WO2014034658A1 - 電磁攪拌装置及び連続鋳造方法 - Google Patents

電磁攪拌装置及び連続鋳造方法 Download PDF

Info

Publication number
WO2014034658A1
WO2014034658A1 PCT/JP2013/072861 JP2013072861W WO2014034658A1 WO 2014034658 A1 WO2014034658 A1 WO 2014034658A1 JP 2013072861 W JP2013072861 W JP 2013072861W WO 2014034658 A1 WO2014034658 A1 WO 2014034658A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
mold
pair
coils
end side
Prior art date
Application number
PCT/JP2013/072861
Other languages
English (en)
French (fr)
Inventor
池田 達彦
信宏 岡田
浩史 林
山崎 正弘
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to PL13833216T priority Critical patent/PL2808103T3/pl
Priority to IN7113DEN2014 priority patent/IN2014DN07113A/en
Priority to BR112014025115-0A priority patent/BR112014025115B1/pt
Priority to US14/380,486 priority patent/US9144840B2/en
Priority to ES13833216.8T priority patent/ES2663470T3/es
Priority to CN201380010806.2A priority patent/CN104136145B/zh
Priority to EP13833216.8A priority patent/EP2808103B1/en
Priority to KR1020147023686A priority patent/KR101536091B1/ko
Priority to CA2865500A priority patent/CA2865500C/en
Priority to JP2014506677A priority patent/JP5565538B1/ja
Publication of WO2014034658A1 publication Critical patent/WO2014034658A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Definitions

  • the present invention relates to an electromagnetic stirrer capable of uniform flow control of molten steel in a mold for a single or a plurality of molds and a continuous casting method using the same in a continuous casting apparatus for billets having a round cross section or a square cross section. It is.
  • a billet slab having a round or square cross-section becomes a material of seamless steel pipe or shape steel having various cross-sectional dimensions through pipe making and rolling processes. Since seamless steel pipes and shaped steels have a wide variety of product dimensions and different rolling processes, the cross-sectional dimensions of the billet cast slab as a base material also vary. For this reason, casting is performed by the number of molds according to the production capacity.
  • a slab having a square or round cross section is defined as a billet slab.
  • a slab having a rectangular cross section is defined as a bloom slab.
  • those having a square cross section are defined as square billets, and those having a round cross section are defined as round billets.
  • FIG. 1 is a longitudinal sectional view of a billet slab continuous casting equipment 100 to which the present invention can be applied as viewed from the side, a description will be given of continuous casting.
  • 1 is a tundish
  • 2 is molten steel
  • 3 is an immersion nozzle
  • 4 is a mold
  • 5 is an electromagnetic stirrer
  • 6 is a casting roll directly under the mold
  • 7 is a roller apron band that also includes a secondary cooling spray zone.
  • 8 is a solidified shell
  • 9 is a pinch roll
  • 10 is a slab.
  • molten steel 2 poured into the tundish 1 from the ladle is poured into the mold 4 through the immersion nozzle 3.
  • the surface of the solidified shell 8 is cooled by the secondary cooling spray zone, and solidification proceeds.
  • a slab 10 is obtained.
  • controlling the flow of molten steel in the mold is extremely important in terms of operation and slab quality, such as melting and stabilizing mold powder by supplying heat to the meniscus and removing inclusions on the slab surface.
  • electromagnetic stirring is widely known in which electromagnetic force is applied to the molten steel in the mold to stir. When operating with multiple molds, Therefore, it is necessary to apply electromagnetic force to achieve a uniform flow.
  • the rotary magnetic field type is used for continuous casting of billet slabs, bloom slabs, etc., and by applying a rotating magnetic field in the mold with a plurality of magnetic poles arranged along the entire circumference of the mold, it is uniform.
  • This is a method for obtaining a smooth flow (for example, Patent Document 1).
  • Patent Document 2 proposes an electromagnetic coil that is formed by applying outer windings to the outside of the 12 parts of the teeth.
  • the electromagnetic coil proposed in Patent Document 2 will be described with reference to FIG. 2A.
  • This electromagnetic coil moves the magnetic field linearly by flowing three-phase alternating currents A, B, and C having a phase difference of 120 degrees through the inner winding 13 and the outer winding 14 as shown in FIG. 2A.
  • this electromagnetic coil is referred to as a pie-type electromagnetic coil.
  • the electromagnetic stirrer provided with this pie-shaped electromagnetic coil has a large magnetic flux because the magnetic field of the phase subjected to the outer winding is in the same direction, and when applying electromagnetic force to a large cross-section mold, Good electromagnetic force can be obtained along the entire circumference (see FIG. 6A).
  • the problem to be solved by the present invention is that when a rotary moving magnetic field type electromagnetic stirring device is applied to a plurality of molds, an electromagnetic stirring device is required for each of the molds. It is a point that it becomes impossible to share the strands in a plurality of molds due to the increase in size.
  • another problem to be solved by the present invention is that when a plurality of small-section molds are installed, which can occur in an electromagnetic stirrer equipped with a pie-shaped electromagnetic coil, the interval between the coils is narrowed and penetrates the mold. The magnetic flux component becomes too strong, and it is difficult to form a moving magnetic field, resulting in a discontinuous region in the electromagnetic force.
  • the present invention uses an electromagnetic stirrer having a pair of pi-shaped electromagnetic coils and optimizes the flow of molten steel in the mold by applying a uniform electromagnetic force to both one or a plurality of molds. In order to stabilize the quality of one piece, the following configuration is adopted.
  • the first aspect of the present invention is an electromagnetic stirrer that sandwiches a template 4 composed of a plurality of strands between electromagnetic coils C1 and C2 at a predetermined interval and energizes a three-phase alternating current having a phase difference of 120 degrees. 5.
  • the electromagnetic coils C1 and C2 are each provided with two teeth portions 12 protruding from the respective cores 11 toward the mold 4 side (the protruding portions 12 protruding toward the mold 4 are provided at the respective cores 11).
  • Each of the teeth portions 12 is provided with an inner winding 13 on the outer side, and the two teeth portions 12 provided with the inner winding 13 are further outwardly wound.
  • the pie-type electromagnetic coils C1 and C2 having a configuration that is combined into one by applying the wire 14 are employed.
  • FIGS. 2A and 2B three-phase alternating currents A, B, and C having a phase difference of 120 degrees are caused to flow through the pi-type electromagnetic coils C1 and C2 having the above-described configuration.
  • 2A and 2B is the casting direction.
  • the method shown in FIG. 2A is such that when current in the same direction flows through the outer winding 14, one of the electromagnetic coils C1 (paper surface) of the pair of electromagnetic coils is arranged so that the magnetic flux of the outer winding faces the same direction.
  • the other electromagnetic coil C2 (upper side of the paper) has -B, + C, -C, + A, -A, + B in order from one end side to the other end side in the casting direction.
  • This is called “type connection system”.
  • one electromagnetic coil C ⁇ b> 1 (downward on the paper surface) is directed from one end side to the other end side in the casting direction so as to be symmetric with respect to the center of the cross section of the mold 4.
  • the other electromagnetic coil C2 (upper side in the drawing) has + B, -A in order from one end side to the other end side in the casting direction.
  • + A, -C, + C, and -B, and currents A, B, and C are supplied (hereinafter, this configuration is referred to as "symmetrical connection method").
  • the distance L between the electromagnetic coils C1 and C2 arranged opposite to each other is set to 500 mm in the case of the symmetric connection method. Less than 500 mm in the case of the through-type connection method.
  • the reason why the value of 500 mm is used as the classification criterion is that the distance L between the electromagnetic coils C1 and C2 when the mold frame is shared according to the diameter of the mold used in single casting and twin casting. This is to ensure.
  • the number of molds per pair of electromagnetic coils (the number of molds 4 arranged in a region sandwiched between the end face on one end side and the end face on the other end side of the pair of electromagnetic coils C1 and C2) N (pieces), the outer dimensions of each mold (in the case of round billets, the outer diameter of the mold copper plate, in the case of square billets, the outer dimension width of the long side of the mold copper plate) is ⁇ (mm), the electromagnetic coil width When W is W (mm), the number of molds is determined so as to satisfy the following formula (1). n ⁇ ⁇ ⁇ W (1)
  • a second aspect of the present invention is a continuous casting method using an electromagnetic stirrer, the electromagnetic stirrer being the electromagnetic stirrer 5 according to the first aspect of the present invention, and a mold after meniscus.
  • the continuous casting method is characterized in that the minimum value Vmin of the molten steel flow velocity in the mold circumferential direction in the vicinity is 10 cm / s or more (10 cm per second).
  • Vmin of the molten steel flow velocity in the mold circumferential direction in the vicinity is 10 cm / s or more (10 cm per second).
  • template 4 can be provided uniformly.
  • “in the vicinity of the mold” refers to the range in which the molten steel can be flowed using the electromagnetic stirrer 5, and as an example, a region within 100 mm from the mold wall surface in contact with the molten steel Say.
  • the electromagnetic force is uniformly applied to each mold 4 using the electromagnetic stirring apparatus 5 having a pair of electromagnetic coils C1 and C2. It becomes possible. As a result, it is not necessary to install an electromagnetic stirrer individually on the mold, so that the equipment cost can be reduced. In addition, since a symmetric connection system or a through connection system is used according to the distance L between the electromagnetic coils C1 and C2, it is possible to prevent a discontinuous region from being generated in the electromagnetic force.
  • the present invention aims to uniformly apply electromagnetic force in one or a plurality of molds to molds of various sizes using a common electromagnetic stirring device, and satisfies the following conditions.
  • the inventors have conducted an electromagnetic field analysis based on a calculation model for a connection method when a current having a phase difference is caused to flow to each electromagnetic coil of the electromagnetic stirrer (see FIGS. 5A to 6B).
  • “3.500 ⁇ 10 3 ” in FIGS. 5A and 6A and “4.700 ⁇ 10 3 ” in FIGS. 5B and 6B are Lorentz densities (N / m 3 ).
  • the arrow in FIG. 5A, FIG. 5B, FIG. 6A, and FIG. 6B has shown the direction of the force which molten steel receives with an electromagnetic force.
  • the symmetrical connection method is used in the case of a large section mold in which the distance L between the electromagnetic coils C1 and C2 is 500 mm or more, the stagnation portion of the electromagnetic force does not occur, but the electromagnetic force is smaller than that of the through connection method. Since it is weak, the flow rate of the molten steel is reduced. Therefore, in the case of a large-section mold in which the distance L between the electromagnetic coils C1 and C2 is 500 mm or more, it is desirable to use the through-type connection method shown in FIG. 2A.
  • the number of molds per pair of electromagnetic coils (the number of molds arranged in a region sandwiched between one end surface and the other end surface of the pair of electromagnetic coils C1 and C2).
  • the number of molds is determined in accordance with the above formula (1).
  • the electromagnetic force generated by the electromagnetic stirring device 5 works in a direction perpendicular to the teeth portion 12, even when a plurality of molds 4 are installed, uniform electromagnetic force is applied to all the molds 4. It is. This is the electromagnetic stirring device 5 of the present invention.
  • the inventors use the continuous casting equipment 100 provided with the electromagnetic stirring device 5 of the present invention shown in FIG. 1, and the rate of occurrence of slab surface defects (%) and electromagnetic stirring using the present invention device.
  • the relationship with the minimum value (cm / s) of the molten steel flow velocity in the vicinity of the mold wall was investigated.
  • the occurrence rate of slab surface defects was investigated for powder defects, and slabs in which powder defects occurred with respect to the total number of 10 to 50 cast slabs with one charge (varies depending on the mold diameter). The number was defined as the occurrence rate of slab surface defects (%) and evaluated.
  • molten steel flow velocity a cross-section sample was taken from the round billet slab in the examples described later, and the deflection angle of the 10 mm dendrite from the skin was measured at intervals of 15 degrees (24 pieces in total) around the entire mold. Of these values, the minimum value was defined as Vmin.
  • the inventors found that the rate of occurrence of slab surface defects increases as the minimum value of the molten steel flow velocity decreases as shown in FIG. And so that the minimum value of molten steel flow velocity by electromagnetic stirring in the vicinity of the mold wall after the meniscus can be ensured to be 10 cm / s so that the occurrence rate of slab surface defects is less than 1.5% that can be handled by care.
  • the knowledge that it is desirable to determine the connection method and the number of molds was obtained, and the continuous casting method of the present invention was completed. Note that “care is possible” means that a defective portion on the surface of the slab can be removed by shaving the surface of the slab by about 1 to 5 mm using a grinder or the like. The same applies to the following.
  • FIG. 7 shows the molten steel flow velocity V in the mold circumferential direction in the vicinity of the mold 4.
  • the minimum value of the molten steel flow velocity in the vicinity of the mold wall after the meniscus is 20 cm / s or more.
  • Stirring by the electromagnetic stirrer of the present invention is a three-phase alternating current A having a phase difference of 120 degrees instead of applying a rotating magnetic field individually to the mold for electromagnetic stirring having a pie-shaped iron core (core). , B, C and an electromagnetic force is generated by the magnetic field moving in parallel with the core.
  • the molten steel in the vicinity of the electromagnetic stirrer 5 molten steel in the vicinity of the mold wall
  • flows with the movement of the magnetic field so that not only the case where there is only one mold 4 as shown in FIGS. 2A and 2B, but also FIG.
  • Even when there are a plurality of molds 4 as shown in FIG. 4B the molten steel near the electromagnetic stirrer 5 (molten steel near the mold wall) flows uniformly.
  • the right and left direction in FIG. 4A and FIG. 4B is the casting direction.
  • the present invention relates to an electromagnetic stirring device 5 arranged at a position where a meniscus exists in a region sandwiched between an end face on one end side in the casting direction and an end face on the other end side of the electromagnetic coils C1 and C2 whose width in the casting direction is W.
  • the diameter ⁇ (outer diameter ⁇ ) on the outer surface side is 180 mm, 225 mm, 265 mm using the symmetrical stirrer type electromagnetic stirrer shown in FIG. 2B.
  • the diameter ⁇ (outer diameter ⁇ ) on the outer surface side is 180 mm, 225 mm, 265 mm using the symmetrical stirrer type electromagnetic stirrer shown in FIG. 2B.
  • Table 1 shows the measurement results of the molten steel flow in the mold at the time of casting.
  • the electromagnetic stirrer used was prepared in two types with a width W of 550 mm and 400 mm, and the electromagnetic stirrer with a width W of 550 mm was a two-level, width having a distance L between the electromagnetic coils C1 and C2 of 450 mm and 600 mm.
  • the electromagnetic stirrer with W of 400 mm was tested with a distance L between the electromagnetic coils C1 and C2 of only 600 mm.
  • Table 1 also shows the conditions for Invention Examples 1 to 5 that satisfy the conditions specified in the present invention and Comparative Examples 6 to 8 that do not satisfy the conditions specified in the present invention, and the mold circumference in the vicinity of the mold after the meniscus.
  • the minimum value Vmin of the molten steel flow velocity in the direction is also shown.
  • the present invention described above can be applied to any type of continuous casting such as a curved type and a vertical type as long as it is continuous casting. Moreover, it can be applied not only to continuous casting of slabs but also to continuous casting of blooms.
  • Electromagnetic coil 4 ... Mold 5 .
  • Electromagnetic stirrer 11 ... Core 12 . Teeth part 13 .
  • Inner winding 14 ...
  • Outer winding 100 Billet cast continuous casting equipment (billet continuous casting device)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本発明は、各鋳型への電磁力を均一に付与することが可能な電磁攪拌装置を提供することを主目的とする。 本発明は、鋳型4を挟む対をなす電磁コイルC1、C2のコア11に設けた2個のティース部12の外側に内側巻き線13を施し、その外側に外側巻き線14を施し、これらに3相交流電源より位相差が120度の電流A、B、Cを流し、電流の向きを、コイルC1、C2間の距離Lが500mm以上の場合は、鋳造方向の一端側から他端側へ向かって順に、コイルC1は-B、+C、-C、+A、-A、+B、コイルC2は-B、+A、-A、+C、-C、+Bとし、距離Lが500mm未満の場合は、コイルC1は-B、+C、-C、+A、-A、+B、コイルC2は+B、-A、+A、-C、+C、-Bとし、鋳型数n、各鋳型の外寸サイズφ、及び、電磁コイル幅Wがn×φ<Wを満たす数の鋳型をコイルC1、C2の間に配置する、電磁攪拌装置5とする。

Description

電磁攪拌装置及び連続鋳造方法
 本発明は、丸断面或いは角断面を有するビレット用連続鋳造装置において、単数或いは複数の鋳型について、鋳型内溶鋼の均一な流動制御が可能な電磁攪拌装置、及びそれを使用した連続鋳造方法に関するものである。
 丸断面或いは角断面を有するビレット鋳片は、製管、圧延工程を経て、様々な断面寸法の継目無鋼管や形鋼の素材となる。継目無鋼管や形鋼は、製品寸法が多種多様であり、圧延工程も異なることから、母材となるビレット鋳片の断面寸法もまた多様になる。このため、生産能力に応じた鋳型数による鋳込みが行われる。
 ここで、連続鋳造された鋳片、或いはインゴット鋳造後の圧延鋼塊において、横断面が正方形或いは丸形の鋳片をビレット鋳片と定義する。同様に上述した鋳片或いは鋼塊において、横断面が長方形の鋳片をブルーム鋳片と定義する。また、前記ビレット鋳片のうち、横断面が正方形のものを角ビレットと、横断面が丸形のものを丸ビレットと定義する。
 本発明を適用可能なビレット鋳片の連続鋳造設備100の構成例を側面方向から見た縦断面図である図1を参照しつつ、連続鋳造について説明する。図1中の1はタンディッシュ、2は溶鋼、3は浸漬ノズル、4は鋳型、5は電磁攪拌装置、6は鋳型直下の鋳造用ロール、7は同じく二次冷却スプレー帯を含むローラーエプロン帯、8は凝固シェル、9はピンチロール、10は鋳片を示す。
 連続鋳造では、取鍋からタンディッシュ1に注入された溶鋼2が浸漬ノズル3を介して鋳型4に注湯される。鋳型4に注湯された溶鋼2は、ピンチロール9の回転駆動により鋳造用ロール6群に沿って引き抜かれながら、二次冷却スプレー帯によって凝固シェル8の表面が冷却され、凝固が進行して鋳片10になる。
 連続鋳造に際して、鋳型内溶鋼の流動を制御することは、メニスカスへの熱供給によるモールドパウダーの溶融安定化や鋳片表面の介在物除去など、操業上や鋳片品質上、極めて重要である。鋳型内溶鋼の流動を制御する方法として、鋳型内の溶鋼に電磁力を付与して攪拌する電磁攪拌が広く知られており、その際、複数の鋳型で操業を行う場合は、各鋳型に対して均一な流動となるよう電磁力を付与する必要がある。
 電磁攪拌のための電磁力を付与する方法として、回転移動磁界式と直線移動磁界式の二つが挙げられる。
 このうち、回転移動磁界式はビレット鋳片やブルーム鋳片等の連続鋳造に用いられており、鋳型の全周に沿って配置した複数の磁極により鋳型内に回転磁界を付与することで、均一な流動を得る方法である(例えば、特許文献1)。
 しかしながら、回転移動磁界式は、複数の鋳型に適用する場合、鋳型それぞれに電磁攪拌装置が必要となるので、電磁攪拌装置の設置数の増加や、鋳型の大型化により複数鋳型でのストランドの共有化ができなくなるなど、設備費の増加を招く。
 一方、直線移動磁界式として、出願人は、コイル鉄芯のコア11から2個のティース12を鋳型4側へ突出状に設け、これらティース12それぞれに内側巻き線を施すと共に、更に2個のティース12部の外側に外側巻き線を施して一つにまとめた電磁コイルを特許文献2で提案した。特許文献2で提案した電磁コイルを、図2Aを参照しつつ説明する。この電磁コイルは、内側巻き線13や外側巻き線14に、位相差が120度の三相交流電流A、B、Cを、図2Aに示すように流すことにより、磁場を直線状に移動させる。以下、この電磁コイルをパイ型電磁コイルという。
 このパイ型電磁コイルを備えた電磁攪拌装置は、外側巻き線を施した相の磁場が同じ方向であるために磁束が大きくなり、大断面の鋳型に電磁力を印加する場合には、鋳型の全周に沿って良好な電磁力が得られる(図6A参照)。
 しかしながら、パイ型電磁コイルの間に小断面の鋳型を複数設置した場合、パイ型電磁コイル間の間隔Lが狭くなるので鋳型4を貫通する磁束成分が強くなりすぎ、移動磁界を形成し難くなって電磁力に不連続な領域が生じてしまう(図6Bの不均一流動部での電磁力の歪を参照)。
特開平10-230349号公報 特開昭60-44157号公報
 本発明が解決しようとする課題は、回転移動磁界式の電磁攪拌装置を複数の鋳型に適用する場合、鋳型それぞれに電磁攪拌装置が必要となるので、電磁攪拌装置の設置数の増加や、鋳型の大型化により複数鋳型でのストランドの共有化ができなくなるという点である。また、本発明が解決しようとする他の課題は、パイ型電磁コイルを備えた電磁攪拌装置で生じ得る、小断面の鋳型を複数設置した場合にコイル間の間隔が狭くなり、鋳型を貫通する磁束成分が強くなりすぎ、移動磁界が形成し難くなって電磁力に不連続な領域が生じてしまうという点である。
 本発明は、一対のパイ型電磁コイルを有する電磁攪拌装置を使用し、単数或いは複数の鋳型の双方に対して、均一な電磁力の付与により鋳型内の溶鋼流動を適正化することで、鋳片品質を安定化するために、以下の構成としている。
 すなわち、本発明の第1の態様は、複数のストランドよりなる鋳型4を所定の間隔で電磁コイルC1、C2により挟み、それぞれの位相差が120度である三相交流電流を通電する電磁攪拌装置5である。
 その際、電磁コイルC1、C2は、各々のコア11にそれぞれ2個のティース部12が鋳型4側へ突出状に設けられ(各々のコア11に、鋳型4側へと突き出した凸部12がそれぞれ2個設けられ)、これら各ティース部12には、外側にそれぞれに内側巻き線13が施されると共に、これら内側巻き線13が施された2個のティース部12のさらに外側に外側巻き線14が施されることにより一つにまとめられた構成のパイ型電磁コイルC1、C2を採用する。
 そして、前記構成のパイ型電磁コイルC1、C2に、例えば図2A及び図2Bに示すように、位相差が120度である三相交流電流A、B、Cを流す。図2A及び図2Bの紙面左右方向が鋳造方向である。図2Aに示した方式は、外側巻き線14に同じ方向の電流を流すことにより、外側巻き線の磁束が同じ方向を向くように、対をなす電磁コイルのうちの一方の電磁コイルC1(紙面下側)には、鋳造方向の一端側から他端側に向かって順に-B、+C、-C、+A、-A、+Bとなるように、他方の電磁コイルC2(紙面上側)には、鋳造方向の一端側から他端側に向かって順に-B、+A、-A、+C、-C、+Bとなるように、電流A、B、Cを流す方式(以下において、この形態を「貫通型結線方式」という。)である。また、図2Bに示した方式は、鋳型4の横断面中心を中心として点対称となるように、一方の電磁コイルC1(紙面下側)には、鋳造方向の一端側から他端側に向かって順に-B、+C、-C、+A、-A、+Bとなるように、他方の電磁コイルC2(紙面上側)には、鋳造方向の一端側から他端側に向かって順に+B、-A、+A、-C、+C、-Bとなるように電流A、B、Cを流す方式である(以下において、この形態を「対称型結線方式」という。)。
 このとき、鋳型4内の任意の半径方向位置における周方向へ作用する電磁力を均一なものとするため、対向配置した電磁コイルC1、C2間の距離Lを、対称型結線方式の場合は500mm未満、貫通型結線方式の場合は500mm以上とする。
 本発明において、500mmという値を区分けの基準とした理由は、シングル鋳造とツイン鋳造において、使用する鋳型の直径に応じて鋳型フレームの共用化を行う際の電磁コイルC1、C2間の距離Lを確保するためである。
 また、対をなす電磁コイル当たりの鋳型数(対をなす電磁コイルC1、C2の、鋳造方向の一端側の端面と他端側の端面とによって挟まれた領域に配置される鋳型4の数)をn(個)、各鋳型の外寸サイズ(丸ビレットの場合は鋳型銅板の外寸直径、角ビレットの場合は鋳型銅板の長辺側の外寸幅)をφ(mm)、電磁コイル幅をW(mm)としたときに、下記(1)式を満たすように鋳型数を決定する。
  n×φ<W …(1)
 本発明の第2の態様は、電磁攪拌装置を使用する連続鋳造方法であって、該電磁攪拌装置が上記本発明の第1の態様にかかる電磁攪拌装置5であり、且つ、メニスカス後の鋳型近傍における鋳型周方向への溶鋼流速の最小値Vminが、10cm/s(秒速10cm)以上となるようにすることを特徴とする、連続鋳造方法である。このような形態にすることにより、各々の鋳型4への電磁力を均一に付与することができる。ここで、「鋳型近傍」とは、電磁攪拌装置5を使って溶鋼に流動を与えることが可能な範囲内をいい、一例として、溶鋼が接触している鋳型壁面からの距離が100mm以内の領域をいう。
 本発明では、単数或いは複数の鋳型を使用して同時に鋳造する連続鋳造装置において、一対の電磁コイルC1、C2を有する電磁攪拌装置5を用いて、各鋳型4への電磁力を均一に付与することが可能となる。その結果、鋳型へ個別に電磁攪拌装置を設置する必要が無くなるので、設備費を抑制することが可能となる。また、電磁コイルC1、C2間の距離Lに応じて対称型結線方式又は貫通型結線方式とするので、電磁力に不連続な領域が生じないようにすることが可能になる。
ビレット鋳片の連続鋳造設備100の構成例を側面方向から見た縦断面図である。 パイ型電磁コイルの概要と貫通型結線方式を示した図である。 パイ型電磁コイルの概要と対称型結線方式を示した図である。 鋳型内溶鋼流速の最小値と鋳片表面欠陥の発生率との関係を示した図である。 鋳型を2基設置した場合(n=2の場合)の概要を示した図である。 鋳型を3基設置した場合(n=3の場合)の概要を示した図である。 貫通型結線方式の場合の電磁力を示した図であり、外径が360mmの鋳型を1基設置した場合の解析結果を示した図である。 貫通型結線方式の場合の電磁力を示した図であり、外径が180mmの鋳型を2基設置した場合の解析結果を示した図である。 対称型結線方式の場合の電磁力を示した図であり、外径が360mmの鋳型を1基設置した場合の解析結果を示した図である。 対称型結線方式の場合の電磁力を示した図であり、外径が180mmの鋳型を2基設置した場合の解析結果を示した図である。 鋳型4近傍における鋳型周方向への溶鋼流速Vを説明する図である。
 本発明は、多様なサイズの鋳型に対して、共通の電磁攪拌装置を使用して、単数或いは複数の鋳型内における電磁力を均一に付与することを目的としており、以下の条件を満たす。
 発明者らは、電磁攪拌装置の各電磁コイルへ位相差を有する電流を流す際の結線方法について、それぞれ計算モデルによる電磁場解析を行なった(図5A乃至図6B参照)。図5A及び図6Aにおける「3.500×10」、並びに、図5B及び図6Bにおける「4.700×10」は、何れもローレンツ密度(N/m)である。また、図5A、図5B、図6A、及び、図6Bにおける矢印は、電磁力により溶鋼が受ける力の方向を示している。
 その結果、電磁コイルC1、C2間の距離Lが500mm未満の小断面鋳型の場合には、図2Aに示した貫通型結線方式では電磁力の淀み部が発生するのに対して、図2Bに示した対称型結線方式にして、内側巻き線13及び外側巻き線14に位相がそれぞれ120度異なる電流A、B、Cを流すことにより、鋳型4の全周に亘って均一な電磁力が付与されることを見出した。
 但し、電磁コイルC1、C2間の距離Lが500mm以上になる大断面鋳型の場合に対称型結線方式とすると、電磁力の淀み部は発生しないが、貫通型結線方式に比較して電磁力が弱いため溶鋼の流速が低減してしまう。従って、電磁コイルC1、C2間の距離Lが500mm以上になる大断面鋳型の場合には、図2Aに示した貫通型結線方式とすることが望ましい。
 また、対をなす電磁コイル当たりの鋳型数(対をなす電磁コイルC1、C2の、鋳造方向の一端側の端面と他端側の端面とによって挟まれた領域に配置される鋳型の数)をn(個)、各鋳型の外寸サイズをφ(mm)、電磁コイル幅をW(mm)としたときに、上記式(1)に従うように、鋳型数を決定するのは、対をなす電磁コイルC1、C2の間へ過大なサイズの鋳型を複数配置することによって、電磁力の発生中心であるティース部12から鋳型4が外れ、その結果、電磁力が付与されない領域が発生することを防ぐためである。また、電磁攪拌装置5による電磁力はティース部12と直交する方向に働くため、複数の鋳型4を設置した場合も、全ての鋳型4に対して均一な電磁力が付与されるようにするためである。
  これが、本発明の電磁攪拌装置5である。
 次に、発明者らは、図1に示す、本発明の電磁攪拌装置5を備えた連続鋳造設備100を用いて、鋳片表面欠陥発生率(%)と本発明装置を用いた電磁攪拌による鋳型壁近傍における溶鋼流速の最小値(cm/s)との関係を調査した。
 ここで、鋳片表面欠陥発生率については、パウダー欠陥を対象として調査し、1チャージの鋳造鋳片10~50本(鋳型径により変動)の総本数に対して、パウダー欠陥が発生した鋳片本数を鋳片表面欠陥発生率(%)と定義し評価を行った。
 溶鋼流速については、後述の実施例での丸ビレット鋳片から横断面サンプルを採取し、表皮から10mmのデンドライトの偏向角を鋳型全周について15度間隔(合計24個)で測定し、これから換算して求めた値の中で、最小値をVminとした。
 その結果、発明者らは、図3に示すように、溶鋼流速の最小値の減少に伴って鋳片表面欠陥発生率が上昇することを見出した。そして、鋳片表面欠陥発生率が手入れでの対応が可能な1.5%未満となるように、メニスカス後の鋳型壁近傍における電磁攪拌による溶鋼流速の最小値が10cm/sを確保できるよう、結線方式及び鋳型数を決定することが望ましいという知見を得て、本発明の連続鋳造方法を完成させた。なお、「手入れでの対応が可能」とは、グラインダーなどを用いて鋳片表面を1~5mm程度削ることにより、鋳片表面の欠陥部を除去可能であることをいう。以下においても同様である。図7に、鋳型4近傍における鋳型周方向への溶鋼流速Vを示す。
 本発明の連続鋳造方法において、鋳片表面欠陥発生率をより低下させる観点からは、メニスカス後の鋳型壁近傍における溶鋼流速の最小値を20cm/s以上にすることが望ましい。
 本発明の電磁攪拌装置による攪拌は、パイ型の鉄心(コア)を有する電磁攪拌のため、鋳型の個々に回転磁場が印加されるのではなく、位相差が120度である三相交流電流A、B、C及びコアと平行に磁場が移動することで電磁力が生じる。その結果、磁場の移動と共に電磁攪拌装置5付近の溶鋼(鋳型壁近傍の溶鋼)が流動するので、図2A及び図2Bに示したような、鋳型4が一つの場合だけでなく、図4A及び図4Bに示すような鋳型4が複数の場合でも、電磁攪拌装置5近傍の溶鋼(鋳型壁近傍の溶鋼)が均一に流動することになる。ここで、図4A及び図4Bの紙面左右方向が鋳造方向である。
 以下、本発明の効果を確認するために行った実施例について説明する。
  本発明は、鋳造方向の幅がWである電磁コイルC1、C2の、鋳造方向一端側の端面及び他端側の端面によって挟まれた領域にメニスカスが存在する位置に配置された電磁攪拌装置5を用いて鋳型4内へ電磁力を付与することにより、溶鋼を均一に流動させ、その結果、鋳片内質を改善する。
 図1に示した連続鋳造設備100の電磁攪拌装置5として、図2Bに示した対称型結線方式の電磁攪拌装置を使用して、外面側の直径φ(外径φ)が180mm、225mm、265mm、400mmの鋳型を単数或いは複数使用して、0.5~2.0m/minの鋳造速度、電磁コイルへの印加電流値が300~600A、磁場強度が50~150mT(ミリテスラ)の条件で連続鋳造した際の、鋳型内溶鋼流動の測定結果を、表1に示す。
 なお、使用した電磁攪拌装置は、幅Wが550mmと400mmの2種類を準備し、幅Wが550mmの電磁攪拌装置は、電磁コイルC1、C2間の距離Lが450mmと600mmの2水準、幅Wが400mmの電磁攪拌装置は、電磁コイル間C1、C2の距離Lが600mmのみで試験を行った。
 また、表1には、本発明で規定する条件を満足する発明例1~5と、本発明で規定する条件を満足しない比較例6~8についての各条件とメニスカス後の鋳型近傍における鋳型周方向への溶鋼流速の最小値Vminも示す。
 下記表1において、表面欠陥発生率λがλ<0.5%の場合は◎、0.5%≦λ<1.5%の場合は○、1.5%≦λの場合は×とした。この評価基準は、手入れでの対応が可能なものが◎又は○に相当し、不良頻度が高いことにより手入れでの対応が不可なものが×に相当する。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、メニスカス後の鋳型近傍における鋳型周方向への溶鋼流速の最小値Vminが10cm/s以上であった発明例1~5はいずれも、表面欠陥発生率λが1.5%未満であり、手入れでの対応が可能であった。一方、溶鋼流速の最小値Vminが10cm/s未満であることにより、本発明の連続鋳造方法の条件を満足しない比較例6~8はいずれも、表面欠陥発生率λが1.5%以上であり、手入れでの対応が不可であった。
 本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。
 以上の本発明は、連続鋳造であれば、湾曲型、垂直型など、どのような方式の連続鋳造であっても適用できる。また、スラブの連続鋳造だけでなくブルームの連続鋳造にも適用できる。
 C1、C2…電磁コイル
 4…鋳型
 5…電磁攪拌装置
 11…コア
 12…ティース部
 13…内側巻き線
 14…外側巻き線
 100…ビレット鋳片の連続鋳造設備(ビレット用連続鋳造装置)

Claims (2)

  1. ビレット用連続鋳造装置における鋳型内の溶鋼流動を制御すべく、
     単数或いは複数の鋳型を所定の間隔で対向して挟む対をなす電磁コイルを有し、
     これら対をなす電磁コイルの各々の鉄心のコアには、それぞれ2個のティース部が、前記鋳型側へと突出するように設けられ、
     これら各ティース部は、外側にそれぞれ内側巻き線が施されると共に、これら内側巻き線が施された2個のティース部は、前記内側巻き線のさらに外側に外側巻き線を施すことにより一つにまとめられ、
     これら内側巻き線及び外側巻き線に3相交流電源よりそれぞれの位相差が120度である電流A、B、Cが流される電磁攪拌装置であって、
     前記鋳型を挟んで対向配置された対をなす前記電磁コイル間の距離Lが500mm以上の場合は、前記外側巻き線及び内側巻き線に流す電流の向きを、鋳造方向の一端側から他端側へ向かって順に、対をなす前記電磁コイルの一方の電磁コイルは-B、+C、-C、+A、-A、+Bとするとともに、対をなす前記電磁コイルの他方の電磁コイルは-B、+A、-A、+C、-C、+Bとし、
     前記距離Lが500mm未満の場合は、前記外側巻き線及び内側巻き線に流す電流の向きを、鋳造方向の一端側から他端側へ向かって順に、対をなす前記電磁コイルの一方の電磁コイルは-B、+C、-C、+A、-A、+Bとするとともに、対をなす前記電磁コイルの他方の電磁コイルは+B、-A、+A、-C、+C、-Bとし、
     前記対をなす電磁コイルの鋳造方向一端側の端面及び他端側の端面に挟まれた領域に配置される鋳型数をn(個)、各鋳型の外寸サイズをφ(mm)、電磁コイル幅をW(mm)としたときに、下記式を満たす個数以下の鋳型を対をなす前記電磁コイルの間に配置したことを特徴とする電磁攪拌装置。
     n×φ<W
  2. 電磁攪拌装置を使用する連続鋳造方法であって、
     前記電磁攪拌装置が請求項1に記載の電磁攪拌装置であり、且つ、
     メニスカス後の鋳型近傍における鋳型周方向への溶鋼流速の最小値Vminを、10cm/s以上にすることを特徴とする連続鋳造方法。
PCT/JP2013/072861 2012-08-29 2013-08-27 電磁攪拌装置及び連続鋳造方法 WO2014034658A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PL13833216T PL2808103T3 (pl) 2012-08-29 2013-08-27 Przyrząd do mieszania elektromagnetycznego i sposób ciągłego odlewania
IN7113DEN2014 IN2014DN07113A (ja) 2012-08-29 2013-08-27
BR112014025115-0A BR112014025115B1 (pt) 2012-08-29 2013-08-27 Agitador eletromagnético e método de fundição contínuo
US14/380,486 US9144840B2 (en) 2012-08-29 2013-08-27 Electromagnetic stirrer and continuous casting method
ES13833216.8T ES2663470T3 (es) 2012-08-29 2013-08-27 Aparato de agitación electromagnética y método de colada continua
CN201380010806.2A CN104136145B (zh) 2012-08-29 2013-08-27 电磁搅拌装置及连续铸造方法
EP13833216.8A EP2808103B1 (en) 2012-08-29 2013-08-27 Electromagnetic stirring apparatus, and continuous casting method
KR1020147023686A KR101536091B1 (ko) 2012-08-29 2013-08-27 전자 교반 장치 및 연속 주조 방법
CA2865500A CA2865500C (en) 2012-08-29 2013-08-27 Electromagnetic stirrer and continuous casting method
JP2014506677A JP5565538B1 (ja) 2012-08-29 2013-08-27 電磁攪拌装置及び連続鋳造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-188933 2012-08-29
JP2012188933 2012-08-29

Publications (1)

Publication Number Publication Date
WO2014034658A1 true WO2014034658A1 (ja) 2014-03-06

Family

ID=50183470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072861 WO2014034658A1 (ja) 2012-08-29 2013-08-27 電磁攪拌装置及び連続鋳造方法

Country Status (11)

Country Link
US (1) US9144840B2 (ja)
EP (1) EP2808103B1 (ja)
JP (1) JP5565538B1 (ja)
KR (1) KR101536091B1 (ja)
CN (1) CN104136145B (ja)
BR (1) BR112014025115B1 (ja)
CA (1) CA2865500C (ja)
ES (1) ES2663470T3 (ja)
IN (1) IN2014DN07113A (ja)
PL (1) PL2808103T3 (ja)
WO (1) WO2014034658A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458199B (zh) * 2016-01-04 2016-12-14 湖南中科电气股份有限公司 方坯分体多模式电磁搅拌器及其控制方法
CN106591680B (zh) * 2016-11-09 2018-02-23 江阴兴澄特种钢铁有限公司 一种连铸坯生产深海采油井口装置用CrNiMo30C钢锻材的工艺
CN110076305B (zh) * 2019-05-29 2021-02-26 东北大学 一种有色金属及其合金电磁半连铸方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044157A (ja) 1983-08-17 1985-03-09 Sumitomo Metal Ind Ltd 電磁撹拌装置
JPH0538559A (ja) * 1991-08-01 1993-02-19 Nippon Steel Corp 複式連鋳機における電磁攪拌方法および装置
JPH10230349A (ja) 1997-02-20 1998-09-02 Yaskawa Electric Corp 電磁攪拌装置
JP2006289448A (ja) * 2005-04-12 2006-10-26 Nippon Steel Corp 直線移動磁界式の電磁撹拌装置
JP2007007719A (ja) * 2005-07-04 2007-01-18 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法
JP2009248110A (ja) * 2008-04-03 2009-10-29 Sumitomo Metal Ind Ltd 電磁ブレーキ及び電磁攪拌の兼用電磁コイル装置の接続方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2151291B1 (en) * 2007-06-06 2014-10-29 Nippon Steel & Sumitomo Metal Corporation Steel continuous casting method and in-mold molten steel fluidity controller
JP4967856B2 (ja) * 2007-06-28 2012-07-04 住友金属工業株式会社 鋼の連続鋳造方法
JP5023990B2 (ja) * 2007-11-16 2012-09-12 住友金属工業株式会社 電磁攪拌・電磁ブレーキ兼用電磁コイル装置
JP5124873B2 (ja) * 2007-11-16 2013-01-23 新日鐵住金株式会社 スラブの連続鋳造方法
JP5023989B2 (ja) * 2007-11-16 2012-09-12 住友金属工業株式会社 電磁攪拌・電磁ブレーキ兼用電磁コイル装置
WO2009133739A1 (ja) * 2008-04-28 2009-11-05 住友金属工業株式会社 鋼の連続鋳造方法およびそれに用いる電磁攪拌装置
CN102107266B (zh) * 2010-12-01 2014-08-20 河北优利科电气有限公司 驱动铸锭内尚未凝固的金属熔液流动的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044157A (ja) 1983-08-17 1985-03-09 Sumitomo Metal Ind Ltd 電磁撹拌装置
JPH0538559A (ja) * 1991-08-01 1993-02-19 Nippon Steel Corp 複式連鋳機における電磁攪拌方法および装置
JPH10230349A (ja) 1997-02-20 1998-09-02 Yaskawa Electric Corp 電磁攪拌装置
JP2006289448A (ja) * 2005-04-12 2006-10-26 Nippon Steel Corp 直線移動磁界式の電磁撹拌装置
JP2007007719A (ja) * 2005-07-04 2007-01-18 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法
JP2009248110A (ja) * 2008-04-03 2009-10-29 Sumitomo Metal Ind Ltd 電磁ブレーキ及び電磁攪拌の兼用電磁コイル装置の接続方法

Also Published As

Publication number Publication date
CA2865500A1 (en) 2014-03-06
IN2014DN07113A (ja) 2015-04-24
US20150158079A1 (en) 2015-06-11
EP2808103A4 (en) 2016-01-13
EP2808103A1 (en) 2014-12-03
JP5565538B1 (ja) 2014-08-06
PL2808103T3 (pl) 2018-06-29
EP2808103B1 (en) 2018-01-03
US9144840B2 (en) 2015-09-29
CA2865500C (en) 2015-11-10
BR112014025115B1 (pt) 2019-06-11
KR20140116957A (ko) 2014-10-06
KR101536091B1 (ko) 2015-07-13
ES2663470T3 (es) 2018-04-12
CN104136145A (zh) 2014-11-05
JPWO2014034658A1 (ja) 2016-08-08
CN104136145B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
US5651411A (en) Apparatus for and method of continuous casting
US4016926A (en) Electro-magnetic strirrer for continuous casting machine
RU2405652C2 (ru) Способ электромагнитного удерживания расплавленного металла в горизонтальных литейных машинах и устройство для его осуществления
EP2269750B1 (en) Method for continuous casting of steel and electromagnetic stirrer to be used therefor
JP4495224B2 (ja) 優れた凝固組織を有する鋳片
JPH07115135B2 (ja) 溶融金属の封じ込め装置及び金属シートの連続成形方法
CN112074359B (zh) 电磁搅拌装置
JP5565538B1 (ja) 電磁攪拌装置及び連続鋳造方法
KR101207679B1 (ko) 전자 교반과 전자 브레이크를 겸용 가능한 주형내 용강용 전자 코일 장치
JP4132653B2 (ja) 鋼材
JP2004322179A (ja) 鋳型内電磁力制御装置および連続鋳造方法
JP5124873B2 (ja) スラブの連続鋳造方法
JPS60137558A (ja) 連続鋳造機における電磁撹拌装置
JPS63119962A (ja) 電磁攪拌用ロ−ル装置
JPH0238303B2 (ja)
JP5359653B2 (ja) 鋼の連続鋳造方法
JPH0459152A (ja) ブルーム、ビレットの製造方法
JP2010264483A (ja) 鋳型内とその下方に亘って気泡介在物洗浄効果が得られる、ブルームの連続鋳造方法
JPH02235558A (ja) ブルーム連続鋳造方法
JP2010000518A (ja) 連続鋳造鋳型内溶鋼の流動制御方法及び流動制御装置
JPS5938065B2 (ja) 連続鋳造におけるスラブの電磁撹拌方法
JPH03114630A (ja) 連続鋳造機
JPH06285601A (ja) リニアモータを使用する連続鋳造方法および装置
JPS63264253A (ja) 薄肉鋳片の連続鋳造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380010806.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014506677

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833216

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14380486

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2865500

Country of ref document: CA

Ref document number: 20147023686

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013833216

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014025115

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112014025115

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141008