WO2014030255A1 - 最適化プログラム、および、対基板作業システム - Google Patents

最適化プログラム、および、対基板作業システム Download PDF

Info

Publication number
WO2014030255A1
WO2014030255A1 PCT/JP2012/071465 JP2012071465W WO2014030255A1 WO 2014030255 A1 WO2014030255 A1 WO 2014030255A1 JP 2012071465 W JP2012071465 W JP 2012071465W WO 2014030255 A1 WO2014030255 A1 WO 2014030255A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
procedure
machines
circuit board
paths
Prior art date
Application number
PCT/JP2012/071465
Other languages
English (en)
French (fr)
Inventor
和也 深尾
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to US14/423,499 priority Critical patent/US9804592B2/en
Priority to CN201280075297.7A priority patent/CN104584710B/zh
Priority to PCT/JP2012/071465 priority patent/WO2014030255A1/ja
Priority to JP2014531469A priority patent/JP6109178B2/ja
Priority to EP12883369.6A priority patent/EP2890230B1/en
Publication of WO2014030255A1 publication Critical patent/WO2014030255A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the transport system
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/085Production planning, e.g. of allocation of products to machines, of mounting sequences at machine or facility level
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers

Definitions

  • the present invention relates to an on-board work system in which work is sequentially performed on a circuit board to be transported, and an optimization program for optimizing a work procedure for each work machine in the system.
  • the board-to-board work system usually includes a plurality of work machines arranged. And a circuit board is conveyed over what was arrange
  • each work machine includes a pair of transfer devices, and a circuit board is transferred by the pair of transfer devices in order to improve productivity. That is, there is a system in which a circuit board is transported by two paths.
  • the on-board working system described in the following patent document is an example of a system in which a circuit board is conveyed by two paths.
  • the work time for two circuit boards for each work machine when working on a dual lane, the work time for two circuit boards for each work machine, more specifically, the work time for a circuit board transported on one path and the transport path on the other path.
  • the method for optimizing the work time is different between the work in the single lane and the work in the dual lane.
  • the present invention has been made in view of such a situation, and in a system capable of executing work in a single lane and work in a dual lane, by optimizing the work time in each work machine, Provided are an optimization program capable of reducing work time and a substrate work system.
  • an optimization program has a pair of substrate transfer devices for transferring a circuit board through two paths, and includes a plurality of substrate transfer devices arranged in a row.
  • An optimization program for optimizing a work procedure comprising: a work time for a circuit board transported on one of the two paths in each of the plurality of work machines; and a work time for a circuit board transported on the other First work setting means for setting a work procedure for each of the plurality of work machines so that a total work time is optimized, and for each of the plurality of work machines with respect to a circuit board conveyed on one of the two paths.
  • work Second work setting means for setting a work procedure for each of the plurality of work machines so that the working time for each of the plurality of work machines is optimized with respect to the circuit board conveyed on the other side And a first work procedure that is a work procedure for each of the plurality of work machines set by the first work setting means based on a planned production number in the substrate work system, and the second work setting means. And a procedure selecting means for selecting any one of the second work procedures, which are work for each of the set work machines.
  • an operation performed on one of the two paths is an operation on one of both sides of the circuit board, and the two The work performed on the other side of the path is a work on the other of both sides of the circuit board.
  • the procedure selection means uses only one of the two routes of the planned production number.
  • the number of circuit boards in which one work is used which is the number of circuit boards on which work is performed, and the number of circuit boards in which work is performed using both of the two paths of the planned production number
  • One of the first work procedure and the second work procedure is selected based on the number of circuit boards in use.
  • the procedure selecting means includes the number of circuit boards in use of the one path and the 2 Using the number of circuit boards at the time of route calculation, the total time required for the first work procedure of all the plurality of work machines and the total time required for the second work procedure of all of the plurality of work machines are calculated, When the total time required for the first work procedure is shorter than the total time required for the second work procedure, the first work procedure is selected, and the total time required for the second work procedure is the total required for the first work procedure When the time is shorter than the time, the second work procedure is selected.
  • the substrate work system includes a pair of substrate transport devices for transporting the circuit board through two paths, a plurality of work machines arranged in a row, and the plurality of work machines.
  • a control device that controls the operation of each work machine, and a circuit board on which the circuit board is conveyed by the two paths over the plurality of work machines arranged from the upstream side to the downstream side
  • the control device performs a total work of a work time for the circuit board transported on one of the two paths in each of the plurality of work machines and a work time for the circuit board transported on the other
  • a first work procedure based control unit that controls the operation of the plurality of work implements according to the set work procedure for each of the plurality of work implements, and transports one of the two routes so that time is optimized Vs circuit board
  • the plurality of work machines set so that the work time for each of the plurality of work machines is optimized and the work time for each of the plurality of work machines with respect to the circuit board transported on the other side is optimized And
  • the control device includes the first work procedure dependent control unit and the second work procedure dependent control unit. It has a control selection part which chooses which control part controls operation of a plurality of above-mentioned work machines.
  • control selection unit performs the first work on the basis of the planned production number in the on-board work system. It is characterized in that it is selected by any one of the procedure dependent control unit and the second work procedure dependent control unit whether to control the operation of the plurality of work implements.
  • the control selection unit uses only one of the two routes of the planned production number. When using one path, which is the number of circuit boards on which work is performed, and when using two paths, which is the number of circuit boards on which work is performed using both of the two paths of the planned production number Based on the number of circuit boards, it is selected which of the first work procedure dependence control unit and the second work procedure dependence control unit controls the operation of the plurality of work machines. And
  • the first work setting means sets the first work procedure so that the work time in the dual lane is optimized
  • the second work setting means sets the single work lane.
  • the second work procedure is set so that the work time is optimized.
  • the procedure selection means the first work procedure and the second work procedure are selected based on the planned production number of circuit boards. Specifically, for example, when the planned production number is S and the number of processes in the single lane is A, the number of processes in the dual lane is (SA). In this case, it is desirable that the smaller the planned production number S is, the higher the ratio of the single lane processing number A to the planned production number S is, and the second work procedure is selected.
  • the ratio of the dual lane processing number (SA) to the planned production number S increases, and it is desirable to select the first work procedure. For this reason, for example, when the production schedule number S is small, the second work procedure is selected, and when the production schedule number S is large, the first work procedure is selected to optimize the work time of each work machine. This makes it possible to shorten the work time.
  • SA dual lane processing number
  • the first work procedure and the second work procedure are selected based on the single lane processing number A and the dual lane processing number (SA). This makes it possible to optimize the work time more effectively.
  • the total time required for the first work procedure and the total time required for the second work procedure based on the single lane processing number A and the dual lane processing number (SA). And are calculated.
  • SA dual lane processing number
  • control according to the first work procedure and the control according to the second work procedure are selectively executed. As a result, it is possible to select an optimal work procedure according to the work, and to shorten the work time.
  • the on-board work system according to claim 6 is provided with a control selection unit for selecting one of the control according to the first work procedure and the control according to the second work procedure. Yes. This makes it possible to select optimal control.
  • the first work procedure and the second work procedure are selected based on the planned production number. As a result, it is possible to obtain the same effect as the optimization program according to the first aspect.
  • the total time required for the first work procedure and the total work required for the second work procedure based on the single lane processing number A and the dual lane processing number (SA). Time is calculated.
  • SA dual lane processing number
  • FIG. 1 shows a substrate working system 10.
  • a system 10 shown in FIG. 1 is a system for mounting electronic components on a circuit board.
  • the on-board working system 10 includes four electronic component mounting apparatuses (hereinafter, may be abbreviated as “mounting apparatuses”) 12.
  • the four mounting devices 12 are arranged in a row in an adjacent state.
  • the direction in which the mounting devices 12 are arranged is referred to as the X-axis direction
  • the horizontal direction perpendicular to the direction is referred to as the Y-axis direction.
  • the four mounting devices 12 have substantially the same configuration. Therefore, one of the four mounting devices 12 will be described as a representative.
  • the mounting device 12 has one system base 14 and two mounting machines 16 adjacent to the system base 14.
  • Each mounting machine 16 mainly includes a mounting machine main body 20, a transport device 22, a mounting head 24, a mounting head moving device (hereinafter sometimes abbreviated as “moving device”) 26, and a supply device 28.
  • the mounting machine main body 20 includes a frame portion 30 and a beam portion 32 that is overlaid on the frame portion 30.
  • the transport device 22 includes two conveyor devices 40 and 42.
  • the two conveyor devices 40 and 42 are disposed in the frame portion 30 so as to be parallel to each other and extend in the X-axis direction.
  • Each of the two conveyor devices 40 and 42 conveys a circuit board supported by the conveyor devices 40 and 42 in the X-axis direction by an electromagnetic motor (see FIG. 3) 46.
  • the circuit board is fixedly held by a board holding device (see FIG. 3) 48 at a predetermined position.
  • one of the two conveyor devices 40, 42 is the first conveyor device 40, and the other conveyor device is the second conveyor device 42. Sometimes called.
  • the moving device 26 is an XY robot type moving device.
  • the moving device 26 includes an electromagnetic motor (see FIG. 3) 52 that slides the slider 50 in the X-axis direction and an electromagnetic motor (see FIG. 3) 54 that slides in the Y-axis direction.
  • the mounting head 24 is attached to the slider 50, and the mounting head 24 is moved to an arbitrary position on the frame unit 30 by the operation of the two electromagnetic motors 52 and 54.
  • the supply device 28 is a feeder-type supply device, and is disposed at the front end of the frame portion 30.
  • the supply device 28 has a tape feeder 70.
  • the tape feeder 70 accommodates the taped component in a wound state.
  • the taped component is a taped electronic component.
  • the tape feeder 70 sends out the taped parts by a delivery device (see FIG. 3) 76.
  • the feeder type supply device 28 supplies the electronic component at the supply position by feeding the taped component.
  • the mounting head 24 mounts electronic components on the circuit board.
  • the mounting head 24 has a suction nozzle 78 provided on the lower end surface.
  • the suction nozzle 78 communicates with a positive / negative pressure supply device (see FIG. 3) 80 via negative pressure air and positive pressure air passages.
  • the suction nozzle 78 sucks and holds the electronic component with a negative pressure, and releases the held electronic component with a positive pressure.
  • the mounting head 24 has a nozzle lifting / lowering device (see FIG. 3) 82 that lifts and lowers the suction nozzle 78.
  • the mounting head 24 changes the vertical position of the electronic component to be held by the nozzle lifting device 82.
  • the substrate work system 10 includes a control device 90 as shown in FIG.
  • the control device 90 includes a controller 92 and a plurality of drive circuits 96.
  • the plurality of drive circuits 96 are connected to the electromagnetic motors 46, 52, 54, the substrate holding device 48, the delivery device 76, the positive / negative pressure supply device 80, and the nozzle lifting / lowering device 82.
  • the controller 92 includes a CPU, a ROM, a RAM, and the like, mainly a computer, and is connected to a plurality of drive circuits 96. Thereby, the operation of the transport device 22 and the moving device 26 is controlled by the controller 92.
  • the circuit board is placed in the first conveyor device 40 of the mounting machine 16 arranged at the most upstream of the eight mounting machines 16. It is sequentially carried in.
  • each of the eight mounting machines 16 is arranged in order from the most upstream one, the first mounting machine 16a, the second mounting machine 16b, the third mounting machine 16c, and the fourth mounting machine 16d.
  • a fifth mounting machine 16e, a sixth mounting machine 16f, a seventh mounting machine 16g, and an eighth mounting machine 16h is arranged in order from the most upstream one, the first mounting machine 16a, the second mounting machine 16b, the third mounting machine 16c, and the fourth mounting machine 16d.
  • a plurality of circuit boards are sequentially conveyed from the first mounting machine 16a to the eighth mounting machine 16h, and mounting work is performed in each mounting machine 16 so that an electronic component is mounted on one surface of the circuit board.
  • the And a circuit board is carried out from the 8th mounting machine 16h.
  • the unloaded circuit board is reversed and loaded into the second conveyor device 42 of the first mounting machine 16a. For this reason, in each mounting machine 16 until a circuit board is carried in from the 1st conveyor apparatus 40 of the 8th mounting machine 16h after carrying in in the 1st conveyor apparatus 40 of the 1st mounting machine 16a, a circuit board A mounting operation is performed on one of the surfaces.
  • the inverted circuit board is carried into the second conveyor device 42 of the first mounting machine 16a, in each mounting machine 16, mounting work on one surface of the circuit board and mounting work on the other surface And done.
  • a predetermined number A of circuit boards out of the planned production number S is mounted in one route, in other words, mounted in a single lane.
  • the mounting operation for the predetermined number A of circuit boards is completed, the mounting operation in two paths, in other words, the mounting operation in the dual lane is performed. That is, the mounting operation in the dual lane is performed on (SA) circuit boards.
  • the circuit board of the planned production number S is carried into the first conveyor device 40 of the first mounting machine 16a, the circuit board is not carried into the first conveyor device 40. Then, when the number S of circuit boards to be produced is carried out from the first conveyor device 40 of the eighth mounting machine 16h, the mounting operation in the dual lane is completed, and only the second conveyor device 42 is mounted. That is, in the second conveyor device 42, the mounting operation in a single lane is performed on a predetermined number A of circuit boards.
  • Each mounting machine 16 is provided with the two conveyor devices 40 and 42 as described above, and can perform mounting work in a dual lane. However, each mounting machine 16 is provided with only one mounting head 24, and when mounting on a dual lane, one mounting head 24 mounts electronic components on two circuit boards. There is a need to. Therefore, when the number of circuit boards processed in dual lanes (hereinafter sometimes referred to as “dual lane processing number”) (SA) is large, the working time for each mounting machine 16 is optimized. It is desirable. In other words, the working time for the circuit board transported to the first conveyor device 40 in each mounting machine 16 (hereinafter sometimes referred to as “first working time”) and the work for the circuit board transported to the second conveyor device 42. It is desirable that the total time with time (hereinafter also referred to as “second work time”) is leveled in each mounting machine 16.
  • first working time the working time for the circuit board transported to the first conveyor device 40 in each mounting machine 16
  • second work time the total time with time
  • FIG. 4 shows the relationship between the first work time, the second work time, and the total time when the total time is leveled.
  • FIG. 4A is a graph showing the first work time for each mounting machine 16.
  • FIG. 4B is a graph showing the second work time for each mounting machine 16.
  • FIG. 4C is a graph showing the total time for each mounting machine 16.
  • the first work time and the second work time are different for each mounting machine 16, but the total time is leveled in each mounting machine 16. Thereby, it is possible to shorten the time required for the mounting work in the dual lane.
  • the number A of circuit board processes in a single lane (hereinafter sometimes referred to as “the number of single lane processes”) A is large, the work time for each mounting machine 16 in each lane is optimized. It is desirable. That is, it is desirable that the first work time and the second work time are leveled in each mounting machine 16.
  • FIG. 5 shows the relationship between the first work time, the second work time, and the total time when the first work time and the second work time are leveled.
  • FIG. 5A is a graph showing the first work time for each mounting machine 16.
  • FIG. 5B is a graph showing the second work time for each mounting machine 16.
  • FIG. 5C is a graph showing the total time for each mounting machine 16.
  • the first work time is standardized at t S1
  • the second work time is standardized at t S2 .
  • the standardized first work time t S1 is shorter than the maximum value t D1 of the first work time when the total time is leveled (see FIG. 4A).
  • the standardized second work time t S2 is shorter than the maximum value t D2 (see FIG. 4B) of the second work time when the total time is leveled. That is, by leveling the first work time and the second work time, the time required for the mounting work in the single lane can be shortened.
  • the total time for the first working time and the second working time was leveled has a t St.
  • the total time when the total time is leveled is t Dt as shown in FIG. 4C and is shorter than t St. From this, it can be seen that the installation time in the dual lane can be shortened by leveling the total time.
  • the work procedure of the mounting machine 16 set to level the total time (hereinafter sometimes referred to as “first work procedure”), the first work
  • the work procedure of the mounting machine 16 set so as to equalize the time and the second work time (hereinafter may be referred to as “second work procedure”) is set.
  • the work procedure of the mounting machine 16 is a set of the type, number, mounting location, and the like of electronic components mounted by each mounting machine 16, and each mounting machine 16 operates according to the work procedure.
  • T 1 t D1 ⁇ A + t Dt ⁇ ( SA ) + t D2 ⁇ A
  • [t D1 ⁇ A] is the total work time in the single lane in the first conveyor device 40.
  • [T Dt ⁇ ( SA )] is the total work time in the dual lane.
  • [T D2 ⁇ A] is the total work time in the single lane in the second conveyor device 42.
  • T 2 t S1 ⁇ A + t St ⁇ ( SA ) + t S2 ⁇ A
  • [t S1 ⁇ A] is the total work time in the single lane in the first conveyor device 40.
  • [T St ⁇ ( SA )] is the total work time in the dual lane.
  • [T S2 ⁇ A] is the total work time in the single lane in the second conveyor device 42.
  • the total Total Work T 1 is the shorter than the total Total Work T 2, the operation of the mounting machine 16 is controlled in accordance with the first working procedure.
  • total Total Work T 2 is shorter than the total Total Work T 1, the operation of the mounting machine 16 is controlled in accordance with the second working step.
  • the operation of the mounting machine 16 can be controlled according to the processing procedure corresponding to the number of dual lane processes (SA) and the number of single lane processes A, and the working time can be shortened.
  • SA dual lane processes
  • the controller 92 of the control apparatus 90 has the 1st work procedure dependence control part 100, the 2nd work procedure dependence control part 102, and the control selection part 104, as shown in FIG.
  • the first work procedure dependence control unit 100 is a functional unit that controls the operation of the mounting machine 16 according to the first work procedure.
  • the 2nd work procedure dependence control part 102 is a function part which controls the action
  • the control selection unit 104 is a functional unit that selects which of the first work procedure dependence control unit 100 and the second work procedure dependence control unit 102 is to control the operation of the mounting machine 16.
  • the first work procedure and the second work procedure are set by the optimization program 110 stored in the controller 92 of the control device 90.
  • the controller 92 stores various types of information such as the type, number, and mounting position of electronic components to be mounted on the circuit board.
  • the type, number, mounting position, and the like of the electronic components to be mounted on each mounting machine 16 are set so that the total time is leveled. Is set.
  • the type, number, mounting position, and the like of electronic components to be mounted on each mounting machine 16 are set so that the first work time and the second work time are leveled.
  • the second work procedure is set.
  • the selection of the first work procedure and the second work procedure is performed by the control selection unit 104.
  • the optimization program 110 By executing the optimization program 110, the first work procedure and the second work procedure are selected. It is possible to make selections with procedures. Specifically, by executing the optimization program 110, the grand total working time T 1 and the total Total Work T 2 is calculated, the two grand total working time T 1, T 2 are compared. Then, if the total Total Work T 1 is less than the total Total Work T 2, the first working procedure is selected, if the total Total Work T 2 is shorter than the total Total Work T 1, the second work procedure Is selected. In other words, by executing the optimization program 110, it is possible to select an optimal work procedure and reduce the work time.
  • the optimization program 110 includes a first work setting unit 112, a second work setting unit 114, and a procedure selection unit 116, as shown in FIG.
  • the first work setting unit 112 causes the controller 92 to execute a process for setting the first work procedure.
  • the second work setting unit 114 causes the controller 92 to execute processing for setting the second work procedure.
  • the procedure selection means 116 causes the controller 92 to execute processing for selecting the first work procedure and the second work procedure.
  • the board-to-board working system 10 is an example of the board-to-board working system.
  • the mounting machine 16 is an example of a work machine.
  • the conveyor devices 40 and 42 are an example of a substrate transfer device.
  • the control device 90 is an example of a control device.
  • the first work procedure dependency control unit 100, the second work procedure dependency control unit 102, and the control selection unit 104 of the control device 90 are examples of the first work procedure dependency control unit, the second work procedure dependency control unit, and the control selection unit. is there.
  • the optimization program 110 is an example of an optimization program.
  • the first work setting means 112, the second work setting means 114, and the procedure selection means 116 of the optimization program 110 are an example of a first work setting means, a second work setting means, and a procedure selection means.
  • the planned production number S is an example of the planned production number.
  • the single lane processing number A is an example of the number of circuit boards when one path is used.
  • the number of dual lane processes (SA) is an example of the number of circuit boards when using two paths.
  • the selection of the first work procedure and the second work procedure is performed based on the single lane processing number A and the dual lane processing number (SA).
  • SA dual lane processing number
  • the first work procedure and the second work procedure may be selected.
  • the smaller the planned production number S the higher the ratio of the single lane processing number A to the planned production number S, and it is desirable that the second work procedure is selected.
  • the ratio of the dual lane processing number (SA) to the planned production number S increases, and it is desirable to select the first work procedure. Therefore, for example, when the planned production number S is less than a predetermined number, the second work procedure may be selected, and when the planned production number S is greater than or equal to the predetermined number, the first work procedure may be selected.
  • control selection unit 104 selects the first work procedure and the second work procedure.
  • the worker selects the first work procedure and the second work procedure. It is possible. Specifically, for example, a selection button for selecting the first work procedure and the second work procedure is provided, and the selection of the first work procedure and the second work procedure can be performed by operating the selection button. Is possible.
  • control according to one of the first work procedure and the second work procedure is performed during the production of the circuit board with the planned production number S, but the first work procedure is followed.
  • the control according to the second work procedure may be switched according to the situation. Specifically, during production of a circuit board of the planned production number S, control according to the second work procedure is executed when mounting on a single lane, and control according to the first work procedure is performed when mounting on a dual lane. May be executed.
  • the optimization program 110 is stored in the controller 92 of the control device 90, but may be stored in another control device. In other words, the optimization program 110 may be stored in a control device that is independent of the substrate work system 10.
  • Counter work system 16 Mounting machine (work machine) 40: Conveyor device (substrate transport device) 42: Conveyor device (substrate transport device) 90: Control device 100: First work procedure based control unit 102: Second work Procedure-based control unit 104: Control selection unit 110: Optimization program 112: First work setting means 114: Second work setting means 116: Procedure selection means

Abstract

 回路基板を2つの経路で搬送することが可能な対基板作業システムにおける複数の作業機毎の作業手順を最適化させる最適化プログラムにおいて、複数の作業機の各々での2つの経路の一方で搬送される回路基板に対する作業時間tD1と他方で搬送される回路基板に対する作業時間tD2との合計作業時間tDtが最適化されるように、作業機毎の作業手順を設定する第1作業設定手段と、作業時間tD1と作業時間tD2とが最適化されるように、作業機毎の作業手順を設定する第2作業設定手段とを含み、システムでの生産予定数に基づいて、第1作業設定手段により設定された作業手順と、第2作業設定手段により設定された作業手順との何れかを選択する。これにより、各作業機の作業時間の最適化を図り、作業時間の短縮を図ることが可能となる。

Description

最適化プログラム、および、対基板作業システム
 本発明は、搬送される回路基板に対して作業が順次実行される対基板作業システム、および、そのシステムにおける作業機毎の作業手順を最適化させる最適化プログラムに関するものである。
 対基板作業システムは、通常、配列された複数の作業機を備えている。そして、回路基板が、それら複数の作業機の上流側に配置されたものから下流側に配置されたものにわたって搬送される。また、対基板作業システムには、生産性の向上を図るべく、各作業機が1対の搬送装置を備え、それら1対の搬送装置によって回路基板が搬送されるシステムが存在する。つまり、2つの経路で回路基板が搬送されるシステムが存在する。下記特許文献に記載されている対基板作業システムは、2つの経路で回路基板が搬送されるシステムの一例である。
特開2011-134919号公報
 2つの経路で回路基板が搬送されるシステムでは、2つの経路のうちの一方の経路で搬送される回路基板に作業が行われる場合と、2つの経路で搬送される回路基板に作業が行われる場合とがある。つまり、シングルレーンでの作業が行われる場合とデュアルレーンでの作業が行われる場合がある。シングルレーンでの作業が行われる場合には、作業機毎の1枚の回路基板に対する作業時間、詳しく言えば、一方の経路で搬送される回路基板に対する作業機毎の作業時間を最適化することで、作業時間の短縮を図ることが可能となる。
 一方、デュアルレーンでの作業が行われる場合には、作業機毎の2枚の回路基板に対する作業時間、詳しく言えば、一方の経路で搬送される回路基板に対する作業時間と他方の経路で搬送される回路基板に対する作業時間との合計時間を最適化することで、作業時間の短縮を図ることが可能となる。このように、シングルレーンでの作業とデュアルレーンでの作業とでは、作業時間を最適化する手法が異なっている。本発明は、そのような実情に鑑みてなされたものであり、シングルレーンでの作業とデュアルレーンでの作業とを実行可能なシステムにおいて、各作業機での作業時間を最適化することで、作業時間の短縮を図ることが可能な最適化プログラムおよび、対基板作業システムを提供する。
 上記課題を解決するために、本願の請求項1に記載の最適化プログラムは、回路基板を2つの経路で搬送するための1対の基板搬送装置を有し、1列に配列された複数の作業機を備え、前記複数の作業機の上流側に配置されたものから下流側に配置されたものにわたって回路基板が前記2つの経路で搬送される対基板作業システムにおける前記複数の作業機毎の作業手順を最適化させる最適化プログラムであって、前記複数の作業機の各々での前記2つの経路の一方で搬送される回路基板に対する作業時間と他方で搬送される回路基板に対する作業時間との合計作業時間が最適化されるように、前記複数の作業機毎の作業手順を設定する第1作業設定手段と、前記2つの経路の一方で搬送される回路基板に対する前記複数の作業機毎の作業時間が最適化されるとともに、他方で搬送される回路基板に対する前記複数の作業機毎の作業時間が最適化されるように、前記複数の作業機毎の作業手順を設定する第2作業設定手段と、前記対基板作業システムでの生産予定数に基づいて、前記第1作業設定手段により設定された前記複数の作業機毎の作業手順である第1作業手順と、前記第2作業設定手段により設定された前記複数の作業機毎の作業である第2作業手順との何れかを選択する手順選択手段とを含むことを特徴とする。
 また、請求項2に記載の最適化プログラムでは、請求項1に記載の最適化プログラムにおいて、前記2つの経路の一方で行われる作業は、回路基板の両面の一方に対する作業であり、前記2つの経路の他方で行われる作業は、回路基板の両面の他方に対する作業であることを特徴とする。
 また、請求項3に記載の最適化プログラムでは、請求項1または請求項2に記載の最適化プログラムにおいて、前記手順選択手段が、前記生産予定数のうちの前記2つの経路の一方のみを使用して作業が行われる回路基板の数である1経路使用時回路基板数と、前記生産予定数のうちの前記2つの経路の両方を使用して作業が行われる回路基板の数である2経路使用時回路基板数とに基づいて、前記第1作業手順と前記第2作業手順との何れかを選択することを特徴とする。
 また、請求項4に記載の最適化プログラムでは、請求項1ないし請求項3のいずれか1つに記載の最適化プログラムにおいて、前記手順選択手段は、前記1経路使用時回路基板枚数と前記2経路使用時回路基板数とを用いて、前記複数の作業機全ての前記第1作業手順に要する合計時間と前記複数の作業機全ての前記第2作業手順に要する合計時間とを演算し、前記第1作業手順に要する合計時間が前記第2作業手順に要する合計時間より短い場合に、前記第1作業手順を選択し、前記第2作業手順に要する合計時間が前記第1作業手順に要する合計時間より短い場合に、前記第2作業手順を選択することを特徴とする。
 また、請求項5に記載の対基板作業システムは、回路基板を2つの経路で搬送するための1対の基板搬送装置を有し、1列に配列された複数の作業機と、それら複数の作業機の各々の作動を制御する制御装置とを備え、前記複数の作業機の上流側に配置されたものから下流側に配置されたものにわたって回路基板が前記2つの経路で搬送される対基板作業システムであって、前記制御装置が、前記複数の作業機の各々での前記2つの経路の一方で搬送される回路基板に対する作業時間と他方で搬送される回路基板に対する作業時間との合計作業時間が最適化されるように、設定された前記複数の作業機毎の作業手順に従って、前記複数の作業機の作動を制御する第1作業手順依拠制御部と、前記2つの経路の一方で搬送される回路基板に対する前記複数の作業機毎の作業時間が最適化されるとともに、他方で搬送される回路基板に対する前記複数の作業機毎の作業時間が最適化されるように、設定された前記複数の作業機毎の作業手順に従って、前記複数の作業機の作動を制御する第2作業手順依拠制御部とを有することを特徴とする。
 また、請求項6に記載の対基板作業システムでは、請求項5に記載の対基板作業システムにおいて、前記制御装置が、前記第1作業手順依拠制御部と前記第2作業手順依拠制御部とのいずれの制御部により、前記複数の作業機の作動を制御するかを選択する制御選択部を有することを特徴とする。
 また、請求項7に記載の対基板作業システムでは、請求項6に記載の対基板作業システムにおいて、前記制御選択部が、当該対基板作業システムでの生産予定数に基づいて、前記第1作業手順依拠制御部と前記第2作業手順依拠制御部とのいずれの制御部により、前記複数の作業機の作動を制御するかを選択することを特徴とする。
 また、請求項8に記載の対基板作業システムでは、請求項7に記載の対基板作業システムにおいて、前記制御選択部が、前記生産予定数のうちの前記2つの経路の一方のみを使用して作業が行われる回路基板の数である1経路使用時回路基板数と、前記生産予定数のうちの前記2つの経路の両方を使用して作業が行われる回路基板の数である2経路使用時回路基板数とに基づいて、前記第1作業手順依拠制御部と前記第2作業手順依拠制御部とのいずれの制御部により、前記複数の作業機の作動を制御するかを選択することを特徴とする。
 請求項1に記載の最適化プログラムでは、第1作業設定手段において、デュアルレーンでの作業時間が最適化されるように、第1作業手順が設定され、第2作業設定手段において、シングルレーンでの作業時間が最適化されるように、第2作業手順が設定されている。そして、手順選択手段において、回路基板の生産予定数に基づいて、第1作業手順と第2作業手順との選択が行われる。具体的には、例えば、生産予定数がS枚であり、シングルレーンでの処理数がA枚である場合には、デュアルレーンでの処理数は(S-A)枚となる。この場合、生産予定数Sが少ないほど、シングルレーン処理数Aの生産予定数Sに対する比率が高くなり、第2作業手順が選択されることが望ましい。一方、生産予定数Sが多いほど、デュアルレーン処理数(S-A)の生産予定数Sに対する比率が高くなり、第1作業手順が選択されることが望ましい。このため、例えば、生産予定数Sが少ない場合に、第2作業手順を選択し、生産予定数Sが多い場合に、第1作業手順を選択することで、各作業機の作業時間の最適化を図り、作業時間の短縮を図ることが可能となる。
 また、請求項2に記載の最適化プログラムでは、回路基板の両面に電子部品が装着される。両面に電子部品が装着される回路基板の生産時には、通常、生産初期において、シングルレーンでの作業が行われ、シングルレーンでの処理数Aが終了した後に、デュアルレーンでの作業が行われる。このことから、請求項2に記載の最適化プログラムによれば、生産予定数に基づいて第1作業手順と第2作業手順との選択を行う効果が、充分に発揮される。
 また、請求項3に記載の最適化プログラムでは、シングルレーン処理数Aとデュアルレーン処理数(S-A)とに基づいて、第1作業手順と第2作業手順との選択が行われる。これにより、さらに効果的に作業時間の最適化を図ることが可能となる。
 また、請求項4に記載の最適化プログラムでは、シングルレーン処理数Aとデュアルレーン処理数(S-A)とに基づいて、第1作業手順に要する合計時間と第2作業手順に要する合計時間とが演算される。そして、第1作業手順に要する合計時間が第2作業手順に要する合計時間より短い場合に、第1作業手順が選択され、第2作業手順に要する合計時間が第1作業手順に要する合計時間より短い場合に、第2作業手順が選択される。これにより、確実に作業時間の短縮を図ることが可能となる。
 また、請求項5に記載の対基板作業システムでは、第1作業手順に従った制御と第2作業手順に従った制御とが選択的に実行される。これにより、作業に応じた最適な作業手順を選択することが可能となり、作業時間の短縮を図ることが可能となる。
 また、請求項6に記載の対基板作業システムには、第1作業手順に従った制御と第2作業手順に従った制御とのいずれかの制御を選択するための制御選択部が設けられている。これにより、最適な制御を選択することが可能となる。
 また、請求項7に記載の対基板作業システムでは、生産予定数に基づいて、第1作業手順と第2作業手順との選択が行われる。これにより、請求項1に記載の最適化プログラムと同様の効果を得ることが可能となる。
 また、請求項8に記載の対基板作業システムでは、シングルレーン処理数Aとデュアルレーン処理数(S-A)とに基づいて、第1作業手順に要する合計時間と第2作業手順に要する合計時間とが演算される。そして、第1作業手順に要する合計時間が第2作業手順に要する合計時間より短い場合に、第1作業手順が選択され、第2作業手順に要する合計時間が第1作業手順に要する合計時間より短い場合に、第2作業手順が選択される。これにより、請求項4に記載の最適化プログラムと同様の効果を得ることが可能となる。
本発明の実施例である対基板作業システムを示す斜視図である。 対基板作業システムが備える装着装置を示す斜視図である。 対基板作業システムが備える制御装置を示すブロック図である。 第1作業手順に従って設定された装着機毎の第1作業時間を示すグラフである。 第1作業手順に従って設定された装着機毎の第2作業時間を示すグラフである。 第1作業手順に従って設定された装着機毎の合計時間を示すグラフである。 第2作業手順に従って設定された装着機毎の第1作業時間を示すグラフである。 第2作業手順に従って設定された装着機毎の第2作業時間を示すグラフである。 第2作業手順に従って設定された装着機毎の合計時間を示すグラフである。
 以下、本発明を実施するための形態として、本発明の実施例を、図を参照しつつ詳しく説明する。
 <対基板作業システムの構成>
 図1に、対基板作業システム10を示す。図1に示すシステム10は、回路基板に電子部品を実装するためのシステムである。対基板作業システム10は、4台の電子部品装着装置(以下、「装着装置」と略す場合がある)12から構成されている。4台の装着装置12は、隣接した状態で1列に配設されている。なお、以下の説明では、装着装置12の並ぶ方向をX軸方向と称し、その方向に直角な水平の方向をY軸方向と称する。
 4台の装着装置12は、互いに略同じ構成である。このため、4台の装着装置12のうちの1台を代表して説明する。装着装置12は、図2に示すように、1つのシステムベース14と、そのシステムベース14の上に隣接された2つの装着機16とを有している。各装着機16は、主に、装着機本体20、搬送装置22、装着ヘッド24、装着ヘッド移動装置(以下、「移動装置」と略す場合がある)26、供給装置28を備えている。装着機本体20は、フレーム部30と、そのフレーム部30に上架されたビーム部32とによって構成されている。
 搬送装置22は、2つのコンベア装置40,42を備えている。それら2つのコンベア装置40,42は、互いに平行、かつ、X軸方向に延びるようにフレーム部30に配設されている。2つのコンベア装置40,42の各々は、電磁モータ(図3参照)46によって各コンベア装置40,42に支持される回路基板をX軸方向に搬送する。また、回路基板は、所定の位置において、基板保持装置(図3参照)48によって固定的に保持される。なお、コンベア装置40とコンベア装置42とを区別する際には、2つのコンベア装置40,42のうちの一方のコンベア装置を第1コンベア装置40と、他方のコンベア装置を第2コンベア装置42と称する場合がある。
 移動装置26は、XYロボット型の移動装置である。移動装置26は、スライダ50をX軸方向にスライドさせる電磁モータ(図3参照)52と、Y軸方向にスライドさせる電磁モータ(図3参照)54とを備えている。スライダ50には、装着ヘッド24が取り付けられており、その装着ヘッド24は、2つの電磁モータ52,54の作動によって、フレーム部30上の任意の位置に移動させられる。
 供給装置28は、フィーダ型の供給装置であり、フレーム部30の前方側の端部に配設されている。供給装置28は、テープフィーダ70を有している。テープフィーダ70は、テープ化部品を巻回させた状態で収容している。テープ化部品は、電子部品がテーピング化されたものである。そして、テープフィーダ70は、送出装置(図3参照)76によって、テープ化部品を送り出す。これにより、フィーダ型の供給装置28は、テープ化部品の送り出しによって、電子部品を供給位置において供給する。
 装着ヘッド24は、回路基板に対して電子部品を装着するものである。装着ヘッド24は、下端面に設けられた吸着ノズル78を有している。吸着ノズル78は、負圧エア,正圧エア通路を介して、正負圧供給装置(図3参照)80に通じている。吸着ノズル78は、負圧によって電子部品を吸着保持し、保持した電子部品を正圧によって離脱する。また、装着ヘッド24は、吸着ノズル78を昇降させるノズル昇降装置(図3参照)82を有している。そのノズル昇降装置82によって、装着ヘッド24は、保持する電子部品の上下方向の位置を変更する。
 また、対基板作業システム10は、図3に示すように、制御装置90を備えている。制御装置90は、コントローラ92および複数の駆動回路96を備えている。複数の駆動回路96は、上記電磁モータ46,52,54、基板保持装置48、送出装置76、正負圧供給装置80、ノズル昇降装置82に接続されている。コントローラ92は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路96に接続されている。これにより、搬送装置22、移動装置26等の作動が、コントローラ92によって制御される。
 <対基板作業システムによる回路基板の両面に対する作業>
 上述した構成によって、対基板作業システム10では、回路基板が、8台の装着機16の内部を第1コンベア装置40によって搬送され、各装着機16によって、回路基板の一方の面に電子部品が装着される。そして、反転された回路基板が、8台の装着機16の内部を第2コンベア装置42によって搬送され、各装着機16によって、回路基板の他方の面に電子部品が装着される。これにより、対基板作業システム10では、両面に電子部品が装着された回路基板を生産することが可能となっている。
 具体的には、まず、回路基板の一方の面に対する装着作業を行うべく、8台の装着機16のうちの最上流に配置された装着機16の第1コンベア装置40内に、回路基板が順次搬入される。なお、以下の説明において、8台の装着機16の各々を、最上流に配置されたものから順に、第1装着機16a、第2装着機16b、第3装着機16c、第4装着機16d、第5装着機16e、第6装着機16f、第7装着機16g、第8装着機16hと称する。
 複数の回路基板が、第1装着機16aから第8装着機16hに渡って、順次搬送され、各装着機16において装着作業が行われることで、回路基板の一方の面に電子部品が装着される。そして、回路基板が、第8装着機16hから搬出される。その搬出された回路基板は、反転され、第1装着機16aの第2コンベア装置42内に搬入される。このため、回路基板が、第1装着機16aの第1コンベア装置40内に搬入されてから第8装着機16hの第1コンベア装置40から搬出されるまで、各装着機16内では、回路基板の一方の面に対する装着作業が行われる。一方、反転された回路基板が、第1装着機16aの第2コンベア装置42内に搬入されると、各装着機16内では、回路基板の一方の面に対する装着作業と他方の面に対する装着作業とが行われる。つまり、生産初期時には、生産予定数Sのうちの所定の枚数Aの回路基板に対して、1つの経路での装着作業、言い換えれば、シングルレーンでの装着作業が行われる。そして、所定の枚数Aの回路基板に対する装着作業が終了すると、2つの経路での装着作業、言い換えれば、デュアルレーンでの装着作業が行われる。つまり、(S-A)枚の回路基板に対して、デュアルレーンでの装着作業が行われる。
 また、生産予定数Sの回路基板が、第1装着機16aの第1コンベア装置40に搬入されると、第1コンベア装置40への回路基板の搬入が止まる。そして、生産予定数Sの回路基板が第8装着機16hの第1コンベア装置40から搬出されると、デュアルレーンでの装着作業が終了し、第2コンベア装置42のみの装着作業となる。つまり、第2コンベア装置42において、シングルレーンでの装着作業が所定の枚数Aの回路基板に対して行われる。
 各装着機16には、上述したように、2つのコンベア装置40,42が設けられており、デュアルレーンでの装着作業を行うことが可能である。しかし、各装着機16には、装着ヘッド24が1台しか設けられておらず、デュアルレーンでの装着作業時には、1台の装着ヘッド24によって、2枚の回路基板に対して電子部品を装着する必要がある。このため、デュアルレーンでの回路基板の処理数(以下、「デュアルレーン処理数」と言う場合がある)(S-A)が多い場合には、装着機16毎の作業時間が最適化されることが望ましい。つまり、各装着機16での第1コンベア装置40に搬送される回路基板に対する作業時間(以下、「第1作業時間」という場合がある)と第2コンベア装置42に搬送される回路基板に対する作業時間(以下、「第2作業時間」という場合がある)との合計時間が、各装着機16において平準化されることが望ましい。
 ここで、合計時間を平準化させた際の第1作業時間と第2作業時間と合計時間との関係を、図4に示す。図4Aは、装着機16毎の第1作業時間を示したグラフである。図4Bは、装着機16毎の第2作業時間を示したグラフである。図4Cは、装着機16毎の合計時間を示したグラフである。図から解かるように、第1作業時間および第2作業時間は、装着機16毎に異なっているが、合計時間は、各装着機16において平準化されている。これにより、デュアルレーンでの装着作業に要する時間を短くすることが可能となる。
 一方、シングルレーンでの装着作業時には、1台の装着ヘッド24によって、1枚の回路基板に対して電子部品が装着される。このため、シングルレーンでの回路基板の処理数(以下、「シングルレーン処理数」と言う場合がある)Aが多い場合には、各レーンでの装着機16毎の作業時間が最適化されることが望ましい。つまり、第1作業時間および第2作業時間が、各装着機16において平準化されることが望ましい。
 ここで、第1作業時間および第2作業時間を平準化させた際の第1作業時間と第2作業時間と合計時間との関係を、図5に示す。図5Aは、装着機16毎の第1作業時間を示したグラフである。図5Bは、装着機16毎の第2作業時間を示したグラフである。図5Cは、装着機16毎の合計時間を示したグラフである。図から解かるように、第1作業時間はtS1で標準化されており、第2作業時間はtS2で標準化されている。その標準化された第1作業時間tS1は、合計時間を平準化させた際の第1作業時間の最大値tD1(図4A参照)より短くなっている。また、標準化された第2作業時間tS2は、合計時間を平準化させた際の第2作業時間の最大値tD2(図4B参照)より短くなっている。つまり、第1作業時間および第2作業時間を平準化させることで、シングルレーンでの装着作業に要する時間を短くすることが可能となる。
 なお、第1作業時間および第2作業時間を平準化させた際の合計時間は、tStとなっている。一方、合計時間を平準化させた際の合計時間は、図4Cに示すように、tDtとなっており、tStより短い。このことから、合計時間の平準化により、デュアルレーンでの装着作業時間を短縮可能であることが解る。
 上述したように、デュアルレーン処理数(S-A)が多い場合には、合計時間を平準化させるように、各装着機16の作動が制御されることが望ましい。一方、シングルレーン処理数Aが多い場合には、第1作業時間および第2作業時間を平準化させるように、各装着機16の作動が制御されることが望ましい。このことに鑑みて、対基板作業システム10では、合計時間を平準化させるように設定された装着機16の作業手順(以下、「第1作業手順」と言う場合がある)と、第1作業時間および第2作業時間を平準化させるように設定された装着機16の作業手順(以下、「第2作業手順」と言う場合がある)とが設定されている。そして、デュアルレーン処理数(S-A)とシングルレーン処理数Aとに基づいて、いずれかの作業手順が選択される。なお、装着機16の作業手順とは、各装着機16によって装着される電子部品の種類、数、装着箇所等が設定されたものであり、各装着機16は、作業手順に従って作動する。
 具体的には、まず、第1作業手順に従って装着機16を作動させた際の全装着機16の総合計作業時間Tを、下記の式に従って演算する。
  T=tD1×A+tDt×(S-A)+tD2×A
ここで、〔tD1×A〕は、第1コンベア装置40におけるシングルレーンでの合計作業時間である。〔tDt×(S-A)〕は、デュアルレーンでの合計作業時間である。〔tD2×A〕は、第2コンベア装置42におけるシングルレーンでの合計作業時間である。
 また、第2作業手順に従って装着機16を作動させた際の全装着機16の総合計作業時間Tを、下記の式に従って演算する。
  T=tS1×A+tSt×(S-A)+tS2×A
ここで、〔tS1×A〕は、第1コンベア装置40におけるシングルレーンでの合計作業時間である。〔tSt×(S-A)〕は、デュアルレーンでの合計作業時間である。〔tS2×A〕は、第2コンベア装置42におけるシングルレーンでの合計作業時間である。
 次に、総合計作業時間Tと総合計作業時間Tとを比較する。そして、総合計作業時間Tが総合計作業時間Tより短い場合に、第1作業手順に従って装着機16の作動が制御される。一方、総合計作業時間Tが総合計作業時間Tより短い場合に、第2作業手順に従って装着機16の作動が制御される。これにより、デュアルレーン処理数(S-A)およびシングルレーン処理数Aに応じた処理手順に従って、装着機16の作動を制御することが可能となり、作業時間の短縮を図ることが可能となる。
 なお、制御装置90のコントローラ92は、図3に示すように、第1作業手順依拠制御部100と第2作業手順依拠制御部102と制御選択部104とを有している。第1作業手順依拠制御部100は、第1作業手順に従って装着機16の作動を制御する機能部である。第2作業手順依拠制御部102は、第2作業手順に従って装着機16の作動を制御する機能部である。制御選択部104は、第1作業手順依拠制御部100と第2作業手順依拠制御部102とのいずれの制御部に従って装着機16の作動を制御するかを選択する機能部である。
 <第1作業手順および第2作業手順の設定>
 上記第1作業手順および第2作業手順は、制御装置90のコントローラ92内に記憶されている最適化プログラム110によって設定される。詳しくは、コントローラ92内には、回路基板に装着すべき電子部品の種類、数、装着位置等の各種情報が記憶されている。そして、最適化プログラム110の実行により、合計時間が平準化されるように、各装着機16の装着すべき電子部品の種類、数、装着位置等が設定されることで、第1作業手順が設定される。一方、最適化プログラム110の実行により、第1作業時間および第2作業時間が平準化されるように、各装着機16の装着すべき電子部品の種類、数、装着位置等が設定されることで、第2作業手順が設定される。
 また、対基板作業システム10では、第1作業手順と第2作業手順との選択が、制御選択部104によって行われているが、最適化プログラム110の実行により、第1作業手順と第2作業手順との選択を行うことが可能である。詳しくは、最適化プログラム110の実行により、上記総合計作業時間Tおよび総合計作業時間Tが演算され、それら2つの総合計作業時間T,Tが比較される。そして、総合計作業時間Tが総合計作業時間Tより短い場合に、第1作業手順が選択され、総合計作業時間Tが総合計作業時間Tより短い場合に、第2作業手順が選択される。つまり、最適化プログラム110を実行することでも、最適な作業手順を選択し、作業時間の短縮を図ることが可能となる。
 なお、最適化プログラム110は、図3に示すように、第1作業設定手段112と第2作業設定手段114と手順選択手段116とを有している。第1作業設定手段112は、第1作業手順を設定するための処理をコントローラ92に実行させるものである。第2作業設定手段114は、第2作業手順を設定するための処理をコントローラ92に実行させるものである。手順選択手段116は、第1作業手順と第2作業手順との選択を行うための処理をコントローラ92に実行させるものである。
 ちなみに、上記実施例において、対基板作業システム10は、対基板作業システムの一例である。装着機16は、作業機の一例である。コンベア装置40,42は、基板搬送装置の一例である。制御装置90は、制御装置の一例である。制御装置90の第1作業手順依拠制御部100、第2作業手順依拠制御部102、制御選択部104は、第1作業手順依拠制御部、第2作業手順依拠制御部、制御選択部の一例である。最適化プログラム110は、最適化プログラムの一例である。最適化プログラム110の第1作業設定手段112、第2作業設定手段114、手順選択手段116は、第1作業設定手段、第2作業設定手段、手順選択手段の一例である。生産予定数Sは、生産予定数の一例である。シングルレーン処理数Aは、1経路使用時回路基板数の一例である。デュアルレーン処理数(S-A)は、2経路使用時回路基板数の一例である。
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。具体的には、例えば、上記実施例では、シングルレーン処理数Aとデュアルレーン処理数(S-A)とに基づいて、第1作業手順と第2作業手順との選択が行われているが、生産予定数Sに基づいて、第1作業手順と第2作業手順との選択が行われてもよい。詳しくは、生産予定数Sが少ないほど、シングルレーン処理数Aの生産予定数Sに対する比率が高くなり、第2作業手順が選択されることが望ましい。一方、生産予定数Sが多いほど、デュアルレーン処理数(S-A)の生産予定数Sに対する比率が高くなり、第1作業手順が選択されることが望ましい。このため、例えば、生産予定数Sが所定数未満の場合には、第2作業手順が選択され、生産予定数Sが所定数以上の場合には、第1作業手順が選択されてもよい。
また、上記実施例では、制御選択部104によって、第1作業手順と第2作業手順との選択が行われているが、作業者が、第1作業手順と第2作業手順との選択を行うことが可能である。具体的には、例えば、第1作業手順と第2作業手順との選択を行うための選択ボタンを設け、選択ボタンの操作によって、第1作業手順と第2作業手順との選択を行うことが可能である。
 また、上記実施例では、生産予定数Sの回路基板生産中に、第1作業手順と第2作業手順とのいずれかの手順に従った制御が実行されているが、第1作業手順に従った制御と第2作業手順に従った制御とを、状況に応じて切り換えてもよい。詳しくは、生産予定数Sの回路基板生産中に、シングルレーンでの装着作業時には、第2作業手順に従った制御を実行し、デュアルレーンでの装着作業時には、第1作業手順に従った制御を実行してもよい。
 また、上記実施例では、最適化プログラム110が、制御装置90のコントローラ92内に記憶されているが、別の制御装置内に記憶されていてもよい。つまり、対基板作業システム10から独立した制御装置内に最適化プログラム110が記憶されていてもよい。
 10:対基板作業システム  16:装着機(作業機)  40:コンベア装置(基板搬送装置)  42:コンベア装置(基板搬送装置)  90:制御装置  100:第1作業手順依拠制御部  102:第2作業手順依拠制御部  104:制御選択部  110:最適化プログラム  112:第1作業設定手段  114:第2作業設定手段  116:手順選択手段

Claims (8)

  1.  回路基板を2つの経路で搬送するための1対の基板搬送装置を有し、1列に配列された複数の作業機を備え、前記複数の作業機の上流側に配置されたものから下流側に配置されたものにわたって回路基板が前記2つの経路で搬送される対基板作業システムにおける前記複数の作業機毎の作業手順を最適化させる最適化プログラムであって、
     前記複数の作業機の各々での前記2つの経路の一方で搬送される回路基板に対する作業時間と他方で搬送される回路基板に対する作業時間との合計作業時間が最適化されるように、前記複数の作業機毎の作業手順を設定する第1作業設定手段と、
     前記2つの経路の一方で搬送される回路基板に対する前記複数の作業機毎の作業時間が最適化されるとともに、他方で搬送される回路基板に対する前記複数の作業機毎の作業時間が最適化されるように、前記複数の作業機毎の作業手順を設定する第2作業設定手段と、
     前記対基板作業システムでの生産予定数に基づいて、前記第1作業設定手段により設定された前記複数の作業機毎の作業手順である第1作業手順と、前記第2作業設定手段により設定された前記複数の作業機毎の作業である第2作業手順との何れかを選択する手順選択手段と
     を含むことを特徴とする最適化プログラム。
  2.  前記2つの経路の一方で行われる作業は、回路基板の両面の一方に対する作業であり、
     前記2つの経路の他方で行われる作業は、回路基板の両面の他方に対する作業であることを特徴とする請求項1に記載の最適化プログラム。
  3.  前記手順選択手段が、
     前記生産予定数のうちの前記2つの経路の一方のみを使用して作業が行われる回路基板の数である1経路使用時回路基板数と、前記生産予定数のうちの前記2つの経路の両方を使用して作業が行われる回路基板の数である2経路使用時回路基板数とに基づいて、前記第1作業手順と前記第2作業手順との何れかを選択することを特徴とする請求項1または請求項2に記載の最適化プログラム。
  4.  前記手順選択手段は、
     前記1経路使用時回路基板枚数と前記2経路使用時回路基板数とを用いて、前記複数の作業機全ての前記第1作業手順に要する合計時間と前記複数の作業機全ての前記第2作業手順に要する合計時間とを演算し、前記第1作業手順に要する合計時間が前記第2作業手順に要する合計時間より短い場合に、前記第1作業手順を選択し、前記第2作業手順に要する合計時間が前記第1作業手順に要する合計時間より短い場合に、前記第2作業手順を選択することを特徴とする請求項3に記載の最適化プログラム。
  5.  回路基板を2つの経路で搬送するための1対の基板搬送装置を有し、1列に配列された複数の作業機と、
     それら複数の作業機の各々の作動を制御する制御装置と
     を備え、前記複数の作業機の上流側に配置されたものから下流側に配置されたものにわたって回路基板が前記2つの経路で搬送される対基板作業システムであって、
     前記制御装置が、
     前記複数の作業機の各々での前記2つの経路の一方で搬送される回路基板に対する作業時間と他方で搬送される回路基板に対する作業時間との合計作業時間が最適化されるように、設定された前記複数の作業機毎の作業手順に従って、前記複数の作業機の作動を制御する第1作業手順依拠制御部と、
     前記2つの経路の一方で搬送される回路基板に対する前記複数の作業機毎の作業時間が最適化されるとともに、他方で搬送される回路基板に対する前記複数の作業機毎の作業時間が最適化されるように、設定された前記複数の作業機毎の作業手順に従って、前記複数の作業機の作動を制御する第2作業手順依拠制御部と
     を有することを特徴とする対基板作業システム。
  6.  前記制御装置が、
     前記第1作業手順依拠制御部と前記第2作業手順依拠制御部とのいずれの制御部により、前記複数の作業機の作動を制御するかを選択する制御選択部を有することを特徴とする請求項5に記載の対基板作業システム。
  7.  前記制御選択部が、
     当該対基板作業システムでの生産予定数に基づいて、前記第1作業手順依拠制御部と前記第2作業手順依拠制御部とのいずれの制御部により、前記複数の作業機の作動を制御するかを選択することを特徴とする請求項6に記載の対基板作業システム。
  8.  前記制御選択部が、
     前記生産予定数のうちの前記2つの経路の一方のみを使用して作業が行われる回路基板の数である1経路使用時回路基板数と、前記生産予定数のうちの前記2つの経路の両方を使用して作業が行われる回路基板の数である2経路使用時回路基板数とに基づいて、前記第1作業手順依拠制御部と前記第2作業手順依拠制御部とのいずれの制御部により、前記複数の作業機の作動を制御するかを選択することを特徴とする請求項7に記載の対基板作業システム。
PCT/JP2012/071465 2012-08-24 2012-08-24 最適化プログラム、および、対基板作業システム WO2014030255A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/423,499 US9804592B2 (en) 2012-08-24 2012-08-24 Optimization program and substrate process system
CN201280075297.7A CN104584710B (zh) 2012-08-24 2012-08-24 最佳化方法及对基板作业系统
PCT/JP2012/071465 WO2014030255A1 (ja) 2012-08-24 2012-08-24 最適化プログラム、および、対基板作業システム
JP2014531469A JP6109178B2 (ja) 2012-08-24 2012-08-24 最適化プログラム、および、対基板作業システム
EP12883369.6A EP2890230B1 (en) 2012-08-24 2012-08-24 Optimization program and substrate process system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071465 WO2014030255A1 (ja) 2012-08-24 2012-08-24 最適化プログラム、および、対基板作業システム

Publications (1)

Publication Number Publication Date
WO2014030255A1 true WO2014030255A1 (ja) 2014-02-27

Family

ID=50149588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071465 WO2014030255A1 (ja) 2012-08-24 2012-08-24 最適化プログラム、および、対基板作業システム

Country Status (5)

Country Link
US (1) US9804592B2 (ja)
EP (1) EP2890230B1 (ja)
JP (1) JP6109178B2 (ja)
CN (1) CN104584710B (ja)
WO (1) WO2014030255A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162751A1 (ja) * 2014-04-24 2015-10-29 富士機械製造株式会社 最適化プログラム、および装着作業システム
WO2023021549A1 (ja) * 2021-08-16 2023-02-23 株式会社Fuji 生産プログラム作成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9465386B2 (en) * 2014-02-24 2016-10-11 Hongfujin Precision Electronics (Cheng Du) Co., Ltd. Mobile robotic trolley-based processing system and mobile robotic trolley thereof
WO2015145565A1 (ja) * 2014-03-25 2015-10-01 富士機械製造株式会社 部品装着装置
US10996661B2 (en) * 2017-01-13 2021-05-04 Fuji Corporation Manufacturing management device
CN110547056B (zh) * 2017-05-18 2020-09-29 雅马哈发动机株式会社 生产管理装置
US11523553B2 (en) 2017-07-11 2022-12-06 Siemens Aktiengesellschaft Method and control device for the processing-time-optimized production of printed circuit boards on a pick-and-place line
JP6832450B2 (ja) * 2017-11-17 2021-02-24 株式会社Fuji 演算装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270574A (ja) * 2007-04-20 2008-11-06 Matsushita Electric Ind Co Ltd 基板の向きの決定方法
JP2009200475A (ja) * 2008-01-23 2009-09-03 Panasonic Corp 実装条件決定方法
JP2011134919A (ja) 2009-12-25 2011-07-07 Yamaha Motor Co Ltd 部品実装装置
JP2012099654A (ja) * 2010-11-02 2012-05-24 Yamaha Motor Co Ltd 実装モード決定方法及び部品実装システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185200A (ja) * 2000-12-15 2002-06-28 Matsushita Electric Ind Co Ltd 電子部品実装方法
JP4134661B2 (ja) * 2002-10-03 2008-08-20 松下電器産業株式会社 電子部品実装装置および電子部品実装方法
CN101925868B (zh) * 2008-01-23 2013-09-11 松下电器产业株式会社 部件安装条件确定方法
WO2009104410A2 (en) 2008-02-21 2009-08-27 Panasonic Corporation Mounting condition determining method
JP5231666B2 (ja) 2012-03-09 2013-07-10 富士機械製造株式会社 基板生産方法および電子部品実装装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270574A (ja) * 2007-04-20 2008-11-06 Matsushita Electric Ind Co Ltd 基板の向きの決定方法
JP2009200475A (ja) * 2008-01-23 2009-09-03 Panasonic Corp 実装条件決定方法
JP2011134919A (ja) 2009-12-25 2011-07-07 Yamaha Motor Co Ltd 部品実装装置
JP2012099654A (ja) * 2010-11-02 2012-05-24 Yamaha Motor Co Ltd 実装モード決定方法及び部品実装システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162751A1 (ja) * 2014-04-24 2015-10-29 富士機械製造株式会社 最適化プログラム、および装着作業システム
US20170042072A1 (en) 2014-04-24 2017-02-09 Fuji Machine Mfg. Co., Ltd. Optimization program and mounting work system
JPWO2015162751A1 (ja) * 2014-04-24 2017-04-13 富士機械製造株式会社 最適化プログラム、および装着作業システム
US10729048B2 (en) 2014-04-24 2020-07-28 Fuji Corporation Optimization program and mounting work system
WO2023021549A1 (ja) * 2021-08-16 2023-02-23 株式会社Fuji 生産プログラム作成方法

Also Published As

Publication number Publication date
JPWO2014030255A1 (ja) 2016-07-28
CN104584710A (zh) 2015-04-29
JP6109178B2 (ja) 2017-04-05
CN104584710B (zh) 2017-12-26
EP2890230A1 (en) 2015-07-01
EP2890230B1 (en) 2019-02-13
US9804592B2 (en) 2017-10-31
EP2890230A4 (en) 2016-10-26
US20150301523A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2014030255A1 (ja) 最適化プログラム、および、対基板作業システム
JP5144548B2 (ja) 実装条件決定方法
KR101502913B1 (ko) 셋업 방법, 부품 실장 방법 및 부품 실장 시스템
JP5440483B2 (ja) 電子部品実装システムおよび電子部品実装方法
KR20140041307A (ko) 전자부품 실장 시스템 및 전자부품 실장 방법
JP2007281227A (ja) 実装機における部品供給装置の配置設定方法
JP6405317B2 (ja) サーボコントローラ
JP2013062290A (ja) 実装基板製造システムおよび実装基板の製造方法
JP6132654B2 (ja) 表面実装機
JPH09260893A (ja) 部品実装作業プラン決定方法
EP3307044B1 (en) Optimized program and mounting work machine
JP5970659B2 (ja) 電子部品実装システムおよび電子部品実装方法
JP5078812B2 (ja) 対基板作業システム
JP5690791B2 (ja) 基板処理装置
JP5969789B2 (ja) 電子部品実装装置
JP6204995B2 (ja) 対基板作業装置
JP6691039B2 (ja) 最適化プログラム、および装着作業システム
JP2645155B2 (ja) 部品装着方法及びその装置
JP2013004615A (ja) 電子部品実装装置及び電子部品実装方法
WO2015173947A1 (ja) 最適化装置
JP2017228689A (ja) 基板搬送態様決定方法、基板搬送態様決定プログラム、部品実装機
JP7123479B2 (ja) フィーダー個数管理装置、フィーダー個数管理方法
WO2023286135A1 (ja) 情報処理装置
JP7266944B2 (ja) 部品実装制御装置、部品実装制御方法
WO2023021549A1 (ja) 生産プログラム作成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531469

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012883369

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14423499

Country of ref document: US