも、絶縁樹脂フィルム1中のエポキシ樹脂と硬化剤とが多く存在するように偏在していることが好ましい。また、絶縁樹脂フィルム1では、第2の領域R2の100重量%中のシリカ2の含有量が30重量%よりも多い。
 絶縁樹脂フィルム全体で、シリカが上述のように偏在していることで、またシリカを除く成分又はエポキシ樹脂と硬化剤とが上述のように偏在していることで、絶縁樹脂フィルムの硬化物の熱による寸法変化を小さくすることができるだけでなく、硬化物の表面に金属層を形成した場合に、硬化物と金属層との接着強度を高めることができる。この理由は、硬化物における第1の主面と金属層との接触面積が大きくなることなどが考えられる。
 シリカを高い密度で充填した場合には、粗化で樹脂をエッチングする際にシリカの脱離も起こる。シリカを高い密度で充填した場合には、粗化液に浸す時間が長い程、シリカの脱離のスピードに比べて、樹脂がエッチングされることでシリカが表面にむき出しになり、結果的に表面にシリカが多く存在するようになるスピードの方が速くなる。この結果、シリカを高い密度で充填した場合には、粗化後に、シリカが表面に多く存在するために、シリカの凹凸で表面の表面粗さも大きくなり、かつ接着強度も発現しない。一方、全体的にシリカを高い密度で充填した場合であっても、第1の領域中に存在するシリカが少なければ、上記のようなことは起こらず、粗化処理により樹脂が削れる事で微細な粗面を維持しつつ、樹脂表面の極性化や微細なアンカー形状により高い接着強度を付与できる。
 また、上記絶縁樹脂フィルムに含まれる上記エポキシ樹脂に関しては、(1)上記エポキシ樹脂が、2種以上の第1のエポキシ樹脂を含み、2種以上の上記第1のエポキシ樹脂が、同じ構造単位を有し、かつ2種以上の上記第1のエポキシ樹脂の上記構造単位の繰り返し数が異なるか(以下、(1)のエポキシ樹脂の構成で用いられるエポキシ樹脂を全体で、エポキシ樹脂(1)と記載することがある)、又は、(2)炭素-炭素不飽和結合を有する第2のエポキシ樹脂と、炭素-炭素不飽和結合を有さない第3のエポキシ樹脂とを含む(以下、(2)のエポキシ樹脂の構成で用いられるエポキシ樹脂を全体で、エポキシ樹脂(2)と記載することがある)。上記第2のエポキシ樹脂は、炭素-炭素不飽和結合を5個以上有し、かつ分子量が500以上であることが好ましい。
 上記エポキシ樹脂(2)を用いた場合には、ミクロに相分離しやすい。この理由は、上記第2のエポキシ樹脂がエポキシ基を有するため、他のエポキシ樹脂や硬化剤との相溶性を高めることができる一方で、炭素-炭素不飽和結合を有するため、上記第2のエポキシ樹脂のSP値が低くなる傾向にあり、他のエポキシ樹脂や硬化剤とのSP値の差が大きくなる傾向がある。その結果、熱硬化の過程で多少相分離が起こり、樹脂で微細なアンカー形状を形成できる。
 2種以上の上記第1のエポキシ樹脂を用いた場合には、上記構造単位の繰り返し数が異なる事で粗化液に対するエッチングスピードが変わり、樹脂で微細なアンカー形状を形成できる。さらに、2種以上の上記第1のエポキシ樹脂が、同じ構造単位を有し、かつ異なる上記構造単位の繰り返し数を有するので、樹脂全体の相溶性もよく、ミクロなアンカー形状を形成することができる。
 上記第1の領域中で上記エポキシ樹脂(1)又は上記エポキシ樹脂(2)は、ミクロに相分離しやすい。また、第1の領域中のシリカの含有量は比較的少ないことからも、上記第1の領域中で、上記エポキシ樹脂(1)又は上記エポキシ樹脂(2)はミクロに相分離しやすくなる。このため、上記第1の領域が上記エポキシ樹脂(1)又は上記エポキシ樹脂(2)を含み、かつ上記第1の領域中のシリカの含有量が上記第2の領域中のシリカの含有量よりも少ないことで、上記第1の領域中でシリカを除く成分(有機成分)が多くなるため、粗化処理後の硬化物の表面の表面粗さを効果的に小さくすることができ、硬化物と金属層との接着強度を効果的に高めることができる。
 第2の領域に由来して、第1の領域における粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くする観点からは、上記第2の領域は、上記エポキシ樹脂(1)又は上記エポキシ樹脂(2)を含むことが好ましい。
 粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くする観点からは、上記第1の領域100重量%中の上記シリカの含有量は、上記第2の領域100重量%中の上記シリカの含有量よりも、10重量%以上少ないことが好ましく、30重量%以上少ないことがより好ましく、40重量%以上少ないことが更に好ましい。
 粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くし、硬化物の熱による寸法変化をより一層小さくする観点からは、シリカが少ない領域(第1の領域とは異なる)の厚みは、絶縁樹脂フィルム全体の厚みとは関係なく、好ましくは0.1μm以上、より好ましくは0.3μm以上である。シリカが少ない領域(第1の領域とは異なる)の厚みは、好ましくは5μm以下であり、より好ましくは3μm以下である。また、絶縁樹脂フィルムの厚みは特に制限はない。近年の薄肉化のトレンドを鑑みて、上記絶縁樹脂フィルムの厚みは、好ましくは500μm以下、より好ましくは300μm以下である。絶縁樹脂フィルムの厚みは、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよい。
 以下、上記絶縁樹脂フィルムに含まれている各成分の詳細を説明する。
 [エポキシ樹脂]
 絶縁樹脂フィルムにおいてシリカが上述のように偏在していれば、上記絶縁樹脂フィルムに含まれている上記エポキシ樹脂は特に限定されない。該エポキシ樹脂として、従来公知のエポキシ樹脂を使用可能である。上記エポキシ樹脂は、少なくとも1個のエポキシ基を有する有機化合物をいう。上記エポキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。
 絶縁樹脂フィルムにおいてシリカを上述のように容易に偏在させるために、上記エポキシ樹脂が、繰り返し構造単位を有するエポキシ樹脂、又はpH12以上の粗化液を用いた粗化処理によってケトン又はカルボン酸を生成可能なエポキシ樹脂を含むことが好ましい。
 上記繰り返し構造単位を有するエポキシ樹脂としては、ノボラック型エポキシ樹脂が挙げられる。具体的には、ナフタレン型ノボラックエポキシ樹脂、フェノールアラルキル型ノボラックエポキシ樹脂、ナフトールアラルキル型ノボラックエポキシ樹脂、ジシクロペンタジエン型ノボラックエポキシ樹脂、トリシクロデカン骨格を有するノボラック型エポキシ樹脂、及びトリアジン骨格に有するノボラック型エポキシ樹脂、ビスフェノールA型ノボラックエポキシ樹脂及びビスフェノールF型ノボラックエポキシ樹脂等が挙げられる。
 上記pH12以上の粗化液を用いた粗化処理によってケトン又はカルボン酸を生成可能なエポキシ樹脂としては、炭素-炭素不飽和結合を有するエポキシ樹脂が挙げられる。具体的には、市販品として、エポリードPB3600(ダイセル化学社製)、エポリードPB4700(ダイセル化学社製)、AT501(ダイセル化学社製)、及びCT310(ダイセル化学社製)等が挙げられる。
 絶縁樹脂フィルムにおいてシリカを上述のように容易に偏在させるために、上記エポキシ樹脂が、2種以上の第1のエポキシ樹脂を含み、2種以上の上記第1のエポキシ樹脂が同じ構造単位を有し、かつ2種以上の上記第1のエポキシ樹脂の上記構造単位の繰り返し数が異なることが好ましく、上記エポキシ樹脂が、3種以上の第1のエポキシ樹脂を含み、3種以上の上記第1のエポキシ樹脂が同じ構造単位を有し、かつ3種以上の上記第1のエポキシ樹脂の上記構造単位の繰り返し数が異なることがより好ましい。2種以上の上記第1のエポキシ樹脂及び3種以上の上記第1のエポキシ樹脂が異なるエポキシ基の数を有することが好ましい。さらに、上記エポキシ樹脂が、炭素-炭素不飽和結合を5個以上有し、かつ分子量が500以上である第2のエポキシ樹脂を含むことも好ましい。上記絶縁樹脂フィルムが上記エポキシ樹脂(1)又は上記エポキシ樹脂(2)を含む場合に、上記絶縁樹脂フィルムは、上記エポキシ樹脂(1)及び上記エポキシ樹脂(2)とは異なるエポキシ樹脂を更に含んでいてもよい。
 粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くする観点からは、上記第2のエポキシ樹脂が、ブタジエン骨格を有することが好ましい。
 粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くする観点からは、2種以上の上記第1のエポキシ樹脂が、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂又はナフタレン型エポキシ樹脂であることが好ましく、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂又はジシクロペンタジエン型エポキシ樹脂であることがより好ましく、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、又はナフタレン型エポキシ樹脂であることもより好ましい。上記第1のエポキシ樹脂は、ノボラック型エポキシ樹脂であることが特に好ましい。
 粗化処理後の表面の表面粗さをより一層小さくし、上記エポキシ樹脂が、3種以上の上記第1のエポキシ樹脂を含み、3種以上の上記第1のエポキシ樹脂が、同じ構造単位を有し、上記第1のエポキシ樹脂100重量%中、上記構造単位の繰り返し数が1(上記構造単位が1つのみ、繰り返していない)である第1のエポキシ樹脂の含有量が1重量%以上、上記構造単位の繰り返し数が2(上記構造単位が2つ)である第1のエポキシ樹脂の含有量が10重量%以上、上記構造単位の繰り返し数が3以上(上記構造単位が3つ以上)である第1のエポキシ樹脂の含有量が25重量%以上であることが好ましい。上記構造単位の繰り返し数が2(上記構造単位が2つ)である第1のエポキシ樹脂の含有量が25重量%以上、上記構造単位の繰り返し数が3以上(上記構造単位が3つ以上)である第1のエポキシ樹脂の含有量が35重量%以上であることが好ましい。このように、第1のエポキシ樹脂においてエポキシ基の数が多い(構造単位の繰り返し数が多い成分)が比較的多いことで、粗化液での樹脂の削れ方に差異がつけられ、ミクロなアンカーを形成でき、かつ、より一層高い接着強度を発現できる。
 粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くする観点からは、上記第1の領域中の上記シリカを除く成分100重量%中、上記第1のエポキシ樹脂全体の含有量(上記エポキシ樹脂(1)の含有量)が10重量%以上、80重量%以下であるか、又は、上記第1の領域中の上記シリカを除く成分100重量%中、上記第2のエポキシ樹脂と上記第3のエポキシ樹脂との合計の含有量(上記エポキシ樹脂(2)の含有量)が0.3重量%以上、30重量%以下であることが好ましい。粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くする観点からは、上記第1の領域中の上記シリカを除く成分100重量%中、上記第1のエポキシ樹脂全体の含有量(上記エポキシ樹脂(1)の含有量)は、70重量%以下であることが好ましい。
 粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くする観点からは、上記第2の領域中の上記シリカを除く成分100重量%中、上記第1のエポキシ樹脂全体の含有量(上記エポキシ樹脂(1)の含有量)が10重量%以上、80重量%であるか、又は、上記第2の領域中の上記シリカを除く成分100重量%中、上記第2のエポキシ樹脂と上記第3のエポキシ樹脂との合計の含有量(上記エポキシ樹脂(2)の含有量)が0.3重量%以上、30重量%以下であることが好ましい。粗化処理後の表面の表面粗さをより一層小さくし、かつ硬化物と金属層との接着強度をより一層高くする観点からは、上記第2の領域中の上記シリカを除く成分100重量%中、上記第1のエポキシ樹脂全体の含有量(上記エポキシ樹脂(1)の含有量)は、70重量%以下であることが好ましい。
 上記エポキシ樹脂は、常温(23℃)で液状であってもよく、固形であってもよい。
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くする観点からは、上記エポキシ樹脂のエポキシ当量は、好ましくは90以上、より好ましくは100以上、好ましくは1000以下、より好ましくは800以下である。上記エポキシ樹脂は、エポキシ当量が上記下限以上及び上記上限以下であるエポキシ樹脂を含むことが好ましい。
 上記エポキシ樹脂の分子量は1000以下であることが好ましい。この場合には、絶縁樹脂フィルム全体におけるシリカの含有量を多くすることが容易である。さらに、シリカの含有量が多くても、流動性が高い絶縁樹脂フィルムが得られる。また、重量平均分子量が1000以下であるエポキシ樹脂と熱可塑性樹脂との併用により、絶縁樹脂フィルムの溶融粘度の過度の低下が抑えられる。
 上記エポキシ樹脂の分子量及び後述する硬化剤の分子量は、上記エポキシ樹脂又は硬化剤が重合体ではない場合、及び上記エポキシ樹脂又は硬化剤の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記エポキシ樹脂又は硬化剤が重合体である場合は、重量平均分子量を意味する。
 上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。
 [硬化剤]
 上記絶縁樹脂フィルムに含まれている硬化剤は特に限定されない。該硬化剤として、従来公知の硬化剤を使用可能である。上記硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化剤としては、シアネートエステル化合物(シアネートエステル硬化剤)、フェノール化合物(フェノール硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物、酸無水物、活性エステル化合物及びジシアンジアミド等が挙げられる。なかでも、熱による寸法変化がより一層小さい硬化物を得る観点からは、上記硬化剤は、シアネートエステル化合物又はフェノール化合物であることが好ましい。上記硬化剤は、シアネートエステル化合物であることが好ましく、フェノール化合物であることも好ましい。上記硬化剤は、上記エポキシ樹脂のエポキシ基と反応可能な官能基を有することが好ましい。
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成する観点からは、上記硬化剤は、シアネートエステル化合物、フェノール化合物又は活性エステル化合物であることが好ましい。さらに、硬化剤により一層良好な絶縁信頼性を付与する観点からは、上記硬化剤は、シアネートエステル化合物であることがより好ましい。
 上記シアネートエステル化合物の使用によりシリカの含有量が多い絶縁樹脂フィルムのハンドリング性が良好になり、硬化物のガラス転移温度がより一層高くなる。上記シアネートエステル化合物は特に限定されない。該シアネートエステル化合物として、従来公知のシアネートエステル化合物を使用可能である。上記シアネートエステル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、及びビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。
 上記シアネートエステル化合物の分子量は、3000以下であることが好ましい。この場合には、絶縁樹脂フィルム全体におけるシリカの含有量を多くすることができ、シリカの含有量が多くても、流動性が高い絶縁樹脂フィルムが得られる。
 上記フェノール化合物の使用により、硬化物と金属層との接着強度がより一層高くなる。また、上記フェノール化合物の使用により、例えば、硬化物の表面上に設けられた銅の表面を黒化処理又はCz処理したときに、硬化物と銅との接着強度がより一層高くなる。
 上記フェノール化合物は特に限定されない。該フェノール化合物として、従来公知のフェノール化合物を使用可能である。上記フェノール化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。
 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA1356」及び「LA3018-50P」)等が挙げられる。
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成する観点からは、上記フェノール化合物は、ビフェニルノボラック型フェノール化合物、又はアラルキル型フェノール化合物であることが好ましい。
 硬化物の表面の表面粗さをより一層小さくする観点からは、上記フェノール化合物はフェノール性水酸基を2個以上有することが好ましい。
 上記活性エステル化合物は、具体的には下記式(1)で表される化合物である。
 R2(COOR   ・・・式(1)
 上記活性エステル化合物は、式(1)で示すように、エステル基を有し、このエステル基がエポキシ基と反応性を示し、かつ上記活性エステル化合物は、反応後に2級水酸基を生成せずに、ネットワークを形成可能である。
 上記式R(1)中のR1は、下記式(11)、(12)又は(13)で表される基である。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 上記式(11)~(13)中、A及びBはそれぞれ、ハロゲン原子又はアルキル基を表し、m1は0~5を表し、m2は0~4を表し、m3は0~3を表す。A及びBがそれぞれ複数である場合には、複数のA及びBのそれぞれは、同一であってもよく、異なっていてもよい。
 上記式(1)中、kは2~4の整数である。
 上記式(1)中、R2は下記式(21)、(22)、(23)、(24)、(25)、(26)、(27)、(28)又は(29)で表される基である。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上記式(21)~(29)中、D、E及びGはそれぞれ、ハロゲン原子又はアルキル基を表し、Xは硫黄原子、酸素原子、SO又はCOを表し、n1、n2及びn3はそれぞれ0~4を表し、n4及びn5はそれぞれ0~3を表し、n6は0~2を表す。D、E及びGがそれぞれ複数である場合には、複数のD、E及びGのそれぞれは、同一であってもよく、異なっていてもよい。
 上記活性エステル化合物は特に限定されない。上記活性エステル化合物の市販品としては、DIC社製「HPC-8000」、「HPC-8000-65T」及び「EXB9416-70BK」等が挙げられる。
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化剤によって良好な絶縁信頼性を付与する観点からは、上記硬化剤は、当量が250以下である硬化剤を含むことが好ましい。上記硬化剤の当量は、例えば、硬化剤がシアネートエステル化合物である場合にはシアネートエステル基当量を示し、硬化剤がフェノール化合物である場合にはフェノール性水酸基当量を示し、硬化剤が活性エステル化合物である場合には活性エステル基当量を示す。
 上記硬化剤の全体100重量%中、当量が250以下である硬化剤の含有量は、好ましくは30重量%以上、より好ましくは50重量%以上である。上記硬化剤の全量が、当量が250以下である硬化剤であってもよい。当量が250以下である硬化剤の含有量が上記下限以上であると、硬化物の表面の表面粗さがより一層小さくなり、かつ絶縁層の表面により一層微細な配線が形成される。さらに、当量が250以下である硬化剤の含有量が上記下限以上であると、硬化物のガラス転移温度がより一層高くなる。
 上記硬化剤の分子量は1000以下であることが好ましい。上記硬化剤は、分子量が上記上限以下である硬化剤を含むことが好ましい。この場合には、絶縁樹脂フィルム全体におけるシリカの含有量が30重量%以上であっても、40重量%以上であっても、50重量%以上であっても、流動性が高い絶縁樹脂フィルムが得られる。
 上記エポキシ樹脂と上記硬化剤との配合比は特に限定されない。エポキシ樹脂と硬化剤との配合比は、エポキシ樹脂と硬化剤との種類により適宜決定される。上記エポキシ樹脂のエポキシ当量と上記硬化剤の当量との比(エポキシ当量:硬化剤の当量)は、1:0.2~1:2であることが好ましく、1:0.3~1:1.5であることがより好ましい。当量比が上記範囲を満足すると、硬化物と金属層との接着強度がより一層高くなる。
 上記絶縁樹脂フィルムのシリカを除く成分の合計100重量%中、上記エポキシ樹脂と上記硬化剤との合計の含有量は、好ましくは50重量%以上、より好ましくは70重量%以上、100重量%(全量)以下、好ましくは99.9重量%以下、より好ましくは99.8重量%以下である。
 [シリカ]
 上記絶縁樹脂フィルムがシリカを含むことにより、硬化物の線膨張率が低くなり、かつ硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。上記シリカは特に限定されない。該シリカとして、従来公知のシリカを使用可能である。上記シリカは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により一層良好な絶縁信頼性を付与する観点からは、上記シリカは、溶融シリカであることが好ましい。
 上記シリカの平均粒径は、好ましくは1nm以上、より好ましくは10nm以上、更に好ましくは50nm以上、特に好ましくは150nm以上、好ましくは20μm以下、より好ましくは10μm以下、更に好ましくは5μm以下、特に好ましくは1μm以下である。上記シリカの平均粒径が上記下限以上及び上記上限以下であると、粗化処理後に形成される孔の大きさが微細になり、孔の数が適度に多くなる。この結果、硬化物と金属層との接着強度がより一層高くなる。
 上記シリカの平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。
 上記シリカは、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に絶縁層と金属層との接着強度が効果的に高くなる。また、球状シリカを用いることで絶縁樹脂フィルムの溶融粘度を低下させることができ、絶縁樹脂フィルム中のシリカの含有量を多くすることができる。上記シリカが球状である場合には、上記シリカのアスペクト比は好ましくは2以下、より好ましくは1.5以下である。
 上記シリカは、表面処理されていることが好ましく、カップリング剤により表面処理されていることがより好ましい。これにより、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成され、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性が硬化物に付与される。
 上記カップリング剤としては、シランカップリング剤、チタネートカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、アミノシラン、イミダゾールシラン、ビニルシラン及びエポキシシラン等が挙げられる。
 上記絶縁樹脂フィルム100重量%中、上記シリカの含有量は好ましくは25重量%以上、より好ましくは30重量%以上、更に好ましくは35重量%以上、更に一層好ましくは40重量%以上、特に好ましくは50重量%以上、最も好ましくは60重量%以上、好ましくは95重量%以下、より好ましくは90重量%以下、更に好ましくは85重量%以下である。上記シリカの含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成されると同時に、このシリカ量であれば金属銅並に硬化物の線膨張率を低くすることも可能である。上記絶縁樹脂フィルム100重量%中の上記シリカの含有量が30重量%以上である場合には、第1の主面側と第2の主面側とにおけるシリカの存在状態をより一層良好にすることができる。
 [熱可塑性樹脂]
 上記絶縁樹脂フィルムは、熱可塑性樹脂を含まないか又は含む。上記絶縁樹脂フィルムは熱可塑性樹脂を含むことが好ましい。該熱可塑性樹脂は特に限定されない。該熱可塑性樹脂として、従来公知の熱可塑性樹脂を使用可能である。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱可塑性樹脂としては、イミド樹脂、フェノキシ樹脂、ポリビニルアセタール樹脂、ゴム成分及び有機フィラー等が挙げられる。上記熱可塑性樹脂は、フェノキシ樹脂であることが特に好ましい。該フェノキシ樹脂の使用により、溶融粘度を調整可能であるためにシリカの分散性が良好になり、かつ硬化過程で、意図しない領域に絶縁樹脂フィルムが濡れ拡がり難くなる。また、熱可塑性樹脂の使用により、絶縁樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性の悪化及びシリカの不均一化が抑えられる。
 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。
 上記イミド樹脂の市販品としては、例えば、ニッポン高度紙工業社製「SOXR-C」等が挙げられる。
 上記フェノキシ樹脂の市販品としては、例えば、新日鐵住金化学社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。
 上記熱可塑性樹脂の重量平均分子量は、好ましくは5000以上、好ましくは100000以下である。上記熱可塑性樹脂は、重量平均分子量が上記上限以下である熱可塑性樹脂を含むことが好ましい。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。
 上記熱可塑性樹脂の含有量は特に限定されない。上記絶縁樹脂フィルム100重量%中、上記熱可塑性樹脂の含有量(熱可塑性樹脂がフェノキシ樹脂である場合にはフェノキシ樹脂の含有量)は、好ましくは1重量%以上、より好ましくは5重量%以上、好ましくは30重量%以下、より好ましくは20重量%以下、更により好ましくは15重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、硬化物の線膨張率がより一層低くなる。また、絶縁樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、絶縁樹脂フィルムの成膜性が高くなり、より一層良好な硬化物が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。
 [硬化促進剤]
 上記絶縁樹脂フィルムは、硬化促進剤を含まないか又は含む。上記絶縁樹脂フィルムは硬化促進剤を含むことが好ましい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。絶縁樹脂フィルムを速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。
 上記硬化促進剤の含有量は特に限定されない。上記絶縁樹脂フィルム100重量%中、上記硬化促進剤の含有量は、好ましくは0.01重量%以上、好ましくは3重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、絶縁樹脂フィルムが効率的に硬化する。上記硬化促進剤の含有量が上記下限以上であると、硬化不良がより一層生じ難くなり、粗化処理後により一層均一な粗面を形成でき、硬化物と金属層との接着強度がより一層高くなる。上記硬化促進剤の含有量が上記上限以下であると、絶縁樹脂フィルムの保存安定性がより一層良好になる。
 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記絶縁樹脂フィルムには、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及び上述した樹脂以外の他の樹脂等を添加してもよい。
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。
 上記カップリング剤の含有量は特に限定されない。上記絶縁樹脂フィルム100重量%中、上記カップリング剤の含有量は好ましくは0.01重量%以上、好ましくは5重量%以下である。
 上記他の樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。
 [絶縁樹脂フィルム、予備硬化物の他の詳細]
 絶縁樹脂フィルムは、上記エポキシ樹脂と上記硬化剤と上記シリカと溶剤を含む樹脂組成物を用いて、該樹脂組成物を60~140℃に加熱し、フィルム状に成形することにより得ることが可能である。また、第1の領域と第2の領域とは、上記樹脂組成物の乾燥過程で形成することができる。
 上記樹脂組成物は溶剤を含む。上記溶剤の使用により、上記樹脂組成物の粘度を好適な範囲に制御でき、上記樹脂組成物の塗工性を高めることができる。また、上記溶剤は、上記シリカを含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。
 上記溶剤の多くは、上記絶縁樹脂フィルムの作製時に、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは160℃以下、より好ましくは140℃以下、更に好ましくは120℃以下、特に好ましくは100℃以下である。上記絶縁樹脂フィルムは、溶剤を含まないか又は含む。上記絶縁樹脂フィルムが溶剤を含む場合には、上記絶縁樹脂フィルム100重量%中、上記溶剤の含有量は好ましくは5重量%以下、より好ましくは3重量%以下、更に好ましくは1重量%以下である。上記樹脂組成物における上記溶剤の含有量は特に限定されない。上記樹脂組成物の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。
 上記樹脂組成物をフィルム状に成形する方法としては、例えば、押出機を用いて、上記樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法、溶剤を含む上記樹脂組成物をキャスティングしてフィルム状に成形するキャスティング成形法、並びに従来公知のその他のフィルム成形法等が挙げられる。なかでも、薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましく、キャスティング成形法がより好ましい。上記フィルムにはシートが含まれる。
 上記樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば90~200℃で1~180分間加熱乾燥させることにより、上記絶縁樹脂フィルムを得ることができる。本発明に係る絶縁樹脂フィルムは、予備硬化前の絶縁樹脂フィルムであってもよく、予備硬化後の絶縁樹脂フィルムであってもよい。予備硬化後の絶縁樹脂フィルムにおいて、上記第1の領域100重量%中の前記シリカの含有量が、上記第1の領域を除く第2の領域100重量%中の上記シリカの含有量よりも少ないように上記シリカが偏在しており、上記第2の領域100重量%中の上記シリカの含有量が30重量%よりも多いことが好ましい。
 上述のような乾燥工程により得ることができる絶縁樹脂フィルムは、Bステージフィルムと呼ばれている。上記絶縁樹脂フィルムは、半硬化状態にある半硬化物である。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。
 上記絶縁樹脂フィルムは、プリプレグではないことが好ましい。上記絶縁樹脂フィルムがプリプレグではない場合には、ガラスクロスなどに沿ってマイグレーションが生じなくなる。また、絶縁樹脂フィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。
 上記絶縁樹脂フィルムは、基材の一方の表面に積層された積層フィルムの状態で用いられてもよい。上記積層フィルムは、上記基材と、上記基材の一方の表面に積層された上記絶縁樹脂フィルムとを備える。
 上記積層フィルムの上記基材としては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルムなどのポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルムなどのオレフィン樹脂フィルム、ポリイミド樹脂フィルム、銅箔及びアルミニウム箔などの金属箔等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。
 上記絶縁樹脂フィルムを回路の絶縁層として用いる場合、絶縁樹脂フィルムにより形成される絶縁層の厚さは、回路を形成する導体層(金属層)の厚さ以上であることが好ましい。上記絶縁樹脂フィルムにより形成された絶縁層の厚さは、好ましくは5μm以上、好ましくは200μm以下である。
 上記絶縁樹脂フィルムの上記第1の主面を粗化処理することにより、粗化処理された予備硬化物が得られる。上記絶縁樹脂フィルムが予備硬化前の絶縁樹脂フィルムである場合には、上記絶縁樹脂フィルムの硬化を進行させた後、上記第1の主面を粗化処理することにより、粗化処理された予備硬化物を得ることが好ましい。上記絶縁樹脂フィルムの上記第1の主面を膨潤処理し、膨潤処理後に粗化処理することにより、膨潤処理及び粗化処理された予備硬化物が得られる。上記予備硬化物の表面に微細な凹凸を形成するために、上記予備硬化物では、粗化処理前に、膨潤処理されていることが好ましい。上記予備硬化物では、予備硬化後かつ粗化処理前に、膨潤処理されていることが好ましい。ただし、上記予備硬化物は、必ずしも膨潤処理されていなくてもよい。上記絶縁樹脂フィルムでは、上記第1の主面が、上記膨潤処理及び上記粗化処理される。
 上記予備硬化後の絶縁樹脂フィルムを得るために、積層対象部材上に、予備硬化前の絶縁樹脂フィルムを上記第2の主面側からラミネートすることにより積層した後、上記予備硬化前の絶縁樹脂フィルムの硬化を進行させることが好ましい。ラミネート温度は好ましくは55℃以上、より好ましくは65℃以上、好ましくは130℃以下、より好ましくは120℃以下である。ラミネート圧力は好ましくは0.5MPa以上、より好ましくは0.8MPa以上、好ましくは1.5MPa以下、より好ましくは1.2MPa以下である。
 上記予備硬化前の絶縁樹脂フィルムをラミネートすることにより積層する方法は、公知の方法を用いることができ、特に限定されない。例えば、回路基板等の積層対象部材上に、上記予備硬化前の絶縁樹脂フィルムを積層し、加圧式ラミネーターを用いて加圧する。このとき、加熱してもよく、加熱しなくてよい。次に、平行平板プレス式加熱プレス機を用いて、上記積層対象部材と上記予備硬化前の絶縁樹脂フィルムとを加熱及び加圧する。加熱及び加圧により、上記予備硬化前の絶縁樹脂フィルムを予備硬化させて、予備硬化後の絶縁樹脂フィルムを形成してもよい。上記加熱の温度及び上記加圧の圧力は適宜変更することができ、特に限定されない。
 上記予備硬化前の絶縁樹脂フィルムを上記積層対象部材上に積層した後、160~200℃で20分~180分間加熱処理を行うことが好ましい。加熱処理により、上記予備硬化前の絶縁樹脂フィルムを予備硬化させて、予備硬化後の絶縁樹脂フィルムを得ることができる。上記積層フィルムを用いる場合には、積層フィルムの基材は、上記予備硬化後の絶縁樹脂フィルムを形成する前に除去してもよく、上記予備硬化後の絶縁樹脂フィルムを形成した後に除去してもよい。このような条件で積層した後に、粗化処理を行うことで、粗化処理された予備硬化物が得られ、予備硬化物の表面に微細な凹凸を形成できる。予備硬化物は、最終硬化物のガラス転移温度よりも10~60℃低い温度で硬化されることが好ましい。
 必要に応じて、ロールラミネート後に平行平板加熱プレス機を行い、上記予備硬化後の絶縁樹脂フィルムの表面の平滑性を高めてもよい。例えば、平行平板加熱プレス機を用いて、厚さ1mmのステンレス板で、上記積層対象部材と上記予備硬化前の絶縁樹脂フィルムとの積層物を加熱及び加圧してもよい。
 なお、加熱加圧式ロールラミネーターなどの加圧式ラミネーター、及び平行平板加熱プレス機などのプレス機として、市販の装置を使用できる。ロールラミネーターによる積層は、真空状態で行うことが好ましい。ロールラミネーターのロールの材質は、表面が軟質なゴムロール、及び表面が硬質な金属ロールなどから適宜選択できる。平行平板加熱プレス機の平板の材質は、硬質な金属である。
 ロールラミネーターのロールと上記積層対象部材、上記絶縁樹脂フィルムとの間、又は平行平板加熱プレス機の平板と上記積層対象部材、上記絶縁樹脂フィルムとの間において、離型機能を有するフィルム、例えばアルミ箔、銅箔、ポリエステル樹脂フィルム、フッ素樹脂系フィルムなどを用いてもよい。
 上記積層対象部材と上記絶縁樹脂フィルムとの密着性を高める目的で、ゴムシートなどの柔軟性を有する材料を用いてもよい。
 上記予備硬化後の絶縁樹脂フィルムを形成する工程は、上記積層対象部材上に、上記予備硬化前の絶縁樹脂フィルムを上記第2の主面側から積層し、ロールラミネーターを用いて加圧した後、平行平板プレス式加熱プレス機を用いて加熱及び加圧し、予備硬化後の絶縁樹脂フィルムを形成する工程であることが好ましい。また、上記積層フィルムを用いる場合には、ロールラミネーターを用いて加圧した後、かつ平行平板プレス式加熱プレス機を用いて加熱及び加圧する前に、又はロールラミネーターを用いて加圧した後、かつ平行平板プレス式加熱プレス機を用いて加熱及び加圧した後に、上記基材を除去することが好ましい。
 本発明に係る積層体は、上記絶縁樹脂フィルムの上記第1の主面を粗化処理することにより得られる予備硬化物を用いて、該予備硬化物を硬化させることにより得られる硬化物と、該硬化物の粗化処理された表面に積層された金属層とを有する。該硬化物と該金属層との接着強度は、好ましくは4.9N/cm以上、より好ましくは5.9N/cm以上である。上記金属層は、銅層であることが好ましく、銅めっき層であることがより好ましい。
 (プリント配線板)
 上記絶縁樹脂フィルムは、プリント配線板において絶縁層を形成するために好適に用いられる。上記プリント配線板は、例えば、上記絶縁樹脂フィルムを加熱加圧成形することにより得られる。
 上記絶縁樹脂フィルムに対して、片面又は両面に金属箔を積層可能である。上記絶縁樹脂フィルムと金属箔とを積層する方法は特に限定されず、公知の方法を採用可能である。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記絶縁樹脂フィルムを金属箔に積層可能である。
 (銅張り積層板及び多層基板)
 上記絶縁樹脂フィルムは、銅張り積層板を得るために好適に用いられる。上記銅張り積層板の一例として、銅箔と、該銅箔の一方の表面に積層された上記絶縁フィルムとを備える銅張り積層板が挙げられる。
 上記銅張り積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは好ましくは1μm以上、好ましくは50μm以下である。また、絶縁樹脂フィルムを硬化させた硬化物(絶縁層)と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法等が挙げられる。
 また、上記絶縁樹脂フィルムは、多層基板を得るために好適に用いられる。上記多層基板の一例として、回路基板と、該回路基板の表面上に積層された絶縁層とを備える多層基板が挙げられる。この多層基板の絶縁層が、上記絶縁樹脂フィルムを粗化処理しかつ硬化させることにより形成される。上記絶縁層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。
 上記多層基板では、上記絶縁層の上記回路基板が積層された表面とは反対の表面が粗化処理されていることが好ましい。粗化処理方法は、従来公知の粗化処理方法を用いることができ特に限定されない。上記絶縁層の表面は、粗化処理の前に膨潤処理されていてもよい。
 また、上記多層基板は、上記絶縁層の粗化処理された表面に積層された銅めっき層をさらに備えることが好ましい。
 また、上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された絶縁層と、該絶縁層の上記回路基板が積層された表面とは反対の表面に積層された銅箔とを備える多層基板が挙げられる。上記絶縁層及び上記銅箔が、銅箔と該銅箔の一方の表面に積層された絶縁樹脂フィルムとを備える銅張り積層板を用いて、上記絶縁樹脂フィルムを粗化処理しかつ硬化させることにより形成されていることが好ましい。さらに、上記銅箔はエッチング処理されており、銅回路であることが好ましい。
 上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された複数の絶縁層とを備える多層基板が挙げられる。上記回路基板上に配置された上記複数層の絶縁層の内の少なくとも1層が、上記絶縁樹脂フィルムを粗化処理しかつ硬化させることにより形成される。上記多層基板は、上記絶縁樹脂フィルムを粗化処理しかつ硬化させることにより形成されている上記絶縁層の少なくとも一方の表面に積層されている回路をさらに備えることが好ましい。
 図2に、本発明の一実施形態に係る絶縁樹脂フィルムを用いた多層基板を模式的に部分切欠正面断面図で示す。
 図2に示す多層基板11では、回路基板12の上面12aに、複数層の絶縁層13~16が積層されている。絶縁層13~16は、絶縁層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数層の絶縁層13~16のうち、回路基板12側とは反対の外側の表面に位置する絶縁層16以外の絶縁層13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と絶縁層13の間、及び積層された絶縁層13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。
 多層基板11では、絶縁層13~16が、本発明に係る絶縁樹脂フィルムを粗化処理しかつ硬化させることにより形成されている。なお、図2では、絶縁層13~16は略図で示されている。本実施形態では、絶縁層13~16の表面が粗化処理されているので、絶縁層13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層基板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層基板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。
 (粗化処理及び膨潤処理)
 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、絶縁樹脂フィルムを処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30~85℃で1~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との接着強度が低くなる傾向がある。
 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。
 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。
 上記粗化処理の方法は特に限定されない。上記粗化処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、硬化物を処理する方法が好適である。この粗化処理は1回又は2回行われることが好ましい。上記粗化処理の温度は50~85℃の範囲内であることが好ましい。
 硬化物の表面の算術平均粗さRaは好ましくは20nm以上、好ましくは200nm以下であることが好ましい。この場合には、硬化物と金属層又は配線との接着強度が高くなり、更に絶縁層の表面により一層微細な配線が形成される。
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
 (熱硬化性樹脂)
 ビスフェノールA型エポキシ樹脂(上記第3のエポキシ樹脂に相当する、日本化薬社製「RE410S」、エポキシ当量178)
 ビフェニル型エポキシ樹脂1(ビフェニル型エポキシ樹脂1のみで上記第1のエポキシ樹脂に相当する、上記第3のエポキシ樹脂に相当する、日本化薬社製「NC3000」、エポキシ当量275)
 ビフェニル型エポキシ樹脂2(ビフェニル型エポキシ樹脂2のみで上記第1のエポキシ樹脂に相当する、上記第3のエポキシ樹脂に相当する、日本化薬社製「NC3000H」、エポキシ当量288)
 ※ビフェニル型エポキシ樹脂1とビフェニル型エポキシ樹脂2との併用も、2種以上の上記第1のエポキシ樹脂に相当する
 ゴム骨格含有エポキシ樹脂1(ゴム骨格含有エポキシ樹脂のみで上記第1のエポキシ樹脂に相当する、上記第2のエポキシ樹脂に相当する、ダイセル化学社製「AT-501」、エポキシ当量1054、スチレン-ブタジエン骨格含有)
 ゴム骨格含有エポキシ樹脂2(ゴム骨格含有エポキシ樹脂のみで上記第1のエポキシ樹脂に相当する、上記第2のエポキシ樹脂に相当する、ダイセル化学社製「PB3600」、エポキシ当量200、ブタジエン骨格含有)
 (硬化剤)
 アミノトリアジン骨格クレゾールノボラック硬化剤含有液(DIC社製「LA3018-50P」、当量151、固形分の含有量50重量%、プロピレングリコールモノメチルエーテルの含有量50重量%)
 (硬化促進剤)
 イミダゾール化合物(四国化成社製「2P4MZ」)
 (シリカ)
 シリカ含有スラリー(アドマテックス社製「SC2050HNK」、シリカの平均粒径0.5μm、シリカがアミノシランにより表面処理されている、シリカの含有量70重量%、シクロヘキサノンの含有量30重量%)
 (熱可塑性樹脂)
 イミド樹脂含有液(ニッポン高度紙工業社製「SOXR-C」、固形分の含有量20重量%、シクロペンタノンの含有量80重量%)
 (実施例1)
 ビフェニル型エポキシ樹脂1(日本化薬社製「NC3000」)13.3重量部と、ゴム骨格含有エポキシ樹脂1(ダイセル化学社製「AT-501」)1.5重量部と、アミノトリアジン骨格クレゾールノボラック硬化剤含有液(DIC社製「LA3018-50P」)10重量部(固形分で5重量部)と、イミダゾール化合物(四国化成社製「2P4MZ」)0.1重量部と、シリカ含有スラリー(アドマテックス社製「SC2050HNK」)69.9重量部(固形分で48.9重量部)と、イミド樹脂含有液(ニッポン高度紙工業社製「SOXR-C」)5.2重量部(固形分で1重量部)とを混合し、均一な溶液となるまで常温で攪拌し、樹脂組成物を得た。
 離型処理された透明な第2のポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET5011」、厚み50μm)を用意した。このPETフィルムの離型処理面上に乾燥後の厚みが50μmとなるように、得られた樹脂組成物をダイコーターにて塗工した後、60~120℃で乾燥させて、予備硬化前の絶縁樹脂フィルムを得た。その後、該予備硬化前の絶縁樹脂フィルムの表面に保護フィルムとして第1のPETフィルム(東レ社製「PET T60」、厚み38μm)を60℃で熱ラミネートして、積層フィルムを得た。上記積層フィルムでは、予備硬化前の絶縁樹脂フィルムは、第2のPETフィルム(PET 5011)側に第2の主面を有し、第1のPETフィルム(PET T60)側に粗化処理される面である第1の主面を有する。
 予備硬化後の絶縁樹脂フィルムを有する積層体の作製
 ガラスエポキシ基板(FR-4、利昌工業社製「CS-3665」)に、得られた積層フィルムを、第2のPETフィルムを剥離してから、予備硬化前の絶縁樹脂フィルムの第2の主面側からセットした。ガラスエポキシ基板と予備硬化前の絶縁樹脂フィルムと第1のPETフィルムとを有する積層体を、真空加圧式ラミネーター機(名機製作所社製「MVLP-500」)を用いて、ラミネート圧0.5MPa及びラミネート温度70℃で20秒間、更にプレス圧力1MPa及びプレス温度90℃で40秒間加圧加熱し、ガラスエポキシ基板と予備硬化前の絶縁樹脂フィルムと第1のPETフィルムとを有する積層体を得た。その後、第1のPETフィルムを剥がして、オーブン内で140℃30分予備硬化を実施した。このようにして、ガラスエポキシ基板と予備硬化後の絶縁樹脂フィルムとの積層体Aを得た。得られた予備硬化後の絶縁樹脂フィルムは、ガラスエポキシ基板側に第2の主面を有し、ガラスエポキシ基板とは反対に粗化処理される面である第1の主面を有する。
 (実施例2~15及び比較例1,2)
 使用した配合成分の種類及び配合量を下記の表1~3に示すように変更したこと以外は実施例1と同様にして、樹脂組成物、第1,第2のPETフィルムと予備硬化前の絶縁樹脂フィルムとを有する積層フィルム、並びにガラスエポキシ基板と予備硬化後の絶縁樹脂フィルムとを有する積層体Aを得た。
 (評価)
 (1)シリカの存在状態
 得られた積層体Aにおいて、予備硬化後の絶縁樹脂フィルムの断面観察を行った。予備硬化後の絶縁樹脂フィルム中のシリカの存在状態1を下記の判定基準で判定した。なお、予備硬化後の絶縁樹脂フィルム中でのシリカの存在状態は、予備硬化前の絶縁樹脂フィルム中でのシリカの存在状態と一致していた。
 [シリカの存在状態1の判定基準]
 A:粗化処理される面である第1の主面側の表面部分の厚み0.3μmの第1の領域100重量%中のシリカの含有量が、第1の領域を除く第2の領域100重量%中のシリカの含有量よりも少ないように前記シリカが偏在している
 B:Aの判定基準に該当しない
 (2)第1,第2の領域におけるシリカの存在状態
 得られた予備硬化前の絶縁樹脂フィルムにおいて、断面をSEM-EDX分析することで、粗化処理される面である第1の主面側の表面部分の厚み0.3μmの第1の領域におけるシリカの含有量と、第1の領域を除く第2の領域におけるシリカの含有量を測定した。なお、予備硬化前の絶縁樹脂フィルム中での第1,第2の領域におけるシリカの存在状態は、予備硬化後の絶縁樹脂フィルム中での第1,第2の領域におけるシリカの存在状態と一致していた。
 (3)平均線膨張率
 得られた絶縁樹脂フィルムを、190℃で3時間加熱して硬化させ、硬化物Aを得た。得られた硬化物Aを、3mm×25mmの大きさに切り出した。線膨張率計(セイコーインスツルメンツ社製「TMA/SS120C」)を用いて、引張り荷重3.3×10-2N、昇温速度5℃/分の条件で、裁断された硬化物の25~150℃における平均線膨張率を測定した。平均線膨張率を下記の基準で判定した。
 [平均線膨張率の判定基準]
 ○○:25ppm以下
 ○:25ppmを超え、40ppm/℃以下
 ×:40ppm/℃を超える
 (4)算術平均粗さRa
 上記積層体Aにおける予備硬化後の絶縁樹脂フィルムを、下記の(a)膨潤処理をした後、下記の(b)過マンガン酸塩処理すなわち粗化処理を行った。
 (a)膨潤処理:
 60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」)に、上記積層体Aを入れて、20分間揺動させた。その後、純水で洗浄した。
 (b)過マンガン酸塩処理:
 80℃の過マンガン酸カリウム(アトテックジャパン社製「コンセントレートコンパクトCP」)粗化水溶液に、上記積層体を入れて、20分間揺動させ、ガラスエポキシ基板上に粗化処理された予備硬化物を得た。得られた予備硬化物を、23℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」)により2分間洗浄した後、純水でさらに洗浄した。
 その後、JIS B0601-1994に準拠して、予備硬化物の粗化処理された表面の算術平均粗さRaを測定した。算術平均粗さRaを下記の基準で判定した。
 [算術平均粗さRaの判定基準]
 ○:20nm以上、200nm以下
 ×:20nm未満、又は200nmを超える
 (5)接着強度(ピール強度)
 上記(4)算術平均粗さRaの評価後に、ガラスエポキシ基板上の粗化処理された予備硬化物に、下記の(c)銅めっき処理を行った。
 (c)銅めっき処理:
 上記予備硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、上記予備硬化物を25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)で2分間処理した。その後、上記予備硬化物を40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、予備硬化物を5分間処理した。
 次に、上記予備硬化物を化学銅液(アトテックジャパン社製「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」及び「リデューサーCu」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニールをかけた。無電解めっきの工程までのすべての工程は、ビーカースケールで処理液を2Lとし、予備硬化物を揺動させながら実施した。
 次に、無電解めっき処理された予備硬化物に、電解めっきをめっき厚さが25μmとなるまで実施した。電気銅めっきとして硫酸銅溶液(和光純薬工業社製「硫酸銅五水和物」、和光純薬工業社製「硫酸」、アトテックジャパン社製「ベーシックレベラーカパシドHL」、アトテックジャパン社製「補正剤カパラシドGS」)を用いて、0.6A/cmの電流を流した。銅めっき処理後、予備硬化物を190℃で90分間加熱し、硬化させて、銅めっき層が形成された硬化物を得た。
 [接着強度の測定方法]
 上記銅めっき層が形成された硬化物の銅めっき層の表面に10mm幅に切り欠きを入れた。その後、引張試験機(島津製作所社製「オートグラフ」)を用いて、クロスヘッド速度5mm/分の条件で、銅めっき層と硬化物との接着強度(ピール強度)を測定した。接着強度を下記の基準で判定した。
 [接着強度の判定基準]
 ○○:5.9N/cm以上
 ○:4.9N/cm以上、5.9N/cm未満
 ×:4.9N/cm未満
 結果を下記の表1~3に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 1…絶縁樹脂フィルム
 1a…第1の主面
 1b…第2の主面
 2…シリカ
 6…積層対象部材
 6a…表面
 11…多層基板
 12…回路基板
 12a…上面
 13~16…絶縁層
 17…金属層(配線)
 R1…第1の領域
 R2…第2の領域

Claims (10)

  1.  粗化処理されて用いられる絶縁樹脂フィルムであって、
     第1の主面と第2の主面とを有し、前記第1の主面が粗化処理される面であり、
     エポキシ樹脂と、硬化剤と、シリカとを含有し、
     粗化処理される面である前記第1の主面側の表面部分の厚み0.3μmの第1の領域100重量%中の前記シリカの含有量が、前記第1の領域を除く第2の領域100重量%中の前記シリカの含有量よりも少ないように前記シリカが偏在しており、
     前記第2の領域100重量%中の前記シリカの含有量が30重量%よりも多い、絶縁樹脂フィルム。
  2.  前記第2の領域100重量%中の前記シリカの含有量が60重量%よりも多い、請求項1に記載の絶縁樹脂フィルム。
  3.  前記第1の領域100重量%中の前記シリカの含有量が、前記第2の領域100重量%中の前記シリカの含有量よりも10重量%以上少ない、請求項1又は2に記載の絶縁樹脂フィルム。
  4.  前記エポキシ樹脂が、2種以上の第1のエポキシ樹脂を含み、2種以上の前記第1のエポキシ樹脂が同じ構造単位を有し、かつ2種以上の前記第1のエポキシ樹脂の前記構造単位の繰返し数が異なるか、又は、
     前記エポキシ樹脂が、炭素-炭素不飽和結合を有する第2のエポキシ樹脂と、炭素-炭素不飽和結合を有さない第3のエポキシ樹脂とを含む、請求項1~3のいずれか1項に記載の絶縁樹脂フィルム。
  5.  絶縁樹脂フィルムの全体100重量%中、前記シリカの含有量が30重量%以上、85重量%以下である、請求項1~4のいずれか1項に記載の絶縁樹脂フィルム。
  6.  絶縁樹脂フィルムの全体100重量%中、前記シリカの含有量が60重量%以上、85重量%以下である、請求項5に記載の絶縁樹脂フィルム。
  7.  前記第1の主面が、膨潤処理され、かつ膨潤処理後に粗化処理される表面である、請求項1~6のいずれか1項に記載の絶縁樹脂フィルム。
  8.  請求項1~7のいずれか1項に記載の絶縁樹脂フィルムの前記第1の主面を粗化処理することにより得られる、予備硬化物。
  9.  請求項1~7のいずれか1項に記載の絶縁樹脂フィルムの前記第1の主面を粗化処理することにより得られる予備硬化物を用いて、前記予備硬化物を硬化させることにより得られる硬化物と、
     前記硬化物の粗化処理された表面に積層された金属層とを有する、積層体。
  10.  回路基板と、
     前記回路基板上に配置された絶縁層とを備え、
     前記絶縁層が、請求項1~7のいずれか1項に記載の絶縁樹脂フィルムを粗化処理しかつ硬化させることにより形成されている、多層基板。
PCT/JP2013/059662 2012-09-20 2013-03-29 絶縁樹脂フィルム、予備硬化物、積層体及び多層基板 WO2014045625A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157006744A KR20150059741A (ko) 2012-09-20 2013-03-29 절연 수지 필름, 예비 경화물, 적층체 및 다층 기판
JP2014536620A JP5799174B2 (ja) 2012-09-20 2013-03-29 絶縁樹脂フィルム、予備硬化物、積層体及び多層基板
CN201380048999.0A CN105051094B (zh) 2012-09-20 2013-03-29 绝缘树脂膜、预固化物、叠层体及多层基板
TW102123043A TWI612537B (zh) 2012-09-20 2013-06-27 絕緣樹脂膜、預硬化物、積層體及多層基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-206672 2012-09-20
JP2012206672 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014045625A1 true WO2014045625A1 (ja) 2014-03-27

Family

ID=50340958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059662 WO2014045625A1 (ja) 2012-09-20 2013-03-29 絶縁樹脂フィルム、予備硬化物、積層体及び多層基板

Country Status (5)

Country Link
JP (1) JP5799174B2 (ja)
KR (1) KR20150059741A (ja)
CN (1) CN105051094B (ja)
TW (1) TWI612537B (ja)
WO (1) WO2014045625A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205983A (ja) * 2014-04-18 2015-11-19 味の素株式会社 樹脂組成物
JP2017066399A (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 樹脂組成物、積層体及び積層構造体の製造方法
WO2022211120A1 (ja) * 2021-03-31 2022-10-06 太陽インキ製造株式会社 積層硬化性樹脂構造体、ドライフィルム、硬化物および電子部品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622139B (zh) * 2016-03-08 2018-04-21 恆勁科技股份有限公司 封裝基板
WO2018062405A1 (ja) * 2016-09-29 2018-04-05 積水化学工業株式会社 硬化体及び多層基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142820A (ja) * 1988-11-22 1990-05-31 Hitachi Chem Co Ltd マルチワイヤー配線板用絶縁層
JP2003162057A (ja) * 2001-11-26 2003-06-06 Ngk Spark Plug Co Ltd プリント配線基板用感光性樹脂組成物及びプリント配線基板
JP2004250674A (ja) * 2003-01-31 2004-09-09 Sumitomo Chem Co Ltd 樹脂フィルムおよびそれを用いた多層プリント配線板
JP2005097497A (ja) * 2003-06-05 2005-04-14 Sekisui Chem Co Ltd エポキシ系熱硬化性樹脂組成物、樹脂シート及びこれらを用いた絶縁基板用樹脂シート

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI319428B (en) * 2006-06-22 2010-01-11 Adhesive for insulating film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142820A (ja) * 1988-11-22 1990-05-31 Hitachi Chem Co Ltd マルチワイヤー配線板用絶縁層
JP2003162057A (ja) * 2001-11-26 2003-06-06 Ngk Spark Plug Co Ltd プリント配線基板用感光性樹脂組成物及びプリント配線基板
JP2004250674A (ja) * 2003-01-31 2004-09-09 Sumitomo Chem Co Ltd 樹脂フィルムおよびそれを用いた多層プリント配線板
JP2005097497A (ja) * 2003-06-05 2005-04-14 Sekisui Chem Co Ltd エポキシ系熱硬化性樹脂組成物、樹脂シート及びこれらを用いた絶縁基板用樹脂シート

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205983A (ja) * 2014-04-18 2015-11-19 味の素株式会社 樹脂組成物
JP2017066399A (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 樹脂組成物、積層体及び積層構造体の製造方法
WO2022211120A1 (ja) * 2021-03-31 2022-10-06 太陽インキ製造株式会社 積層硬化性樹脂構造体、ドライフィルム、硬化物および電子部品

Also Published As

Publication number Publication date
KR20150059741A (ko) 2015-06-02
TWI612537B (zh) 2018-01-21
CN105051094B (zh) 2017-01-18
JP5799174B2 (ja) 2015-10-21
JPWO2014045625A1 (ja) 2016-08-18
TW201413746A (zh) 2014-04-01
CN105051094A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
JP6391851B2 (ja) 層間絶縁材料及び多層プリント配線板
JP4938910B1 (ja) 予備硬化物、粗化予備硬化物及び積層体
JP5629407B2 (ja) 絶縁樹脂材料及び多層基板
JP6931542B2 (ja) 樹脂組成物の硬化物、樹脂組成物及び多層基板
JP6389782B2 (ja) 多層絶縁フィルム、多層基板の製造方法及び多層基板
KR102508097B1 (ko) 수지 재료, 적층 필름 및 다층 프린트 배선판
JP2013040298A (ja) エポキシ樹脂材料及び多層基板
JP5799174B2 (ja) 絶縁樹脂フィルム、予備硬化物、積層体及び多層基板
JP2012211269A (ja) 予備硬化物、粗化予備硬化物及び積層体
JP2024009109A (ja) 樹脂材料及び多層プリント配線板
JP5752071B2 (ja) Bステージフィルム及び多層基板
JP6454428B2 (ja) 硬化体及び多層基板
JP6867131B2 (ja) 積層体及び積層体の製造方法
WO2016047682A1 (ja) 樹脂フィルム及び積層フィルム
JP2014062150A (ja) 絶縁樹脂フィルム、絶縁樹脂フィルムの製造方法、予備硬化物、積層体及び多層基板
JP2019006980A (ja) 絶縁フィルム用樹脂組成物、絶縁フィルム及び多層プリント配線板
JP6159627B2 (ja) 樹脂組成物、樹脂フィルム及び多層基板
JP6559520B2 (ja) 樹脂組成物、樹脂フィルム、積層フィルム及び多層基板
JP5838009B2 (ja) 積層体、積層体の製造方法及び多層基板
JP6084854B2 (ja) 多層プリント配線板用エポキシ樹脂材料及び多層プリント配線板
JP5351910B2 (ja) Bステージフィルム及び多層基板
JP2012072318A (ja) エポキシ樹脂材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380048999.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014536620

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006744

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838748

Country of ref document: EP

Kind code of ref document: A1