WO2014034782A1 - 荒引銅線及び巻線 - Google Patents

荒引銅線及び巻線 Download PDF

Info

Publication number
WO2014034782A1
WO2014034782A1 PCT/JP2013/073154 JP2013073154W WO2014034782A1 WO 2014034782 A1 WO2014034782 A1 WO 2014034782A1 JP 2013073154 W JP2013073154 W JP 2013073154W WO 2014034782 A1 WO2014034782 A1 WO 2014034782A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper wire
ppm
mass
rough
wire
Prior art date
Application number
PCT/JP2013/073154
Other languages
English (en)
French (fr)
Inventor
正登 小出
英甫 渡辺
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US14/419,398 priority Critical patent/US9679676B2/en
Priority to CN201380039894.9A priority patent/CN104508161B/zh
Publication of WO2014034782A1 publication Critical patent/WO2014034782A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/02Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C3/00Profiling tools for metal drawing; Combinations of dies and mandrels
    • B21C3/02Dies; Selection of material therefor; Cleaning thereof
    • B21C3/08Dies; Selection of material therefor; Cleaning thereof with section defined by rollers, balls, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables

Definitions

  • the present invention relates to a roughing copper wire used as a wire such as a winding of a motor, and a winding using the roughing copper wire.
  • the rough drawn copper wire which consists of copper with low oxygen content, such as oxygen free copper whose oxygen amount was 10 ppm or less by mass ppm, is used.
  • the above-mentioned rough drawn copper wire is manufactured by dip forming or extrusion.
  • dip forming molten copper is continuously solidified on the outer periphery of a copper seed wire to obtain a rod-shaped copper material, which is rolled to obtain a rough drawn copper wire.
  • extrusion process a copper billet is extruded and rolled to obtain a rough drawn copper wire.
  • Such holes remaining in the ingot are considered to be the main cause of surface defects of the rough drawn copper wire.
  • the surface defect of the rough drawn copper wire causes a surface defect of the wire drawing material even when the wire drawing material is drawn.
  • this wire drawing material is used as a conductor for winding, if an enamel film (insulating film) is applied to the surface of the wire drawing material, moisture and oil remaining on the surface defects of the wire drawing material are trapped in the enamel film, and heat is applied after drying. When this is added, a defect called “bullet” is generated, which causes bubbles to be generated in the enamel film and swell.
  • Patent Document 2 In order to suppress the occurrence of blister defects, for example, in Patent Document 2, a P compound is added to molten copper so that the phosphorus (P) content in the ingot is 1 to 10 ppm, and the temperature of the molten copper is adjusted. A rough drawn copper wire manufactured by adjusting to 1085 ° C. to 1100 ° C. is disclosed.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a rough-drawn copper wire having a good surface quality and a winding in which occurrence of blistering defects is suppressed.
  • the inventors of the present invention set O to 10 mass ppm or less and add P more than 10 mass ppm to 30 mass ppm at the time of casting in continuous casting rolling, It was found that by fixing O in the molten metal with P, generation of H 2 O (water vapor) can be suppressed, and holes generated in the ingot can be effectively suppressed. At this time, in the rough drawn copper wire, there will be a lot of free hydrogen that has not reacted with O as a result.
  • the obtained rough drawn copper wire is subjected to heat treatment at 500 ° C.
  • the rough-drawn copper wire of one embodiment of the present invention is a rough-drawn copper wire manufactured by continuous casting and rolling, and P: more than 10 ppm by mass 30 mass ppm or less, O; 10 mass ppm or less, H; 1 mass ppm or less, with the balance being composed of Cu and inevitable impurities, and heat treatment was performed at 500 ° C. for 30 minutes in a vacuum.
  • the subsequent hydrogen concentration is 0.2 mass ppm or less.
  • the P content is more than 10 ppm by mass and 30 ppm by mass or less, and the hydrogen concentration after performing the heat treatment at 500 ° C. for 30 minutes in a vacuum is 0.2 Since it is set as the mass ppm or less, the hydrogen in rough drawn copper wire will exist as free hydrogen. Therefore, there is no hole due to H 2 O in the rough drawn copper wire, and it is possible to suppress the occurrence of surface defects.
  • the winding of the present invention is characterized by comprising a wire drawing material manufactured using the above-described rough drawn copper wire and an insulating film coated on the outer periphery of the wire drawing material.
  • a wire drawing material manufactured using the above-described rough drawn copper wire and an insulating film coated on the outer periphery of the wire drawing material.
  • the rough drawn copper wire 60 according to the present embodiment is used as a material for the winding 70 shown in FIG. 1, for example.
  • the winding 70 according to the present embodiment will be described.
  • the winding 70 includes a wire drawing material 71 from which a rough drawn copper wire 60 has been drawn, and an enamel film 72 (insulating film) that covers the wire drawing material 71.
  • the wire drawing material 71 is a flat wire, and the winding 70 is specifically used as a winding for a motor.
  • the rough drawn copper wire 60 has a composition in which P is more than 10 ppm by mass and 30 ppm by mass or less, O is 10 ppm by mass or less, H is 1 ppm by mass or less, and the balance is composed of Cu and inevitable impurities.
  • the hydrogen concentration after the heat treatment at 500 ° C. for 30 minutes is set to 0.2 mass ppm or less.
  • the heat treatment is performed in a vacuum of 1 ⁇ 10 ⁇ 10 Torr.
  • the hydrogen concentration in the roughed copper wire 60 is measured by an inert gas melting gas chromatography separation thermal conductivity measuring method using a hydrogen analyzer (RHEN-600 type) manufactured by LECO.
  • RHEN-600 type the method concentration lower limit value of the hydrogen concentration is set to 0.2 mass ppm.
  • the method determination lower limit means the lower limit that can be accurately determined in the analysis method.
  • the ⁇ 111> orientation is perpendicular to the drawing direction in the cross section perpendicular to the drawing direction of the copper wire that has been annealed after cold working with a cross-section reduction rate of 20% or more and is completely softened. It is preferable that the crystals oriented within ⁇ 10 ° are within 30% of the total crystals.
  • the crystal orientation in which the ⁇ 100> orientation is within ⁇ 10 ° with respect to the drawing direction in the crystal orientation when completely softened after processing with a cross-section reduction rate of 20% or more is 30% or less of the total crystal.
  • the electrical conductivity of this rough-drawn copper wire 60 is 100% IACS or higher (International Annealed Copper Wire Standard).
  • the crystal orientation can be measured by an electron back scatter diffraction pattern (EBSD method).
  • EBSD method an EBSD detector is connected to an SEM (scanning electron microscope) to analyze the orientation of individual crystal diffraction images (EBSD) generated when a focused electron beam is irradiated onto the sample surface, and to measure the orientation data and measurement.
  • SEM scanning electron microscope
  • the measurement result is shown as a crystal orientation map (IPF Map).
  • FIG. 2 shows an outline of an apparatus for producing rough drawn copper wire.
  • the roughing copper wire manufacturing apparatus 1 includes a melting furnace A, a holding furnace B, a casting rod C, a belt-wheel type continuous casting machine D, a continuous rolling apparatus E, and a coiler F.
  • a shaft furnace having a cylindrical furnace body is used as the melting furnace A.
  • a plurality of burners (not shown) are arranged in a multistage shape in the vertical direction at the lower part of the furnace body.
  • the electrolytic copper which is a raw material is inserted from the upper part of a furnace main body, is melt
  • the holding furnace B is for temporarily storing the molten copper produced in the melting furnace A while holding it at a predetermined temperature and sending a certain amount of the molten copper to the casting iron C.
  • the cast iron C is for transferring the molten copper sent from the holding furnace B to the tundish 11 disposed above the belt-wheel continuous casting machine D.
  • a pouring nozzle 12 is disposed on the end of the tundish 11 in the direction of the flow of the molten copper, and the molten copper in the tundish 11 is supplied to the belt-wheel continuous casting machine D through the pouring nozzle 12.
  • the belt-wheel type continuous casting machine D includes a cast wheel 13 having a groove formed on the outer peripheral surface thereof, and an endless belt 14 that is circulated so as to contact a part of the outer peripheral surface of the cast wheel 13.
  • the molten copper supplied via the pouring nozzle 12 is poured into the space formed between the groove and the endless belt 14 and cooled to continuously cast the long ingot 21. is there.
  • the belt-wheel type continuous casting machine D is connected to a continuous rolling device E.
  • This continuous rolling apparatus E continuously rolls the long ingot 21 produced from the belt-wheel type continuous casting machine D as a material to be rolled 22, and produces a rough drawn copper wire 60 having a predetermined outer diameter. It is something to be issued.
  • the rough drawn copper wire 60 produced from the continuous rolling device E is wound around the coiler F via the cleaning / cooling device 15 and the flaw detector 16.
  • the cleaning / cooling device 15 cleans the surface of the roughed copper wire 60 produced from the continuous rolling device E with a cleaning agent such as alcohol and cools it.
  • the flaw detector 16 detects flaws in the roughing copper wire 60 sent from the cleaning / cooling device 15.
  • FIG. 3 shows a continuous rolling apparatus E used in the roughing copper wire manufacturing apparatus 1 according to this embodiment.
  • the continuous rolling apparatus E includes a cover member 31, and an inlet 32 for charging the long ingot 21 is formed on one end side (the left end in FIG. 3) of the cover member 31.
  • a production outlet 33 for producing the rough drawn copper wire 60 is formed on the other end side of the cover member 31 (right end in FIG. 3).
  • a vertical rolling unit 40 having a pair of vertical rolling rolls 48, 48 is, from the loading port 32 side, a first vertical rolling unit 41, a second vertical rolling unit 42, a third vertical rolling unit 43, a fourth vertical rolling unit 44, Five sets of fifth vertical rolling units 45 are arranged.
  • the first vertical rolling unit 41 is provided with a nozzle 36 for spraying rolling oil onto the roll surface.
  • the horizontal rolling unit 50 having a pair of horizontal rolling rolls 58 includes a first horizontal rolling unit 51, a second horizontal rolling unit 52, a third horizontal rolling unit 53, a fourth horizontal rolling unit 54, a fifth, from the loading port 32 side.
  • Five sets of horizontal rolling units 55 are arranged.
  • the vertical rolling roll 48 is supported so as to rotate on a vertical plane along the traveling direction of the material 22 to be rolled, and is driven to rotate in the arrow direction shown in FIG. 3 by a power source (not shown). is there.
  • the vertical rolling rolls 48 are each paired and rolled while sandwiching the material 22 to be rolled in the vertical direction.
  • the vertical rolling rolls 48 of the first to fifth vertical rolling units 41 to 45 are configured to be able to individually control the rotation speed.
  • the horizontal rolling roll 58 is supported so as to rotate on a horizontal plane along the traveling direction of the material 22 to be rolled, and is rotationally driven in the arrow direction shown in FIG. 3 by a power source (not shown). It is.
  • the horizontal rolling rolls 58 are each paired and rolled while sandwiching the material 22 to be rolled in the horizontal direction.
  • the horizontal rolling rolls 58 of the first to fifth horizontal rolling units 51 to 55 are configured to be able to individually control the rotation speed.
  • This molten copper is sent to the holding furnace B and is transferred to the tundish 11 through the casting rod C while being kept at a predetermined temperature.
  • the molten copper flow path in the cast iron C is provided with a stirring means, and degassing is performed (degassing step S2).
  • This stirring means is composed of a plurality of weirs so that the molten copper flows while being vigorously stirred.
  • This stirring means is provided mainly for the dehydrogenation treatment, but oxygen remaining in the molten copper is also deoxidized by stirring the molten copper.
  • the oxygen (O) content of the molten copper is 10 mass ppm or less, and the hydrogen (H) content is 1 mass ppm or less.
  • P is added to a copper molten metal, and P content of a molten copper is set to 30 mass ppm or less more than 10 mass ppm (P addition process S3).
  • P addition process S3 it is desirable that the molten copper at this time is maintained at 1085 ° C. or higher and 1115 ° C. or lower.
  • the produced long ingot 21 has a substantially cross-sectional trapezoidal shape with a width of about 100 mm and a height of about 50 mm.
  • the long ingot 21 continuously produced by the belt-wheel continuous casting machine D is supplied to the continuous rolling device E.
  • the long ingot 21 is charged as the material to be rolled 22 from the charging port 32 of the continuous rolling apparatus E, is initially rolled by the first vertical rolling unit 41 and the first horizontal rolling unit 51, and further is the second vertical rolling unit 42.
  • the second horizontal rolling unit 52, the third vertical rolling unit 43, the third horizontal rolling unit 53, the fourth vertical rolling unit 44, the fourth horizontal rolling unit 54, the fifth vertical rolling unit 45, and the fifth horizontal rolling unit 55 The rolled copper wire 60 having a predetermined outer diameter (in this embodiment, a diameter of 8.0 mm) is continuously rolled and produced from the outlet 33 (continuous rolling step S5).
  • the continuous rolling step S5 at least the final stage (fifth horizontal rolling unit 55) or the stage immediately preceding the final stage (fifth vertical rolling unit 45), as shown in FIG. So that the ratio Vw / Vr of the transfer speed Vw and the tangential speed Vr at the processing point P of the vertical rolling roll 48 and the horizontal rolling roll 58 is in the range of 0.99 ⁇ Vw / Vr ⁇ 1.07.
  • the production speed of the long ingot 21 and the rotation speeds of the vertical rolling roll 48 and the horizontal rolling roll 58 are controlled.
  • the rolling temperature in the fifth horizontal rolling unit 55 located closest to the outlet 33 is set to 500 ° C. or higher.
  • the roughing copper wire 60 from which the outlet 33 has been produced is cleaned and cooled by the cleaning / cooling device 15, the scratch is detected by the flaw detector 16, and the roughing copper wire 60 having no problem in quality is obtained by the coiler F. Rolled up.
  • the rough-drawn copper wire 60 according to the present embodiment is further drawn into a thin wire having a diameter of 0.5 to 3.2 mm, and is further formed into a flat wire drawing material by flattening (drawing step). S6). And the enamel coating is given to the outer peripheral surface of a wire drawing material, the enamel film 72 (insulating film) is formed, and it is set as the coil
  • the winding 70 is wound around a core member to form a coil or the like, for example, a motor coil.
  • the P content is more than 10 ppm by mass and 30 ppm by mass or less, and a heat treatment is performed at 500 ° C. for 30 minutes in a vacuum. Since the subsequent hydrogen concentration is 0.2 mass ppm or less, the occurrence of surface defects generated in the rough-drawn copper wire 60 is suppressed, and the surface quality is improved.
  • O is set to 10 mass ppm or less and P is added to more than 10 mass ppm and 30 mass ppm or less, so that O in the molten metal is fixed with P to be H 2 O ( The generation of water vapor) can be suppressed, and as a result, a large amount of free hydrogen is present, and holes generated in the ingot can be effectively suppressed.
  • the roughing copper wire is subjected to a heat treatment at 500 ° C. for 30 minutes in a vacuum, the above-described free hydrogen is released to the outside of the roughing copper wire, and the hydrogen concentration is 0.2 mass ppm or less. Become.
  • the rough drawn copper wire 60 in which the hydrogen concentration is set to 0.2 mass ppm or less after performing the heat treatment at 500 ° C. for 30 minutes in a vacuum does not contain hydrogen as H 2 O, and at the time of casting Since the generation of holes is suppressed, there are few surface defects and the surface quality is improved.
  • the winding 70 according to the present embodiment includes the wire drawing material 71 manufactured using the rough drawn copper wire 60 having a good surface quality as described above, and the surface quality of the rough drawn copper wire 60 is good. In such a case, it is possible to suppress the occurrence of surface defects generated in the wire drawing material 71 and to improve the surface quality.
  • the material to be rolled at least the final stage (fifth horizontal rolling unit 55) or the stage immediately preceding the final stage (fifth vertical rolling unit 45), the material to be rolled.
  • the ratio Vw / Vr between the transfer speed Vw of 22 and the tangential speed Vr at the processing point P of the vertical rolling roll 48 and the horizontal rolling roll 58 is set in a range of 0.99 ⁇ Vw / Vr ⁇ 1.07. Therefore, the speed difference between the processed material 22 to be processed, the vertical rolling roll 48 and the horizontal rolling roll 58 is reduced, and the tension due to the speed difference acts on the surface of the rolled material 22 and the roughing copper wire 60. Can be suppressed.
  • the ⁇ 111> texture or ⁇ 112> texture generated by this tension does not occur on the surface of the material to be rolled 22 and the roughing copper wire 60, and the workability of the surface of the roughing copper wire 60 can be ensured. It becomes possible. Therefore, even if this rough-drawn copper wire 60 is subjected to a drawing process to produce a wire drawing material 71 having a desired wire diameter, the occurrence of surface defects on the wire drawing material 71 can be suppressed.
  • the rolling temperature in the fifth horizontal rolling unit 55 located closest to the production outlet 33 is set to 500 ° C. or higher, so that rough drawing is produced.
  • the appearance of the ⁇ 111> texture on the surface of the copper wire 60 can be suppressed, and the workability of the rough drawn copper wire 60 can be improved.
  • the rough drawn copper wire 60 is preferably annealed after cold working with a cross-section reduction rate of 20% or more, and the ⁇ 111> orientation is in the drawing direction in the cross section perpendicular to the drawing direction of the completely softened copper wire.
  • the ⁇ 111> orientation is in the drawing direction in the cross section perpendicular to the drawing direction of the completely softened copper wire.
  • the ⁇ 100> orientation is within ⁇ 10 ° with respect to the drawing direction in the crystal orientation when completely softened after processing with a cross-section reduction rate of 20% or more.
  • the crystal facing 10% or more of the total crystal, and the crystal whose ⁇ 111> or ⁇ 112> orientation is within ⁇ 10 ° with respect to the drawing direction is 30% or less of the total crystal. Therefore, by performing a heat treatment for completely softening during the drawing process, the crystal can be rotated in the subsequent drawing process, and the generation of surface defects can be suppressed.
  • the molten copper is poured into a space (mold) defined by the groove and the endless belt 14 having a cast wheel 13 having a groove on the outer peripheral surface and an endless belt 14. Since the belt-wheel type continuous casting machine D that obtains the long ingot 21 by hot water is used, the rough-drawn copper wire 60 can be produced efficiently and at low cost.
  • the temperature of the molten metal during casting in continuous casting rolling is set to 1085 ° C. or more and 1115 ° C. or less, so that the solubility of hydrogen can be reduced and holes generated during solidification can be reduced. It is possible to suppress the occurrence of surface defects that occur in the roughed copper wire 60.
  • 4N electrolytic copper is used as a melting raw material, and rough drawn copper wire is produced.
  • the present invention is not limited to this, and rough drawn copper wire is used as a raw material. It may be produced.
  • the cross-sectional shape and size of the long ingot are not limited, and the wire diameter of the rough drawn copper wire is not limited to the embodiment.
  • this embodiment demonstrated the case where a wire drawing material was a flat wire, a round wire and a round wire rolling material may be sufficient.
  • the belt-wheel casting machine has been described as being used. However, a twin-belt casting machine can also be used.
  • the confirmation experiment was performed by using the roughing copper wire manufacturing apparatus according to the embodiment described above, and using the roughing copper wires of the present invention examples 1 to 5 and the comparative examples 1 to 3 (wire diameter: 8. 0 mm) was prepared. And the contents of P, O, and H and the electrical conductivity of this rough drawn copper wire were measured.
  • the content of P was measured by spark discharge emission spectrometry using ARL4460 manufactured by Thermo Fisher Scientific.
  • the content of O was measured by an inert gas melting infrared absorption method using an oxygen analyzer (RO-600 type) manufactured by LECO.
  • the H content was measured by an inert gas melting gas chromatography separation thermal conductivity measurement method using a hydrogen analyzer (RHEN-600 type) manufactured by LECO.
  • RHEN-600 type the lower limit of the method determination amount is 0.2 mass ppm.
  • the conductivity was measured by a double bridge method using a precision double bridge manufactured by Yokogawa Electric Corporation.
  • the resulting rough-drawn copper wire was polished using # 2400 water-resistant paper, and then electropolished using an electropolishing liquid in which phosphoric acid and water were mixed 1: 1. Washed with water and ethanol. Then, after heat treatment at 500 ° C. for 30 minutes at a degree of vacuum of 1 ⁇ 10 ⁇ 10 Torr, the hydrogen concentration of the rough drawn copper wire was measured by an inert gas melting gas chromatographic separation thermal conductivity measurement method.
  • the obtained rough drawn copper wire was subjected to cold drawing (drawing) to produce a drawn material having a wire diameter of 2.6 mm.
  • the surface defects of the wire drawing material thus obtained were detected by visual inspection and hand inspection using stockings, and the number of surface defects per 100 kg was counted. The measurement results are shown in Table 1.
  • the content of P in the roughened copper wire is in the range of more than 10 ppm by mass and 30 ppm by mass, and the roughened copper wire after the heat treatment Since the hydrogen concentration was lower than 0.2 ppm by mass which is the lower limit of measurement, it was confirmed that the number of surface defects in the wire drawing material was small. Moreover, it was confirmed that electrical conductivity is high. On the other hand, in Comparative Example 1, since the content of P in the rough-drawn copper wire is 10 ppm by mass or less, the hydrogen concentration after the heat treatment is larger than 0.2 ppm by mass, and the number of surface defects in the wire drawing material is large. became.
  • Comparative Example 2 the P content of the roughened copper wire was higher than 30 ppm by mass, so that the conductivity was inferior compared with Invention Examples 1 to 5 of the present invention.
  • Comparative Example 3 the content of H in the roughened copper wire is more than 1 mass ppm, and the hydrogen concentration in the roughened copper wire after the heat treatment is higher than 0.2 mass ppm. The number has increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal Extraction Processes (AREA)
  • Metal Rolling (AREA)
  • Conductive Materials (AREA)
  • Continuous Casting (AREA)
  • Insulated Conductors (AREA)

Abstract

 表面品質が良好な荒引銅線、及びフクレ欠陥の発生が抑制された巻線を提供する。荒引銅線は、P;10質量ppm超30質量ppm以下、O;10質量ppm以下、H;1質量ppm以下、を含み、残部がCuと不可避不純物とからなる組成を有し、真空中において500℃で30分間の加熱処理を実施した後の水素濃度が、0.2質量ppm以下とされる。巻線(70)は、この荒引銅線を用いて製造された伸線材(71)と、この伸線材(71)の外周に被覆された絶縁膜(72)と、を備える。

Description

荒引銅線及び巻線
 本願発明は、例えばモーターの巻線などの素線として使用される荒引銅線、及びこの荒引銅線を用いた巻線に関するものである。
 本願は、2012年8月31日に、日本に出願された特願2012-192136号に基づき優先権を主張し、その内容をここに援用する。
 従来、上述の荒引銅線としては、タフピッチ銅からなるものが広く使用されている。ところが、タフピッチ銅は0.02~0.05質量%の酸素(O)を含有していることから、巻線を溶接して使用するような場合には、水素脆化が発生してしまうため、使用することができなかった。よって、溶接を行う用途においては、酸素量が、質量ppmで10ppm以下とされた無酸素銅などの酸素含有量の低い銅からなる荒引銅線が用いられている。
 上述の荒引銅線は、ディップフォーミングや押出しによって製造される。ディップフォーミングでは、銅の種線の外周に溶融銅を連続的に固化させて棒状銅材を得て、これを圧延して荒引銅線を得る。また、押出し加工では、銅のビレットを押出し加工し、圧延などを行い、荒引銅線を得る。しかしながら、これらの製造方法は、生産効率が悪く、製造コストが大きくなる問題がある。
 製造コストが小さい荒引銅線の製造方法としては、例えば特許文献1に記載のように、ベルト・ホイール式連続鋳造機と、連続圧延装置とを用いた連続鋳造圧延による方法がある。この連続鋳造圧延法では、シャフト炉などの大型の溶解炉で溶解した溶銅を冷却固化して鋳塊とし、この鋳塊を連続的に引き出し圧延する方法であり、大規模設備で大量生産が可能である。
 しかしながら、酸素含有量の低い銅を溶製した場合、溶銅中の水素濃度が上昇し、水蒸気の気泡が発生する。そして、ベルト・ホイール式連続鋳造機においては、鋳型が回転移動していることから、発生した上記の気泡が湯面から抜けにくく、鋳塊内に残存しホールが発生する。
 このような鋳塊中に残存するホールは、荒引銅線の表面欠陥の主要因と考えられている。荒引銅線の表面欠陥は、引抜加工を施し伸線材とした場合にも、伸線材の表面欠陥を引き起こす。そして、この伸線材を巻線の導体として使用した場合、伸線材の表面にエナメル膜(絶縁膜)を塗布すると伸線材の表面欠陥に残存する水分や油分がエナメル膜に閉じ込められ、乾燥後に熱を加えた際にエナメル膜に気泡が発生し膨れてしまう「フクレ」と呼ばれる欠陥が生じ、問題となる。
 このフクレ欠陥の発生を抑制するために、例えば特許文献2には、鋳塊のリン(P)の含有量が1~10ppmとなるようにP化合物を溶銅に添加し、溶銅の温度を1085℃~1100℃に調整して製造された荒引銅線が開示されている。
日本国特開2007-50440号公報(A) 日本国特許第4593397号公報(B)
 しかしながら、特許文献2に記載の荒引銅線においては、Pの含有量が1~10ppmとされておりPの含有量が少ないので、鋳造時の銅溶湯中のOをPで十分に固定することができず、水蒸気(HO)による気泡の発生の抑制が不十分であった。このため、鋳塊中のホールの発生を抑制できず、荒引銅線に生じる表面欠陥を十分に低減できなかった。
 この発明は、前述した事情に鑑みてなされたものであって、表面品質が良好な荒引銅線、及びフクレ欠陥の発生が抑制された巻線を提供することを目的とする。
 本願発明者らは、上述した課題を解決すべく検討した結果、連続鋳造圧延の鋳造時において、Oを10質量ppm以下に設定してPを10質量ppm超30質量ppm以下添加することにより、溶湯中のOをPで固定することでHO(水蒸気)の発生を抑制でき、鋳塊中に発生するホールを効果的に抑制できるとの知見を得た。
 このとき、荒引銅線中には、結果的にOと反応しなかったフリー水素が多く存在することになる。ここで、得られた荒引銅線に対して真空中において500℃で30分間の加熱処理を実施すると、前述のフリー水素が外部に放出され、荒引銅線の水素濃度が0.2質量ppm以下となることが確認された。
 本願発明は、上記の知見に基づき完成させたものであって、その態様は以下の通りである。
 すなわち、本願発明の一態様の荒引銅線(以下、「本願発明の荒引銅線」と称する)は、連続鋳造圧延により製造される荒引銅線であって、P;10質量ppm超30質量ppm以下、O;10質量ppm以下、H;1質量ppm以下、を含み、残部がCuと不可避不純物とからなる組成を有し、真空中において500℃で30分間の加熱処理を実施した後の水素濃度が、0.2質量ppm以下であることを特徴としている。
 本願発明の荒引銅線によれば、Pの含有量が10質量ppm超30質量ppm以下とされ、真空中において500℃で30分間の加熱処理を実施した後の水素濃度が、0.2質量ppm以下とされているので、荒引銅線中の水素がフリー水素として存在していることになる。よって、荒引銅線中にHOに起因するホールが存在しておらず、表面欠陥の発生を抑制することが可能となる。
 また、本願発明の巻線は、上記の荒引銅線を用いて製造された伸線材と、この伸線材の外周に被覆された絶縁膜を備えることを特徴としている。
 本願発明の巻線によれば、上述のような表面品質が良好な荒引銅線を用いて製造された伸線材を用いた巻線とされているので、伸線材の表面欠陥の発生が抑制され、巻線に生じるフクレ欠陥の発生を抑制できる。
 本願発明によれば、表面品質が良好な荒引銅線、及びフクレ欠陥の発生が抑制された巻線を提供することができる。
本願発明の実施形態に係る巻線の断面図である。 本願発明の実施形態に係る荒引銅線を製出する製造装置の概略説明図である。 図2の荒引銅線の製造装置に備えられた連続圧延装置の断面図である。 図3の連続圧延装置に備えられた圧延ロールによって被圧延材を圧延する部分を示した拡大模式図である。 本実施形態に係る荒引銅線の製造方法及び巻線の製造方法のフロー図である。
 以下に、本願発明の実施形態に係る荒引銅線及び巻線について説明する。
 本実施形態に係る荒引銅線60は、例えば、図1に示す巻線70の素材として使用されるものである。まず、本実施形態に係る巻線70について説明する。
 巻線70は、図1に示すように、荒引銅線60を引抜加工された伸線材71と、この伸線材71を被覆するエナメル膜72(絶縁膜)と、を備えている。本実施形態においては、伸線材71は平角線とされており、巻線70は具体的には、モーター用の巻線として使用されるものである。
 次に、本実施形態に係る荒引銅線60について説明する。
 荒引銅線60は、Pを10質量ppm超30質量ppm以下、Oを10質量ppm以下、Hを1質量ppm以下含み、残部がCuと不可避不純物とからなる組成を有し、真空中において500℃で30分間の加熱処理を施した後の水素濃度が、0.2質量ppm以下とされている。本実施形態においては、1×10-10Torrの真空中で加熱処理を行っている。
 ここで、荒引銅線60中の水素濃度は、LECO社製の水素分析装置(RHEN-600型)を用いて不活性ガス融解ガスクロマトグラフィ分離熱伝導度測定法にて測定される。なお、この水素分析装置(RHEN-600型)においては、水素濃度の方法定量下限値は、0.2質量ppmとされている。なお、方法定量下限値とは、その分析方法において正確に定量できる下限値のことを意味している。
 また、荒引銅線60においては、断面減少率20%以上の冷間加工後に焼鈍を行い、完全軟化させた銅線の引き抜き方向に直交する断面において、<111>方位が引き抜き方向に対して±10°以内を向いている結晶が全結晶の30%以内とされていることが好ましい。
 さらに、この荒引銅線60においては、断面減少率20%以上の加工の後に完全軟化させたときの結晶方位において、<100>方位が引き抜き方向に対して±10°以内を向いている結晶が、全結晶の10%以上とされ、かつ<111>若しくは<112>方位が引き抜き方向に対して±10°以内を向いている結晶が、全結晶の30%以下とされていることが好ましい。また、この荒引銅線60の導電率は、100%IACS(国際やきなまし銅線標準:International Annealed Copper Standard)以上となっていることが好ましい。
 なお、結晶の方位については、電子後方散乱回折像(Electron Back Scatter Diffraction Patterns)法(EBSD法)によって測定することができる。このEBSD法は、SEM(走査電子顕微鏡)にEBSD検出器を接続し、収束電子ビームを試料表面に照射したときに発生する個々の結晶の回折像(EBSD)の方位を解析、方位データと測定点の位置情報から材料の結晶方位を測定する方法である。その測定結果は結晶方位マップ(IPF Map)として示される。
 次に、本実施形態に係る荒引銅線を製造するための荒引銅線の製造装置1について説明する。図2に荒引銅線の製造装置の概略を示す。
 荒引銅線の製造装置1は、溶解炉Aと、保持炉Bと、鋳造樋Cと、ベルト・ホイール式連続鋳造機Dと、連続圧延装置Eと、コイラーFとを有している。
 溶解炉Aとして、本実施形態では、円筒形の炉本体を有するシャフト炉を用いている。
 炉本体の下部には円周方向に複数のバーナ(図示略)が上下方向に多段状に配備されている。そして、炉本体の上部から原料である電気銅が装入され、前記バーナの燃焼によって溶解され、銅溶湯が連続的につくられる。
 保持炉Bは、溶解炉Aでつくられた銅溶湯を、所定の温度で保持したままで一旦貯留し、一定量の銅溶湯を鋳造樋Cに送るためのものである。
 鋳造樋Cは、保持炉Bから送られた銅溶湯を、ベルト・ホイール式連続鋳造機Dの上方に配置されたタンディシュ11まで移送するものである。
 タンディシュ11の銅溶湯の流れ方向終端側には、注湯ノズル12が配置されており、この注湯ノズル12を介してタンディシュ11内の銅溶湯がベルト・ホイール式連続鋳造機Dへと供給される。
 ベルト・ホイール式連続鋳造機Dは、外周面に溝が形成された鋳造輪13と、この鋳造輪13の外周面の一部に接触するように周回移動される無端ベルト14とを有しており、前記溝と無端ベルト14との間に形成された空間に、注湯ノズル12を介して供給された銅溶湯を注入して冷却し、長尺鋳塊21を連続的に鋳造するものである。
 そして、このベルト・ホイール式連続鋳造機Dは、連続圧延装置Eに連結されている。
 この連続圧延装置Eは、ベルト・ホイール式連続鋳造機Dから製出された長尺鋳塊21を被圧延材22として連続的に圧延して、所定の外径の荒引銅線60を製出するものである。連続圧延装置Eから製出された荒引銅線60は、洗浄冷却装置15および探傷器16を介してコイラーFに巻き取られる。
 洗浄冷却装置15は、連続圧延装置Eから製出された荒引銅線60をアルコール等の洗浄剤で表面を洗浄するとともに冷却するものである。
 また、探傷器16は、洗浄冷却装置15から送られた荒引銅線60の傷を探知するものである。
 次に、連続圧延装置Eについて説明する。図3に本実施形態に係る荒引銅線の製造装置1に用いられる連続圧延装置Eを示す。
 連続圧延装置Eは、図3に示すように、カバー部材31を有し、カバー部材31の一端側(図3において左側端)に長尺鋳塊21を装入する装入口32が形成され、カバー部材31の他端側(図3において右側端)に荒引銅線60を製出する製出口33が形成されている。
 そして、カバー部材31の内部に、垂直方向に対向配置された一対の垂直圧延ロール48、48を有する垂直圧延ユニット40と、水平方向に対向配置された一対の水平圧延ロール58、58を有する水平圧延ユニット50と、を備えている。
 一対の垂直圧延ロール48、48を有する垂直圧延ユニット40は、装入口32側から、第1垂直圧延ユニット41、第2垂直圧延ユニット42、第3垂直圧延ユニット43、第4垂直圧延ユニット44、第5垂直圧延ユニット45の5組が配置されている。なお、第1垂直圧延ユニット41には、圧延油をロール表面に吹き付けるためのノズル36が設けられている。
 一対の水平圧延ロール58を有する水平圧延ユニット50は、装入口32側から、第1水平圧延ユニット51、第2水平圧延ユニット52、第3水平圧延ユニット53、第4水平圧延ユニット54、第5水平圧延ユニット55の5組が配置されている。
 垂直圧延ロール48は、圧延される被圧延材22の進行方向に沿った垂直面上を回転するように支持されており、図示しない動力源によって図3に示す矢印方向に回転駆動されるものである。この垂直圧延ロール48は、各々一対をなして被圧延材22を垂直方向に挟持して圧延するものである。第1~5垂直圧延ユニット41~45の垂直圧延ロール48は、それぞれ個別に回転速度を制御することが可能な構成とされている。
 また、水平圧延ロール58は、圧延される被圧延材22の進行方向に沿った水平面上を回転するように支持されており、図示しない動力源によって図3に示す矢印方向に回転駆動されるものである。水平圧延ロール58は、各々が一対をなして被圧延材22を水平方向に挟持して圧延するものである。第1~5水平圧延ユニット51~55の水平圧延ロール58は、それぞれ個別に回転速度を制御することが可能な構成とされている。
 以下、前述の構成とされた荒引銅線の製造装置1を用いた荒引銅線の製造方法及び巻線の製造方法について、図2乃至図5を用いて説明する。
 まず、4N(純度99.99%)の電気銅を投入して溶解し、銅溶湯を得る(溶解工程S1)。この溶解工程S1では、シャフト炉の複数のバーナの空燃比を調整して溶解炉Aの内部を還元雰囲気とされている。
 この銅溶湯は、保持炉Bへ送られて所定の温度に保持されたまま、鋳造樋Cを介してタンディシュ11まで移送される。
 本実施形態では、脱酸素及び脱水素のための脱ガスの手段として、鋳造桶C中の溶銅流路には、撹拌手段が設けられており、脱ガスが行われる(脱ガス工程S2)。この撹拌手段は、複数の堰から構成されており、銅溶湯が激しく撹拌されながら流れるようになっている。この撹拌手段は、主として脱水素処理のために設けられるものであるが、銅溶湯が撹拌されることで銅溶湯中に残存している酸素も脱酸されることになる。こうして、銅溶湯の酸素(O)含有量は10質量ppm以下、水素(H)含有量は1質量ppm以下とされる。
 そして、タンディシュ11において、銅溶湯にPを添加し、銅溶湯のP含有量を10質量ppm超30質量ppm以下に設定する(P添加工程S3)。また、このときの溶銅は、1085℃以上1115℃以下に保持されることが望ましい。
 そして、タンディシュ11から注湯ノズル12を介してベルト・ホイール式連続鋳造機Dの鋳造輪13と無端ベルト14との間に形成された空間(モールド)へ供給され、冷却されて凝固し、長尺鋳塊21として製出される(連続鋳造工程S4)。本実施形態では、製出される長尺鋳塊21は、幅が約100mm、高さが約50mmの略断面台形状とされている。
 ベルト・ホイール式連続鋳造機Dによって連続的に製出される長尺鋳塊21は、連続圧延装置Eに供給される。連続圧延装置Eの装入口32から長尺鋳塊21が被圧延材22として装入され、第1垂直圧延ユニット41と第1水平圧延ユニット51とで初期圧延され、さらに第2垂直圧延ユニット42、第2水平圧延ユニット52、第3垂直圧延ユニット43、第3水平圧延ユニット53、第4垂直圧延ユニット44、第4水平圧延ユニット54、第5垂直圧延ユニット45、第5水平圧延ユニット55で連続的に圧延して所定の外径(本実施形態では直径8.0mm)の荒引銅線60が製出口33より製出される(連続圧延工程S5)。
 ここで、連続圧延工程S5では、少なくとも最終段(第5水平圧延ユニット55)もしくは最終段の一つ前の段(第5垂直圧延ユニット45)において、図4に示すように、被圧延材22の移送速度Vwと、垂直圧延ロール48及び水平圧延ロール58の加工点Pにおける接線方向速度Vrとの比率Vw/Vrが、0.99≦Vw/Vr≦1.07の範囲となるように、長尺鋳塊21の製出速度並びに垂直圧延ロール48及び水平圧延ロール58の回転速度が制御されている。なお、被圧延材22の移送速度Vwは、連続圧延装置Eから製出される被圧延材22の速度Vf及び断面積Sfを求め、各圧延ユニット40,50での被圧延材22をSとし、Vw=Vf×(S/Sf)で算出した。
 また、最も製出口33側に位置する第5水平圧延ユニット55における圧延温度は、500℃以上に設定されている。
 製出口33が製出された荒引銅線60は、洗浄冷却装置15で洗浄と冷却とが行われ、探傷器16によって傷を検知され、品質に問題のない荒引銅線60がコイラーFに巻き取られる。
 そして、本実施形態である荒引銅線60は、さらに引き抜き加工が施されて直径0.5~3.2mmの細線とされ、さらに平角加工によって平角形状の伸線材とされる(伸線工程S6)。そして、伸線材の外周面にエナメル塗装が施され、エナメル膜72(絶縁膜)が形成されて巻線70とされる(エナメル膜形成工程S7)。この巻線70は、芯部材に巻きつけられてコイルなどを形成し、例えばモーター用のコイルとなる。
 このような構成とされた本実施形態に係る荒引銅線60においては、Pの含有量が10質量ppm超30質量ppm以下とされ、真空中において500℃で30分間の加熱処理を施した後の水素濃度が、0.2質量ppm以下とされているので、荒引銅線60に生じる表面欠陥の発生が抑制され表面品質が良好となる。
 すなわち、連続鋳造圧延の鋳造時において、Oを10質量ppm以下に設定してPを10質量ppm超30質量ppm以下添加することにより、溶湯中のOをPで固定することでHO(水蒸気)の発生を抑制でき、結果的にフリー水素が多く存在することになり、鋳塊中に発生するホールを効果的に抑制できる。そして、荒引銅線に対して、真空中において500℃で30分間の加熱処理を実施すると、前述したフリー水素が荒引銅線の外部に放出され、水素濃度が0.2質量ppm以下となる。換言すれば、HOとして荒引銅線中に水素が存在していると、真空中において500℃で30分間の加熱処理を実施した後でも水素濃度が0.2質量ppmよりも大きくなる。
 したがって、真空中において500℃で30分間の加熱処理を実施した後に水素濃度が0.2質量ppm以下とされた荒引銅線60は、HOとして水素が存在しておらず、鋳造時にホールの発生が抑制されているので、表面欠陥が少なく、表面品質が良好となるのである。
 また、本実施形態に係る巻線70は、上述のような表面品質が良好な荒引銅線60を用いて製造された伸線材71を備えており、荒引銅線60の表面品質が良好な場合は、伸線材71に生じる表面欠陥の発生を抑制し表面品質を良好にすることができるので、巻線70に生じるフクレ欠陥の発生を抑制することが可能となる。
 また、本実施形態の荒引銅線の製造方法によれば、少なくとも最終段(第5水平圧延ユニット55)もしくは最終段の一つ前の段(第5垂直圧延ユニット45)において、被圧延材22の移送速度Vwと、垂直圧延ロール48及び水平圧延ロール58の加工点Pにおける接線方向速度Vrとの比率Vw/Vrが0.99≦Vw/Vr≦1.07の範囲に設定されているので、加工される被圧延材22と垂直圧延ロール48及び水平圧延ロール58との速度差が小さくなり、被圧延材22及び荒引銅線60の表面に、前記速度差に起因する張力が作用することを抑制することができる。
 よって、この張力によって生じる<111>集合組織若しくは<112>集合組織が被圧延材22及び荒引銅線60の表面に発生せず、荒引銅線60の表面の加工性を確保することが可能となる。したがって、この荒引銅線60に引抜加工を施して所望の線径の伸線材71を製出しても、伸線材71の表面欠陥が発生することを抑制することができる。
 さらに、本実施形態の荒引銅線の製造方法によれば、最も製出口33側に位置する第5水平圧延ユニット55における圧延温度が500℃以上に設定されているので、製出される荒引銅線60の表面に<111>集合組織が現出することを抑制することができ、荒引銅線60の加工性を向上させることができる。
 また、荒引銅線60においては、好ましくは断面減少率20%以上の冷間加工後に焼鈍を行い、完全軟化させた銅線の引き抜き方向に直交する断面において、<111>方位が引き抜き方向に対して±10°以内を向いている結晶が全結晶の30%以内とされているので、引き抜き加工の途中に、完全軟化させる熱処理を行うことで、その後の引き抜き加工においても結晶を回転させることができ、表面欠陥の発生を抑制することが可能となる。
 さらに、製出された荒引銅線60においては、好ましくは断面減少率20%以上の加工の後に完全軟化させたときの結晶方位において、<100>方位が引き抜き方向に対して±10°以内を向いている結晶が、全結晶の10%以上とされ、かつ、<111>若しくは<112>方位が引き抜き方向に対して±10°以内を向いている結晶が、全結晶の30%以下とされているので、引き抜き加工の途中に、完全軟化させる熱処理を行うことで、その後の引き抜き加工においても結晶を回転させることができ、表面欠陥の発生を抑制することが可能となる。
 また、連続鋳造工程S4においては、外周面に溝を有する鋳造輪13と、無端ベルト14とを有し、前記溝と無端ベルト14とで画成された空間(モールド)に前記銅溶湯を注湯することにより長尺鋳塊21を得るベルト・ホイール式連続鋳造機Dを用いているので、荒引銅線60を効率的、かつ、低コストで生産することが可能となる。
 また、本実施形態においては、連続鋳造圧延において鋳造時の溶湯の温度が1085℃以上1115℃以下とされているので、水素の溶解度を低くし、凝固時に発生するホールを低減することができ、荒引銅線60に生じる表面欠陥の発生を抑制可能となる。
 以上、本願発明の実施形態について説明したが、本願発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。例えば、垂直圧延ユニットを5組、水平圧延ユニットを5組備えた連続圧延装置で説明したが、これに限定されることはなく、圧延ユニットの数や配置は適宜設定することができる。
 なお、上記の実施形態では、4Nの電気銅を溶解原料として、荒引銅線を製出するものとして説明したが、これに限定されることはなく、スクラップなどを原料として荒引銅線を製出してもよい。
 また、長尺鋳塊の断面形状やサイズに限定はなく、荒引銅線の線径についても、実施形態に限定されることはない。
 また、本実施形態においては、伸線材が平角線の場合について説明したが、丸線や丸線圧延材であっても良い。
 さらに、連続鋳造工程では、ベルト・ホイール式鋳造機を用いたものとして説明したが、ツイン・ベルト式鋳造機を用いることもできる。
 以下に、本願発明の有効性を確認するために行った確認実験の結果について説明する。確認実験は、前述した実施の形態である荒引銅線の製造装置を用いて、本願発明例1~本願発明例5、比較例1~比較例3の荒引銅線(線径:8.0mm)を準備した。
 そして、この荒引銅線のP、O、Hの含有量及び導電率を測定した。
 Pの含有量は、Thermo Fisher Scientific社製のARL4460を用いて、スパーク放電発光分光分析法にて測定した。
 Oの含有量は、LECO社製の酸素分析装置(RO-600型)を用いて、不活性ガス融解赤外線吸収法にて測定した。
 Hの含有量は、LECO社製の水素分析装置(RHEN-600型)を用いて不活性ガス融解ガスクロマトグラフィ分離熱伝導度測定法にて測定した。なお、この水素分析装置(RHEN-600型)において、方法定量下限値は0.2質量ppmとされている。
 導電率は、横河電気社製の精密級ダブルブリッジを用いてダブルブリッジ法にて測定した。
 次に、得られた荒引銅線に対して、♯2400の耐水ペーパーを用いて研磨を行った後に、リン酸と水を1対1で混合した電解研磨液を用いて電解研磨を行い、水とエタノールで洗浄した。そして、500℃で30分間、真空度1×10-10Torrで熱処理を施した後に、荒引銅線の水素濃度を不活性ガス融解ガスクロマトグラフィ分離熱伝導度測定法にて測定した。
 次に、得られた荒引銅線に冷間伸線加工(引抜加工)を施して、線径2.6mmの伸線材を製出した。
 このようにして得られた伸線材の表面欠陥を、目視検査、及びストッキングを用いた手触り検査によって検出し、100kg当たりの表面欠陥の個数をカウントした。
 上記の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本願発明例1~本願発明例5においては、荒引銅線のPの含有量が10質量ppm超30質量ppmの範囲内で、加熱処理後における荒引銅線の水素濃度が測定定量下限値である0.2質量ppmよりも低いので、伸線材の表面欠陥の個数が少ないことが確認された。また、導電率が高いことが確認された。
 一方、比較例1においては、荒引銅線のPの含有量が10質量ppm以下のため、加熱処理後における水素濃度が0.2質量ppmよりも大きく、伸線材の表面欠陥の個数が多くなった。
 また、比較例2においては、荒引銅線のPの含有量が30質量ppmよりも多いため導電率が本願発明例1~本願発明例5と比較して劣った。
 また、比較例3においては、荒引銅線のHの含有量が1質量ppmよりも多く、加熱処理後における荒引銅線の水素濃度が0.2質量ppmよりも高いため、表面欠陥の個数が多くなった。
 表面品質が良好な荒引銅線を低コストで生産することができる。
 60  荒引銅線
 70  巻線
 71  伸線材
 72  エナメル膜(絶縁膜)

Claims (2)

  1.  連続鋳造圧延により製造される荒引銅線であって、
     P;10質量ppm超30質量ppm以下、O;10質量ppm以下、H;1質量ppm以下、
     を含み、残部がCuと不可避不純物とからなる組成を有し、
     真空中において500℃で30分間の加熱処理を実施した後の水素濃度が、0.2質量ppm以下であることを特徴とする荒引銅線。
  2.  請求項1に記載の荒引銅線を用いて製造された伸線材と、この伸線材の外周に被覆された絶縁膜と、を備えることを特徴とする巻線。
PCT/JP2013/073154 2012-08-31 2013-08-29 荒引銅線及び巻線 WO2014034782A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/419,398 US9679676B2 (en) 2012-08-31 2013-08-29 Copper wire rod and magnet wire
CN201380039894.9A CN104508161B (zh) 2012-08-31 2013-08-29 粗拉铜线及绕线

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012192136A JP5998758B2 (ja) 2012-08-31 2012-08-31 荒引銅線及び巻線、並びに、荒引銅線の製造方法
JP2012-192136 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034782A1 true WO2014034782A1 (ja) 2014-03-06

Family

ID=50183587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073154 WO2014034782A1 (ja) 2012-08-31 2013-08-29 荒引銅線及び巻線

Country Status (6)

Country Link
US (1) US9679676B2 (ja)
JP (1) JP5998758B2 (ja)
CN (1) CN104508161B (ja)
MY (1) MY176143A (ja)
TW (1) TWI604465B (ja)
WO (1) WO2014034782A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548480B (zh) * 2015-03-26 2016-09-11 樂金股份有限公司 銅銲線及其製造方法
JPWO2018159637A1 (ja) * 2017-02-28 2019-12-26 日産化学株式会社 化合物、液晶組成物及び液晶表示素子

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851473B1 (ko) * 2013-09-06 2018-04-23 후루카와 덴키 고교 가부시키가이샤 구리 합금 선재 및 그 제조방법
JP6361194B2 (ja) * 2014-03-14 2018-07-25 三菱マテリアル株式会社 銅鋳塊、銅線材、及び、銅鋳塊の製造方法
CN104789813A (zh) * 2015-01-26 2015-07-22 汕头市骏码凯撒有限公司 一种led封装用超细键合铜合金丝及其制造方法
US10675699B2 (en) 2015-12-10 2020-06-09 Illinois Tool Works Inc. Systems, methods, and apparatus to preheat welding wire
CN109216856B (zh) * 2016-04-28 2020-11-13 杭州富通电线电缆有限公司 射频电缆的制造方法
US10766092B2 (en) 2017-04-18 2020-09-08 Illinois Tool Works Inc. Systems, methods, and apparatus to provide preheat voltage feedback loss protection
CA3066666A1 (en) 2017-06-09 2018-12-13 Illinois Tool Works Inc. Contact tips with screw threads and head to enable unthreading of the screw threads comprising longitudinal slots for gas flow; welding torch with contact tips
EP4151349A1 (en) 2017-06-09 2023-03-22 Illinois Tool Works, Inc. Welding torch with two contact tips and same tool center point as torch with one contact tip
WO2018227194A1 (en) 2017-06-09 2018-12-13 Illinois Tool Works Inc. Welding assembly for a welding torch, with two contact tips and a cooling body to cool and conduct current
US11524354B2 (en) 2017-06-09 2022-12-13 Illinois Tool Works Inc. Systems, methods, and apparatus to control weld current in a preheating system
CA3066663C (en) * 2017-06-09 2023-12-12 Illinois Tool Works Inc. Methods and apparatus to preheat welding wire for low hydrogen welding
US11344964B2 (en) 2017-06-09 2022-05-31 Illinois Tool Works Inc. Systems, methods, and apparatus to control welding electrode preheating
EP3634685B1 (en) 2017-06-09 2022-04-06 Illinois Tool Works, Inc. Welding torch, with two contact tips and a plurality of liquid cooling assemblies for conducting current to the contact tips
EP3843933A1 (en) 2018-08-31 2021-07-07 Illinois Tool Works, Inc. Submerged arc welding systems and submerged arc welding torches to resistively preheat electrode wire
US11014185B2 (en) 2018-09-27 2021-05-25 Illinois Tool Works Inc. Systems, methods, and apparatus for control of wire preheating in welding-type systems
WO2020132251A2 (en) 2018-12-19 2020-06-25 Illinois Tool Works Inc. Systems, methods and apparatus to preheat welding wire
US11772182B2 (en) 2019-12-20 2023-10-03 Illinois Tool Works Inc. Systems and methods for gas control during welding wire pretreatments
CN113699409A (zh) * 2021-09-24 2021-11-26 汕头市骏码凯撒有限公司 一种用于半导体封装的粗铜线及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212300A (ja) * 1993-01-14 1994-08-02 Kobe Steel Ltd シャフト炉を用いたp含有低酸素銅の製法
JP4593397B2 (ja) * 2005-08-02 2010-12-08 古河電気工業株式会社 回転移動鋳型を用いた連続鋳造圧延法による無酸素銅線材の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161541A (en) * 1959-04-27 1964-12-15 Gen Electric Synthetic resin and conductors insulated therewith
US3987224A (en) * 1975-06-02 1976-10-19 General Electric Company Oxygen control in continuous metal casting system
JPS5952941B2 (ja) * 1980-06-13 1984-12-22 三菱マテリアル株式会社 高導電性耐熱Cu合金
JPS58179549A (ja) * 1982-04-12 1983-10-20 Furukawa Electric Co Ltd:The 脱酸銅荒引線の連続製造方法
JP3918397B2 (ja) * 2000-04-11 2007-05-23 三菱マテリアル株式会社 耐密着性無酸素銅荒引線、その製造方法及び製造装置
DE102004010040A1 (de) * 2004-03-02 2005-09-15 Norddeutsche Affinerie Ag Kupferdraht sowie Verfahren und Vorrichtung zur Herstellung eines Kupferdrahtes
US20060292029A1 (en) * 2005-06-23 2006-12-28 Hitachi Cable, Ltd. Soft copper alloy, and soft copper wire or plate material
JP4661453B2 (ja) 2005-08-19 2011-03-30 三菱マテリアル株式会社 銅線の製造方法および銅線の製造装置
JP5655269B2 (ja) * 2009-01-30 2015-01-21 三菱マテリアル株式会社 無酸素銅巻線及び無酸素銅巻線の製造方法
JP5604882B2 (ja) * 2009-03-10 2014-10-15 日立金属株式会社 半軟化温度の低い銅荒引線の製造方法、銅線の製造方法及び銅線
WO2010106851A1 (ja) * 2009-03-17 2010-09-23 新日鉄マテリアルズ株式会社 半導体用ボンディングワイヤ
MY166908A (en) * 2010-03-25 2018-07-24 Tanaka Densi Kogyo K K HIGH PURITY Cu BONDING WIRE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212300A (ja) * 1993-01-14 1994-08-02 Kobe Steel Ltd シャフト炉を用いたp含有低酸素銅の製法
JP4593397B2 (ja) * 2005-08-02 2010-12-08 古河電気工業株式会社 回転移動鋳型を用いた連続鋳造圧延法による無酸素銅線材の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548480B (zh) * 2015-03-26 2016-09-11 樂金股份有限公司 銅銲線及其製造方法
JPWO2018159637A1 (ja) * 2017-02-28 2019-12-26 日産化学株式会社 化合物、液晶組成物及び液晶表示素子

Also Published As

Publication number Publication date
TWI604465B (zh) 2017-11-01
CN104508161A (zh) 2015-04-08
CN104508161B (zh) 2017-06-09
JP2014047401A (ja) 2014-03-17
US20150213921A1 (en) 2015-07-30
TW201428768A (zh) 2014-07-16
JP5998758B2 (ja) 2016-09-28
MY176143A (en) 2020-07-24
US9679676B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
JP5998758B2 (ja) 荒引銅線及び巻線、並びに、荒引銅線の製造方法
US20100263905A1 (en) Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire
JP5555135B2 (ja) 熱間及び冷間加工性を向上させた銅合金とその製造方法及び該銅合金から得られる銅合金条又は合金箔
JP2021520059A (ja) アルミ電解コンデンサ用1xxx系陰極箔の製造方法
JP6288433B2 (ja) 銅コイル材、銅コイル材の製造方法、銅平角線の製造方法、及び被覆平角線の製造方法
JP5655269B2 (ja) 無酸素銅巻線及び無酸素銅巻線の製造方法
JP2005313208A (ja) 線材用銅およびその製造方法
CN111575528A (zh) 含Zr铜合金材料的制造方法及其铜合金材料
CN115198133B (zh) 一种高强耐热导电铜合金管材及其制备方法
JP2012087360A (ja) 希薄銅合金材料を用いた絶縁電線の製造方法
JP2013071155A (ja) 銅合金鋳塊、銅合金板及び銅合金鋳塊の製造方法
WO2011004888A1 (ja) 銅又は銅合金の連続鋳造方法およびそれに使用する鋳造リング
JP5396939B2 (ja) 荒引銅線の製造方法、荒引銅線の製造装置及び荒引銅線
JP6361194B2 (ja) 銅鋳塊、銅線材、及び、銅鋳塊の製造方法
JP2007021584A (ja) Zn−Al合金線及びその製造方法並びにZn−Al合金線材
JP2016193450A (ja) 押出線材の製造方法、押出線材及び巻線用導体
JP2004188429A (ja) 銅荒引線の製造方法及び銅線
WO2012096238A1 (ja) 銅又は銅合金の連続鋳造方法
JP2008264823A (ja) 銅荒引線の製造方法及び銅線
JP2012240081A (ja) マグネットワイヤ用銅線の製造方法
JP5356974B2 (ja) 鋳造材、その製造方法及びこれを用いたマグネットワイヤ用銅線並びにマグネットワイヤ及びその製造方法
JP2016166390A (ja) Cu−Ga合金円筒型鋳塊
JP6075386B2 (ja) 表面疵の発生し難い熱間圧延用チタン鋳片およびその製造方法
JPS6057494B2 (ja) 導電用耐熱アルミニウム合金線材の製造法
JP2011183409A (ja) 複合材、複合材を用いた銅合金の鋳造方法、及び銅合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14419398

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201501141

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833564

Country of ref document: EP

Kind code of ref document: A1