WO2014034104A1 - 負極活物質材料 - Google Patents

負極活物質材料 Download PDF

Info

Publication number
WO2014034104A1
WO2014034104A1 PCT/JP2013/005061 JP2013005061W WO2014034104A1 WO 2014034104 A1 WO2014034104 A1 WO 2014034104A1 JP 2013005061 W JP2013005061 W JP 2013005061W WO 2014034104 A1 WO2014034104 A1 WO 2014034104A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
phase
crystal structure
Prior art date
Application number
PCT/JP2013/005061
Other languages
English (en)
French (fr)
Inventor
祐義 山本
禰宜 教之
永田 辰夫
晃治 森口
光治 米村
知行 掛下
智之 寺井
福田 隆
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2881801A priority Critical patent/CA2881801C/en
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US14/419,969 priority patent/US10381640B2/en
Priority to CN201380055994.0A priority patent/CN104756289A/zh
Priority to PL13833607T priority patent/PL2889936T3/pl
Priority to EP13833607.8A priority patent/EP2889936B1/en
Priority to CN202010488473.6A priority patent/CN111628161B/zh
Priority to KR1020157006511A priority patent/KR101729868B1/ko
Priority to JP2014532792A priority patent/JP5729520B2/ja
Priority to RU2015108800A priority patent/RU2630229C2/ru
Priority to BR112015003323A priority patent/BR112015003323A2/pt
Priority to MX2015002323A priority patent/MX2015002323A/es
Publication of WO2014034104A1 publication Critical patent/WO2014034104A1/ja
Priority to IN1183DEN2015 priority patent/IN2015DN01183A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode active material, and more particularly to a negative electrode active material.
  • graphite-based negative electrode active material is used for lithium ion batteries.
  • the graphite-based negative electrode active material has the above-described technical problems.
  • an alloy-based negative electrode active material having a higher capacity than a graphite-based negative electrode active material has attracted attention.
  • an alloy-based negative electrode active material a silicon (Si) -based negative electrode active material and a tin (Sn) -based negative electrode active material are known.
  • Various studies have been made on the above alloy-based negative electrode active material materials for practical use of a more compact and long-life lithium ion battery.
  • the volume of the alloy-based negative electrode active material material repeats large expansion and contraction during charging and discharging. Therefore, the capacity of the alloy-based negative electrode active material is likely to deteriorate.
  • the volume expansion / contraction rate of graphite accompanying charging is about 12%.
  • the volume expansion / contraction rate of Si alone or Sn accompanying charging is about 400%.
  • Patent Document 1 a solution to the above-described problem of the alloy-based negative electrode active material is proposed.
  • the negative electrode material of Patent Document 1 includes a Ti—Ni-based superelastic alloy and Si particles formed in the superelastic alloy.
  • Patent Document 1 describes that a large change in expansion and contraction of silicon particles caused by insertion and extraction of lithium ions can be suppressed by a superelastic alloy.
  • An object of the present invention is to provide a negative electrode active material that can be used in a nonaqueous electrolyte secondary battery typified by a lithium ion secondary battery and can improve capacity per volume and charge / discharge cycle characteristics.
  • the negative electrode active material according to the present embodiment contains an alloy phase.
  • the alloy phase undergoes thermoelastic non-diffusive transformation when releasing metal ions or occluding metal ions.
  • FIG. 1 is a diagram showing an X-ray diffraction profile of a Cu-15.5 at% Sn alloy in an example and a simulation result by a Rietveld method.
  • FIG. 2 is a perspective view of the DO 3 structure.
  • FIG. 3 is a diagram showing an X-ray diffraction profile before and after charging / discharging of the Cu-15.5 at% Sn alloy in the example and a simulation result by the Rietveld method.
  • FIG. 4A is a schematic diagram of the DO 3 structure of the parent phase of the alloy phase of the present embodiment.
  • FIG. 4B is a schematic diagram of the 2H structure of the ⁇ 1 ′ phase, which is one type of martensite phase.
  • FIG. 4C is a schematic diagram of a crystal plane for explaining the thermoelastic non-diffusion transformation from the DO 3 structure to the 2H structure.
  • FIG. 4D is a schematic view of another crystal plane different from FIG. 4C.
  • FIG. 4E is a schematic view of another crystal plane different from those in FIGS. 4C and 4D.
  • FIG. 5 is a graph showing the charge / discharge cycle characteristics of the Cu-15.5 at% alloy in the examples.
  • FIG. 6 is a diagram showing an X-ray diffraction profile of a Cu-25.0 at% Sn alloy and a simulation result by the Rietveld method.
  • FIG. 7 is a diagram showing an X-ray diffraction profile of a Cu-18.5 at% Sn alloy and a simulation result by the Rietveld method.
  • FIG. 8 is a diagram showing an X-ray diffraction profile of a Cu-5.0 at% Zn-25.0 at% Sn alloy and a simulation result by the Rietveld method.
  • FIG. 9 is a diagram showing an X-ray diffraction profile of a Cu-10.0 at% Zn-25.0 at% Sn alloy and a simulation result by the Rietveld method.
  • FIG. 10 is a diagram showing an X-ray diffraction profile of a Cu-20.5 at% Sn alloy and a simulation result by the Rietveld method.
  • the negative electrode active material according to the present embodiment contains an alloy phase.
  • the alloy phase undergoes thermoelastic non-diffusive transformation when releasing metal ions or occluding metal ions.
  • the “negative electrode active material” referred to herein is preferably a negative electrode active material for a non-aqueous electrolyte secondary battery.
  • the “thermoelastic non-diffusion transformation” referred to in this specification is a so-called thermoelastic martensitic transformation.
  • Metal ions are, for example, lithium ions, magnesium ions, sodium ions, and the like. A preferred metal ion is lithium ion.
  • This negative electrode active material may contain a phase other than the above alloy phase.
  • Other phases are, for example, a silicon (Si) phase, a tin (Sn) phase, an alloy phase other than the above alloy phase (an alloy phase that does not undergo thermoelastic non-diffusion transformation), and the like.
  • the alloy phase is a main component (main phase) of the negative electrode active material.
  • the “main component” means a component that occupies 50% or more volume.
  • the alloy phase may contain impurities as long as the gist of the present invention is not impaired. However, it is preferable to have as few impurities as possible.
  • the negative electrode formed using the negative electrode active material of this embodiment has a higher volume discharge capacity (discharge capacity per volume) than a negative electrode made of graphite when used in a non-aqueous electrolyte secondary battery. Furthermore, the non-aqueous electrolyte secondary battery using the negative electrode containing the negative electrode active material of the present embodiment has a higher capacity retention rate than when a conventional alloy negative electrode is used. Therefore, there is a high possibility that this negative electrode active material can sufficiently improve the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery.
  • the high capacity retention rate is considered to be due to the relaxation caused by expansion and contraction generated during charging and discharging by the thermoelastic non-diffusion transformation.
  • the alloy phase may be any of the following four types 1 to 4.
  • the type 1 alloy phase undergoes thermoelastic non-diffusion transformation when occluding metal ions and reverse transformation when releasing metal ions.
  • the alloy phase is a parent phase in a normal state.
  • the type 2 alloy phase undergoes reverse transformation when occluding metal ions and thermoelastic non-diffusive transformation when releasing metal ions.
  • the alloy phase is normally a martensite phase.
  • the type 3 alloy phase undergoes supplemental deformation (slip deformation or twin deformation) when occluding metal ions, and returns to the original martensite phase when metal ions are released.
  • the alloy phase is normally a martensite phase.
  • the type 4 alloy phase changes from the martensite phase to another martensite phase when the metal ions are occluded, and returns to the original martensite phase when the metal ions are released.
  • the alloy phase is normally a martensite phase.
  • the crystal structure of the alloy phase after thermoelastic non-diffusion transformation is preferably any of 2H, 3R, 6R, 9R, 18R, M2H, M3R, M6R, M9R, and M18R in Ramsdell notation.
  • the crystal structure of the alloy phase after reverse transformation is DO 3 in Strukturbericht notation. More preferably, the crystal structure of the alloy phase after the thermoelastic non-diffusion transformation is 2H, and the crystal structure of the alloy phase after reverse transformation is the DO 3 .
  • the negative electrode active material preferably contains Cu and Sn, contains the 2H structure after the thermoelastic non-diffusion transformation, and contains the DO 3 structure after the reverse transformation.
  • the negative electrode active material contains one or more selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Al, Si, B, and C, and the remainder Cu and impurities may be used.
  • the negative electrode active material is further selected from the group consisting of a ⁇ phase having an F-Cell structure, a ⁇ phase having a 2H structure, a monoclinic ⁇ ′ phase, and a phase having a DO 3 structure, including site defects. 1 or more types may be contained.
  • ⁇ phase, ⁇ phase, ⁇ ′ phase, and phase having DO 3 structure including site defects all form storage sites and diffusion sites for metal ions (Li ions, etc.) in the negative electrode active material. . Therefore, the volume discharge capacity and cycle characteristics of the negative electrode active material are further improved.
  • the volume expansion rate or volume contraction rate of the unit cell before and after the phase transformation of the alloy phase is preferably 20% or less, and more preferably 10% or less.
  • the volume expansion rate of the unit cell is defined by the following formula (1), and the volume contraction rate of the unit cell is defined by the following formula (2).
  • the above-mentioned electrode active material can be used as an active material constituting an electrode, particularly an electrode of a nonaqueous electrolyte secondary battery.
  • the nonaqueous electrolyte secondary battery is, for example, a lithium ion secondary battery.
  • the negative electrode active material according to the embodiment of the present invention contains an alloy phase. As described above, this alloy phase undergoes thermoelastic non-diffusion when releasing metal ions typified by Li ions or occlusion of metal ions.
  • the thermoelastic non-diffusion transformation is also called a thermoelastic martensitic transformation.
  • M transformation thermoelastic martensitic transformation
  • M phase martensitic phase
  • the alloy phase that undergoes M transformation when occluding or releasing metal ions is also referred to as a “specific alloy phase”.
  • the specific alloy phase is mainly composed of at least one of the M phase and the parent phase.
  • the specific alloy phase repeatedly occludes and releases metal ions during charge and discharge. And according to occlusion and discharge
  • the specific alloy phase may be any of the above types 1 to 4.
  • the specific alloy phase is type 1. That is, the specific alloy phase preferably undergoes M transformation when occluding metal ions and reverse transformation when releasing metal ions.
  • the crystal structure of the specific alloy phase is not particularly limited.
  • the specific alloy phase after M transformation that is, M phase
  • the crystal structure is, for example, ⁇ 1 ′ phase (monoclinic M18R 1 structure or orthorhombic 18R 1 structure), ⁇ 1 ′ phase (monoclinic M2H structure or orthorhombic 2H structure).
  • ⁇ 1 ′′ phase monoclinic M18R 2 structure or orthorhombic 18R 2 structure
  • ⁇ 1 ′ phase monoclinic M6R structure or orthorhombic 6R structure
  • the crystal structure of the M phase of the specific alloy phase is, for example, ⁇ 2 ′ phase (monoclinic M9R structure or orthorhombic crystal) 9R structure), ⁇ 2 ′ phase (monoclinic M2H structure or orthorhombic 2H structure), ⁇ 2 ′ phase (monoclinic M3R structure or orthorhombic 3R structure).
  • the crystal structure of the M phase of the alloy phase is, for example, a face-centered tetragonal lattice or a body-centered tetragonal lattice.
  • the symbols such as 2H, 3R, 6R, 9R, 18R, M2H, M3R, M6R, M9R, and M18R are used as a representation method of the crystal structure of the stacked structure according to the Ramsdell classification.
  • the symbols H and R mean that the symmetry in the direction perpendicular to the laminated surface is hexagonal symmetry and rhombohedral symmetry, respectively.
  • M is not added to the head, it means that the crystal structure is orthorhombic.
  • M is added at the beginning, it means that the crystal structure is monoclinic. Even the same classification symbol may be distinguished depending on the order of stacking.
  • the two types of M phases, ⁇ 1 ′ phase and ⁇ 1 ′′ phase are different from each other in terms of the laminated structure, so that they are distinguished by being expressed as 18R 1 , 18R 2 , M18R 1 , M18R 2, etc., respectively. There is a case.
  • the M transformation and reverse transformation in the normal shape memory effect and pseudoelastic effect often involve volume shrinkage or volume expansion.
  • the negative electrode active material according to this embodiment electrochemically releases or occludes metal ions (for example, lithium ions), the crystal structure changes in accordance with the phenomenon of volume shrinkage or volume expansion in the respective transformation directions. It is thought that there are many cases to do.
  • the negative electrode active material according to the present embodiment is not particularly limited.
  • the specific alloy phase when M transformation or reverse transformation occurs with insertion and extraction of metal ions, a crystal structure other than the crystal structure that appears in the normal shape memory effect or pseudoelastic effect may be generated.
  • the specific alloy phase undergoes slip deformation or twin deformation as the metal ions are occluded or released.
  • slip deformation since dislocations are introduced as lattice defects, reversible deformation is difficult. Therefore, when the specific alloy phase is type 3, it is desirable that twin deformation mainly occurs.
  • the chemical composition of the negative electrode active material containing the specific alloy phase described above is not particularly limited as long as the crystal structure at the M transformation and reverse transformation contains the crystal structure.
  • the chemical composition of the negative electrode active material containing the specific alloy phase includes, for example, Cu (copper) and Sn (tin).
  • the crystal structure of the specific alloy phase after reverse transformation by discharge of metal ions is a DO 3 structure
  • the crystal structure of the specific alloy phase after M transformation by occlusion of metal ions Is a 2H structure.
  • the chemical composition of the negative electrode active material contains Sn, with the balance being Fe and impurities. More preferably, the negative electrode active material contains 10 to 20 at% or 21 to 27 at% of Sn, the balance is made of Cu and impurities, contains a 2H structure after M transformation, and contains a DO 3 structure after reverse transformation. To do.
  • a more preferable Sn content in the negative electrode active material is 13 to 16 at%, 18.5 to 20 at%, or 21 to 27 at%.
  • the chemical composition of the negative electrode active material includes one or more selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Al, Si, B, and C, and Sn.
  • the balance may be Cu and impurities.
  • the chemical composition of the negative electrode active material in this case is Sn: 10 to 35 at%, Ti: 9.0 at% or less, V: 49.0 at% or less, Cr: 49.0 at% or less, Mn: 9. 0 at% or less, Fe: 49.0 at% or less, Co: 49.0 at% or less, Ni: 9.0 at% or less, Zn: 29.0 at% or less, Al: 49.0 at% or less, Si: 49.0 at%
  • B 5.0 at% or less and C: one or more selected from the group consisting of 5.0 at% or less are contained, and the balance consists of Cu and impurities.
  • Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Al, Si, B and C are optional elements.
  • the preferable upper limit of the Ti content is 9.0 at% as described above.
  • a more preferable upper limit of the Ti content is 6.0 at%, and more preferably 5.0 at%.
  • the minimum with preferable Ti content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of V content is 49.0 at% as described above.
  • the upper limit with more preferable V content is 30.0 at%, More preferably, it is 15.0 at%, More preferably, it is 10.0 at%.
  • the minimum with preferable V content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the Cr content is 49.0 at% as described above.
  • a more preferable upper limit of the Cr content is 30.0 at%, more preferably 15.0 at%, and further preferably 10.0 at%.
  • the minimum with preferable Cr content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the Mn content is 9.0 at% as described above.
  • the upper limit with more preferable Mn content is 6.0 at%, More preferably, it is 5.0 at%.
  • the minimum with preferable Mn content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the Fe content is 49.0 at% as described above.
  • a more preferable upper limit of the Fe content is 30.0 at%, more preferably 15.0 at%, and further preferably 10.0 at%.
  • the minimum with preferable Fe content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the Co content is 49.0 at% as described above.
  • a more preferable upper limit of the Co content is 30.0 at%, more preferably 15.0 at%, and further preferably 10.0 at%.
  • the minimum with preferable Co content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the Ni content is 9.0 at% as described above.
  • the upper limit with more preferable Ni content is 5.0 at%, More preferably, it is 2.0 at%.
  • the minimum with preferable Ni content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the Zn content is 29.0 at% as described above.
  • the upper limit of the Zn content is more preferably 27.0 at%, more preferably 25.0 at%.
  • the minimum with preferable Zn content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the Al content is 49.0 at% as described above.
  • a more preferable upper limit of the Al content is 30.0 at%, more preferably 15.0 at%, and further preferably 10.0 at%.
  • the minimum with preferable Al content is 0.1%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the Si content is 49.0 at% as described above.
  • a more preferable upper limit of the Si content is 30.0 at%, more preferably 15.0 at%, and further preferably 10.0 at%.
  • the minimum with preferable Si content is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the B content is 5.0 at%.
  • the minimum with preferable B content is 0.01 at%, More preferably, it is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the preferable upper limit of the C content is 5.0 at%.
  • the minimum with preferable C content is 0.01 at%, More preferably, it is 0.1 at%, More preferably, it is 0.5 at%, More preferably, it is 1.0 at%.
  • the negative electrode active material further includes an F-Cell structure ⁇ phase containing site defects, a 2H structure ⁇ phase containing site defects, a monoclinic ⁇ ′ phase containing site defects, and a site contains one or more selected from the group consisting of phases with DO 3 structure containing defects.
  • these ⁇ phase, ⁇ phase, ⁇ ′ phase, and phase having DO 3 structure containing site defects are also referred to as “site defect phases”.
  • site deficiency means that the occupation ratio is less than 1 at a specific atomic site in the crystal structure.
  • site defect phases include a plurality of site defects in the crystal structure. These site defects function as storage sites or diffusion sites for metal ions (Li ions or the like). Therefore, if the negative electrode active material contains an alloy phase that has a 2H structure after M transformation and a DO 3 structure after reverse transformation, and at least one phase of the site deficient phase, the volume discharge capacity of the negative electrode active material and Cycle characteristics are further improved.
  • the chemical composition of the negative electrode active material may further contain a Group 2 element and / or a rare earth element (REM) as an optional element for the purpose of increasing the discharge capacity.
  • the Group 2 element is, for example, magnesium (Mg), calcium (Ca) or the like.
  • REM is, for example, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), or the like.
  • the negative electrode active material contains a Group 2 element and / or REM
  • the negative electrode active material becomes brittle. Therefore, in the electrode manufacturing process, the bulk material or ingot made of the negative electrode active material is easily pulverized, and the electrode is easily manufactured.
  • the negative electrode active material may be composed of the specific alloy phase, or may contain the specific alloy phase and another active material phase that is metal ion active.
  • Another active material phase is, for example, a tin (Sn) phase, a silicon (Si) phase, an aluminum (Al) phase, a Co—Sn alloy phase, a Cu 6 Sn 5 compound phase ( ⁇ ′ phase or ⁇ phase), etc. .
  • volume expansion and shrinkage of specific alloy phase In the case where the specific alloy phase undergoes M transformation or reverse transformation as the metal ions are occluded and released, the preferred volume expansion / contraction rate of the unit cell of the specific alloy phase is 20% or less. In this case, it is possible to sufficiently relieve strain due to volume changes associated with insertion and extraction of metal ions. A more preferable volume expansion / contraction rate of the unit cell of the specific alloy phase is 10% or less, and more preferably 5% or less.
  • the volume expansion / contraction rate of the specific alloy phase can be measured by in situ X-ray diffraction during charge / discharge.
  • a dedicated charge / discharge cell having a beryllium window that transmits X-rays is provided with a negative electrode active material material.
  • the electrode plate, separator, counter electrode lithium and electrolyte are mounted and sealed.
  • this charge / discharge cell is mounted on an X-ray diffractometer.
  • an X-ray diffraction profile of the specific alloy phase in the initial charge state and the initial discharge state in the charge / discharge process is obtained.
  • the lattice constant of the specific alloy phase is obtained from this X-ray diffraction profile.
  • the volume change rate can be calculated from this lattice constant in consideration of the crystal lattice correspondence of the specific alloy phase.
  • the crystal structure of the phase (including alloy phase) contained in the negative electrode active material can be analyzed by the Rietveld method based on the X-ray diffraction profile obtained using an X-ray diffractometer. Specifically, the crystal structure is analyzed by the following method.
  • X-ray diffraction measurement is performed on the negative electrode active material to obtain actual measurement data of the X-ray diffraction profile. Based on the obtained X-ray diffraction profile (actual measurement data), the structure of the phase in the negative electrode active material is analyzed by the Rietveld method. For analysis by the lead belt method, either “RIETAN2000” (program name) or “RIETAN-FP” (program name), which are general-purpose analysis software, is used.
  • the crystal structure of the negative electrode active material in the negative electrode before charging in the battery is also specified by the same method as in (1). Specifically, in a state before charging, the battery is disassembled in a glove box in an argon atmosphere, and the negative electrode is taken out from the battery. The taken-out negative electrode is wrapped in mylar foil. Thereafter, the periphery of the mylar foil is sealed with a thermocompression bonding machine. The negative electrode sealed with Mylar foil is taken out of the glove box.
  • the negative electrode is attached to a non-reflective sample plate (a plate cut out so that the specific crystal plane of the silicon single crystal is parallel to the measurement plane) with a hair spray to prepare a measurement sample.
  • the measurement sample is set in an X-ray diffractometer, the X-ray diffraction measurement of the measurement sample is performed, and an X-ray diffraction profile is obtained. Based on the obtained X-ray diffraction profile, the crystal structure of the negative electrode active material in the negative electrode is specified by the Rietveld method.
  • the battery is fully charged in a charge / discharge test apparatus.
  • the fully charged battery is disassembled in the glove box, and a measurement sample is prepared by the same method as in (2).
  • a measurement sample is set in an X-ray diffractometer and X-ray diffraction measurement is performed.
  • the battery is completely discharged, the fully discharged battery is disassembled in the glove box, a measurement sample is prepared by the same method as (2), and X-ray diffraction measurement is performed.
  • ⁇ Negative electrode active material and method for producing negative electrode> A negative electrode active material containing the specific alloy phase, and a negative electrode and battery manufacturing method using the negative electrode active material will be described.
  • molten metal of negative electrode active material containing specific alloy phase For example, a molten metal having the above-described chemical composition is manufactured. The molten metal is manufactured by melting a material by a normal melting method such as arc melting or resistance heating melting. Next, an ingot (bulk alloy) is manufactured by the ingot-making method using the molten metal. The negative electrode active material is manufactured through the above steps.
  • the negative electrode active material is produced by rapidly solidifying the molten metal.
  • This method is called a rapid solidification method.
  • the rapid solidification method include a strip casting method, a melt spin method, a gas atomization method, a molten metal spinning method, a water atomization method, and an oil atomization method.
  • the bulk alloy (ingot) obtained by melting is (1) cut, (2) roughly crushed with a hammer mill, etc. (3) ball mill, attritor, disc It is finely pulverized mechanically with a mill, jet mill, pin mill or the like to adjust to the required particle size.
  • the bulk alloy may be cut and pulverized with a grinder disk in which diamond abrasive grains are embedded. In these pulverization processes, when an M phase is generated by stress induction, the generation ratio is adjusted as necessary by appropriately combining alloy design, heat treatment, pulverization conditions, and the like.
  • a pulverization step may not be particularly required.
  • the melted material is adjusted to a predetermined size by mechanical cutting such as shearing. In such a case, the melted material may be heat-treated at a necessary stage to adjust the ratio of the M phase or the parent phase.
  • the negative electrode active material When adjusting the composition ratio of the specific alloy phase by heat-treating the negative electrode active material, the negative electrode active material may be rapidly cooled after being maintained at a predetermined temperature and time in an inert atmosphere as necessary. Good. At this time, the cooling rate may be adjusted by selecting a quenching medium such as water, salt water, or oil according to the size of the negative electrode active material, and setting the quenching medium to a predetermined temperature.
  • a quenching medium such as water, salt water, or oil according to the size of the negative electrode active material
  • the negative electrode using the negative electrode active material according to the embodiment of the present invention can be manufactured by a method well known to those skilled in the art.
  • binders such as polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA), polytetrafluoroethylene (PTFE), and styrene butadiene rubber (SBR) are applied to the powder of the negative electrode active material according to the embodiment of the present invention.
  • carbon material powder such as natural graphite, artificial graphite, acetylene black, etc. is mixed in order to impart sufficient conductivity to the negative electrode.
  • a solvent such as N-methylpyrrolidone (NMP), dimethylformamide (DMF) or water is added to dissolve the binder, and if necessary, the mixture is sufficiently stirred using a homogenizer and glass beads to form a slurry.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • This slurry is applied to an active material support such as rolled copper foil or electrodeposited copper foil and dried. Thereafter, the dried product is pressed.
  • the negative electrode plate is manufactured through the above steps.
  • the binder to be mixed is preferably about 5 to 10% by mass from the viewpoint of mechanical strength of the negative electrode and battery characteristics.
  • the support is not limited to copper foil.
  • the support may be, for example, a thin foil of another metal such as stainless steel or nickel, a net-like sheet punching plate, a mesh knitted with a metal wire, or the like.
  • the particle size of the negative electrode active material powder affects the electrode thickness and electrode density, that is, the electrode capacity. The thinner the electrode, the better. This is because if the thickness of the electrode is small, the total area of the negative electrode active material contained in the battery can be increased. Therefore, the average particle size of the negative electrode active material powder is preferably 100 ⁇ m or less. The smaller the average particle diameter of the powder of the negative electrode active material, the greater the reaction area of the powder and the better the rate characteristics. However, if the average particle size of the powder of the negative electrode active material is too small, the properties of the powder surface change due to oxidation or the like, and lithium ions do not easily enter the powder. In this case, the rate characteristics and charge / discharge efficiency may deteriorate over time. Therefore, the preferable average particle diameter of the negative electrode active material powder is 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • the nonaqueous electrolyte secondary battery according to the present embodiment includes the above-described negative electrode, positive electrode, separator, and electrolytic solution or electrolyte.
  • the shape of the battery may be a cylindrical shape, a square shape, a coin shape, a sheet shape, or the like.
  • the battery of this embodiment may be a battery using a solid electrolyte such as a polymer battery.
  • the positive electrode of the battery of this embodiment preferably contains a transition metal compound containing a metal ion as an active material. More preferably, the positive electrode contains a lithium (Li) -containing transition metal compound as an active material.
  • the Li-containing transition metal compound is, for example, LiM 1 -xM′xO 2 or LiM 2 yM′O 4 .
  • M and M ′ are barium (Ba), cobalt (Co), nickel (Ni), manganese (Mn), chromium (Cr), titanium (Ti), respectively.
  • the battery of this embodiment includes a transition metal chalcogenide; vanadium oxide and its lithium (Li) compound; niobium oxide and its lithium compound; a conjugated polymer using an organic conductive material; a sheprel phase compound; Other positive electrode materials such as activated carbon fiber may be used.
  • the battery electrolyte of the present embodiment is generally a non-aqueous electrolyte obtained by dissolving a lithium salt as a supporting electrolyte in an organic solvent.
  • the lithium salt include LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiB (C 6 H 5 ), LiCF 3 SO 3 , LiCH 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 2 SO 2 ) 2 , LiCl, LiBr, LiI or the like. These may be used alone or in combination.
  • the organic solvent is preferably a carbonic acid ester such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate.
  • a carbonic acid ester such as propylene carbonate, ethylene carbonate, ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate.
  • various other organic solvents including carboxylic acid esters and ethers can also be used. These organic solvents may be used alone or in combination.
  • the separator is installed between the positive electrode and the negative electrode.
  • the separator serves as an insulator. Further, the separator greatly contributes to the retention of the electrolyte.
  • the battery of this embodiment may be provided with a known separator.
  • the separator is, for example, a polyolefin material such as polypropylene, polyethylene, a mixed cloth of both, or a porous body such as a glass filter.
  • the negative electrode active material, the negative electrode, and the battery of the present embodiment will be described in more detail using examples. Note that the negative electrode active material, the negative electrode, and the battery of the present embodiment are not limited to the following examples.
  • the powdered negative electrode active material, negative electrode, and coin battery of Invention Examples 1 to 13 and Comparative Example 1 were produced by the following method. And the change of the crystal structure by charging / discharging of a negative electrode active material material was confirmed. Furthermore, the discharge capacity (discharge capacity per volume) and cycle characteristics of the battery were investigated.
  • the chemical composition of the powdered negative electrode active material is Cu-15.5 at% Sn, that is, the chemical composition of the negative electrode active material contains 15.5 at% Sn, with the balance being Cu and impurities.
  • a molten metal was produced so as to consist of Specifically, a mixture of 22.34 g of copper and 7.66 g of tin was melted at high frequency to produce a molten metal. The molten metal was cast to produce an ingot having a diameter of about 25 mm and a height of about 7 mm.
  • the ingot was cut in half vertically. A cut piece of the ingot was sealed in a quartz tube and heat-treated at 720 ° C. for 24 hours. Subsequently, the quartz tube was divided in 0 ° C. ice water, ice water was infiltrated into the quartz tube, and the ingot was quenched rapidly with the ice water.
  • the surface of the ingot after quenching was ground to remove the surface layer portion.
  • the ingot after grinding was pulverized using a # 270-number diamond abrasive file so that the particle size was 45 ⁇ m or less.
  • This pulverized product (powder) was used as a negative electrode active material.
  • the chemical composition of the negative electrode active material was Cu-15.5 at% Sn. In other words, the chemical composition of the negative electrode active material contained 15.5 at% Sn, and the balance was Cu and impurities.
  • the produced negative electrode mixture slurry was applied onto a copper foil using an applicator (150 ⁇ m).
  • the copper foil coated with the slurry was dried at 100 ° C. for 20 minutes.
  • the copper foil after drying had a coating film made of a negative electrode active material on the surface.
  • a punching process was performed on the copper foil having the coating film to produce a disc-shaped copper foil having a diameter of 13 mm.
  • the copper foil after punching was pressed with a press pressure of 500 kgf / cm 2 to produce a plate-like negative electrode material.
  • a manufactured negative electrode material, EC-DMC-EMC-VC-FEC as an electrolyte, a polyolefin separator ( ⁇ 17 mm) as a separator, and plate-like metal Li ( ⁇ 19 ⁇ 1 mmt) as a positive electrode material were prepared.
  • a 2016-type coin battery was manufactured using the prepared negative electrode material, electrolytic solution, separator, and positive electrode material. The coin battery was assembled in a glove box in an argon atmosphere.
  • the powdered negative electrode active material before use for the negative electrode, the negative electrode active material in the negative electrode before the first charge, and the crystal structure of the negative electrode active material in the negative electrode after one or more charge / discharge cycles are shown below. It was specified by the method. X-ray diffraction measurement was performed on the target negative electrode active material to obtain actual measurement data. And based on the measured data obtained, the crystal structure contained in the target negative electrode active material was specified by the Rietveld method. More specifically, the crystal structure was specified by the following method.
  • the crystal structure of the alloy phase in the negative electrode active material was analyzed by the Rietveld method.
  • the negative electrode active material of Example 1 of the present invention was mixed with a ⁇ 1 ′ phase (2H structure) which is a kind of M phase and a ⁇ 1 phase (DO 3 structure) which is the parent phase.
  • the parent phase had a crystal structure in which a part of the Sn site of the DO 3 structure was substituted with Cu. The analysis process is described in detail below.
  • FIG. 1 is a diagram showing an X-ray diffraction profile ((d) in the figure) of Example 1 of the present invention and simulation results ((a) and (b) in the figure) by the Rietveld method.
  • FIG. 1 shows literature data ((c) in the figure) of Cu-15.5 at% Sn powder.
  • the literature data are S. Miura, Y. et al. Morita, N.M. Nakanishi, “Shape Memory Effects in Alloys”, Plenum Press, N. Y. (1975) 389.
  • the Cu—Sn binary phase diagram is known, and the Cu-15.5 at% Sn alloy at 720 ° C. is in ⁇ phase based on the binary phase diagram. It is known that when this ⁇ phase is quenched, the crystal structure becomes a DO 3 ordered structure.
  • the DO 3 regular structure is a regular structure as shown in FIG.
  • Cu is present at the black circle atomic sites in FIG. 2
  • Cu is present at the white circular atomic sites at a ratio of 38 atomic% and Sn at 62 atomic%.
  • Such a crystal structure is the same as that of International Table (Volume-A) No. 225 (Fm-3m) is known.
  • the lattice constant and atomic coordinates of the crystal structure of this space group number are as shown in Table 1.
  • the calculated value of the diffraction profile of the ⁇ 1 phase (DO 3 structure) of this chemical composition (hereinafter referred to as the computational profile) is obtained by Rietveld analysis. It was. Rietan-FP (program name) was used for Rietveld analysis.
  • the crystal structure of ⁇ 1 ′ is a 2H structure in the notation of the Ramsdel symbol, and the space group is No. of International Table (Volume-A). 25 (Pmm2) or No. of International Table (Volume-A). 59-2 (Pmmn). No. The lattice constant and atomic coordinates of 25 (Pmm2) are shown in Table 2. Table 3 shows the lattice constant and atomic coordinates of 59-2 (Pmmn).
  • (A) in FIG. 1 is a calculation profile of the DO 3 structure
  • (b) is a calculation profile of the 2H structure.
  • the powdered negative electrode active material of Invention Example 1 contains a DO 3 structure and also contains a 2H structure by processing-induced M transformation with a file.
  • the diffraction peak appearing in the diffraction angle 2 ⁇ range of 37-48 ° is the Cu-15.5 at% Sn powder described in the literature reported by Miura et al.
  • the angle range of the diffraction peak appearing in the measured value of the X-ray diffraction profile ((c) in FIG. 1) substantially coincided.
  • the half width of the diffraction peak was widened.
  • the above coin battery was disassembled in a glove box in an argon atmosphere, and the plate-like negative electrode was taken out from the coin battery.
  • the extracted negative electrode was wrapped in mylar foil (manufactured by DuPont). Thereafter, the periphery of the mylar foil was sealed with a thermocompression bonding machine. The negative electrode sealed with mylar foil was taken out of the glove box.
  • the negative electrode was attached to a non-reflective sample plate made of Rigaku (a plate cut out so that the specific crystal plane of the silicon single crystal was parallel to the measurement plane) with a hair spray to prepare a measurement sample.
  • the measurement sample was set in the X-ray diffractometer described in (4) described later, and the X-ray diffraction measurement of the measurement sample was performed under the measurement conditions described in (4) described later.
  • the above coin battery was fully charged in the charge / discharge test apparatus.
  • the fully charged coin battery was disassembled in the glove box, and a measurement sample was prepared in the same manner as (2).
  • a measurement sample was set in the X-ray diffractometer described later in (4), and the X-ray diffraction measurement of the measurement sample was performed under the measurement conditions described in (4) below.
  • the above coin battery was completely discharged.
  • the fully discharged coin cell was disassembled in the glove box, and a measurement sample was prepared in the same manner as (3).
  • This measurement sample was set in the X-ray diffractometer described later in (4), and the X-ray diffraction measurement of the measurement sample was performed under the measurement conditions described later in (4).
  • the X-ray diffraction measurement was performed by the same method for the negative electrode after being repeatedly charged and discharged with a coin battery.
  • X-ray diffractometer and measurement conditions ⁇ Device: RINT1000 (trade name) manufactured by Rigaku ⁇ X-ray tube: Cu-K ⁇ ray ⁇ Filter: Ni (Cu-K ⁇ ray cut) ⁇ X-ray output: 40 kV, 30 mA ⁇ Optical system: Concentration method ⁇ Divergent slit: 1 degree ⁇ Scatter slit: 1 degree ⁇ Reception slit: 0.3mm ⁇ Monochrome light receiving slit: 0.8mm -Goniometer: RINT1000 vertical goniometer-X-ray-sample distance: 185.0mm ⁇ Distance between sample and light receiving slit: 185.0mm ⁇ Distance between X-ray and divergence slit: 100.0mm -Distance between solar slit and light receiving slit: 54.0 mm -Monochromator: Graphite curve-Detector: Scintillation counter (SC50 type) ⁇ Measurement range: 10-120 degrees -STEP angle:
  • FIG. (D) in FIG. 3 is an X-ray diffraction profile of the powder of the negative electrode active material obtained in (1).
  • E is an X-ray diffraction profile of the negative electrode active material in the negative electrode before the first charge.
  • (F) is an X-ray diffraction profile of the negative electrode active material after the first charge, and (g) is an X-ray diffraction profile after the first discharge.
  • (H) is an X-ray diffraction profile of the negative electrode active material after the 12th charge, and (i) is an X-ray diffraction profile after the 12th discharge.
  • (A) in FIG. 3 is a calculation profile of the DO 3 structure in the chemical composition of this example, as in (a) in FIG. 1, and (b) in FIG. 3 is (b) in FIG. Similarly, it is the calculation profile of 2H structure in the chemical composition of a present Example.
  • the description will be made based on the crystal axis arrangement shown in Table 3.
  • the crystal planes B shown are alternately stacked.
  • the crystal plane B is regularly shuffled by shear stress and crystallized. It shifts to the position of plane B ′.
  • phase transformation M transformation
  • the crystal plane A shown in FIG. 4D and the crystal plane B ′ shown in FIG. 4E are alternately stacked.
  • the crystal structure of the negative electrode active material in the negative electrode of this example is accompanied by M transformation or not (that is, Whether the host lattice is diffused during charge / discharge).
  • the intensity of diffraction lines near 38 to 39 ° increased by the first charge, and the intensity decreased by the subsequent discharge.
  • This diffraction line is determined to be derived from the formation of the M phase ( ⁇ 1 ′) due to the M transformation, as will be described below, from the calculation profile of Rietan-FP ((a) and (b) in FIG. 3). did it.
  • the negative electrode of the present example contained an alloy phase that transformed into M by charging to become an M phase (2H structure) and became a parent phase (DO 3 structure) by discharging. That is, the negative electrode of this example contained an alloy phase that undergoes M transformation when occlusion of lithium ions, which are metal ions, and reverse transformation when lithium ions are released.
  • Doping capacity and dedoping capacity correspond to charge capacity and discharge capacity when this electrode is used as the negative electrode of a lithium ion secondary battery. Therefore, the measured doping capacity was defined as the charge capacity, and the measured dedoping capacity was defined as the discharge capacity.
  • the initial charge capacity of the coin battery of Inventive Example 1 was 2634 mAh / cm 3 and the discharge capacity was 1569 mAh / cm 3 .
  • the initial discharge capacity of the coin battery of Invention Example 1 was about twice the theoretical capacity of graphite. Furthermore, the discharge capacity after 40 cycles was 1304 mA / cm 3 , indicating a high capacity retention rate of 83%.
  • the coin battery of Example 1 of the present invention had stable charge / discharge cycle characteristics.
  • the chemical composition of the powdered negative electrode active material of Example 2 of the present invention was Cu-1.0 at% Ti-15.5 at% Sn. That is, the chemical composition of Invention Example 2 contained 15.5 at% Sn and 1.0% Ti, with the balance being Cu and impurities. Similarly, the chemical composition of Invention Example 3 contained 15.5 at% Sn and 1.0% V, with the balance being Cu and impurities.
  • Crystal structure identification and cycle characteristic evaluation [Crystal structure identification]
  • the crystal structure of the negative electrode active material in the negative electrode before the initial charge of each inventive example was specified by the same method as in inventive example 1.
  • the crystal structure of the negative electrode active material in the negative electrode after one to plural times of charging and after one to several times of discharge of each of the present invention examples is specified by the same method as in the present invention example 1, and the negative electrode active material material It was confirmed how the crystal structure of the material changed due to charge and discharge.
  • the crystal structure of the negative electrode active material in the negative electrode after discharging one or more times included a DO 3 structure. Furthermore, the crystal structure of the negative electrode active material after charging one or more times included a 2H structure. Specifically, after charging one or more times, an intensity peak was confirmed in the range where the diffraction angle 2 ⁇ in the X-ray diffraction profile was 38 to 39 ° (hereinafter referred to as a specific diffraction angle range). And after discharge, a peak was not confirmed in the specific diffraction angle range. Accordingly, it was confirmed that the anode active material materials of Invention Examples 2 to 13 had a crystal structure that undergoes M transformation when occlusion of lithium ions and reverse transformation when lithium ions are released.
  • Natural graphite was used as the negative electrode active material powder. Using a natural graphite powder as a negative electrode active material, a negative electrode and a coin battery were manufactured by the same manufacturing method as Example 1 of the present invention. And discharge capacity was calculated
  • each of the negative electrode active material materials of Invention Examples 1 to 13 includes a 2H structure formed by M transformation of the DO 3 structure after charging, and the 2H structure undergoes reverse transformation after discharge.
  • the formed DO 3 structure was included.
  • the initial discharge capacities (when the current value is 0.1 mA) of Invention Examples 6 and 12 were equal to or higher than that of Invention Example 1. This is considered to be because the negative electrode active material of Invention Examples 6 and 12 contains one kind of contained element more than the negative active material alloy powder of Invention Example 1. It is done. Compared with the negative electrode active material of Invention Example 1, in the negative electrode active material of Invention Examples 6 and 12, the lattice arrangement is disturbed and so-called lattice defects increase. As a result, more lithium ion diffusion paths and storage sites are secured. As a result, it is considered that the initial capacity and charge / discharge rate characteristics of the coin batteries of Examples 6 and 12 of the present invention were improved. The improvement of the charge / discharge rate characteristics could be confirmed from Examples 6B and 12B of the present invention showing excellent discharge capacity.
  • the final chemical composition of the negative electrode active material of Inventive Example 14 was Cu-25 at% Sn. That is, the chemical composition of Invention Example 14 contained 25 at% Sn, and the balance was Cu and impurities.
  • a negative electrode and a coin battery were produced by the same production method as in the present invention example 2.
  • the crystal structure of the powdered negative electrode active material before being used for the negative electrode of Invention Example 14 was specified by the same method as that of Invention Example 1. Furthermore, the crystal structure of the negative electrode active material in the negative electrode before the first charge in each inventive example was specified by the same method as in inventive example 1. Furthermore, the crystal structure of the negative electrode active material in the negative electrode after each initial charge, after the first discharge, after multiple charges, and after multiple discharges is specified by the same method as in the present invention example 1. Then, it was confirmed how the crystal structure of the negative electrode active material changes due to charge / discharge.
  • the powdered negative electrode active material before using the negative electrode the negative electrode active material in the negative electrode before charging, and the method for identifying the crystal structure of the negative electrode active material after one or more times of charging / discharging will be described in detail.
  • FIG. 6 is a diagram showing an actually measured X-ray diffraction profile and a profile fitting result (calculation profile) by the Rietveld method.
  • the powdered negative electrode active material of Example 14 of the present invention contained an ⁇ phase having the same structure as the ⁇ 1 ′ phase (2H structure), which is a kind of M phase.
  • the crystal structure of the martensite phase after quenching was a 2H structure. Its crystal structure is the same as the 2H structure shown in FIG. 4B.
  • the crystal structure of the negative electrode active material before charging was the same 2H structure as FIG.
  • the negative electrode active material after charging included a 2H structure
  • the negative electrode active material after discharging included a DO 3 structure.
  • Example 14 of the present invention has a crystal structure that undergoes M transformation when occluding lithium ions and reverse transformation when releasing lithium ions.
  • Example 14 of the present invention the current value during charging / discharging was set to 0.1 mA.
  • the initial discharge capacity of the coin battery was 2459 mAh / cm 3 , which was higher than that of the negative electrode active material made of graphite. Furthermore, after 20 cycles of charge and discharge, it was 1934 mAh / cm 3 and the capacity retention rate was as high as 79%, indicating excellent cycle characteristics.
  • Invention Example 15 was the same negative electrode active material, negative electrode, and battery as Invention Example 14. In Invention Example 15, as shown in Table 5, the current value during charging / discharging at the time of measuring the discharge capacity was 1.0 mA.
  • the initial discharge capacity was 1540 mAh / cm 3 , which was higher than that of graphite. Furthermore, the discharge capacity after 80 cycles of charge / discharge was 1461 mAh / cm 3 , and the capacity retention rate was as high as 95%. Therefore, the battery of Inventive Example 15 had excellent charge / discharge rate characteristics.
  • the crystal structure of the powdered negative electrode active material before being used for the negative electrode of each of the above inventive examples was specified by the same method as in inventive example 14. Further, the crystal structure of the negative electrode active material in the negative electrode after one to multiple times of charging in each of the present invention examples and after one to multiple discharges is specified by the same method as in the present invention example 14, and It was confirmed how the crystal structure changes due to charge and discharge.
  • the crystal structure of the negative electrode active material in the negative electrode after discharging one or more times included a DO 3 structure. Furthermore, the crystal structure of the negative electrode active material after charging one or more times included a 2H structure. Therefore, it was confirmed that the negative electrode active material of Invention Examples 16 and 17 had a crystal structure that undergoes M transformation when occluding lithium ions and reverse transformation when releasing lithium ions.
  • Example 14 of the present invention the discharge capacity of each coin battery of the present invention was determined, and the cycle characteristics were evaluated.
  • the current values during charging and discharging were as shown in Table 5.
  • the initial discharge capacity of the coin battery was higher than that of the negative electrode active material made of graphite. Furthermore, the capacity retention rate after the elapse of the number of cycles shown in Table 5 was as high as 50% or more, indicating excellent cycle characteristics.
  • a negative electrode active material having a chemical composition of Cu-18.5 at% Sn was produced by the same method as in Invention Example 2. Furthermore, a negative electrode and a coin battery were manufactured by the same method as in Invention Example 2.
  • the crystal structure of the negative electrode active material powder (45 ⁇ m or less) was measured and analyzed in the same manner as in Example 14 of the present invention.
  • FIG. 7 is a diagram showing measured data of the X-ray diffraction profile of Example 14 of the present invention and profile fitting results (calculated profiles) by the Rietveld method. Rietan-2000 was used for Rietveld analysis.
  • the negative electrode active material of Inventive Example 18 contains 80% by mass of a ⁇ phase having an F-cell structure and 20% by mass of a parent phase having a DO 3 structure. did. That is, the crystal structure of the negative electrode active material of Inventive Example 18 contained a DO 3 structure.
  • Example 18 of the present invention was identified by the same method as in Example 1 of the present invention, and It was confirmed how the crystal structure changes due to charge and discharge.
  • the crystal structure of the negative electrode active material in the negative electrode after one or more discharges included a DO 3 structure. Furthermore, the crystal structure of the negative electrode active material after charging one or more times included a 2H structure. Therefore, it was confirmed that the negative electrode active material of Inventive Example 18 had a crystal structure that undergoes M transformation when occluding lithium ions and reverse transformation when releasing lithium ions.
  • Example 14 of the present invention [Evaluation of charge / discharge performance of coin battery]
  • the discharge capacity and the capacity retention rate were measured.
  • the initial discharge capacity of Invention Example 18 was 769 mAh / cm 3 , which was the same as that of the negative electrode active material made of graphite.
  • the discharge capacity after 20 cycles of charge / discharge was 1199 mAh / cm 3 , and the capacity retention rate after 20 cycles increased to 156% (see Table 5).
  • Table 6 shows the results of Rietveld analysis of Example 18 of the present invention.
  • the cause of the increase in capacity during the cycle may be that the proportion of the active material phase responsible for the electric capacity increased with the number of cycles.
  • the negative electrode active material of each example of the present invention was manufactured by the same manufacturing method as Example 2 of the present invention.
  • the chemical composition of the produced negative electrode active material was as shown in Table 5. Using the produced negative electrode active material, a negative electrode and a coin battery were produced in the same manner as in Invention Example 2.
  • the crystal structure of the powdered negative electrode active material before being used for the negative electrode of each of the above inventive examples was specified by the same method as in inventive example 14. Furthermore, after the first charge of each invention example, after the first discharge, after charging a plurality of times, the crystal structure of the negative electrode active material in the negative electrode after a plurality of discharges is specified by the same method as in the invention example 14, It was confirmed how the crystal structure of the active material changes due to charge and discharge.
  • the crystal structure of the negative electrode active material in the negative electrode after discharging one or more times included a DO 3 structure. Furthermore, the crystal structure of the negative electrode active material after charging one or more times included a 2H structure. Therefore, it was confirmed that the negative electrode active material of Inventive Examples 19 to 22 had a crystal structure that undergoes M transformation when occluding lithium ions and reverse transformation when releasing lithium ions.
  • Example 14 of the present invention the discharge capacity of each coin battery of the present invention was determined, and the cycle characteristics were evaluated.
  • the current values during charging and discharging were as shown in Table 5.
  • the initial discharge capacity of the coin battery was higher than that of the negative electrode active material made of graphite. Furthermore, the capacity retention rate after the elapse of the number of cycles shown in Table 5 was as high as 50% or more, indicating excellent cycle characteristics.
  • a negative electrode active material having a chemical composition of Cu-5.0 at% Zn-25 at% Sn was produced by the same method as in Invention Example 2. Furthermore, a negative electrode and a coin battery were manufactured by the same method as in Invention Example 2.
  • the crystal structure of the negative electrode active material powder (45 ⁇ m or less) was measured and analyzed in the same manner as in Example 14 of the present invention.
  • FIG. 8 is a diagram showing actual measurement data of the X-ray diffraction profile of Example 23 of the present invention and a profile fitting result (calculation profile) by the Rietveld method. Rietan-2000 was used for Rietveld analysis.
  • the ⁇ phase of 2H structure was 97% by mass and the ⁇ ′ phase of monoclinic structure was 3% by mass. Furthermore, as for the ⁇ phase of 2H structure, as a result of Rietveld analysis, it was found that partial defects occur at the atomic sites of Cu and Sn under the assumption that Zn is substituted at the Cu site. In FIG. 8, the intensity of diffraction lines near 32.3 ° and 37.5 ° is considered to be due to these site defects. As a result of Rietveld analysis, due to this site deficiency, the site occupancy was 53% at the Cu and Zn 4e sites, and the site occupancy was 52% at the Sn 2b sites (see Table 7).
  • Table 8 shows the Rietveld analysis results of the ⁇ 'phase.
  • the crystal structure of the negative electrode active material in the negative electrode after one or more times of charging / discharging of Invention Example 23 was specified by the same method as in Invention Example 14, and the crystal structure of the negative electrode active material was It was confirmed how it changes.
  • the negative electrode active material of Inventive Example 23 had a crystal structure that undergoes M transformation when occluding lithium ions and reverse transformation when releasing lithium ions.
  • the discharge capacity of the coin battery was measured in the same manner as in Example 14 of the present invention. As a result, with reference to Table 5, the initial discharge capacity is after charging and discharging of 2152mAh / cm 3, 20 cycles was 1986mAh / cm 3, the capacity retention rate was 92%.
  • FIG. 24 A negative electrode active material powder having the chemical composition shown in Table 5 was produced in the same manner as in Invention Example 2. Further, a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • the crystal structure of the negative electrode active material powder (45 ⁇ m or less) was measured and analyzed in the same manner as Example 14 of the present invention.
  • a phase having a DO 3 structure which is a kind of parent phase
  • a ⁇ ′ phase having a monoclinic structure a ⁇ phase having an F-cell structure
  • a Sn phase a phase having an F-cell structure
  • FIG. 9 is a diagram showing their X-ray diffraction profiles (measured data, calculated profiles of DO 3 structure, ⁇ ′ phase, ⁇ phase, and Sn phase) together with profile fitting results by Rietveld method. is there. Rietan-2000 was used for Rietveld analysis.
  • the phase having a DO 3 structure was 31.5% by mass, and the monoclinic ⁇ ′ phase was 21.5% by mass. %,
  • the ⁇ phase having the F-cell structure was 46.0% by mass, and the Sn phase was 1.0% by mass.
  • Table 9 shows the Rietveld analysis results for the phase having the DO 3 structure, Table 10 for the ⁇ ′ phase, and Table 11 for the ⁇ phase having the F-Cell structure.
  • the phase having DO 3 structure, the ⁇ ′ phase, and the ⁇ phase having F-cell structure are respectively Cu and Sn under the assumption that Zn is substituted at the Cu site. It was found that some defects occurred at the atomic sites.
  • the crystal structure of the negative electrode active material in the negative electrode before the first charge, after the first charge, after the first discharge, after a plurality of times of charge, and after a plurality of times of discharge of the present invention example 24 is specified by the same method as in the present invention example 14. Then, it was confirmed how the crystal structure of the negative electrode active material changes due to charge and discharge.
  • the negative electrode active material before the first charge contained a DO 3 structure as shown in FIG. Furthermore, changes in the course of charge and discharge, the diffraction lines again DO 3 structure X-ray diffraction profiles after discharge were noted. Therefore, it was confirmed that the negative electrode active material of Inventive Example 23 had a crystal structure that undergoes M transformation when occluding lithium ions and reverse transformation when releasing lithium ions.
  • Example 14 of the present invention the discharge capacity of the battery was measured.
  • the initial discharge capacity of the coin battery after charging and discharging of 2411mAh / cm 3, 20 cycles was 2013mAh / cm 3, the capacity retention rate was 84%.
  • the DO 3 structure phase, the ⁇ ′ phase, and the Sn phase functioned as the negative electrode active material to obtain a discharge capacity.
  • the site defects of the DO 3 structure phase, ⁇ ′ phase and the coexisting F-Cell structure ⁇ phase are considered to function as lithium ion storage and diffusion sites.
  • the crystal structure of the negative electrode active material was measured and analyzed in the same manner as Example 14 of the present invention.
  • the powders of the inventive examples 25 and 26 and the uncharged negative electrode active material were, as in the inventive example 24, a phase having a DO 3 structure, a monoclinic ⁇ ′ phase, and an F-cell structure. And a Sn phase.
  • the crystal structures of the inventive examples 25 and 26 change during the charge / discharge process, and 2H structure diffraction lines are observed during charging, and the X-ray diffraction profile after discharge again shows the DO-ray diffraction profile. Three structures of diffraction lines were observed. Therefore, it was confirmed that the negative electrode active material of Inventive Examples 25 and 26 has a crystal structure that undergoes M transformation when occlusion of lithium ions and reverse transformation when lithium ions are released.
  • the initial discharge capacity of the coin batteries of Invention Examples 25 and 26 was high, and the capacity retention rate was also high (see Table 5).
  • Invention Example 27 was the same negative electrode active material, negative electrode, and battery as Invention Example 26. In Invention Example 27, as shown in Table 5, the current value during charge / discharge at the time of measuring the discharge capacity was 1.0 mA.
  • a negative electrode active material powder having the chemical composition shown in Table 5 was produced in the same manner as in Invention Example 2. Further, a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2. The chemical composition of the negative electrode active material was Cu-25.0 at% Zn-25 at% Sn.
  • the crystal structure was identified by the same method as in Invention Example 14.
  • a phase having a DO 3 structure similarly to the present invention example 24, a phase having a DO 3 structure, a ⁇ ′ phase having a monoclinic structure, a ⁇ phase having an F-cell structure, and Sn Phase.
  • the negative electrode active material of Inventive Example 28 has a crystal structure that undergoes M transformation when occluding lithium ions and reverse transformation when releasing lithium ions. confirmed.
  • Example 24 of the present invention similarly to Example 24 of the present invention, it is considered that the discharge capacity was obtained by the DO 3 structure phase, the ⁇ ′ phase and the Sn phase functioning as the negative electrode active material.
  • the reason why the discharge capacity of the inventive example is larger than that of the inventive example 24 is considered to be because the ratio of the Sn phase is high.
  • the capacity retention rate is also good because the phase of the DO 3 structure around the Sn phase induces martensite transformation and reverse transformation in the charge / discharge process to relieve internal stress. This is considered to be because the collapse of the active material is suppressed.
  • Example 29 Using the same coin battery as Example 28 of the present invention, the discharge capacity was measured by setting the current value during charging and discharging to 1.0 mA. The initial discharge capacity is after charging and discharging of 2307mAh / cm 3, 80 cycles was 1925mAh / cm 3, the capacity retention rate was 83% (see Table 5).
  • a negative electrode active material powder was produced in the same manner as in Invention Example 2. Further, a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2. As shown in Table 5, the chemical composition of the negative electrode active material was Cu-2.0 at% Al-25 at% Sn. The crystal structure was specified and the discharge capacity was evaluated by the same method as Example 14 of the present invention.
  • the ⁇ ′ phase was slightly contained in the ⁇ phase of the 2H structure. Furthermore, in the charging / discharging process, it was confirmed that the structure after discharge includes a DO 3 structure and the structure after charging includes a 2H structure.
  • the ⁇ phase having the 2H structure and the ⁇ ′ phase functioned as the active material phase.
  • a negative electrode active material powder was produced in the same manner as in Invention Example 2. Further, a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2. As shown in Table 5, the chemical composition of the negative electrode active material was Cu-10.0 at% Al-25 at% Sn. The crystal structure was specified and the discharge capacity was evaluated by the same method as Example 14 of the present invention.
  • the ⁇ ′ phase was included in the matrix phase of the DO 3 structure. Furthermore, in the charging / discharging process, it was confirmed that the structure after discharge includes a DO 3 structure and the structure after charging includes a 2H structure.
  • the matrix phase of DO 3 structure and the ⁇ ′ phase functioned as the active material phase.
  • Example 32 Using the same coin battery as Example 28 of the present invention, the discharge capacity was measured by setting the current value during charging and discharging to 1.0 mA. The initial discharge capacity is after charging and discharging of 1826mAh / cm 3, 80 cycles was 1487mAh / cm 3, the capacity retention rate was 81% (see Table 5).
  • a negative electrode active material powder was produced in the same manner as in Invention Example 2. Further, a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2. As shown in Table 5, the chemical composition of the negative electrode active material was Cu-2.0 at% Al-23 at% Sn. The crystal structure was specified and the discharge capacity was evaluated by the same method as Example 14 of the present invention.
  • the structure of the negative electrode active material before the first charge in Invention Example 33 As a result of X-ray diffraction and Rietveld analysis, in the structure of the negative electrode active material before the first charge in Invention Example 33, the ⁇ phase having a 2H structure was present alone. Furthermore, in the charging / discharging process, it was confirmed that the structure after discharge includes a DO 3 structure and the structure after charging includes a 2H structure.
  • the ⁇ phase functioned as the active material phase as in the present invention example 14.
  • a negative electrode active material powder was produced in the same manner as in Invention Example 2. Further, a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2. As shown in Table 5, the chemical composition of the negative electrode active material was Cu-5.0 at% Si-25 at% Sn. The crystal structure was specified and the discharge capacity was evaluated by the same method as Example 14 of the present invention.
  • the matrix phase of DO 3 structure was present in a substantially single phase. Furthermore, in the charging / discharging process, it was confirmed that the structure after discharge includes a DO 3 structure and the structure after charging includes a 2H structure.
  • the matrix phase of DO 3 structure functioned as the active material phase.
  • FIG. 35 A negative electrode active material powder was produced in the same manner as in Invention Example 2. Further, a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2. As shown in Table 5, the chemical composition of the negative electrode active material was Cu-10.0 at% Si-25 at% Sn. The crystal structure was specified and the discharge capacity was evaluated by the same method as Example 14 of the present invention.
  • the structure after discharge includes a DO 3 structure and the structure after charging includes a 2H structure.
  • the matrix phase of DO 3 structure, the ⁇ ′ phase, and a small amount of Sn single phase functioned as the active material phase.
  • Example 36 Using the same coin battery as Example 35 of the present invention, the discharge capacity was measured by setting the current value during charging and discharging to 1.0 mA. The initial discharge capacity is after charging and discharging of 2414mAh / cm 3, 80 cycles was 2024mAh / cm 3, the capacity retention rate was 84% (see Table 5).
  • a negative electrode active material powder was produced in the same manner as in Invention Example 2. Further, a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2. As shown in Table 5, the chemical composition of the negative electrode active material was Cu-2.0 at% Si-23 at% Sn. The crystal structure was specified and the discharge capacity was evaluated by the same method as Example 14 of the present invention.
  • the structure of the negative electrode active material before the first charge in Invention Example 37 As a result of X-ray diffraction and Rietveld analysis, in the structure of the negative electrode active material before the first charge in Invention Example 37, the ⁇ phase having a 2H structure was present almost alone. Furthermore, in the charging / discharging process, it was confirmed that the structure after discharge includes a DO 3 structure and the structure after charging includes a 2H structure.
  • the ⁇ phase functioned as the active material phase.
  • the negative electrode active material of each example of the present invention was manufactured by the same manufacturing method as Example 2 of the present invention.
  • the chemical composition of the produced negative electrode active material was as shown in Table 5. Using the produced negative electrode active material, a negative electrode and a coin battery were produced in the same manner as in Invention Example 2.
  • the crystal structure of the negative electrode active material after charge and discharge of each of the above inventive examples is specified by the same method (X-ray diffraction and Rietveld analysis) as in the inventive example 14, and the negative electrode active material material has a crystalline structure, It was confirmed how the charge / discharge changes.
  • the crystal structure of the negative electrode active material in the negative electrode after multiple discharges included a DO 3 structure. Furthermore, the crystal structure of the negative electrode active material after multiple times of charging included a 2H structure. Therefore, it was confirmed that the negative electrode active material of each example of the present invention has a crystal structure that undergoes M transformation when occlusion of lithium ions and reverse transformation when lithium ions are released.
  • the discharge capacity of each coin battery of the present invention was determined by the same method as in the present invention example 14.
  • the current values during charging and discharging were as shown in Table 5.
  • the initial discharge capacity of the coin battery (measured at a current value of 0.1 mA) was higher than that of the negative electrode active material made of graphite.
  • the capacity retention rate after the elapse of the number of cycles shown in Table 5 was as high as 50% or more, indicating excellent cycle characteristics.
  • Example 49 of the present invention the cause of the increase in capacity during the cycle is considered to be that, as in Example 18, the ratio of the active material phase responsible for electric capacity increased with the number of cycles.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 1. However, the heat treatment temperature was 550 ° C. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Cu-20.5 at% Sn. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 1.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention.
  • FIG. 10 is a diagram showing an actual measurement value of an X-ray diffraction profile and a profile fitting result by the Rietveld method. Rietan-FP was used for Rietveld analysis.
  • the chemical composition of this comparative example is known as the ⁇ phase on the equilibrium diagram, and the crystal structure is the F-cell ordered structure shown in Table 12.
  • This crystal structure is the same as that of International Table (Volume-A) No. 216 (F-43m).
  • the lattice constants and atomic coordinates are as shown in Table 12.
  • the crystal structure of the negative electrode active material was an F-cell ordered structure. Furthermore, the negative electrode active material after charging did not contain the 2H structure, and the negative electrode active material after discharge did not contain the DO 3 structure.
  • the discharge capacity of the coin battery of Comparative Example 2 was determined by the same method as in Invention Example 14.
  • the current values during charging and discharging were as shown in Table 5.
  • the initial discharge capacity is after charging and discharging of 118mAh / cm 3, 20 cycles were 55mAh / cm 3 (see Table 5).
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Ni-50 at% Ti. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, the initial discharge capacity hardly appeared (see Table 5). Therefore, it is considered that the Ti—Ni alloy is not lithium active.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Ni-52.0 at% Ti-5 at% Si. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, the initial discharge capacity hardly appeared (see Table 5). Therefore, in this comparative example, silicon that can be an active material cannot exist alone, and it is considered that a compound of Si, Ti, and Ni was formed.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Ni-25.0 at% Ti-50 at% Si. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, the initial discharge capacity was only about half that of graphite (see Table 5). Therefore, in this comparative example, silicon that can be an active material cannot sufficiently exist, and the cause is considered to be a compound of Si, Ti, and Ni.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Cu-5 at% Ni-25 at% Sn. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, in this comparative example, a sufficient discharge capacity could not be obtained.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Cu-10 at% Ni-25 at% Sn. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, in this comparative example, a sufficient discharge capacity could not be obtained.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Cu-50 at% Ni-25 at% Sn. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, in this comparative example, a sufficient discharge capacity could not be obtained.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Cu-50 at% Al-25 at% Sn. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, in this comparative example, a sufficient discharge capacity could not be obtained.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2. As shown in Table 5, the chemical composition of the manufactured negative electrode active material was Cu-50 at% Si-25 at% Sn. A negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, the initial discharge capacity was high, but the cycle characteristics (capacity maintenance ratio) were low.
  • a powdered negative electrode active material was produced by the same method as in Invention Example 2.
  • the chemical composition of the produced negative electrode active material of each comparative example was as shown in Table 5.
  • a negative electrode and a coin battery were manufactured in the same manner as in Invention Example 2.
  • Example 14 of the present invention The crystal structure of the negative electrode active material before the first charge was analyzed by the same method (X-ray analysis and Rietveld analysis) as Example 14 of the present invention. As a result, the structure of this negative electrode active material did not contain a phase of DO 3 structure and 2H structure. Further, the discharge capacity was measured in the same manner as in Example 14 of the present invention. As a result, in each comparative example, a sufficient discharge capacity was not obtained.

Abstract

 リチウムイオン二次電池に代表される非水電解質二次電池の体積当たりの容量及び充放電サイクル特性を改善可能な負極活物質材料を提供する。本実施形態による負極活物質材料は、合金相を含有する。合金相は、金属イオンを放出するとき、又は、金属イオンを吸蔵するときに熱弾性型無拡散変する。本実施形態の負極活物質材料は非水電解質二次電池に用いられる。熱弾性型無拡散変態は、いわゆる熱弾性型マルテンサイト変態を意味する。

Description

負極活物質材料
 本発明は、電極活物質材料に関し、さらに詳しくは、負極活物質材料に関する。
 近年、家庭用ビデオカメラ、ノートパソコン、及び、スマートフォン等の小型電子機器等の普及が進み、電池の高容量化及び長寿命化が技術課題となっている。
 ハイブリッド自動車、プラグインハイブリッド車、及び、電気自動車がさらに普及するために、電池のコンパクト化も技術課題となっている。
 現在、リチウムイオン電池には、黒鉛系の負極活物質材料が利用されている。しかしながら、黒鉛系の負極活物質材料は、上述の技術課題を有する。
 そこで、黒鉛系負極活物質材料よりも高容量な合金系負極活物質材料が注目されている。合金系負極活物質材料としては、シリコン(Si)系負極活物質材料、スズ(Sn)系負極活物質材料が知られている。よりコンパクトで長寿命なリチウムイオン電池の実用化のために、上記合金系負極活物質材料に対して様々な検討がなされている。
 しかしながら、合金系負極活物質材料の体積は、充放電時に大きな膨張及び収縮を繰り返す。そのため、合金系負極活物質材料は容量が劣化しやすい。例えば、充電に伴う黒鉛の体積膨張収縮率は、12%程度である。これに対して、充電に伴うSi単体又はSn単体の体積膨張収縮率は400%前後である。このため、Sn単体の負極板が充放電を繰り返すと、顕著な膨張収縮が起こり、負極板の集電体に塗布された負極合剤がひび割れを起こす。その結果、負極板の容量が急激に低下する。これは、主に、体積膨張収縮により一部の活物質が遊離して負極板が電子伝導性を失うことに起因する。
 米国特許出願公開第2008/0233479号(特許文献1)には、合金系負極活物質材料の上述の課題の解決策が提案されている。具体的には、特許文献1の負極材料は、Ti-Ni系超弾性合金と、超弾性合金中に形成されるSi粒子とを備える。リチウムイオンの吸蔵及び放出に伴って起こるシリコン粒子の大きな膨張収縮変化を、超弾性合金により抑制できる、と特許文献1には記載されている。
 しかしながら、特許文献1に開示された手法で同二次電池の充放電サイクル特性が十分に向上するかは疑わしい。そもそも、特許文献1で提案された負極活物質材料を実際に製造するのは極めて困難であると思われる。
米国特許出願公開第2008/0233479号
 本発明の目的は、リチウムイオン二次電池に代表される非水電解質二次電池に利用され、体積当たりの容量及び充放電サイクル特性を改善可能な負極活物質材料を提供することである。
 本実施の形態による負極活物質材料は、合金相を含有する。合金相は、金属イオンを放出するとき又は金属イオンを吸蔵するときに熱弾性型無拡散変態する。
図1は、実施例中のCu-15.5at%Sn合金のX線回折プロファイルと、リートベルト法によるシミュレート結果とを示す図である。 図2は、DO構造の斜視図である。 図3は、実施例中のCu-15.5at%Sn合金の充放電前後のX線回折プロファイルと、リートベルト法によるシミュレート結果とを示す図である。 図4Aは、本実施形態の合金相の母相のDO構造の模式図である。 図4Bは、マルテンサイト相の1種であるγ1’相の2H構造の模式図である。 図4Cは、DO構造から2H構造への熱弾性型無拡散変態を説明するための結晶面の模式図である。 図4Dは、図4Cと異なる他の結晶面の模式図である。 図4Eは、図4C及び図4Dと異なる他の結晶面の模式図である。 図5は実施例中のCu-15.5at%合金の充放電サイクル特性を示す図である。 図6は、Cu-25.0at%Sn合金のX線回折プロファイルと、リートベルト法によるシミュレート結果とを示す図である。 図7は、Cu-18.5at%Sn合金のX線回折プロファイルと、リートベルト法によるシミュレート結果とを示す図である。 図8は、Cu-5.0at%Zn-25.0at%Sn合金のX線回折プロファイルと、リートベルト法によるシミュレート結果とを示す図である。 図9は、Cu-10.0at%Zn-25.0at%Sn合金のX線回折プロファイルと、リートベルト法によるシミュレート結果とを示す図である。 図10は、Cu-20.5at%Sn合金のX線回折プロファイルと、リートベルト法によるシミュレート結果とを示す図である。
 以下、図面を参照して、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
 本実施の形態による負極活物質材料は、合金相を含有する。合金相は、金属イオンを放出するとき又は金属イオンを吸蔵するときに熱弾性型無拡散変態する。
 本明細書にいう「負極活物質材料」は、好ましくは、非水電解質二次電池用の負極活物質材料である。本明細書にいう「熱弾性型無拡散変態」は、いわゆる熱弾性型マルテンサイト変態である。「金属イオン」は、例えば、リチウムイオン、マグネシウムイオン、ナトリウムイオン等である。好ましい金属イオンは、リチウムイオンである。
 この負極活物質材料は、上記合金相以外の他の相を含有してもよい。他の相は例えば、シリコン(Si)相、スズ(Sn)相、上記合金相以外の他の合金相(熱弾性型無拡散変態しない合金相)等である。
 好ましくは、上記合金相は、負極活物質材料の主成分(主相)である。「主成分」とは、50%体積以上を占める成分を意味する。合金相は、本発明の主旨を損なわない範囲で不純物を含有してもよい。しかしながら、不純物はできるだけ少ない方が好ましい。
 本実施形態の負極活物質材料を用いて形成された負極は、非水電解質二次電池に使用した場合、黒鉛からなる負極よりも高い体積放電容量(体積当たりの放電容量)を有する。さらに、本実施形態の負極活物質材料を含む負極を用いた非水電解質二次電池は、従来の合金系負極を用いた場合よりも、容量維持率が高い。したがって、この負極活物質材料は、非水電解質二次電池の充放電サイクル特性を十分に向上することができる可能性が高い。
 高い容量維持率を示すのは、充放電時に発生する膨張収縮による歪みが、熱弾性型無拡散変態によって緩和されるためと考えられる。
 合金相は、次の4つのタイプ1~タイプ4のいずれのタイプでもよい。
 タイプ1の合金相は、金属イオンを吸蔵するときに熱弾性型無拡散変態し、金属イオンを放出するときに逆変態する。この場合、合金相は、常態で母相である。
 タイプ2の合金相は、金属イオンを吸蔵するときに逆変態し、金属イオンを放出するときに熱弾性型無拡散変態する。この場合、合金相は、常態でマルテンサイト相である。
 タイプ3の合金相は、金属イオンを吸蔵するときに補足変形(すべり変形または双晶変形)し、金属イオンを放出するときに元のマルテンサイト相に戻る。この場合、合金相は、常態でマルテンサイト相である。
 タイプ4の合金相は、金属イオンを吸蔵するときにマルテンサイト相から別のマルテンサイト相となり、金属イオンを放出するときに元のマルテンサイト相に戻る。この場合、合金相は常態でマルテンサイト相である。
 タイプ1の合金相の場合、好ましくは、熱弾性型無拡散変態後の合金相の結晶構造がRamsdell表記で2H、3R、6R、9R、18R、M2H、M3R、M6R、M9R及びM18Rのいずれかであり、逆変態後の合金相の結晶構造がStrukturbericht表記でDOである。さらに好ましくは、熱弾性型無拡散変態後の合金相の結晶構造は上記2Hであり、逆変態後の合金相の結晶構造は上記DOである。
 タイプ1の合金相の場合、好ましくは、負極活物質材料は、Cuと、Snとを含有し、熱弾性型無拡散変態後に上記2H構造を含有し、逆変態後に上記DO構造を含有する。
 上記負極活物質材料は、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Al、Si、B及びCからなる群から選択される1種以上と、Snとを含有し、残部はCu及び不純物でもよい。
 上記負極活物質材料はさらに、サイト欠損を含む、F-Cell構造のδ相と、2H構造のε相と、単斜晶のη’相と、DO構造を有する相からなる群から選択される1種以上を含有してもよい。
 サイト欠損を含むこれらのδ相、ε相、η’相、及びDO構造を有する相はいずれも、負極活物質材料中に、金属イオン(Liイオン等)の貯蔵サイト及び拡散サイトを形成する。そのため、負極活物質材料の体積放電容量及びサイクル特性がさらに改善される。
 上記負極活物質材料において、上記合金相の相変態前後の単位胞の体積膨張率又は体積収縮率は、好ましくは20%以下であり、さらに好ましくは10%以下である。単位胞の体積膨張率は下式(1)で定義され、単位胞の体積収縮率は下式(2)で定義される。
(単位胞の体積膨張率)=[(金属イオン吸蔵時の単位胞の体積)-(金属イオン放出時の単位胞の体積)]/(金属イオン放出時の単位胞の体積)×100・・・(1)
(単位胞の体積収縮率)=[(金属イオン吸蔵時の単位胞の体積)-(金属イオン放出時の単位胞の体積)]/(金属イオン吸蔵時の単位胞の体積)×100・・・(2)
 式(1)及び式(2)中の「金属イオン放出時の単位胞の体積」には、吸蔵時の単位胞の結晶格子範囲に対応する放出時の単位胞の体積が代入される。
 上述の電極活物質材料は、電極、特に非水電解質二次電池の電極を構成する活物質として使用することができる。非水電解質二次電池は例えば、リチウムイオン二次電池である。
 以下、本実施形態による負極活物質材料について詳述する。
 <負極活物質材料>
 本発明の実施の形態に係る負極活物質材料は、合金相を含有する。この合金相は、上述のとおり、Liイオンに代表される金属イオンを放出するとき、又は、金属イオンを吸蔵するとき、熱弾性型無拡散変態する。熱弾性型無拡散変態は、熱弾性型マルテンサイト変態とも呼ばれる。以下、本明細書では、熱弾性型マルテンサイト変態を単に「M変態」といい、マルテンサイト相を単に「M相」という。金属イオンを吸蔵又は放出するときにM変態する合金相を、「特定合金相」ともいう。
 特定合金相は、M相及び母相の少なくとも一方を主体とする。特定合金相は、充放電の際に金属イオンの吸蔵及び放出を繰り返す。そして、金属イオンの吸蔵及び放出に応じて、特定合金相はM変態、逆変態、補足変形等する。これらの変態挙動は、金属イオンの吸蔵及び放出時に合金相が膨張及び収縮することにより生じる歪みを緩和する。
 特定合金相は、上記タイプ1~タイプ4のいずれのタイプでもよい。好ましくは、特定合金相は、タイプ1である。つまり、特定合金相は好ましくは、金属イオンを吸蔵するときにM変態し、金属イオンを放出するときに逆変態する。
 特定合金相の結晶構造は、特定に限定されるものではない。合金相がタイプ1であって、逆変態後の特定合金相(つまり母相)の結晶構造がβ相(DO構造)である場合、M変態後の特定合金相(つまりM相)の結晶構造は例えば、β'相(単斜晶のM18R構造、又は、斜方晶の18R構造)、γ'相(単斜晶のM2H構造、又は、斜方晶の2H構造)、β''相(単斜晶のM18R構造、又は、斜方晶の18R構造)、α'相(単斜晶のM6R構造、又は、斜方晶の6R構造)等である。
 特定合金相の母相の結晶構造がβ相(B2構造)である場合、特定合金相のM相の結晶構造は例えば、β’相(単斜晶のM9R構造、又は、斜方晶の9R構造)、γ’相(単斜晶のM2H構造、又は、斜方晶の2H構造)、α’相(単斜晶のM3R構造、又は、斜方晶の3R構造)である。
 合金相の母相が面心立方格子である場合、合金相のM相の結晶構造は例えば、面心正方格子、体心正方格子である。
 上記2H、3R、6R、9R、18R、M2H、M3R、M6R、M9R、M18R等の記号は、Ramsdellの分類による積層構造の結晶構造の表現法として用いられるものである。H及びRの記号は、積層面に垂直な方向の対称性がそれぞれ六方対称及び菱面対称であることを意味する。先頭にMが付記されていない場合、その結晶構造が斜方晶であることを意味する。先頭にMが付記されている場合、その結晶構造が単斜晶であることを意味する。同じ分類記号であっても積層の順番の違いによって区別する場合がある。例えば、2種類のM相であるβ'相とβ''相は、積層構造が異なることから、それぞれ18R、18R2、又は、M18R、M18R等と表記して、区別される場合がある。
 一般的に、通常の形状記憶効果や擬弾性効果におけるM変態及び逆変態には、体積収縮あるいは体積膨張を伴うことが多い。本実施の形態に係る負極活物質材料が電気化学的に金属イオン(例えばリチウムイオン)を放出又は吸蔵する場合、それぞれの変態の方向における体積収縮又は体積膨張の現象と整合的に結晶構造が変化する場合が多いと考えられる。
 しかし、本実施の形態による負極活物質材料は、特にその制約に限定されない。特定合金相において、金属イオンの吸蔵及び放出に伴ってM変態あるいは逆変態が起こる際、通常の形状記憶効果や擬弾性効果の際に現れる結晶構造以外の結晶構造が生成してもよい。
 特定合金相がタイプ3である場合、金属イオンの吸蔵又は放出に伴い特定合金相がすべり変形又は双晶変形する。すべり変形では、格子欠陥として転位が導入されるため、可逆的な変形が困難である。したがって、特定合金相がタイプ3である場合、双晶変形が主体的で起こることが望ましい。
 [負極活物質材料の化学組成]
 上述の特定合金相を含有する負極活物質材料の化学組成は、M変態及び逆変態時の結晶構造が上記結晶構造を含有すれば、特に限定されない。
 特定合金相がタイプ1である場合、特定合金相を含有する負極活物質材料の化学組成は例えば、Cu(銅)とSn(スズ)とを含有する。
 特定合金相がタイプ1である場合、好ましくは、金属イオンの放電による逆変態後の特定合金相の結晶構造はDO構造であり、金属イオンの吸蔵によるM変態後の特定合金相の結晶構造は2H構造である。
 好ましくは、負極活物質材料の化学組成は、Snを含有し、残部はFe及び不純物である。さらに好ましくは、負極活物質材料は、10~20at%又は21~27at%のSnを含有し、残部はCu及び不純物からなり、M変態後に2H構造を含有し、逆変態後にDO構造を含有する。負極活物質材料中のさらに好ましいSn含有量は、13~16at%、18.5~20at%、又は、21~27at%である。
 負極活物質材料の化学組成は、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Al、Si、B及びCからなる群から選択される1種以上と、Snとを含有し、残部はCu及び不純物であってもよい。
 好ましくは、この場合の負極活物質の化学組成は、Sn:10~35at%と、Ti:9.0at%以下、V:49.0at%以下、Cr:49.0at%以下、Mn:9.0at%以下、Fe:49.0at%以下、Co:49.0at%以下、Ni:9.0at%以下、Zn:29.0at%以下、Al:49.0at%以下、Si:49.0at%以下、B:5.0at%以下、及び、C:5.0at%以下からなる群から選択される1種以上とを含有し、残部はCu及び不純物からなる。上記Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Al、Si、B及びCは任意元素である。
 Ti含有量の好ましい上限は、上記のとおり9.0at%である。Ti含有量のさらに好ましい上限は6.0at%であり、さらに好ましくは、5.0at%である。Ti含有量の好ましい下限は、0.1at%であり、さらに好ましくは、0.5at%であり、さらに好ましくは1.0at%である。
 V含有量の好ましい上限は、上記のとおり、49.0at%である。V含有量のさらに好ましい上限は30.0at%であり、さらに好ましくは15.0at%であり、さらに好ましくは10.0at%である。V含有量の好ましい下限は、0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは、1.0at%である。
 Cr含有量の好ましい上限は、上記のとおり49.0at%である。Cr含有量のさらに好ましい上限は30.0at%であり、さらに好ましくは15.0at%であり、さらに好ましくは10.0at%である。Cr含有量の好ましい下限は0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 Mn含有量の好ましい上限は、上記のとおり9.0at%である。Mn含有量のさらに好ましい上限は6.0at%であり、さらに好ましくは5.0at%である。Mn含有量の好ましい下限は0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 Fe含有量の好ましい上限は、上記のとおり49.0at%である。Fe含有量のさらに好ましい上限は30.0at%であり、さらに好ましくは15.0at%であり、さらに好ましくは10.0at%である。Fe含有量の好ましい下限は0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 Co含有量の好ましい上限は、上記のとおり49.0at%である。Co含有量のさらに好ましい上限は30.0at%であり、さらに好ましくは15.0at%であり、さらに好ましくは10.0at%である。Co含有量の好ましい下限は0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 Ni含有量の好ましい上限は、上記のとおり9.0at%である。Ni含有量のさらに好ましい上限は5.0at%であり、さらに好ましくは2.0at%である。Ni含有量の好ましい下限は0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 Zn含有量の好ましい上限は、上記のとおり29.0at%である。Zn含有量のさらに好ましい上限は27.0at%であり、さらに好ましくは25.0at%である。Zn含有量の好ましい下限は0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 Al含有量の好ましい上限は、上記のとおり49.0at%である。Al含有量のさらに好ましい上限は30.0at%であり、さらに好ましくは15.0at%であり、さらに好ましくは10.0at%である。Al含有量の好ましい下限は0.1%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 Si含有量の好ましい上限は、上記のとおり49.0at%である。Si含有量のさらに好ましい上限は30.0at%であり、さらに好ましくは15.0at%であり、さらに好ましくは10.0at%である。Si含有量の好ましい下限は0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 B含有量の好ましい上限は5.0at%である。B含有量の好ましい下限は0.01at%であり、さらに好ましくは0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 C含有量の好ましい上限は5.0at%である。C含有量の好ましい下限は0.01at%であり、さらに好ましくは0.1at%であり、さらに好ましくは0.5at%であり、さらに好ましくは1.0at%である。
 好ましくは、負極活物質材料はさらに、サイト欠損を含有するF-Cell構造のδ相、サイト欠損を含有する2H構造のε相、サイト欠損を含有する単斜晶のη’相、及び、サイト欠損を含有するDO構造を有する相からなる群から選択される1種以上を含有する。以下、サイト欠損を含有するこれらのδ相、ε相、η’相、及びDO構造を有する相を、「サイト欠損相」ともいう。ここで、「サイト欠損」とは、結晶構造中の特定の原子サイトにおいて、占有率が1未満の状態であることを意味する。
 これらのサイト欠損相は、結晶構造中に複数のサイト欠損を含む。これらのサイト欠損は、金属イオン(Liイオン等)の貯蔵サイト、又は、拡散サイトとして機能する。そのため、負極活物質材料が、M変態後に2H構造となり、逆変態後にDO構造となる合金相と、上記サイト欠損相の少なくとも1相とを含有すれば、負極活物質材料の体積放電容量及びサイクル特性がさらに向上する。
 負極活物質材料の化学組成はさらに、放電容量を増大させることを目的として、任意元素として、第2族元素及び/又は希土類元素(REM)を含有してもよい。第2族元素は例えば、マグネシウム(Mg)、カルシウム(Ca)等である。REMは例えば、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)等である。
 負極活物質材料が第2族元素及び/又はREMを含有する場合、負極活物質材料はもろくなる。そのため、電極の製造工程において、負極活物質材料からなるバルク材又はインゴットを粉砕しやすく、電極を製造しやすい。
 負極活物質材料は、上記特定合金相からなるものであってもよいし、上記特定合金相と、金属イオン活性な別の活物質相を含有してもよい。別の活物質相は例えば、スズ(Sn)相、シリコン(Si)相、アルミニウム(Al)相、Co-Sn系合金相、CuSn化合物相(η’相又はη相)等である。
 [特定合金相の体積膨張率及び体積収縮率について]
 上記特定合金相が金属イオンの吸蔵及び放出に伴ってM変態又は逆変態する場合、特定合金相の単位胞の好ましい体積膨張収縮率は20%以下である。この場合、金属イオンの吸蔵及び放出に伴う体積変化による歪みを十分に緩和することができる。特定合金相の単位胞のさらに好ましい体積膨張収縮率は10%以下であり、さらに好ましくは5%以下である。
 特定合金相の体積膨張収縮率は、充放電中のその場X線回折により、測定することができる。具体的には、水分が露点-80℃以下に管理された純アルゴンガス雰囲気中のグローブボックス内で、X線を透過するベリリウム製の窓を備えた専用の充放電セルに、負極活物質材料の電極板、セパレータ、対極リチウム及び電解液を実装して密封する。そして、この充放電セルをX線回折装置に装着する。装着後、充放電過程における初回の充電状態と初回の放電状態における特定合金相のX線回折プロファイルを得る。このX線回折プロファイルから特定合金相の格子定数を求める。特定合金相の結晶格子対応関係を考慮の上、この格子定数から体積変化率を算出することができる。
 充放電サイクル過程で、半値幅などによりX線回折プロファイルの形状が変化する場合等は、必要に応じて5~20回程度の充放電を繰り返してから解析を行う。そして、信頼性の高い複数のX線回折プロファイルからその体積変化率の平均値を求める。
 [負極活物質材料が含有する合金相の結晶構造の解析方法]
 (1)負極活物質材料が含有する相(合金相を含む)の結晶構造は、X線回折装置を用いて得られたX線回折プロファイルに基づいて、リートベルト法により解析可能である。具体的には、次の方法により、結晶構造を解析する。
 負極に使用される前の負極活物質材料に対しては、負極活物質材料に対してX線回折測定を実施して、X線回折プロファイルの実測データを得る。得られたX線回折プロファイル(実測データ)に基づいて、リートベルト法により、負極活物質材料中の相の構成を解析する。リードベルト法による解析には、汎用の解析ソフトである「RIETAN2000」(プログラム名)及び「RIETAN-FP」(プログラム名)のいずれかを使用する。
 (2)電池内の充電前の負極内の負極活物質材料の結晶構造についても、(1)と同じ方法により特定する。具体的には、充電前の状態で、電池をアルゴン雰囲気中のグローブボックス内で分解し、電池から負極を取り出す。取り出された負極をマイラ箔に包む。その後、マイラ箔の周囲を熱圧着機で密封する。マイラ箔で密封された負極をグローブボックス外に取り出す。
 続いて、負極を無反射試料板(シリコン単結晶の特定結晶面が測定面に平行になるように切り出した板)にヘアスプレーで貼り付けて測定試料を作製する。測定試料をX線回折装置に測定試料をセットして、測定試料のX線回折測定を行い、X線回折プロファイルを得る。得られたX線回折プロファイルに基づいて、リートベルト法により負極内の負極活物質材料の結晶構造を特定する。
 (3)1~複数回の充電後及び1~複数回の放電後の負極内の負極活物質材料の結晶構造についても、(2)と同じ方法により特定する。
 具体的には、電池を充放電試験装置において満充電させる。満充電された電池をグローブボックス内で分解して、(2)と同様の方法で測定試料を作製する。X線回折装置に測定試料をセットして、X線回折測定を行う。
 また、電池を完全放電させ、完全放電された電池をグローブボックス内で分解して(2)と同様の方法で測定試料を作製し、X線回折測定を行う。
 <負極活物質材料及び負極の製造方法>
 上記特定合金相を含有する負極活物質材料、及び、その負極活物質材料を用いた負極及び電池の製造方法について説明する。
 特定合金相を含む負極活物質材料の溶湯を製造する。例えば、上述の化学組成を有する溶湯を製造する。溶湯は、アーク溶解又は抵抗加熱溶解等の通常の溶解方法で素材を溶解して製造される。次に、溶湯を用いて造塊法によりインゴット(バルク合金)を製造する。以上の工程により、負極活物質材料が製造される。
 好ましくは、溶湯を急冷凝固させることにより、負極活物質材料を製造する。この方法を急冷凝固方法という。急冷凝固方法は例えば、ストリップキャスティング法、メルトスピン法、ガスアトマイズ法、溶湯紡糸法、水アトマイズ法、油アトマイズ法等である。
 負極活物質材料を粉末とする場合、溶製によって得られたバルク合金(インゴット)を(1)切断したり、(2)ハンマーミル等で粗く破砕したり、(3)ボールミルや、アトライタ、ディスクミル、ジェットミル、ピンミル等で機械的に微粉砕したりして、必要な粒度に調整する。バルク合金が延性を有し、通常の粉砕が困難な場合、ダイヤモンド砥粒を埋め込んだグラインダーディスク等により、バルク合金を切削粉砕してもよい。これらの粉砕工程において、応力誘起によるM相が生成する場合、合金設計や、熱処理、粉砕条件などを適宜組み合わせて、その生成比率を必要に応じて調整する。アトマイズ法による粉末が溶製のまま或いは熱処理を施した状態で使用することができる場合には、特に粉砕工程を必要としない場合もある。また、ストリップキャスティング法により溶製材を得る場合においてその延性により破砕が困難である場合には、シャーリングなどの機械的な裁断によってその溶製材を所定のサイズに調整する。また、かかる場合、必要な段階においてその溶製材を熱処理等してM相や母相の比率等を調整してもよい。
 負極活物質材料を熱処理して特定合金相の構成比率などを調整する場合には、その負極活物質材料を必要に応じて不活性雰囲気中で所定の温度及び時間で保持した後に急冷してもよい。この際、負極活物質材料のサイズに応じて水、塩水、油等の焼き入れ媒体を選択し、その焼き入れ媒体を所定の温度に設定することによって、冷却速度を調整してもよい。
 <負極の製造方法>
 本発明の実施の形態に係る負極活物質材料を用いた負極は、当業者に周知の方法で製造することができる。
 例えば、本発明の実施の形態による負極活物質材料の粉末に対して、ポリフッ化ビニリデン(PVDF)、ポリメチルメタクリレート(PMMA)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンラバー(SBR)等のバインダを混合し、さらに負極に十分な導電性を付与するために天然黒鉛、人造黒鉛、アセチレンブラック等の炭素材料粉末を混合する。これにN-メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、水などの溶媒を加えてバインダを溶解した後、必要であればホモジナイザ、ガラスビーズを用いて十分に攪拌し、スラリ状にする。このスラリを圧延銅箔、電析銅箔などの活物質支持体に塗布して乾燥する。その後、その乾燥物にプレスを施す。以上の工程により、負極板を製造する。
 混合するバインダは、負極の機械的強度や電池特性の観点から5~10質量%程度であることが好ましい。支持体は、銅箔に限定されない。支持体は例えば、ステンレス、ニッケル等の他の金属の薄箔や、ネット状のシートパンチングプレート、金属素線ワイヤーで編み込んだメッシュなどでもよい。
 負極活物質材料の粉末の粒径は、電極厚みや電極密度、すなわち電極容量に影響を及ぼす。電極の厚みは薄ければ薄い程よい。電極の厚みが薄ければ、電池中に含まれる負極活物質材料の総面積を大きくすることができるからである。そのため、負極活物質材料の粉末の平均粒径は100μm以下であることが好ましい。負極活物質材料の粉末の平均粒径が小さい程、その粉末の反応面積が増大し、レート特性に優れる。しかしながら、負極活物質材料の粉末の平均粒径が小さすぎれば、酸化などで粉末表面の性状が変化してリチウムイオンがその粉末に進入しにくくなる。この場合、経時的にはレート特性や充放電効率が低下する場合がある。したがって、負極活物質材料の粉末の好ましい平均粒径は0.1~100μmであり、さらに好ましくは、1~50μmである。
 <電池の製造方法>
 本実施形態による非水電解質二次電池は、上述の負極と、正極と、セパレータと、電解液又は電解質とを備える。電池の形状は、円筒型、角形であってもよいし、コイン型、シート型等でもよい。本実施形態の電池は、ポリマー電池等の固体電解質を利用した電池でもよい。
 本実施形態の電池の正極は、好ましくは、金属イオンを含有する遷移金属化合物を活物質として含有する。さらに好ましくは、正極は、リチウム(Li)含有遷移金属化合物を活物質として含有する。Li含有遷移金属化合物は例えば、LiM-xM’xO、又は、LiMyM’Oである。ここで、式中、0≦x、y≦1、M及びM’はそれぞれ、バリウム(Ba)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)、チタン(Ti)、バナジウム(V)、鉄(Fe)、亜鉛(Zn)、アルミニウム(Al)、インジウム(In)、スズ(Sn)、スカンジウム(Sc)及びイットリウム(Y)の少なくとも1種である。
 ただし、本実施形態の電池は、遷移金属カルコゲン化物;バナジウム酸化物及びそのリチウム(Li)化合物;ニオブ酸化物及びそのリチウム化合物;有機導電性物質を用いた共役系ポリマー;シェプレル相化合物;活性炭、活性炭素繊維等、といった他の正極材料を用いてもよい。
 本実施形態の電池の電解液は、一般に、支持電解質としてのリチウム塩を有機溶媒に溶解させた非水系電解液である。リチウム塩は例えば、LiClO,LiBF,LiPF,LiAsF,LiB(C),LiCFSO,LiCHSO,Li(CFSON,LiCSO,Li(CFSO,LiCl,LiBr,LiI等である。これらは、単独で用いられてもよく組み合わせて用いられてもよい。有機溶媒は、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネートなどの炭酸エステル類が好ましい。但し、カルボン酸エステル、エーテルをはじめとする他の各種の有機溶媒も使用可能である。これらの有機溶媒は、単独で用いられてもよいし、組み合わせて用いられてもよい。
 セパレータは、正極及び負極の間に設置される。セパレータは絶縁体としての役割を果たす。セパレータはさらに、電解質の保持にも大きく寄与する。本実施形態の電池は周知のセパレータを備えればよい。セパレータは例えば、ポリオレフィン系材質であるポリプロピレン、ポリエチレン、又はその両者の混合布、もしくは、ガラスフィルターなどの多孔体である。
 以下、実施例を用いて上述の本実施形態の負極活物質材料、負極及び電池をより詳細に説明する。なお、本実施形態の負極活物質材料、負極及び電池は、以下に示す実施例に限定されない。
 次の方法により、本発明例1~本発明例13及び比較例1の粉状の負極活物質材料、負極、コイン電池を製造した。そして、負極活物質材料の充放電による結晶構造の変化を確認した。さらに、電池の放電容量(体積当たりの放電容量)、及び、サイクル特性を調査した。
 [本発明例1]
 [負極活物質材料の製造]
 粉末状の負極活物質材料の化学組成が、Cu-15.5at%Snとなるように、つまり、負極活物質材料の化学組成が、15.5at%のSnを含有し、残部がCu及び不純物からなるように、溶湯を製造した。具体的には、22.34gの銅、7.66gの錫の混合物を高周波溶解して溶湯を製造した。溶湯を鋳造して直径約25mmで高さ約7mmのインゴットを製造した。
 インゴットを縦に半分に切断した。インゴットの切断片を石英管に真空封入して720℃で24時間、熱処理した。続いて、その石英管を0℃の氷水中で割り、石英管内部に氷水を浸入させて、その氷水で直接的にインゴットを急冷した。
 急冷後のインゴットの表面を研削して表層部分を除去した。粒度が45μm以下となるように#270番手のダイヤモンド砥粒ヤスリを用いて、研削後のインゴットを粉砕し、粉末状とした。この粉砕物(粉末)を負極活物質材料とした。負極活物質材料の化学組成はCu-15.5at%Snであった。つまり、負極活物質材料の化学組成は、15.5at%のSnを含有し、残部はCu及び不純物であった。
 [負極の製造]
 上述の粉末状の負極活物質材料と、導電助剤としてのアセチレンブラック(AB)と、バインダとしてのスチレンブタジエンゴム(SBR)(2倍希釈液)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、質量比75:15:10:5(配合量は1g:0.2g:0.134g:0.067g)で混合した。そして、混練機を用いて、スラリ濃度が27.2%となるように混合物に蒸留水を加えて負極合剤スラリを製造した。スチレンブタジエンゴムは水で2倍に希釈されたものを使用しているため、秤量上、0.134gのスチレンブタジエンゴムが配合された。
 製造された負極合剤スラリを、アプリケータ(150μm)を用いて銅箔上に塗布した。スラリが塗布された銅箔を、100℃で20分間乾燥させた。乾燥後の銅箔は、表面に負極活物質材料からなる塗膜を有した。塗膜を有する銅箔に対して打ち抜き加工を実施して、直径13mmの円板状の銅箔を製造した。打ち抜き加工後の銅箔を、プレス圧500kgf/cmで押圧して、板状の負極材を製造した。
 [電池の製造]
 製造された負極材と、電解液としてEC-DMC-EMC-VC-FECと、セパレータとしてポリオレフィン製セパレータ(φ17mm)と、正極材として板状の金属Li(φ19×1mmt)とを準備した。準備された負極材、電解液、セパレータ、正極材を用いて、2016型のコイン電池を製造した。コイン電池の組み立てをアルゴン雰囲気中のグローブボックス内で行った。
 [結晶構造の特定]
 負極に使用する前の粉末状の負極活物質材料と、初回充電前の負極中の負極活物質材料と、1~複数回充放電した後の負極中の負極活物質材料の結晶構造を、次の方法により特定した。対象となる負極活物質材料に対してX線回折測定を実施して、実測データを得た。そして、得られた実測データに基づいて、リートベルト法により、対象となる負極活物質材料に含まれる結晶構造を特定した。さらに具体的には、次の方法により結晶構造を特定した。
 (1)負極に使用される前の粉末状の負極活物質材料の結晶構造解析
 負極に使用される前の負極活物質材料の粉末(45μm以下)に対してX線回折測定を実施して、X線回折プロファイルの実測データを得た。
 具体的には、リガク製の製品名RINT1000(ロータターゲット最大出力18KW;60kV-300mA、又は、管球式ターゲット最大出力3kW;50kV-60mA)を用いて、負極活物質材料の粉末のX線回折プロファイルを取得した。
 得られたX線回折プロファイル(実測データ)に基づいて、リートベルト法により、負極活物質材料中の合金相の結晶構造を解析した。
 解析の結果、本発明例1の負極活物質材料には、M相の1種であるγ’相(2H構造)と、その母相であるβ相(DO3構造)とが混在した。母相は、DO3構造のSnサイトの一部がCuで置換された結晶構造であった。解析過程を以下に詳述する。
 図1は、本発明例1のX線回折プロファイル(図中の(d))と、リートベルト法によるシミュレート結果(図中の(a)及び(b))とを示す図である。図1には、参考として、Cu-15.5at%Snの粉末の文献データ(図中の(c))を示す。文献データは、S.Miura,Y.Morita,N.Nakanishi,”Shape Memory Effects in Alloys“ Plenum Press, N.Y. (1975) 389に開示されたものである。
 Cu-Snの二元系状態図は公知であり、720℃でのCu-15.5at%Sn合金は二元系状態図に基づいてβ相である。このβ相を急冷した場合、結晶構造がDO規則構造となることは知られている。
 DO規則構造は、図2に示されるような規則構造である。Cu-15.5原子%Snの結晶構造では、図2中、黒丸の原子サイトにCuが存在し、白丸の原子サイトにCuが38原子%、Snが62原子%の割合で存在する。このような結晶構造は、空間群の分類上、International Table(Volume-A)のNo.225(Fm-3m)となることが知られている。この空間群番号の結晶構造の格子定数や原子座標は、表1に示される通りとなる。
Figure JPOXMLDOC01-appb-T000001
 そこで、この空間群番号の構造モデルをリートベルト解析の初期構造モデルとして、リートベルト解析によりこの化学組成のβ相(DO構造)の回折プロファイルの計算値(以下、計算プロファイルという)を求めた。リートベルト解析にはRietan-FP(プログラム名)を用いた。
 さらに、インゴットをダイヤモンド砥粒ヤスリで削った際、加工誘起M変態により、インゴットの表層にγ’のM相が形成され、粉末に混入されていることも予測された。そこで、この化学組成のγ’相の結晶構造の計算プロファイルも求めた。
 γ’の結晶構造は、Ramsdell記号の表記では2H構造であり、空間群はInternational Table(Volume-A)のNo.25(Pmm2)であるか、又は、International Table(Volume-A)のNo.59-2(Pmmn)である。No.25(Pmm2)の格子定数及び原子座標を表2に示し、No.59-2(Pmmn)の格子定数及び原子座標を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 いずれの空間群番号を選択しても、リートベルト法による解析上、影響はない。そこで、上記表2の空間群番号の結晶構造をリートベルト解析の初期構造モデルとして、RIETAN-FPを用いて、計算プロファイルを求めた。
 図1中の(a)はDO構造の計算プロファイルであり、(b)は2H構造の計算プロファイルである。図1を参照して、実測のX線回折プロファイル(図中の(d))の回折ピークは、(a)の計算プロファイルと一致した。さらに、(d)のX線プロファイルには、(b)の計算プロファイルのピークと一致する部分も見られた。したがって、本発明例1の粉末状の負極活物質材料は、DO構造を含有しており、ヤスリによる加工誘起M変態によって、2H構造も含有することが確認された。
 なお、(d)のX線回折プロファイルのうち、回折角2θが37~48°の範囲に現れる回折ピークは、Miuraらが報告した文献に記載された、Cu-15.5at%Snの粉末のX線回折プロファイルの実測値(図1中の(c))に現れる回折ピークの角度範囲ともほぼ一致した。ただし、本実施例の粉末は、研削時にダイヤモンド砥粒ヤスリによって粉末粒子に歪みが導入されたことから、回折ピークの半値幅が広がっていた。
 (2)負極中の負極活物質材料の結晶構造解析
 充電前の負極内の負極活物質材料の結晶構造についても、(1)と同じ方法により特定した。実測のX回折プロファイルは、次の方法で測定した。
 充電前の状態で、上述のコイン電池をアルゴン雰囲気中のグローブボックス内で分解し、コイン電池から板状の負極を取り出した。取り出された負極をマイラ箔(デュポン社製)に包んだ。その後、マイラ箔の周囲を熱圧着機で密封した。マイラ箔で密封された負極をグローブボックス外に取り出した。
 続いて、負極をリガク製無反射試料板(シリコン単結晶の特定結晶面が測定面に平行になるように切り出した板)にヘアスプレーで貼り付けて測定試料を作製した。
 後述の(4)に記載のX線回折装置に測定試料をセットして、後述の(4)に記載の測定条件で、測定試料のX線回折測定を行った。
 (3)充電後及び放電後の負極中の負極活物質材料の結晶構造の解析
 1~複数回の充電後及び1~複数回の放電後の負極内の負極活物質材料の結晶構造についても、(1)と同じ方法により特定した。実測のX回折プロファイルは、次の方法で測定した。
 上述のコイン電池を充放電試験装置において満充電させた。満充電されたコイン電池をグローブボックス内で分解して、(2)と同様の方法で測定試料を作製した。後述(4)に記載のX線回折装置に測定試料をセットして、後述(4)の測定条件で測定試料のX線回折測定を行った。
 また、上述のコイン電池を完全放電させた。完全放電されたコイン電池をグローブボックス内で分解して(3)と同様の方法で測定試料を作製した。後述(4)に記載のX線回折装置にこの測定試料をセットして、後述(4)の測定条件で測定試料のX線回折測定を行った。
 コイン電池で充放電を繰り返した後の負極についても、同様の方法によりX線回折測定を行った。
 (4)X線回折装置と測定条件
 ・装置:リガク製 RINT1000(商品名)
 ・X線管球:Cu-Kα線
 ・フィルター:Ni(Cu-Kβ線をカット)
 ・X線出力:40kV,30mA
 ・光学系:集中法
 ・発散スリット:1degree
 ・散乱スリット:1degree
 ・受光スリット:0.3mm
 ・モノクロ受光スリット:0.8mm
 ・ゴニオメータ:RINT1000縦型ゴニオメータ
 ・X線-サンプル間距離:185.0mm
 ・サンプル-受光スリット間距離:185.0mm
 ・X線-発散スリット間距離:100.0mm
 ・ソーラスリット-受光スリット間距離:54.0mm
 ・モノクロメータ:グラファイト湾曲
 ・検出器:シンチレーションカウンタ(SC50型)
 ・測定範囲:10-120degree
 ・STEP角度:0.02degree
 ・スキャン方法:各測定STEP角度で時間を固定
 ・測定時間:2sec/STEP
 (5)X線回折測定データの解析結果
 (1)、(2)及び(3)で得られたX線回折データを図3に示す。図3中の(d)は、(1)で求めた負極活物質材料の粉末のX線回折プロファイルである。(e)は初回充電前の負極中の負極活物質材料のX線回折プロファイルである。(f)は1回目の充電後の負極活物質材料のX線回折プロファイルであり、(g)は1回目の放電後のX線回折プロファイルである。(h)は12回目の充電後の負極活物質材料のX線回折プロファイルであり、(i)は12回目の放電後のX線回折プロファイルである。図3中の(a)は図1中の(a)と同じく、本実施例の化学組成におけるDO構造の計算プロファイルであり、図3中の(b)は図1中の(b)と同じく、本実施例の化学組成における2H構造の計算プロファイルである。
 (5-1)
 図3を参照して、(e)のX線回折プロファイルは、(d)のX線回折プロファイルと同じであった。この確認により、負極活物質材料と電解液との間で大きな化学反応が進行していないことを確認できた。
 (5-2)
 「充電後の負極活物質材料」(図3(f),(h))、及び、「放電後の負極活物質材料」(図3(g),(i))のX線回折プロファイルをそれぞれ比較した。その結果、回折角2θが38~39°近傍(M相(γ1'相)に起因する位置)の位置(以下、主要回折線位置という)において、回折線が繰り返し可逆的に変化した。すなわち、構造変化が示唆された。
 (5-3)
 そこで、「充電後の負極活物質材料」及び「放電後の負極活物質材料」の結晶構造をリートベルト法を用いて特定した。
 例えば、負極活物質材料において、表3に示す結晶軸の取り方に基づいて説明すると、図2及び図4Aに示す母相のDO3構造では、図4Dに示す結晶面Aと、図4Cに示す結晶面Bとが交互に積層する。DO構造と、M相の一種であるγ1'相との間で相変態が起こる場合、図4A及び図4Bに示すとおり、結晶面Bがせん断応力により規則的にシャフリングを起こして結晶面B'の位置にずれる。この場合、ホスト格子の拡散を伴わずして相変態(M変態)が起こる。M変態後の2H構造では、図4Dに示す結晶面Aと、図4Eに示す結晶面B’とが交互に積層する。
 そこで、充電後及び放電後の負極活物質材料のX線回折プロファイルの実測データと、β相(DO3構造)の計算プロファイル(図3中の(a))と、γ1'相(2H構造)の計算プロファイル(図3中の(b))とを対比して、本実施例の負極中の負極活物質材料の結晶構造がM変態を伴うものであるか、そうでないもの(つまり、充放電時にホスト格子の拡散を伴うもの)かを判断した。
 図3を参照して、X線回折プロファイルでは、初回の充電により、38~39°近傍の回折線の強度が増加し、続く放電により、その強度が低下した。この回折線はRIETAN-FPの計算プロファイル(図3中の(a)及び(b))から、次に説明するとおり、M変態によりM相(γ')が形成されたことに由来すると判断できた。
 具体的には、(b)に示すとおり、2H構造では、X線回折プロファイルの38~39°に強度ピークが発生した。一方、DO3構造(図中(a))では、38~39°において強度ピークが発生しなかった。これに対して、充電後のX線回折プロファイル(図3中の(f)及び(h))では、38~39°に強度ピークが生じた。一方、放電後のX線回折プロファイル(図3中の(g)及び(i))では、38~39°に強度ピークが生じていなかった。さらに、38~39°の強度ピークは、2H以外の他の結晶構造のX線プロファイル(シミュレート結果)に現れるものではなかった。
 以上より、本実施例の負極は、充電によりM変態してM相(2H構造)となり、放電により母相(DO構造)となる合金相を含有した。すなわち、本実施例の負極は、金属イオンであるリチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する合金相を含有した。
 このことは、母相(β)の最強線(図3(a)参照)が、12サイクル目の放電後(図3中の(i)参照)に鋭く現れていることからも立証された。本実施例の負極では、充電時にM変態、放電時に逆変態が繰り返されていた。
 図3では、充放電サイクルと共に回折線の半値幅が減少した。このことから、リチウムイオンの吸蔵及び放出によって、負極活物質材料の歪みが緩和されたと考えられる。
 [コイン電池の充放電性能評価]
 次に、本発明例1の電池の放電容量及びサイクル特性を評価した。
 対極に対して電位差0.005Vになるまで0.1mAの電流値(0.075mA/cmの電流値)又は、1.0mAの電流値(0.75mA/cmの電流値)でコイン電池に対して定電流ドープ(電極へのリチウムイオンの挿入、リチウムイオン二次電池の充電に相当)を行った。その後、0.005Vを保持したまま、7.5μA/cm2になるまで定電圧で対極に対してドープを続け、ドープ容量を測定した。
 次に、0.1mAの電流値(0.075mA/cmの電流値)又は、1.0mAの電流値(0.75mA/cmの電流値)で、電位差1.2Vになるまで脱ドープ(電極からのリチウムイオンの離脱、リチウムイオン二次電池の放電に相当)を行い、脱ドープ容量を測定した。
 ドープ容量、脱ドープ容量は、この電極をリチウムイオン二次電池の負極として用いた時の充電容量、放電容量に相当する。したがって、測定されたドープ容量を充電容量と定義し、測定された脱ドープ容量を放電容量と定義した。
 充放電を繰り返した。各充電及び放電ごとにドープ容量及び脱ドープ容量を測定した。測定結果に用いて、図5に示す充放電サイクル特性を得た。
 図5を参照して、本発明例1のコイン電池の初回充電容量は2634mAh/cmであり、放電容量は1569mAh/cmであった。本発明例1のコイン電池の初回放電容量は、黒鉛の理論容量の約2倍であった。さらに、40サイクル後の放電容量は1304mA/cmであり、83%という高い容量維持率を示した。
 図5から、本発明例1のコイン電池は、安定した充放電サイクル特性を有した。
 [本発明例2~13について]
 本発明例2~13では、次の方法で負極活物質材料、負極及びコイン電池を製造した。
 (1)負極活物質材料の製造
 負極活物質材料の最終的な化学組成が、表4中の「化学組成」欄に記載の化学組成となるように、複数の素材(元素)の混合物をアルゴンガス雰囲気中の石英ノズル又は窒化ホウ素製のノズル中で高周波溶解させ、溶湯を製造した。回転する銅ロール上にその溶湯を噴射して、急冷凝固箔帯を製造した。箔帯の厚みは20~40μmであった。この箔帯を擂潰機(自動乳鉢)で粉砕して45μm以下の合金粉末にした。この合金粉末を負極活物質材料とした。各本発明例の負極活物質材料の最終的な化学組成は、表4中の「化学組成」欄に記載のとおりであった。
Figure JPOXMLDOC01-appb-T000004
 表4を参照して、例えば、本発明例2の粉状の負極活物質材料の化学組成は、Cu-1.0at%Ti-15.5at%Snであった。つまり、本発明例2の化学組成は、15.5at%のSnと、1.0%のTiとを含有し、残部はCu及び不純物であった。同様に、本発明例3の化学組成は、15.5at%のSnと、1.0%のVとを含有し、残部はCu及び不純物であった。
 (2)負極及びコイン電池の製造
 製造された各本発明例の負極活物質材料を利用して、本発明例1と同じ製造方法で、負極及びコイン電池を製造した。
 (3)結晶構造特定及びサイクル特性評価
 [結晶構造の特定]
 各本発明例2~13の負極に使用される前の粉末状の負極活物質材料の結晶構造を、本発明例1と同じ方法により特定した。さらに、各本発明例の初回充電前の負極中の負極活物質材料の結晶構造を、本発明例1と同じ方法により特定した。さらに、各本発明例の、1~複数回充電後、1~複数回放電後の負極中の負極活物質材料の結晶構造を、本発明例1と同じ方法により特定して、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 特定の結果、いずれの本発明例においても、1~複数回放電後の負極中の負極活物質材料の結晶構造はいずれも、DO構造を含んだ。さらに、1~複数回充電後の負極活物質材料の結晶構造はいずれも、2H構造を含んでいた。具体的には、1~複数回充電後には、X線回折プロファイル中の回折角2θが38~39°の範囲(以下、特定回折角範囲という)において、強度ピークが確認された。そして、放電後には、特定回折角範囲にピークが確認されなかった。したがって、本発明例2~13の負極活物質材料が、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 [サイクル特性]
 本発明例1と同じ方法により、各本発明例のコイン電池の放電容量を求め、サイクル特性を評価した。その結果、本発明例2~13のコイン電池の初回の放電容量はいずれも、後述の比較例1(黒鉛からなる負極活物質材料)の放電容量よりも高かった。さらに、表4に記載されたサイクル後の放電容量はいずれも922mAh/cm以上と高く、従来の合金系負極材と比較して、優れたサイクル特性が得られた(表4参照)。表4中において、容量維持率が100%を超えた本発明例が存在した。これらの負極活物質材料では、充放電サイクルを重ねるうち、Liイオンが負極活物質材料の内部まで拡散し、充放電に寄与する割合が増加したためと考えられる。
 なお、本発明例6Aと本発明例6Bの負極活物質材料の化学組成は互いに同じであり、本発明例12A及び12Bの負極活物質材料の化学組成は互いに同じであった。本発明例6A及び12Aでは、充放電時の電流値を0.1mAとして、本発明例6B及び12Bでは、充放電値の電流値を1.0mAとした。以降の説明では、本発明例6A及び6Bを併せて単に「本発明例6」といい、本発明例12A及び12Bを併せて単に「本発明例12」という。
 [比較例1]
 負極活物質粉末として天然黒鉛を用いた。天然黒鉛粉末を負極活物質材料として、本発明例1と同様の製造方法で負極及びコイン電池を製造した。そして、本発明例1と同様に放電容量を求めた。
 [試験結果]
 上述のとおり、本発明例1~本発明例13の負極活物質材料はいずれも、充電後に、DO構造がM変態して形成された2H構造を含み、放電後に2H構造が逆変態して形成されたDO構造を含んだ。
 さらに、本発明例1~本発明例13の初回の放電容量はいずれも、比較例1の黒鉛負極よりも高かった。
 さらに、本発明例6及び12の初回放電容量(電流値が0.1mAの場合)は、本発明例1と同等又はそれ以上であった。これは、本発明例1の負極活物質合金の粉末に比べて、本発明例6及び12の負極活物質材料の方が、含有される元素が1種類多く配合されているためであると考えられる。本発明例1の負極活物質材料に比べて、本発明例6及び12の負極活物質材料の方では、格子の配列に乱れが生じ、いわゆる格子欠陥が多くなる。これにより、リチウムイオンの拡散パスや貯蔵サイトがより多く確保される。その結果、本発明例6及び12のコイン電池の初期容量及び充放電レート特性が改善したと考えられる。充放電レート特性の向上は、本発明例6B及び12Bが優れた放電容量を示すことから確認できた。
 実施例1と同様の方法で、本発明例14~53の負極活物質材料、負極及びコイン電池を製造した。さらに比較例2~4の負極活物質材料、負極及びコイン電池を製造した。そして、各本発明例及び比較例の結晶構造を特定し、初回及び複数回充放電した後の放電容量(mhA/cm)を求めた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 各発明例及び比較例について、表5を参照しながら、説明する。
 [本発明例14について]
 CuとSnとを混合した混合物を準備した。本発明例2~13と同様に、準備した混合物をアルゴンガス雰囲気中の石英ノズル又は窒化ホウ素製のノズル中で高周波溶解させ、溶湯を製造した。回転する銅ロール上にその溶湯を噴射して、急冷凝固箔帯を製造した。箔帯の厚みは20~40μmであった。この箔帯を擂潰機(自動乳鉢)で粉砕して45μm以下の合金粉末にした。この合金粉末を負極活物質材料とした。
 本発明例14の負極活物質材料の最終的な化学組成は、Cu-25at%Snであった。つまり、本発明例14の化学組成は、25at%のSnを含有し、残部はCu及び不純物であった。
 製造された本発明例の負極活物質材料を利用して、本発明例2と同じ製造方法で、負極及びコイン電池を製造した。
 [結晶構造の特定]
 本発明例14の負極に使用される前の粉末状の負極活物質材料の結晶構造を、本発明例1と同様の方法により特定した。さらに、各本発明例の初回充電前の負極中の負極活物質材料の結晶構造を、本発明例1と同様の方法により特定した。さらに、各本発明例の、初回充電後、初回放電後、複数回充電後、複数回放電後の負極中の負極活物質材料の結晶構造を、本発明例1と同様の方法により特定して、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 以下、負極使用前の粉末状の負極活物質材料、充電前の負極中の負極活物質材料、1~複数回充放電後の負極活物質材料の結晶構造の特定方法について詳述する。
 (1)粉末状の負極活物質材料の結晶構造の解析
 X線回折測定により負極活物質材料の粉末(45μm以下)の結晶構造の解析を行った。具体的には、リガク製SmartLab(ロータターゲット最大出力9KW;45kV-200mA)を用いて負極活物質合金の粉末のX線回折プロファイルを取得した。そして、本発明例1と同様に、リートベルト法(RIETAN2000及びRIETAN-FPを使用)により負極活物質合金中の相の構成を解析した。
 図6は、実測のX線回折プロファイルと、リートベルト法によるプロファイルフィッティング結果(計算プロファイル)とを示す図である。図6を参照して、本発明例14の粉末負極活物質材料は、M相の1種であるγ’相(2H構造)と同じ構造を持つε相を含有した。
 つまり、本発明例では、急冷後のマルテンサイト相の結晶構造が2H構造であった。その結晶構造は、図4Bに示す2H構造と同じである。リートベルト解析の結果、本発明例14の2H構造の格子定数は、表3に示した空間群の結晶軸の採り方において、a=4.339Å、b=5.524Å、c=4.758Åであった。
 (2)充電前の負極活物質合金の結晶構造解析
 本発明例1と同じ方法で、測定試料を作製した。そして、後述(4)に記載のX線回折装置にこの測定試料をセットして、後述(4)の測定条件下で測定試料のX線回折測定を行った。
 (3)充電後及び放電後の負極活物質合金の結晶構造の測定・解析方法
 上述のコイン電池を充放電試験装置において満充電または完全放電させた状態で、上記(2)と同じ方法で測定試料を作製した。そして、後述(4)に記載のX線回折装置にこの測定試料をセットして、後述(4)の測定条件下で測定試料のX線回折測定を行った。
 (4)X線回折装置と測定条件
 ・装置:リガク製 SmartLab
 ・X線管球:Cu-Kα線
 ・X線出力:45kV,200mA
 ・入射側モノクロメータ:ヨハンソン素子(Cu-Kα2線及びCu-Kβ線をカット)
 ・光学系:集中法
 ・入射平行スリット:5.0degree
 ・入射スリット:1/2degree
 ・長手制限スリット:10.0mm
 ・受光スリット1:8.0mm
 ・受光スリット2:13.0mm
 ・受光平行スリット:5.0degree
 ・ゴニオメータ:SmartLabゴニオメータ
 ・X線源-ミラー間距離:90.0mm
 ・X線源-選択スリット間距離:114.0mm
 ・X線源-試料間距離:300.0mm
 ・試料-受光スリット1間距離:187.0mm
 ・試料-受光スリット2間距離:300.0mm
 ・受光スリット1-受光スリット2間距離:113.0mm
 ・試料-検出器間距離:331.0mm
 ・検出器:D/Tex Ultra
 ・測定範囲:10-120degree
 ・データ採取角度間隔:0.02degree
 ・スキャン方法:連続
 ・スキャン速度:2degree/min.
 [X線回折測定データの解析]
 (2)及び(3)で得られたX線回折プロファイルの実測値を用いて、リートベルト解析によりフィッティングを行い、本発明例1と同じ方法により結晶構造を特定した。そして、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 特定の結果、充電前の負極活物質材料の結晶構造は図6と同じ2H構造であった。しかしながら、充放電を繰り返すことにより、充電後の負極活物質材料は2H構造を含み、放電後の負極活物質材料はDO構造を含んだ。
 具体的には、1~複数回充電後には、X線回折プロファイル中の回折角2θが38~39°の範囲(特定回折角範囲)において、強度ピークが確認され、放電後には、特定回折角範囲にピークが確認されなかった。したがって、本発明例14の負極活物質材料が、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 [コイン電池の充放電性能評価]
 本発明例1と同じ方法により、各本発明例のコイン電池の放電容量を求め、サイクル特性を評価した。ただし、表5に示すとおり、本発明例14では、充放電時の電流値を0.1mAとした。
 表5を参照して、コイン電池の初回の放電容量は2459mAh/cmであり、黒鉛からなる負極活物質材料よりも高かった。さらに、20サイクルの充放電後には1934mAh/cmであり、容量維持率は79%と高く、優れたサイクル特性を示した。
 [本発明例15]
 本発明例15は、本発明例14と同じ負極活物質材料、負極、電池であった。本発明例15では、放電容量を測定時における充放電時の電流値を、表5に示すとおり、1.0mAとした。
 測定の結果、初回の放電容量は1540mAh/cmであり、黒鉛の場合よりも高かった。さらに、80サイクルの充放電後の放電容量は1461mAh/cmであり、容量維持率は95%と高かった。したがって、本発明例15の電池は、優れた充放電レート特性を有した。
 [本発明例16及び17]
 本発明例2と同じ製造方法で各本発明例の負極活物質材料を製造した。製造された負極活物質材料の化学組成は表5に示すとおりであった。製造された負極活物質材料を用いて、本発明例2と同じ方法で負極及びコイン電池を製造した。
 上記各本発明例の負極に使用される前の粉末状の負極活物質材料の結晶構造を、本発明例14と同じ方法により特定した。さらに、各本発明例の1~複数回充電後、1~複数回放電後の負極中の負極活物質材料の結晶構造を、本発明例14と同じ方法により特定して、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 特定の結果、いずれの本発明例においても、1~複数回放電後の負極中の負極活物質材料の結晶構造はいずれも、DO構造を含んだ。さらに、1~複数回充電後の負極活物質材料の結晶構造はいずれも、2H構造を含んでいた。したがって、本発明例16及び17の負極活物質材料が、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 さらに、本発明例14と同じ方法により、各本発明例のコイン電池の放電容量を求め、サイクル特性を評価した。ただし、充放電時の電流値は表5に示すとおりとした。
 表5を参照して、コイン電池の初回の放電容量は黒鉛からなる負極活物質材料よりも高かった。さらに、表5に示すサイクル数経過後の容量維持率は50%以上と高く、優れたサイクル特性を示した。
 [本発明例18]
 本発明例2と同じ方法により、化学組成がCu-18.5at%Snとなる負極活物質材料を製造した。さらに、本発明例2と同じ方法により、負極及びコイン電池を製造した。
 本発明例14と同じ方法で、負極活物質材料の粉末(45μm以下)の結晶構造の測定と解析を行った。
 その結果、この負極活物質合金は、F-cell構造を持つδ相と母相の1種であるDO構造を持つ相と同定された。図7は本発明例14のX線回折プロファイルの実測データと、リートベルト法によるプロファイルフィッティング結果(計算プロファイル)とを示す図である。リートベルト解析にはRietan-2000を用いた。
 図7に示すリートベルト法による定量解析の結果、本発明例18の負極活物質材料は、80質量%のF-cell構造のδ相と、20質量%のDO構造の母相とを含有した。つまり、本発明例18の負極活物質材料の結晶構造はDO構造を含有した。
 母相の回折プロファイルがブロードになっていることから、負極活物質材料には歪みが導入されていた。
 さらに、本発明例18の1~複数回充電後、1~複数回放電後の負極中の負極活物質材料の結晶構造を、本発明例1と同じ方法により特定して、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 特定の結果、1~複数回放電後の負極中の負極活物質材料の結晶構造はいずれも、DO構造を含んだ。さらに、1~複数回充電後の負極活物質材料の結晶構造はいずれも、2H構造を含んでいた。したがって、本発明例18の負極活物質材料が、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 [コイン電池の充放電性能評価]
 本発明例14と同様に、放電容量及び容量維持率を測定した。その結果、表5に示すとおり、本発明例18の初回の放電容量は769mAh/cmであり、黒鉛からなる負極活物質の場合と同等であった。しかしながら、20サイクルの充放電後の放電容量は1199mAh/cmであり、20サイクル後の容量維持率は156%と上昇した(表5参照)。
 本発明例18では、DO構造の母相が負極活物質として機能したために、初回放電容量として黒鉛と同等レベルの容量が得られた。さらに、F-cell構造のδ相は、リチウムイオンの拡散相として機能していると考えられた。
 表6に本発明例18のリートベルト解析結果を示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、長周期規則構造中の多くのサイト占有率が後述の比較例2に示す通常のF-Cell構造よりも小さく、サイト欠損が多く発生していた。したがって、F-Cell構造のδ相が、リチウムイオンの拡散サイトとして機能していたと考えられる。
 サイクル中の容量が増加した要因としては、活物質相が電気容量を担う割合がサイクル数とともに増大したことが考えられる。
 [本発明例19~22]
 本発明例2と同じ製造方法で各本発明例の負極活物質材料を製造した。製造された負極活物質材料の化学組成は表5に示すとおりであった。製造された負極活物質材料を用いて、本発明例2と同じ方法で負極及びコイン電池を製造した。
 上記各本発明例の負極に使用される前の粉末状の負極活物質材料の結晶構造を、本発明例14と同じ方法により特定した。さらに、各本発明例の初回充電後、初回放電後、複数回充電後、複数回放電後の負極中の負極活物質材料の結晶構造を、本発明例14と同じ方法により特定して、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 特定の結果、いずれの本発明例においても、1~複数回放電後の負極中の負極活物質材料の結晶構造はいずれも、DO構造を含んだ。さらに、1~複数回充電後の負極活物質材料の結晶構造はいずれも、2H構造を含んでいた。したがって、本発明例19~22の負極活物質材料が、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 さらに、本発明例14と同じ方法により、各本発明例のコイン電池の放電容量を求め、サイクル特性を評価した。ただし、充放電時の電流値は表5に示すとおりとした。
 表5を参照して、コイン電池の初回の放電容量は黒鉛からなる負極活物質材料よりも高かった。さらに、表5に示すサイクル数経過後の容量維持率は50%以上と高く、優れたサイクル特性を示した。
 [本発明例23]
 本発明例2と同じ方法により、化学組成がCu-5.0at%Zn-25at%Snとなる負極活物質材料を製造した。さらに、本発明例2と同じ方法により、負極及びコイン電池を製造した。
 本発明例14と同じ方法で、負極活物質材料の粉末(45μm以下)の結晶構造の測定と解析を行った。
 その結果、この負極活物質材料の組織では、2H構造のε相と単斜晶構造のη’相とが同定された。図8は本発明例23のX線回折プロファイルの実測データと、リートベルト法によるプロファイルフィッティング結果(計算プロファイル)とを示す図である。リートベルト解析にはRietan-2000を用いた。
 図8に示すリートベルト法による定量解析の結果、本発明例の組織では、2H構造のε相が97質量%と単斜晶構造のη’相が3質量%であった。さらに、2H構造のε相については、リートベルト解析の結果、CuのサイトにZnが置換するとの仮定の下では、CuやSnの原子サイトに一部欠損が生じることが判明した。図8中、32.3°近傍と37.5°近傍の回折線の強度が高くなっているのはこれらのサイト欠損によるものと考えられる。リートベルト解析の結果としては、このサイト欠損により、CuとZnの4eサイトではサイト占有率が53%、Snの2bサイトではサイト占有率が52%であった(表7参照)。
Figure JPOXMLDOC01-appb-T000007
 参考として、η’相のリートベルト解析結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 さらに、本発明例23の1~複数回充放電後の負極中の負極活物質材料の結晶構造を、本発明例14と同じ方法により特定して、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 特定の結果、初回充電前は図8に示す通り、主として2H構造であった。しかしながら、結晶構造は充放電の過程で変化し、放電後のX線回折プロファイルにDO3構造の回折線が認められた。したがって、本発明例23の負極活物質材料は、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 本発明例14と同様の方法で、コイン電池の放電容量を測定した。その結果、表5を参照して、初回の放電容量は2152mAh/cm、20サイクルの充放電後には1986mAh/cmであり、容量維持率は92%であった。
 本発明例においては、2H構造のε相に加えて、少量のη’相が負極活物質として機能して放電容量が得られたと考えられる。このε相のサイト欠損は、リチウムイオンの貯蔵ならびに拡散サイトとしても機能していると考えられる。
 [本発明例24]
 本発明例2と同じ方法で、表5に示す化学組成の負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同様の方法で、負極活物質材料の粉末(45μm以下)の結晶構造の測定と解析を行った。その結果、この負極活物質材料では、母相の1種であるDO構造を持つ相と、単斜晶構造のη'相と、F-cell構造を持つδ相と、Sn相とが混在した。
 図9は、それらのX線回折プロファイル(実測データ、DO構造を持つ相と、η'相と、δ相と、Sn相の計算プロファイル)を、リートベルト法によるプロファイルフィッティング結果と共に示す図である。リートベルト解析にはRietan-2000を用いた。
 図9に示すリートベルト法による定量解析の結果、本発明例24の負極活物質材料では、DO構造を持つ相が31.5質量%、単斜晶構造のη’相が21.5質量%、F-cell構造を持つδ相が46.0質量%、Sn相が1.0質量%であった。
 表9にDO構造を持つ相、表10にη’相、表11にF-Cell構造を持つδ相のリートベルト解析結果を示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表9~表11を参照して、DO構造を持つ相、η’相およびF-cell構造を持つδ相にはそれぞれ、CuのサイトにZnが置換するとの仮定の下では、CuやSnの原子サイトに一部欠損が生じることが判明した。
 さらに、本発明例24の初回充電前、初回充電後、初回放電後、複数回充電後、複数回放電後の負極中の負極活物質材料の結晶構造を、本発明例14と同じ方法により特定して、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 特定の結果、初回充電前の負極活物質材料は図9に示す通りのDO構造を含んだ。さらに、充放電の過程で変化し、放電後のX線回折プロファイルに再びDO3構造の回折線が認められた。したがって、本発明例23の負極活物質材料は、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 本発明例14と同様に、電池の放電容量を測定した。その結果、表5に示すとおり、コイン電池の初回の放電容量は2411mAh/cm、20サイクルの充放電後には2013mAh/cmであり、容量維持率は84%であった。
 本発明例においては、DO構造の相とη’相とSn相が負極活物質として機能して放電容量が得られたと考えられる。このDO構造の相、η’相及び共存するF-Cell構造のδ相のサイト欠損は、リチウムイオンの貯蔵ならびに拡散サイトとしても機能したと考えられる。
 [本発明例25及び26]
 本発明例2と同じ方法で、表5に示す化学組成の負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同様の方法で、負極活物質材料の結晶構造の測定と解析を行った。その結果、本発明例25及び26の粉末及び未充電の負極活物質材料は、本発明例24と同じく、DO構造を持つ相と、単斜晶構造のη’相と、F-cell構造を持つδ相と、Sn相とを備えた。さらに、本発明例24と同様に、本発明例25及び26の結晶構造は、充放電の過程で変化し、充電時に2H構造の回折線が認められ、放電後のX線回折プロファイルに再びDO3構造の回折線が認められた。したがって、本発明例25及び26の負極活物質材料は、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 本発明例25及び26のコイン電池の初回の放電容量は高く、容量維持率も高かった(表5参照)。
 本発明例25及び26では、本発明例24と同様に、DO構造の相とη’相とSn相が負極活物質として機能して放電容量が得られた。これらの本発明例の放電容量が本発明例24よりも増大しているのは、Sn相の比率が高いためと考えられる。それにもかかわらず、容量維持率も良好であるのは、周辺相のDO構造の相が充放電過程で、マルテンサイト変態と逆変態とを誘起して内部応力を緩和し、活物質の崩壊を防止しているためと考えられる。
 [本発明例27]
 本発明例27は、本発明例26と同じ負極活物質材料、負極、電池であった。本発明例27では、放電容量を測定時における充放電時の電流値を、表5に示すとおり、1.0mAとした。
 初回の放電容量は1971mAh/cm、80サイクルの充放電後には1698mAh/cmであり、容量維持率は86%であった(表4参照)。本発明例27は、優れた充放電レート特性を有した。
 [本発明例28]
 本発明例2と同じ方法で、表5に示す化学組成の負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。負極活物質材料の化学組成はCu-25.0at%Zn-25at%Snであった。
 本発明例14と同じ方法で、結晶構造を特定した。その結果、本発明例の負極活物質材料では、本発明例24と同様に、DO構造を持つ相と、単斜晶構造のη’相と、F-cell構造を持つδ相と、Sn相とを含有した。
 さらに、X線回折及びリートベルト解析の結果、本発明例28の負極活物質材料は、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 コイン電池の初回の放電容量は2972mAh/cm、20サイクルの充放電後には2700mAh/cmであり、容量維持率は91%であった(表5参照)。
 本発明例では、本発明例24と同様に、DO構造の相とη’相とSn相が負極活物質として機能して放電容量が得られたと考えられる。本発明例の放電容量が本発明例24よりも増大しているのは、Sn相の比率が高いためと考えられる。それにもかかわらず、容量維持率も良好であるのは、Sn相の周辺のDO構造の相が、充放電過程で、マルテンサイト変態と逆変態を誘起して内部応力を緩和するために、活物質の崩壊を抑制しているためと考えられる。
 [本発明例29]
 本発明例28と同じコイン電池を用いて、充放電時の電流値を1.0mAに設定して放電容量を測定した。初回の放電容量は2307mAh/cm、80サイクルの充放電後には1925mAh/cmであり、容量維持率は83%であった(表5参照)。
 [本発明例30]
 本発明例2と同じ方法で、負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。負極活物質材料の化学組成は表5に示すとおり、Cu-2.0at%Al-25at%Snであった。本発明例14と同じ方法で、結晶構造の特定及び放電容量の評価を行った。
 X線回折及びリートベルト解析の結果、本発明例30の負極活物質材料の組織では、2H構造のε相中にη’相が僅かに含まれていた。さらに、充放電過程において、放電後の組織がDO構造を含み、充電後の組織が2H構造を含むことが確認された。
 本発明例の初回の放電容量は2287mAh/cm、20サイクルの充放電後には1777mAh/cmであり、容量維持率は78%であった(表5参照)。本発明例においては、2H構造のε相と、η’相とが活物質相として機能したと考えられる。
 [本発明例31]
 本発明例2と同じ方法で、負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。負極活物質材料の化学組成は表5に示すとおり、Cu-10.0at%Al-25at%Snであった。本発明例14と同じ方法で、結晶構造の特定及び放電容量の評価を行った。
 X線回折及びリートベルト解析の結果、本発明例31の負極活物質材料の組織では、DO構造の母相の中に、η’相が含まれていた。さらに、充放電過程において、放電後の組織がDO構造を含み、充電後の組織が2H構造を含むことが確認された。
 本発明例の初回の放電容量は2512mAh/cm、20サイクルの充放電後には2255mAh/cmであり、容量維持率は81%であった(表5参照)。本発明例においては、DO構造の母相と、η’相とが活物質相として機能したと考えられる。
 [本発明例32]
 本発明例28と同じコイン電池を用いて、充放電時の電流値を1.0mAに設定して放電容量を測定した。初回の放電容量は1826mAh/cm、80サイクルの充放電後には1487mAh/cmであり、容量維持率は81%であった(表5参照)。
 [本発明例33]
 本発明例2と同じ方法で、負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。負極活物質材料の化学組成は表5に示すとおり、Cu-2.0at%Al-23at%Snであった。本発明例14と同じ方法で、結晶構造の特定及び放電容量の評価を行った。
 X線回折及びリートベルト解析の結果、本発明例33の初回充電前における負極活物質材料の組織では、2H構造のε相が単独で存在していた。さらに、充放電過程において、放電後の組織がDO構造を含み、充電後の組織が2H構造を含むことが確認された。
 本発明例の初回の放電容量は2448mAh/cm、20サイクルの充放電後には1892mAh/cmであり、容量維持率は78%であった(表5参照)。本発明例においては、本発明例14と同様に、ε相が活物質相として機能していた。
 [本発明例34]
 本発明例2と同じ方法で、負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。負極活物質材料の化学組成は表5に示すとおり、Cu-5.0at%Si-25at%Snであった。本発明例14と同じ方法で、結晶構造の特定及び放電容量の評価を行った。
 X線回折及びリートベルト解析の結果、本発明例34の初回充電前における負極活物質材料の組織では、DO構造の母相がほぼ単相で存在していた。さらに、充放電過程において、放電後の組織がDO構造を含み、充電後の組織が2H構造を含むことが確認された。
 本発明例の初回の放電容量は2809mAh/cm、20サイクルの充放電後には2382mAh/cmであり、容量維持率は85%であった(表5参照)。本発明例では、DO構造の母相が活物質相として機能した。
 [本発明例35]
 本発明例2と同じ方法で、負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。負極活物質材料の化学組成は表5に示すとおりCu-10.0at%Si-25at%Snであった。本発明例14と同じ方法で、結晶構造の特定及び放電容量の評価を行った。
 X線回折及びリートベルト解析の結果、本発明例35の初回充電前における負極活物質材料の組織では、DO構造の母相中に、η’相と、微量のSn単相とが存在していた。さらに、充放電過程において、放電後の組織がDO構造を含み、充電後の組織が2H構造を含むことが確認された。
 本発明例の初回の放電容量は3073mAh/cm、20サイクルの充放電後には2509mAh/cmであり、容量維持率は82%であった(表5参照)。
 本発明例においては、DO構造の母相と、η’相と、微量のSn単相とが活物質相として機能した。
 リートベルト解析の結果、η’相の結晶構造では、表10と同様に、多くのサイト占有率が通常のη’相の結晶構造よりも小さく、サイト欠損が多く発生していた。したがって、η’相が、リチウムイオンの拡散サイトとして機能していたと考えられる。
 [本発明例36]
 本発明例35と同じコイン電池を用いて、充放電時の電流値を1.0mAに設定して放電容量を測定した。初回の放電容量は2414mAh/cm、80サイクルの充放電後には2024mAh/cmであり、容量維持率は84%であった(表5参照)。
 [本発明例37]
 本発明例2と同じ方法で、負極活物質材料の粉末を製造した。さらに、本発明例2と同じ方法で、負極及びコイン電池を製造した。負極活物質材料の化学組成は表5に示すとおり、Cu-2.0at%Si-23at%Snであった。本発明例14と同じ方法で、結晶構造の特定及び放電容量の評価を行った。
 X線回折及びリートベルト解析の結果、本発明例37の初回充電前における負極活物質材料の組織では、2H構造のε相がほぼ単独で存在していた。さらに、充放電過程において、放電後の組織がDO構造を含み、充電後の組織が2H構造を含むことが確認された。
 本発明例の初回の放電容量は2520mAh/cm、20サイクルの充放電後には1720mAh/cmであり、容量維持率は68%であった(表5参照)。本発明例においては、ε相が活物質相として機能した。
 [本発明例38~53]
 本発明例2と同じ製造方法で各本発明例の負極活物質材料を製造した。製造された負極活物質材料の化学組成は表5に示すとおりであった。製造された負極活物質材料を用いて、本発明例2と同じ方法で負極及びコイン電池を製造した。
 上記各本発明例の複数回充放電後の負極活物質材料の結晶構造を、本発明例14と同じ方法(X線回折及びリートベルト解析)により特定し、負極活物質材料の結晶構造が、充放電によりどのように変化するか確認した。
 特定の結果、いずれの本発明例においても、複数回放電後の負極中の負極活物質材料の結晶構造はいずれも、DO構造を含んだ。さらに、複数回充電後の負極活物質材料の結晶構造はいずれも、2H構造を含んでいた。したがって、各本発明例の負極活物質材料が、リチウムイオンを吸蔵するときにM変態し、リチウムイオンを放出するときに逆変態する結晶構造を有することが確認された。
 さらに、本発明例14と同じ方法により、各本発明例のコイン電池の放電容量を求めた。充放電時の電流値は表5に示すとおりとした。表5を参照して、コイン電池の初回の放電容量(電流値0.1mAで測定されたもの)は黒鉛からなる負極活物質材料よりも高かった。さらに、表5に示すサイクル数経過後の容量維持率は50%以上と高く、優れたサイクル特性を示した。
 なお、本発明例49において、サイクル中の容量が増加した要因としては、本発明例18と同様に、活物質相が電気容量を担う割合がサイクル数とともに増大したためと考えられる。
 [比較例2]
 本発明例1と同じ方法により粉末状の負極活物質材料を製造した。ただし、熱処理温度は550℃であった。表5に示すとおり、製造された負極活物質材料の化学組成は、Cu-20.5at%Snであった。本発明例1と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。
 図10は、X線回折プロファイルの実測値と、リートベルト法によるプロファイルフィッティング結果とを示す図である。リートベルト解析にはRietan-FPを用いた。
 本比較例の化学組成は、平衡状態図上はδ相として知られており、結晶構造は表12に示すF-cell規則構造である。この結晶構造は、空間群の分類上、International Table(Volume-A)のNo.216(F-43m)となる。その格子定数や原子座標は、表12に示される通りとなる。
Figure JPOXMLDOC01-appb-T000012
 リートベルト解析の結果、負極活物質の結晶構造はF-cell規則構造であった。さらに、充電後の負極活物質は2H構造を含まず、放電後の負極活物質はDO構造を含まなかった。
 本発明例14と同じ方法により、比較例2のコイン電池の放電容量を求めた。充放電時の電流値は表5に示すとおりとした。初回の放電容量は118mAh/cm、20サイクルの充放電後には55mAh/cmであった(表5参照)。本比較例が示すように、結晶構造がF-cell構造であるδ相では、電池としての充放電容量がほとんど得られなかった。
 [比較例3]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。表5に示すとおり、製造された負極活物質材料の化学組成は、Ni-50at%Tiであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、初回の放電容量はほとんど現れなかった(表5参照)。したがって、Ti-Ni系合金はリチウム活性ではないと考えられる。
 [比較例4]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。表5に示すとおり、製造された負極活物質材料の化学組成は、Ni-52.0at%Ti-5at%Siであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、初回の放電容量はほとんど現れなかった(表5参照)。したがって、本比較例では、活物質となりうるシリコンが単体では存在し得ず、Si、Ti及びNiの化合物が形成されたためと考えられる。
 [比較例5]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。表5に示すとおり、製造された負極活物質材料の化学組成は、Ni-25.0at%Ti-50at%Siであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、初回の放電容量は、黒鉛の場合の半分程度に過ぎなかった(表5参照)。したがって、本比較例では、活物質となりうるシリコンが十分に存在し得ず、その原因は、Si、Ti及びNiの化合物が形成されたためと考えられる。
 [比較例6]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。表5に示すとおり、製造された負極活物質材料の化学組成は、Cu-5at%Ni-25at%Snであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、本比較例では、十分な放電容量が得られなかった。
 [比較例7]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。表5に示すとおり、製造された負極活物質材料の化学組成は、Cu-10at%Ni-25at%Snであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、本比較例では、十分な放電容量が得られなかった。
 [比較例8]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。表5に示すとおり、製造された負極活物質材料の化学組成は、Cu-50at%Ni-25at%Snであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、本比較例では、十分な放電容量が得られなかった。
 [比較例9]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。表5に示すとおり、製造された負極活物質材料の化学組成は、Cu-50at%Al-25at%Snであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、本比較例では、十分な放電容量が得られなかった。
 [比較例10]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。表5に示すとおり、製造された負極活物質材料の化学組成は、Cu-50at%Si-25at%Snであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、初回の放電容量は高かったものの、サイクル特性(容量維持率)は低かった。
 [比較例11~15]
 本発明例2と同じ方法により粉末状の負極活物質材料を製造した。製造された各比較例の負極活物質材料の化学組成は、表5に示すとおりであった。本発明例2と同じ方法で、負極及びコイン電池を製造した。
 本発明例14と同じ方法(X線解析及びリートベルト解析)により、初回充電前の負極活物質の結晶構造を解析した。その結果、この負極活物質の組織は、DO構造及び2H構造の相を含まなかった。さらに、本発明例14と同様に放電容量を測定した。その結果、各比較例ではいずれも、十分な放電容量が得られなかった。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。

Claims (10)

  1.  金属イオンを放出するとき又は前記金属イオンを吸蔵するときに熱弾性型無拡散変態する合金相を備える負極活物質材料。
  2.  請求項1に記載の負極活物質材料であって、
     前記合金相は、前記金属イオンを吸蔵するときに前記熱弾性型無拡散変態し、前記金属イオンを放出するときに逆変態する、負極活物質材料。
  3.  請求項2に記載の負極活物質材料であって、
     前記熱弾性型無拡散変態後の前記合金相は、Ramsdell表記で2Hである結晶構造を含有し、
     前記逆変態後の前記合金相は、Strukturbericht表記でDOである結晶構造を含有する、負極活物質材料。
  4.  請求項2又は請求項3に記載の負極活物質材料であって、
     Cuと、Snとを含有する、負極活物質材料。
  5.  請求項4に記載の負極活物質材料であって、
     10~20at%又は21~27at%のSnを含有し、残部はCu及び不純物からなる、負極活物質材料。
  6.  請求項4に記載の負極活物質材料であってさらに、
     Cuの一部に代えて、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Al、Si、B及びCからなる群から選択される1種以上を含有する、負極活物質材料。
  7.  請求項6に記載の負極活物質材料であって、
     Sn:10~35at%と、
     Ti:9.0at%以下、V:49.0at%以下、Cr:49.0at%以下、Mn:9.0at%以下、Fe:49.0at%以下、Co:49.0at%以下、Ni:9.0at%以下、Zn:29.0at%以下、Al:49.0at%以下、Si:49.0at%以下、B:5.0at%以下、及び、C:5.0at%以下からなる群から選択される1種以上とを含有し、
     残部はCu及び不純物からなる、負極活物質材料。
  8.  請求項3~請求項7のいずれか1項に記載の負極活物質材料であってさらに、
     サイト欠損を含む、F-Cell構造のδ相、ε相、η’相、及びDO構造を有する相からなる群から選択される1種以上を含有する、負極活物質材料。
  9.  請求項1~請求項8のいずれか1項に記載の負極活物質材料を含む負極。
  10.  請求項9に記載の負極を備える電池。

     
PCT/JP2013/005061 2012-08-27 2013-08-27 負極活物質材料 WO2014034104A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN202010488473.6A CN111628161B (zh) 2012-08-27 2013-08-27 负极活性物质材料
US14/419,969 US10381640B2 (en) 2012-08-27 2013-08-27 Negative electrode active material
CN201380055994.0A CN104756289A (zh) 2012-08-27 2013-08-27 负极活性物质材料
PL13833607T PL2889936T3 (pl) 2012-08-27 2013-08-27 Materiał aktywny elektrody ujemnej
EP13833607.8A EP2889936B1 (en) 2012-08-27 2013-08-27 Negative electrode active material
CA2881801A CA2881801C (en) 2012-08-27 2013-08-27 Negative electrode active material
KR1020157006511A KR101729868B1 (ko) 2012-08-27 2013-08-27 음극 활물질 재료
BR112015003323A BR112015003323A2 (pt) 2012-08-27 2013-08-27 material ativo de eletrodo negativo
RU2015108800A RU2630229C2 (ru) 2012-08-27 2013-08-27 Активный материал отрицательного электрода
JP2014532792A JP5729520B2 (ja) 2012-08-27 2013-08-27 負極活物質材料
MX2015002323A MX2015002323A (es) 2012-08-27 2013-08-27 Material activo de electrodo negativo.
IN1183DEN2015 IN2015DN01183A (ja) 2012-08-27 2015-02-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012186159 2012-08-27
JP2012-186159 2012-08-27

Publications (1)

Publication Number Publication Date
WO2014034104A1 true WO2014034104A1 (ja) 2014-03-06

Family

ID=50182939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005061 WO2014034104A1 (ja) 2012-08-27 2013-08-27 負極活物質材料

Country Status (14)

Country Link
US (1) US10381640B2 (ja)
EP (1) EP2889936B1 (ja)
JP (1) JP5729520B2 (ja)
KR (1) KR101729868B1 (ja)
CN (2) CN104756289A (ja)
BR (1) BR112015003323A2 (ja)
CA (1) CA2881801C (ja)
HU (1) HUE048432T2 (ja)
IN (1) IN2015DN01183A (ja)
MX (1) MX2015002323A (ja)
MY (1) MY181261A (ja)
PL (1) PL2889936T3 (ja)
RU (1) RU2630229C2 (ja)
WO (1) WO2014034104A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129270A1 (ja) * 2014-02-25 2015-09-03 新日鐵住金株式会社 負極活物質材料、負極及び電池
WO2015129267A1 (ja) * 2014-02-25 2015-09-03 新日鐵住金株式会社 負極活物質材料、負極及び電池
WO2017164395A1 (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 銅合金及びその製造方法
WO2017200046A1 (ja) * 2016-05-18 2017-11-23 新日鐵住金株式会社 負極活物質材料、負極及び電池
JP2018200876A (ja) * 2014-02-25 2018-12-20 新日鐵住金株式会社 負極活物質材料、負極及び電池
WO2019017349A1 (ja) * 2017-07-18 2019-01-24 新日鐵住金株式会社 負極活物質材料、負極及び電池
JP2019167573A (ja) * 2018-03-22 2019-10-03 国立大学法人横浜国立大学 Cu−Sn−Si系超弾性合金及びその製造方法
WO2020149404A1 (ja) * 2019-01-17 2020-07-23 日本製鉄株式会社 負極活物質材料、負極及び電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593453B2 (ja) * 2015-11-30 2019-10-23 日本製鉄株式会社 金属薄帯の製造装置及びそれを用いた金属薄帯の製造方法
CN106876688B (zh) * 2015-12-10 2020-12-01 中国科学院大连化学物理研究所 一种锂离子电池锡基合金负极材料及其制备方法
CN109312426A (zh) * 2016-06-10 2019-02-05 新日铁住金株式会社 负极活性物质材料、负极及电池
US10886523B2 (en) * 2018-05-24 2021-01-05 Xerion Advanced Battery Corporation Electroplating lithiated transition metal oxides using low purity starting precursors
US20220293924A1 (en) * 2021-03-15 2022-09-15 Nanode Battery Technologies Ltd. Tin Alloy Sheets as Negative Electrodes for Non-Aqueous Li and Na-ion Batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141995A (ja) * 2003-11-05 2005-06-02 Sony Corp 負極および電池
JP2008503048A (ja) * 2004-06-16 2008-01-31 インダストリー−アカデミック コーポレーション ファンデーション キョンサン ナショナル ユニバーシティ 電池の集電体およびアノード用のハイブリッド超弾性金属−金属硫化物材料
US20080233479A1 (en) 2007-03-21 2008-09-25 Min-Seok Sung Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JP2010218958A (ja) * 2009-03-18 2010-09-30 Akita Univ 銅−錫含有ペースト、銅−錫含有ペーストの製造方法、リチウムイオン二次電池用電極、および、銅−錫含有ペースト形成用キット

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206258A (ja) * 1990-11-29 1992-07-28 Seiko Instr Inc 非水電解質二次電池
EP1043789B1 (en) * 1998-10-22 2013-01-23 Panasonic Corporation Secondary cell having non-aqueous electrolyte
IL126807A (en) * 1998-10-29 2001-08-26 Univ Ramot Nanostructure alloy anodes, process for their preparation and lithium batteries comprising said anodes
JP4789330B2 (ja) * 2001-02-22 2011-10-12 株式会社クレハ 非水溶媒二次電池用電極材料、電極および二次電池
TWI276239B (en) * 2003-05-09 2007-03-11 Sony Corp Negative electrode active material, its manufacturing method, and non-aqueous electrolytic secondary battery using the same
JP4518865B2 (ja) * 2003-09-30 2010-08-04 三洋電機株式会社 非水電解質二次電池およびその製造方法
US7432014B2 (en) * 2003-11-05 2008-10-07 Sony Corporation Anode and battery
US8231810B2 (en) * 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
CN100565978C (zh) * 2007-06-13 2009-12-02 天津大学 锂离子电池的锡钴合金负极材料及制备方法
JP2011103181A (ja) * 2009-11-10 2011-05-26 Toyota Motor Corp リチウム二次電池
KR101097269B1 (ko) * 2010-03-24 2011-12-21 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 그 제조 방법
US8928286B2 (en) * 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US9379368B2 (en) * 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
CN102643959A (zh) * 2012-05-14 2012-08-22 北京化工大学 一种在介质中电脉冲处理提高钢表面硬度的方法
CN106030868B (zh) * 2014-02-25 2019-05-21 新日铁住金株式会社 负极活性物质材料、负极和电池
CN106030867B (zh) * 2014-02-25 2019-05-21 新日铁住金株式会社 负极活性物质材料、负极和电池
KR102059887B1 (ko) * 2014-02-25 2019-12-27 닛폰세이테츠 가부시키가이샤 복합 입자, 음극 및 전지
EP3113258B1 (en) * 2014-02-25 2019-04-03 Nippon Steel & Sumitomo Metal Corporation Negative electrode active substance material, negative electrode, and cell
KR102182611B1 (ko) * 2014-02-25 2020-11-24 닛폰세이테츠 가부시키가이샤 음극 활물질 재료, 음극 및 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141995A (ja) * 2003-11-05 2005-06-02 Sony Corp 負極および電池
JP2008503048A (ja) * 2004-06-16 2008-01-31 インダストリー−アカデミック コーポレーション ファンデーション キョンサン ナショナル ユニバーシティ 電池の集電体およびアノード用のハイブリッド超弾性金属−金属硫化物材料
US20080233479A1 (en) 2007-03-21 2008-09-25 Min-Seok Sung Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JP2010218958A (ja) * 2009-03-18 2010-09-30 Akita Univ 銅−錫含有ペースト、銅−錫含有ペーストの製造方法、リチウムイオン二次電池用電極、および、銅−錫含有ペースト形成用キット

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.MIURA; Y.MORITA; N.NAKANISHI: "Shape Memory Effects in Alloys", 1975, PLENUM PRESS, pages: 389
See also references of EP2889936A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10270092B2 (en) * 2014-02-25 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Negative electrode active material, negative electrode and battery
WO2015129267A1 (ja) * 2014-02-25 2015-09-03 新日鐵住金株式会社 負極活物質材料、負極及び電池
JPWO2015129267A1 (ja) * 2014-02-25 2017-03-30 新日鐵住金株式会社 負極活物質材料、負極及び電池
WO2015129270A1 (ja) * 2014-02-25 2015-09-03 新日鐵住金株式会社 負極活物質材料、負極及び電池
JP2018200876A (ja) * 2014-02-25 2018-12-20 新日鐵住金株式会社 負極活物質材料、負極及び電池
WO2017164395A1 (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 銅合金及びその製造方法
US10774401B2 (en) 2016-03-25 2020-09-15 Ngk Insulators, Ltd. Copper alloy and method for producing same
JPWO2017164395A1 (ja) * 2016-03-25 2019-02-14 日本碍子株式会社 銅合金及びその製造方法
WO2017200046A1 (ja) * 2016-05-18 2017-11-23 新日鐵住金株式会社 負極活物質材料、負極及び電池
US20190190021A1 (en) * 2016-05-18 2019-06-20 Nippon Steel & Sumitomo Metal Corporation Negative electrode active material, negative electrode, and battery
US11056687B2 (en) * 2016-05-18 2021-07-06 Nippon Steel Corporation Negative electrode active material, negative electrode, and battery
JP6515363B1 (ja) * 2017-07-18 2019-05-22 日本製鉄株式会社 負極活物質材料、負極及び電池
WO2019017349A1 (ja) * 2017-07-18 2019-01-24 新日鐵住金株式会社 負極活物質材料、負極及び電池
JP2019167573A (ja) * 2018-03-22 2019-10-03 国立大学法人横浜国立大学 Cu−Sn−Si系超弾性合金及びその製造方法
WO2020149404A1 (ja) * 2019-01-17 2020-07-23 日本製鉄株式会社 負極活物質材料、負極及び電池
JPWO2020149404A1 (ja) * 2019-01-17 2021-02-18 日本製鉄株式会社 負極活物質材料、負極及び電池
CN113316559A (zh) * 2019-01-17 2021-08-27 日本制铁株式会社 负极活性物质材料、负极和电池
CN113316559B (zh) * 2019-01-17 2023-06-06 日本制铁株式会社 负极活性物质材料、负极和电池

Also Published As

Publication number Publication date
CA2881801A1 (en) 2014-03-06
IN2015DN01183A (ja) 2015-06-26
CN104756289A (zh) 2015-07-01
MX2015002323A (es) 2015-06-05
CN111628161A (zh) 2020-09-04
RU2015108800A (ru) 2016-10-20
EP2889936A1 (en) 2015-07-01
RU2630229C2 (ru) 2017-09-06
HUE048432T2 (hu) 2020-07-28
JPWO2014034104A1 (ja) 2016-08-08
US10381640B2 (en) 2019-08-13
JP5729520B2 (ja) 2015-06-03
KR101729868B1 (ko) 2017-04-24
EP2889936A4 (en) 2016-04-27
EP2889936B1 (en) 2020-01-08
CN111628161B (zh) 2023-05-05
MY181261A (en) 2020-12-21
CA2881801C (en) 2017-07-18
US20150200392A1 (en) 2015-07-16
PL2889936T3 (pl) 2020-06-15
BR112015003323A2 (pt) 2017-07-04
KR20150043462A (ko) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5729520B2 (ja) 負極活物質材料
JP6265259B2 (ja) 負極活物質材料、負極及び電池
JP6350646B2 (ja) 負極活物質材料、負極及び電池
JP6365658B2 (ja) 複合粒子、負極及び電池
JP6737305B2 (ja) 負極活物質材料、負極及び電池
JP6265258B2 (ja) 負極活物質材料、負極及び電池
JP6331463B2 (ja) 負極活物質材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532792

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14419969

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2881801

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013833607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/002323

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157006511

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015108800

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015003323

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015003323

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150213