WO2014038554A1 - 車両用補機の駆動装置 - Google Patents

車両用補機の駆動装置 Download PDF

Info

Publication number
WO2014038554A1
WO2014038554A1 PCT/JP2013/073696 JP2013073696W WO2014038554A1 WO 2014038554 A1 WO2014038554 A1 WO 2014038554A1 JP 2013073696 W JP2013073696 W JP 2013073696W WO 2014038554 A1 WO2014038554 A1 WO 2014038554A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
motor
drive
idler
engine
Prior art date
Application number
PCT/JP2013/073696
Other languages
English (en)
French (fr)
Inventor
真 橋本
健太郎 渡邊
山本 建
久保 賢明
勝彦 山藤
竜生 松岡
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201380042724.6A priority Critical patent/CN104541034B/zh
Priority to JP2014534367A priority patent/JP5846312B2/ja
Priority to EP13836049.0A priority patent/EP2894314B1/en
Priority to US14/420,919 priority patent/US9212605B2/en
Publication of WO2014038554A1 publication Critical patent/WO2014038554A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/108Friction gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/04Mechanical drives; Variable-gear-ratio drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/02Gearing for conveying rotary motion with constant gear ratio by friction between rotary members without members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/10Means for influencing the pressure between the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/12Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types
    • F16H37/14Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types the movements of two or more independently-moving members being combined into a single movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K2025/005Auxiliary drives driven by electric motors forming part of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/02Auxiliary drives directly from an engine shaft
    • B60K2025/022Auxiliary drives directly from an engine shaft by a mechanical transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/424Friction clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D15/00Clutches with wedging balls or rollers or with other wedgeable separate clutching members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19014Plural prime movers selectively coupled to common output

Definitions

  • the present invention relates to a driving apparatus for a vehicular auxiliary machine that drives an auxiliary machine mounted on a vehicle by one of two driving sources.
  • a vehicle auxiliary that drives an auxiliary machine such as a compressor by using a transmission mechanism that includes a pulley provided on each of an engine crankshaft, a motor output shaft, and a compressor drive shaft, and a belt wound around each pulley.
  • a machine drive device is known (see, for example, Patent Document 1).
  • the present invention has been made paying attention to the above problems, and not only can the friction load be suppressed during driving of the auxiliary machine, but also enables the selection of an efficient drive source, thereby suppressing energy loss. It is an object of the present invention to provide a drive device for a vehicular auxiliary machine that can perform the above.
  • a vehicle auxiliary device drive apparatus includes at least one auxiliary machine driven by either one of a first drive source and a second drive source. It is assumed that this is a driving device for an auxiliary machine.
  • a roller is connected to each of a rotation shaft included in the first drive source, a rotation shaft included in the second drive source, and a rotation shaft included in the accessory.
  • An idler roller is disposed in each gap position formed between a plurality of rollers connected to each of the rotation shafts.
  • the roller pair selection mechanism which selects a roller pair which transmits power by interposing an idler roller from a plurality of rollers by moving the idler roller in the roller contact direction is provided.
  • a roller pair that transmits power through the idler roller is selected from the plurality of rollers. Therefore, for example, when driving the auxiliary machine with the first drive source, if the drive transmission path is formed between the first drive source and the auxiliary machine, the second drive source is separated from the drive transmission path. In other words, unnecessary drive source or auxiliary friction is not applied as a drive load. Further, it is possible to select the more efficient one of the first drive source and the second drive source as the drive source of the auxiliary machine. In this way, by selecting the roller pair that transmits power by moving the idler roller in the contact direction, not only the friction load can be suppressed when driving the auxiliary machine, but also an efficient drive source can be selected. By making possible, energy loss can be suppressed.
  • FIG. 1 is an overall system diagram illustrating a driving apparatus for a vehicular auxiliary machine according to a first embodiment.
  • FIG. 4 is a roller non-contact cross-sectional view showing selection switching of a roller pair by a convex cam of a roller pair selection mechanism in the driving device for an auxiliary machine for a vehicle according to the first embodiment.
  • FIG. 3 is a roller contact cross-sectional view showing selection switching of a roller pair by a convex cam of a roller pair selection mechanism in the driving device for an auxiliary machine for a vehicle according to the first embodiment.
  • FIG. 4 is a roller non-contact cross-sectional view showing selection switching of a roller pair by a convex cam of a roller pair selection mechanism in the driving device for an auxiliary machine for a vehicle according to the first embodiment.
  • FIG. 3 is a roller contact cross-sectional view showing selection switching of a roller pair by a convex cam of a roller pair selection mechanism in the driving device for an auxiliary machine for a vehicle according to the
  • FIG. 3 is a roller non-contact cross-sectional view showing selection switching of a roller pair by a concave cam of a roller pair selection mechanism in the driving device for a vehicle auxiliary machine according to the first embodiment.
  • FIG. 3 is a roller contact cross-sectional view illustrating selection switching of a roller pair by a concave cam of a roller pair selection mechanism in the driving apparatus for an auxiliary machine for the vehicle according to the first embodiment.
  • FIG. 5 is an operation explanatory diagram illustrating an engine start operation by a motor when a first drive transmission mode is selected in the vehicle auxiliary device drive apparatus according to the first embodiment.
  • FIG. 6 is an operation explanatory diagram illustrating a power generation operation by the engine when a first drive transmission mode is selected in the vehicle auxiliary device drive apparatus according to the first embodiment.
  • FIG. 6 is an operation explanatory diagram illustrating a power generation & air conditioner driving operation by the engine when the second drive transmission mode is selected in the vehicle auxiliary device drive device of the first embodiment.
  • FIG. 6 is an operation explanatory diagram illustrating an air conditioner driving operation by the engine when a third drive transmission mode is selected in the vehicle auxiliary device driving apparatus according to the first embodiment.
  • FIG. 7 is an operation explanatory diagram illustrating an air conditioner driving operation by a motor when a fourth drive transmission mode is selected in the vehicle auxiliary device driving apparatus according to the first embodiment;
  • FIG. 12 is an operation explanatory diagram illustrating an air conditioner driving operation by a main motor in the driving apparatus for a vehicle auxiliary device of the second embodiment.
  • FIG. 10 is an operation explanatory diagram illustrating an air conditioner driving operation by a sub motor in the vehicle auxiliary device driving apparatus according to the second embodiment.
  • FIG. 1 shows a driving apparatus for a vehicular auxiliary machine according to a first embodiment.
  • the overall system configuration will be described below with reference to FIG.
  • the vehicle auxiliary device drive apparatus is applied to a hybrid vehicle.
  • an engine 1 first drive source
  • a motor / generator 2 second drive source
  • a compressor 3 are used. (Auxiliary machine) and are installed.
  • an engine roller 4, a motor / generator roller 5, and a compressor roller 6 are provided as rollers that are drive transmission elements.
  • a first idler roller 7, a second idler roller 8, and a third idler roller 9 are provided as idler rollers for selecting a drive transmission path.
  • a roller pair selection mechanism 10 that moves the idler rollers 7, 8, and 9 in the radial direction when selecting a drive transmission path is provided.
  • the compressor 3 compresses a heat medium in an air conditioner system that air-conditions the vehicle interior, and is driven by either the engine 1 or the motor / generator 2.
  • the engine roller 4 is connected to a crankshaft 11 (rotary shaft) of the engine 1.
  • the motor / generator roller 5 is connected to a motor shaft 12 (rotating shaft) of the motor / generator 2.
  • the compressor roller 6 is connected to a compressor shaft 13 (rotary shaft) of the compressor 3.
  • these rollers 4, 5, 6 have the same diameter and are supported at both ends so as to be rotatable with respect to the annular carrier case 14. And it arrange
  • the circumferential gap formed between two adjacent rollers is slightly smaller than the diameter of the idler rollers 7, 8, 9.
  • the first idler roller 7 is disposed in a circumferential gap formed between the engine roller 4 and the motor / generator roller 5.
  • the second idler roller 8 is disposed in a circumferential gap formed between the engine roller 4 and the compressor roller 6.
  • the third idler roller 9 is disposed in a circumferential gap formed between the motor / generator roller 5 and the compressor roller 6. As shown in FIG. 1, these idler rollers 7, 8, 9 have the same diameter, and the first long hole 14 a, the second long hole 14 b, the second long hole 14 b opened in the carrier case 14 in each circumferential gap. It is arrange
  • the roller pair selection mechanism 10 interposes one or two of the idler rollers 7, 8, 9 from among the three rollers 4, 5, 6 by moving the idler roller in the roller contact direction. This is a mechanism for selecting a roller pair that transmits power.
  • FIG. 2 shows selection switching of a roller pair by a convex cam of the roller pair selection mechanism in the vehicle auxiliary device driving apparatus of Embodiment 1
  • FIG. 3 shows selection switching of the roller pair by a concave cam.
  • the roller pair selection configuration will be described with reference to FIGS.
  • the roller pair selection mechanism 10 has a convex cam 17 (cam) and a concave cam 18 (cam) for converting the rotational movement by the actuator 15 into the radial movement of the idler rollers 7, 8, 9.
  • the convex cam 17 and the concave cam 18 are provided integrally with the selector shaft 16, and the roller 15 that transmits power is selected by changing the rotation angle position of the convex cam 17 and the concave cam 18 by the actuator 15. It is said.
  • the first idler roller 7 has a first bearing support portion 71 that rotatably supports the first idler roller 7 outside the inner diameter position of the first elongated hole 14 a opened in the carrier case 14. It is provided to be movable in the radial direction up to the radial position.
  • the inner diameter side of the first bearing support portion 71 is in contact with the convex cam 17, and the outer diameter side of the first bearing support portion 71 is urged in the inner diameter direction by the first spring 72.
  • the first idler roller 7 keeps non-contact with the roller pairs 4 and 5 when in the inner diameter position of the first elongated hole 14a, and contacts the roller pairs 4 and 5 when in the outer diameter position of the first elongated hole 14a. . That is, the first idler roller 7 comes into contact with the roller by moving radially outward.
  • the second idler roller 8 has a second bearing support portion 81 that rotatably supports the second idler roller 8 outside the inner diameter position of the second elongated hole 14 b opened in the carrier case 14. It is provided to be movable in the radial direction up to the radial position.
  • the inner diameter side of the second bearing support portion 81 is in contact with the convex cam 17, and the outer diameter side of the second bearing support portion 81 is urged in the inner diameter direction by the second spring 82.
  • the second idler roller 8 keeps non-contact with the roller pairs 4 and 6 when in the inner diameter position of the second elongated hole 14b, and contacts the roller pairs 4 and 6 when in the outer diameter position of the second elongated hole 14b. . That is, the second idler roller 8 comes into contact with the roller by moving outward in the radial direction.
  • the third idler roller 9 has a third bearing support portion 91 that rotatably supports the third idler roller 9 outside the inner diameter position of the third elongated hole 14 c opened in the carrier case 14. It is provided to be movable in the radial direction up to the radial position.
  • the inner diameter side of the third bearing support portion 91 is in contact with the concave cam 18, and the outer diameter side of the third bearing support portion 91 is urged in the inner diameter direction by the third spring 92.
  • the third idler roller 9 keeps non-contact with the roller pairs 5 and 6 when it is at the outer diameter position of the third elongated hole 14c, and contacts the roller pairs 5 and 6 when it is at the inner diameter position of the third elongated hole 14c. . That is, the third idler roller 9 comes into contact with the roller by moving inward in the radial direction.
  • the convex cam 17 is a fan-shaped cam, and a selector shaft 16 is connected to the position of the fan, and rotational movement by the actuator 15 is caused by the first idler roller 7 and the second idler roller 8. Convert to radial movement. That is, as shown in FIG. 2A, when the cam diameter of the convex cam 17 in contact with the inner diameter side of the first bearing support portion 71 is small and the first idler roller 7 is in the inner diameter position, Contact. On the other hand, as shown in FIG. 2B, when the cam diameter of the convex cam 17 in contact with the inner diameter side of the first bearing support portion 71 is large and the first idler roller 7 moves in the radial direction from the inner diameter position to the outer diameter position.
  • the concave cam 18 is a disc-like cam having a concave portion 18b formed at one place on the circumference of the outer peripheral portion 18a.
  • a selector shaft 16 is connected to the center position of the disc, and the actuator 15 Is converted into a radial movement of the third idler roller 9. That is, as shown in FIG. 3A, when the cam diameter of the concave cam 18 in contact with the inner diameter side of the third bearing support portion 73 is a large diameter (outer peripheral portion 18a) and the third idler roller 9 is at the outer diameter position, There is no contact with the roller pairs 5 and 6.
  • FIG. 3A when the cam diameter of the concave cam 18 in contact with the inner diameter side of the third bearing support portion 73 is a large diameter (outer peripheral portion 18a) and the third idler roller 9 is at the outer diameter position, There is no contact with the roller pairs 5 and 6.
  • FIG. 3A when the cam diameter of the concave cam 18 in contact with the inner diameter side of the third bearing support portion 73 is
  • the cam diameter of the concave cam 18 in contact with the inner diameter side of the third bearing support portion 73 is a small diameter (recessed portion 18b), and the third idler roller 9 is radially moved from the outer diameter position to the inner diameter position. , The roller pair 5 and 6 come into contact.
  • the roller pair selection mechanism 10 achieves the following four drive transmission modes by selecting a roller pair.
  • Second drive transmission mode Drive in which the first idler roller 7 is brought into contact with the engine roller 4 and the motor / generator roller 5 and the second idler roller 8 is brought into contact with the engine roller 4 and the compressor roller 6 This is a mode based on the transmission path.
  • Fourth drive transmission mode This is a mode using a drive transmission path in which the third idler roller 9 is brought into contact with the motor / generator roller 5 and the compressor roller 6.
  • the idler rollers 7, 8, 9 are moved in the roller contact direction by the roller pair selection mechanism 10, so that the idler rollers 7, 8, 6 are selected from the three rollers 4, 5, 6. 9 is used to select a pair of rollers that transmit power with 9 interposed. Therefore, for example, when driving the compressor 3 that is an auxiliary machine by the engine 1, if a drive transmission path is formed between the engine 1 and the compressor 3 by the rollers 4 and 6 and the second idler roller 8, the drive transmission path is The motor / generator 2 is disconnected.
  • each of the rollers 4, 5, and 6 is arranged with a circumferential clearance formed on a circumference having the selector shaft 16 of the actuator 15 provided in the roller pair selection mechanism 10 as the central axis O, and an idler The rollers 7, 8, and 9 were arranged in the circumferential gap so as to be movable in the radial direction.
  • the roller pair selection mechanism 10 employ
  • the first drive source is the engine 1
  • the second drive source is the motor / generator 2
  • the auxiliary machine is the compressor 3 of the hybrid vehicle driven by the engine 1 or the motor / generator 2.
  • a certain configuration was adopted.
  • a hybrid vehicle there are a HEV traveling mode in which both the engine 1 and the motor / generator 2 are driven, and an EV traveling mode in which only the motor / generator 2 is driven.
  • the engine 1 may be started using the motor / generator 2 as the starter motor.
  • the HEV travel mode a part of the driving force of the engine 1 is used.
  • the motor / generator 2 may generate power.
  • the selection function of the roller pair that transmits power is used not only as a drive source selection function of an auxiliary machine but also as a clutch function that connects and disconnects power transmission between two drive sources, so that it is required in a hybrid vehicle. It can respond to various drive transmission path forming functions.
  • the convex cam 17 that converts the rotational motion by the actuator 15 into the radial movement of the first idler roller 7 and the second idler roller 8, and the rotational motion by the actuator 15 is the third idler.
  • a configuration having a concave cam 18 that converts the roller 9 into radial movement is employed. With this configuration, the rotational angle position by the actuator 15 is controlled, and the drive direction can be switched to four drive transmission modes simply by changing the radial direction specified positions of the idler rollers 7, 8, 9 by the convex cam 17 and the concave cam 18.
  • a drive transmission path is formed by a torque flow flowing from the motor / generator 2 ⁇ the motor shaft 12 ⁇ the motor / generator roller 5 ⁇ the first idler roller 7 ⁇ the engine roller 4 ⁇ the crankshaft 11 ⁇ the engine 1.
  • the engine 1 can be started by rotating the crankshaft 11 using the motor / generator 2 as a drive source.
  • a drive transmission path is formed by a torque flow flowing from the engine 1 to the crankshaft 11 to the engine roller 4 to the first idler roller 7 to the motor / generator roller 5 to the motor shaft 12 to the motor / generator 2.
  • the motor / generator 2 can generate power by rotating the motor shaft 12 using the engine 1 as a drive source.
  • the power generation & air conditioner driving pattern by the engine 1 is such that the actuator 15 causes the selector shaft 16 to contact the engine roller 4 and the motor / generator roller 5 as shown in FIG. 8 rotates to a position in contact with the engine roller 4 and the compressor roller 6.
  • the third idler roller 9 is in the roller non-contact position. Even if the first idler roller 7 comes into contact with both rollers 4 and 5, automatic pressing due to the wedge effect cannot be expected, so the angular position of the selector shaft 16 is maintained.
  • a drive transmission path is formed by a torque flow flowing from the engine 1 to the crankshaft 11 to the engine roller 4 to the first idler roller 7 to the motor / generator roller 5 to the motor shaft 12 to the motor / generator 2.
  • a drive transmission path is formed by a torque flow flowing from the engine 1 to the crankshaft 11 to the engine roller 4 to the second idler roller 8 to the compressor roller 6 to the compressor shaft 13 to the compressor 3.
  • the actuator 15 rotates the selector shaft 16 to a position where the second idler roller 8 contacts the engine roller 4 and the compressor roller 6 as shown in FIG. At this time, the first idler roller 7 and the third idler roller 9 are in the roller non-contact position. If the second idler roller 8 comes into contact with both rollers 4 and 6 by the rotation of the selector shaft 16, the pressing force corresponding to the transmission torque is caused by the wedge effect between the engine roller 4 and the second idler roller 8. Generate automatically. Accordingly, a drive transmission path is formed by a torque flow flowing from the engine 1 to the crankshaft 11 to the engine roller 4 to the second idler roller 8 to the compressor roller 6 to the compressor shaft 13 to the compressor 3. As a result, the compressor shaft of the air conditioner can be driven by rotating the compressor shaft 13 using the engine 1 as a drive source.
  • the actuator 15 rotates the selector shaft 16 to a position where the third idler roller 9 contacts the motor / generator roller 5 and the compressor roller 6 as shown in FIG. At this time, the first idler roller 7 and the second idler roller 8 are in a roller non-contact position.
  • the third idler roller 9 comes into contact with both rollers 5 and 6 by the rotation of the selector shaft 16, the pressing force according to the transmission torque is applied to the wedge between the motor / generator roller 5 and the third idler roller 9. Automatically generated by effect.
  • a drive transmission path is formed by a torque flow flowing from the motor / generator 2 ⁇ the motor shaft 12 ⁇ the motor / generator roller 5 ⁇ the third idler roller 9 ⁇ the compressor roller 6 ⁇ the compressor shaft 13 ⁇ the compressor 3.
  • the compressor shaft of the air conditioner can be driven by rotating the compressor shaft 13 using the motor / generator 2 as a drive source.
  • the third idler roller 9 falls into the concave portion 18b of the concave cam 18 by the rotation of the selector shaft 16 and comes into contact with both rollers 5 and 6, and does not fall into the concave portion 18b.
  • the neutral mode is realized. That is, in the neutral mode, none of the three idler rollers 7, 8, 9 comes into contact with any of the three rollers 4, 5, 6.
  • a first drive source engine 1
  • a second drive source motor / generator 2 different from the first drive source (engine 1);
  • At least one auxiliary machine driven by one of the first drive source (engine 1) and the second drive source (motor / generator 2);
  • the drive device for a vehicle auxiliary machine comprising A rotation shaft (crankshaft 11) included in the first drive source (engine 1), a rotation shaft (motor shaft 12) included in the second drive source (motor / generator 2), and the auxiliary machine (compressor 3).
  • the idler rollers (first idler roller 7, second idler roller 8, third idler roller 9) are arranged respectively.
  • the plurality of rollers (engine roller 4, motor / generator roller 5, compressor roller 6) are moved by moving the idler rollers (first idler roller 7, second idler roller 8, third idler roller 9) in the roller contact direction.
  • a roller pair selection mechanism 10 for selecting a roller pair for transmitting power via the idler rollers (first idler roller 7, second idler roller 8, third idler roller 9) (FIG. 1). ).
  • the friction load can be suppressed only when the auxiliary machine (compressor 3) is driven. Without making it possible to select an efficient drive source (engine 1 or motor / generator 2), energy loss can be suppressed.
  • the rollers (engine roller 4, motor / generator roller 5, compressor roller 6) have a circumference having a rotation axis (selector shaft 16) of an actuator 15 provided in the roller pair selection mechanism 10 as a central axis O.
  • a plurality of circumferential clearances are formed on the top
  • the idler rollers (the first idler roller 7, the second idler roller 8, the third idler roller 9) are arranged in the circumferential clearance so as to be movable in the radial direction
  • the roller pair selection mechanism 10 is a cam mechanism (convex cam 17) that converts the rotational movement by the actuator 15 into radial movement of the idler rollers (first idler roller 7, second idler roller 8, third idler roller 9).
  • the concave cam 18), and the roller pair for transmitting power is selected (FIG. 1).
  • the rollers 4, 5, 6 and idler rollers 7, 8, 9 can be compactly arranged in a circular region having the central axis O, and a single actuator 15 is provided.
  • a roller pair that transmits power can be selected by a cam mechanism using the.
  • the first drive source is the engine 1;
  • the second drive source is a motor / generator 2;
  • the auxiliary machine is a compressor 3 of a hybrid vehicle driven by the engine 1 or the motor / generator 2 (FIG. 1).
  • the function of selecting a roller pair for transmitting power is not only used as a function for selecting the driving source of the compressor 3, but also for transmitting power between the engine 1 and the motor / generator 2.
  • the roller includes an engine roller 4 connected to a rotation shaft (crankshaft 11) of the engine 1, and a motor / generator roller 5 connected to a rotation shaft (motor shaft 12) of the motor / generator 2. , A compressor roller 6 connected to the rotating shaft (compressor shaft 13) of the compressor 3, The idler roller includes a first idler roller 7 disposed between the engine roller 4 and the motor / generator roller 5, and a second idler roller 8 disposed between the engine roller 4 and the compressor roller 6.
  • the roller pair selection mechanism 10 includes a convex cam 17 that converts the rotational movement by the actuator 15 into the radial movement of the first idler roller 7 and the second idler roller 8, and the rotational movement by the actuator 15 in the third movement.
  • a concave cam 18 that converts the idler roller 9 into radial movement (FIGS. 1 to 3). Therefore, in addition to the effect of (3), the rotational angle position by the actuator 15 is controlled, and the radial prescribed positions of the idler rollers 7, 8, 9 are changed by the convex cam 17 and the concave cam 18. It is possible to switch to the drive transmission mode.
  • the roller pair selection mechanism 10 has a first drive transmission mode by a drive transmission path in which the first idler roller 7 is brought into contact with the engine roller 4 and the motor / generator roller 5 (FIG. 4, FIG. 4). FIG. 5). For this reason, in addition to the effect of (4), by selecting the first drive transmission mode, the engine can be started by the motor / generator 2 and the power generation by the engine 1 can be performed.
  • the roller pair selection mechanism 10 brings the first idler roller 7 into contact with the engine roller 4 and the motor / generator roller 5, and the first with respect to the engine roller 4 and the compressor roller 6.
  • a second drive transmission mode is provided by a drive transmission path in contact with the two idler rollers 8 (FIG. 6). For this reason, in addition to the effect of (4) or (5), the engine 1 can simultaneously generate power and drive the air conditioner by selecting the second drive transmission mode.
  • the roller pair selection mechanism 10 has a third drive transmission mode by a drive transmission path in which the second idler roller 8 is brought into contact with the engine roller 4 and the compressor roller 6 (FIG. 7). For this reason, in addition to the effects (4) to (6), the air conditioner drive by the engine 1 can be performed by selecting the third drive transmission mode.
  • the roller pair selection mechanism 10 has a fourth drive transmission mode by a drive transmission path in which the third idler roller 9 is brought into contact with the motor / generator roller 5 and the compressor roller 6 (FIG. 8). .
  • the air conditioner drive by the motor / generator 2 can be performed by selecting the fourth drive transmission mode.
  • Example 2 is an example in which a driving source of an auxiliary machine is selected in an electric vehicle equipped with a main motor and a sub motor.
  • the vehicle auxiliary device drive apparatus is applied to an electric vehicle.
  • a main motor 21 first drive source
  • a sub motor 22 second drive source
  • a compressor 23 And auxiliary equipment
  • the main motor roller 24, the sub motor roller 25, and the compressor roller 26 are provided.
  • a first idler roller 28 and a second idler roller 29 are provided as idler rollers for selecting a drive transmission path.
  • the roller pair selection mechanism 210 which moves the idler rollers 28 and 29 to radial direction is provided.
  • the compressor 23 compresses a heat medium in an air conditioner system that air-conditions the passenger compartment, and is driven by one of the main motor 21 and the sub motor 22.
  • the main motor roller 24 is connected to a motor shaft 211 (rotary shaft) of the main motor 21.
  • the sub motor roller 25 is connected to a motor shaft 212 (rotary shaft) of the sub motor 22.
  • the compressor roller 26 is connected to a compressor shaft 213 (rotary shaft) of the compressor 23.
  • these rollers 24, 25, and 26 have the same diameter and are supported at both ends so as to be rotatable with respect to the annular carrier case 214. Then, they are arranged at equal intervals (120 ° intervals) on the circumference having the selector shaft 216 (rotary axis) of the actuator (not shown) provided in the roller pair selection mechanism 210 as the central axis O.
  • the circumferential gap formed between two adjacent rollers is slightly smaller than the diameter of the idler rollers 28, 29.
  • the first idler roller 28 is disposed in a circumferential gap formed between the main motor roller 24 and the compressor roller 26.
  • the second idler roller 29 is disposed in a circumferential gap formed between the sub motor roller 25 and the compressor roller 26. As shown in FIG. 9, these idler rollers 28 and 29 have the same diameter, and have a diameter along the first long hole 214b and the second long hole 214b opened in the carrier case 214 in each of the circumferential gaps. It is arranged so that it can move in the direction.
  • the roller pair selection mechanism 210 moves the idler roller in the roller contact direction to thereby select a roller pair that transmits power via any one of the idler rollers 28 and 29 from among the three rollers 24, 25, and 26.
  • the roller pair selection mechanism 210 includes a convex cam 217 (cam) that converts a rotational movement by an actuator (not shown) into a radial movement of the first idler roller 28 and a concave movement that converts a radial movement of the second idler roller 29. It has a cam 218 (cam).
  • the convex cam 17 and the concave cam 18 are provided integrally with the selector shaft 16, and the actuator 15 changes the rotational angle position of the convex cam 17 and the concave cam 18 to transmit power as in the first embodiment.
  • the roller pair to be selected is selected.
  • the convex cam 217 is a cam that protrudes in one direction.
  • a selector shaft 216 is connected to the cam base position, and rotational movement by an actuator (not shown) is applied to the first idler roller 28. Convert to radial movement.
  • the concave cam 218 is a disc-shaped cam in which a concave portion 218b is formed at one place on the circumference of the outer peripheral portion 218a, and a selector shaft 216 is connected to the center position of the disc, The rotational movement by the actuator is converted into the radial movement of the second idler roller 29.
  • the roller pair selection mechanism 210 achieves the following two drive transmission modes by selecting a roller pair.
  • the selector shaft 216 is rotated to a position where the first idler roller 28 contacts the main motor roller 24 and the compressor roller 26 as shown in FIG. At this time, the second idler roller 29 is in a roller non-contact position. If the first idler roller 28 comes into contact with both the rollers 24 and 26 by the rotation of the selector shaft 216, a pressing force corresponding to the transmission torque is applied to the wedge effect between the main motor roller 24 and the first idler roller 28. Automatically generated by Accordingly, a drive transmission path is formed by a torque flow flowing from the main motor 21 ⁇ the motor shaft 211 ⁇ the main motor roller 24 ⁇ the first idler roller 28 ⁇ the compressor roller 26 ⁇ the compressor shaft 213 ⁇ the compressor 23. As a result, the compressor shaft of the air conditioner can be driven by rotating the compressor shaft 213 using the main motor 21 as a drive source.
  • the selector shaft 216 is rotated to a position where the second idler roller 29 contacts the sub motor roller 25 and the compressor roller 26 as shown in FIG. At this time, the first idler roller 28 is in a roller non-contact position.
  • a pressing force corresponding to the transmission torque is applied to the wedge effect between the sub motor roller 25 and the second idler roller 29.
  • a drive transmission path is formed by a torque flow flowing from the sub motor 22 ⁇ the motor shaft 212 ⁇ the sub motor roller 25 ⁇ the second idler roller 29 ⁇ the compressor roller 26 ⁇ the compressor shaft 213 ⁇ the compressor 23.
  • the compressor shaft of the air conditioner can be driven by rotating the compressor shaft 213 using the sub motor 22 as a drive source.
  • the second idler roller 29 falls into the concave portion 218b of the concave cam 218 by the rotation of the selector shaft 216 and contacts the rollers 25 and 26, and falls into the concave portion 218b.
  • Neutral mode is achieved when held at no angular rotation position. That is, in the neutral mode, none of the two idler rollers 28 and 29 come into contact with any of the three rollers 24, 25, and 26. Since other operations are the same as those of the first embodiment, the description thereof is omitted.
  • the first drive source is a main motor 21;
  • the second drive source is a sub motor 22;
  • the auxiliary machine is a compressor 23 of an electric vehicle driven by the main motor 21 or the sub motor 22 (FIGS. 9 and 10).
  • Examples 1 and 2 an example in which a plurality of rollers connected to a drive source and a rotation shaft of an auxiliary machine are arranged at equal intervals on the circumference with the same diameter is shown.
  • the arrangement of the plurality of rollers may be an example of rollers having different diameters and arranged in a straight line shape or an uneven shape at unequal intervals according to the in-vehicle layout of the drive source or the auxiliary machine.
  • Examples 1 and 2 an example of an actuator that rotates by an electric motor is shown as an actuator.
  • the actuator may be an example using an actuator that moves linearly, such as a cylinder.
  • roller pair selection mechanism an example is shown in which a rotational motion is converted into a radial linear motion by a cam mechanism.
  • the roller pair selection mechanism may be an example of selecting a roller pair using a link mechanism or the like.
  • auxiliary machine may be an example using a water pump or the like other than the compressor, or may be an example including not only one auxiliary machine but also a plurality of auxiliary machines.
  • Example 1 shows an example in which the vehicle auxiliary device drive device of the present invention is applied to a hybrid vehicle
  • Example 2 shows an example in which the vehicle auxiliary device drive device of the present invention is applied to an electric vehicle.
  • the vehicle auxiliary device drive apparatus of the present invention can be applied to other vehicles such as engine vehicles. In short, any vehicle including two drive sources and at least one auxiliary machine can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Friction Gearing (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Transmission Devices (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

 補機の駆動時、フリクション負荷が抑えられるだけでなく、効率の良い駆動源の選択を可能とすることで、エネルギー損失を抑制すること。 エンジン(1)と、モータ/ジェネレータ(2)と、コンプレッサ(3)と、を備える。この車両用補機の駆動装置において、エンジン(1)と、モータ/ジェネレータ(2)と、コンプレッサ(3)に有する回転軸のそれぞれに、エンジンローラ(4),モータ/ジェネレータローラ(5),コンプレッサローラ(6)を連結する。ローラ(4),(5),(6)の間に形成された隙間位置に、それぞれ第1アイドラローラ(7),第2アイドラローラ(8),第3アイドラローラ(9)を配置する。そして、アイドラローラ(7),(8),(9)をローラ接触方向に移動させることで、ローラ(4),(5),(6)の中からアイドラローラ(7),(8),(9)を介在させて動力を伝達するローラ対を選択するローラ対選択機構(10)を設けた。

Description

車両用補機の駆動装置
 本発明は、車両に搭載された補機を2つの駆動源のどちらかにより駆動する車両用補機の駆動装置に関する。
 従来、エンジンクランク軸とモータ出力軸と圧縮機駆動軸にそれぞれ設けられたプーリと、各プーリ間に巻き掛けられたベルトと、を伝達機構とし、圧縮機等の補機を駆動させる車両用補機の駆動装置が知られている(例えば、特許文献1参照)。
特開2002-201975号公報
 しかしながら、従来の車両用補機の駆動装置にあっては、全ての補機及び駆動源が同一のベルト・プーリで駆動される構成になっていた。このため、全ての補機及び駆動源が常に連れ回りし、不要な駆動源あるいは補機のフリクションが駆動負荷となって加わることで、エネルギー損失の増大を招いてしまう、という問題があった。
 本発明は、上記問題に着目してなされたもので、補機の駆動時、フリクション負荷が抑えられるだけでなく、効率の良い駆動源の選択を可能とすることで、エネルギー損失を抑制することができる車両用補機の駆動装置を提供することを目的とする。
 上記目的を達成するため、本発明の車両用補機の駆動装置は、第1駆動源と第2駆動源のうち、どちらかの駆動源により駆動される少なくとも一つの補機を備えている車両用補機の駆動装置であることを前提とする。
この車両用補機の駆動装置において、第1駆動源に有する回転軸と、第2駆動源に有する回転軸と、補機に有する回転軸と、のそれぞれにローラを連結する。回転軸のそれぞれに連結された複数のローラの間に形成された隙間位置に、それぞれアイドラローラを配置する。そして、アイドラローラをローラ接触方向に移動させることで、複数のローラの中からアイドラローラを介在させて動力を伝達するローラ対を選択するローラ対選択機構を設けた。
 よって、ローラ対選択機構によってアイドラローラをローラ接触方向に移動させることで、複数のローラの中からアイドラローラを介在させて動力を伝達するローラ対が選択される。
したがって、例えば、第1駆動源により補機を駆動するとき、第1駆動源と補機の間で駆動伝達経路を形成すると、この駆動伝達経路から第2駆動源が切り離される。つまり、不要な駆動源あるいは補機のフリクションが駆動負荷となって加わることがない。また、補機の駆動源として、第1駆動源と第2駆動源のうち、より効率の良い方を選択することが可能になる。
このように、アイドラローラの接触方向への移動により動力を伝達するローラ対を選択する構成としたことで、補機の駆動時、フリクション負荷が抑えられるだけでなく、効率の良い駆動源の選択を可能とすることで、エネルギー損失を抑制することができる。
実施例1の車両用補機の駆動装置を示す全体システム図である。 実施例1の車両用補機の駆動装置においてローラ対選択機構の凸カムによるローラ対の選択切り替えを示すローラ非接触断面図である。 実施例1の車両用補機の駆動装置においてローラ対選択機構の凸カムによるローラ対の選択切り替えを示すローラ接触断面図である。 実施例1の車両用補機の駆動装置においてローラ対選択機構の凹カムによるローラ対の選択切り替えを示すローラ非接触断面図である。 実施例1の車両用補機の駆動装置においてローラ対選択機構の凹カムによるローラ対の選択切り替えを示すローラ接触断面図である。 実施例1の車両用補機の駆動装置において第1駆動伝達モードを選択したときのモータによるエンジン始動作用を示す作用説明図である。 実施例1の車両用補機の駆動装置において第1駆動伝達モードを選択したときのエンジンによる発電作用を示す作用説明図である。 実施例1の車両用補機の駆動装置において第2駆動伝達モードを選択したときのエンジンによる発電&エアコン駆動作用を示す作用説明図である。 実施例1の車両用補機の駆動装置において第3駆動伝達モードを選択したときのエンジンによるエアコン駆動作用を示す作用説明図である。 実施例1の車両用補機の駆動装置において第4駆動伝達モードを選択したときのモータによるエアコン駆動作用を示す作用説明図である。 実施例2の車両用補機の駆動装置においてメインモータによるエアコン駆動作用を示す作用説明図である。 実施例2の車両用補機の駆動装置においてサブモータによるエアコン駆動作用を示す作用説明図である。
 以下、本発明の車両用補機の駆動装置を実現する最良の形態を、図面に示す実施例1及び実施例2に基づいて説明する。
 まず、構成を説明する。
実施例1における車両用補機の駆動装置の構成を、[全体システム構成]、[ローラ対選択構成]に分けて説明する。
 [全体システム構成]
 図1は、実施例1の車両用補機の駆動装置を示す。以下、図1に基づき、全体システム構成を説明する。
 実施例1の車両用補機の駆動装置は、ハイブリッド車に適用され、図1に示すように、エンジン1(第1駆動源)と、モータ/ジェネレータ2(第2駆動源)と、コンプレッサ3(補機)と、が搭載されている。そして、駆動伝達要素であるローラとして、エンジンローラ4と、モータ/ジェネレータローラ5と、コンプレッサローラ6と、を備える。駆動伝達経路を選択するアイドラローラとして、第1アイドラローラ7と、第2アイドラローラ8と、第3アイドラローラ9と、を備える。さらに、駆動伝達経路を選択するとき、各アイドラローラ7,8,9を径方向に移動させるローラ対選択機構10と、を備えている。
 前記コンプレッサ3は、車室内の空調を行うエアコンシステムにおいて、熱媒体を圧縮するものであり、エンジン1とモータ/ジェネレータ2のうち、どちらかの駆動源により駆動される。
 前記エンジンローラ4は、エンジン1のクランク軸11(回転軸)に連結されている。前記モータ/ジェネレータローラ5は、モータ/ジェネレータ2のモータ軸12(回転軸)に連結されている。前記コンプレッサローラ6は、コンプレッサ3のコンプレッサ軸13(回転軸)に連結されている。
これらのローラ4,5,6は、図1に示すように、直径を同一径とし、円環状のキャリアケース14に対し回転可能に両端支持されている。そして、ローラ対選択機構10に設けられたアクチュエータ15(図2及び図3参照)のセレクター軸16(回転軸)を中心軸Oとする円周上に、等間隔(120°間隔)で配置されている。各ローラ4,5,6のうち、隣接する2つのローラ間に形成される周方向隙間は、アイドラローラ7,8,9の直径よりも少し小さい寸法としている。
 前記第1アイドラローラ7は、エンジンローラ4とモータ/ジェネレータローラ5の間に形成された周方向隙間に配置されている。前記第2アイドラローラ8は、エンジンローラ4とコンプレッサローラ6の間に形成された周方向隙間に配置されている。前記第3アイドラローラ9は、モータ/ジェネレータローラ5とコンプレッサローラ6の間に形成された周方向隙間に配置されている。
これらのアイドラローラ7,8,9は、図1に示すように、直径を同一径とし、周方向隙間のそれぞれにおいて、キャリアケース14に開口した第1長穴14a,第2長穴14b,第3長穴14cに沿って径方向移動可能に配置されている。
 前記ローラ対選択機構10は、アイドラローラをローラ接触方向に移動させることで、3つのローラ4,5,6の中からアイドラローラ7,8,9のうち、いずれか一つあるいは二つを介在させて動力を伝達するローラ対を選択する機構である。
 [ローラ対選択構成]
 図2は、実施例1の車両用補機の駆動装置においてローラ対選択機構の凸カムによるローラ対の選択切り替えを示し、図3は、凹カムによるローラ対の選択切り替えを示す。以下、図1~図3に基づき、ローラ対選択構成を説明する。
 前記ローラ対選択機構10は、アクチュエータ15による回転運動をアイドラローラ7,8,9の径方向移動に変換する凸カム17(カム)及び凹カム18(カム)を有する。そして、凸カム17及び凹カム18は、セレクター軸16に一体に設けられ、アクチュエータ15により凸カム17及び凹カム18の回転角位置を変更することで、動力を伝達するローラ対を選択する構成としている。
 前記第1アイドラローラ7は、図1に示すように、第1アイドラローラ7を回転可能に支持する第1ベアリング支持部71が、キャリアケース14に開口した第1長穴14aの内径位置から外径位置まで径方向に移動可能に設けられている。そして、第1ベアリング支持部71の内径側が凸カム17に接し、第1ベアリング支持部71の外径側が、第1スプリング72により内径方向に付勢されている。この第1アイドラローラ7は、第1長穴14aの内径位置にあるときローラ対4,5と非接触を保ち、第1長穴14aの外径位置にあるときローラ対4,5と接触する。つまり、第1アイドラローラ7は、径方向外側へ移動することでローラ接触する。
 前記第2アイドラローラ8は、図1に示すように、第2アイドラローラ8を回転可能に支持する第2ベアリング支持部81が、キャリアケース14に開口した第2長穴14bの内径位置から外径位置まで径方向に移動可能に設けられている。そして、第2ベアリング支持部81の内径側が凸カム17に接し、第2ベアリング支持部81の外径側が、第2スプリング82により内径方向に付勢されている。この第2アイドラローラ8は、第2長穴14bの内径位置にあるときローラ対4,6と非接触を保ち、第2長穴14bの外径位置にあるときローラ対4,6と接触する。つまり、第2アイドラローラ8は、径方向外側へ移動することでローラ接触する。
 前記第3アイドラローラ9は、図1に示すように、第3アイドラローラ9を回転可能に支持する第3ベアリング支持部91が、キャリアケース14に開口した第3長穴14cの内径位置から外径位置まで径方向に移動可能に設けられている。そして、第3ベアリング支持部91の内径側が凹カム18に接し、第3ベアリング支持部91の外径側が、第3スプリング92により内径方向に付勢されている。この第3アイドラローラ9は、第3長穴14cの外径位置にあるときローラ対5,6と非接触を保ち、第3長穴14cの内径位置にあるときローラ対5,6と接触する。つまり、第3アイドラローラ9は、径方向内側へ移動することでローラ接触する。
 前記凸カム17は、図1に示すように、扇形状カムとされ、扇の要位置にセレクター軸16が接続され、アクチュエータ15による回転運動を、第1アイドラローラ7及び第2アイドラローラ8の径方向移動に変換する。すなわち、図2Aに示すように、第1ベアリング支持部71の内径側に接する凸カム17のカム径が小径であり、第1アイドラローラ7が内径位置にあるとき、ローラ対4,5と非接触である。一方、図2Bに示すように、第1ベアリング支持部71の内径側に接する凸カム17のカム径が大径であり、第1アイドラローラ7が内径位置から外径位置へ径方向に移動すると、ローラ対4,5と接触する。同様に、第2ベアリング支持部72の内径側に接する凸カム17のカム径が小径であり、第2アイドラローラ8が内径位置にあるとき、ローラ対4,6と非接触である。一方、第2ベアリング支持部72の内径側に接する凸カム17のカム径が大径であり、第2アイドラローラ8が内径位置から外径位置へ径方向に移動すると、ローラ対4,6と接触する。
 前記凹カム18は、図1に示すように、外周部18aの周上の1箇所に凹部18bを形成した円板状カムとされ、円板の中心位置にセレクター軸16が接続され、アクチュエータ15による回転運動を第3アイドラローラ9の径方向移動に変換する。すなわち、図3Aに示すように、第3ベアリング支持部73の内径側に接する凹カム18のカム径が大径(外周部18a)であり、第3アイドラローラ9が外径位置にあるとき、ローラ対5,6と非接触である。一方、図3Bに示すように、第3ベアリング支持部73の内径側に接する凹カム18のカム径が小径(凹部18b)であり、第3アイドラローラ9が外径位置から内径位置へ径方向に移動すると、ローラ対5,6と接触する。
 前記ローラ対選択機構10は、ローラ対の選択により、下記の4つの駆動伝達モードを達成する。
(a) 第1駆動伝達モード
エンジンローラ4とモータ/ジェネレータローラ5に対して第1アイドラローラ7を接触させた駆動伝達経路によるモードをいう。
(b) 第2駆動伝達モード
エンジンローラ4とモータ/ジェネレータローラ5に対して第1アイドラローラ7を接触させると共に、エンジンローラ4とコンプレッサローラ6に対して第2アイドラローラ8を接触させた駆動伝達経路によるモードをいう。
(c) 第3駆動伝達モード
 エンジンローラ4とコンプレッサローラ6に対して第2アイドラローラ8を接触させた駆動伝達経路によるモードをいう。
(d) 第4駆動伝達モード
 モータ/ジェネレータローラ5とコンプレッサローラ6に対して第3アイドラローラ9を接触させた駆動伝達経路によるモードをいう。
 次に、作用を説明する。
実施例1の車両用補機の駆動装置における作用を、[ローラ対の選択による補機駆動作用]、[第1駆動伝達モード作用]、[第2駆動伝達モード作用]、[第3駆動伝達モード作用]、[第4駆動伝達モード作用]に分けて説明する。
 [ローラ対の選択による補機駆動作用]
 上記のように、実施例1では、ローラ対選択機構10によってアイドラローラ7,8,9をローラ接触方向に移動させることで、3つのローラ4,5,6の中からアイドラローラ7,8,9を介在させて動力を伝達するローラ対を選択する構成を採用した。
したがって、例えば、エンジン1により補機であるコンプレッサ3を駆動するときは、エンジン1とコンプレッサ3の間でローラ4,6と第2アイドラローラ8により駆動伝達経路を形成すると、この駆動伝達経路からモータ/ジェネレータ2が切り離される。また、モータ/ジェネレータ2により補機であるコンプレッサ3を駆動するときは、モータ/ジェネレータ2とコンプレッサ3の間でローラ5,6と第3アイドラローラ9により駆動伝達経路を形成すると、この駆動伝達経路からエンジン1が切り離される。
つまり、不要な駆動源のフリクションが駆動負荷となって加わることがない。また、補機であるコンプレッサ3の駆動源として、エンジン1とモータ/ジェネレータ2のうち、状況に応じてより効率の良い方を選択することが可能になる。
このように、アイドラローラ7,8,9の接触方向への移動により動力を伝達するローラ対を選択する構成としたことで、コンプレッサ3の駆動時、フリクション負荷が抑えられるだけでなく、効率の良い駆動源の選択を可能とすることで、エネルギー損失が抑制される。
 実施例1では、各ローラ4,5,6は、ローラ対選択機構10に設けられたアクチュエータ15のセレクター軸16を中心軸Oとする円周上に周方向隙間を形成して配置し、アイドラローラ7,8,9は、周方向隙間に径方向移動可能に配置した。そして、ローラ対選択機構10は、アクチュエータ15による回転運動をアイドラローラ7,8,9の径方向移動に変換するカム機構により、動力を伝達するローラ対を選択する構成を採用した。
この構成により、中心軸Oとする円形領域内に各ローラ4,5,6及びアイドラローラ7,8,9がコンパクトに配置されると共に、単一のアクチュエータ15を用いたカム機構により、動力を伝達するローラ対が選択される。
 実施例1では、第1駆動源は、エンジン1であり、第2駆動源は、モータ/ジェネレータ2であり、補機は、エンジン1又はモータ/ジェネレータ2により駆動されるハイブリッド車のコンプレッサ3である構成を採用した。
ハイブリッド車の場合、エンジン1とモータ/ジェネレータ2を共に駆動するHEV走行モード、モータ/ジェネレータ2のみを駆動するEV走行モードがある。そして、EV走行モードからHEV走行モードへモード遷移する場合、モータ/ジェネレータ2をスタータモータとしてエンジン1を始動することがあるし、また、HEV走行モードでは、エンジン1の駆動力の一部を用いてモータ/ジェネレータ2により発電することがある。さらに、選択されている走行モードに応じ、コンプレッサ3の駆動源を選択する必要がある。
これに対し、動力を伝達するローラ対の選択機能を、補機の駆動源選択機能としてだけでなく、2つの駆動源間の動力伝達を断接するクラッチ機能として用いることで、ハイブリッド車において要求される様々な駆動伝達経路の形成機能に応えられる。
 実施例1では、ローラ対選択機構10として、アクチュエータ15による回転運動を第1アイドラローラ7及び第2アイドラローラ8の径方向移動に変換する凸カム17と、アクチュエータ15による回転運動を第3アイドラローラ9の径方向移動に変換する凹カム18と、を有する構成を採用した。
この構成により、アクチュエータ15による回転角位置を制御し、凸カム17及び凹カム18により各アイドラローラ7,8,9の径方向規定位置を変更するだけで、4つの駆動伝達モードに切り替えられる。
 [第1駆動伝達モード作用]
 エンジンローラ4とモータ/ジェネレータローラ5に対して第1アイドラローラ7を接触させた駆動伝達経路による第1駆動伝達モードでは、図4に示すエンジン始動パターンと、図5に示すエンジン発電パターンと、が実現される。以下、2つのパターンについて説明する。
 (エンジン始動パターン:図4)
エンジン始動パターンでは、
駆動源:モータ/ジェネレータ2
被駆動:エンジン1
となる。
このエンジン始動パターンは、アクチュエータ15によりセレクター軸16を、図4に示すように、第1アイドラローラ7が、エンジンローラ4とモータ/ジェネレータローラ5に接触する位置に回転させる。このとき、第2アイドラローラ8及び第3アイドラローラ9は、ローラ非接触位置にある。
そして、セレクター軸16の回転により第1アイドラローラ7が両ローラ4,5に接触すれば、伝達トルクに応じた押付力を、モータ/ジェネレータローラ5と第1アイドラローラ7との間でのくさび効果により自動的に発生させる。
したがって、モータ/ジェネレータ2→モータ軸12→モータ/ジェネレータローラ5→第1アイドラローラ7→エンジンローラ4→クランク軸11→エンジン1へと流れるトルクフローによる駆動伝達経路が形成される。この結果、モータ/ジェネレータ2を駆動源として、クランク軸11を回転させることで、エンジン1の始動を行うことができる。
 (エンジン発電パターン:図5)
エンジン発電パターンでは、
駆動源:エンジン1
被駆動:モータ/ジェネレータ2
となる。
エンジン発電パターンは、エンジン始動パターンと同様に、アクチュエータ15によりセレクター軸16を、図5に示すように、第1アイドラローラ7が、エンジンローラ4とモータ/ジェネレータローラ5に接触する位置に回転させる。このとき、第2アイドラローラ8及び第3アイドラローラ9は、ローラ非接触位置にある。
そして、第1アイドラローラ7が両ローラ4,5に接触しても、くさび効果による自動押付は期待できないため、セレクター軸16の角度位置を保持する。
したがって、エンジン1→クランク軸11→エンジンローラ4→第1アイドラローラ7→モータ/ジェネレータローラ5→モータ軸12→モータ/ジェネレータ2へと流れるトルクフローによる駆動伝達経路が形成される。この結果、エンジン1を駆動源として、モータ軸12を回転させることで、モータ/ジェネレータ2により発電を行うことができる。
 [第2駆動伝達モード作用]
 エンジンローラ4とモータ/ジェネレータローラ5に対して第1アイドラローラ7を接触させると共に、エンジンローラ4とコンプレッサローラ6に対して第2アイドラローラ8を接触させた駆動伝達経路による第2駆動伝達モードでは、図6に示すエンジン1による発電&エアコン駆動パターンが実現される。
エンジン1による発電&エアコン駆動パターンでは、
駆動源:エンジン1
被駆動:モータ/ジェネレータ2及びコンプレッサ3
である。
 エンジン1による発電&エアコン駆動パターンは、アクチュエータ15によりセレクター軸16を、図6に示すように、第1アイドラローラ7が、エンジンローラ4とモータ/ジェネレータローラ5に接触すると共に、第2アイドラローラ8が、エンジンローラ4とコンプレッサローラ6に接触する位置に回転させる。このとき、第3アイドラローラ9のみは、ローラ非接触位置にある。
そして、第1アイドラローラ7が両ローラ4,5に接触しても、くさび効果による自動押付は期待できないため、セレクター軸16の角度位置を保持する。一方、セレクター軸16の回転により第2アイドラローラ8が両ローラ4,6に接触すれば、伝達トルクに応じた押付力を、エンジンローラ4と第2アイドラローラ8との間でのくさび効果により自動的に発生させる。
したがって、エンジン1→クランク軸11→エンジンローラ4→第1アイドラローラ7→モータ/ジェネレータローラ5→モータ軸12→モータ/ジェネレータ2へと流れるトルクフローによる駆動伝達経路が形成される。加えて、エンジン1→クランク軸11→エンジンローラ4→第2アイドラローラ8→コンプレッサローラ6→コンプレッサ軸13→コンプレッサ3へと流れるトルクフローによる駆動伝達経路が形成される。この結果、エンジン1を駆動源として、モータ軸12を回転させることで、モータ/ジェネレータ2により発電を行うことができると共に、コンプレッサ軸13を回転させることで、エアコンのコンプレッサ駆動ができる。
 [第3駆動伝達モード作用]
 エンジンローラ4とコンプレッサローラ6に対して第2アイドラローラ8を接触させた駆動伝達経路による第3駆動伝達モードでは、図7に示すエンジンエアコン駆動パターンが実現される。
このエンジンエアコン駆動パターンでは、
駆動源:エンジン1
被駆動:コンプレッサ3
である。
 エンジンエアコン駆動パターンは、アクチュエータ15によりセレクター軸16を、図7に示すように、第2アイドラローラ8が、エンジンローラ4とコンプレッサローラ6に接触する位置に回転させる。このとき、第1アイドラローラ7及び第3アイドラローラ9は、ローラ非接触位置にある。
そして、セレクター軸16の回転により第2アイドラローラ8が両ローラ4,6に接触すれば、伝達トルクに応じた押付力を、エンジンローラ4と第2アイドラローラ8との間でのくさび効果により自動的に発生させる。
したがって、エンジン1→クランク軸11→エンジンローラ4→第2アイドラローラ8→コンプレッサローラ6→コンプレッサ軸13→コンプレッサ3へと流れるトルクフローによる駆動伝達経路が形成される。この結果、エンジン1を駆動源として、コンプレッサ軸13を回転させることで、エアコンのコンプレッサ駆動ができる。
 [第4駆動伝達モード作用]
 モータ/ジェネレータローラ5とコンプレッサローラ6に対して第3アイドラローラ9を接触させた駆動伝達経路による第4駆動伝達モードでは、図8に示すモータエアコン駆動パターンが実現される。
このモータエアコン駆動パターンでは、
駆動源:モータ/ジェネレータ2
被駆動:コンプレッサ3
である。
 モータエアコン駆動パターンは、アクチュエータ15によりセレクター軸16を、図8に示すように、第3アイドラローラ9が、モータ/ジェネレータローラ5とコンプレッサローラ6に接触する位置に回転させる。このとき、第1アイドラローラ7及び第2アイドラローラ8は、ローラ非接触位置にある。
そして、セレクター軸16の回転により第3アイドラローラ9が両ローラ5,6に接触すれば、伝達トルクに応じた押付力を、モータ/ジェネレータローラ5と第3アイドラローラ9との間でのくさび効果により自動的に発生させる。
したがって、モータ/ジェネレータ2→モータ軸12→モータ/ジェネレータローラ5→第3アイドラローラ9→コンプレッサローラ6→コンプレッサ軸13→コンプレッサ3へと流れるトルクフローによる駆動伝達経路が形成される。この結果、モータ/ジェネレータ2を駆動源として、コンプレッサ軸13を回転させることで、エアコンのコンプレッサ駆動ができる。
 なお、モータエアコン駆動パターンにおいて、セレクター軸16の回転により、第3アイドラローラ9が凹カム18の凹部18bに落ち込んで両ローラ5,6に接触する前後であって、かつ、凹部18bに落ち込まない角度回転位置に保持した場合、ニュートラルモードが実現される。つまり、ニュートラルモードでは、3つのアイドラローラ7,8,9の何れもが、3つのローラ4,5,6の何れにも接触することがない。
 次に、効果を説明する。
実施例1の車両用補機の駆動装置にあっては、下記に列挙する効果を得ることができる。
 (1) 第1駆動源(エンジン1)と、
 前記第1駆動源(エンジン1)とは別の第2駆動源(モータ/ジェネレータ2)と、
 前記第1駆動源(エンジン1)と前記第2駆動源(モータ/ジェネレータ2)のうち、どちらかの駆動源により駆動される少なくとも一つの補機(コンプレッサ3)と、
 を備えた車両用補機の駆動装置において、
 前記第1駆動源(エンジン1)に有する回転軸(クランク軸11)と、前記第2駆動源(モータ/ジェネレータ2)に有する回転軸(モータ軸12)と、前記補機(コンプレッサ3)に有する回転軸(コンプレッサ軸13)と、のそれぞれにローラ(エンジンローラ4,モータ/ジェネレータローラ5,コンプレッサローラ6)を連結し、
 前記回転軸(クランク軸11,モータ軸12,コンプレッサ軸13)のそれぞれに連結された複数のローラ(エンジンローラ4,モータ/ジェネレータローラ5,コンプレッサローラ6)の間に形成された隙間位置に、それぞれアイドラローラ(第1アイドラローラ7,第2アイドラローラ8,第3アイドラローラ9)を配置し、
 前記アイドラローラ(第1アイドラローラ7,第2アイドラローラ8,第3アイドラローラ9)をローラ接触方向に移動させることで、前記複数のローラ(エンジンローラ4,モータ/ジェネレータローラ5,コンプレッサローラ6)の中から前記アイドラローラ(第1アイドラローラ7,第2アイドラローラ8,第3アイドラローラ9)を介在させて動力を伝達するローラ対を選択するローラ対選択機構10を設けた(図1)。
このように、アイドラローラ7,8,9の接触方向への移動により動力を伝達するローラ対を選択する構成としたことで、補機(コンプレッサ3)の駆動時、フリクション負荷が抑えられるだけでなく、効率の良い駆動源(エンジン1又はモータ/ジェネレータ2)の選択を可能とすることで、エネルギー損失を抑制することができる。
 (2) 前記ローラ(エンジンローラ4,モータ/ジェネレータローラ5,コンプレッサローラ6)は、前記ローラ対選択機構10に設けられたアクチュエータ15の回転軸(セレクター軸16)を中心軸Oとする円周上に周方向隙間を形成して複数配置し、
 前記アイドラローラ(第1アイドラローラ7,第2アイドラローラ8,第3アイドラローラ9)は、前記周方向隙間に径方向移動可能に配置し、
 前記ローラ対選択機構10は、前記アクチュエータ15による回転運動を前記アイドラローラ(第1アイドラローラ7,第2アイドラローラ8,第3アイドラローラ9)の径方向移動に変換するカム機構(凸カム17,凹カム18)により、動力を伝達するローラ対を選択する構成とした(図1)。
このため、(1)の効果に加え、中心軸Oとする円形領域内に各ローラ4,5,6及びアイドラローラ7,8,9をコンパクトに配置することができると共に、単一のアクチュエータ15を用いたカム機構により、動力を伝達するローラ対を選択することができる。
 (3) 前記第1駆動源は、エンジン1であり、
 前記第2駆動源は、モータ/ジェネレータ2であり、
 前記補機は、前記エンジン1又は前記モータ/ジェネレータ2により駆動されるハイブリッド車のコンプレッサ3である(図1)。
このため、(1)又は(2)の効果に加え、動力を伝達するローラ対の選択機能を、コンプレッサ3の駆動源選択機能としてだけでなく、エンジン1とモータ/ジェネレータ2間の動力伝達を断接するクラッチ機能として用いることで、ハイブリッド車において要求される様々な駆動伝達経路の形成機能に応えることができる。
 (4) 前記ローラは、前記エンジン1の回転軸(クランク軸11)に連結されたエンジンローラ4と、前記モータ/ジェネレータ2の回転軸(モータ軸12)に連結されたモータ/ジェネレータローラ5と、前記コンプレッサ3の回転軸(コンプレッサ軸13)に連結されたコンプレッサローラ6であり、
 前記アイドラローラは、前記エンジンローラ4と前記モータ/ジェネレータローラ5の間に配置された第1アイドラローラ7と、前記エンジンローラ4と前記コンプレッサローラ6の間に配置された第2アイドラローラ8と、前記モータ/ジェネレータローラ5と前記コンプレッサローラ6の間に配置された第3アイドラローラ9であり、
 前記ローラ対選択機構10は、前記アクチュエータ15による回転運動を前記第1アイドラローラ7及び前記第2アイドラローラ8の径方向移動に変換する凸カム17と、前記アクチュエータ15による回転運動を前記第3アイドラローラ9の径方向移動に変換する凹カム18と、を有する(図1~図3)。
このため、(3)の効果に加え、アクチュエータ15による回転角位置を制御し、凸カム17及び凹カム18により各アイドラローラ7,8,9の径方向規定位置を変更するだけで、4つの駆動伝達モードに切り替えることができる。
 (5) 前記ローラ対選択機構10は、前記エンジンローラ4と前記モータ/ジェネレータローラ5に対して前記第1アイドラローラ7を接触させた駆動伝達経路による第1駆動伝達モードを有する(図4,図5)。
このため、(4)の効果に加え、第1駆動伝達モードを選択することで、モータ/ジェネレータ2によるエンジン始動を行うことができると共に、エンジン1による発電を行うことができる。
 (6) 前記ローラ対選択機構10は、前記エンジンローラ4と前記モータ/ジェネレータローラ5に対して前記第1アイドラローラ7を接触させると共に、前記エンジンローラ4と前記コンプレッサローラ6に対して前記第2アイドラローラ8を接触させた駆動伝達経路による第2駆動伝達モードを有する(図6)。
このため、(4)又は(5)の効果に加え、第2駆動伝達モードを選択することで、エンジン1により発電とエアコン駆動を同時に行うことができる。
 (7) 前記ローラ対選択機構10は、前記エンジンローラ4と前記コンプレッサローラ6に対して前記第2アイドラローラ8を接触させた駆動伝達経路による第3駆動伝達モードを有する(図7)。
このため、(4)~(6)の効果に加え、第3駆動伝達モードを選択することで、エンジン1によるエアコン駆動を行うことができる。
 (8) 前記ローラ対選択機構10は、前記モータ/ジェネレータローラ5と前記コンプレッサローラ6に対して前記第3アイドラローラ9を接触させた駆動伝達経路による第4駆動伝達モードを有する(図8)。
このため、(4)~(7)の効果に加え、第4駆動伝達モードを選択することで、モータ/ジェネレータ2によるエアコン駆動を行うことができる。
 実施例2は、メインモータとサブモータが搭載された電気自動車において補機の駆動源を選択する例である。
 まず、構成を説明する。
実施例2の車両用補機の駆動装置は、電気自動車に適用され、図9に示すように、メインモータ21(第1駆動源)と、サブモータ22(第2駆動源)と、コンプレッサ23(補機)と、が搭載されている。そして、駆動伝達要素であるローラとして、メインモータローラ24と、サブモータローラ25と、コンプレッサローラ26と、を備える。駆動伝達経路を選択するアイドラローラとして、第1アイドラローラ28と、第2アイドラローラ29と、を備える。さらに、駆動伝達経路を選択するとき、アイドラローラ28,29を径方向に移動させるローラ対選択機構210と、を備えている。
 前記コンプレッサ23は、車室内の空調を行うエアコンシステムにおいて、熱媒体を圧縮するものであり、メインモータ21とサブモータ22のうち、どちらかの駆動源により駆動される。
 前記メインモータローラ24は、メインモータ21のモータ軸211(回転軸)に連結されている。前記サブモータローラ25は、サブモータ22のモータ軸212(回転軸)に連結されている。前記コンプレッサローラ26は、コンプレッサ23のコンプレッサ軸213(回転軸)に連結されている。
これらのローラ24,25,26は、図9に示すように、直径を同一径とし、円環状のキャリアケース214に対し回転可能に両端支持されている。そして、ローラ対選択機構210に設けられた図外のアクチュエータのセレクター軸216(回転軸)を中心軸Oとする円周上に、等間隔(120°間隔)で配置されている。各ローラ24,25,26のうち、隣接する2つのローラ間に形成される周方向隙間は、アイドラローラ28,29の直径よりも少し小さい寸法としている。
 前記第1アイドラローラ28は、メインモータローラ24とコンプレッサローラ26の間に形成された周方向隙間に配置されている。前記第2アイドラローラ29は、サブモータローラ25とコンプレッサローラ26の間に形成された周方向隙間に配置されている。
 これらのアイドラローラ28,29は、図9に示すように、直径を同一径とし、周方向隙間のそれぞれにおいて、キャリアケース214に開口した第1長穴214b,第2長穴214bに沿って径方向移動可能に配置されている。
 前記ローラ対選択機構210は、アイドラローラをローラ接触方向に移動させることで、3つのローラ24,25,26の中からアイドラローラ28,29のいずれかを介在させて動力を伝達するローラ対を選択する機構である。
このローラ対選択機構210は、図外のアクチュエータによる回転運動を、第1アイドラローラ28の径方向移動に変換する凸カム217(カム)と、第2アイドラローラ29の径方向移動に変換する凹カム218(カム)を有する。そして、凸カム17及び凹カム18は、セレクター軸16に一体に設けられ、アクチュエータ15により凸カム17及び凹カム18の回転角位置を変更することで、実施例1と同様に、動力を伝達するローラ対を選択する構成としている。
 前記凸カム217は、図9に示すように、一方向に突出する形状のカムとされ、カム基部位置にセレクター軸216が接続され、図外のアクチュエータによる回転運動を、第1アイドラローラ28の径方向移動に変換する。
 前記凹カム218は、図9に示すように、外周部218aの周上の1箇所に凹部218bを形成した円板状カムとされ、円板の中心位置にセレクター軸216が接続され、図外のアクチュエータによる回転運動を第2アイドラローラ29の径方向移動に変換する。
 前記ローラ対選択機構210は、ローラ対の選択により、下記の2つの駆動伝達モードを達成する。
(a) 第1駆動伝達モード
 メインモータローラ24とコンプレッサローラ26に対して第1アイドラローラ28を接触させた駆動伝達経路によるモードをいう。
(b) 第2駆動伝達モード
 サブモータローラ25とコンプレッサローラ26に対して第2アイドラローラ29を接触させた駆動伝達経路によるモードをいう。
 次に、作用を説明する。
実施例2の車両用補機の駆動装置における作用を、[第1駆動伝達モード作用]、[第2駆動伝達モード作用]に分けて説明する。
 [第1駆動伝達モード作用]
 メインモータローラ24とコンプレッサローラ26に対して第1アイドラローラ28を接触させた駆動伝達経路による第1駆動伝達モードでは、図9に示すメインモータエアコン駆動パターンが実現される。
このメインモータエアコン駆動パターンでは、
駆動源:メインモータ21
被駆動:コンプレッサ23
である。
 メインモータエアコン駆動パターンは、図外のアクチュエータによりセレクター軸216を、図9に示すように、第1アイドラローラ28が、メインモータローラ24とコンプレッサローラ26に接触する位置に回転させる。このとき、第2アイドラローラ29は、ローラ非接触位置にある。
そして、セレクター軸216の回転により第1アイドラローラ28が両ローラ24,26に接触すれば、伝達トルクに応じた押付力を、メインモータローラ24と第1アイドラローラ28との間でのくさび効果により自動的に発生させる。
したがって、メインモータ21→モータ軸211→メインモータローラ24→第1アイドラローラ28→コンプレッサローラ26→コンプレッサ軸213→コンプレッサ23へと流れるトルクフローによる駆動伝達経路が形成される。この結果、メインモータ21を駆動源として、コンプレッサ軸213を回転させることで、エアコンのコンプレッサ駆動ができる。
 [第2駆動伝達モード作用]
 サブモータローラ25とコンプレッサローラ26に対して第2アイドラローラ29を接触させた駆動伝達経路による第2駆動伝達モードでは、図10に示すサブモータエアコン駆動パターンが実現される。
このサブモータエアコン駆動パターンでは、
駆動源:サブモータ22
被駆動:コンプレッサ23
である。
 サブモータエアコン駆動パターンは、図外のアクチュエータによりセレクター軸216を、図10に示すように、第2アイドラローラ29が、サブモータローラ25とコンプレッサローラ26に接触する位置に回転させる。このとき、第1アイドラローラ28は、ローラ非接触位置にある。
そして、セレクター軸216の回転により第2アイドラローラ29が両ローラ25,26に接触すれば、伝達トルクに応じた押付力を、サブモータローラ25と第2アイドラローラ29との間でのくさび効果により自動的に発生させる。
したがって、サブモータ22→モータ軸212→サブモータローラ25→第2アイドラローラ29→コンプレッサローラ26→コンプレッサ軸213→コンプレッサ23へと流れるトルクフローによる駆動伝達経路が形成される。この結果、サブモータ22を駆動源として、コンプレッサ軸213を回転させることで、エアコンのコンプレッサ駆動ができる。
 なお、サブモータエアコン駆動パターンにおいて、セレクター軸216の回転により、第2アイドラローラ29が凹カム218の凹部218bに落ち込んで両ローラ25,26に接触する前後であって、かつ、凹部218bに落ち込まない角度回転位置に保持した場合、ニュートラルモードが実現される。つまり、ニュートラルモードでは、2つのアイドラローラ28,29の何れもが、3つのローラ24,25,26の何れにも接触することがない。他の作用は、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例2の車両用補機の駆動装置にあっては、下記の効果を得ることができる。
 (9) 前記第1駆動源は、メインモータ21であり、
 前記第2駆動源は、サブモータ22であり、
 前記補機は、前記メインモータ21又は前記サブモータ22により駆動される電気自動車のコンプレッサ23である(図9及び図10)。
このため、実施例1の(1)又は(2)の効果に加え、動力を伝達するローラ対の選択機能を、コンプレッサ23の駆動源選択機能として用いることで、電気自動車においてバッテリ状態や走行状況等に応じ、より効率の良い駆動源(メインモータ21又はサブモータ22)を選択することで、電力消費を抑制し、走行距離の延長を図ることができる。
 以上、本発明の車両用補機の駆動装置を実施例1,2に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1,2では、駆動源や補機の回転軸に連結される複数のローラを、同径で円周上に等間隔にて配置する例を示した。しかし、複数のローラの配置としては、異径のローラであって、駆動源や補機の車載レイアウトに応じて不等間隔で、直線状や凹凸状に配置する例であっても良い。
 実施例1,2では、アクチュエータとして、電動モータによる回転運動するアクチュエータの例を示した。しかし、アクチュエータとしては、シリンダー等のように直線運動するアクチュエータを用いる例であっても良い。
 実施例1,2では、ローラ対選択機構として、カム機構により回転運動を径方向の直線運動に変換する例を示した。しかし、ローラ対選択機構としては、リンク機構等を用いてローラ対を選択する例であっても良い。
 実施例1,2では、補機として、コンプレッサを用いる例を示した。しかし、補機としては、コンプレッサ以外の例えばウォータポンプ等を用いる例であっても良いし、一つの補機だけでなく、複数の補機を備える例であっても良い。
 実施例1では、本発明の車両用補機の駆動装置をハイブリッド車に適用する例を示し、実施例2では、本発明の車両用補機の駆動装置を電気自動車に適用する例を示した。しかし、本発明の車両用補機の駆動装置は、エンジン車等の他の車両に対しても適用することができる。要するに、2つの駆動源と、少なくとも一つの補機と、を備えた車両であれば適用できる。
関連出願の相互参照
 本出願は、2012年9月10日に日本国特許庁に出願された特願2012-198071に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (9)

  1.  第1駆動源と、
     前記第1駆動源とは別の第2駆動源と、
     前記第1駆動源と前記第2駆動源のうち、どちらかの駆動源により駆動される少なくとも一つの補機と、
     を備えた車両用補機の駆動装置において、
     前記第1駆動源に有する回転軸と、前記第2駆動源に有する回転軸と、前記補機に有する回転軸と、のそれぞれにローラを連結し、
     前記回転軸のそれぞれに連結された複数のローラの間に形成された隙間位置に、それぞれアイドラローラを配置し、
     前記アイドラローラをローラ接触方向に移動させることで、前記複数のローラの中から前記アイドラローラを介在させて動力を伝達するローラ対を選択するローラ対選択機構を設けた
     ことを特徴とする車両用補機の駆動装置。
  2.  請求項1に記載された車両用補機の駆動装置において、
     前記ローラは、前記ローラ対選択機構に設けられたアクチュエータの回転軸を中心軸とする円周上に周方向隙間を形成して複数配置し、
     前記アイドラローラは、前記周方向隙間に径方向移動可能に配置し、
     前記ローラ対選択機構は、前記アクチュエータによる回転運動を前記アイドラローラの径方向移動に変換するカム機構により、動力を伝達するローラ対を選択する構成とした
     ことを特徴とする車両用補機の駆動装置。
  3.  請求項1又は2に記載された車両用補機の駆動装置において、
     前記第1駆動源は、エンジンであり、
     前記第2駆動源は、モータ/ジェネレータであり、
     前記補機は、前記エンジン又は前記モータ/ジェネレータにより駆動されるハイブリッド車のコンプレッサである
     ことを特徴とする車両用補機の駆動装置。
  4.  請求項3に記載された車両用補機の駆動装置において、
     前記ローラは、前記エンジンの回転軸に連結されたエンジンローラと、前記モータ/ジェネレータの回転軸に連結されたモータ/ジェネレータローラと、前記コンプレッサの回転軸に連結されたコンプレッサローラであり、
     前記アイドラローラは、前記エンジンローラと前記モータ/ジェネレータローラの間に配置された第1アイドラローラと、前記エンジンローラと前記コンプレッサローラの間に配置された第2アイドラローラと、前記モータ/ジェネレータローラと前記コンプレッサローラの間に配置された第3アイドラローラであり、
     前記ローラ対選択機構は、前記アクチュエータによる回転運動を前記第1アイドラローラ及び前記第2アイドラローラの径方向移動に変換する凸カムと、前記アクチュエータによる回転運動を前記第3アイドラローラの径方向移動に変換する凹カムと、を有する
     ことを特徴とする車両用補機の駆動装置。
  5.  請求項4に記載された車両用補機の駆動装置において、
     前記ローラ対選択機構は、前記エンジンローラと前記モータ/ジェネレータローラに対して前記第1アイドラローラを接触させた駆動伝達経路による第1駆動伝達モードを有する
     ことを特徴とする車両用補機の駆動装置。
  6.  請求項4又は5に記載された車両用補機の駆動装置において、
     前記ローラ対選択機構は、前記エンジンローラと前記モータ/ジェネレータローラに対して前記第1アイドラローラを接触させると共に、前記エンジンローラと前記コンプレッサローラに対して前記第2アイドラローラを接触させた駆動伝達経路による第2駆動伝達モードを有する
     ことを特徴とする車両用補機の駆動装置。
  7.  請求項4から6までの何れか1項に記載された車両用補機の駆動装置において、
     前記ローラ対選択機構は、前記エンジンローラと前記コンプレッサローラに対して前記第2アイドラローラを接触させた駆動伝達経路による第3駆動伝達モードを有する
     ことを特徴とする車両用補機の駆動装置。
  8.  請求項4から7までの何れか1項に記載された車両用補機の駆動装置において、
     前記ローラ対選択機構は、前記モータ/ジェネレータローラと前記コンプレッサローラに対して前記第3アイドラローラを接触させた駆動伝達経路による第4駆動伝達モードを有する
     ことを特徴とする車両用補機の駆動装置。
  9.  請求項1又は2に記載された車両用補機の駆動装置において、
     前記第1駆動源は、メインモータであり、
     前記第2駆動源は、サブモータであり、
     前記補機は、前記メインモータ又は前記サブモータにより駆動される電気自動車のコンプレッサである
     ことを特徴とする車両用補機の駆動装置。
PCT/JP2013/073696 2012-09-10 2013-09-03 車両用補機の駆動装置 WO2014038554A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380042724.6A CN104541034B (zh) 2012-09-10 2013-09-03 车辆用辅机的驱动装置
JP2014534367A JP5846312B2 (ja) 2012-09-10 2013-09-03 車両用補機の駆動装置
EP13836049.0A EP2894314B1 (en) 2012-09-10 2013-09-03 Drive device for vehicle auxiliary machine
US14/420,919 US9212605B2 (en) 2012-09-10 2013-09-03 Drive device for vehicle auxiliary machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012198071 2012-09-10
JP2012-198071 2012-09-10

Publications (1)

Publication Number Publication Date
WO2014038554A1 true WO2014038554A1 (ja) 2014-03-13

Family

ID=50237163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073696 WO2014038554A1 (ja) 2012-09-10 2013-09-03 車両用補機の駆動装置

Country Status (5)

Country Link
US (1) US9212605B2 (ja)
EP (1) EP2894314B1 (ja)
JP (1) JP5846312B2 (ja)
CN (1) CN104541034B (ja)
WO (1) WO2014038554A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224574A (ja) * 2014-05-27 2015-12-14 日産自動車株式会社 車両用補機の駆動装置
WO2016199186A1 (ja) * 2015-06-08 2016-12-15 日産自動車株式会社 車両用補機駆動装置
WO2016199185A1 (ja) * 2015-06-08 2016-12-15 日産自動車株式会社 車両用補機駆動装置
WO2016207935A1 (ja) * 2015-06-22 2016-12-29 日産自動車株式会社 車両用補機駆動装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109484164A (zh) * 2018-11-27 2019-03-19 义乌吉利发动机有限公司 搭载bsg系统的前端轮系驱动系统及汽车
CN112319204A (zh) * 2020-11-02 2021-02-05 中国第一汽车股份有限公司 一种车辆混动系统及车辆控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201975A (ja) 2001-01-09 2002-07-19 Toyota Industries Corp 車両用補機の駆動装置
JP2002534315A (ja) * 1999-01-07 2002-10-15 ソッギ ホン 電気自転車の自動変速装置
JP2004028153A (ja) * 2002-06-24 2004-01-29 New Delta Ind Co 動力伝動機構

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415237A (en) * 1967-02-14 1968-12-10 Briggs & Stratton Corp Internal combustion engine and balancing means therefor
US5931759A (en) * 1997-05-09 1999-08-03 Nsk Ltd. Friction-roller speed changer
JP2002204501A (ja) * 2000-11-06 2002-07-19 Toyota Motor Corp 内燃機関搭載車両における補機の駆動制御装置
JP3935685B2 (ja) * 2001-04-24 2007-06-27 三菱重工業株式会社 補機駆動歯車装置及びその製造方法
US6789522B2 (en) * 2001-07-23 2004-09-14 John Seymour Engine for aeronautical applications
JP2003191762A (ja) * 2001-12-28 2003-07-09 Honda Motor Co Ltd 車両駆動装置
DE10255079A1 (de) * 2002-11-26 2004-06-03 Bayerische Motoren Werke Ag Einem Aggregate-Riementrieb einer Brennkraftmaschine zugeordnetes Reibradgetriebe für ein gesondertes Nebenaggregat
DE102004028484A1 (de) * 2004-06-11 2005-12-29 Ina-Schaeffler Kg Reibradantrieb
JP4360984B2 (ja) 2004-07-22 2009-11-11 株式会社デンソー エンジンで駆動される補機装置
DE602005012145D1 (de) * 2004-11-10 2009-02-12 Dayco Europe Srl Riemenantrieb mit einem reibrad
JP4694520B2 (ja) * 2007-03-07 2011-06-08 日産自動車株式会社 摩擦伝動変速装置
US7726275B2 (en) * 2007-07-12 2010-06-01 Ford Global Technologies, Llc System and method for powering a mechanically driven accessory component in an automotive vehicle
JP2011163252A (ja) * 2010-02-12 2011-08-25 Honda Motor Co Ltd エンジン
DE102010054629A1 (de) * 2010-12-15 2012-06-21 Schaeffler Technologies Gmbh & Co. Kg Nebenaggregatetrieb einer Brennkraftmaschine und Verfahren zu dessen Betrieb

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534315A (ja) * 1999-01-07 2002-10-15 ソッギ ホン 電気自転車の自動変速装置
JP2002201975A (ja) 2001-01-09 2002-07-19 Toyota Industries Corp 車両用補機の駆動装置
JP2004028153A (ja) * 2002-06-24 2004-01-29 New Delta Ind Co 動力伝動機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2894314A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224574A (ja) * 2014-05-27 2015-12-14 日産自動車株式会社 車両用補機の駆動装置
RU2667540C1 (ru) * 2015-06-08 2018-09-21 Ниссан Мотор Ко., Лтд. Устройство привода вспомогательного механизма для транспортного средства
WO2016199185A1 (ja) * 2015-06-08 2016-12-15 日産自動車株式会社 車両用補機駆動装置
JPWO2016199186A1 (ja) * 2015-06-08 2017-11-16 日産自動車株式会社 車両用補機駆動装置
JPWO2016199185A1 (ja) * 2015-06-08 2017-11-24 日産自動車株式会社 車両用補機駆動装置
CN107709730A (zh) * 2015-06-08 2018-02-16 日产自动车株式会社 车辆用辅机驱动装置
US10036312B2 (en) 2015-06-08 2018-07-31 Nissan Motor Co., Ltd. Auxiliary machine-driving device for vehicle
WO2016199186A1 (ja) * 2015-06-08 2016-12-15 日産自動車株式会社 車両用補機駆動装置
CN107709730B (zh) * 2015-06-08 2019-04-05 日产自动车株式会社 车辆用辅机驱动装置
US10927928B2 (en) 2015-06-08 2021-02-23 Nissan Motor Co., Ltd. Auxiliary machine-driving device for vehicle
WO2016207935A1 (ja) * 2015-06-22 2016-12-29 日産自動車株式会社 車両用補機駆動装置
JPWO2016207935A1 (ja) * 2015-06-22 2017-11-16 日産自動車株式会社 車両用補機駆動装置
US10760471B2 (en) 2015-06-22 2020-09-01 Nissan Motor Co., Ltd. Auxiliary machine-driving device for vehicle

Also Published As

Publication number Publication date
JP5846312B2 (ja) 2016-01-20
CN104541034A (zh) 2015-04-22
EP2894314A1 (en) 2015-07-15
JPWO2014038554A1 (ja) 2016-08-08
EP2894314B1 (en) 2016-06-08
CN104541034B (zh) 2017-02-22
US20150211414A1 (en) 2015-07-30
EP2894314A4 (en) 2015-09-23
US9212605B2 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
JP5846312B2 (ja) 車両用補機の駆動装置
US20140265331A1 (en) Alternator-Starter Assembly Having Gear Reduction System
JP4958126B2 (ja) ハイブリッド車両用駆動装置
US9150092B2 (en) Drive unit for vehicle
JP5625999B2 (ja) 駆動装置
CN104340046A (zh) 具有提供电功率的离合器促动器的车辆动力传动系
JP2014073828A (ja) 電気機械により駆動される補助装置を持つ自動車
CN104619539A (zh) 混合动力驱动装置
US20160280057A1 (en) Power transmission structure of hybrid vehicle with one motor generator and three clutches
US11124056B2 (en) Vehicle drive apparatus
JP2002325308A (ja) ハイブリッド車両
US11846328B2 (en) Friction engagement device
JP2019209703A (ja) インホイールモータ駆動装置およびそれを備える車両
JP5728266B2 (ja) 電動機の冷却構造
JP6241368B2 (ja) 車両用補機の駆動装置
JP2017538900A (ja) 自動車車両、特に、少なくとも二輪の動力車両を動作させるための変速装置、および、それを用いた、特にハイブリッド車のためのパワートレイン
JP6607067B2 (ja) 補機駆動ベルト張力調整装置
JP2011112130A (ja) 動力伝達装置
JP3871214B2 (ja) 自動車の補機駆動装置
JP2008253004A (ja) 車両用駆動装置
JP2018154208A (ja) ハイブリッド車両の駆動装置
KR101971189B1 (ko) 전기차용 변속기, 및 이의 제어방법
JP2015090177A (ja) 摩擦伝達装置
KR20210130507A (ko) 하이브리드 차량용 구동계 장치
KR101667974B1 (ko) 전기자동차용 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534367

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14420919

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013836049

Country of ref document: EP