WO2014035206A2 - 색전용 마이크로스피어의 제조방법 및 약물 함유 나노수송체가 결합된 마이크로스피어의 제조방법 - Google Patents

색전용 마이크로스피어의 제조방법 및 약물 함유 나노수송체가 결합된 마이크로스피어의 제조방법 Download PDF

Info

Publication number
WO2014035206A2
WO2014035206A2 PCT/KR2013/007867 KR2013007867W WO2014035206A2 WO 2014035206 A2 WO2014035206 A2 WO 2014035206A2 KR 2013007867 W KR2013007867 W KR 2013007867W WO 2014035206 A2 WO2014035206 A2 WO 2014035206A2
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
drug
chitosan
acid
doxorubicin
Prior art date
Application number
PCT/KR2013/007867
Other languages
English (en)
French (fr)
Other versions
WO2014035206A3 (ko
Inventor
이재휘
곽병국
김형민
이가현
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120096589A external-priority patent/KR101395956B1/ko
Priority claimed from KR1020120096590A external-priority patent/KR101440681B1/ko
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to JP2015529687A priority Critical patent/JP5957610B2/ja
Priority to US14/424,988 priority patent/US20150224221A1/en
Priority to EP13833842.1A priority patent/EP2891485B1/en
Publication of WO2014035206A2 publication Critical patent/WO2014035206A2/ko
Publication of WO2014035206A3 publication Critical patent/WO2014035206A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/08Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0015Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0042Materials resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/626Liposomes, micelles, vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/36Materials or treatment for tissue regeneration for embolization or occlusion, e.g. vaso-occlusive compositions or devices

Definitions

  • the present invention relates to a method for producing microspheres for color, and to a method for producing microspheres in which drug-containing nanocarriers are combined.
  • Embolization or embolization is a technique for treating tumors by inserting certain substances into blood vessels to block blood that delivers oxygen and nutrients to tumor tissues.
  • color-only inserts must have biocompatible, hydrophilic, non-toxicity, and biodegradability conditions, mainly microspheres such as chitosan, starch, gelatin, albumin, sodium alginic acid, ) Is being studied as a colorant.
  • polyvinyl alcohol (PVA) particles such as Contour ® (Polyvinyl Alcohol, Target, USA) and Ivalon ® (Laboratoire Ingenor, Paris) are the main embolic microsphere materials, which account for more than 80% of the market. Has been used.
  • the polyvinyl alcohol particles have difficulty in obtaining a uniform size due to irregular shapes, which lowers the efficacy of embolization and causes various side effects.
  • Embolism microspheres are not only used for embolization, but are also being studied as carriers for drug genes, etc.
  • the multifunctional embolism microspheres containing drugs have excellent anticancer efficacy.
  • Such microspheres are used in a liquid when inserted into the body, but it is preferable to keep them in a solid state for stable storage, and a lyophilization process is most preferred as a method for this.
  • Lyophilization in medicine is a method of freezing an aqueous solution or a water-containing material, sublimating ice to remove water to remove moisture, and obtaining a dried product.
  • the conventional microspheres are difficult to recover the particles after lyophilization, so the size and shape are irregular, the embolic effect is lowered, the biological activity is lowered, drug release was not maintained.
  • Chitosan is an embolic substance mainly used to contain drugs, which has non-toxicity, biocompatibility, and biodegradability, but is easily broken during swelling in blood vessels for embolism.
  • Korean Patent No. 10-0478227 provides a method for preparing chitosan microspheres, in which ethanol is added to chitosan microspheres to be replaced twice under vacuum for the inclusion of an anticancer agent, and doxorubicin is added to the ions between the molecular chains of chitosan.
  • a method of adsorbing doxorubicin hydrochloride to be immobilized through an exchange reaction is proposed.
  • Korean Patent No. 10-1157260 provides a water-insoluble and water-expandable synthetic anion polymer using polyvinyl alcohol particles that can contain a drug as a composition for chemical embolization.
  • the synthetic anionic polymer has been described for use in chemical embolization after containing doxorubicin in the microspheres by immersion in aqueous solution of doxorubicin for 24 hours using ion exchange reaction, but also limitations in that it cannot precisely control the drug release in the body
  • the present invention has been made to solve the above-mentioned problems in the prior art, trying to provide an optimized freeze-drying method that can maintain the physical properties and drug release aspect of the particles intact even after the freeze-drying process of the embolic microspheres.
  • trehalose as a lyophilizer
  • selecting vortex as the rehydration method
  • the drug is encapsulated in a nano-carrier, and connected through chitosan microspheres and emulsion crosslinking method.
  • an object of the present invention is to provide an optimized freeze-drying method and a rehydration method to allow color microspheres to recover after lyophilization, and also to enclose a drug for cancer treatment in a nano-carrier.
  • the present invention comprises the steps of: a) adding trehalose to the microsphere suspension; b) lyophilizing the suspension at -50 ° C to -100 ° C to prepare a dry microsphere; And c) adding the dried microspheres to water or a buffer and vortexing.
  • the material of the microsphere is chitosan, alginate, chitin, poly N-isopropylacrylamide (PNIPam), polyethylene glycol (PEG), polyL-lactic acid (PLLA), polyD, L- Lactic acid (PDLLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydroxyalkanoate, polydioxanone (PDS), polytrimethylenecarbonate, polylactic acid-co-glycolic acid (PLGA), PolyL-lactic acid-co-caprolactone (PLCL), polyglycolic acid-co-caprolactone (PGCL), hyaluronic acid, chondroitin sulfate, dermatan sulfate, carboxymethylcellulose, heparan sulfate, heparin, keratan Sulfate, carboxymethylhydroxyethylcellulose, cellulose sulfate, cellulose phosphate, carboxymethylguar, carboxymethyl
  • the trehalose is characterized in that the addition of 3% to 20% by volume of the microsphere suspension.
  • the step c) is characterized in that it further comprises a contrast agent.
  • the contrast agent is magnetic resonance imaging (MRI) contrast agent, computed tomography (CT) contrast agent, single photon emission computed tomography (SPECT) contrast agent, positive emission emission tomography (PET), bioluminescence (BL) contrast agent, It is characterized in that it is selected from the group consisting of an optical contrast agent, an X-ray contrast agent, and an ultrasonic contrast agent.
  • MRI magnetic resonance imaging
  • CT computed tomography
  • SPECT single photon emission computed tomography
  • PET positive emission emission tomography
  • BL bioluminescence
  • the vortex is characterized in that it is carried out for 5 to 20 minutes.
  • the microspheres prepared by the method is characterized in that drug release is possible.
  • the drug is characterized in that the drug for the treatment of cancer.
  • the drug for treating cancer is characterized in that doxorubicin.
  • the present invention comprises the steps of a) introducing a drug into the nano-carrier; b) putting the nano-transport into which the drug is introduced into a chitosan solution to make a mixed solution and stirring it; c) an emulsifying step of putting the stirred mixed solution into a solution mixed with an oil and an organic solvent, adding a surfactant and stirring the mixed solution; And d) a crosslinking step of dropping glutaraldehyde-saturated toluene or genipine in the emulsified mixed solution and then stirring the mixture, and providing a preparation method for chitosan microspheres.
  • the nano-carrier is characterized in that selected from the group consisting of liposomes, lipid nanoparticles, nanocapsules, nanoemulsions, and nanostructures.
  • the nanotransporter is characterized in that the liposomes.
  • the drug is characterized in that the drug for the treatment of cancer.
  • the drug for treating cancer is characterized in that doxorubicin.
  • the oil is paraffin oil (alpha-bisabolol), stearyl glycyrrhetinate, salicylic acid, tocopheryl acetate (tocopheryl) acetate, panthenol, glyceryl stearate, cetyl octanolate, isopropyl myristate, 2-ethylene isopelagonate, diethylene di-c12-13 alkyl malate, ceteatyl octanoate, butylene glycol dicaptylate / dicaprate, isononyl isostearate (isononyl isostearate), isostearyl isostearate, cetyl octanoate, octyldodecyl myristate, cetyl esters s), c10-30 cholesterol / lanosterol ester, hydrogenated castor oil, mono-glycerides, diglycerides, triglycerides ( t
  • the organic solvent is petroleum ether, ethyl ether, isopropyl acetate, n-propyl acetate, isobutyl acetate, n-butyl acetate, isobutyl isobutyrate, 2-ethylhexyl acetate, ethylene glycol Diacetate, C9 acetate, C10 acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, methyl n-amyl ketone, dibutyl ketone, cyclohexanone, isophorone, acetaldehyde, n-butylaldehyde, crotonaldehyde , 2-ethylhexaaldehyde, isobutylaldehyde, propionaldehyde, ethyl 3-ethoxypropionate, toluene, xylene
  • the surfactant is sorbitan sesquioleate, glyceryl stearate, polysorbate 60, polysorbate 80, sorbitan trioleate, sorbitan stearate, PEG-20 glycerol Reel isostearate, cetet-25, PEG-60 hydrogenated castor oil, nonoxynol-15, PEG-6-decyltetradecet-20, dimethicone copolyol, glyceryl diisostearate, cetet- 24, cetearyl alcohol, polyoxylethylene noniphenyl ether, PEG-40 hydrogenated castor oil, cetyl dimethicone copolyol, polyglyceryl-3 methylglucose distearate, PEG-100 stearate, sorbitan isostearate Lauryl glutamate sodium, coco ampodiacetate disodium, diethanolamide lauric acid, coconut fatty acid diethanolamide, N, N-bis- (2-hydroxyethy
  • the present invention also provides a composition for embolization comprising chitosan microspheres attached to the drug-containing nano-transporter by emulsion crosslinking as an active ingredient.
  • the drug is characterized in that the drug for cancer treatment.
  • the drug for treating cancer is characterized in that the drug for treating cancer is doxorubicin.
  • the microspheres made by the above method are uniform spherical, have a size of 500 ⁇ m or less, and have a feature of quickly recovering to a form before lyophilization after insertion, which can be useful for embolization.
  • embolic microspheres treated by the method of the present invention has an effect that can be usefully utilized as a carrier capable of releasing anticancer drugs such as doxorubicin, cisplatin, and the like.
  • Embolism microspheres are manufactured in a state where the drug is loaded from the beginning, there is an advantage that does not require a separate drug loading time.
  • the embolic microsphere of the present invention quickly recovers to its original properties even after lyophilization for stable storage, and has an advantage of exhibiting an effective anticancer effect due to the release of anticancer drugs and anticancer drugs due to cancer cell vascular occlusion of the embolic particles. .
  • the microspheres containing the anticancer drugs have been prepared by coating the microspheres with an ion exchange resin and chemically bonding the drugs to bind the anticancer drugs to chitosan by ion exchange.
  • the ion exchange method takes a long time, the drug introduction amount is not controlled, the preparation process has a very troublesome problem.
  • the chitosan microspheres to which the drug-containing nanotransporters of the present invention are bonded are attached to the drug-containing nanotransporters and chitosan microspheres by emulsion crosslinking, so that the amount of drug loss during the washing process is significantly low due to the increase in mutual viscosity.
  • the physical strength of the microspheres also increases.
  • the drug release amount of the chitosan microspheres can be more precisely controlled, and therefore the drug release efficiency of the chitosan microspheres is also significantly increased, and the physical properties of the chitosan microspheres.
  • Increasing the strength has the advantage of having an excellent embolic treatment effect.
  • the chitosan microsphere combined with the drug-containing nanocarrier according to the present invention has a specificity capable of precise control of drug release.
  • the chitosan microsphere exhibits an excellent effect compared to conventional drug-release microspheres. It is possible to control selective drug release, and can be used as a new anticancer implant for embolism.
  • 1 is a view showing the size distribution of particles in order to compare the effect of the four types of cryoprotectant and the effect of the vortexing time.
  • FIG. 2 is a diagram showing the relationship between the average diameter of a chitosan particle and the spherical form with the vortexing time.
  • Figure 3 is a view showing the result of measuring the weight fraction of the particles restored to the original particle size in order to compare the effects of the four types of cryoprotectant.
  • FIG. 4 is a view showing the results of measuring the weight fraction of the particles restored to the original particle size in order to compare the effect of the method and the concentration of trehalose (trehalose) in the process.
  • 5 is a diagram evaluating the effect of drug loading on the size distribution of particles recovered after lyophilization.
  • FIG. 6 is an enlarged view of the form of chitosan particles according to the presence and absence of drug loading before and after lyophilization at 100-fold magnification.
  • FIG. 7 is a view showing the results of the compression test using a physical property analyzer to compare the elasticity of the particles with or without the vortex process for the recovery of the particles.
  • FIG. 8 is a view showing the results of the compression test using a physical property analyzer to compare the elasticity of the particles before and after lyophilization.
  • FIG. 9 is a view showing the results of measuring the release of doxorubicin from chitosan particles before and after lyophilization.
  • FIG. 10 is a diagram showing the composition and characteristics of doxorubicin-containing liposomes, doxorubicin-containing chitosan microspheres, and doxorubicin liposome-containing chitosan embolic microspheres.
  • FIG. 11 is a diagram showing an optimal stirring speed (B) for obtaining doxorubicin-containing chitosan embolic microspheres and the size ratio (A) of the resulting chitosan microspheres.
  • FIG. 12 is a view showing the amount of release of doxorubicin released from the doxorubicin-containing chitosan microspheres and the doxorubicin liposome-containing chitosan microspheres according to the present invention.
  • the present invention relates to an optimized lyophilization method and a rehydration method that can be quickly recovered to form before lyophilization even after lyophilization treatment for stable storage of the embolic microspheres.
  • the present inventors can maintain the original form even after the lyophilization treatment, can be easily used for embolization, and in order to establish the optimal lyophilization conditions that are not affected by drug release, the optimal freeze-drying protective agent, lyophilization to chitosan microspheres Conditions and rehydration methods were studied.
  • the present invention was completed by confirming that trehalose was added as a protective agent before the lyophilization treatment and vortexed to recover to a size and constant spherical shape similar to chitosan microspheres before the lyophilization treatment.
  • vortex in the present invention means to rotate the fluid around a certain center, in one embodiment of the present invention vortex using a vortex (VM-96B, Jeio Tech, Korea)
  • VM-96B Vortex
  • Jeio Tech, Korea Vortex
  • spherical in the present invention refers to the degree of being close to the spherical shape of a particle and is determined by the ratio of the longest length and the shortest length on the particle. That is, the closer to the sphere, the closer to one.
  • substantially spherical in the present invention generally means a form defined as a volume representing a minimum outer surface area, ie, close to a complete sphere. Specifically, “substantially spherical” in the present invention means that when looking at any cross section of the microsphere, the difference between the large and small diameters is less than 20%, less than 10%, or less than 5%.
  • chitosan microspheres were first prepared and lyophilized in an embodiment of the present invention, and the freeze-drying temperature was performed at minus 50 ° C to minus 100 ° C. It may be, but may preferably be below minus 60 °C to minus 80 °C, most preferably it may be carried out at minus 70 °C.
  • lyophilized using a freeze dryer FD 8508, Ilshin Biobase Co. Ltd, Dongduchun, Korea
  • a rehydration method using vortex is more preferable by comparing the rehydration method using a shaking constant temperature water bath and the rehydration method using vortex.
  • the vortex may be preferably performed for 5 to 20 minutes, more preferably 8 to 12 minutes, and most preferably 10 minutes.
  • trehalose was added after preparation of the microsphere suspension and found to be the most preferred method of performing lyophilization (see Example 1.4).
  • the trehalose is preferably added in an amount of 3% to 20% of the microsphere suspension, and more preferably 10%.
  • the materials of the microspheres are biocompatible and have an embolic effect upon insertion into the body, such as chitosan, alginate, chitin, poly N-isopropylacrylamide (PNIPam), polyethylene glycol (PEG), polyL-lactic acid (PLLA), PolyD, L-lactic acid (PDLLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydroxyalkanoate, polydioxanone (PDS), polytrimethylene carbonate, polylactic acid-co-glycol Acid (PLGA), polyL-lactic acid-co-caprolactone (PLCL), polyglycolic acid-co-caprolactone (PGCL), hyaluronic acid, chondroitin sulfate, dermatan sulfate, carboxymethylcellulose, heparan sulfate , Heparin, keratan sulfate, carboxymethyl hydroxyethyl cellulose, cellulose sulfate, cellulose
  • the microspheres of the present invention may further include a contrast agent for distinguishing the embolic effect in blood vessels.
  • the contrast agent may be a magnetic resonance imaging (MRI) contrast agent, a computed tomography (CT) contrast agent, or a single photon.
  • MRI magnetic resonance imaging
  • CT computed tomography
  • PET Emission computed tomography
  • PET positron emission tomography
  • BL bioluminescence
  • optical contrast agent X-ray contrast agent
  • ultrasound contrast agent ultrasound contrast agent
  • the like may be preferably the X-ray contrast agent used in the present invention. It is not limited to this.
  • the type of “drug” used in the present invention is injected for anticancer embolization, and may be preferably a drug for treating cancer.
  • the drug for treating cancer is daunorubicin, adriamycin, doxorubicin, aclarubicin, epirubicin, valerubicin, aidarubicin, mitoxantrone, mitomycin C, pyrarubicin, rubidomycin, carcinomycin , N-acetyl adriamycin, rubidazone, daunolyrin, bleomycin, cisplatin, dactinomycin, or paclitaxel, and the like, and most preferably may be doxorubicin used in the embodiment of the present invention, but is not limited thereto. It is not.
  • the present invention can provide a lyophilization method that can be restored to the form before lyophilization, the color-specific chitosan microspheres are not affected by physical properties and drug release even after lyophilization treatment.
  • the inventors have incorporated the drug into the chitosan microspheres by incorporating the drug into the nanocarrier, as described above, to study how to produce microspheres that are capable of precise control of drug release while being biocompatible.
  • the use of chitosan microspheres combined with drug-containing nanotransporters the drug content can be more precisely controlled, confirming that the embolic effect of chitosan microspheres also significantly increases the effect and completed the present invention.
  • the present invention is characterized by providing a composition for embolization comprising a drug-containing nanotransporter attached to chitosan microspheres using an emulsion crosslinking method as an active ingredient.
  • emulsification crosslinking method refers to a process of emulsifying two or more solutions to form an emulsion and a process of undergoing a crosslinking process to chemically form a covalent bond with the formed emulsion.
  • the embolization composition provided by the present invention has a swelling property in a pharmaceutically acceptable solution, it was confirmed that the diameter before swelling is suitable for drug delivery to 100 to 600 ⁇ m.
  • liposomes were prepared using liposomes as nanotransporters, and then doxorubicin liposomes were prepared by adding doxorubicin, an anticancer drug. And the doxorubicin is not encapsulated in the doxorubicin liposomes, and the fluorescence was measured, the amount of doxorubicin unencapsulated from the measured value, it was possible to find out the exact amount of doxorubicin is injected into liposomes (see Example 2.2) ).
  • doxorubicin liposomes were bound using microspheres and emulsion crosslinking (see Example 2.3). Since the exact amount of doxorubicin is encapsulated in liposomes, the amount of doxorubicin encapsulated in microspheres can also be determined.
  • liposomes are selected as nanotransporters, and doxorubicin is selected as a drug for cancer treatment, but is not limited thereto.
  • the present invention provides a method for preparing chitosan microspheres comprising the following steps.
  • the nano transporter is a lipid-based material or a polymer material, and may combine drugs by using a crosslinking agent on its surface. Accordingly, the nanotransporter of the present invention is used as a drug carrier, and may be liposomes, lipid nanoparticles, nanocapsules, nanoemulsions, or nanostructures, and the like, preferably liposomes or lipid nanoparticles, and most preferably. It may be a liposome used in the embodiment of the present invention, but is not limited thereto.
  • Glutaraldehyde saturated toluene or genipin (genipin) used in the present invention is not limited to this, and may be used as long as it can be used as a crosslinking agent.
  • the type of “drug” used in the present invention is introduced for anticancer embolization, and may be preferably a drug for treating cancer.
  • the drug for treating cancer is daunorubicin, adriamycin, doxorubicin, aclarubicin, epirubicin, valerubicin, aidarubicin, mitoxantrone, mitomycin C, pyrarubicin, rubidomycin, carcino Mycin, N-acetyl adriamycin, rubidazone, daunolyrin, bleomycin, cisplatin, dactinomycin, or paclitaxel may be included, and most preferably may be doxorubicin used in embodiments of the present invention, but is not limited thereto. It doesn't happen.
  • the oil may be used to emulsify the nano-carrier and chitosan microspheres, preferably paraffin oil, alpha-bisabolol, stearyl glycyrrhetinate , Salicylic acid, tocopheryl acetate, panthenol, glyceryl stearate, cetyl octanolate, isopropyl myristate, 2-ethylene 2-ethylene isopelagonate, di-c12-13 alkyl malate, ceteatyl octanoate, butylene glycol dicaptylate / dicaprate ( butylene glycol dicaptylate / dicaprate), isononyl isostearate, isostearyl isostearate, cetyl octanate oate), octyldodecyl myristate, cetyl esters, c10-30 cholesterol / lanosterol ester, hydrogenated castor oil,
  • the organic solvent is a solvent used for mixing the nano-carrier and the microsphere, petroleum ether, ethyl ether, isopropyl acetate, n-propyl acetate, isobutyl acetate, n-butyl acetate, isobutyl isobutyrate , 2-ethylhexyl acetate, ethylene glycol diacetate, C9 acetate, C10 acetate, methyl ethyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, methyl n-amyl ketone, dibutyl ketone, cyclohexanone, isophorone, acet Aldehyde, n-butylaldehyde, crotonaldehyde, 2-ethylhexaaldehyde, isobutylaldehyde, propionaldehyde, ethyl 3-e
  • the surfactant is added to the chitosan microspheres, nano-carrier, oil and organic solvent in the emulsification process, sorbitan sesquioleate, glyceryl stearate, polysorbate 60, Polysorbate 80, sorbitan trioleate, sorbitan stearate, PEG-20 glyceryl isostearate, cetet-25, PEG-60 hydrogenated castor oil, nonoxynol-15, PEG-6-decyltetra Decet-20, dimethicone copolyol, glyceryl diisostearate, cetet-24, cetearyl alcohol, polyoxylethylene noniphenyl ether, PEG-40 hydrogenated castor oil, cetyl dimethicone copolyol, polyglycerol Reyl-3 methylglucose distearate, PEG-100 stearate, sorbitan isostearate, lauryl glutamate sodium, coco ampodiacetate dis
  • the present invention can provide a composition for embolization comprising chitosan microspheres coupled to the drug-containing nano-transporter by emulsion crosslinking as an active ingredient.
  • chitosan was used as a material for embolization microspheres, and the preparation of chitosan microspheres used a method previously developed by the present inventors (Korean Patent No. 10-1058196).
  • chitosan (about 85% diacetylated) was dissolved in an aqueous 5% (v / v) acetic acid solution to prepare a chitosan solution having a concentration of 4% (w / v), and polyethylene glycol to chitosan was prepared in the viscous chitosan solution.
  • Freeze-drying in the present invention 3ml of the chitosan microsphere suspension prepared by the above process in a 20ml glass vial, frozen at minus 70 °C and then dried in a freeze dryer (FD 8508, Ilshin Biobase Co.Ltd, Korea), freeze The protecting agent was added to the prepared microsphere suspension before freeze drying.
  • a freeze dryer FD 8508, Ilshin Biobase Co.Ltd, Korea
  • the particle size distribution was evaluated using a sieve for the evaluation of recoverability.
  • the particle shape was observed under a microscope and the average particle size and spherical shape were observed. Was measured.
  • 50 chitosan microspheres were randomly selected to measure size and spherical shape, and image analysis software (Scopephoto, Hangzhou, China) was used.
  • the spherical shape was obtained by the ratio of the longest length to the shortest length of the particles.
  • the average size of particles rehydrated at 50 rpm for 12 hours or 24 hours using a shaking constant temperature bath was small and the shape of chitosan microspheres was very irregular. It is believed that the particles recovered at a slower rate due to the slower water penetration rate.
  • FIG. 1 (A) The size distribution of chitosan microspheres vortexed for 5 minutes is shown in FIG. 1 (A). The results were evenly distributed between 200 and 500, showing a large difference from 400.5 ⁇ 42.0 ⁇ m, the size of chitosan microspheres before lyophilization. .
  • Figure 1 (b) is a result of the vortex for 10 minutes, showing a result of 300 to 500, it can be seen that the size of the chitosan microspheres after vortexing is similar to the original particle size of 400.5 ⁇ 42.0 ⁇ m before lyophilization have.
  • Figure 1 (C) is a result of vortexing for 15 minutes, vortexing for 15 minutes, resulting in excessive collisions between the particles fully recovered, the size of the particles was not uniform as a whole.
  • the sphericity and mean diameter of chitosan microspheres with vortex treatment time were compared and shown in FIG. 2.
  • the spherical shape of the microspheres before lyophilization was 1.008 ⁇ 0.015, and chitosan microspheres vortexed for 10 minutes had the closest value.
  • the most effective cryoprotectant was selected, the method of applying the selected cryoprotectant and the evaluation to select the most appropriate concentration were conducted.
  • the optimal process selected from the above evaluations for the embolized particles not loaded with drugs was applied to the particles loaded with doxorubicin, an anticancer agent, to evaluate whether they had the same recovery ability.
  • the particle size distribution was evaluated using a sieve, and is shown in FIG. 5.
  • the particle shape was observed through a microscope, and the average particle size and spherical shape were measured and shown in Table 2 below.
  • the size of chitosan microspheres was 300-500 ⁇ m even if the drug was loaded, and it was confirmed that the drug loading had the same result without affecting the lyophilization process and recoverability.
  • the elasticity of the particles before and after lyophilization was evaluated according to the results of the previous study that the elastic particles which were easily deformed showed better embolic effect.
  • compression test was performed using a water light analyzer (TA plus, Lloyd Instrument Ltd., UK). The light spectrometer probe was used with a flat cross section having a diameter of 5 mm and a length of 50 mm, using a 100N load cell. Since the particle size is very small in micro units, about 150 particles were unfolded in a single layer and evaluated in a state of saline to prevent the particles from drying by exposure to air.
  • the evaluation was started in the state where the probe of the water analyzer was immediately in contact with the particles, and the experiment was performed until the diameter of the microsphere was deformed by 30-50% by compressing at a speed of 1 ⁇ m / s.
  • the compressive force applied to individual particles was measured by dividing the total compressive force measured according to the previous study by the total number of particles.
  • the purpose of the evaluation is to confirm that the particles subjected to the inventive recovery optimization process are recovered to properties similar to those of the particles before lyophilization, and the results are shown in FIG. 8.
  • the particles before lyophilization were 2.56 ⁇ 0.30 (x10 -3 N) and the particles recovered after lyophilization were slightly increased to 2.96 ⁇ 0.40 (x10 -3 N), but the statistics were slightly increased. There was no statistically significant difference. In other words, it can be judged that the original state is recovered without any change in elasticity.
  • there was no statistically significant change which is considered to be because the particles recovered the original shape after the compression test due to the elasticity of the particles.
  • the medium for evaluating the drug release pattern was phosphate buffered saline, pH 6.0 containing 140,000 units of lysozyme, and the drug release pattern was observed for 4 days.
  • 0.2 ml of the release medium was analyzed at 0.5, 1, 2, 4, 6 hours and at intervals of 1, 2, 4 days, and immediately after the addition, 0.2 ml of the same composition was added.
  • the released doxorubicin was analyzed with a microplate reader (Synergy H1 Hybrid Reader, Bio Tek, Korea), and the excitation wavelength was measured at 480 nm and the emission wavelength at 550 nm.
  • the results are shown in Figure 9, it was confirmed that the drug release pattern of the particles before lyophilization taken immediately after the preparation and recovered after freeze-drying, similar, and finally the amount released for 4 days was also measured similarly.
  • microspheres undergoing the recovery process after lyophilization recovered not only the properties and properties of the microspheres but also the drug release pattern.
  • Methanol and chloroform were mixed at a ratio of 1: 1 to form a mixed solution, and phosphatidylcholine, a phospholipid, was added to the mixed solution to dissolve it. After evaporation of the solvent using a rotary vacuum evaporator, the remaining thin lipid film was hydrated with 250 mM ammonium sulfate solution. The resulting liposomes were sized using an extruder, and then dialyzed four times with 20% (w / v) sucrose solution to form a transmembrane ammonium sulfate gradient inside and outside the liposomes.
  • Doxorubicin aqueous solution was added to the liposome suspension prepared above to achieve a doxorubicin concentration of 1 mg / ml, and then doxorubicin was encapsulated in liposomes using a shaking incubator at 37 ⁇ 0.5 ° C. Unsealed doxorubicin was then separated by centrifugation (2,000 g, 30 minutes).
  • doxorubicin liposomes were taken from the doxorubicin liposomes, placed in a container equipped with a filter having a molecular weight cut-off (MWCO) of 100 K, and centrifuged at 2,000 g for 30 minutes to separate unopened doxorubicin.
  • the amount of separated doxorubicin was measured by measuring fluorescence at an excitation wavelength of 480 nm and an emission wavelength of 550 nm. Subsequently, drug loading efficiency and drug loading amount were calculated based on the measured values.
  • MWCO molecular weight cut-off
  • the doxorubicin-binding chitosan microspheres had a drug loading efficiency of 56.74% and a drug loading amount of 2.84% .
  • the chitosan microspheres combined with 10 mg of doxorubicin-containing liposomes had a drug loading efficiency of 60.73% and a drug loading amount of 0.19%.
  • Chitosan microspheres bound to 30 mg of the containing liposomes had a drug encapsulation efficiency of 91.09% and drug loading of 1.09%.
  • Chitosan microspheres combined with 50 mg of doxorubicin containing liposomes had a drug encapsulation efficiency of 93.91% and drug loading of 1.88%.
  • Doxorubicin-containing chitosan microspheres Dox-CSMS
  • doxorubicin liposome-containing microspheres for comparison were prepared by an emulsification-crosslinking method.
  • Chitosan was dissolved in 5% acetic acid solution in a glass vial, and then doxorubicin and doxorubicin liposomes were added and stirred for 1 hour.
  • 6 mg of doxorubicin and 120 mg of chitosan microspheres were prepared in preparation of doxorubicin chitosan microspheres, and 0.5 mg of doxorubicin liposomes in preparation of chitosan microspheres containing 10 mg of doxorubicin liposomes (LDox10-CSMS).
  • chitosan microspheres were prepared in 120mg, chitosan microspheres containing 30mg of doxorubicin liposome (LDox30-CSMS) in the preparation of doxorubicin liposomes 1.5mg, chitosan microspheres were prepared in 120mg, doxorubicin liposomes contained 50mg In preparing the prepared chitosan microspheres (LDox50-CSMS), 2.5 mg of doxorubicin liposomes and 120 mg of chitosan microspheres were prepared.
  • LDox30-CSMS doxorubicin liposomes
  • doxorubicin chitosan and doxorubicin liposome chitosan solution prepared above were added to 30 ml of a mixture of paraffin oil and petroleum ether at a ratio of 7: 5, respectively, and sorbitan sesquioleate (A) as a surfactant.
  • FIG. 11A shows the results of separating chitosan microspheres in each size range using a sieve after preparation of doxorubicin-containing chitosan microspheres and doxorubicin liposome-containing chitosan microspheres.
  • the stirring speed was adjusted to obtain as many microspheres as possible in the range of 300 to 500 ⁇ m, which is the optimal size of the microspheres used for embolization for liver cancer treatment.
  • FIG. 11B shows the results of finding optimized stirring speeds for efficiently preparing doxorubicin-containing chitosan microspheres in the 300 to 500 ⁇ m size range.
  • the size ratio of each microsphere displayed is the result of preparing each chitosan microsphere at an optimized stirring speed.
  • chitosan microspheres containing 30 mg of doxorubicin liposomes The chitosan solution containing doxorubicin liposomes has a higher viscosity than the chitosan solution containing doxorubicin. Therefore, the chitosan microspheres in the 300-500 ⁇ m size range can be obtained by increasing the stirring speed during emulsification. As shown in FIG. 11B, as the stirring speed was increased, the ratio of chitosan microspheres in the 300 to 500 ⁇ m size range was increased.
  • microspheres of the present invention are manufactured to have an optimal size in the body, so that they swell stably in blood vessels.
  • GST glutaraldehyde saturated toluene
  • the resulting chitosan microspheres were washed three times with petroleum ether, once with acetone and three times with distilled water.
  • the oil phase was taken and the amount of unsealed doxorubicin was calculated by measuring the fluorescence.
  • the drug encapsulation efficiency of the chitosan microspheres was calculated using Equation 1, and the drug encapsulation amount was calculated using Equation 3 below, and the results are shown in FIG. 10.
  • the drug loading efficiency of Dox-CSMS was 56.74% and the drug loading was 2.84%.
  • the drug loading efficiency of LDox10-CSMS was 60.73% and the drug loading was 0.19%, and LDox30-CSMS was 91.09% and The encapsulation amount was 1.09%, LDox50-CSMS showed 93.91% drug loading efficiency and 1.88% drug loading efficiency.
  • Doxorubicin chitosan microspheres release 140 ⁇ g after 24 hours, chitosan microspheres containing 10 mg of doxorubicin liposomes (LDox10-CSMS) 3 ⁇ g after 24 hours, chitosan microspheres containing 30 mg doxorubicin liposomes (LDox30-CSMS) showed 18 ⁇ g after 24 hours and chitosan microspheres containing 50 mg of doxorubicin liposome (LDox50-CSMS) showed 44 ⁇ g after 24 hours. It can be seen that the drug release amount is controlled according to the addition amount of doxorubicin liposomes, and as a result, it was confirmed that drug release can be controlled according to the addition amount of the nano-transporter containing the drug.
  • the lyophilization method of the embolic microsphere of the present invention it is possible to produce a microsphere having stable physical properties even after lyophilization.
  • the microspheres made by the above method are uniform spherical, have a size of 500 ⁇ m or less, and have a feature of quickly recovering to a form before lyophilization after insertion, which can be useful for embolization.
  • the chitosan microspheres to which the drug-containing nanocarrier according to the present invention is bound have specificity capable of precise control of drug release, when used, the chitosan microspheres exhibit superior effects as compared to conventional drug-release microspheres, and thus target tumors. It is possible to control the selective drug release to the embolic effect, and can contribute to the development of the chemotherapy industry.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Dermatology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 동결건조된 색전용 마이크로스피어의 회복성 최적화 공정 및 약물 함유 나노수송체가 결합된 키토산 마이크로스피어에 관한 것으로, 보다 구체적으로는 마이크로스피어의 안정된 보관을 위한 동결건조 처리 전에 동결건조 보호제로 트레할로스(trehalose)를 첨가하고, 동결건조 처리된 마이크로스피어를 와동시켜 재수화하는 회복성 최적화 공정 및 약물/키토산의 비율에 따라서 약물 함유 나노수송체가 결합된 키토산 마이크로스피어로부터 방출되는 약물의 양이 조절되므로, 정밀하게 약물 방출 조절이 가능하도록 한 마이크로스피어 및 이의 제조방법에 관한 것이다. 본 발명에 따른 최적화 공정을 이용하면, 색전용 마이크로스피어의 동결건조 처리 후에도 물리적 성질, 형태, 및 약물 방출정도를 유지할 수 있는 장점이 있으며, 본 발명에 따른 약물 함유 나노수송체가 결합된 키토산 마이크로스피어는, 혈관 내에서 안정적으로 색전을 일으키며, 약물의 방출이 정밀하게 조절되므로 항암치료에 사용될 수 있다.

Description

색전용 마이크로스피어의 제조방법 및 약물 함유 나노수송체가 결합된 마이크로스피어의 제조방법
본 발명은 색전용 마이크로스피어의 제조방법, 및 약물 함유 나노수송체가 결합된 마이크로스피어의 제조방법에 관한 것이다.
색전술(embolization) 또는 색전치료(embolotherapy)는 종양 조직에 산소와 영양분을 전달하는 혈액을 차단하기 위해, 특정 물질을 혈관에 삽입하여 종양을 치료하는 기술이다. 일반적으로 색전용 삽입물은 생체적합(biocompatible), 친수성, 비독성(non-toxicity), 및 생분해성(biodegradability) 조건을 갖추어야 하는데, 주로 키토산, 전분, 젤라틴, 알부민, 소듐알긴산 등과 같은 마이크로스피어(microsphere)가 색전용 물질로 연구되고 있다. 특히, Contour®(폴리비닐 알코올, Target사, USA), Ivalon®(Laboratoire Ingenor사, Paris)과 같은 폴리비닐알콜(PVA) 입자가 시장의 80% 이상을 점유하는 주된 색전 마이크로스피어의 재료로서 수년간 사용되어져 왔다. 그러나 상기 폴리비닐알콜 입자들은 불규칙한 모양에 의해 균일한 크기를 얻기 곤란하여 색전술의 효능을 저하시키고 여러 부작용을 불러일으키는 문제점이 있다.
색전 마이크로스피어는 색전술에 사용될 뿐만 아니라, 약물 유전자 등의 전달체로도 연구되고 있으며, 약물을 함유하고 있는 다기능 색전 마이크로스피어는 우수한 항암치료 효능을 가지고 있다. 이러한 마이크로스피어는 체내에 삽입시 액체에 담겨져 사용되지만, 안정한 보관을 위해서는 고체 상태로 유지하는 것이 바람직하며, 이를 위한 방법으로는 동결건조 공정이 가장 선호된다.
약제에 있어서 동결건조란, 수용액이나 수분을 함유한 재료를 동결시키고 감압하여 얼음을 승화시켜 수분을 제거하여 건조물을 얻는 방법으로, 불안정한 생물학적 활성이 있는 시료를 상온에서 장기간 보존할 수 있게 한다.
또한, 색전용 마이크로스피어에 있어서 변형이 쉬운 탄력성이 있는 입자가 더 뛰어난 색전효과를 나타낸다는 것은 익히 알려져 있다(Trisacryl gelatin microspheres for therapeutic embolization, Ⅱ: Preliminary Clinical evaluation in tumors and arteriovenous malformaitions, Beaujeux et al, Am J Neuroradiol, 1996; 17:541-548).
그러나 종래의 마이크로스피어들은 동결건조 후에 입자가 본래대로 회복되기가 힘들었기 때문에, 크기 및 형태가 불규칙하여 색전 효과가 저하되었고, 생물학적 활성이 저하되어 약물방출량이 유지되지 않았다.
한편, 최근 약물방출이 가능한 색전용 마이크로스피어에 대한 관심이 높아지고 있다. 그러나 종래의 마이크로스피어들은 약물을 함유시키기 위해 약물 용액에 담가 이온교환 과정을 거쳐야 했고, 또한 체내에 삽입되었을 때에도 혈액 안의 이온과 마이크로스피어 안의 약물 이온 간의 이온교환 반응에 의해 약물이 전달되는 방식을 가지고 있었다. 그러므로 체내의 이온을 조절하지 않는 한 약물방출의 제어는 사실상 불가능하다는 단점이 있었다.
키토산은 약물 함유를 위하여 주로 쓰이는 색전물질로써, 비독성(non-toxicity), 생체 적합성(biocompatibility), 및 생분해성(biodegradability)을 조건을 갖추고 있으나, 색전을 위해 혈관 내에서 팽윤하는 과정 중에 쉽게 부서지는 문제점을 가지고 있다. 국내 등록특허 10-0478227에서 키토산 마이크로스피어의 제조방법을 제공하고 있는데, 항암제의 함유를 위하여 키토산 마이크로스피어에 에탄올을 첨가하여 진공 하에서 2회 치환하고, 염산독소루비신을 첨가하여 키토산의 분자쇄 사이에 이온교환 반응을 통해 염산독소루비신을 흡착시켜 고정되게 하는 방법을 제시하고 있다. 그러나 키토산 마이크로스피어에 염산독소루비신을 흡착시킨 후 증류수 세척 과정에서 소실되는 염산독소루비신의 양이 비교적 많아 약물 함유량의 조절이 어렵다는 문제가 있다.
또한 국내 등록특허 10-1157260에는, 화학색전술을 위한 조성물로 약물의 함유가 가능한 폴리비닐알콜 입자를 이용한 수-불용성 및 수-팽창성인 합성 음이온 폴리머를 제공하고 있다. 상기 합성 음이온 폴리머는 독소루비신 수용액에 24시간 동안 담가 이온교환 반응을 이용하여 마이크로스피어 안에 독소루비신을 함유시킨 뒤 화학색전술에 사용함을 기재하고 있으나 역시 체내에서의 약물 방출을 정밀하게 제어할 수 없다는 점에서 한계점을 가지고 있다.
따라서 동결건조 처리 후에도 마이크로스피어가 물리적 안정도 및 초기 약물방출을 유지할 수 있도록 하는 동결건조 방법이 요구되고 있고, 이에 더하여 약물 방출의 정밀한 조절이 가능하며, 물성이 뛰어난 새로운 마이크로스피어의 개발이 요구되고 있는 실정이다.
본 발명은 상기와 같은 종래 기술상의 문제점을 해결하기 위해 안출된 것으로서, 색전 시술용 마이크로스피어의 동결건조 과정 후에도 입자의 물성과 약물 방출 양상을 그대로 유지할 수 있도록 하는 최적화된 동결건조 방법을 제공하고자 노력한 결과, 트레할로스를 동결건조보호제로 사용하고, 재수화 방법으로 와동(vortex)을 선택함으로써, 마이크로스피어가 동결건조 전과 유사하게 회복될 수 있음을 발견하였다.
또한, 약물 방출의 정밀한 조절이 가능하면서도 물리화학적으로 안정적인 성질을 가지는 색전용 삽입물의 제조방법을 제공하고자 연구한 결과, 약물을 나노수송체 안에 봉입시키고, 이를 키토산 마이크로스피어와 유화가교법을 통해 연결시킴으로써 약물 함유 나노수송체가 결합된 키토산 마이크로스피어를 제조하고, 제조된 키토산 미세구가 약물과 키토산의 첨가비율에 의해 약물방출이 정밀하게 조절됨을 발견하고 본 발명을 완성하기에 이르렀다.
즉, 본 발명의 목적은 동결건조 후 색전용 마이크로스피어가 회복성을 가질 수 있도록 하는 최적화된 동결건조 방법 및 재수화 방법을 제공하는 것에 있고, 또한, 나노수송체 안에 암치료용 약물을 봉입시켜 약물 함유 나노수송체를 제조하고, 상기 나노수송체를 유화·가교작용을 이용하여 마이크로스피어와 결합시킴으로써, 체내에서 약물방출의 정밀한 제어가 가능한 특징을 가진 약물 함유 나노수송체가 결합된 마이크로스피어를 제공하고자 하는 것에 있다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위해서, 본 발명은 a) 마이크로스피어 현탁액에 트레할로스(trehalose)를 첨가하여 주는 단계; b) 상기 현탁액을 영하 50℃ 내지 영하 100℃에서 동결건조 시켜 건조 마이크로스피어를 제조하는 단계; 및 c) 상기 건조 마이크로스피어를 물 또는 완충 용액(buffer)에 첨가하고, 와동(vortexing)시키는 단계를 포함하는 색전용 마이크로스피어의 제조 방법을 제공한다.
본 발명의 일구현예로, 상기 마이크로스피어의 재료는 키토산, 알지네이트, 키틴, 폴리 N-이소프로필아크릴아미드(PNIPam), 폴리에틸렌 글리콜(PEG), 폴리L-락트산(PLLA), 폴리D,L-락트산(PDLLA), 폴리글리콜산(PGA), 폴리카프로락톤(PCL), 폴리하이드록시알카노에이트, 폴리다이옥산온(PDS), 폴리트라이메틸린카보네이트, 폴리락트산-co-글리콜산(PLGA), 폴리L-락트산-co-카프로락톤(PLCL), 폴리글리콜산-co-카프로락톤(PGCL), 히알루론산, 콘드로이틴 설페이트, 더마탄(dermatan) 설페이트, 카르복시메틸셀룰로오스, 헤파란 설페이트, 헤파린, 케라탄 설페이트, 카르복시메틸하이드록시에틸셀룰로오스, 셀룰로오스 설페이트, 셀룰로오스 포스페이트, 카르복시메틸구아르, 카르복시메틸하이드록시프로필구아르, 카르복시메틸하이드록시에틸구아르, 잔탄검, 겔란검(gellan gum), 웰란검(welan gum), 람산검(rhamsangum), 아가로스, 푸르셀라란(furcellaran), 펙틴, 아라비아 고무, 트라가칸트 고무(gum tragacanth), 카라기난(carrageenans), 스타치 포스페이트, 스타치 숙시네이트, 글리코아미노글리칸, 폴리사카라이드, 폴리펩타이드, 아크릴아미드, N-비닐피롤리돈, 디메틸아크릴아미드, 아크릴산, 메타크릴산, 무수말레인산, 비닐설폰산, 스티렌카르복실산 2-아크릴아미도-2-메틸-프로판설폰산, 비닐포스폰산, 2-메틸아크릴로일옥시에틸설폰산, 젤라틴, 및 콜라겐으로 이루어지는 군으로부터 선택되는 것을 특징으로 한다.
본 발명의 다른 구현예로, 상기 트레할로스는 마이크로스피어 현탁액의 부피대비 3% 내지 20%로 가해주는 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 c)단계는 조영제를 추가로 포함하는 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 조영제는 MRI(magnetic resonance imaging) 조영제, CT(computed tomography) 조영제, SPECT(single photon emission computed tomography) 조영제, PET(positron emission tomography), BL(bioluminescence) 조영제, 광학 조영제, X-ray 조영제, 및 초음파 조영제로 이루어지는 군으로부터 선택되는 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 와동은 5분 내지 20분 동안 수행되는 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 방법을 통해 제조되는 마이크로스피어는 약물 방출이 가능한 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 약물은 암치료용 약물인 것을 특징으로 한다.
본발명의 또다른 구현예로, 상기 암치료용 약물은 독소루비신인 것을 특징으로 한다.
또한, 본 발명은 a) 나노수송체에 약물을 도입하는 단계; b) 상기 약물이 도입된 나노수송체를 키토산 용액에 넣어주어 혼합용액을 만들어 교반시키는 단계; c) 상기 교반시킨 혼합용액을 오일 및 유기용매를 섞은 용액에 넣고 계면활성제를 투입하여 교반하는 유화 단계; 및 d) 상기 유화된 혼합용액에 글루타르알데하이드포화톨루엔 또는 게니핀을 점적한 후 교반하는 가교 단계;를 포함하는 키토산 마이크로스피어의 제조방법을 제공한다.
본 발명의 일 구현예로, 상기 나노수송체는 리포좀, 지질나노입자, 나노캡슐, 나노에멀젼, 및 나노구조체로 이루어진 군으로부터 선택되는 것을 특징으로 한다.
본 발명의 다른 구현예로, 상기 나노수송체는 리포좀인 것을 특징으로 한다.
본 발명의 또 다른 구현예로, 상기 약물은 암치료용 약물인 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 암치료용 약물은 독소루비신인 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 오일은 파라핀오일(paraffin oil), 알파-비사볼롤 (α-bisabolol), 스테아릴 글리세레티네이트 (stearyl glycyrrhetinate), 살리실산 (salicylic acid), 토코페릴 아세테이트 (tocopheryl acetate), 판테놀 (panthenol), 글리세릴 스테아레이트 (glyceryl stearate), 세틸옥탄올레이트 (cetyl octanolate), 이소프로필 미리스테이트 (isopropyl myristate), 2-에틸렌 이소펠라고네이트 (2-ethylene isopelagonate), 디-c12-13 알킬 말레이트 (di-c12-13 alkyl malate), 세테아틸 옥타노에이트 (ceteatyl octanoate), 부틸렌 글리콜 디카프틸레이트/디카프레이트 (butylene glycol dicaptylate/dicaprate), 이소노닐 이소스테아레이트 (isononyl isostearate), 이소스테아릴 이소스테아레이트 (isostearyl isostearate), 세틸 옥타노에이트 (cetyl octanoate), 옥틸도데실 미리스테이트 (octyldodecyl myristate), 세틸 에스테르류 (cetyl esters), c10-30 콜레스테롤/라노스테롤 에스테르 (c10-30 cholesterol/lanosterol ester), 수소화 카스터 오일 (hydrogenated castor oil), 모노글리세라이드 (mono-glycerides), 디글리세라이드 (diglycerides), 트리글리세라이드 (triglycerides), 비스왁스 (beeswax), 카나우바 왁스 (canauba wax), 숙토스 디스테아레이트 (suctose distearate), PEG-8 비스왁스 (PEG-8 beeswax), 칸델리아 왁스 (candelilla(euphorbia cerifera) wax), 미네랄 오일, 스쿠알렌 (squalene), 스쿠알란 (squalane), 모노글리세라이드, 디글리세라이드, 트리글리세라이드, 중간 사슬 글리세라이드, 미글리올(myglyol), 및 크레모포(cremophor)로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 유기용매는 석유 에테르, 에틸 에테르, 이소프로필 아세테이트, n-프로필 아세테이트, 이소부틸 아세테이트, n-부틸 아세테이트, 이소 부틸 이소부티레이트, 2-에틸헥실 아세테이트, 에틸렌 글리콜 디아세테이트, C9 아세테이트, C10 아세테이트, 메틸 에틸 케톤, 메틸 이소부틸 케톤, 메틸 이소아밀 케톤, 메틸 n-아밀 키톤, 디부틸 케톤, 사이클로헥사논, 이소포론, 아세트알데하이드, n-부틸알데하이드, 크로톤알데하이드, 2-에틸헥사알데하이드, 이소부틸알데하이드, 프로피온알데하이드, 에틸 3-에톡시프로피오네이트, 톨루엔, 자일렌, 트리클로로에탄, 프로필렌 글리콜 모노메틸 에틸 아세테이트, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노부틸 에테르, 디에틸렌 글리콜 모노부틸 에테르 아세테이트, 디부틸 프탈레이트, 이데틸 프탈레이트, 디메틸 프탈레이트, 디옥틸 프탈레이트, 디옥틸 테레프탈레이트, 부틸 옥틸 프탈레이트, 부틸 벤젠 프탈레이트, 디옥틸 아디페이트, 트리에틸렌 글리콜 디-2-에틸헥사노에이트, 트리옥틸 트리메틸리테이트, 글리세릴 트리아세테이트, 글리세릴/트리프로피오닌, 및 2,2,4-트리메틸-1,3-펜타네디올 디이소부틸레이트로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 한다.
본 발명의 또다른 구현예로, 상기 계면활성제는 솔비탄 세스퀴올리에이트, 글리세릴 스테아레이트, 폴리솔베이트 60, 폴리솔베이트 80, 솔비탄 트리올레인산염, 솔비탄 스테아레이트, PEG-20 글리세릴 이소스테아레이트, 세테트-25, PEG-60 수소화 카스터 오일, 노녹시놀-15, PEG-6-데실테트라데세트-20, 디메티콘 코폴리올, 글리세릴 디이소스테아레이트, 세테트-24, 세테아릴 알콜, 폴리옥실에틸렌 노니페닐 에테르, PEG-40 수소화 카스터 오일, 세틸 디메티콘 코폴리올, 폴리글리세릴-3 메틸글루코오스 디스테아레이트, PEG-100 스테아레이트, 솔비탄 이소스테아레이트, 라우릴 글루타메이트 나트륨, 코코암포디아세테이트 디나트륨, 디에탄올아미드 라우릭산, 코코넛 지방산 디에탄올아미드, N,N-비스-(2-히드록시 에틸)-코코미드, 및 코코아미도프로필 베타인으로 구성되는 군으로부터 하나 이상 선택되는 것을 특징으로 한다.
또한, 본 발명은 약물 함유 나노수송체에 유화가교법으로 부착된 키토산 마이크로스피어를 유효성분으로 포함하는 색전시술용 조성물을 제공한다.
본 발명의 일실시예에 있어서, 상기 약물은 암치료용 약물인 것을 특징으로 한다.
본 발명의 다른 실시예에 있어서, 상기 암치료용 약물은 상기 암치료용 약물은 독소루비신인 것을 특징으로 한다.
본 발명의 색전 마이크로스피어의 동결건조 방법을 이용하면, 동결건조 후에도 안정적인 물성을 가지는 마이크로스피어를 제조할 수 있다. 상기 방법을 통해 만들어진 마이크로스피어는, 균일한 구형이고, 500μm 이하의 크기를 가지며, 삽입 후 동결건조 전의 형태로 빠르게 복구되는 특징이 있어, 색전술에 유용하게 사용할 수 있는 장점이 있다.
또한, 본 발명의 방법을 통해 처리된 색전 마이크로스피어는, 독소루비신이나 시스플라틴 등과 같은 항암 약물의 방출이 가능한 전달체로서 유용하게 활용 가능한 효과가 있다.
이에 더하여, 기존에 발명된 제품들이 색전 시술 직전에 마이크로스피어에 약물 탑재를 위하여 1시간 내지 2시간의 공정을 거쳐야 하는 것(예: DC Beads®, Biocompatibles사, UK)과는 다르게, 본 발명의 색전 마이크로스피어는 약물이 처음부터 탑재되어 있는 상태로 제조 되므로, 별도의 약물 탑재 시간이 필요하지 않다는 장점이 있다.
궁극적으로, 본 발명의 색전 마이크로스피어는 안정한 보관을 위한 동결건조 후에도 원래의 물성으로 빠르게 회복되며, 색전 입자의 암세포 혈관 폐색으로 인한 항암효과 및 항암 약물의 방출로 인해 효과적인 항암작용을 나타내는 장점이 있다.
한편, 종래 항암약물을 함유하는 마이크로스피어들은, 이온교환에 의해 키토산에 항암약물을 결합시키기 위해서 마이크로스피어를 이온교환수지로 코팅하고, 약물과 화학적 결합을 시키는 방법으로 제조되었다. 상기 이온교환방식은 시간이 오래 걸리고, 약물 도입량이 조절되지 않았으며, 준비과정은 매우 번거로운 문제가 있었다.
또한, 본 발명자의 등록특허 제 10-1058196호의 방법으로 키토산 마이크로스피어를 만들 경우, 키토산과 항암약물 간의 상호작용이 상대적으로 낮기 때문에, 증류수 세척과정에서 독소루비신이 쉽게 소실되었던 문제가 있었다.
그러나 본 발명의 약물 함유 나노수송체가 결합된 키토산 마이크로스피어는 유화가교법으로 약물 함유 나노수송체와 키토산 마이크로스피어를 부착시켜, 상호 점도가 증가하여 세척 과정에서 약물이 소실되는 양이 현저하게 낮으며, 마이크로스피어의 물리적 강도 또한 증가한다.
따라서 본 발명의 약물 함유 나노수송체가 결합된 키토산 마이크로스피어를 사용하면, 키토산 마이크로스피어의 약물 방출량을 보다 정밀하게 조절할 수 있고, 따라서 키토산 마이크로스피어의 약물방출 효율 또한 현저히 증가하며, 키토산 마이크로스피어의 물리적 강도가 증가하여 뛰어난 색전 치료 효과를 가지는 장점이 있다.
따라서 본 발명에 따른 약물 함유 나노수송체가 결합된 키토산 마이크로스피어는 약물방출의 정밀한 조절이 가능한 특이성을 갖고 있으므로, 이를 이용하면, 종래의 약물방출 마이크로스피어와 비교하여 뛰어난 효과를 나타내므로, 표적 종양에 대한 선택적 약물 방출의 조절이 가능하며, 색전효과가 뛰어난 새로운 항암치료용 색전용 삽입물로 이용될 수 있다.
도 1은 4가지 종류의 동결보호제에 따른 효과 및 와동(vortexing) 처리 시간에 따른 효과를 비교하기 위해 입자의 크기 분포를 나타낸 도면이다.
도 2는 와동(vortexing) 처리 시간에 따른 키토산 입자의 평균 직경과 구형성의 관계를 나타내는 도면이다.
도 3은 4가지 종류의 동결보호제에 따른 효과를 비교하기 위해 원래의 입자 크기로 회복한 입자의 중량 분율을 측정한 결과를 보여주는 도면이다.
도 4는 트레할로스(trehalose)를 공정 중에 가하여 주는 방법 및 그 농도에 따른 효과를 비교하기 위해 원래의 입자 크기로 회복한 입자의 중량 분율을 측정한 결과를 보여주는 도면이다.
도 5는 약물의 탑재가 동결건조 한 후 회복시킨 입자의 크기 분포에 미치는 영향을 평가한 도면이다.
도 6은 동결건조 전후와 약물 탑재 유무에 따른 키토산 입자의 형태를 100배율로 확대하여 보여주는 도면이다.
도 7은 입자의 회복을 위한 와동과정 유무에 따른 입자의 탄력성 비교를 위하여 물성분석기를 이용하여 압축시험을 한 결과를 나타내는 도면이다.
도 8은 동결건조 전후 입자의 탄력성 비교를 위하여 물성분석기를 이용하여 압축시험을 한 결과를 나타내는 도면이다.
도 9는 동결건조 전후 키토산 입자로부터 독소루비신이 방출되는 양상을 측정한 결과를 나타내는 도면이다.
도 10은 독소루비신 함유 리포좀, 독소루비신 함유 키토산 마이크로스피어, 독소루비신 리포좀 함유 키토산 색전 미세구의 조성 및 특성을 나타낸 도면이다.
도 11은 독소루비신 함유 키토산 색전 미세구를 얻기 위한 최적의 교반(stirring) 속도(B)와 그에 따라 생성된 키토산 마이크로스피어의 크기 비율(A)을 나타낸 도면이다.
도 12는 본 발명에 따른 독소루비신 함유 키토산 마이크로스피어 및 독소루비신 리포좀 함유 키토산 마이크로스피어에서 방출되는 독소루비신의 시간에 따른 방출량을 나타낸 도면이다.
본 발명은 색전 시술용 마이크로스피어의 안정된 보관을 위해 동결건조 처리 후에도, 동결건조 전의 신속하게 형태로 복구될 수 있도록 하는 최적화된 동결건조 방법 및 재수화 방법에 관한 것이다.
본 발명자들은 동결건조 처리한 후에도 원래 형태를 유지하여 색전술에 용이하게 사용될 수 있고, 약물 방출에 영향을 받지 않는 최적의 동결건조 조건을 확립하기 위해, 키토산 마이크로스피어에 최적의 동결건조 보호제, 동결건조 조건, 및 재수화 방법을 연구하였다.
그 결과, 트레할로스를 동결건조 처리 전에 보호제로 첨가하고 와동(vortex)시키면, 동결건조처리 전의 키토산 마이크로스피어와 유사한 크기 및 일정한 구형의 형태로 회복된다는 것을 확인하고 본 발명을 완성하였다.
따라서 본 발명은,
a) 마이크로스피어 현탁액에 트레할로스(trehalose)를 첨가하여 주는 단계;
b) 상기 현탁액을 영하 50℃ 내지 영하 100℃에서 동결건조 시켜 건조 마이크로스피어를 제조하는 단계; 및
c) 상기 건조 마이크로스피어를 물 또는 완충 용액(buffer)에 첨가하고, 와동(vortexing)시키는 단계;를 포함하는 색전용 마이크로스피어의 제조 방법을 제공하는 것에 그 특징이 있다.
본 발명에서의 용어 “와동(vortex)”이란, 어떤 중심을 주위로 유체를 회전운동시키는 것을 의미하며, 본 발명의 일실시예에서는 와동기(VM-96B, Jeio Tech, Korea)를 사용하여 와동시켰으나 상기 기기에 한정되는 것은 아니다.
본 발명에서의 용어 “구형성(spherical)”이란, 어느 입자의 구형에 가까운 정도를 말하는 것으로 입자 상의 최장 길이와 최단 길이의 비로 구해진다. 즉, 구형에 가까울수록 1에 가깝게 표현된다. 또한, 본 발명에서의 “실질적으로 구형”이라는 것은 일반적으로, 최소 외부 표면적을 나타내는 부피로서 정의되는, 즉, 완전한 구에 가까운 형태를 의미한다. 구체적으로, 본 발명에서 “실질적으로 구형”은 마이크로스피어의 임의의 단면을 보았을 때, 큰 직경과 작은 직경 간의 차이가 20% 미만, 10% 미만, 또는 5% 미만임을 의미한다
색전용 마이크로스피어의 최적화된 동결 건조 및 회복조건을 수립하기 위하여, 본 발명의 실시예에서는 먼저 키토산 마이크로스피어를 제조하고, 동결건조 시켰는데, 상기 동결건조 온도는 영하 50℃ 내지 영하 100℃에서 수행될 수 있으나, 바람직하게는 영하 60℃ 내지 영하 80℃일 수 있고, 가장 바람직하게는 영하 70℃에서 수행될 수 있다. 본 발명에서는 동결건조기(FD 8508, Ilshin Biobase Co. Ltd, Dongduchun, Korea)를 사용하여 동결건조 시켰으나, 상기 기기에 한정되는 것은 아니다.
동결건조 후 마이크로스피어의 재수화 방법을 선정하기 위해, 먼저 생리식염수와 조영제를 첨가하고, 진탕항온수조를 이용한 재수화 방법과 와동을 이용한 재수화 방법을 비교하여 와동을 이용하는 재수화방법이 더 바람직함을 발견하였다(실시예 1.3 참조). 상기 와동은 바람직하게는 5분 내지 20분 동안 수행될 수 있으나, 더욱 바람직하게는 8분 내지 12분일 수 있고, 가장 바람직하게는 10분일 수 있다.
또한, 동결보호제를 선정하기 위해, 글루코오스(glucose), 락토오스(lactose), 수크로오스(sucrose), 및 트레할로스(trehalose)의 비교를 실시하였다. 그 결과, 트레할로스를 마이크로스피어 현탁액의 제조 후 가해주고, 동결건조를 수행하는 방법이 가장 바람직함을 발견하였다(실시예 1.4 참조). 상기 트레할로스는 마이크로스피어 현탁액의 3% 내지 20% 첨가됨이 바람직하고, 더욱 바람직하게는 10%로 첨가될 수 있다.
상기 마이크로스피어의 재료는 생체 적합성이고, 체내 삽입시 색전효과를 가지는 것으로, 키토산, 알지네이트, 키틴, 폴리 N-이소프로필아크릴아미드(PNIPam), 폴리에틸렌 글리콜(PEG), 폴리L-락트산 (PLLA), 폴리D,L-락트산(PDLLA), 폴리글리콜산(PGA), 폴리카프로락톤(PCL), 폴리하이드록시알카노에이트, 폴리다이옥산온(PDS), 폴리트라이메틸린카보네이트, 폴리락트산-co-글리콜산(PLGA), 폴리L-락트산-co-카프로락톤(PLCL), 폴리글리콜산-co-카프로락톤(PGCL), 히알루론산, 콘드로이틴 설페이트, 더마탄(dermatan) 설페이트, 카르복시메틸셀룰로오스, 헤파란 설페이트, 헤파린, 케라탄 설페이트, 카르복시메틸하이드록시에틸셀룰로오스, 셀룰로오스 설페이트, 셀룰로오스 포스페이트, 카르복시메틸구아르, 카르복시메틸하이드록시프로필구아르, 카르복시메틸하이드록시에틸구아르, 잔탄검, 겔란검(gellan gum), 웰란검(welan gum), 람산검(rhamsangum), 아가로스, 푸르셀라란(furcellaran), 펙틴, 아라비아 고무, 트라가칸트 고무(gum tragacanth), 카라기난(carrageenans), 스타치 포스페이트, 스타치 숙시네이트, 글리코아미노글리칸, 폴리사카라이드, 폴리펩타이드, 아크릴아미드, N-비닐피롤리돈, 디메틸아크릴아미드, 아크릴산, 메타크릴산, 무수말레인산, 비닐설폰산, 스티렌카르복실산 2-아크릴아미도-2-메틸-프로판설폰산, 비닐포스폰산, 2-메틸아크릴로일옥시에틸설폰산, 젤라틴, 또는 콜라겐 등일수 있고, 바람직하게는 키토산, 알지네이트, 또는 키틴일 수 있으며, 더욱 바람직하게는 키토산일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 마이크로스피어는, 혈관에서의 색전효과를 잘 구별할 수 있도록 하는 조영제를 추가로 포함할 수 있는데, 상기 조영제는 MRI(magnetic resonance imaging) 조영제, CT(computed tomography) 조영제, SPECT(single photon emission computed tomography) 조영제, PET(positron emission tomography), BL(bioluminescence) 조영제, 광학 조영제, X-ray 조영제, 또는 초음파 조영제 등이 사용될 수 있으며, 바람직하게는 본 발명에서 사용된 X-ray 조영제 일수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 실시예에서는 약물을 탑재하지 않은 색전 마이크로스피어와 약물을 탑재한 색전 마이크로스피어의 회복성 평가를 수행하여, 본 발명의 방법을 통해 제조되는 마이크로스피어가 약물 방출이 가능함을 확인하였다(실시예 1.5 참조).
본 발명에서 사용되는 “약물”의 종류는 항암 색전술을 위해 주입되는 것으로, 바람직하게는 암치료용 약물일 수 있다. 상기 암치료용 약물은 다우노루비신, 아드리아마이신, 독소루비신, 아클라루비신, 에피루비신, 발루비신, 아이다루비신, 미톡산트론, 미토마이신 C, 피라루비신, 루비도마이신, 카르시노마이신, N-아세틸아드리아마이신, 루비다존, 다우노릴린, 블레오마이신, 시스플라틴, 닥티노마이신, 또는 파클리탁셀 등을 포함할 수 있으며, 가장 바람직하게는 본 발명의 실시예에서 사용한 독소루비신 일 수 있으나 이에 한정되는 것은 아니다.
상기로부터, 본 발명은 색전용 키토산 마이크로스피어가 동결건조 처리 후에도 물리적 성질 및 약물방출에 영향을 받지 않고, 동결건조 전의 형태로 복구될 수 있도록 하는 동결건조 방법을 제공할 수 있다.
이에 더하여, 본 발명자들은 앞서 기술한 바와 같이, 약물 방출의 정밀한 제어가 가능하면서도 생체에 적합한 마이크로스피어를 제조하는 방법을 연구하기 위해, 약물을 나노수송체 안에 함유시켜 키토산 마이크로스피어에 결합시켰다.
그 결과, 약물 함유 나노수송체가 결합된 키토산 마이크로스피어를 이용하면, 약물 함유량을 보다 정밀하게 조절할 수 있으며, 키토산 마이크로스피어의 색전 시술효과 또한 현저히 증가하는 효과가 있다는 것을 확인하고 본 발명을 완성하였다.
따라서 본 발명은 키토산 마이크로스피어에 유화가교법을 사용하여 부착된 약물 함유 나노수송체를 유효성분으로 포함하는 색전시술용 조성물을 제공하는 것에 그 특징이 있다.
본 발명에서 사용되는 용어 “유화가교법”이란 두 가지 이상의 용액을 교반하여 에멀젼을 형성하게 하는 유화 과정과 형성된 에멀젼을 화학적으로 공유결합을 형성하게 하는 가교 과정을 거치는 공정을 의미한다.
본 발명의 실시예에 따르면, 본 발명이 제공하는 색전시술용 조성물은 약학상 허용가능한 용액 내에서 팽윤성을 가지며, 팽윤 전 직경은 100 내지 600μm으로 약물전달에 적합하다는 것을 확인하였다.
본 발명의 실시예에서는, 나노수송체로 리포좀을 사용하여 리포좀 현탁액을 제조한 뒤, 항암용 약물인 독소루비신을 첨가하여 독소루비신 리포좀을 제조하였다. 그리고 상기 독소루비신 리포좀에 봉입되지 않은 독소루비신을 분리하고, 그 형광을 측정했는데, 측정한 값에서 봉입되지 않은 독소루비신의 양을 알아내어, 독소루비신이 리포좀에 투입되는 정확한 양을 알아낼 수 있었다(실시예 2.2 참조).
또한, 독소루비신 리포좀을 마이크로스피어와 유화가교법을 이용하여 결합시켰다(실시예 2.3 참조). 상기에서 독소루비신이 리포좀에 봉입되는 정확한 양을 알아냈으므로, 마이크로스피어에 봉입되는 독소루비신의 양 또한 알아낼 수 있다.
본 발명의 실시예에서는, 상기와 같이 나노수송체로 리포좀을, 암치료용 약물로 독소루비신을 선택하였으나, 이에 한정되는 것은 아니다.
따라서, 본 발명은 하기 단계를 포함하는 키토산 마이크로스피어를 제조하는 방법을 제공한다.
a) 나노수송체에 약물을 도입하는 단계;
b) 상기 약물이 도입된 나노수송체를 키토산 용액에 넣어주어 혼합용액을 만들어 교반시키는 단계;
c) 상기 교반시킨 혼합용액을 오일 및 유기용매를 섞은 용액에 넣고 계면활성제를 투입하여 교반하는 유화 단계; 및
d) 상기 유화된 혼합용액에 글루타르알데하이드포화톨루엔 또는 게니핀을 점적한 후 교반하는 가교 단계.
상기 나노수송체는 지질계열의 소재 또는 고분자 소재로서, 표면에 가교제를 활용하여 약물을 결합할 수 있다. 따라서 본 발명의 나노수송체는 약물전달체로 이용되는 것으로서, 리포좀, 지질나노입자, 나노캡슐, 나노에멀젼, 또는 나노구조체 등일 수 있고, 바람직하게는 리포좀 또는 지질나노입자일 수 있으며, 가장 바람직하게는 본 발명의 실시예에서 사용되는 리포좀일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 글루타르알데하이드포화톨루엔 또는 게니핀(genipin)은 가교를 위하여 사용되는 것으로 이에 한정되지 않으며, 가교제로 사용될 수 있는 것이라면 어느 것이든 가능하다.
본 발명에서 사용되는 “약물”의 종류는 항암 색전술을 위해 도입되는 것으로, 바람직하게는 암치료용 약물일 수 있다. 따라서 상기 암치료용 약물은 다우노루비신, 아드리아마이신, 독소루비신, 아클라루비신, 에피루비신, 발루비신, 아이다루비신, 미톡산트론, 미토마이신 C, 피라루비신, 루비도마이신, 카르시노마이신, N-아세틸아드리아마이신, 루비다존, 다우노릴린, 블레오마이신, 시스플라틴, 닥티노마이신, 또는 파클리탁셀 등을 포함할 수 있으며, 가장 바람직하게는 본 발명의 실시예에서 사용한 독소루비신 일 수 있으나 이에 한정되는 것은 아니다.
본 발명에서 상기 오일은 나노수송체와 키토산 마이크로스피어를 유화시키기 위하여 사용할 수 있으며, 바람직하게는 파라핀오일(paraffin oil), 알파-비사볼롤 (α-bisabolol), 스테아릴 글리세레티네이트 (stearyl glycyrrhetinate), 살리실산 (salicylic acid), 토코페릴 아세테이트 (tocopheryl acetate), 판테놀 (panthenol), 글리세릴 스테아레이트 (glyceryl stearate), 세틸옥탄올레이트 (cetyl octanolate), 이소프로필 미리스테이트 (isopropyl myristate), 2-에틸렌 이소펠라고네이트 (2-ethylene isopelagonate), 디-c12-13 알킬 말레이트 (di-c12-13 alkyl malate), 세테아틸 옥타노에이트 (ceteatyl octanoate), 부틸렌 글리콜 디카프틸레이트/디카프레이트 (butylene glycol dicaptylate/dicaprate), 이소노닐 이소스테아레이트 (isononyl isostearate), 이소스테아릴 이소스테아레이트 (isostearyl isostearate), 세틸 옥타노에이트 (cetyl octanoate), 옥틸도데실 미리스테이트 (octyldodecyl myristate), 세틸 에스테르류 (cetyl esters), c10-30 콜레스테롤/라노스테롤 에스테르 (c10-30 cholesterol/lanosterol ester), 수소화 카스터 오일 (hydrogenated castor oil), 모노글리세라이드 (mono-glycerides), 디글리세라이드 (diglycerides), 트리글리세라이드 (triglycerides), 비스왁스 (beeswax), 카나우바 왁스 (canauba wax), 숙토스 디스테아레이트 (suctose distearate), PEG-8 비스왁스 (PEG-8 beeswax), 칸델리아 왁스 (candelilla(euphorbia cerifera) wax), 미네랄 오일, 스쿠알렌 (squalene), 스쿠알란 (squalane), 모노글리세라이드, 디글리세라이드, 트리글리세라이드, 중간 사슬 글리세라이드, 미글리올(myglyol), 또는 크레모포(cremophor) 등일 수 있고, 가장 바람직하게는 본 발명의 실시예에서 사용한 파라핀오일일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 상기 유기용매는 나노수송체와 마이크로스피어의 혼합을 위하여 사용되는 용매로서, 석유 에테르, 에틸 에테르, 이소프로필 아세테이트, n-프로필 아세테이트, 이소부틸 아세테이트, n-부틸 아세테이트, 이소 부틸 이소부티레이트, 2-에틸헥실 아세테이트, 에틸렌 글리콜 디아세테이트, C9 아세테이트, C10 아세테이트, 메틸 에틸 케톤, 메틸 이소부틸 케톤, 메틸 이소아밀 케톤, 메틸 n-아밀 키톤, 디부틸 케톤, 사이클로헥사논, 이소포론, 아세트알데하이드, n-부틸알데하이드, 크로톤알데하이드, 2-에틸헥사알데하이드, 이소부틸알데하이드, 프로피온알데하이드, 에틸 3-에톡시프로피오네이트, 톨루엔, 자일렌, 트리클로로에탄, 프로필렌 글리콜 모노메틸 에틸 아세테이트, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노부틸 에테르, 디에틸렌 글리콜 모노부틸 에테르 아세테이트, 디부틸 프탈레이트, 이데틸 프탈레이트, 디메틸 프탈레이트, 디옥틸 프탈레이트, 디옥틸 테레프탈레이트, 부틸 옥틸 프탈레이트, 부틸 벤젠 프탈레이트, 디옥틸 아디페이트, 트리에틸렌 글리콜 디-2-에틸헥사노에이트, 트리옥틸 트리메틸리테이트, 글리세릴 트리아세테이트, 글리세릴/트리프로피오닌, 및 2,2,4-트리메틸-1,3-펜타네디올 디이소부틸레이트 또는 이들의 혼합물 일 수 있고, 바람직하게는 석유 에테르, 에틸 에테르, 또는 이소프로필 아세테이트 등일 수 있으며, 더욱 바람직하게는 본 발명의 실시예에 따라 석유 에테르일 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명에서 상기 계면활성제는 유화과정에 있어서 키토산 마이크로스피어, 나노수송체, 오일 및 유기용매가 잘 섞이도록 첨가하는 것으로, 솔비탄 세스퀴올리에이트, 글리세릴 스테아레이트, 폴리솔베이트 60, 폴리솔베이트 80, 솔비탄 트리올레인산염, 솔비탄 스테아레이트, PEG-20 글리세릴 이소스테아레이트, 세테트-25, PEG-60 수소화 카스터 오일, 노녹시놀-15, PEG-6-데실테트라데세트-20, 디메티콘 코폴리올, 글리세릴 디이소스테아레이트, 세테트-24, 세테아릴 알콜, 폴리옥실에틸렌 노니페닐 에테르, PEG-40 수소화 카스터 오일, 세틸 디메티콘 코폴리올, 폴리글리세릴-3 메틸글루코오스 디스테아레이트, PEG-100 스테아레이트, 솔비탄 이소스테아레이트, 라우릴 글루타메이트 나트륨, 코코암포디아세테이트 디나트륨, 디에탄올아미드 라우릭산, 코코넛 지방산 디에탄올아미드, N,N-비스-(2-히드록시 에틸)-코코미드, 또는 코코아미도프로필 베타인 등을 사용할 수 있고, 바람직하게는 솔비탄 세스퀴올리에이트, 글리세릴 스테아레이트, 또는 솔비탄 스테아레이트 일 수 있으며, 더욱 바람직하게는 본 발명의 실시예에 따라 솔비탄 세스퀴올리에이트일 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 실시예에서는 독소루비신 함유 키토산 마이크로스피어와 독소루비신 리포좀 함유 키토산 마이크로스피어의 약물방출을 비교하는 실험을 실시하여, 독소루비신 리포좀을 함유하는 키토산 마이크로스피어를 이용하면, 약물 방출을 정밀하게 조절할 수 있다는 것을 확인하였다(실시예 2.5 참조).
상기로부터, 본 발명은 약물 함유 나노수송체에 유화가교법으로 결합된 키토산 마이크로스피어를 유효성분으로 포함하는 색전시술용 조성물을 제공할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1. 색전용 마이크로스피어의 제조
1.1. 키토산 마이크로스피어의 제조 및 동결건조
본 발명의 실시예에서는 색전 시술용 마이크로스피어의 재료로 키토산을 사용하였으며, 키토산 마이크로스피어의 제조는 본 발명자들이 이전에 개발한 방법을 이용하였다(대한민국 등록특허 제 10-1058196호). 먼저 키토산(약 85%가 디아세틸화됨)을 5% (v/v) 아세트산 수용액에 용해시켜 4% (w/v) 농도의 키토산 용액을 제조하였으며, 점성이 있는 상기 키토산 용액에 키토산 대비 폴리에틸렌글리콜(PEG, 분자량 20,000 g/mol)을 3대 7의 중량비율(w:w)로 혼합되도록 넣어주고, 실온에서 폴리에틸렌글리콜이 완전히 녹을 때까지 60분 정도를 교반하여 섞어주었다. 상기 용액에 독소루비신을 가하여 주고 트리폴리포스페이트를 가하여 60분 동안 겔화 과정을 거쳤다. 유동파라핀과 석유에테르를 7:5의 부피비율로 혼합하여준 용액 60ml에 유화제로 소르비탄 세스퀴올레이트(sorbitan sesquioleate)를 6ml 가하여 준 용액과 상기 겔화 과정을 거친 키토산/폴리에틸렌글리콜 용액을 6ml를 가하여 10분 동안 1000rpm 으로 교반시켜 유화 시켜주었다. 그리고 가교화(cross-linking)를 위하여 글루타르알데히드(glutaraldehyde) 포화 톨루엔(toluene) 8ml를 천천히 적가하여 준 후 60분 동안 1000rpm 으로 교반시켜 주었다. 가교된 키토산 마이크로스피어는 그 후 남은 유기용매들을 제거하기 위해 석유에테르로 3회, 아세톤으로 1회 세척되었고, 다시 물로 3회 세척하였다. 상기 세척된 마이크로스피어는 다공성 구조가 되도록 실온으로 유지되는 진탕항온수조에서 24시간 동안 방치하여 친수성인 폴리에틸렌글리콜을 추출하였다. 그 결과 400㎛ 내외의 구형인 키토산 마이크로스피어가 제조되었다.
본 발명에서의 동결 건조는 상기 과정을 통해 제조된 키토산 마이크로스피어 현탁액 3ml를 20ml 유리 바이알에 담아 영하 70℃에서 동결시킨 후 동결건조기(FD 8508, Ilshin Biobase Co.Ltd, Korea)에서 건조하였으며, 동결보호제는 제조된 마이크로스피어 현탁액에 동결 건조 전에 투입되었다.
1.2. 동결건조한 마이크로스피어의 재수화 방법 평가
동결건조 처리된 키토산 마이크로스피어를 재수화 하는데 가장 적절한 조건을 선정하기 위하여 진탕항온수조(BS-21, Jeio Tech, Korea)와 와동(vortexing) (VM-96B, Jeio Tech, Korea)을 이용한 방법을 시간별로 평가하였다. 재수화할 때는 색전용 입자를 주입할 때 가장 빈번하게 사용되는 용액인 생리식염수와 X-ray 조영제(Iobrix injection, Taejoon Pharm Co. Ltd. Korea) 부피비율로 1:1로 혼합한 용액을 동결건조 전의 부피와 동일하게 3ml 가하여 준 후 수행하였다.
1.2.1. 진탕항온수조를 이용한 방법 평가 결과
12시간, 24시간 동안 진탕항온수조를 이용하여 키토산 마이크로스피어를 재수화 한 후 회복성 평가를 위하여 체를 이용해 입자크기 분포를 평가하였고, 현미경을 통해 입자의 형태를 관찰하고 평균 입자 크기 및 구형성을 측정하였다. 이 때 무작위로 50개의 키토산 마이크로스피어를 선택해 크기와 구형성을 측정하였으며, 이미지 분석 소프트웨어(Scopephoto, Hangzhou, China)를 사용하였다. 구형성은 입자의 가장 긴 길이와 짧은 길이의 비로 구하여졌고, 구형일수록 1에 가까운 수로 표현이 되었다. 동결건조 전 마이크로스피어의 평균 크기에 비해 동결건조 후 진탕항온수조를 이용하여 50 rpm으로 12시간 또는 24시간 동안 재수화 시킨 입자의 평균크기는 작아졌으며 키토산 마이크로스피어의 형태가 매우 불규칙하였다. 이는 느린 물 침투 속도로 인해 느린 속도로 입자가 회복 된 것으로 생각된다.
1.2.2. 와동(vortexing)을 이용한 방법 평가 결과
와동 처리 시간에 따른 효과 및 동결보호제의 종류에 따른 효과를 비교하여 도 1에 나타내었다. 5분 동안 와동시킨 키토산 마이크로스피어의 크기 분포를 도 1의 (A)에 나타내었는데, 200 내지 500 사이에 고르게 결과가 가져, 동결건조 전의 키토산 마이크로스피어의 크기인 400.5±42.0μm와 큰 차이를 보였다. 도 1의 (b)는 10분 동안 와동한 결과로써, 300 내지 500의 결과를 보여, 와동시킨 후의 키토산 마이크로스피어의 크기가 동결건조 전 원래의 입자 크기인 400.5±42.0μm와 유사해졌다는 것을 확인할 수 있다. 도 1의 (C)는 15분 동안 와동한 결과로, 15분의 시간동안 와동되면서 충분히 회복된 입자 간 과도한 충돌을 일으킴으로 인해 입자의 크기가 전체적으로 균일하지 못하게 나타났다.
와동 처리 시간에 따른 키토산 마이크로스피어의 구형성(sphericity) 및 평균 직경(mean diameter)을 비교하여 도 2에 나타내었다. 동결건조 전 마이크로스피어의 구형성은 1.008±0.015로, 10분 간 와동시킨 키토산 마이크로스피어가 가장 가까운 값을 가졌다.
상기 결과를 통해, 키토산 마이크로스피어를 회복시키는 방법으로 10분의 와동이 가장 바람직하다는 것을 확인하였다.
1.3. 최적의 동결보호제 및 그 농도, 제조 방법 선정을 위한 평가
가장 효과적인 동결보호제를 선정하고, 선정된 동결보호제를 가하여 주는 방법과 가장 적절한 농도를 선정하기 위한 평가를 실시하였다.
1.3.1. 동결보호제의 종류에 따른 회복성 평가 결과
가장 효과적인 동결보호제를 선정하기 위하여 글루코오스(glucose), 락토오스(lactose), 수크로오스(sucrose), 트레할로스(trehalose) 4가지 종류의 당을 키토산 마이크로스피어 현탁액에 최종적으로 5% (w/v)의 농도가 되도록 가한 후에 동결건조 하여 재수화 한 후 회복성 평가를 위하여 체를 이용해 원래의 입자 크기인400.5±42.0μm의 범위인 300 내지 500μm로 회복된 입자의 중량분율을 측정하여 도 3에 나타었다, 또한 현미경을 통해 마이크로스피어의 형태를 관찰하고 평균 마이크로스피어의 크기 및 구형성을 측정하였다. 도 3에서 볼 수 있는 것처럼, 300 내지 500μm 범위 내의 글루코오스는 50%에 가까운 값으로, 동결보호제를 가하지 않은 키토산 마이크로스피어와 통계학적으로 유의한 차이가 없는 유사한 크기 회복성을 나타내었고, 락토오스는 53%, 수크로오스는 65%를 보였다. 트레할로스를 가한 입자는 73%에 가까운 값으로, 상기 보호제들에 비하여 확연히 뛰어난 회복성을 나타내었다. 따라서 표 1에서 확인할 수 있는 것처럼, 동결건조 보호제로 트레할로스를 사용할 때 키토산 마이크로스피어가 가장 뛰어난 회복성을 나타내었으므로 이후의 평가에서는 트레할로스를 사용하였다.
표 1
5분간 와동 10분간 와동 15분간 와동
평균 직경(㎛) 구형성 평균 직경(㎛) 구형성 평균 직경(㎛) 구형성
동결건조 전 400.5±42.0 1.008±0.015 400.5±42.0 1.008±0.015 400.5±42.0 1.008±0.015
no cyoprotectant 352.0±40.3 1.056±0.033 381.9±23.4 1.058±0.047 362.6±27.3 1.061±0.041
5% Glucose 359.8±44.0 1.058±0.04 382.2±27.3 1.051±0.039 362.4±28.1 1.058±0.044
5% Lactose 388.2±44.0 1.042±0.031 390.7±28.4 1.037±0.032 384.4±29.4 1.084±0.035
5% Sucrose 370.8±34.9 1.056±0.055 381.8±27.8 1.042±0.044 382.8±35.6 1.043±0.025
5% Trehalose 370.5±46.0 1.050±0.041 399.8±25.6 1.025±0.026 382.0±27.5 1.029±0.023
1.3.2. 트레할로스를 가하는 방법에 따른 회복성 평가 결과
최적의 동결보호제로 선정된 트레할로스를 제조된 키토산 마이크로스피어 현탁액에 가하여 주는 방법(method 1)과 키토산 마이크로스피어를 제조하는 과정 중에 가하여 주는 방법(method 2)을 비교하기 위하여 체를 이용해 원래의 입자 크기로 회복된 입자의 중량 분율을 측정하여 도 4에 나타내고, 현미경을 통해 입자의 형태를 관찰하고 평균 입자 크기 및 구형성을 측정하였다. 그 결과 제조된 키토산 입자 현탁액에 트레할로스를 가하여 주는 방법(method 1)을 사용하였을 때 300 내지 500μm의 값을 가지는 키토산 마이크로스피어가 60% 내지 75%의 중량분율을 차지하여 현저하게 뛰어남을 알 수 있었고, 제조과정 중에 트레할로스를 가하여 주는 방법을 사용하였을 때는 오히려 입자의 회복능이 감소하는 경향이 관찰되었다. 따라서 하기 평가에서는 트레할로스를 입자 제조후 현탁액에 가하여주는 방법을 사용하여 평가를 진행하였다.
1.3.3. 트레할로스의 농도에 따른 회복성 평가 결과
트레할로스의 농도에 따른 회복성을 평가하기 위하여 키토산 마이크로스피어 현탁액에 트레할로스를 3, 5, 10 그리고 15% (w/v) 가한 후 동결건조 하여 재수화 한 후 체를 이용해 원래의 입자 크기로 회복된 입자의 중량분율을 측정하였고, 현미경을 통해 입자의 형태를 관찰하고 평균 입자 크기 및 구형성을 측정하였다. 원래 입자 크기로 회복된 분율을 측정하였을 때 5% 이상의 농도에서는 72% 내지 75%로 모두 유사한 분율을 가지고 있음을 도 4를 통해 확인할 수 있다. 하지만 현미경으로 입자의 형태를 관찰하였을 때 10% 이상의 농도일 때가 5% 일 때 보다 입자의 표면이 훨씬 매끄럽고 구형성이 좋은 것을 관찰 할 수 있었다. 10%와 15%의 회복능이 유사한 것으로 측정이 되었으므로 이후의 평가에서는 트레할로스 10% 농도를 사용하여 평가하였다.
1.3.4. 약물의 탑재 유무에 따른 회복능 평가
약물을 탑재하지 않은 색전용 입자를 대상으로 한 상기의 평가들을 통해 선정된 최적의 공정을 항암제인 독소루비신(doxorubicin)을 탑재한 입자에도 동일하게 적용하여 같은 회복능을 가지는지 평가하였다. 먼저 동결건조 전 약물 탑재 유무에 따른 입자의 물리적 성질을 비교 평가하기 위하여 현미경을 통해 관찰하였다. 그 결과를 도 6에 나타내었는데, 약물을 탑재하지 않은 입자의 색상은 노란색이었고, 약물을 탑재한 입자의 색상은 독소루비신 고유의 색상으로 인한 붉은빛을 띄는 것으로 나타난 점 외의 다른 물리적 성질은 모두 동일한 것으로 평가되었다. 동결건조 후 회복성 평가를 위하여 체를 이용해 입자크기 분포를 평가하여 도 5에 나타내었고, 현미경을 통해 입자의 형태를 관찰하고 평균 입자 크기 및 구형성을 측정하여 표 2에 나타내었다. 그 결과 약물 탑재하더라도 키토산 마이크로스피어의 크기는 300 내지 500μm로, 약물 탑재가 동결건조 과정 및 회복성에 영향을 미치지 않고 동일한 결과를 나타내는 것을 확인할 수 있었다.
표 2
키토산 마이크로스피어 독소루비신 포함 키토산마이크로스피어
평균직경(㎛) 구형성 평균직경(㎛) 구형성
동결건조 전 400.5±42.0 1.008±0.015 400.8±46.6 1.012±0.010
동결건조 후 401.5±35.1 1.028±0.019 391.7±16.9 1.037±0.022
1.4. 재수화 한 키토산 마이크로스피어의 탄력성 평가
변형이 쉬운 탄력성 있는 입자가 더 뛰어난 색전효과를 나타낸다는 선행연구의 결과에 따라 동결건조 전후의 입자의 탄력성 평가를 실시하였다. 키토산 마이크로스피어의 탄력성 비교를 위하여 물광분석기(TA plus, Lloyd Instrument Ltd., UK) 를 이용하여 압축시험을 수행하였다. 물광분석기 프로브(probe)는 단면이 평평하고 지름 5mm, 길이 50mm인 것을 사용하였고, 100N 로드셀(load cell)을 사용하였다. 입자의 크기가 마이크로 단위로 매우 작기 때문에 약 150개의 입자를 단층으로 펼쳐놓고 공기 중 노출에 의한 입자의 건조를 막기 위해 생리식염수에 담겨있는 상태로 평가를 진행하였다. 물광분석기 프로브(probe)가 입자와 맞닿기 직전인 상태에서 평가를 시작하여 1 ㎛/s의 속도로 압축하여 마이크로스피어의 직경이 30-50% 변형될 때 까지 실험을 진행하였다. 선행연구에 따라 측정된 전체 압축력을 전체 입자의 개수로 나누어 개개의 입자에 가하여지는 압축력을 측정하였다.
1.4.1. 재수화 방법에 따른 키토산 마이크로스피어의 탄력성 평가
재수화 방법에 따른 입자의 탄력성 평가를 위하여 10% 농도의 트레할로스를 입자 현탁액에 가하여 동결건조 후 최적의 재수화 방법으로 선정된 10분간 와동하는 공정을 거친 입자와 와동 공정 없이 10분간 생리식염수에 방치해둔 입자의 압축력을 측정하여 비교해 탄력성을 평가하였다. 그 결과를 도 7 에 나타내었는데, 미세구의 직경이 20% 변형되었을 때의 압축력을 측정한 결과 10분간 와동 공정을 거친 입자의 압축력은 2.96 ± 0.40 (×10-3 N)이었고, 10분간 방치해 둔 입자의 압축력은 6.17 ± 1.04 (×10-3 N)로 현저히 높은 것으로 측정되었다. 압축력이 높을수록 입자가 단단하다는 것을 의미하며, 이는 입자의 탄력성과 반비례한다. 결과적으로, 재수화 공정을 거치지 않은 입자는 색전시술시 필요한 조건인 변형능이 낮은 것으로 사료되었다. 상기 결과는 와동 공정을 거친 입자가 훨씬 부드럽고 탄력성을 회복했다는 것을 의미한다. 변위에 따른 압축력 변화 양상에 있어서도 재수화 공정 유무에 따라 입자의 물성이 확연한 차이가 있었으며, 따라서 10분간 와동 공정이 입자의 회복을 촉진시킨다는 것을 한번 더 확인 할 수 있었다.
1.4.2. 동결건조 전후의 키토산 마이크로스피어 탄력성 비교 평가 결과
상기 평가의 목적은 발명한 회복성 최적화 공정을 거친 입자가 동결건조 하기전의 입자와 유사한 물성으로 회복이 된다는 것을 확인하기 위한 것으로, 그 결과를 도 8에 나타내었는데, 미세구의 직경이 20% 변형되었을 때의 압축력을 측정한 결과, 동결건조 전 입자는 2.56 ± 0.30 (x10-3 N)으로 측정되었고, 동결건조 후 회복시킨 입자는 2.96 ± 0.40 (x10-3 N)으로 압축력이 근소하게 증가하였으나 통계학적으로 유의한 차이가 없었다. 즉, 탄력성의 변화가 없이 원래의 상태로 회복 된 것으로 판단 할 수 있다. 또한, 압축 실험 전후의 구형성 변화를 측정한 결과, 통계적으로 유의한 변화가 없었으며, 이는 입자의 탄력성으로 인해 압축실험 이후 입자가 원래의 형태를 회복하였기 때문으로 사료된다.
1.5. 동결건조 전후 키토산 마이크로스피어의 약물 방출 양상 비교 평가
약물 방출 양상을 평가하기 위한 매질은 라이소자임(lysozyme) 140,000 유닛을 포함한 pH 6.0인 인산완충식염수(phosphate buffered saline)를 사용하였고, 4일 동안 약물 방출 양상을 관찰하였다. 150mg의 입자를 투석 주머니 (MW cut-off = 12-14,000)에 넣고 매질 30ml가 담겨있는 코니칼 튜브(conical tube)에 담아 진탕항온수조에서 37±0.5℃로 유지하고 80rpm으로 진탕하여주었다. 0.5, 1, 2, 4, 6 시간 그리고 1, 2, 4일 간격으로 방출 매질 0.2ml를 취하여 분석하였으며, 취한 직후에 똑같은 조성의 매질 0.2ml를 새로 가하여 주었다. 방출된 독소루비신의 분석은 마이크로 플레이트 리더(microplate reader)(Synergy H1 Hybrid Reader, Bio Tek, Korea)로 이루어졌으며, 여기(excitation) 파장은 480nm, 발포(emission) 파장은 550nm로 측정하였다. 그 결과를 도 9에 나타내었는데, 제조 직후에 취한 동결건조 전의 입자와 동결건조 후 회복시킨 입자의 약물 방출 양상이 유사함을 확인할 수 있었으며, 최종적으로 4일 동안 방출된 양도 유사하게 측정이 되었다.
상기 결과를 통해 동결건조 후 회복성 최적화 공정을 거친 마이크로스피어는 마이크로스피어의 성상 및 물성 뿐 만이 아니라 약물 방출 양상도 원래대로 회복을 하였다는 것을 확인할 수 있었다.
실시예 2. 독소루비신 리포좀 함유 마이크로스피어 제조
2.1. 독소루비신 리포좀의 제조
메탄올과 클로로포름을 1:1의 비율로 섞어 혼합용액을 만들고, 상기 혼합용액에 인지질인 포스파티딜콜린(soybean phosphatidylcholine)을 넣어 용해시켰다. 회전 감압 증발기 (rotary vacuum evaporator)를 사용하여 용매를 증발시킨 후 남은 얇은 지질박막을 250mM의 암모늄 설페이트(ammonium sulfate)용액으로 수화시켰다. 생성된 리포좀을 압출기(extruder)를 사용하여 크기를 조절한 후, 20 % (w/v) 수크로오스(sucrose) 용액으로 네 번 투석하여 리포좀 안팎의 암모늄설페이트 농도 구배(transmembrane ammonium sulfate gradient)를 이루었다. 독소루비신 수용액을 위에서 만든 리포좀 현탁액에 첨가하여 독소루비신 농도가 1 mg/ml가 되도록 한 후, 37±0.5℃에서 2시간 동안 진탕배양기(shaking incubator)를 사용하여 독소루비신을 리포좀에 봉입하였다. 그 후 봉입되지 않은 독소루비신은 원심분리하여 분리하였다(2,000g, 30분).
2.2. 독소루비신 리포좀의 약물 봉입 효율(drug loading efficiency), 약물 봉입 양(drug loading amount) 측정
상기 독소루비신 리포좀에서 표본을 취하여 분획분자량(molecular weight cut-off, MWCO)이 100K인 필터를 탑재한 용기에 넣고 30분 동안 2,000g로 원심분리하여 봉입되지 않은 독소루비신을 분리하였다. 분리된 독소루비신을 480nm의 들뜸파장(excitation wavelength)과 550nm의 방출파장(emission wavelength)에서 형광을 측정하여 그 양을 계산하였다. 그 후 측정된 값을 토대로 약물 봉입 효율과 약물 봉입 양을 계산하였다. 그 결과, 독소루비신 결합 키토산 마이크로스피어는 약물 봉입 효율이 56.74%, 약물 봉입량은 2.84%였고, 독소루비신 함유 리포좀 10mg과 결합한 키토산 마이크로스피어는 약물 봉입 효율이 60.73%, 약물 봉입량은 0.19%였으며, 독소루비신 함유 리포좀 30mg과 결합한 키토산 마이크로스피어는 약물 봉입 효율이 91.09%, 약물 봉입량은 1.09%였고, 독소루비신 함유 리포좀 50mg과 결합한 키토산 마이크로스피어는 약물 봉입 효율이 93.91%, 약물 봉입량은 1.88%였다.
수학식 1
Figure PCTKR2013007867-appb-M000001
수학식 2
Figure PCTKR2013007867-appb-M000002
상기 결과를 통해, 독소루비신이 리포좀 내에 함유되는 정확한 양을 구할 수 있다는 것을 확인할 수 있으며, 따라서 나노수송체 안에 약물이 함유되는 정확한 양을 얻을 수 있다는 것을 알 수 있다.
2.3. 독소루비신 함유 키토산 마이크로스피어와 독소루비신 리포좀 함유 마이크로스피어의 제조
비교를 위한 독소루비신 함유 키토산 마이크로스피어(Dox-CSMS)와 독소루비신 리포좀 함유 마이크로스피어를 유화가교법(emulsification-crosslinking method)으로 제조하였다.
유리바이알에 키토산을 5% 초산 용액에 4%가 되도록 녹인 후, 독소루비신과 독소루비신 리포좀을 넣어주고 1시간 동안 교반하였다. 도 10에서 도시한 것과 같이, 독소루비신 키토산 마이크로스피어의 제조시 독소루비신을 6mg, 키토산 마이크로스피어는 120mg으로 하여 제조하였고, 독소루비신 리포좀이 10mg 함유된 키토산 마이크로스피어(LDox10-CSMS)의 제조시 독소루비신 리포좀을 0.5mg, 키토산 마이크로스피어는 120mg으로 하여 제조하였으며, 독소루비신 리포좀이 30mg 함유된 키토산 마이크로스피어(LDox30-CSMS)의 제조시 독소루비신 리포좀을 1.5mg, 키토산 마이크로스피어는 120mg으로 하여 제조하였고, 독소루비신 리포좀이 50mg 함유된 키토산 마이크로스피어(LDox50-CSMS)의 제조시 독소루비신 리포좀을 2.5mg, 키토산 마이크로스피어는 120mg으로 하여 제조하였다.
그 후 파라핀 오일(paraffin oil) 및 석유 에테르(petroleum ether)를 각각 7:5의 비율로 섞은 용액 30ml에 위에서 만든 독소루비신 키토산, 독소루비신 리포좀 키토산 용액을 각각 3ml씩 넣고 계면활성제로서 솔비탄 세스퀴올레이트(sorbitan sesquioleate)를 각 용기에 3ml씩 넣은 후 독소루비신 함유 키토산 마이크로스피어는 620rpm, 10mg의 독소루비신이 봉입된 리포좀 함유 키토산 마이크로스피어는 750rpm, 30mg의 독소루비신이 봉입된 리포좀 함유 키토산 마이크로스피어는 785rpm, 50mg의 독소루비신이 봉입된 리포좀 함유 키토산 마이크로스피어는 850rpm으로 하여 20분 동안 교반하여 유화(emulsification)시켰다. 이때 교반속도의 결정은 도 11를 참조하여 실시되었다. 도 11의 A는 독소루비신 함유 키토산 마이크로스피어와 독소루비신 리포좀 함유 키토산 마이크로스피어의 제조 후, 체를 이용하여 각 크기 범위에 드는 키토산 마이크로스피어를 분리 한 결과를 나타낸 것이다. 본 발명에서는 간암치료를 위한 색전술에 사용되는 최적의 마이크로스피어의 크기인 300 내지 500μm 범위에 드는 마이크로스피어를 되도록 많이 얻을 수 있도록 교반속도를 조절하였다. 도 11의 B는 300 내지 500μm 크기 범위에 드는 독소루비신 함유 키토산 마이크로스피어를 효율적으로 제조하기 위해 최적화된 교반속도를 찾은 결과를 나타낸 것이다. 표시된 각 마이크로스피어의 크기 비율은 최적화된 교반 속도로 각 키토산 마이크로스피어를 제조한 결과이다. 대표적으로 독소루비신 리포좀 30mg을 함유한 키토산 마이크로스피어에 해당하는 결과를 나타내었다. 독소루비신 리포좀을 함유한 키토산 용액의 경우, 독소루비신을 함유한 키토산 용액보다 그 점도가 높기 때문에, 유화하는 과정에서 교반속도를 더 높여줘야 300-500μm 크기 범위에 드는 키토산 마이크로스피어를 더 많이 얻을 수 있었다. 도 11B에 나타난 것처럼 교반속도를 증가시킬수록, 300 내지 500μm 크기 범위에 드는 키토산 마이크로스피어의 비율이 증가한 것을 확인할 수 있다.
상기 결과를 통해 본 발명의 마이크로스피어가 체내에서 최적의 크기를 가지도록 제조되므로, 혈관 안에서 안정적으로 팽윤된다는 것을 확인할 수 있었다.
그 후 25% 글루타르알데하이드포화톨루엔(glutaraldehyde saturated toluene, GST) 4ml을 한 방울 씩 점적해준 후 다시 1시간 동안 교반하여 키토산 마이크로스피어를 가교(crosslinking)시켰다.
가교가 끝난 후, 생성된 키토산 마이크로스피어를 석유 에테르로 3회, 아세톤으로 1회, 증류수로 3회 세척하였다.
2.4. 독소루비신 함유 키토산 마이크로스피어와 독소루비신 리포좀 함유 키토산 마이크로스피어의 약물 봉입 효율, 약물 봉입 양 측정
상기 과정에서 가교화까지 끝낸 후, 유상을 취하여 봉입되지 않은 독소루비신의 양을 형광도를 측정하여 계산하였다. 이 값을 구한 후, 상기 수학식 1을 이용하여 키토산 마이크로스피어의 약물 봉입 효율을 계산하고, 하기 수학식 3을 이용하여 약물 봉입 양을 계산하여 그 결과를 도 10에 도시하였다. Dox-CSMS의 약물 봉입 효율성은 56.74%, 약물 봉입량은 2.84%였고, LDox10-CSMS의 약물 봉입 효율성은 60.73%, 약물 봉입량은 0.19%였으며, LDox30-CSMS의 약물 봉입효율성은 91.09%, 약물 봉입량은 1.09%이었고, LDox50-CSMS의 약물 봉입효율성은 93.91%, 약물 봉입량은 1.88%이었다. 상기 결과를 통해 독소루비신 리포좀을 함유하는 키토산 마이크로스피어의 약물 봉입 효율이 현저하게 높은 것을 확인할 수 있었다.
수학식 3
Figure PCTKR2013007867-appb-M000003
2.5. 생체 외(in vitro) 방출 시험
제조한 독소루비신 함유 키토산 마이크로스피어와 독소루비신 리포좀 함유 키토산 마이크로스피어를 각각 20mg씩 투석비닐백에 담고 PBS buffer(pH=6.0, lysozyme 50,000units 함유)가 30ml씩 담겨져 있는 코니칼 튜브(conical tube)에 위의 투석비닐백을 넣었다. 각 코니칼 튜브를 진탕배양기에 넣고 37±0.5℃, 80rpm으로 방출 시험 조건을 설정한 후 방출시험을 시행하여 각 30분, 1시간, 2시간, 4시간, 6시간, 24시간, 및 48시간에 0.2ml씩 용액을 채취한 후, 형광도를 측정하여 방출된 독소루비신의 양을 측정하였다. 0.2ml의 용액을 채취한 후에는 바로 같은 조건의 용매를 0.2ml씩 코니칼 튜브에 넣어주었다. 그 결과를 도 12에 도시하였다. 독소루비신 키토산 마이크로스피어(Dox-CSMS)의 경우 24시간 경과 시 140μg의 방출량, 독소루비신 리포좀이 10mg 함유된 키토산 마이크로스피어(LDox10-CSMS)의 경우 24시간 경과 시 3μg, 독소루비신 리포좀이 30mg 함유된 키토산 마이크로스피어(LDox30-CSMS)의 경우 24시간 경과 시 18μg, 독소루비신 리포좀이 50mg 함유된 키토산 마이크로스피어(LDox50-CSMS)의 경우 24시간 경과 시 44μg의 결과를 보였다. 독소루비신 리포좀의 첨가 양에 따라 약물 방출 양이 조절됨을 볼 수 있으며, 결과적으로, 약물을 함유한 나노수송체의 첨가 양에 따라 약물방출이 조절될 수 있음을 확인하였다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.
본 발명의 색전 마이크로스피어의 동결건조 방법을 이용하면, 동결건조 후에도 안정적인 물성을 가지는 마이크로스피어를 제조할 수 있다. 상기 방법을 통해 만들어진 마이크로스피어는, 균일한 구형이고, 500μm 이하의 크기를 가지며, 삽입 후 동결건조 전의 형태로 빠르게 복구되는 특징이 있어, 색전술에 유용하게 사용할 수 있는 장점이 있다. 또한, 본 발명에 따른 약물 함유 나노수송체가 결합된 키토산 마이크로스피어는 약물방출의 정밀한 조절이 가능한 특이성을 갖고 있으므로, 이를 이용하면, 종래의 약물방출 마이크로스피어와 비교하여 뛰어난 효과를 나타내므로, 표적 종양에 대한 선택적 약물 방출의 조절이 가능하며, 색전효과가 뛰어나므로, 항암치료 산업의 발전에 기여할 수 있다.

Claims (20)

  1. a) 마이크로스피어 현탁액에 트레할로스(trehalose)를 첨가하여 주는 단계;
    b) 상기 현탁액을 영하 50℃ 내지 영하 100℃에서 동결건조 시켜 건조 마이크로스피어를 제조하는 단계; 및
    c) 상기 건조 마이크로스피어를 물 또는 완충 용액(buffer)에 첨가하고, 와동(vortexing)시키는 단계;
    를 포함하는 색전용 마이크로스피어의 제조 방법.
  2. 제 1항에 있어서,
    상기 마이크로스피어의 재료는 키토산, 알지네이트, 키틴, 폴리 N-이소프로필아크릴아미드(PNIPam), 폴리에틸렌 글리콜(PEG), 폴리L-락트산(PLLA), 폴리D,L-락트산(PDLLA), 폴리글리콜산(PGA), 폴리카프로락톤(PCL), 폴리하이드록시알카노에이트, 폴리다이옥산온(PDS), 폴리트라이메틸린카보네이트, 폴리락트산-co-글리콜산(PLGA), 폴리L-락트산-co-카프로락톤(PLCL), 폴리글리콜산-co-카프로락톤(PGCL), 히알루론산, 콘드로이틴 설페이트, 더마탄(dermatan) 설페이트, 카르복시메틸셀룰로오스, 헤파란 설페이트, 헤파린, 케라탄 설페이트, 카르복시메틸하이드록시에틸셀룰로오스, 셀룰로오스 설페이트, 셀룰로오스 포스페이트, 카르복시메틸구아르, 카르복시메틸하이드록시프로필구아르, 카르복시메틸하이드록시에틸구아르, 잔탄검, 겔란검(gellan gum), 웰란검(welan gum), 람산검(rhamsangum), 아가로스, 푸르셀라란(furcellaran), 펙틴, 아라비아 고무, 트라가칸트 고무(gum tragacanth), 카라기난(carrageenans), 스타치 포스페이트, 스타치 숙시네이트, 글리코아미노글리칸, 폴리사카라이드, 폴리펩타이드, 아크릴아미드, N-비닐피롤리돈, 디메틸아크릴아미드, 아크릴산, 메타크릴산, 무수말레인산, 비닐설폰산, 스티렌카르복실산 2-아크릴아미도-2-메틸-프로판설폰산, 비닐포스폰산, 2-메틸아크릴로일옥시에틸설폰산, 젤라틴, 및 콜라겐으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는, 색전용 마이크로스피어의 제조방법.
  3. 제 1항에 있어서,
    상기 트레할로스는 마이크로스피어 현탁액의 부피대비 3% 내지 20%로 첨가해주는 것을 특징으로 하는, 색전용 마이크로스피어의 제조방법.
  4. 제 1항에 있어서,
    상기 c)단계는 조영제를 추가로 포함하는 것을 특징으로 하는, 색전용 마이크로스피어의 제조방법.
  5. 제 4항에 있어서,
    상기 조영제는 MRI(magnetic resonance imaging) 조영제, CT(computed tomography) 조영제, SPECT(single photon emission computed tomography) 조영제, PET(positron emission tomography), BL(bioluminescence) 조영제, 광학 조영제, X-ray 조영제, 및 초음파 조영제로 이루어지는 군으로부터 선택되는 것을 특징으로 하는, 색전용 마이크로스피어의 제조방법.
  6. 제 1항에 있어서,
    상기 와동은 5분 내지 20분 동안 수행되는 것을 특징으로 하는, 색전용 마이크로스피어의 제조방법.
  7. 제 1항에 있어서,
    상기 방법을 통해 제조되는 마이크로스피어는 약물 방출이 가능한 것을 특징으로 하는, 색전용 마이크로스피어의 제조 방법.
  8. 제 7항에 있어서,
    상기 약물은 암치료용 약물인 것을 특징으로 하는, 색전용 마이크로스피어의 제조 방법.
  9. 제 8항에 있어서,
    상기 암치료용 약물은 독소루비신인 것을 특징으로 하는, 색전용 마이크로스피어의 제조 방법.
  10. a) 나노수송체에 약물을 도입하는 단계;
    b) 상기 약물이 도입된 나노수송체를 키토산 용액에 넣어주어 혼합용액을 만들어 교반시키는 단계;
    c) 상기 교반시킨 혼합용액을 오일 및 유기용매를 섞은 용액에 넣고 계면활성제를 투입하여 교반하는 유화 단계; 및
    d) 상기 유화된 혼합용액에 글루타르알데하이드포화톨루엔 또는 게니핀을 점적한 후 교반하는 가교 단계;
    를 포함하는 키토산 마이크로스피어의 제조방법.
  11. 제 10항에 있어서,
    상기 나노수송체는 리포좀, 지질나노입자, 나노캡슐, 나노에멀젼, 및 나노구조체로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 키토산 마이크로스피어의 제조방법.
  12. 제 11항에 있어서,
    상기 나노수송체는 리포좀인 것을 특징으로 하는, 키토산 마이크로스피어의 제조방법.
  13. 제 10항에 있어서,
    상기 약물은 암치료용 약물인 것을 특징으로 하는, 키토산 마이크로스피어의 제조방법.
  14. 제 13항에 있어서,
    상기 암치료용 약물은 독소루비신인 것을 특징으로 하는, 키토산 마이크로스피어의 제조방법.
  15. 제 10항에 있어서,
    상기 오일은 파라핀오일(paraffin oil), 알파-비사볼롤 (α-bisabolol), 스테아릴 글리세레티네이트 (stearyl glycyrrhetinate), 살리실산 (salicylic acid), 토코페릴 아세테이트 (tocopheryl acetate), 판테놀 (panthenol), 글리세릴 스테아레이트 (glyceryl stearate), 세틸옥탄올레이트 (cetyl octanolate), 이소프로필 미리스테이트 (isopropyl myristate), 2-에틸렌 이소펠라고네이트 (2-ethylene isopelagonate), 디-c12-13 알킬 말레이트 (di-c12-13 alkyl malate), 세테아틸 옥타노에이트 (ceteatyl octanoate), 부틸렌 글리콜 디카프틸레이트/디카프레이트 (butylene glycol dicaptylate/dicaprate), 이소노닐 이소스테아레이트 (isononyl isostearate), 이소스테아릴 이소스테아레이트 (isostearyl isostearate), 세틸 옥타노에이트 (cetyl octanoate), 옥틸도데실 미리스테이트 (octyldodecyl myristate), 세틸 에스테르류 (cetyl esters), c10-30 콜레스테롤/라노스테롤 에스테르 (c10-30 cholesterol/lanosterol ester), 수소화 카스터 오일 (hydrogenated castor oil), 모노글리세라이드 (mono-glycerides), 디글리세라이드 (diglycerides), 트리글리세라이드 (triglycerides), 비스왁스 (beeswax), 카나우바 왁스 (canauba wax), 숙토스 디스테아레이트 (suctose distearate), PEG-8 비스왁스 (PEG-8 beeswax), 칸델리아 왁스 (candelilla(euphorbia cerifera) wax), 미네랄 오일, 스쿠알렌 (squalene), 스쿠알란 (squalane), 모노글리세라이드, 디글리세라이드, 트리글리세라이드, 중간 사슬 글리세라이드, 미글리올(myglyol), 및 크레모포(cremophor)로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 키토산 마이크로스피어의 제조방법.
  16. 제 10항에 있어서,
    상기 유기용매는 석유 에테르, 에틸 에테르, 이소프로필 아세테이트, n-프로필 아세테이트, 이소부틸 아세테이트, n-부틸 아세테이트, 이소 부틸 이소부티레이트, 2-에틸헥실 아세테이트, 에틸렌 글리콜 디아세테이트, C9 아세테이트, C10 아세테이트, 메틸 에틸 케톤, 메틸 이소부틸 케톤, 메틸 이소아밀 케톤, 메틸 n-아밀 키톤, 디부틸 케톤, 사이클로헥사논, 이소포론, 아세트알데하이드, n-부틸알데하이드, 크로톤알데하이드, 2-에틸헥사알데하이드, 이소부틸알데하이드, 프로피온알데하이드, 에틸 3-에톡시프로피오네이트, 톨루엔, 자일렌, 트리클로로에탄, 프로필렌 글리콜 모노메틸 에틸 아세테이트, 에틸렌 글리콜 모노에틸 에테르 아세테이트, 에틸렌 글리콜 모노부틸 에테르, 디에틸렌 글리콜 모노부틸 에테르 아세테이트, 디부틸 프탈레이트, 이데틸 프탈레이트, 디메틸 프탈레이트, 디옥틸 프탈레이트, 디옥틸 테레프탈레이트, 부틸 옥틸 프탈레이트, 부틸 벤젠 프탈레이트, 디옥틸 아디페이트, 트리에틸렌 글리콜 디-2-에틸헥사노에이트, 트리옥틸 트리메틸리테이트, 글리세릴 트리아세테이트, 글리세릴/트리프로피오닌, 및 2,2,4-트리메틸-1,3-펜타네디올 디이소부틸레이트로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 키토산 마이크로스피어의 제조방법.
  17. 제 10항에 있어서,
    상기 계면활성제는 솔비탄 세스퀴올리에이트, 글리세릴 스테아레이트, 폴리솔베이트 60, 폴리솔베이트 80, 솔비탄 트리올레인산염, 솔비탄 스테아레이트, PEG-20 글리세릴 이소스테아레이트, 세테트-25, PEG-60 수소화 카스터 오일, 노녹시놀-15, PEG-6-데실테트라데세트-20, 디메티콘 코폴리올, 글리세릴 디이소스테아레이트, 세테트-24, 세테아릴 알콜, 폴리옥실에틸렌 노니페닐 에테르, PEG-40 수소화 카스터 오일, 세틸 디메티콘 코폴리올, 폴리글리세릴-3 메틸글루코오스 디스테아레이트, PEG-100 스테아레이트, 솔비탄 이소스테아레이트, 라우릴 글루타메이트 나트륨, 코코암포디아세테이트 디나트륨, 디에탄올아미드 라우릭산, 코코넛 지방산 디에탄올아미드, N,N-비스-(2-히드록시 에틸)-코코미드, 및 코코아미도프로필 베타인으로 구성되는 군으로부터 하나 이상 선택되는 것을 특징으로 하는, 키토산 마이크로스피어의 제조방법.
  18. 약물 함유 나노수송체에 유화가교법으로 부착된 키토산 마이크로스피어를 유효성분으로 포함하는 색전시술용 조성물.
  19. 제 18항에 있어서,
    상기 약물은 암치료용 약물인 것을 특징으로 하는, 색전시술용 조성물.
  20. 제 19항에 있어서,
    상기 암치료용 약물은 독소루비신인 것을 특징으로 하는, 색전시술용 조성물.
PCT/KR2013/007867 2012-08-31 2013-08-30 색전용 마이크로스피어의 제조방법 및 약물 함유 나노수송체가 결합된 마이크로스피어의 제조방법 WO2014035206A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015529687A JP5957610B2 (ja) 2012-08-31 2013-08-30 塞栓用のミクロスフェアの製造方法及び薬物含有ナノ輸送体が結合されたミクロスフェアの製造方法
US14/424,988 US20150224221A1 (en) 2012-08-31 2013-08-30 Method for preparing microspheres for emboli, and method for preparing microspheres to which drug-containing carrier is bound
EP13833842.1A EP2891485B1 (en) 2012-08-31 2013-08-30 Method for preparing microspheres for emboli, and method for preparing microspheres to which drug-containing carrier is bound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0096589 2012-08-31
KR10-2012-0096590 2012-08-31
KR1020120096589A KR101395956B1 (ko) 2012-08-31 2012-08-31 약물 함유 나노수송체가 결합된 키토산 색전미세구 및 이의 제조방법
KR1020120096590A KR101440681B1 (ko) 2012-08-31 2012-08-31 색전용 마이크로스피어의 제조방법

Publications (2)

Publication Number Publication Date
WO2014035206A2 true WO2014035206A2 (ko) 2014-03-06
WO2014035206A3 WO2014035206A3 (ko) 2014-04-24

Family

ID=50184547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007867 WO2014035206A2 (ko) 2012-08-31 2013-08-30 색전용 마이크로스피어의 제조방법 및 약물 함유 나노수송체가 결합된 마이크로스피어의 제조방법

Country Status (4)

Country Link
US (1) US20150224221A1 (ko)
EP (1) EP2891485B1 (ko)
JP (1) JP5957610B2 (ko)
WO (1) WO2014035206A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107596430A (zh) * 2017-09-20 2018-01-19 合肥工业大学 含无机纳米材料的复合微球的合成方法及其在肝癌介入栓塞化疗中的应用
CN109789226A (zh) * 2016-09-27 2019-05-21 西江大学校产学协力团 利用携带抗癌剂的人血清白蛋白纳米粒子的肝动脉化疗栓塞术用组合物及其制造方法
CN112057673A (zh) * 2020-09-08 2020-12-11 尹振宇 一种聚左旋乳酸组织填充剂的制备方法
CN112316199A (zh) * 2020-11-16 2021-02-05 江南大学 一种改性羧甲基壳聚糖微球及其制备方法和应用
CN112898934A (zh) * 2021-03-01 2021-06-04 重庆坤飞建设(集团)有限公司 一种装配式建筑耐候密封胶及其制备方法
CN114668152A (zh) * 2022-03-14 2022-06-28 北京林业大学 一种稳定性高、在小肠定向释放的ace抑制肽脂质体及其制备方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014066463A1 (en) * 2012-10-24 2014-05-01 Celanese Acetate Llc Polysaccharide ester microspheres and methods and articles relating thereto
CN105816920B (zh) * 2016-03-29 2018-10-23 江南大学 一种改性海藻酸钠栓塞微球的制备方法
CN106581691B (zh) * 2016-12-04 2019-09-10 苏州大学 还原响应的靶向聚乙二醇-聚碳酸酯美登素前药胶束、其制备方法与应用
CN111278477A (zh) * 2017-10-25 2020-06-12 精密医疗国际公司 生物降解性和生物代谢性的肿瘤封闭剂
US11607388B2 (en) 2017-12-18 2023-03-21 C.R. Bard, Inc. Drug-loaded microbead compositions, embolization compositions and associated methods
US11590080B2 (en) 2017-12-18 2023-02-28 C.R. Bard, Inc. Drug-loaded biodegradable microbead compositions including drug-containing vesicular agents
WO2019155992A1 (ja) * 2018-02-07 2019-08-15 積水化学工業株式会社 コアシェル構造体及び製剤
CN108926735B (zh) * 2018-08-06 2019-07-02 中国热带农业科学院农产品加工研究所 改性壳聚糖-海藻酸盐-龙血竭复合纳米止血材料及其制备方法
CN108815566A (zh) * 2018-09-20 2018-11-16 黄旭东 一种多孔止血淀粉的制备方法
CN109806437B (zh) * 2019-02-20 2022-03-08 河北考力森生物科技有限公司 一种多功能复合止血材料的制备方法
AU2020280044A1 (en) * 2019-05-23 2021-12-16 Board Of Regents, The University Of Texas System Radiotherapeutic microspheres
CN110201215B (zh) * 2019-06-11 2021-07-30 科睿驰(深圳)医疗科技发展有限公司 一种梯度交联高弹性栓塞微球及其制备工艺
US20220323353A1 (en) * 2019-06-19 2022-10-13 Elena Afonina Biodegradable drug-eluting embolic particles for delivery of therapeutic agents
CN113121852B (zh) * 2019-12-31 2022-08-12 中国石油化工股份有限公司 一种制备纳米级交联淀粉微球的方法
CN111330072B (zh) * 2020-03-03 2021-11-23 南京鼓楼医院 一种仿生多孔MSCs微球的制备方法及其应用
CN111803701A (zh) * 2020-06-15 2020-10-23 中国人民解放军海军特色医学中心 负载抗菌药物的环γ-聚谷氨酸改性水凝胶的制备方法
CN111803702A (zh) * 2020-06-15 2020-10-23 中国人民解放军海军特色医学中心 负载生长因子的环γ-聚谷氨酸改性水凝胶的制备方法
CN111939310A (zh) * 2020-08-28 2020-11-17 四川轻化工大学 一种聚乙烯醇-果胶栓塞微球、载药栓塞微球及制备方法
WO2022099471A1 (zh) * 2020-11-10 2022-05-19 南通市巨久新材料科技有限公司 海藻酸壳聚糖可塑性支架材料的制备方法
EP4308288A1 (en) 2021-03-18 2024-01-24 Agfa-Gevaert Nv Poly(amino acid) based capsules
CN113648283B (zh) * 2021-07-23 2023-11-07 丽水市中心医院 靶向抑制HIF-2α的载药微球制备方法、载药微球及应用
CN114366723B (zh) * 2021-12-06 2023-07-07 珠海麦得发生物科技股份有限公司 一种含盐酸吡柔比星的微球及其制备方法和应用
CN114848582B (zh) * 2022-05-05 2023-08-08 江苏春申堂药业有限公司 一种治疗女性外阴白斑的缓释型抗菌凝胶及其制备方法
CN114917399A (zh) * 2022-06-14 2022-08-19 首都师范大学 三种高分子微球及其制备方法和应用
WO2024017165A1 (zh) * 2022-07-22 2024-01-25 森心(上海)科技有限公司 一种基于聚乙二醇单甲醚-聚乳酸羟基乙酸-聚赖氨酸的显影多孔微球、制备方法和应用
WO2024028255A1 (en) 2022-08-03 2024-02-08 Agfa-Gevaert Nv Poly(amino acid) based capsules
CN115414522A (zh) * 2022-09-23 2022-12-02 上海纳米技术及应用国家工程研究中心有限公司 一种粒度可控且单一分布的明胶载药微球的制备方法及其产品和应用
CN115887740B (zh) * 2022-10-08 2024-02-20 湖南中腾湘岳生物科技有限公司 一种多孔止血粉及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478227B1 (ko) 2001-08-04 2005-03-21 한상문 키틴 및/또는 키토산으로 구성되는 혈관 색전 물질의 제조방법
KR101058196B1 (ko) 2008-10-01 2011-08-22 서울대학교산학협력단 색전 시술용 키토산 마이크로스피어 및 이의 제조방법
KR101157260B1 (ko) 2003-02-12 2012-06-15 바이오컴페터블즈 유케이 리미티드 고형 종양의 화학색전술용 조성물

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857319A (en) * 1985-01-11 1989-08-15 The Regents Of The University Of California Method for preserving liposomes
IT1289938B1 (it) * 1997-02-20 1998-10-19 Angelini Ricerche Spa Preparazione farmaceutica comprendente liposomi liofilizzati in cui e' incapsulato un principio attivo altamente insolubile in acqua e
US20030170539A1 (en) * 2002-02-05 2003-09-11 Gencell Corporation Aqueous electrode binder and electrodes and fuel cells including same
US20050152979A1 (en) * 2003-09-05 2005-07-14 Cell Therapeutics, Inc. Hydrophobic drug compositions containing reconstitution enhancer
EP1774971A1 (en) * 2005-10-14 2007-04-18 Advanced in Vitro Cell Technologies, S.L. Chitosan and heparin nanoparticles
ES2403645T5 (es) * 2006-06-22 2020-11-16 Biocompatibles Uk Ltd Producto farmacéutico rehidratable
US9481752B2 (en) * 2006-07-27 2016-11-01 Boston Scientific Scimed, Inc. Polymeric particles comprising vinyl formal, vinyl alcohol and vinyl acetate monomer units
WO2009082648A1 (en) * 2007-12-21 2009-07-02 Inspiration Biopharmaceuticals, Inc. Stabilized factor ix formulations containing trehalose
KR101003204B1 (ko) * 2008-02-14 2010-12-21 메콕스큐어메드 주식회사 약물 전달용 고형 지질 나노입자, 그 제조방법, 및 그나노입자를 포함하는 주사제
EP2367535B1 (en) * 2008-12-02 2017-02-22 Biocompatibles Uk Ltd. Pancreatic tumour treatment
CN101919813B (zh) * 2010-07-20 2011-11-30 江苏先声药物研究有限公司 一种制备注射用重组人血管内皮抑制素壳聚糖纳米粒的方法
CN101953796B (zh) * 2010-07-20 2012-07-25 江苏先声药物研究有限公司 一种注射用重组人血管内皮抑制素壳聚糖纳米粒的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478227B1 (ko) 2001-08-04 2005-03-21 한상문 키틴 및/또는 키토산으로 구성되는 혈관 색전 물질의 제조방법
KR101157260B1 (ko) 2003-02-12 2012-06-15 바이오컴페터블즈 유케이 리미티드 고형 종양의 화학색전술용 조성물
KR101058196B1 (ko) 2008-10-01 2011-08-22 서울대학교산학협력단 색전 시술용 키토산 마이크로스피어 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEAUJEUX ET AL.: "Trisacryl gelatin microspheres for therapeutic embolization, II: Preliminary Clinical evaluation in tumors and arteriovenous malformaitions", AM J NEURORADIOL, vol. 17, 1996, pages 541 - 548
See also references of EP2891485A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109789226A (zh) * 2016-09-27 2019-05-21 西江大学校产学协力团 利用携带抗癌剂的人血清白蛋白纳米粒子的肝动脉化疗栓塞术用组合物及其制造方法
CN109789226B (zh) * 2016-09-27 2021-11-26 艾姆戈特株式会社 利用携带抗癌剂的人血清白蛋白纳米粒子的肝动脉化疗栓塞术用组合物及其制造方法
CN107596430A (zh) * 2017-09-20 2018-01-19 合肥工业大学 含无机纳米材料的复合微球的合成方法及其在肝癌介入栓塞化疗中的应用
CN112057673A (zh) * 2020-09-08 2020-12-11 尹振宇 一种聚左旋乳酸组织填充剂的制备方法
CN112316199A (zh) * 2020-11-16 2021-02-05 江南大学 一种改性羧甲基壳聚糖微球及其制备方法和应用
CN112316199B (zh) * 2020-11-16 2022-02-22 江南大学 一种改性羧甲基壳聚糖微球及其制备方法和应用
CN112898934A (zh) * 2021-03-01 2021-06-04 重庆坤飞建设(集团)有限公司 一种装配式建筑耐候密封胶及其制备方法
CN114668152A (zh) * 2022-03-14 2022-06-28 北京林业大学 一种稳定性高、在小肠定向释放的ace抑制肽脂质体及其制备方法

Also Published As

Publication number Publication date
EP2891485A4 (en) 2016-07-27
JP5957610B2 (ja) 2016-07-27
US20150224221A1 (en) 2015-08-13
EP2891485A2 (en) 2015-07-08
WO2014035206A3 (ko) 2014-04-24
JP2015526510A (ja) 2015-09-10
EP2891485B1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2014035206A2 (ko) 색전용 마이크로스피어의 제조방법 및 약물 함유 나노수송체가 결합된 마이크로스피어의 제조방법
Péan et al. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres?
DE60128261T3 (de) Verfahren umfassend einen induzierten phasenübergang zur herstellung von hydrophobe wirkstoffe enthaltenden mikropartikeln
US20190381131A1 (en) Formulations
JP5430940B2 (ja) 放出制御ゲル
US9023386B2 (en) Microspheres comprising nanocapsules containing a lipophilic drug
JP4381479B2 (ja) ジルチアゼム除放性製剤
US20060008527A1 (en) Controlled phase composition technology as an improved process for protection of drugs
US20040009229A1 (en) Stabilized nanoparticle formulations of camptotheca derivatives
EP1551371A2 (en) Stabilized nanoparticle formulations of camptotheca derivatives
AU2014345543A1 (en) Formulations
Péan et al. Optimization of HSA and NGF encapsulation yields in PLGA microparticles
WO2016013755A1 (ko) 레티놀 또는 레티놀 유도체를 함유하는 마이크로니들
WO2021010719A1 (ko) 리바스티그민을 포함하는 장기지속형 제제 및 이의 제조방법
WO2018135839A1 (ko) 미립구형 서방출 주사제 및 그의 제조방법
Hamidi et al. Preparation and in vitro characterization of carrier erythrocytes for vaccine delivery
Terreni et al. A hybrid ocular delivery system of cyclosporine-A comprising nanomicelle-laden polymeric inserts with improved efficacy and tolerability
AU2015341695A1 (en) Compositions comprising cyclosporin
JP2023505714A (ja) アルカリ剤及び腸溶性コーティング層を含む剤形
KR101395956B1 (ko) 약물 함유 나노수송체가 결합된 키토산 색전미세구 및 이의 제조방법
JP2000256195A (ja) ニフェジピン小丸薬およびニフェジピン小丸薬の調製方法
JP2023505883A (ja) 病気の治療又は予防において使用するための剤形
EP3984525A1 (en) Extended-release drug delivery compositions
Vidmar et al. Poly (lactic acid) microencapsulated oxytetracycline: in vitro and in vivo evaluation
KR101440681B1 (ko) 색전용 마이크로스피어의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015529687

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14424988

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833842

Country of ref document: EP

Kind code of ref document: A2