WO2014041730A1 - 蓄電池管理装置および蓄電池管理方法 - Google Patents

蓄電池管理装置および蓄電池管理方法 Download PDF

Info

Publication number
WO2014041730A1
WO2014041730A1 PCT/JP2013/004058 JP2013004058W WO2014041730A1 WO 2014041730 A1 WO2014041730 A1 WO 2014041730A1 JP 2013004058 W JP2013004058 W JP 2013004058W WO 2014041730 A1 WO2014041730 A1 WO 2014041730A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
chargeable
electricity amount
amount
storage
Prior art date
Application number
PCT/JP2013/004058
Other languages
English (en)
French (fr)
Inventor
征生 鹿谷
勇一郎 竹本
杉山 茂行
青木 護
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP13837700.7A priority Critical patent/EP2897247B1/en
Priority to US14/426,537 priority patent/US20150222132A1/en
Publication of WO2014041730A1 publication Critical patent/WO2014041730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a storage battery management device and a storage battery management method for adjusting the amount of electricity stored in a storage battery.
  • the voltage of the entire storage battery (hereinafter referred to as “storage battery group”) becomes 6 V, and the storage battery group in this state operates a 6 V device by discharging. be able to.
  • the voltage of this storage battery group is 1.2V.
  • the storage batteries constituting the storage battery group are simultaneously charged with a voltage obtained by adding an applied voltage necessary for charging to 1.2 V of the rated voltage of the storage battery.
  • Patent Document 1 discloses a technology (hereinafter referred to as “conventional technology”) that discharges at a voltage different from the voltage at the time of charging by controlling a switch.
  • conventional technology by switching the connection form of a plurality of capacitors (or a plurality of storage batteries) in series or in parallel by switch control, the entire voltage can be freely adjusted according to the voltage of the power generation device or the voltage required by the load device. Change.
  • the plurality of capacitors are charged by switching the connection form in parallel.
  • the voltage of the power generation device is higher than the voltage of the capacitor, the plurality of capacitors are charged by switching the connection form in series.
  • the connection form of a some capacitor is switched to series, parallel, or those combination.
  • the storage battery connected in series with the high voltage supplied by the power generation device Is charged.
  • the storage batteries can be connected in parallel at the time of discharging, and can be changed to a low voltage required by the load device.
  • the capacitor described in the prior art has an electrical characteristic that the amount of electricity is proportional to the voltage. For this reason, when a plurality of capacitors connected in series are applied to the prior art, the chargeable electricity amount of each capacitor is accurately calculated by measuring the voltage of each capacitor.
  • the chargeable amount of electricity is the amount of electricity that indicates how much can be charged from the current state of charge to the fully charged state.
  • the conventional technology cannot accurately calculate the chargeable amount of electricity of each storage battery only by measuring the voltage of each storage battery.
  • the reasons for this are, for example, (1) a decrease in rechargeable battery capacity due to aging of the storage battery, and (2) a voltage measurement error caused by having a non-linear electrical characteristic curve between the amount of electricity and voltage.
  • the accompanying calculation error of the amount of electricity (3) individual differences due to differences in storage battery material or manufacturing process, (4) changes in electrical characteristics due to the storage battery usage environment (for example, temperature, etc.), and the like.
  • each storage battery Since the conventional technology cannot accurately calculate the chargeable amount of electricity for each storage battery, each storage battery is not fully charged. For example, when storage batteries connected in series are charged, the prior art is not able to charge other storage batteries when the storage battery with the least amount of chargeable charge is overcharged. The battery will no longer be charged. As a result, the conventional technology has a problem that the electricity that should be supplied from the power generation device to each storage battery is wasted, and charging cannot be sufficiently performed with respect to the chargeable capacity of the storage battery group.
  • An object of the present invention is to provide a storage battery management device and a storage battery management method capable of sufficiently charging a battery group connected in series with respect to a rechargeable battery capacity of the storage battery group, in other words, charging efficiently. It is.
  • a storage battery management device is a storage battery management device that switches the number of storage batteries used or the number of series or the number of parallel connections as a connection form of a plurality of storage batteries, and discharges or charges the storage batteries.
  • a chargeable electricity amount management unit that calculates and manages a chargeable electricity amount that is the amount of electricity that can be charged from the current charging state to the fully charged state, and a part of the plurality of storage batteries or
  • a chargeable electricity amount adjusting unit that controls discharging or charging of the plurality of storage batteries so that all of the chargeable electricity amounts reach a common target electricity amount.
  • the storage battery management method is a storage battery management method for discharging or charging the storage battery by switching the number of used or series number or parallel number of the storage batteries as a connection form of a plurality of storage batteries. For each of the plurality of storage batteries, calculating and managing a chargeable amount of electricity that can be charged from a current charge state to a fully charged state, and charging part or all of the plurality of storage batteries Controlling the discharging or charging of the plurality of storage batteries so that the possible amount of electricity reaches a common target amount of electricity.
  • the storage batteries even if the storage batteries are connected in series and charged, they can be charged efficiently.
  • the block diagram which shows an example of the storage battery management apparatus which concerns on Embodiment 3 of this invention.
  • the figure which shows an example of the circuit structure of the storage battery management apparatus which concerns on Embodiment 3 of this invention.
  • the flowchart which shows an example of operation
  • Embodiment 1 of the present invention is an example of a basic aspect of the present invention.
  • FIG. 1 is a block diagram showing an example of a storage battery management device according to the present embodiment.
  • the storage battery management device 100 is connected to each of the storage battery group 10, the power generation device 20, and the load device 30 via a power line interface.
  • electricity delivery is indicated by a dotted line
  • data delivery is indicated by a solid line.
  • the storage battery management apparatus 100 includes a power line interface between the power generation apparatus 20 and the load apparatus 30, but is not limited thereto.
  • the storage battery management device 100 may not include a power line interface with the power generation device 20.
  • the battery management device 100 may not include a power line interface with the load device 30.
  • Storage battery group 10 is composed of two or more storage batteries.
  • the storage battery group 10 is configured by a plurality of storage batteries in series, parallel, or a combination of series and parallel.
  • Examples of the storage battery include a lithium ion (polymer) battery, a lead storage battery, a nickel metal hydride battery, a nickel cadmium battery, and a sodium sulfur battery.
  • the power generation device 20 is a device that generates electricity for charging the storage battery group 10.
  • Examples of the power generator 20 include a motor generator whose power source is an electric motor, an alternator, a dynamo, a generator, a solar power generator, a thermoelectric generator, and a vibration generator.
  • the load device 30 is a device that operates using electricity discharged from the storage battery group 10.
  • the load device 30 is a device that stores electricity discharged from the storage battery group 10.
  • Examples of the load device 30 include, in addition to general electric appliances such as a motor and an LED (Light Emitting Diode) lighting fixture, an electric vehicle or a power-assisted bicycle that moves by stored electricity.
  • the storage battery management device 100 includes a storage battery circuit unit 110, a chargeable electricity amount management unit 120, and a chargeable electricity amount adjustment unit 130.
  • the storage battery management device 100 includes, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, and a working memory such as a RAM (Random Access Memory).
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage battery circuit unit 110 charges the electricity output from the power generation device 20 to the storage battery group 10 and discharges the electricity stored in the storage battery group 10 to the load device 30.
  • FIG. 2 shows an example of a circuit configuration of the storage battery management device 100. Here, the circuit configuration of the storage battery circuit unit 110 will be described with reference to FIG.
  • the storage battery management device 100 includes an electric circuit 50 and a control device 40 that controls the electric circuit 50.
  • Terminals T ⁇ b> 1 and T ⁇ b> 2 are terminals for connection to the power generation device 20 or the load device 30.
  • the electric circuit 50 is an example of the storage battery group 10 and the storage battery circuit unit 110.
  • the control device 40 includes a chargeable electricity amount management unit 120 and a chargeable electricity amount adjustment unit 130.
  • the electric circuit 50 includes storage batteries 11, 12, 13, current shunt resistors R11, R12, R13, and relay switches (hereinafter referred to as “relays”) SW11, SW12, SW13.
  • the storage batteries 11, 12, and 13 correspond to the storage battery group 10.
  • the current shunt resistors R11, R12, and R13 are resistors for measuring the current flowing through the storage batteries 11, 12, and 13. A potential difference due to a voltage drop of the current shunt resistor is measured, and the potential difference is divided by the resistance value of the current shunt resistor to obtain a current value flowing through the storage battery.
  • the relays SW11, SW12, and SW13 are relay switches that open and close the electric circuit, in other words, switches that switch (turn on / off) the connection state of the storage batteries 11, 12, and 13. For example, if the connection state of the relay SW11 is turned on, that is, if the terminal is connected, a current flows through the storage battery 11 connected in series. On the other hand, if the connection state of the relay SW11 is turned off, that is, if the terminal is not connected, current does not flow through the storage battery 11 connected in series.
  • Control device 40 calculates the integrated value of the current flowing through each of storage batteries 11, 12, and 13. Further, the control device 40 opens and closes (ON / OFF) the relays SW11, SW12, and SW13 in order to control the currents flowing through the storage batteries 11, 12, and 13, respectively.
  • the number of storage batteries is three, but is not limited to this.
  • the chargeable electricity amount management unit 120 calculates (measures) and manages (stores) the current chargeable electricity amount for each of the storage batteries constituting the storage battery group 10.
  • the chargeable electricity amount management unit 120 constitutes a part of the control device 40 of FIG.
  • the chargeable amount of electricity is the amount of electricity that indicates how much the storage battery can be charged from the current charged state to the fully charged state. Specifically, when the amount of electricity stored in the storage battery is defined as the remaining capacity, the chargeable amount of electricity is obtained by subtracting the remaining capacity from the rated capacity of the storage battery, and then the amount of deterioration of the storage battery (for example, aging or manufacturing It is a value obtained by subtracting the electric capacity of the deterioration in the process).
  • the chargeable electricity amount management unit 120 calculates a chargeable electricity amount fn (n is a storage battery number, unit: [Ah] (ampere hour)) using the following equation (a).
  • the first term of equation (a), fn_remaining indicates the current chargeable amount of electricity of the nth storage battery.
  • the second term of the formula (a) represents an integrated value of current (hereinafter referred to as “current integrated value”). That is, the chargeable electricity amount management unit 120 calculates the chargeable electricity amount fn by adding the current integrated value (the second term in the equation (a)) to the current chargeable electricity amount fn_remaining.
  • the chargeable electricity amount management unit 120 calculates fn at the next time by substituting the value of fn at the previous time for fn_remaining and sequentially adding the values.
  • Rn in the second term of the formula (a) is a resistance value (unit: [ ⁇ ] (ohm)) of a current shunt resistor connected in series to the nth storage battery.
  • the current shunt resistors in FIG. 2 correspond to R11, R12, and R13.
  • Vn (t) in the second term of equation (a) is a potential difference (unit: [V] (volt)) due to a voltage drop of the current shunt resistor connected in series to the nth storage battery at time t.
  • the chargeable electricity management unit 120 calculates the second term of the formula (a).
  • the chargeable electricity amount management unit 120 first measures the value of the potential difference due to the voltage drop of the current shunt resistor Rn connected in series to the nth storage battery from time t1 to time t2. Then, the chargeable electricity amount management unit 120 divides the voltage value Vn (t) obtained by A / D (Analog / Digital) conversion of the measured value by the current shunt resistance value Rn, and sets the current value to the time value.
  • the second term of the formula (a) is calculated by multiplying (elapsed time from t1 to t2, unit: [h] (hour)).
  • the chargeable electric quantity adjustment unit 130 controls the current flowing through the storage battery circuit unit 110.
  • the chargeable electricity amount adjustment unit 130 constitutes a part of the control device 40 of FIG.
  • the chargeable electricity amount adjustment unit 130 individually controls the discharge of each storage battery constituting the storage battery group 10. Thereby, the chargeable electricity amount adjusting unit 130 can equalize the chargeable electricity amount of each storage battery.
  • the chargeable electric quantity adjusting unit 130 switches on / off with respect to relays connected in series to the storage batteries constituting the storage battery group 10. That is, the chargeable electricity amount adjustment unit 130 causes a current to flow through each storage battery by turning on the relay (connecting terminals). On the other hand, the chargeable electric quantity adjusting unit 130 does not flow current to each storage battery by turning off the relay (disconnecting terminals). In this way, the chargeable electric quantity adjusting unit 130 controls the current flowing through the storage battery by switching the relay on / off. In the case of the example in FIG. 2, the chargeable electric quantity adjustment unit 130 controls the current flowing through each of the storage batteries 11, 12, and 13 by switching on / off of the relays SW ⁇ b> 11, SW ⁇ b> 12, and SW ⁇ b> 13.
  • the chargeable electric quantity adjusting unit 130 changes the current flowing through each storage battery by changing the value of a variable resistor connected in series to each storage battery constituting the storage battery group 10. That is, the chargeable electric quantity adjustment unit 130 reduces the current flowing through each storage battery by increasing the value of the variable resistance. On the other hand, the chargeable electric quantity adjusting unit 130 increases the current flowing through each storage battery by reducing the value of the variable resistance. Thereby, the chargeable electric quantity adjusting unit 130 controls the current flowing through each storage battery.
  • the current control method applied in the present embodiment is not limited to the above (1) and (2).
  • FET Field
  • FIG. 3 is a flowchart illustrating an example of an operation in which the storage battery management device 100 equalizes the chargeable amount of electricity of each storage battery while controlling the current flowing through the plurality of storage batteries.
  • the storage battery management device 100 equalizes the chargeable amount of electricity of each storage battery while controlling the current flowing through the plurality of storage batteries.
  • the chargeable electricity amount of all storage batteries is the same value. This is the case, for example, when all storage batteries are unused.
  • the chargeable electricity amount management unit 120 sequentially calculates and stores the current chargeable electricity amount of each storage battery.
  • step S ⁇ b> 101 the chargeable electricity amount adjustment unit 130 acquires the current chargeable electricity amount of each storage battery constituting the storage battery group 10 from the chargeable electricity amount management unit 120. Then, the chargeable electricity amount adjustment unit 130 sets a target electricity amount.
  • the target amount of electricity is a target value of chargeable amount of electricity in each storage battery.
  • the chargeable electricity amount adjustment unit 130 sets the target electricity amount to an arbitrary value between the minimum battery capacity and the maximum battery capacity of each storage battery constituting the storage battery group 10. By setting in this way, the chargeable electricity amount adjustment unit 130 can equalize the chargeable electricity amount of each storage battery.
  • the chargeable electricity amount adjustment unit 130 identifies an arbitrary storage battery among the storage batteries constituting the storage battery group 10 and sets the target electricity amount to the chargeable electricity amount of the identified storage battery. By setting in this way, the chargeable electricity amount adjustment unit 130 discharges some of the storage battery group 10 whose chargeable electricity amount is equal to or less than the target electricity amount. Thereby, the storage battery management apparatus 100 can equalize the chargeable electric quantity of some storage batteries in the storage battery group 10. Therefore, when storage batteries with an equal amount of chargeable electricity are connected in series and charged, the storage battery management device 100 can efficiently charge the electricity output by the power generation device to the storage batteries connected in series. it can.
  • the rechargeable electricity amount adjustment unit 130 identifies a storage battery having the largest chargeable electricity amount among the storage batteries constituting the storage battery group 10 and sets the target electricity amount to the rechargeable electricity amount of the identified storage battery. .
  • the chargeable electricity amount adjusting unit 130 discharges storage batteries other than the specified storage battery in the storage battery group 10.
  • the storage battery management apparatus 100 can equalize the chargeable amount of electricity of all the storage batteries of the storage battery group 10. Therefore, when charging all the storage batteries connected in series, the storage battery management apparatus 100 can charge each storage battery more efficiently with the electricity output from the power generation apparatus.
  • the chargeable electricity amount adjustment unit 130 specifies a storage battery having the largest chargeable electricity amount among the storage batteries constituting the storage battery group 10, and further sets the target electricity amount more than the chargeable electricity amount of the specified storage battery. Set to a larger value.
  • the chargeable electric quantity adjusting unit 130 discharges all the storage batteries.
  • the storage battery management apparatus 100 can equalize the chargeable amount of electricity of all the storage batteries of the storage battery group 10. Therefore, the chargeable electricity amount adjusting unit 130 can further increase the chargeable electricity amount of each storage battery.
  • the storage battery management device 100 outputs the electricity output by the power generation device. Can be charged more by each storage battery.
  • the method of setting the target electricity amount is not limited to the setting method described above.
  • the set target electricity amount may be a value between the minimum battery capacity and the maximum battery capacity of the storage batteries constituting the storage battery group 10.
  • step S102 the chargeable electricity amount adjustment unit 130 compares the current chargeable electricity amount of each storage battery acquired from the chargeable electricity amount management unit 120 with the set target electricity amount, so that the chargeable electricity amount is obtained. It is determined whether or not there is a storage battery that is less than or equal to the target electricity amount.
  • step S103 if there is no storage battery whose chargeable amount of electricity is equal to or less than the target amount of electricity (S102: NO), the flow ends. On the other hand, as a result of the determination, if there is a storage battery whose chargeable electricity amount is equal to or less than the target electricity amount (S102: YES), the flow proceeds to step S103.
  • step S103 the chargeable electricity amount adjustment unit 130 selects (identifies) a storage battery whose chargeable electricity amount is equal to or less than the target electricity amount, and controls the selected storage battery to be discharged. At this time, the chargeable electric quantity adjustment unit 130 turns on a relay connected in series to the selected storage battery, and turns off a relay connected in series to a storage battery other than the selected storage battery. Thereby, only the selected storage battery is discharged.
  • the chargeable electricity amount adjusting unit 130 when the rechargeable battery 11 is selected, the chargeable electricity amount adjusting unit 130 turns on the relay SW11 and turns off the relay SW12 and the relay SW13 when the storage battery 11 is selected.
  • the number of storage batteries selected by the chargeable electricity amount adjusting unit 130 may be one or plural.
  • step S104 the chargeable electricity amount adjustment unit 130 determines whether or not the chargeable electricity amount of the selected storage battery has reached the target electricity amount by discharging.
  • step S107 if the chargeable electricity amount of the selected storage battery has reached the target electricity amount (S104: YES), the flow proceeds to step S107.
  • the flow proceeds to step S105.
  • step S107 the chargeable electricity amount adjustment unit 130 turns off the relay connected in series to the selected storage battery so that no current flows from the selected storage battery. Thereafter, the flow returns to step S102.
  • step S105 the chargeable electricity amount management unit 120 calculates an integrated value (current integrated value) of the current discharged from the selected storage battery.
  • the above formula (a) is used to calculate the current integrated value.
  • the first term of expression (a), fn_remaining, is the current value of chargeable electricity managed by the chargeable electricity management unit 120.
  • the chargeable electricity amount adjustment unit 130 measures the value of the potential difference due to the voltage drop of the current shunt resistor connected in series to the storage battery selected in step S103, and the measured value is A / D conversion is performed to calculate a voltage value. Then, the chargeable electricity amount adjustment unit 130 divides the calculated voltage value by the resistance value of the current shunt resistor, and multiplies the value (current value) obtained as a result by time to calculate the integrated current value.
  • the chargeable electricity amount adjustment unit 130 measures the value of the potential difference due to the voltage drop of the current shunt resistor R11, and calculates the voltage value by performing A / D conversion on the measured value. To do. Then, the chargeable electricity amount adjusting unit 130 divides the calculated voltage value by the resistance value of the current shunt resistor R11, and multiplies the resulting value (current value) by time to obtain an integrated current value.
  • step S106 when there is a change in the calculated current integrated value, the chargeable electricity amount management unit 120 updates the current chargeable electricity amount of each storage battery managed by itself. Thereafter, the flow returns to step S104. That is, the chargeable electricity amount management unit 120 repeats steps S104, S105, and S106 until the chargeable electricity amounts of all the storage batteries reach the target electricity amount.
  • the storage battery management device 100 can equalize the chargeable electricity amount of each storage battery constituting the storage battery group 10 by controlling the discharge of the storage batteries constituting the storage battery group 10. . Thereby, when the connection form of a some storage battery is changed from parallel to series and it charges, all the storage batteries are charged to full charge. That is, the storage battery group 10 whose discharge is controlled in the storage battery management apparatus 100 is charged efficiently. As a result, the load device using the storage battery group 10 as a power source can operate for a long time.
  • the storage battery management device 100 may increase the chargeable amount of electricity step by step by sequentially resetting the target amount of electricity and repeating the process of equalizing the chargeable amount of electricity of each storage battery. By doing in this way, when the some storage battery connected in series is charged, the electricity which a power generation device outputs is charged more by each storage battery.
  • the chargeable electricity amount of all the storage batteries constituting the storage battery group 10 in the initial state is set to the same value, but the present invention is not limited to this.
  • the chargeable amount of electricity of the storage batteries constituting the storage battery group 10 may vary in the initial state. Possible causes of the variation include individual differences of storage batteries (such as aging) due to continuous use of the same storage battery, or differences in discharge characteristics due to heat of a nearby motor or the like.
  • the chargeable electricity amount management unit 120 may include an interface through which the current chargeable electricity amount of each storage battery constituting the storage battery group 10 can be input. This input interface may be one in which the current chargeable electricity amount of each storage battery is automatically input when the storage battery group 10 and the storage battery management device 100 are connected, or the current charge of each storage battery is possible. You may input an electric quantity manually.
  • the chargeable electricity amount management unit 120 can manage the chargeable electricity amount of each storage battery with a correct value.
  • the amount of electricity that can be charged between the storage batteries can be made uniform.
  • the storage battery management device of the present embodiment calculates the current chargeable amount of electricity for each storage battery constituting the storage battery group. Then, the storage battery management device compares each calculated chargeable electricity amount with a predetermined target electricity amount, and selects a storage battery having a target electricity amount or less. Then, the storage battery management device controls the storage batteries that are equal to or less than the target electricity amount so that the current chargeable electricity amount is discharged until the target electricity amount is reached. The storage battery management device repeats the discharge control until all the selected storage batteries reach the target amount of electricity. By carrying out like this, the chargeable electricity amount of the storage battery connected to the storage battery management apparatus of this Embodiment becomes equal. Therefore, even if the storage battery discharge-controlled by the storage battery management apparatus of this Embodiment is connected in series, it is charged efficiently.
  • Embodiment 2 of the present invention the number of storage batteries connected in series (hereinafter referred to as “series number”) is changed by detecting the connection status with the load device (connection availability, voltage value, etc.), and all storage batteries It is an example which discharges a storage battery and makes a load apparatus operate
  • the change in the number of storage batteries in series at this time specifically means switching the connection form of the storage batteries to parallel connection.
  • Embodiment 2 of this invention is an example which changes the number of series according to the connection condition with a power generator, and charges a storage battery.
  • the change in the number of storage batteries in series at this time specifically means switching the connection form of the storage batteries to series connection.
  • FIG. 4 is a block diagram showing an example of the storage battery management device according to the present embodiment. 4, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the storage battery management device 100 includes a storage battery circuit unit 111, a chargeable electricity amount management unit 120, a chargeable electricity amount adjustment unit 130, a signal detection unit 140, and a circuit control unit 150. Moreover, the storage battery management apparatus 100 has an interface for inputting an external signal 60.
  • the signal 60 is a signal indicating a physical quantity.
  • the physical quantity is, for example, a natural phenomenon (temperature, humidity, soil temperature / humidity, vibration, light, gas concentration, etc.), mechanical, electromagnetic, thermal, acoustic, chemical properties of an artifact, or the like. Indicates spatial or temporal information.
  • the electricity transfer is indicated by a dotted line and the data transfer is indicated by a solid line.
  • the storage battery circuit unit 111 has, for example, a storage medium such as a CPU and a ROM, and a working memory such as a RAM, as in the first embodiment.
  • the functions of the storage battery circuit unit 111, the chargeable electricity amount management unit 120, the chargeable electricity amount adjustment unit 130, the signal detection unit 140, and the circuit control unit 150 are realized by the CPU executing a control program.
  • the storage battery circuit unit 111 is an electric circuit that charges the storage battery group 10 with electricity from the power generation device 20 and discharges the electricity stored in the storage battery group 10 to the load device 30, similarly to the storage battery circuit unit 110 of FIG. 1. is there.
  • FIG. 5 shows an example of a circuit configuration of the storage battery management device 100.
  • the circuit configuration of the storage battery circuit unit 111 will be described with reference to FIG.
  • the storage battery management device 100 has an electric circuit 51 and a control device 41 that controls the electric circuit 51, and is connected to the power generation device 20 and the load device 30.
  • the electric circuit 51 is an example of the storage battery group 10 and the storage battery circuit unit 111.
  • the control device 41 includes a chargeable electricity amount management unit 120, a chargeable electricity amount adjustment unit 130, a signal detection unit 140, and a circuit control unit 150.
  • the electric circuit 51 includes relays SW14, SWa1, SWa2, SWa3, SWa4, SWb1, and SWb2 in addition to the components of the electric circuit 50 of FIG.
  • the relay SW 14 is a relay that switches whether the storage batteries 11, 12, and 13 are connected to the power generation device 20 or the load device 30.
  • the storage batteries 11, 12, 13 are not connected to either the power generation device 20 or the load device 30.
  • Relays SWa1, SWa2, SWa3, SWa4, SWb1, and SWb2 are relays for changing the series number of storage batteries 11, 12, and 13.
  • FIG. 6 is a diagram showing an example of a combination of ON and OFF of the relay in FIG.
  • ON / OFF of the row of SWa indicates ON / OFF of the relays SWa1, SWa2, SWa3, SWa4, and ON / OFF of SWb indicates ON / OFF of the relays SWb1, SWb2.
  • FIG. 7 is a figure which shows the image of the connection form of the storage battery based on the combination of ON and OFF of the relay of FIG.
  • FIG. 6 shows that the relays SWa1, SWa2, SWa3, SWa4, SWb1, and SWb2 are off.
  • the image of the connection form of the storage batteries 11, 12, and 13 corresponding to this is in a state where three storage batteries are disconnected from the circuit, as shown in FIG. 7B.
  • FIG. 6B shows a state when switching from FIG. 6A to FIG. 6C or from FIG. 6C to FIG. 6A.
  • the control device 41 calculates an integrated value of each current flowing through the storage batteries 11, 12, and 13. Further, the control device 41 opens and closes (ON / OFF) the relays SW11, SW12, SW13, SWa1, SWa2, SWa3, SWa4, SWb1, and SWb2 in order to control the current flowing through the storage batteries 11, 12, and 13 as shown in FIG. Are switched to (a), (b), and (c), and SW14 is switched to terminals Ta, Tb, and Tc.
  • the signal detection unit 140 is a sensor that detects the signal 60 and sends the detection result of the signal 60 to the circuit control unit 150.
  • the signal 60 detected by the signal detection unit 140 is, for example, a signal indicating a voltage value or a current value of the power generation device 20, an energization state with the load device 30, or a chargeability state of the load device 30.
  • an electric power supply signal or a load connection signal there exists an electric power supply signal or a load connection signal, for example.
  • the power supply signal is, for example, a signal indicating the presence / absence of power supply from the power generation device 20 or the voltage value or current value of the power generation device 20.
  • the load connection signal is, for example, a signal indicating whether or not energization of the load device 30 is possible (operation availability) or whether charging is possible.
  • the signal detection unit 140 is, for example, a voltage detection sensor, a current detection sensor, an energization detection sensor, or the like.
  • the signal detection part 140 may be comprised not only with one sensor but with two or more sensors.
  • the circuit control unit 150 changes the series number of storage batteries in the storage battery circuit unit 111 according to the detection result of the signal 60 from the signal detection unit 140. Specifically, in FIG. 5, the circuit control unit 150, which is one component of the control device 41, switches on / off relays SWa 1, SWa 2, SWa 3, SWa 4, SWb 1, SWb 2 that constitute the electric circuit 51. Change the number of storage batteries in series. In FIG. 4, the circuit control unit 150 switches the relay SW 14 constituting the electric circuit 51 in FIG. 5 according to the detection result of the signal 60 from the signal detection unit 140. When the relay SW 14 is connected to the terminal Ta, the storage battery or the like constituting the electric circuit 51 is connected to the power generation device 20.
  • the storage battery or the like constituting the electric circuit 51 is connected to the load device 30. Further, when the relay SW 14 is connected to the terminal Tc, the storage battery and the like constituting the electric circuit 51 are disconnected from the power generation device 20 and the load device 30.
  • the voltage of the power generation device 20 is 96 V
  • the voltage required by the load device 30 is 32 V
  • the voltages of the storage batteries 11, 12, 13 are 32 V.
  • the storage battery management device 100 charges the storage battery group 10 with electricity output from the power generation device 20.
  • the specific processing flow is as follows.
  • the signal detection unit 140 that has detected the power supply signal sends a power supply signal to the circuit control unit 150.
  • the circuit control unit 150 connects the relay SW 14 of FIG. 5 to the terminal Tc so that the storage batteries 11, 12, and 13 are not connected to the power generation device 20.
  • the circuit control unit 150 changes the series number of the storage batteries 11, 12, and 13 in FIG. 5 according to the voltage of the power generation device 20. For example, when the voltage of the power generation device 20 is 96V, when trying to make the voltage of the power generation device 20 equal to the voltage of the entire storage battery, three storage batteries 11, 12, 13 having a voltage of 32V are connected in series (three series). It is good to be connected. In order to change to such a serial number, as shown in the row (a) of FIG.
  • the chargeable electricity amount adjustment unit 130 turns off the relays SWa1, SWa2, SWa3, and SWa4 and turns on the relays SWb1 and SWb2. turn on.
  • the circuit control part 150 connects the relay SW14 of FIG. 5 to the terminal Ta, and connects the electric circuit 51 and the electric power generating apparatus 20.
  • the storage battery management device 100 causes a current to flow from the power generation device 20 to the storage batteries 11, 12, and 13, and the storage batteries 11, 12, and 13 are charged.
  • the voltage value of the power generation device 20 may be determined in advance, or the circuit control unit 150 may receive the power supply signal from the signal detection unit 140 as described above.
  • the storage battery management device 100 discharges the electricity stored in the storage battery group 10 in the load device 30.
  • the specific processing flow is as follows.
  • the signal detection unit 140 that has detected the load connection signal sends a load connection signal to the circuit control unit 150.
  • the circuit control unit 150 connects the relay SW 14 of FIG. 5 to the terminal Tc so that the storage batteries 11, 12, and 13 are not connected to the load device 30.
  • the circuit control unit 150 changes the series number of the storage batteries 11, 12, and 13 in FIG. 5 according to the voltage required by the load device 30. For example, when the voltage required by the load device 30 is 32V, when the voltage required by the load device 30 is equal to the voltage of the entire storage battery, the storage batteries 11, 12, 13 having a voltage of 32V are connected in parallel ( 3 parallels, in other words, 1 serial).
  • the chargeable electric quantity adjustment unit 130 turns on the relays SWa1, SWa2, SWa3, and SWa4 and turns on the relays SWb1 and SWb2 as shown in the row (c) of FIG. Turn off.
  • the circuit control part 150 connects the relay SW14 of FIG. 5 to the terminal Tb, and connects the electric circuit 51 and the load apparatus 30.
  • FIG. The storage battery management device 100 is discharged from the storage batteries 11, 12, and 13 to the load device 30 by the switching process by the relay. This discharge process is the same as the process flow of FIG. 3 in the first embodiment.
  • the voltage value required by the load device 30 may be determined in advance, or the circuit control unit 150 may receive the load connection signal from the signal detection unit 140 as described above.
  • the electricity output from the power generation device can be efficiently charged into the storage battery.
  • the storage battery management device is capable of supplying power or a connected load even when the voltage required by the load device is lower than the voltage of the power generation device.
  • the device is detected, and the series number of storage batteries is changed according to the detected voltage of the device.
  • the storage battery management device discharges the storage battery from the storage battery by setting the series number of the storage batteries to be equal to or less than the series number at the time of charging according to the voltage required by the load device. At this time, the storage battery management device discharges the chargeable electricity amount of the storage battery evenly.
  • the storage battery management device changes the number of series of storage batteries to be equal to or greater than the number of series at the time of discharge according to the voltage of the power generation device, and charges the storage battery.
  • the storage battery management apparatus of this Embodiment can charge a storage battery with the voltage of an electric power generating apparatus, and can discharge from a storage battery in the form stepped down to the voltage (voltage lower than the voltage of an electric power generation apparatus) which a load apparatus requires.
  • the storage battery when the storage battery is discharged to the load device, it is discharged while equalizing the chargeable amount of electricity of the storage battery, so the electricity output from the power generation device is charged to the storage battery. At this time, the electricity output from the power generation device can be efficiently charged into the storage battery.
  • the load device can operate for a long time.
  • the voltage conversion mechanism in the storage battery management device will be described more specifically.
  • the storage battery management device of the present embodiment discharges a load device having a voltage of 32V
  • the series number of storage batteries having a voltage of 32V is set to one.
  • the storage battery management apparatus of this Embodiment makes the serial number of the storage battery with a voltage of 32V three when charging a storage battery from the power generator with a voltage of 96V.
  • the storage battery management device of the present embodiment performs step-down conversion from a high voltage to a low voltage for a load device that is a supply destination from a power generation device that is an electricity supply source. Therefore, there is no heat loss of the coil or the like, and the voltage conversion efficiency can be increased.
  • the signal 60 detected by the signal detection unit 140 indicates the voltage value or current value of the power generation device 20, whether the load device 30 is energized (operating state), or whether the load device 30 can be charged.
  • the signal 60 may be a signal for detecting water leakage with respect to the storage battery management device 100 or the storage battery group 10.
  • the signal detection unit 140 detects water leakage
  • the signal detection unit 140 sends a water leakage detection signal to the circuit control unit 150.
  • the circuit control part 150 which acquired the water leak detection signal changes the series number of the storage batteries 11, 12, and 13 of FIG. For example, the circuit control unit 150 reduces the number of storage batteries in series.
  • the storage battery management device of the present embodiment turns on the relays SWa1, SWa2, SWa3, and SWa4 and turns off the relays SWb1 and SWb2 as in the case of FIG. 6C.
  • the storage battery management device of the present embodiment can step down the voltage of the storage battery from 96V to 32V instantaneously, so that the voltage of the entire storage battery can be quickly lowered to a safe voltage for the human body at the time of electric leakage. It is possible to secure user safety.
  • the storage battery management device of the present embodiment includes a signal detection unit that detects a physical event change, and a change in the series number of storage battery groups by the detection. And a circuit control unit that switches between an electricity supply source and an electricity supply destination, and the series number of storage battery groups during charging can be made larger than the series number during discharging.
  • the storage battery management device of the present embodiment can perform step-down conversion from a high-voltage power generation device to a load device that requires a low voltage. Therefore, when operating a load device that requires a low voltage relative to the voltage of the power generation device, by using the storage battery management device of this embodiment, there is no heat loss of coils and the like, and high voltage conversion efficiency is realized. it can.
  • the storage battery management device can efficiently charge the storage battery with electricity output from the power generation device, the load device connected to the storage battery management device can operate for a long time.
  • the third embodiment of the present invention changes the number of storage batteries in series according to the voltage of the power generation device, and controls the charging of the storage batteries while switching the combination of the storage batteries connected in series. This is an example in which the amount is made uniform.
  • FIG. 8 is a block diagram showing an example of the storage battery management device according to the present embodiment. 8, the same components as those in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted.
  • the storage battery management device 100 includes a storage battery circuit unit 112, a chargeable electricity amount management unit 120, a chargeable electricity amount adjustment unit 131, and a signal detection unit 140. Moreover, the storage battery management apparatus 100 has an interface for inputting an external signal 60.
  • the signal 60 is a signal indicating a physical quantity. In FIG. 8, as in FIG. 1, the electricity transfer is indicated by a dotted line and the data transfer is indicated by a solid line.
  • the storage battery management apparatus 100 in FIG. 8 has, for example, a storage medium such as a CPU and a ROM, and a working memory such as a RAM, as in the first embodiment.
  • a storage medium such as a CPU and a ROM
  • a working memory such as a RAM
  • the functions of the storage battery circuit unit 112, the chargeable electricity amount management unit 120, the chargeable electricity amount adjustment unit 131, and the signal detection unit 140 are realized by the CPU executing the control program.
  • the storage battery circuit unit 112 is an electric circuit that charges electricity from the power generation device 20 to the storage battery group 10 and discharges the electricity stored in the storage battery group 10 to the load device 30, similarly to the storage battery circuit unit 110 of FIG. 1. is there.
  • FIG. 9 shows an example of a circuit configuration of the storage battery management device 100.
  • the circuit configuration of the storage battery circuit unit 112 will be described with reference to FIG. 9, the same components as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the storage battery management device 100 includes an electric circuit 52 and a control device 42 that controls the electric circuit 52, and is connected to the power generation device 20 and the load device 30.
  • the electric circuit 52 is an example of the storage battery group 10 and the storage battery circuit unit 112.
  • the control device 42 includes a chargeable electricity amount management unit 120, a chargeable electricity amount adjustment unit 131, and a signal detection unit 140.
  • the electric circuit 52 has storage batteries 11, 12, and 13, current shunt resistors R11, R12, and R13, and relays SW21, SW22, and SW23.
  • the relays SW21, SW22, and SW23 are relay switches that switch electric paths, in other words, switches that switch the number of series storage batteries 11, 12, and 13 and the combination of storage batteries connected in series.
  • the relay SW21 is connected to the terminal a side, electricity does not flow through the storage battery 11 and the current shunt resistor R11.
  • the relay SW21 is connected to the terminal b side, electricity flows through the storage battery 11 and the current shunt resistor R11.
  • the relays SW22 and SW23 switch the electric circuit by the same mechanism as the relay SW21.
  • the control device 42 calculates an integrated value of each current flowing through the storage batteries 11, 12, and 13. In addition, the control device 42 switches the relays SW21, SW22, and SW23 according to the voltage of the external device connected to the terminals T1 and T2. In the following description, it is assumed that the external device connected to the terminals T1 and T2 is the power generation device 20.
  • the control device 42 When the two storage batteries are connected in series (two series), the control device 42 performs one of the following controls. For example, the control device 42 connects the relay SW 21 and the relay SW 22 to the terminal b side and the relay SW 23 to the terminal a side so that the storage batteries 11 and 12 are in two series. Alternatively, the control device 42 connects the relay SW 22 and the relay SW 23 to the terminal b side and the relay SW 21 to the terminal a side so that the storage batteries 12 and 13 are in two series. Alternatively, the control device 42 connects the relay SW 21 and the relay SW 23 to the terminal b side and the relay SW 22 to the terminal a side so that the storage batteries 11 and 13 are in two series.
  • the number of storage batteries is three, but is not limited thereto.
  • the method by which the chargeable electricity amount management unit 120 calculates the chargeable electricity amount is the same as in the first embodiment, and a description thereof will be omitted.
  • the chargeable electricity amount management unit 120 constitutes a part of the control device 42 of FIG.
  • the chargeable electricity amount adjustment unit 131 changes the series number of storage batteries in the storage battery group 10 in accordance with the voltage of the power generation device 20 connected to the terminals T1 and T2, and switches the combination of storage batteries to be connected in series. The current flowing through 112 is controlled.
  • the chargeable electric quantity adjusting unit 131 constitutes a part of the control device 42 of FIG.
  • the chargeable electricity amount adjustment unit 131 individually controls charging of each storage battery constituting the storage battery group 10. Thereby, the chargeable electricity amount adjusting unit 131 equalizes the chargeable electricity amount of each storage battery.
  • the method for controlling the amount of electricity of the chargeable electricity amount adjusting unit 131 is the same as that of the chargeable electricity amount adjusting unit 130 of FIG. 1 in the first embodiment, and (1) a method using a relay, and (2) There is a method of using a variable resistor, and description of the method is omitted.
  • the signal detection unit 140 is a sensor that detects the signal 60, and sends the detection result of the signal 60 to the chargeable electricity amount adjustment unit 131.
  • the signal 60 detected by the signal detection unit 140 is, for example, a signal indicating a voltage value of the power generation device 20, a voltage value required by the load device 30, and the like. Then, the signal detection unit 140 sends the signal to the chargeable electricity amount adjustment unit 131.
  • the signal detection unit 140 is, for example, a voltage detection sensor, an energization detection sensor, or the like. Note that the signal detection unit 140 may be configured with not only one sensor but also two or more sensors.
  • FIG. 10 is a flowchart illustrating an example of an operation in which the storage battery management device 100 equalizes the chargeable amount of electricity of each storage battery while controlling the current flowing through the plurality of storage batteries. 10, the same processes as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
  • the circuit configuration of FIG. 9 is used, and the current control method will be described as an example in which the method using the relay (1) described in the first embodiment is used.
  • the chargeable electricity amount of all storage batteries is the same value. This is the case, for example, when all storage batteries are unused.
  • the chargeable electricity amount management unit 120 sequentially calculates and stores the current chargeable electricity amount of each storage battery.
  • Step S101 is the same process as in FIG. In the following description, an example will be described in which the target electricity amount is set to the chargeable electricity amount of the storage battery having the smallest chargeable electricity amount among the storage batteries constituting the storage battery group 10.
  • step S ⁇ b> 102 a the chargeable electricity amount adjustment unit 131 compares the current chargeable electricity amount acquired from the chargeable electricity amount management unit 120 with the set target electricity amount, thereby obtaining the chargeable electricity amount. It is determined whether there is a storage battery that is greater than or equal to the target amount of electricity.
  • step S103a the chargeable electric quantity adjustment unit 131 calculates the series number of storage batteries according to the voltage of the power generation device 20 connected to the terminals T1 and T2 in FIG. At this time, the chargeable electricity amount adjustment unit 131 acquires the voltage value of the power generation device 20 from the signal detection unit 140.
  • step S103b the chargeable electricity amount adjustment unit 131 selects (specifies) a storage battery whose chargeable electricity amount is equal to or greater than the target electricity amount, and charges the selected storage battery.
  • the chargeable electric quantity adjusting unit 131 switches the relay so that only the selected storage battery is connected in series, and switches the relay so that the storage batteries other than the selected storage battery are not connected in series. Thereby, the chargeable electric quantity adjustment unit 131 charges only the selected storage battery.
  • the chargeable electric quantity adjustment unit 131 connects the relay SW21 and the relay SW22 to the terminal b side, and connects the relay SW23 to the terminal a side.
  • the number of storage batteries selected by the chargeable electricity amount adjustment unit 131 may be one or more.
  • step S103b a method in which the chargeable electricity amount adjustment unit 131 selects (specifies) a storage battery will be described.
  • the chargeable electricity amount adjustment unit 131 compares the chargeable electricity amounts of the storage batteries and arranges them in order of decreasing chargeable electricity amount (descending order). In the arranged order, the storage batteries corresponding to the number of series calculated in step S103a are selected in descending order of the chargeable electricity amount.
  • Steps S104, S105, S106, and S107 are the same as those in FIG.
  • the storage battery management device 100 charges a part of the storage batteries constituting the storage battery group 10 by connecting some storage batteries in series, the rechargeable electricity of each storage battery constituting the storage battery group 10 is charged. The amount can be equalized. Thereby, all the storage batteries can be made into a full charge state. That is, the storage battery management device 100 can fully charge all storage batteries even when the voltage of the power generation device 20 changes. As a result, the load device using the storage battery as a power source can operate for a long time.
  • the chargeable electricity amount adjustment unit 131 acquires the voltage value of the power generation device 20 from the signal detection unit 140, but this is not a limitation.
  • the chargeable electricity amount adjustment unit 131 may acquire (store) the voltage of the power generation device 20 connected to the terminals T1 and T2 in FIG. 9 in advance.
  • the chargeable electricity amount adjustment unit 131 instead of acquiring the voltage value of the power generation device 20 from the signal detection unit 40, stores the voltage value of the power generation device 20 in the storage medium of the storage battery management device 100. Therefore, the chargeable electric quantity adjusting unit 131 may acquire the voltage value.
  • each unit of the storage battery management device 100 is configured by hardware has been described as an example.
  • each unit of the storage battery management device 100 is realized by software in cooperation with the hardware. It is also possible to do.
  • the rated battery capacities of the storage batteries constituting the storage battery group 10 may be the same or different. That is, Embodiments 1, 2, and 3 do not depend on the rated battery capacity of each storage battery used.
  • the storage battery management apparatus 100 changed the series number of the storage battery according to the voltage of the electric power generating apparatus 20 connected to terminal T1, T2 of FIG. 9, but it is not restricted to this.
  • the storage battery management device 100 connects the load device 30 to the terminals T1 and T2 in FIG. 9, changes the series number of storage batteries constituting the storage battery group 10 according to the voltage required by the load device 30, and discharges You may make it equalize the chargeable electricity amount of all the storage batteries, changing the combination of the storage batteries to perform.
  • steps S101, S104, S105, S106, and S107 which are the same processes as those in Embodiment 3, are not described.
  • step S102a determines whether there is a storage battery having a target electricity amount or less. Further, in step S103a of FIG. 10, the chargeable electric quantity adjusting unit 131 is not the voltage of the power generation device 20 connected to the terminals T1 and T2 of FIG. 9, but the load device connected to the terminals T1 and T2 of FIG. In accordance with the voltage required by 30, the series number of storage batteries constituting the storage battery group 10 is calculated. Moreover, in step S103b of FIG. 10, the chargeable electric quantity adjusting unit 131 discharges the selected storage battery instead of charging.
  • the storage battery management device 100 can equalize the chargeable amount of electricity of each storage battery constituting the storage battery group 10 by controlling the discharging or charging of the storage battery group 10. Thereby, when changing and charging the series number of the storage batteries which comprise the storage battery group 10, all the storage batteries can be made into the same full charge state with respect to the storage battery group connected in series. Therefore, the storage battery management device 100 can efficiently charge each storage battery with the electricity output from the power generation device 20. As a result, the load device 30 using the storage battery as a power source can operate for a long time.
  • the storage battery management device is a storage battery management device that performs discharge or charging of the storage battery by switching the use number, the series number, or the parallel number of the storage batteries as a connection form of the plurality of storage batteries, For each of the storage batteries, a chargeable electricity management unit that calculates and manages a chargeable electricity amount that is an amount of electricity that can be charged from the current charge state to a fully charged state, and a part or all of the plurality of storage batteries A chargeable electricity amount adjusting unit that controls discharging or charging of the plurality of storage batteries so that the chargeable electricity amount reaches a common target electricity amount.
  • the chargeable electricity amount adjustment unit starts discharging the storage battery that is equal to or less than the target electricity amount, and the chargeable electricity amount of the storage battery reaches the target electricity amount, End the storage battery discharge.
  • the chargeable electricity amount adjustment unit starts discharging the storage battery that is equal to or less than the target electricity amount
  • the chargeable electricity amount of the storage battery reaches the target electricity amount.
  • an integrated value of the current flowing through the storage battery is calculated, and the chargeable amount of electricity is updated based on the integrated current value.
  • the chargeable electricity amount adjustment unit specifies an arbitrary storage battery among the plurality of storage batteries, and sets the chargeable electricity amount of the specified storage battery as the target electricity amount. .
  • the chargeable electricity amount adjustment unit identifies a storage battery having the largest chargeable electricity amount among the plurality of storage batteries, and determines the chargeable electricity amount of the identified storage battery as the target. Set the amount of electricity.
  • the chargeable electricity amount adjustment unit identifies a storage battery having the largest chargeable amount of electricity among the plurality of storage batteries, and further includes a chargeable electricity amount of the identified storage battery. A large value is set as the target amount of electricity.
  • the storage battery management device of the present disclosure includes a signal detection unit that detects a physical event change with respect to the storage battery management device, and a circuit control unit that changes the serial number of the plurality of storage batteries by detecting the physical event change. And when the signal detector detects the start of charging the plurality of storage batteries as the physical event change, the series number of the plurality of storage batteries is determined from the time of discharging. Also make it bigger.
  • the chargeable electricity amount adjustment unit starts charging the storage battery that is equal to or greater than the target electricity amount, and when the chargeable electricity amount of the storage battery reaches the target electricity amount, Finish charging the storage battery.
  • the chargeable electricity amount adjustment unit starts charging the storage battery that is equal to or greater than the target electricity amount
  • the chargeable electricity amount of the storage battery reaches the target electricity amount.
  • an integrated value of the current flowing through the storage battery is calculated, and the chargeable amount of electricity is updated based on the integrated current value.
  • the chargeable electricity amount adjustment unit identifies a storage battery having the smallest chargeable electricity amount among the plurality of storage batteries, and determines the chargeable electricity amount of the identified storage battery as the target. Set the amount of electricity.
  • the chargeable electricity amount adjustment unit identifies a storage battery having the smallest chargeable electricity amount among the plurality of storage batteries, and further includes a chargeable electricity amount of the identified storage battery. A small value is set as the target electric quantity.
  • the storage battery management device of the present disclosure further includes a signal detection unit that detects a physical event change that occurs in the storage battery management device, and the chargeable electricity amount adjustment unit is configured such that the signal detection unit is the physical detection unit.
  • the plurality of storage batteries is changed by changing the series number of the plurality of storage batteries according to the changed voltage and switching a combination of storage batteries connected in series. The discharge or charging of the plurality of storage batteries is controlled such that a part or all of the chargeable electricity amount reaches a common target electricity amount.
  • the storage battery management method of the present disclosure is a storage battery management method for switching or using the storage batteries as a connection form of the plurality of storage batteries, and discharging or charging the storage batteries by switching the number of the storage batteries used or the number of series or parallel. For each storage battery, calculating and managing a chargeable electricity amount that is an amount of electricity that can be charged from the current charge state to a fully charged state, and a part or all of the chargeable electricity amount of the plurality of storage batteries Controlling the discharging or charging of the plurality of storage batteries so as to reach a common target amount of electricity.
  • the storage battery management apparatus and storage battery management method according to the present invention are useful for an apparatus and a method for charging and discharging using a plurality of storage batteries.
  • INDUSTRIAL APPLICABILITY The present invention is useful for a system that stores electric power generated by a high-voltage power generation element such as solar power generation or wind power generation in a storage battery and charges the electric power to a battery such as an electric vehicle, an electric scooter, or an electric assist bicycle. is there.

Abstract

 直列に接続された蓄電池群に対し、効率良く充電できる蓄電池管理装置。蓄電池管理装置(100)は、複数の蓄電池の接続形態として蓄電池の使用数または直列数または並列数を切り替えて、蓄電池の放電または充電を行う。充電可能電気量管理部(120)は、複数の蓄電池のそれぞれについて、現在の充電状態から満充電状態に至るまでに充電できる電気量である充電可能電気量を算出し管理する。充電可能電気量調整部(130)は、複数の蓄電池の一部または全部の充電可能電気量が共通の目標電気量に達するように、複数の蓄電池の放電または充電を制御する。

Description

蓄電池管理装置および蓄電池管理方法
 本発明は、蓄電池に蓄えられる電気量を調整する蓄電池管理装置および蓄電池管理方法に関する。
 定格電圧が1.2Vである蓄電池が5個直列につながれた場合、蓄電池全体(以下、「蓄電池群」という)の電圧は6Vとなり、この状態の蓄電池群は、放電により6Vの機器を動作させることができる。一方、定格電圧が1.2Vである蓄電池が5個並列につながれた場合、この蓄電池群の電圧は1.2Vである。このとき、充電に必要な印加電圧を蓄電池の定格電圧の1.2Vに加えた電圧にて、この蓄電池群を構成するそれぞれの蓄電池は同時に充電される。
 特許文献1は、スイッチを制御することにより、充電時の電圧と異なる電圧で放電する技術(以下、「従来技術」という)を開示している。従来技術は、スイッチ制御により複数のキャパシタ(または複数の蓄電池)の接続形態を直列や並列に切り替えることにより、発電装置の電圧または負荷装置が必要とする電圧に応じて、全体の電圧を自在に変化させる。
 例えば、キャパシタの電圧と発電装置の電圧が等しい場合、複数のキャパシタは、接続形態が並列に切り替えられて充電される。一方、キャパシタの電圧と比較して発電装置の電圧が高い場合、複数のキャパシタは、接続形態が直列に切り替えられて充電される。複数のキャパシタが放電されるときも同様である。すなわち、負荷装置が必要とする電圧に応じて、複数のキャパシタの接続形態は、直列、並列、またはそれらの組合せに切り替えられる。
 また、従来技術では、例えば、キャパシタの電圧と比較して、発電装置の電圧が高く、かつ、負荷装置が必要とする電圧が低い場合、発電装置が供給する高い電圧で、直列につながれた蓄電池が充電される。さらに、従来技術は、放電のときに蓄電池を並列につなぎ替え、負荷装置が必要とする低い電圧に変えることが可能となる。
 従来技術に記載のあるキャパシタは、電気量が電圧に比例するという電気特性を有する。このため、従来技術に、直列に接続された複数のキャパシタが適用された場合、キャパシタ毎の電圧が測定されることで、各キャパシタの充電可能電気量が正確に算出される。充電可能電気量とは、現在の充電状態から満充電状態に至るまでどれだけ充電できるかを示す電気量である。
特開2004-23993公報
 しかしながら、従来技術は、直列に接続された複数の蓄電池が適用された場合、蓄電池毎の電圧を測定するだけでは、各蓄電池の充電可能電気量を正確に算出することができない。その理由としては、例えば、(1)蓄電池の経年劣化による充電可能な電池容量の減少、(2)電気量と電圧の関係が非線形な電気特性曲線を有することに起因する、電圧の測定誤差に伴った電気量の算出誤差、(3)蓄電池の材質または製造過程の違いによる個体差、(4)蓄電池の使用環境(例えば温度等)による電気特性の変化、などが挙げられる。
 そして、従来技術は、蓄電池毎の充電可能電気量を正確に算出できないため、各蓄電池は充分に充電されない。例えば、直列に接続された蓄電池が充電される場合、従来技術は、充電可能電気量が最も少ない蓄電池が過充電状態になった時点で、他の蓄電池が充電できる状態であったとしても、他の蓄電池はそれ以上充電されなくなってしまう。その結果、従来技術は、発電装置から各蓄電池に供給されるはずの電気を無駄にしてしまい、蓄電池群の充電可能な容量に対して充分に充電ができない、という課題がある。
 本発明の目的は、直列に接続された蓄電池群に対し、蓄電池群の充電可能な電池容量に対して充分に充電できる、言い換えると、効率良く充電できる蓄電池管理装置および蓄電池管理方法を提供することである。
 本発明の一態様に係る蓄電池管理装置は、複数の蓄電池の接続形態として前記蓄電池の使用数または直列数または並列数を切り替えて、前記蓄電池の放電または充電を行う蓄電池管理装置であって、前記複数の蓄電池のそれぞれについて、現在の充電状態から満充電状態に至るまでに充電できる電気量である充電可能電気量を算出し管理する充電可能電気量管理部と、前記複数の蓄電池の一部または全部の前記充電可能電気量が共通の目標電気量に達するように、前記複数の蓄電池の放電または充電を制御する充電可能電気量調整部と、を有する。
 本発明の一態様に係る蓄電池管理方法は、複数の蓄電池の接続形態として、前記蓄電池の使用数または直列数または並列数を切り替えて、前記蓄電池の放電または充電を行う蓄電池管理方法であって、前記複数の蓄電池のそれぞれについて、現在の充電状態から満充電状態に至るまでに充電できる電気量である充電可能電気量を算出し管理するステップと、前記複数の蓄電池の一部または全部の前記充電可能電気量が共通の目標電気量に達するように、前記複数の蓄電池の放電または充電を制御するステップと、を有する。
 本発明によれば、蓄電池を直列につないで充電しても、効率良く充電できる。
本発明の実施の形態1に係る蓄電池管理装置の一例を示すブロック図 本発明の実施の形態1に係る蓄電池管理装置の回路構成の一例を示す図 本発明の実施の形態1に係る蓄電池管理装置の動作の一例を示すフロー図 本発明の実施の形態2に係る蓄電池管理装置の一例を示すブロック図 本発明の実施の形態2に係る蓄電池管理装置の回路構成の一例を示す図 本発明の実施の形態2に係る蓄電池管理装置の回路構成上のリレースイッチの切替パターンの一例を示す図 図6に対応する蓄電池の接続形態のイメージを示す図 本発明の実施の形態3に係る蓄電池管理装置の一例を示すブロック図 本発明の実施の形態3に係る蓄電池管理装置の回路構成の一例を示す図 本発明の実施の形態3に係る蓄電池管理装置の動作の一例を示すフロー図
 (実施の形態1)
 本発明の実施の形態1は、本発明の基本的態様の一例である。
 まず、本実施の形態に係る蓄電池管理装置の構成例について説明する。図1は、本実施の形態に係る蓄電池管理装置の一例を示すブロック図である。
 図1において、蓄電池管理装置100は、蓄電池群10、発電装置20、および負荷装置30のそれぞれと、電力線のインタフェースを介して接続する。図1において、電気の受け渡しは点線、データの受け渡しを実線で示す。
 なお、図1において、蓄電池管理装置100は、発電装置20と負荷装置30のそれぞれの間に、電力線のインタフェースを備えるとしたが、これに限定されない。例えば、蓄電池管理装置100は、発電装置20との間に、電力線のインタフェースを備えなくてもよい。あるいは、電池管理装置100は、負荷装置30との間に、電力線のインタフェースを備えなくてもよい。
 蓄電池群10は、2つ以上の蓄電池で構成される。また、蓄電池群10は、複数の蓄電池の、直列、並列、または直列と並列の組合せにより構成される。蓄電池としては、例えば、リチウムイオン(ポリマー)電池、鉛蓄電池、ニッケル水素電池、ニカド電池、ナトリウム硫黄電池などが挙げられる。
 発電装置20は、蓄電池群10を充電するための電気を生み出す装置である。発電装置20としては、例えば、動力源が電動機である電動発電機、オルタネータ、ダイナモ、ジェネレータ、太陽光発電機、熱電発電機、振動発電機などが挙げられる。
 負荷装置30は、蓄電池群10から放電された電気を利用して動作する装置である。または、負荷装置30は、蓄電池群10から放電された電気を蓄える装置である。負荷装置30としては、例えば、モータ、LED(Light Emitting Diode)照明器具など、一般的な電気器具の他に、蓄えた電気によって移動する電気自動車または電動アシスト自転車などが挙げられる。
 図1において、蓄電池管理装置100は、蓄電池回路部110、充電可能電気量管理部120、充電可能電気量調整部130を有する。
 蓄電池管理装置100は、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)などの記憶媒体、およびRAM(Random Access Memory)などの作業用メモリを有する。この場合、蓄電池回路部110、充電可能電気量管理部120、および充電可能電気量調整部130の各機能は、CPUが制御プログラムを実行することにより実現される。
 蓄電池回路部110は、発電装置20が出力する電気を蓄電池群10へ充電し、蓄電池群10が蓄えた電気を負荷装置30へ放電する。図2は、蓄電池管理装置100の回路構成の一例を示す。ここで、図2を用いて蓄電池回路部110の回路構成について説明する。
 図2において、蓄電池管理装置100は、電気回路50と、電気回路50を制御する制御装置40とを有する。端子T1、T2は、発電装置20または負荷装置30に接続するための端子である。電気回路50は、蓄電池群10および蓄電池回路部110の一例である。また、制御装置40は、充電可能電気量管理部120および充電可能電気量調整部130を有する。
 電気回路50は、蓄電池11、12、13と、電流シャント抵抗R11、R12、R13と、リレースイッチ(以下「リレー」という)SW11、SW12、SW13と、を有する。蓄電池11、12、13は、蓄電池群10に相当する。電流シャント抵抗R11、R12、R13は、蓄電池11、12、13に流れる電流を測定するための抵抗器である。電流シャント抵抗の電圧降下による電位差を測定し、その電位差を電流シャント抵抗の抵抗値で除することにより蓄電池に流れる電流値を求める。リレーSW11、SW12、SW13は、電路の開閉を行うリレースイッチ、換言すれば、蓄電池11、12、13の接続状態を切り替える(オン/オフする)ためのスイッチである。例えば、リレーSW11の接続状態をオン、つまり、端子が接続されれば、直列につながれた蓄電池11に電流が流れる。一方、リレーSW11の接続状態をオフ、つまり、端子が接続されなければ、直列につながれた蓄電池11に電流が流れない。
 制御装置40は、蓄電池11、12、13それぞれに流れる電流の積算値の算出を行う。また、制御装置40は、蓄電池11、12、13それぞれに流れる電流を制御するために、リレーSW11、SW12、SW13の開閉(オン/オフ)を行う。
 なお、図2では、蓄電池の数は3つとしたが、これに限定されない。
 以上で、蓄電池回路部110の回路構成についての説明を終える。
 充電可能電気量管理部120は、蓄電池群10を構成するそれぞれの蓄電池について、現在の充電可能電気量を算出(測定)し、管理(記憶)する。なお、充電可能電気量管理部120は、図2の制御装置40の一部を構成する。
 ここで、充電可能電気量の算出について説明する。上述した通り、充電可能電気量とは、蓄電池が現在の充電状態から満充電状態に至るまでにどれだけ充電できるかを示す電気量である。具体的には、蓄電池が蓄えている電気量を残容量と定義すると、充電可能電気量は、蓄電池の定格の電気容量から残容量を減算し、さらに蓄電池の劣化分(例えば、経年劣化または製造過程での劣化など)の電気容量を減算した値となる。
 充電可能電気量管理部120は、下記の式(a)を用いて充電可能電気量fn(nは蓄電池の番号、単位:[Ah](アンペア・アワー))を算出する。式(a)の第一項、fn_remainingは、n番目の蓄電池の現在の充電可能電気量を示す。式(a)の第二項は、電流の積算値(以下、「電流積算値」という)を示す。つまり、充電可能電気量管理部120は、現在の充電可能電気量fn_remainingに、電流積算値(式(a)第二項)を加算することにより、充電可能電気量fnを算出する。なお、充電可能電気量管理部120は、fn_remainingに対して前の時点のfnの値を代入し、逐次加算することにより、次の時点のfnを算出する。
Figure JPOXMLDOC01-appb-M000001

 
 式(a)の第二項のRnは、n番目の蓄電池に直列につながれた電流シャント抵抗の抵抗値(単位:[Ω](オーム))である。上述した通り、図2において電流シャント抵抗は、R11、R12、R13に相当する。式(a)の第二項のVn(t)は、時刻tにおける、n番目の蓄電池に直列につながれた電流シャント抵抗の電圧降下による電位差(単位:[V](ボルト))である。
 充電可能電気量管理部120が式(a)の第二項の算出する方法について説明する。充電可能電気量管理部120は、まず、時刻t1から時刻t2において、n番目の蓄電池に直列につながれた電流シャント抵抗Rnの電圧降下による電位差の値を測定する。そして、充電可能電気量管理部120は、測定された値をA/D(Analog/Digital)変換して得られる電圧値Vn(t)を電流シャント抵抗値Rnで除し、その電流値に時間(t1からt2の経過時間、単位:[h](アワー))を乗じて式(a)の第二項を算出する。
 以上で、充電可能電気量の算出についての説明を終える。
 充電可能電気量調整部130は、蓄電池回路部110に流れる電流を制御する。なお、充電可能電気量調整部130は、図2の制御装置40の一部を構成する。
 ここで、蓄電池回路部110に流れる電流の制御について説明する。具体的には、充電可能電気量調整部130は、蓄電池群10を構成する各蓄電池の放電を個別に制御する。これにより、充電可能電気量調整部130は、各蓄電池の充電可能電気量を均等にできる。このような充電可能電気量調整部130の電流制御方法としては、(1)リレーを利用する方法と、(2)可変抵抗を利用する方法とがある。
 まず、(1)リレーを利用する方法について説明する。この方法では、充電可能電気量調整部130は、蓄電池群10を構成する各蓄電池に直列につながれたリレーに対し、オン/オフを切り替える。すなわち、充電可能電気量調整部130は、リレーをオン(端子間を接続)にすることで、各蓄電池に電流を流す。一方、充電可能電気量調整部130は、リレーをオフ(端子間を非接続)にすることで、各蓄電池に電流を流さない。このように、充電可能電気量調整部130は、リレーのオン/オフを切り替えることにより、蓄電池に流れる電流を制御する。図2の例の場合、充電可能電気量調整部130は、リレーSW11、SW12、SW13のオン/オフを切り替えることにより、蓄電池11、12、13のそれぞれに流れる電流を制御する。
 次に、(2)可変抵抗を利用する方法について説明する。この方法では、充電可能電気量調整部130は、蓄電池群10を構成する各蓄電池に直列につながれた可変抵抗の値を変化させることにより、各蓄電池に流れる電流を変化させる。すなわち、充電可能電気量調整部130は、可変抵抗の値を大きくすることで、各蓄電池に流れる電流を小さくする。一方、充電可能電気量調整部130は、可変抵抗の値を小さくすることで、各蓄電池に流れる電流を大きくする。これにより、充電可能電気量調整部130は、各蓄電池に流れる電流を制御する。
 なお、本実施の形態で適用する電流制御方法は、上述した(1)および(2)に限定されない。また、本実施の形態において、蓄電池に流れる電流が小さい場合は、リレーの代わりにFET(Field Effect Transistor)を用いてもよい。
 次に、本実施の形態に係る蓄電池管理装置の動作例について説明する。図3は、蓄電池管理装置100が、複数の蓄電池に流れる電流を制御しながら各蓄電池の充電可能電気量を均等にする動作の一例を示すフロー図である。以下、図3を説明するにあたり、図2の回路構成を用い、また、(1)リレーを利用する方法を用いた場合を例として説明する。
 蓄電池群10の初期状態として、すべての蓄電池の充電可能電気量は同じ値とする。これは、例えば、すべての蓄電池が未使用の場合である。また、充電可能電気量管理部120は、逐次、各蓄電池の現在の充電可能電気量を算出して記憶する。
 ステップS101において、充電可能電気量調整部130は、蓄電池群10を構成する各蓄電池の現在の充電可能電気量を、充電可能電気量管理部120から取得する。そして、充電可能電気量調整部130は、目標電気量を設定する。目標電気量とは、各蓄電池において充電可能電気量の目標とする値である。
 目標電気量の設定には、いくつかの方法を適用できる。ここで、目標電気量の設定方法の例について、以下に説明する。
 例えば、充電可能電気量調整部130は、目標電気量を、蓄電池群10を構成する各蓄電池の最小電池容量から最大電池容量の間の任意の値に設定する。このように設定することで、充電可能電気量調整部130は、各蓄電池の充電可能電気量を均等にすることができる。
 また、例えば、充電可能電気量調整部130は、蓄電池群10を構成する蓄電池のうちの任意の蓄電池を特定し、目標電気量を、特定した蓄電池の充電可能電気量に設定する。このように設定することで、充電可能電気量調整部130は、蓄電池群10のうち、充電可能電気量が目標電気量以下である、一部の蓄電池を放電する。これにより、蓄電池管理装置100は、蓄電池群10のうちの一部の蓄電池の充電可能電気量を均等にすることができる。そのため、充電可能電気量が均等である蓄電池が直列につながれて充電される場合、蓄電池管理装置100は、その直列につながれた蓄電池に対して、発電装置が出力する電気を効率良く充電することができる。
 また、例えば、充電可能電気量調整部130は、蓄電池群10を構成する蓄電池のうち充電可能電気量が最も大きい蓄電池を特定し、目標電気量を、特定した蓄電池の充電可能電気量に設定する。このように設定することで、充電可能電気量調整部130は、蓄電池群10のうち、特定した蓄電池以外の蓄電池を放電する。これにより、蓄電池管理装置100は、蓄電池群10のすべての蓄電池の充電可能電気量を均等にすることができる。そのため、直列につながれたすべての蓄電池を充電する場合、蓄電池管理装置100は、発電装置が出力する電気をさらに効率良く各蓄電池に充電することができる。
 また、例えば、充電可能電気量調整部130は、蓄電池群10を構成する蓄電池のうち充電可能電気量が最も大きい蓄電池を特定し、目標電気量を、特定した蓄電池の充電可能電気量よりもさらに大きい値に設定する。このように設定することで、充電可能電気量調整部130は、すべての蓄電池を放電する。これにより、蓄電池管理装置100は、蓄電池群10のすべての蓄電池の充電可能電気量を均等にすることができる。そのため、充電可能電気量調整部130は、各蓄電池の充電可能電気量をさらに大きくすることができ、直列につながれた複数の蓄電池を充電する場合、蓄電池管理装置100は、発電装置が出力する電気を各蓄電池により多く充電することができる。
 なお、目標電気量の設定方法は、上述した設定方法に限定されない。設定される目標電気量は、蓄電池群10を構成する蓄電池の最小電池容量から最大電池容量の間の値であればよい。
 以上で、目標電気量の設定方法の例についての説明を終える。なお、以下の説明においては、目標電気量が、蓄電池群10を構成する蓄電池のうち充電可能電気量が最も大きい蓄電池の充電可能電気量に設定された場合を例として説明する。
 ステップS102において、充電可能電気量調整部130は、充電可能電気量管理部120から取得した各蓄電池の現在の充電可能電気量と、設定した目標電気量とを比較することで、充電可能電気量が目標電気量以下である蓄電池が存在するか否かを判定する。
 上記判定の結果、充電可能電気量が目標電気量以下である蓄電池が存在しない場合(S102:NO)、フローは終了する。一方、上記判定の結果、充電可能電気量が目標電気量以下である蓄電池が存在する場合(S102:YES)、フローはステップS103へ進む。
 ステップS103において、充電可能電気量調整部130は、充電可能電気量が目標電気量以下である蓄電池を選択(特定)し、選択された蓄電池が放電されるよう制御する。このとき、充電可能電気量調整部130は、選択された蓄電池に直列につながれたリレーをオンにし、選択された蓄電池以外の蓄電池に直列につながれたリレーをオフにする。これにより、選択された蓄電池だけが放電されることになる。
 例えば、図2において、充電可能電気量調整部130は、蓄電池11を選択した場合、リレーSW11をオンにする一方で、リレーSW12およびリレーSW13をオフにする。なお、このステップS103において、充電可能電気量調整部130が選択する蓄電池の個数は、1つでもよいし、複数でもよい。
 ステップS104において、充電可能電気量調整部130は、放電により、選択された蓄電池の充電可能電気量が目標電気量に到達したか否かを判定する。
 上記判定の結果、選択された蓄電池の充電可能電気量が目標電気量に到達した場合(S104:YES)、フローはステップS107へ進む。一方、上記判定の結果、選択された蓄電池の充電可能電気量が目標電気量に到達していない場合(S104:NO)、フローはステップS105へ進む。
 ステップS107において、充電可能電気量調整部130は、選択された蓄電池から電流が流れないようにするため、選択された蓄電池に直列につながれたリレーをオフにする。その後、フローは、ステップS102へ戻る。
 ステップS105において、充電可能電気量管理部120は、選択された蓄電池から放電される電流の積算値(電流積算値)を算出する。
 電流積算値の算出には、上述した式(a)を用いる。式(a)の第一項であるfn_remainingは、充電可能電気量管理部120が管理している、現在の充電可能電気量の値である。式(a)の第二項については、充電可能電気量調整部130が、ステップS103で選択した蓄電池に直列につながれた電流シャント抵抗の電圧降下による電位差の値を測定し、測定された値をA/D変換して電圧値を算出する。そして、充電可能電気量調整部130は、算出された電圧値を電流シャント抵抗の抵抗値で除し、その結果として得られた値(電流値)に時間を乗じて電流積算値を算出する。
 ここで、式(a)の第二項について、図2を用いて説明する。充電可能電気量調整部130は、ステップS103にて蓄電池11を選択した場合、電流シャント抵抗R11の電圧降下による電位差の値を測定し、測定された値をA/D変換して電圧値を算出する。そして、充電可能電気量調整部130は、算出された電圧値を電流シャント抵抗R11の抵抗値で除し、その結果として得られた値(電流値)に時間を乗じて電流積算値を得る。
 ステップS106において、充電可能電気量管理部120は、算出された電流積算値に変化があった場合、自身が管理している各蓄電池の現在の充電可能電気量を更新する。その後、フローは、ステップS104に戻る。すなわち、充電可能電気量管理部120は、すべての蓄電池の充電可能電気量が目標電気量に到達するまで、ステップS104、S105、S106を繰り返す。
 以上説明した図3の動作から、蓄電池管理装置100は、蓄電池群10を構成する蓄電池の放電を制御することにより、蓄電池群10を構成する各蓄電池の充電可能電気量を均等にすることができる。これにより、複数の蓄電池の接続形態が並列から直列に変更されて充電される場合、すべての蓄電池が満充電まで充電される。すなわち、蓄電池管理装置100において放電を制御された蓄電池群10は効率良く充電される。その結果、その蓄電池群10を電力源とする負荷装置は長時間動作することができる。
 なお、図3の動作において、目標電気量は一度だけ設定される例で説明したが、これに限定されない。例えば、蓄電池管理装置100は、目標電気量を逐次設定し直し、各蓄電池の充電可能電気量を均等にする処理を繰り返すことで、充電可能電気量を段階的に多くしてもよい。このようにすることで、直列につながれた複数の蓄電池が充電される場合、発電装置が出力する電気が、各蓄電池により多く充電される。
 また、図3の動作において、初期状態における蓄電池群10を構成するすべての蓄電池の充電可能電気量を同じ値としたが、これに限定されない。蓄電池群10を構成する蓄電池の充電可能電気量は、初期状態においてばらつきがあってもよい。ばらつきが生じる原因としては、継続的に同じ蓄電池を利用し続けることによる蓄電池の個体差(経年劣化など)、または、近くで動作するモータなどの熱による放電特性の違い、などが考えられる。この場合、充電可能電気量管理部120は、蓄電池群10を構成する各蓄電池の現在の充電可能電気量を入力できるインタフェースを備えてもよい。この入力インタフェースは、蓄電池群10と蓄電池管理装置100との接続時に各蓄電池の現在の充電可能電気量が自動的に入力されるものであってもよいし、または、各蓄電池の現在の充電可能電気量を手動で入力するものであってもよい。
 これにより、蓄電池群が別システムで充電された場合、または、新しい蓄電池群と入れ替えた場合であっても、充電可能電気量管理部120は各蓄電池の充電可能電気量を正しい値で管理できるため、蓄電池間で充電可能電気量を均等にすることができる。
 以上説明したように、本実施の形態の蓄電池管理装置は、蓄電池群を構成する蓄電池毎に、現在の充電可能電気量を算出する。そして、蓄電池管理装置は、算出された各充電可能電気量と、予め定めた目標電気量とを比較して、目標電気量以下の蓄電池を選択する。そして、蓄電池管理装置は、目標電気量以下の蓄電池に対し、現在の充電可能電気量が目標電気量に達するまで放電するよう制御する。蓄電池管理装置は、選択された蓄電池がすべて目標電気量に達するまで放電制御を繰り返す。こうすることにより、本実施の形態の蓄電池管理装置に接続する蓄電池の充電可能電気量は均等になる。したがって、本実施の形態の蓄電池管理装置により放電制御された蓄電池は、直列に接続されても効率良く充電される。
 (実施の形態2)
 本発明の実施の形態2は、負荷装置との接続状況(接続可否、電圧値など)の検出により、蓄電池を直列に接続する数(以下、「直列数」という)を変更し、すべての蓄電池の充電可能電気量を均等にするように蓄電池を放電し、負荷装置を動作させる一例である。このときの蓄電池の直列数の変更は、具体的には蓄電池の接続形態を並列接続に切り替えることを意味する。さらに、本発明の実施の形態2は、発電装置との接続状況により直列数を変更し、蓄電池を充電する一例である。このときの蓄電池の直列数の変更は、具体的には蓄電池の接続形態を直列接続に切り替えることを意味する。
 まず、本実施の形態に係る蓄電池管理装置の構成例について説明する。図4は、本実施の形態に係る蓄電池管理装置の一例を示すブロック図である。図4において、図1と同じ構成要素については同じ符号を付し、それらの説明は省略する。
 図4において、蓄電池管理装置100は、蓄電池回路部111、充電可能電気量管理部120、充電可能電気量調整部130、信号検出部140、および回路制御部150を有する。また、蓄電池管理装置100は、外部からの信号60を入力するためのインタフェースを有する。信号60は、物理量を示す信号である。物理量とは、例えば、自然現象(温度、湿度、土壌温湿度、振動、光、ガス濃度等)、人工物の機械的、電磁気的、熱的、音響的、化学的性質、あるいはそれらで示される空間情報または時間情報を示す。なお、図4は、図1と同様、電気の受け渡しを点線、データの受け渡しを実線で示す。
 図4の蓄電池管理装置100は、実施の形態1と同様に、例えば、CPU、ROMなどの記憶媒体、およびRAMなどの作業用メモリを有する。この場合、蓄電池回路部111、充電可能電気量管理部120、充電可能電気量調整部130、信号検出部140、および回路制御部150の各機能は、CPUが制御プログラムを実行することにより実現される。
 蓄電池回路部111は、図1の蓄電池回路部110と同様に、発電装置20からの電気を蓄電池群10へ充電し、蓄電池群10が蓄えた電気を負荷装置30に対して放電する電気回路である。図5は、蓄電池管理装置100の回路構成の一例を示す。ここで、図5を用いて蓄電池回路部111の回路構成について説明する。
 図5において、蓄電池管理装置100は、電気回路51と、電気回路51を制御する制御装置41とを有し、発電装置20および負荷装置30と接続している。電気回路51は、蓄電池群10および蓄電池回路部111の一例である。また、制御装置41は、充電可能電気量管理部120、充電可能電気量調整部130、信号検出部140、および回路制御部150を有する。
 電気回路51は、図2の電気回路50の構成要素に加えて、リレーSW14、SWa1、SWa2、SWa3、SWa4、SWb1、SWb2を有する。リレーSW14は、蓄電池11、12、13を発電装置20または負荷装置30のいずれに接続するかを切り替えるリレーである。リレーSW14を端子Taと接続すると蓄電池11、12、13は発電装置20と接続し、リレーSW14を端子Tbと接続すると蓄電池11、12、13は負荷装置30と接続し、リレーSW14を端子Tcと接続すると蓄電池11、12、13は発電装置20および負荷装置30のいずれとも接続しない。また、リレーSWa1、SWa2、SWa3、SWa4、SWb1、SWb2は、蓄電池11、12、13の直列数を変更するためのリレーである。
 なお、図5において、蓄電池の数を3つとしたがこれに限定されない。
 図6は、図5におけるリレーのオンとオフの組合せの一例を示す図である。図6において、SWaの列のオン/オフはリレーSWa1、SWa2、SWa3、SWa4のオン/オフを示し、SWbのオン/オフはリレーSWb1、SWb2のオン/オフを示す。また、図7は、図6のリレーのオンとオフの組合せに基づく蓄電池の接続形態のイメージを示す図である。
 図6の(a)の行は、リレーSWa1、SWa2、SWa3、SWa4がオフ、リレーSWb1、SWb2がオンを示す。これに対応する蓄電池11、12、13の接続形態のイメージは、図7Aに示すように、各蓄電池が直列に接続された状態となる。
 図6の(b)の行は、リレーSWa1、SWa2、SWa3、SWa4、SWb1、SWb2がオフを示す。これに対応する蓄電池11、12、13の接続形態のイメージは、図7Bに示すように、3つの蓄電池が回路から切り離された状態となる。なお、図6の(b)は、図6(a)から図6(c)へ、または、図6(c)から図6(a)へ切り替えるときの状態を示すものである。
 図6の(c)の行は、リレーSWa1、SWa2、SWa3、SWa4がオン、リレーSWb1、SWb2がオフを示す。これに対応する蓄電池11、12、13の接続形態のイメージは、図7Cに示すように、各蓄電池が並列に接続された状態となる。
 制御装置41は、蓄電池11、12、13に流れるそれぞれの電流の積算値の算出を行う。また、制御装置41は、蓄電池11、12、13に流れる電流を制御するために、リレーSW11、SW12、SW13、SWa1、SWa2、SWa3、SWa4、SWb1、SWb2の開閉(オン/オフ)を図6の(a)、(b)、(c)への切替、および、SW14を端子Ta、Tb、Tcへの切替を行う。
 以上で、蓄電池回路部111の回路構成についての説明を終える。
 信号検出部140は、信号60を検出するセンサであり、回路制御部150に対して信号60の検出結果を送る。信号検出部140が検出する信号60は、例えば、発電装置20の電圧値または電流値、負荷装置30との通電状態、あるいは負荷装置30の充電可否状態などを示す信号である。また、信号検出部140が回路制御部150へ送る検出結果としては、例えば、電力供給信号または負荷接続信号がある。電力供給信号は、例えば、発電装置20からの電力供給の有無、または、発電装置20の電圧値あるいは電流値を示す信号である。負荷接続信号は、例えば、負荷装置30への通電可否(稼働可否)または充電可否を示す信号である。信号検出部140は、例えば、電圧検出センサ、電流検出センサ、通電検出センサなどである。なお、信号検出部140は、1つのセンサだけでなく、2つ以上のセンサにより構成されていてもよい。
 回路制御部150は、信号検出部140からの信号60の検出結果に応じて、蓄電池回路部111における蓄電池の直列数を変更する。具体的には、図5において、制御装置41の一構成要素である回路制御部150は、電気回路51を構成するリレーSWa1、SWa2、SWa3、SWa4、SWb1、SWb2のオン/オフを切り替えることにより、蓄電池の直列数を変更する。また、図4において、回路制御部150は、信号検出部140からの信号60の検出結果に応じて、図5の電気回路51を構成するリレーSW14を切り替える。リレーSW14が端子Taに接続されると、電気回路51を構成する蓄電池等は発電装置20と接続される。一方、リレーSW14が端子Tbに接続されると、電気回路51を構成する蓄電池等は負荷装置30と接続される。また、リレーSW14が端子Tcに接続されると、電気回路51を構成する蓄電池等は発電装置20および負荷装置30との接続が切断される。
 次に、信号60の検出結果に応じて、蓄電池の直列数を変更する一例として、発電装置20からの電気を蓄電池群10へ充電する処理、および、負荷装置30に蓄電池群10の電気を放電する処理を説明する。以下の説明では、図5に示す回路構成を用いる。
 また、具体的に説明するため、図5において、発電装置20の電圧は96V、負荷装置30が必要とする電圧は32Vとし、蓄電池11、12、13の電圧は32Vとして説明する。
 <充電時>
 信号検出部140が電力供給信号を検出した場合、蓄電池管理装置100は、発電装置20が出力する電気を蓄電池群10へ充電する。具体的な処理の流れは、以下のようになる。
 まず、電力供給信号を検出した信号検出部140は、回路制御部150に対して電力供給信号を送る。回路制御部150は、図5のリレーSW14を端子Tcに接続し、蓄電池11、12、13が発電装置20と接続されない状態にする。次に、回路制御部150は、発電装置20の電圧に応じて、図5の蓄電池11、12、13の直列数を変更する。例えば、発電装置20の電圧が96Vである場合、発電装置20の電圧と蓄電池全体の電圧を同等にしようとすると、電圧が32Vである3つの蓄電池11、12、13が直列(3直列)に接続されるとよい。このような直列数に変更するために、充電可能電気量調整部130は、図6の(a)の行に示すように、リレーSWa1、SWa2、SWa3、SWa4をオフにし、リレーSWb1、SWb2をオンにする。そして、回路制御部150は、図5のリレーSW14を端子Taに接続し、電気回路51と発電装置20とを接続する。このリレーによる切替処理により、蓄電池管理装置100は、発電装置20から蓄電池11、12、13に対して電流を流し、蓄電池11、12、13は充電される。なお、発電装置20の電圧の値は、事前に決まっていてもよいし、上述のように回路制御部150が信号検出部140から電力供給信号として受け取ってもよい。
 <放電時>
 信号検出部140が負荷接続信号を検出した場合、蓄電池管理装置100は、負荷装置30に蓄電池群10が蓄えた電気を放電する。具体的な処理の流れは、以下のようになる。
 まず、負荷接続信号を検出した信号検出部140は、回路制御部150に対して負荷接続信号を送る。回路制御部150は、図5のリレーSW14を端子Tcに接続し、蓄電池11、12、13が負荷装置30と接続されない状態にする。次に、回路制御部150は、負荷装置30が必要とする電圧に応じて、図5の蓄電池11、12、13の直列数を変更する。例えば、負荷装置30が必要とする電圧が32Vである場合、負荷装置30が必要とする電圧と蓄電池全体の電圧を同等にしようとすると、電圧が32Vである蓄電池11、12、13が並列(3並列、言い換えれば、1直列)に接続されるとよい。このような直列数に変更するために、充電可能電気量調整部130は、図6の(c)の行に示すように、リレーSWa1、SWa2、SWa3、SWa4をオンにし、リレーSWb1、SWb2をオフにする。そして、回路制御部150は、図5のリレーSW14を端子Tbに接続し、電気回路51と負荷装置30とを接続する。このリレーによる切替処理により、蓄電池管理装置100は、蓄電池11、12、13から負荷装置30に対して放電する。この放電処理については、実施の形態1における図3の処理フローと同様である。なお、負荷装置30が必要とする電圧の値は事前に決まっていてもよいし、上述のように回路制御部150が信号検出部140から負荷接続信号として受け取ってもよい。
 放電時には図3の処理フローで示すように、蓄電池11、12、13の充電可能電気量が均等になるため、蓄電池11、12、13を直列接続(3直列)とした状態で充電した場合、すべての蓄電池は同じように満充電状態になる。したがって、本実施の形態においても、実施の形態1と同様、発電装置が出力する電気を効率良く蓄電池に充電することができる。
 このように、本実施の形態の蓄電池管理装置は、発電装置の電圧に対して負荷装置が必要とする電圧が低い場合であっても、電力を供給している発電装置あるいは接続している負荷装置を検出し、検出した装置の電圧に応じて、蓄電池の直列数を変更する。例えば、負荷装置が接続されていることが検出されたとき、蓄電池管理装置は、負荷装置が必要とする電圧に応じて蓄電池の直列数を充電時の直列数以下にし、蓄電池から放電する。このとき、蓄電池管理装置は、蓄電池の充電可能電気量を均等に放電する。そして、発電装置から電力が供給されていることが検出されたとき、蓄電池管理装置は、発電装置の電圧に応じて蓄電池の直列数を放電時の直列数以上に変更し、蓄電池へ充電する。これにより、本実施の形態の蓄電池管理装置は、発電装置の電圧で蓄電池へ充電し、負荷装置が必要とする電圧(発電装置の電圧より低い電圧)に降圧した形で蓄電池から放電できる。また、実施の形態1で説明したように、蓄電池が負荷装置へ放電しているときに蓄電池の充電可能電気量を均等にしながら放電しているため、発電装置が出力する電気を蓄電池へ充電する際、発電装置が出力する電気を効率良く蓄電池に充電することができる。その結果、負荷装置が蓄電池管理装置に接続されたとき、負荷装置は長時間動作することができる。
 蓄電池管理装置における電圧変換の仕組みをより具体的に説明する。本実施の形態の蓄電池管理装置は、電圧が32Vである負荷装置に対して放電する際には、電圧が32Vである蓄電池の直列数を1つにする。また、本実施の形態の蓄電池管理装置は、電圧が96Vの発電装置から蓄電池に充電する際には、電圧が32Vの蓄電池の直列数を3つにする。このように蓄電池の直列数を変更することにより、本実施の形態の蓄電池管理装置は、電気の供給元である発電装置から供給先である負荷装置に対して高い電圧から低い電圧への降圧変換も可能となり、コイル等の熱損失がなく、電圧変換効率を高くすることができる。
 なお、上記説明では、信号検出部140が検出する信号60は、発電装置20の電圧値または電流値、負荷装置30との通電状態(稼働状態)もしくは負荷装置30の充電可能状態の可否などを示す信号であるとして説明したが、これに限定されない。例えば、信号60は、蓄電池管理装置100または蓄電池群10に対する漏水を検出する信号であってもよい。信号検出部140は、漏水を検出した場合、回路制御部150に対して漏水検出信号を送る。そして、漏水検出信号を取得した回路制御部150は、図5の蓄電池11、12、13の直列数を変更する。例えば、回路制御部150は蓄電池の直列数を少なくする。この場合、本実施の形態の蓄電池管理装置は、図6の(c)の場合と同様に、リレーSWa1、SWa2、SWa3、SWa4をオンにし、リレーSWb1、SWb2をオフにする。これにより、本実施の形態の蓄電池管理装置は、例えば、蓄電池の電圧を96Vから瞬時に32Vに降圧することができるため、漏電時に速やかに蓄電池全体の電圧を人体にとって安全な電圧まで下げることができ、利用者の安全性が確保できる。
 以上説明したように、本実施の形態の蓄電池管理装置は、実施の形態1の構成に加えて、物理的な事象変化を検出する信号検出部と、当該検出により蓄電池群の直列数の変更、および、電気の供給元あるいは電気の供給先の切替を行う回路制御部とを備え、充電時の蓄電池群の直列数を、放電時の直列数よりも大きくすることができる。これにより、本実施の形態の蓄電池管理装置は、高い電圧の発電装置から低い電圧を必要とする負荷装置への降圧変換が可能となる。したがって、発電装置の電圧に対して低い電圧を必要とする負荷装置を動作させる場合、本実施の形態の蓄電池管理装置を使用することにより、コイル等の熱損失がなく、高い電圧変換効率を実現できる。また、蓄電池管理装置は、発電装置が出力する電気を効率良く蓄電池に充電することができることから、蓄電池管理装置に接続された負荷装置は長時間動作することができる。
 (実施の形態3)
 本発明の実施の形態3は、発電装置の電圧に応じて蓄電池の直列数を変更し、直列接続する蓄電池の組合せを切り替えながら、蓄電池の充電を制御することにより、すべての蓄電池の充電可能電気量を均等にするようにした一例である。
 本実施の形態に係る蓄電池管理装置の構成例について説明する。図8は、本実施の形態に係る蓄電池管理装置の一例を示すブロック図である。図8において、図4と同じ構成要素については同じ符号を付し、それらの説明を省略する。
 図8において、蓄電池管理装置100は、蓄電池回路部112、充電可能電気量管理部120、充電可能電気量調整部131、および信号検出部140を有する。また、蓄電池管理装置100は、外部からの信号60を入力するためのインタフェースを有する。信号60は、物理量を示す信号である。なお、図8は、図1と同様、電気の受け渡しを点線、データの受け渡しを実線で示す。
 図8の蓄電池管理装置100は、実施の形態1と同様に、例えば、CPU、ROMなどの記憶媒体、およびRAMなどの作業用メモリを有する。この場合、蓄電池回路部112、充電可能電気量管理部120、充電可能電気量調整部131、および信号検出部140の各機能は、CPUが制御プログラムを実行することにより実現される。
 蓄電池回路部112は、図1の蓄電池回路部110と同様に、発電装置20からの電気を蓄電池群10へ充電し、蓄電池群10が蓄えた電気を負荷装置30に対して放電する電気回路である。図9は、蓄電池管理装置100の回路構成の一例を示す。ここで、図9を用いて蓄電池回路部112の回路構成について説明する。図9において、図2と同じ構成要素については同じ符号を付し、それらの説明を省略する。
 図9において、蓄電池管理装置100は、電気回路52と、電気回路52を制御する制御装置42とを有し、発電装置20および負荷装置30と接続している。電気回路52は、蓄電池群10および蓄電池回路部112の一例である。また、制御装置42は、充電可能電気量管理部120、充電可能電気量調整部131、および信号検出部140を有する。
 電気回路52は、蓄電池11、12、13と、電流シャント抵抗R11、R12、R13と、リレーSW21、SW22、SW23と、を有する。リレーSW21、SW22、SW23は、電路の切替を行うリレースイッチ、換言すれば、蓄電池11、12、13の直列数および直列接続する蓄電池の組合せを切り替えるためのスイッチである。リレーSW21が端子a側に接続されると、蓄電池11と電流シャント抵抗R11に電気は流れない。一方、リレーSW21が端子b側に接続されると、蓄電池11と電流シャント抵抗R11に電気が流れる。リレーSW22、SW23はリレーSW21と同様の仕組みで電路の切替を行う。
 制御装置42は、蓄電池11、12、13に流れるそれぞれの電流の積算値の算出を行う。また、制御装置42は、端子T1、T2に接続された外部装置の電圧に応じて、リレーSW21、SW22、SW23の切替を行う。以下の説明では、端子T1、T2に接続された外部装置が発電装置20であるものとして説明する。
 制御装置42は、2つの蓄電池を直列(2直列)にする場合、以下のいずれかの制御を行う。例えば、制御装置42は、リレーSW21とリレーSW22を端子b側、リレーSW23を端子a側に接続し、蓄電池11と12の2直列とする。または、制御装置42は、リレーSW22とリレーSW23を端子b側、リレーSW21を端子a側に接続し、蓄電池12と13の2直列とする。または、制御装置42は、リレーSW21とリレーSW23を端子b側、リレーSW22を端子a側に接続し、蓄電池11と13の2直列とする。
 なお、図9では、蓄電池の数は3つとしたが、これに限定されない。
 以上で、蓄電池回路部112の回路構成についての説明を終える。
 充電可能電気量管理部120が充電可能電気量を算出する方法については実施の形態1と同様であり、説明を省略する。なお、充電可能電気量管理部120は、図9の制御装置42の一部を構成する。
 充電可能電気量調整部131は、端子T1とT2に接続された発電装置20の電圧に応じて、蓄電池群10の蓄電池の直列数を変更し、直列接続する蓄電池の組合せを切り替え、蓄電池回路部112に流れる電流を制御する。なお、充電可能電気量調整部131は、図9の制御装置42の一部を構成する。
 ここで、蓄電池回路部112に流れる電流の制御について説明する。具体的には、充電可能電気量調整部131は、蓄電池群10を構成する各蓄電池の充電を個別に制御する。これにより、充電可能電気量調整部131は、各蓄電池の充電可能電気量を均等にする。このような充電可能電気量調整部131の電気量制御方法は、実施の形態1における図1の充電可能電気量調整部130と同じであり、(1)リレーを利用する方法と、(2)可変抵抗を利用する方法とがあり、その方法についての説明を省略する。
 信号検出部140は、信号60を検出するセンサであり、充電可能電気量調整部131に対して信号60の検出結果を送る。信号検出部140が検出する信号60は、例えば、発電装置20の電圧値、負荷装置30が必要とする電圧値などを示す信号である。そして、信号検出部140は、充電可能電気量調整部131に対してその信号を送る。信号検出部140は、例えば、電圧検出センサ、通電検出センサなどである。なお、信号検出部140は、1つのセンサだけでなく、2つ以上のセンサで構成してもよい。
 次に、本実施の形態に係る蓄電池管理装置の動作例について説明する。図10は、蓄電池管理装置100が、複数の蓄電池に流れる電流を制御しながら各蓄電池の充電可能電気量を均等にする動作の一例を示すフロー図である。図10において、図3と同じ処理については同じ符号を付し、それらの説明は省略する。以下、図10を説明するにあたり、図9の回路構成を用い、また、電流制御方法は実施の形態1で説明した(1)リレーを利用する方法を用いた場合を例として説明する。
 蓄電池群10の初期状態として、すべての蓄電池の充電可能電気量は同じ値とする。これは、例えば、すべての蓄電池が未使用の場合である。また、充電可能電気量管理部120は、逐次、各蓄電池の現在の充電可能電気量を算出して記憶する。
 ステップS101は図3と同じ処理であり、説明を省略する。なお、以下の説明においては、目標電気量が、蓄電池群10を構成する蓄電池の中で充電可能電気量が最も小さい蓄電池の充電可能電気量に設定された場合を例として説明する。
 ステップS102aにおいて、充電可能電気量調整部131は、充電可能電気量管理部120から取得した現在の充電可能電気量のそれぞれと、設定した目標電気量とを比較することで、充電可能電気量が目標電気量以上である蓄電池が存在するか否かを判定する。
 上記判定の結果、充電可能電気量が目標電気量以上である蓄電池が存在しない場合(S102a:NO)、フローは終了する。一方、上記判定の結果、充電可能電気量が目標電気量以上である蓄電池が存在する場合(S102a:YES)、フローはステップS103aへ進む。
 ステップS103aにおいて、充電可能電気量調整部131は、図9の端子T1、T2に接続された発電装置20の電圧に応じた蓄電池の直列数を算出する。このとき、充電可能電気量調整部131は、信号検出部140から発電装置20の電圧値を取得する。
 ステップS103bにおいて、充電可能電気量調整部131は、充電可能電気量が目標電気量以上である蓄電池を選択(特定)し、選択された蓄電池の充電を行う。このとき、充電可能電気量調整部131は、選択された蓄電池だけで直列につながれるようにリレーを切り替え、選択された蓄電池以外の蓄電池が直列につながれないようにリレーを切り替える。これにより、充電可能電気量調整部131は、選択された蓄電池だけを充電する。図9において、例えば、蓄電池11と蓄電池12が選択された場合、充電可能電気量調整部131は、リレーSW21とリレーSW22を端子b側に接続する一方で、リレーSW23を端子a側に接続する。なお、ステップS103bにおいて、充電可能電気量調整部131が選択する蓄電池の個数は、1つでもよいし、複数でもよい。
 ステップS103bにおいて、充電可能電気量調整部131が蓄電池を選択(特定)する方法について説明する。充電可能電気量調整部131は、各蓄電池の充電可能電気量を比較し、充電可能電気量が大きい順番(降順)に並べる。その並べた順番において、充電可能電気量が大きいほうから順番に、ステップS103aで算出した直列数分の蓄電池を選択する。
 ステップS104、S105、S106、S107は図3と同じ処理であり、説明を省略する。
 以上説明した図10の動作により、蓄電池管理装置100は、蓄電池群10を構成する蓄電池のうち、一部の蓄電池を直列接続して充電する場合、蓄電池群10を構成する各蓄電池の充電可能電気量を均等にすることができる。これにより、すべての蓄電池を満充電状態とすることができる。つまり、蓄電池管理装置100は、発電装置20の電圧が変化しても、すべての蓄電池を偏りなく満充電状態にすることができる。その結果、その蓄電池を電力源とする負荷装置は長時間動作することができる。
 なお、図10のステップS103aにおいて、充電可能電気量調整部131は、信号検出部140から発電装置20の電圧値を取得するとしたが、これに限らない。充電可能電気量調整部131は、図9の端子T1、T2に接続された発電装置20の電圧をあらかじめ取得(記憶)しておいてもよい。例えば、図8において、充電可能電気量調整部131は、信号検出部40から発電装置20の電圧値を取得する代わりに、発電装置20の電圧値が蓄電池管理装置100の記憶媒体に記憶されており、充電可能電気量調整部131はその電圧値を取得してもよい。
 以上、本実施の形態1、2、および3についてそれぞれ説明したが、上記説明は一例であり、種々の変形が可能である。
 例えば、上記実施の形態1、2、および3では、蓄電池管理装置100の各部をハードウェアで構成する場合を例にとって説明したが、蓄電池管理装置100の各部はハードウェアとの連係においてソフトウェアでも実現することも可能である。
 また、本実施の形態1、2および3において、蓄電池群10を構成する各蓄電池の定格の電池容量は同じであってもよいし、異なっていてもよい。つまり、本実施の形態1、2および3は、使用する各蓄電池の定格の電池容量によらない。
 また、上記実施の形態3において、蓄電池管理装置100は、図9の端子T1、T2に接続された発電装置20の電圧に応じて、蓄電池の直列数を変更したが、これに限らない。例えば、蓄電池管理装置100は、図9の端子T1、T2に負荷装置30を接続し、負荷装置30が必要とする電圧に応じて、蓄電池群10を構成する蓄電池の直列数を変更し、放電する蓄電池の組合せを変更しながら、すべての蓄電池の充電可能電気量を均等にするようにしてもよい。
 上述した蓄電池管理装置100の動作例を、図10を用いて説明する。図10において実施の形態3と同じ処理である、ステップS101、S104、S105、S106、S107については説明を省略する。
 図10において、ステップS102aは図3のステップS102のように、充電可能電気量調整部131は、目標電気量以下の蓄電池が存在するか否かを判定する。また、図10のステップS103aでは、充電可能電気量調整部131は、図9の端子T1、T2に接続された発電装置20の電圧ではなく、図9の端子T1、T2に接続された負荷装置30が必要とする電圧に応じて、蓄電池群10を構成する蓄電池の直列数を算出する。また、図10のステップS103bでは、充電可能電気量調整部131は、選択された蓄電池を充電ではなく、放電する。
 以上説明したように、蓄電池管理装置100は、蓄電池群10の放電または充電を制御することにより、蓄電池群10を構成する各蓄電池の充電可能電気量を均等にすることができる。これにより、蓄電池群10を構成する蓄電池の直列数を変更して充電する場合、直列に接続された蓄電池群に対し、すべての蓄電池を同じ満充電状態とすることができる。したがって、蓄電池管理装置100は、発電装置20が出力する電気を効率良く各蓄電池に充電することができる。その結果、その蓄電池を電力源とする負荷装置30は長時間動作することができる。
 以上、本開示の蓄電池管理装置は、複数の蓄電池の接続形態として前記蓄電池の使用数または直列数または並列数を切り替えて、前記蓄電池の放電または充電を行う蓄電池管理装置であって、前記複数の蓄電池のそれぞれについて、現在の充電状態から満充電状態に至るまでに充電できる電気量である充電可能電気量を算出し管理する充電可能電気量管理部と、前記複数の蓄電池の一部または全部の前記充電可能電気量が共通の目標電気量に達するように、前記複数の蓄電池の放電または充電を制御する充電可能電気量調整部と、を有する。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記目標電気量以下である蓄電池の放電を開始し、当該蓄電池の充電可能電気量が前記目標電気量に達したら、当該蓄電池の放電を終了する。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記目標電気量以下である蓄電池の放電を開始した後、当該蓄電池の充電可能電気量が前記目標電気量に達するまでの間、当該蓄電池に流れる電流の積算値を算出し、当該電流積算値に基づいて前記充電可能電気量を更新する。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記複数の蓄電池のうちの任意の蓄電池を特定し、前記特定した蓄電池の充電可能電気量を前記目標電気量に設定する。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記複数の蓄電池のうち、充電可能電気量が最も大きい蓄電池を特定し、前記特定した蓄電池の充電可能電気量を前記目標電気量に設定する。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記複数の蓄電池のうち、充電可能電気量が最も大きい蓄電池を特定し、前記特定した蓄電池の充電可能電気量よりもさらに大きい値を前記目標電気量に設定する。
 また、本開示の蓄電池管理装置は、前記蓄電池管理装置に対する物理的な事象変化を検出する信号検出部と、前記物理的な事象変化の検出により前記複数の蓄電池の直列数を変更する回路制御部と、をさらに有し、前記回路制御部が、前記信号検出部が前記物理的な事象変化として前記複数の蓄電池に対する充電の開始を検出した場合、前記複数の蓄電池の直列数を、放電時よりも大きくする。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記目標電気量以上である蓄電池の充電を開始し、当該蓄電池の充電可能電気量が前記目標電気量に達したら、当該蓄電池の充電を終了する。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記目標電気量以上である蓄電池の充電を開始した後、当該蓄電池の充電可能電気量が前記目標電気量に達するまでの間、当該蓄電池に流れる電流の積算値を算出し、当該電流積算値に基づいて前記充電可能電気量を更新する。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記複数の蓄電池のうち、充電可能電気量が最も小さい蓄電池を特定し、前記特定した蓄電池の充電可能電気量を前記目標電気量に設定する。
 また、本開示の蓄電池管理装置は、前記充電可能電気量調整部が、前記複数の蓄電池のうち、充電可能電気量が最も小さい蓄電池を特定し、前記特定した蓄電池の充電可能電気量よりもさらに小さい値を前記目標電気量に設定する。
 また、本開示の蓄電池管理装置は、前記蓄電池管理装置において生じる物理的な事象変化を検出する信号検出部をさらに有し、前記充電可能電気量調整部が、前記信号検出部が前記物理的な事象変化として前記複数の蓄電池に対する電圧変化を検出した場合、前記変化した電圧に応じて、前記複数の蓄電池の直列数を変化させ、直列に接続する蓄電池の組合せを切り替えることにより、前記複数の蓄電池の一部または全部の前記充電可能電気量が共通の目標電気量に達するように、前記複数の蓄電池の放電または充電を制御する。
 また、本開示の蓄電池管理方法は、複数の蓄電池の接続形態として前記蓄電池の使用数または直列数または並列数を切り替えて、前記蓄電池の放電または充電を行う蓄電池管理方法であって、前記複数の蓄電池のそれぞれについて、現在の充電状態から満充電状態に至るまでに充電できる電気量である充電可能電気量を算出し管理するステップと、前記複数の蓄電池の一部または全部の前記充電可能電気量が共通の目標電気量に達するように、前記複数の蓄電池の放電または充電を制御するステップと、を有する。
 2012年9月11日出願の特願2012-199559の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係る蓄電池管理装置および蓄電池管理方法は、複数の蓄電池を用いて充電および放電を行う装置および方法に有用である。本発明は、例えば、ソーラ発電または風力発電などの高電圧発電素子が生成する電力を蓄電池に蓄え、その電力を、電気自動車、電動スクータ、または電動アシスト自転車などのバッテリに充電するシステムに有用である。
 10 蓄電池群
 11、12、13 蓄電池
 20 発電装置
 30 負荷装置
 40、41、42 制御装置
 50、51、52 電気回路
 60 信号
 100 蓄電池管理装置
 110、111、112 蓄電池回路部
 120 充電可能電気量管理部
 130、131 充電可能電気量調整部
 140 信号検出部
 150 回路制御部
 R11、R12、R13 電流シャント抵抗
 SW11、SW12、SW13、SW14、SWa1、SWa2、SWa3、SWa4、SWb1、SWb2、SW21、SW22、SW23 リレースイッチ
 T1、T2、Ta、Tb 端子
 

Claims (13)

  1.  複数の蓄電池の接続形態として前記蓄電池の使用数または直列数または並列数を切り替えて、前記蓄電池の放電または充電を行う蓄電池管理装置であって、
     前記複数の蓄電池のそれぞれについて、現在の充電状態から満充電状態に至るまでに充電できる電気量である充電可能電気量を算出し管理する充電可能電気量管理部と、
     前記複数の蓄電池の一部または全部の前記充電可能電気量が共通の目標電気量に達するように、前記複数の蓄電池の放電または充電を制御する充電可能電気量調整部と、を有する、
     蓄電池管理装置。
  2.  前記充電可能電気量調整部は、
     前記目標電気量以下である蓄電池の放電を開始し、
     当該蓄電池の充電可能電気量が前記目標電気量に達したら、当該蓄電池の放電を終了する、
     請求項1記載の蓄電池管理装置。
  3.  前記充電可能電気量調整部は、
     前記目標電気量以下である蓄電池の放電を開始した後、当該蓄電池の充電可能電気量が前記目標電気量に達するまでの間、当該蓄電池に流れる電流の積算値を算出し、当該電流積算値に基づいて前記充電可能電気量を更新する、
     請求項2記載の蓄電池管理装置。
  4.  前記充電可能電気量調整部は、
     前記複数の蓄電池のうちの任意の蓄電池を特定し、前記特定した蓄電池の充電可能電気量を前記目標電気量に設定する、
     請求項1記載の蓄電池管理装置。
  5.  前記充電可能電気量調整部は、
     前記複数の蓄電池のうち、充電可能電気量が最も大きい蓄電池を特定し、前記特定した蓄電池の充電可能電気量を前記目標電気量に設定する、
     請求項1記載の蓄電池管理装置。
  6.  前記充電可能電気量調整部は、
     前記複数の蓄電池のうち、充電可能電気量が最も大きい蓄電池を特定し、前記特定した蓄電池の充電可能電気量よりもさらに大きい値を前記目標電気量に設定する、
     請求項1記載の蓄電池管理装置。
  7.  前記蓄電池管理装置に対する物理的な事象変化を検出する信号検出部と、
     前記物理的な事象変化の検出により前記複数の蓄電池の直列数を変更する回路制御部と、をさらに有し、
     前記回路制御部は、
     前記信号検出部が前記物理的な事象変化として前記複数の蓄電池に対する充電の開始を検出した場合、前記複数の蓄電池の直列数を、放電時よりも大きくする、
     請求項1記載の蓄電池管理装置。
  8.  前記充電可能電気量調整部は、
     前記目標電気量以上である蓄電池の充電を開始し、
     当該蓄電池の充電可能電気量が前記目標電気量に達したら、当該蓄電池の充電を終了する、
     請求項1記載の蓄電池管理装置。
  9.  前記充電可能電気量調整部は、
     前記目標電気量以上である蓄電池の充電を開始した後、当該蓄電池の充電可能電気量が前記目標電気量に達するまでの間、当該蓄電池に流れる電流の積算値を算出し、当該電流積算値に基づいて前記充電可能電気量を更新する、
     請求項1記載の蓄電池管理装置。
  10.  前記充電可能電気量調整部は、
     前記複数の蓄電池のうち、充電可能電気量が最も小さい蓄電池を特定し、前記特定した蓄電池の充電可能電気量を前記目標電気量に設定する、
     請求項1記載の蓄電池管理装置。
  11.  前記充電可能電気量調整部は、
     前記複数の蓄電池のうち、充電可能電気量が最も小さい蓄電池を特定し、前記特定した蓄電池の充電可能電気量よりもさらに小さい値を前記目標電気量に設定する、
     請求項1記載の蓄電池管理装置。
  12.  前記蓄電池管理装置において生じる物理的な事象変化を検出する信号検出部をさらに有し、
     前記充電可能電気量調整部は、
     前記信号検出部が前記物理的な事象変化として前記複数の蓄電池に対する電圧変化を検出した場合、前記変化した電圧に応じて、前記複数の蓄電池の直列数を変化させ、直列に接続する蓄電池の組合せを切り替えることにより、前記複数の蓄電池の一部または全部の前記充電可能電気量が共通の目標電気量に達するように、前記複数の蓄電池の放電または充電を制御する、
     請求項1記載の蓄電池管理装置。
  13.  複数の蓄電池の接続形態として、前記蓄電池の使用数または直列数または並列数を切り替えて、前記蓄電池の放電または充電を行う蓄電池管理方法であって、
     前記複数の蓄電池のそれぞれについて、現在の充電状態から満充電状態に至るまでに充電できる電気量である充電可能電気量を算出し管理するステップと、
     前記複数の蓄電池の一部または全部の前記充電可能電気量が共通の目標電気量に達するように、前記複数の蓄電池の放電または充電を制御するステップと、を有する、
     蓄電池管理方法。
     
PCT/JP2013/004058 2012-09-11 2013-06-28 蓄電池管理装置および蓄電池管理方法 WO2014041730A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13837700.7A EP2897247B1 (en) 2012-09-11 2013-06-28 Storage battery management device, and storage battery management method
US14/426,537 US20150222132A1 (en) 2012-09-11 2013-06-28 Storage battery management device, and storage battery management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012199559A JP2014057398A (ja) 2012-09-11 2012-09-11 蓄電池管理装置および蓄電池管理方法
JP2012-199559 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014041730A1 true WO2014041730A1 (ja) 2014-03-20

Family

ID=50277877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004058 WO2014041730A1 (ja) 2012-09-11 2013-06-28 蓄電池管理装置および蓄電池管理方法

Country Status (4)

Country Link
US (1) US20150222132A1 (ja)
EP (1) EP2897247B1 (ja)
JP (1) JP2014057398A (ja)
WO (1) WO2014041730A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015002148A1 (de) * 2015-02-18 2016-08-18 Audi Ag Verfahren zum Betreiben von Batteriezellen einer Batterie, Batterie sowie Kraftfahrzeug

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078360A (zh) * 2014-08-22 2017-08-18 佩颂股份有限公司 在能量系统中进行串级动态重新配置的方法和装置
KR102284482B1 (ko) * 2014-12-11 2021-08-02 삼성에스디아이 주식회사 배터리 팩
DE102016008052A1 (de) * 2016-07-01 2017-02-16 Daimler Ag Energiespeichereinrichtung für einen Kraftwagen
DE102016008263A1 (de) * 2016-07-08 2017-02-16 Daimler Ag Batterieanordnung für ein Kraftfahrzeug
KR20180022517A (ko) * 2016-08-23 2018-03-06 삼성전자주식회사 전력 제공 장치 및 전력을 수신하는 전자 장치와 그 제어 방법
JP6883396B2 (ja) * 2016-08-25 2021-06-09 矢崎総業株式会社 急速充電装置
JP6724730B2 (ja) * 2016-11-07 2020-07-15 株式会社豊田自動織機 電池モジュール及び電池パック
GB2556914A (en) * 2016-11-25 2018-06-13 Dyson Technology Ltd Battery system
CN106696748B (zh) * 2017-01-25 2019-06-28 华为技术有限公司 一种充电桩系统
US10236802B2 (en) * 2017-02-08 2019-03-19 Premergy, Inc. Adaptive regeneration systems for electric vehicles
JP6772931B2 (ja) * 2017-03-30 2020-10-21 株式会社豊田自動織機 電池パックの放電制御装置
CN107171382A (zh) * 2017-05-19 2017-09-15 宁德时代新能源科技股份有限公司 电池组充电系统和方法
JP7333756B2 (ja) * 2017-06-14 2023-08-25 ハダル, インコーポレイテッド 構成可能バッテリ充電のためのシステムおよび方法
DE102017222192A1 (de) * 2017-12-07 2019-06-13 Audi Ag HV-Batterieanordnung für ein Kraftfahrzeug, Bordnetz, Kraftfahrzeug und Verfahren zum Steuern einer HV-Batterieanordnung
DE102018000490A1 (de) * 2018-01-22 2018-07-12 Daimler Ag Speichereinrichtung für ein Kraftfahrzeug, insbesondere für ein Elektrofahrzeug
US10500980B2 (en) * 2018-03-14 2019-12-10 GM Global Technology Operations LLC Modular battery pack system with series and parallel charging and propulsion modes
US11117483B2 (en) * 2019-10-02 2021-09-14 Ford Global Technologies, Llc Traction battery charging method and charging system
CN111130174B (zh) * 2019-12-30 2021-10-22 武汉市陆刻科技有限公司 一种土壤监测设备的充电方法及装置
US11588334B2 (en) 2020-06-02 2023-02-21 Inventus Power, Inc. Broadcast of discharge current based on state-of-health imbalance between battery packs
EP4158718A4 (en) 2020-06-02 2024-03-13 Inventus Power Inc LARGE FORMAT BATTERY MANAGEMENT SYSTEM
US11594892B2 (en) 2020-06-02 2023-02-28 Inventus Power, Inc. Battery pack with series or parallel identification signal
US11476677B2 (en) 2020-06-02 2022-10-18 Inventus Power, Inc. Battery pack charge cell balancing
US11552479B2 (en) 2020-06-02 2023-01-10 Inventus Power, Inc. Battery charge balancing circuit for series connections
US11509144B2 (en) 2020-06-02 2022-11-22 Inventus Power, Inc. Large-format battery management system with in-rush current protection for master-slave battery packs
US11489343B2 (en) 2020-06-02 2022-11-01 Inventus Power, Inc. Hardware short circuit protection in a large battery pack
US11245268B1 (en) 2020-07-24 2022-02-08 Inventus Power, Inc. Mode-based disabling of communiction bus of a battery management system
CN112964998B (zh) * 2021-02-02 2022-12-06 上海深湾能源科技有限公司 电量显示方法、电池系统及计算机可读存储介质
US11404885B1 (en) 2021-02-24 2022-08-02 Inventus Power, Inc. Large-format battery management systems with gateway PCBA
US11411407B1 (en) 2021-02-24 2022-08-09 Inventus Power, Inc. Large-format battery management systems with gateway PCBA
JP7396388B2 (ja) 2022-03-23 2023-12-12 いすゞ自動車株式会社 充電制御装置及び充電制御方法
CN116505621B (zh) * 2023-06-25 2024-05-03 广汽埃安新能源汽车股份有限公司 电池的均衡控制方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066269A (ja) * 1996-08-13 1998-03-06 Fujitsu Denso Ltd 電気自動車用充電装置
JP2004023993A (ja) 2002-06-13 2004-01-22 Kazumichi Fujioka 電力変換器
JP2006197676A (ja) * 2005-01-11 2006-07-27 Sony Corp 電源装置
JP2009044930A (ja) * 2007-08-10 2009-02-26 Toyota Motor Corp 電源システムおよびそれを備えた車両
JP2012010563A (ja) * 2010-06-28 2012-01-12 Hitachi Vehicle Energy Ltd 蓄電器制御回路及び蓄電装置
JP2012070492A (ja) * 2010-09-21 2012-04-05 Panasonic Electric Works Co Ltd 充放電システム
JP2012175763A (ja) * 2011-02-18 2012-09-10 Honda Motor Co Ltd 非接触電力伝送システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149700A (ja) * 1994-11-16 1996-06-07 Canon Inc 充電装置
JP2002112463A (ja) * 2000-09-27 2002-04-12 Nec Mobile Energy Kk 充電制御回路
JP4343173B2 (ja) * 2002-11-25 2009-10-14 ティアックス エルエルシー 直列接続された電気エネルギー貯蔵ユニット間の充電状態を均等化するバッテリーセル平衡化システム
US20060092583A1 (en) * 2004-10-01 2006-05-04 Alahmad Mahmoud A Switch array and power management system for batteries and other energy storage elements
US8378632B2 (en) * 2007-10-02 2013-02-19 The Gillette Company Circuit arrangement with multiple batteries
JP5601770B2 (ja) * 2008-12-09 2014-10-08 三菱重工業株式会社 電圧均等化装置、方法、プログラム、及び電力貯蔵システム
US8288992B2 (en) * 2009-01-14 2012-10-16 Indy Power Systems, Llc Cell management system
US8330419B2 (en) * 2009-04-10 2012-12-11 The Regents Of The University Of Michigan Dynamically reconfigurable framework for a large-scale battery system
EP2451003B1 (en) * 2009-06-29 2018-09-19 NGK Insulators, Ltd. End-of-discharge voltage correction device and end-of-discharge voltage correction method
DE102010002326A1 (de) * 2010-02-25 2011-08-25 SB LiMotive Company Ltd., Kyonggi Verfahren zum Ausbalancieren von Ladezuständen einer Batterie mit mehreren Batteriezellen sowie ein entsprechendes Batteriemanagementsystem und eine Batterie
US9099871B2 (en) * 2010-10-06 2015-08-04 Southwest Electronic Energy Corporation Module bypass switch for balancing battery pack system modules
JP5611368B2 (ja) * 2010-12-16 2014-10-22 本田技研工業株式会社 電池制御装置、組電池充電率算出装置、電池制御方法および組電池充電率算出方法
US8957624B2 (en) * 2011-01-20 2015-02-17 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
JP5461482B2 (ja) * 2011-07-19 2014-04-02 株式会社日立製作所 電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066269A (ja) * 1996-08-13 1998-03-06 Fujitsu Denso Ltd 電気自動車用充電装置
JP2004023993A (ja) 2002-06-13 2004-01-22 Kazumichi Fujioka 電力変換器
JP2006197676A (ja) * 2005-01-11 2006-07-27 Sony Corp 電源装置
JP2009044930A (ja) * 2007-08-10 2009-02-26 Toyota Motor Corp 電源システムおよびそれを備えた車両
JP2012010563A (ja) * 2010-06-28 2012-01-12 Hitachi Vehicle Energy Ltd 蓄電器制御回路及び蓄電装置
JP2012070492A (ja) * 2010-09-21 2012-04-05 Panasonic Electric Works Co Ltd 充放電システム
JP2012175763A (ja) * 2011-02-18 2012-09-10 Honda Motor Co Ltd 非接触電力伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2897247A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015002148A1 (de) * 2015-02-18 2016-08-18 Audi Ag Verfahren zum Betreiben von Batteriezellen einer Batterie, Batterie sowie Kraftfahrzeug

Also Published As

Publication number Publication date
EP2897247A1 (en) 2015-07-22
EP2897247A4 (en) 2015-09-30
JP2014057398A (ja) 2014-03-27
US20150222132A1 (en) 2015-08-06
EP2897247B1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
WO2014041730A1 (ja) 蓄電池管理装置および蓄電池管理方法
JP4400536B2 (ja) 組電池の容量調整装置および容量調整方法
JP5919560B2 (ja) 均等化回路、電源システム、及び車両
JP5248764B2 (ja) 蓄電素子の異常検出装置、蓄電素子の異常検出方法及びその異常検出プログラム
JP6113145B2 (ja) バランス補正装置及び蓄電システム
US20110127963A1 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
JP2010142039A (ja) 電力蓄積装置
JP5126403B1 (ja) 充放電制御装置
JP2011041452A (ja) 組電池装置及び車両
JP2007174894A (ja) 電池管理システム、電池管理方法、電池システム及び自動車
JP2016523503A (ja) エネルギー貯蔵システムを制御する方法
KR101602277B1 (ko) 배터리 셀 밸런싱 장치 및 방법
EP3828567A1 (en) Battery management device, battery management method, and battery pack
EP3828568A1 (en) Battery management device, battery management method and battery pack
JP2014068468A (ja) 充電制御装置
CN112928345A (zh) 电池管理系统和方法
KR102621817B1 (ko) 셀 밸런싱 방법 및 이를 수행하는 배터리 관리 시스템
JP7226723B2 (ja) バッテリー管理システム、バッテリーパック、電気車両及びバッテリー管理方法
JP5298800B2 (ja) 蓄電装置
JP5929880B2 (ja) 電池制御装置
JP2008011657A (ja) 電源装置
JP2010045963A (ja) 電池回路、及び電池パック
JP2014045626A (ja) 充電制御装置
JP4764324B2 (ja) エネルギー均等化装置
CN108139447B (zh) 交通工具、确定多个串联电池串中电池电压的设备和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837700

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013837700

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14426537

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE