WO2014029348A1 - 动铁芯组件及使用其的电磁阀 - Google Patents

动铁芯组件及使用其的电磁阀 Download PDF

Info

Publication number
WO2014029348A1
WO2014029348A1 PCT/CN2013/082053 CN2013082053W WO2014029348A1 WO 2014029348 A1 WO2014029348 A1 WO 2014029348A1 CN 2013082053 W CN2013082053 W CN 2013082053W WO 2014029348 A1 WO2014029348 A1 WO 2014029348A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
diaphragm
hole
assembly
solenoid valve
Prior art date
Application number
PCT/CN2013/082053
Other languages
English (en)
French (fr)
Inventor
刘成
汪昌东
乔金红
Original Assignee
丹佛斯(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯(天津)有限公司 filed Critical 丹佛斯(天津)有限公司
Priority to EP13831566.8A priority Critical patent/EP2889520A4/en
Publication of WO2014029348A1 publication Critical patent/WO2014029348A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/402Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm
    • F16K31/404Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm the discharge being effected through the diaphragm and being blockable by an electrically-actuated member making contact with the diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0672One-way valve the valve member being a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0686Braking, pressure equilibration, shock absorbing
    • F16K31/0693Pressure equilibration of the armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/406Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston
    • F16K31/408Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston the discharge being effected through the piston and being blockable by an electrically-actuated member making contact with the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K39/00Devices for relieving the pressure on the sealing faces
    • F16K39/02Devices for relieving the pressure on the sealing faces for lift valves
    • F16K39/024Devices for relieving the pressure on the sealing faces for lift valves using an auxiliary valve on the main valve

Definitions

  • the present invention relates to the field of valve control switches, and more particularly to a moving iron core assembly and a solenoid valve using the same. Background technique
  • solenoid valve internal armature structures typically employ a conventional direct lift (or straight lift) valve configuration. That is, a static iron core is fixed on the upper part of the sleeve, a movable iron core which can move up and down is placed in the lower part of the sleeve, and a return spring is arranged between the static iron core and the moving iron core, so that the moving iron core is disposed in the movable iron core.
  • the lower piston presses down on the valve port to maintain a certain gap with the static iron core.
  • the working principle is to use the magnetic force generated by the energization of the coil to attract the moving iron core to move upwards.
  • the coil needs to provide a large suction force F0, and accordingly the coil power and cost need to be improved, in order to overcome three forces (FOF1+F2+F3, wide port pressure drop force Fl, reset
  • the spring force F2 and the moving iron core are self-gravity F3), so that the valve port is opened, and the gap stroke of the direct valve structure is small, and the solenoid valve with a small valve body volume (ie, low cost) cannot be realized.
  • Another object of the present invention is to provide a moving iron core assembly for a solenoid valve capable of increasing the valve opening stroke of a solenoid valve.
  • a moving iron core assembly for a solenoid valve wherein the moving iron core Components include:
  • the movable iron core is provided with a conductive hole at a center thereof, and the conductive through hole includes an upper conductive through hole and a lower conductive through hole communicating with each other;
  • the sealing plug is disposed in a gap in the lower through hole of the movable iron core, wherein the sealing plug is freely displaceable in the upper and lower directions in the lower through hole.
  • a direct lift solenoid valve and a piston solenoid valve using the above described moving iron core assembly are also provided.
  • Figure 1 is a view of a diaphragm type solenoid valve in accordance with one embodiment of the present invention
  • FIG. 2 is a partial view of the diaphragm type solenoid valve shown in Figure 1;
  • Figure 3 is a view showing an alternative structure of the inclined hole shown in Figure 1;
  • Figure 4 is a view of the circlip shown in Figure 1;
  • Figure 5 is a view showing an alternative structure of a pilot valve member used in the diaphragm type solenoid valve of the present invention
  • Figure 6 is an enlarged view of the air separation tray shown in Figure 1;
  • Figure 7 is a view of the tray shown in Figure 1;
  • Figure 8 is a view of a direct lift type solenoid valve according to another embodiment of the present invention.
  • Figure 9 is a view of a piston type solenoid valve in accordance with another embodiment of the present invention. detailed description
  • a diaphragm type solenoid valve comprising: a valve body assembly 50 provided with a valve port 504; a diaphragm assembly 40, the diaphragm assembly 40
  • the central portion seals the valve port 504 and the peripheral portion of the diaphragm assembly 40 covers an annular cavity 508 disposed between the valve port 504 and the valve body assembly 50, the annular cavity 508 and the electromagnetic
  • the inlet port 501 of the valve is in communication.
  • the diaphragm assembly 40 further includes a valve port member 402, a movable iron core assembly 30, and the movable iron core assembly 30 includes a movable iron core 301 and a sealing plug 303 connected to each other.
  • the iron core 301 pushes the sealing plug 303 to close the valve opening through hole 406 of the pilot valve port member 402; the movable iron core 301 drives the sealing plug 303 to move upward to open the valve opening through hole 406. Since the fluid in the cavity 507 above the diaphragm assembly 40 passes through the pilot port through hole 406 through the valve port 504, the flow rate of the valve body out of the diaphragm assembly 40 is greater than that from the solenoid valve.
  • the inlet port 501 passes through the diaphragm vent or balance hole in the diaphragm assembly 40 and The gap between the edge and the valve body flows into the cavity 507 above the diaphragm (where a flow difference is generated), and the difference in flow direction produces a direction (direction) upward pressure difference on the upper and lower end faces of the diaphragm assembly 40.
  • the force, whereby the differential pressure force causes the diaphragm assembly 40 to move upwardly, thereby opening the valve port 504.
  • the shape of the annular cavity 508 can be set to have a certain inclination or curvature on the bottom and both sides.
  • the main components of the solenoid valves such as the coil 10, the static iron core assembly 20, the moving iron core assembly 30, the diaphragm assembly 40, the valve body assembly 50, the seal assembly 60, and the bonnet assembly 70, etc., will be described below. Give specific instructions.
  • the coil 10 is disposed substantially outside the sleeve 703 surrounding the stationary core assembly 20 and the movable core assembly 30.
  • the coil 10 is capable of generating a magnetic force when energized to attract the moving iron core 301 in the movable core assembly 30 to move upward.
  • the moving core assembly 30 is disposed within the cavity of the sleeve 703 of the bonnet assembly 70 and is movable up and down within the cavity. Generally, the moving iron core 301 in the moving core assembly 30 moves up and down within the cavity of the sleeve 703.
  • the static iron core assembly 20 includes a static iron core 201 and a magnetic separation ring 202.
  • the lower portion of the static iron core 201 is provided with an annular groove (not shown), and the magnetic separation ring 202 is riveted and fixed in the annular groove.
  • the annular groove is disposed near the bottom of the static iron core 201, and the outer circular surface of the static iron core 201 is inserted into the inner circular surface of the sleeve 703 by a certain length, and the upper end surface of the sleeve 703 and the static iron core
  • the lower outer surface of 201 is welded and fixed.
  • the moving core assembly 30 includes a moving iron core 301, a retaining spring 302, a sealing plug 303, and a return spring 304 that cooperate with each other.
  • the moving iron core 301 is substantially cylindrical, and is provided with through holes 3011 and 3012 at the center thereof.
  • the via hole includes an upper via hole 3011 and a lower via hole 3012 that communicate with each other.
  • the return spring 304 is disposed in the upper through hole 3011 of the movable iron core 301.
  • the sealing plug 303 is gap-disposed in the lower through hole 3012 of the movable iron core 301, and the sealing plug 303 is freely displaceable in the upper and lower directions in the lower through hole 3012.
  • a notch (not shown) is formed on the inner side of the bottom of the lower through hole 3012, and the retaining spring 302 is installed in the notch.
  • the retaining spring 302 is formed by cutting a part of an annular elastic metal material so as to be compressed and mounted in the notch of the movable iron core 301.
  • a retaining ring may be used instead of the retaining spring 302.
  • the sealing plug 303 has an upper portion 3032 and a lower portion 3033 which are integrally connected together, and a stepped surface 3031 is provided at the junction of the upper portion 3032 and the lower portion 3033.
  • the sealing plug 303 is a generally cylindrical plastic rod and has an upper portion 3032 that is larger in size than the lower portion 3033.
  • a sealing plug through hole 3034 is disposed in the center of the sealing plug 303, and the upper portion of the sealing plug through hole 3034 is abutted and sealed by a support member 3014 located between the upper through hole 3011 and the lower through hole 3012. .
  • the support member 3014 is a portion of the movable iron core and protrudes from the main body of the movable iron core 301 into the lower through hole 3012, and is shaped like a tapered member or a hemispherical member.
  • One of the functions of the support member 3014 is for supporting against and sealing the sealing plug through hole 3034.
  • the function of the sealing plug through hole 3034 When the moving iron 301 moves upward, after the support member 3014 leaves the sealing plug through hole 3034, it is advantageous to discharge the pressure or fluid of the cavity above the sealing plug 304 through the outlet nozzle 503, at this time sealing A pressure differential is formed on the upper and lower end faces of the plug 304 to overcome the pressure differential or pressure drop at the pilot port.
  • the lower via hole 3012 and the upper via hole 3011 are communicated through the inclined hole 3013.
  • the lower via hole 3012 and the upper via hole 3011 may be connected through the straight hole 3013.
  • the straight hole 3013 is located on the left side of the support member 3014, and the upper end thereof communicates with the upper through hole 3011, and the lower end thereof communicates with the lower through hole 3012.
  • the sealing plug 3034 When the sealing plug 3034 is moved downward to the first position (ie, the lowermost position), the stepped surface 3031 of the sealing plug is supported by the retaining spring 302 at the first position so that it is no longer downward. mobile.
  • the sealing plug 303 When the sealing plug 303 is in the second position above the first position (i.e., the position where the sealing plug 303 is shown in Fig. 2), the front end of the tapered member 3014 abuts and seals the sealing plug. Hole 3034 is such that it cannot move upward. At this time, there is a first gap h between the stepped surface 3031 of the sealing plug and the retaining spring 302. However, at this time, the lower end surface of the sealing plug 303 seals the pilot port through hole 406 of the pilot port member 402 and the sealing plug through hole 3034 is also sealed by the tapered member 3014, so that the solenoid valve is closed.
  • the moving iron core 301 in the movable iron core assembly 30 is attracted to the static iron core 201 During the period, first, the moving iron core 301 is moved upward by the first gap h by the attraction force between the static iron core 201 and the movable iron core 301 until the circlip 302 contacts the stepped surface 3031 of the sealing plug; Under the action of the force, the movable iron core 301 drives the sealing plug 303 to be upwardly displaced, so that the valve opening 406 is opened, and the valve port 504 of the solenoid valve is opened, so that the solenoid valve is opened. status.
  • the valve body assembly 50 includes a valve body 502, an inlet connection 501 that communicates with the annular cavity 508, and an outlet connection 503 that communicates with the valve body outlet cavity 509.
  • the valve body 502 forms an annular valve port 504 by providing a center step 506 at its center.
  • the annular cavity 508 is a (seal) cavity formed by the annular valve port 504 and the valve body assembly 50.
  • the bonnet assembly 70 includes a valve cover 701, a bolt 702 and a sleeve 703.
  • the valve cover 701 is a square cover plate and is provided with four screw holes (not shown) at its four corners, through the bolt 702 and the valve.
  • the mating connection of the cover 701 and the corresponding screw hole in the valve body 502 secures the valve body 502 and the valve cover 701 for forming a cavity surrounding the annular valve port 504 (it is known that the cavity is provided with the diaphragm assembly 40) It is then divided into a diaphragm upper chamber 507, and an annular cavity 508 below the diaphragm and a valve body out of the mouth 509).
  • a bonnet hole (not shown) is provided in the center of the bonnet 701, and the lower end of the sleeve 703 is inserted into the bonnet hole and fixed by welding.
  • the lower end of the sleeve 703 is spliced to the bonnet hole by silver brazing or the like.
  • a sealing connection is made between the sleeve 703 and the bonnet hole to prevent the solenoid valve from leaking fluid or refrigerant flowing therethrough, as long as a sealed connection can be achieved therebetween, the connection method It is not limited to methods such as welding, and other methods may be employed.
  • the seal assembly 60 includes a support plate 601 and a seal ring 602 that is opposite the annular cavity 508 and is disposed over the periphery of the diaphragm upper cavity 507 and above the periphery of the diaphragm assembly 40.
  • the outside of the support plate 601 is mated with the valve body 502, and the seal ring 602 is compressed between the support plate 601 and the valve cover 701.
  • Seal 602 is a toroidal seal, preferably a rubber material.
  • a diaphragm assembly 40 is disposed on a central step 506 of the valve body assembly 50, the diaphragm assembly 40 completely covering or partially covering the central step 506 and the valve body 502. Annular cavity 508.
  • the diaphragm assembly 40 is disposed on the center step 506, and the diaphragm assembly 40 covers an annular cavity 508 formed between the center step 506 and the valve body below it.
  • the diaphragm assembly 40 is disposed on the center step 506 and covers the annular cavity 508 and the valve body outlet body 509 below it.
  • the diaphragm assembly 40 includes a dispensing disc 405, a diaphragm 404, a gasket 403, a pilot port member 402, and a tray 401, and the dispensing disc 405 is disposed within the annular cavity 508.
  • the diaphragm 404 is disposed on the air separation tray 405, and an edge of the upper surface of the diaphragm 404 is at least partially covered by a lower step of the support plate 601.
  • the central portion of the diaphragm 404 (of the lower surface) seals the valve port 504.
  • the lower end surface of the sealing plug 303 in the movable core assembly seals or presses the pilot port opening 406.
  • edge of the upper surface of the diaphragm 404 is generally gap-covered by the support plate 601 so that fluid can flow from the inlet nozzle 501 into the diaphragm upper cavity 507 above the diaphragm 404.
  • the lower portion of the pilot port member 402 sequentially passes through the intermediate hole of the tray 401, the intermediate hole of the diaphragm 404, and the intermediate hole of the spacer 403 which is a toroidal metal stamping member, and then passes through the lower portion of the pilot port member 402.
  • the valgus edges hold them together.
  • the pilot port member 402 is covered by the protruding member 407 in the middle to press the tray 401.
  • the outer circumference of the tray 401 can form six substantially semi-circular convex and concave structures 4011 on each plane of the tray 401 by a stamping process.
  • another alternative form of the tray 401 is that the outer periphery thereof is turned up.
  • the pilot port member 402 is a substantially cylindrical member having a pilot port opening 406 at the center thereof.
  • a protruding member 407 is provided on the outer circumference of the middle portion, and the bottom portion thereof is turned outward.
  • the protruding member 407 may be a fin-shaped protruding member or an annular protruding member.
  • pilot port member 402 is a tapered step 4021, and the lower portion is a two-stage cylindrical step.
  • the two-stage cylindrical step includes an upper cylindrical step 4022 and a lower cylindrical step 4023 that are connected to each other.
  • the inside of the pilot port member 402 is provided with a pilot port through hole 406 that connects the diaphragm upper chamber 507 and the valve body outlet body 509.
  • the diameter of the upper portion of the pilot port opening 406 is smaller than the diameter of the lower portion thereof.
  • the upper diameter of the pilot port opening 406 is set smaller, and the lower diameter of the pilot port opening 406 is set larger, and the upper portion of the pilot port member 402 is disposed as a tapered step 4021, both for maintaining the pilot port. In the case of the flow capacity of the through hole, the weight of the pilot port member 402 is minimized.
  • the lower portion of the pilot port opening 406 is configured to have a larger diameter, and it is also convenient for the bottom flange 4042 to fix the gasket, the diaphragm, the tray, and the like.
  • the spacer 403 can be directly welded to the bottom end of the pilot valve port member to facilitate supporting the diaphragm 404 and the pilot port member 402 through the tray 401. And other components.
  • a plurality of vent holes or balance holes are respectively disposed at edges of the diaphragm 404 and the air distribution plate 405.
  • the air separation tray 405 is provided with a plurality of spaced vent holes 4052 along a circumference thereof near the outer circumference; the diaphragm 404 is disposed along a circumference around the center of the circle Two spaced apart venting holes (not shown), and such that when the dispensing disc 405 and the diaphragm 404 are assembled together as shown in FIG. 2, the venting opening of the diaphragm 404 and the dispensing disc
  • the vents 4052 of 405 are in communication. Fluid flows into the upper cavity 507 of the diaphragm assembly 40 through the vent 4052 and the gap between the edges of the diaphragm 404 and the distributor disc 405 and the inner edge of the valve body assembly 50.
  • the diaphragm 404 is made of a disc-shaped plastic with an intermediate hole in the middle, and a smaller two or more vent holes are arranged along the circumference of the edge. (not shown). It is preferred to form the membrane 404 from a polytetrafluoroethylene material, and the inside of the membrane 404 may also incorporate glass fibers to enhance its properties.
  • the spacer 403 is a circular metal stamping member
  • the dispensing disc 405 is a circular metal stamping member.
  • the air distribution plate 405 is a circular stamping member having a middle hole 4051 in the middle, and a plurality of vent holes 4052 are evenly distributed on the edge ring surface.
  • the dispensing disc 405 is placed below the diaphragm 404.
  • the valve port 504 is closed, and the valve port 504 is now closed.
  • the distance from the upper surface of the movable iron core 301 to the lower surface of the static iron core 201 or the stroke H is larger than the distance h from the stepped surface 3031 of the sealing plug 303 to the circlip 302 (specifically, the upper surface of the circlip 302) (ie, H>h). ).
  • the magnetic force generated by the coil 10 will attract the moving iron core 301 to move upward against its own gravity and the spring force of the return spring 304, since the sealing plug 303 is subjected to the pressure at the pilot port through hole (or its inlet and outlet)
  • the lowered adsorption temporarily holds and covers the pilot port member 402.
  • the moving iron core 301 overcomes the return spring 304
  • the movable iron core 301 is attracted upwardly to move upward and a certain acceleration is formed, and the sealing plug 303 is pushed upward by the upper surface of the snap spring 302.
  • the sealing plug 303 exits the upper surface of the pilot valve port member 402 against the pressure drop force at the valve port 504 (specifically, the pilot port opening) due to the thrust.
  • the support member 3014 is separated from the sealing plug through hole 3034, which is advantageous for discharging the fluid of the upper cavity of the sealing plug 303 into the outlet connecting tube 503, thereby sealing the plug
  • a differential pressure is formed on the upper and lower end faces of the 303, which helps to overcome the suction force of the pilot port member 402 to the sealing plug 303, so that the sealing plug 303 is relatively easy to move upward.
  • the valve port member 402 is at a distance. At this time, the fluid in the cavity 507 above the diaphragm flows from the pilot port through hole 406 into the valve body out of the mouth body 509 (ie, the right side of the valve body outlet direction) and flows out from the outlet port 503. At this time, the flow of fluid in the cavity 507 above the diaphragm to the outlet nozzle 503 causes the pressure in the cavity 507 above the diaphragm to start to decrease.
  • the fluid of the annular cavity 508 under the diaphragm 404 passes through the edge of the diaphragm 404 and the corresponding vent hole in the diaphragm 404 flows into the upper cavity 507 of the diaphragm less than the flow from the upper cavity 507 through the pilot port
  • the flow of the orifice 406 into the valve port 504 forms a pressure at the annular cavity 508 below the diaphragm 404 that is greater than the pressure above the diaphragm cavity 507, such that the diaphragm 404 is above its cavity 507 and the lower annular cavity 508 Under the pressure drop force, the intermediate portion of the diaphragm 404 gradually leaves the valve port 504 and arches to the lower surface of the support plate 601. Therefore, the wide opening 504 between the inlet nozzle 501 and the outlet nozzle 503 is fully opened. If the coil 10 is always energized, the pilot port through hole 406 and the valve port 504 will remain fully open.
  • valve port 504 when the valve port 504 is opened, since the diaphragm upper cavity 507 above the diaphragm assembly is now a low pressure chamber and the annular cavity 508 below the diaphragm assembly is in communication with the inlet nozzle 501 as a high pressure chamber, An upward differential pressure is formed between the diaphragm upper cavity 507 and the annular cavity 508, such that the pilot port member 402 moves upwardly, and the diaphragm 404 is driven by the spacer 403 fixed to the pilot port member 402.
  • the fluid of the annular cavity 508 under the diaphragm flows through the edge of the diaphragm 404 and the vent hole into the upper cavity 507 of the diaphragm, so that the pressure above the diaphragm cavity 507 and the annular cavity 508 is equal.
  • the intermediate portion of the diaphragm 404 is displaced downward by the thrust of the movable core 301 via the tray 401 and the pilot port member 402, covering the valve port 504, thereby stopping the flow of fluid from the inlet nozzle 501 to the outlet nozzle 503. .
  • the solenoid valve is closed.
  • the solenoid valve of the present invention requires a coil power that is smaller than that of a conventional solenoid valve, and the stroke of the valve opening is large, thereby achieving a lower cost of the solenoid valve.
  • the movable iron core assembly of the first embodiment of the present invention can also be applied to a direct lift type solenoid valve.
  • Figure 8 shows only one embodiment of a direct lift solenoid valve in the art, it being understood that the skilled artisan can use the moving iron core assembly of the present invention for other types of prior art direct lift
  • the electromagnetic field is wide to achieve the corresponding function.
  • those skilled in the art can know from the above detailed description of the diaphragm type solenoid valve that when the movable iron core assembly 230 of the present invention is used for the direct lift type solenoid valve 200, its specific structure and working principle are the first of the present invention. The same as described in the embodiment, for the sake of brevity, this will not be described in detail.
  • the respective components in the movable core assembly 230 are identified by the same reference numerals as in the first embodiment to avoid confusion. It is to be noted that, in the second embodiment, the upper via hole 2302 and the lower via hole 2303 of the movable iron core 301 are connected by a straight hole 2301.
  • the direct lift solenoid valve 200 includes a valve body assembly 250, a static iron core assembly 220, a moving iron core assembly 230 that cooperates with the static iron core assembly 220, and a seal assembly 260.
  • the valve body assembly 250 includes a valve body 2502, an inlet connection 2501 and an outlet connection 2503 that communicate with each other through a valve port 2402 at the center of the valve body 2502.
  • the magnetic field force generated by the coil will attract the moving iron core 301 upward, and it is necessary to overcome the self-gravity and the spring force of the return spring. Since the sealing plug 303 in the moving core assembly 230 is attracted by the pressure drop of the valve port (or the inlet and outlet), it is temporarily pressed against the valve port 2402. When the moving iron core 301 moves against the self-gravity and the spring force to drive the circlip (not shown) to move upward, the upper surface of the circlip comes into contact with the step surface of the sealing plug 303 (ie, the distance from the lower end surface of the static iron core 201 is Hh). .
  • the moving iron core 301 is attracted upwardly to form an acceleration, and the sealing plug 304 is pushed upward by the upper surface of the circlip.
  • the sealing plug 304 overcomes the valve port pressure drop force away from the plane of the valve port 2402.
  • the sealing plug 304 has left the valve port 2402, and the valve port 2402 between the inlet connecting pipe 2501 and the outlet connecting pipe 2503 is completely opened. If the coil is left energized, the port 2402 will be straight and fully open.
  • the movable iron core assembly of the first embodiment of the present invention can also be applied to the piston type solenoid valve 300.
  • Figure 9 shows only one embodiment of a piston-type solenoid valve in the art. It will be understood that those skilled in the art can use the moving core assembly for other types of prior art piston-type electromagnetic In the valve to achieve the corresponding function. Moreover, those skilled in the art can know from the above detailed description of the diaphragm type solenoid valve that when the movable iron core assembly 330 of the present invention is used for the piston type solenoid valve 300, its specific structure and working principle and the first embodiment of the present invention The same as described in the examples, for the sake of brevity, this will not be described in detail.
  • the respective components in the moving core assembly 330 are identified by the same reference numerals as in the first embodiment to avoid confusion. It should be noted that in the third embodiment, the upper via hole 3302 and the lower portion of the movable iron core 301 are connected by a straight hole 3301. Part through hole 3303.
  • the piston type solenoid valve 300 includes a valve body assembly 350, a static iron core assembly 320, a moving iron core assembly 330 that cooperates with the static iron core assembly 320, a piston assembly 340, and a seal assembly 360.
  • the valve body assembly 350 includes a valve body 3502, an inlet connection 3501 and an outlet connection 3503 that communicate with each other through a valve port 3403 at the center of the valve body 3502.
  • the through hole 3402 of the piston assembly 340 is sealed by the lower end surface of the sealing plug 303.
  • the upper cavity and the lower cavity of the piston assembly 340 (the lower cavity refers to a cavity other than the valve port 3403 below the piston assembly 340, which communicates with the inlet nozzle 3501; it should be noted that
  • the fluid at the location of the valve port 3403 below the piston assembly 340 is referred to herein as the outlet cavity, which is in fluid communication with the outlet nozzle 3503.
  • the return spring 304 Since the return spring 304 is compressed between the static iron core 201 and the moving iron core 301, the spring force of the return spring 304 pushes the movable iron core 301 downward, so that the sealing plug 303 presses the through hole 3402 of the piston assembly 340 and pushes The piston assembly 340 is displaced downward so that the lower surface of the piston assembly 340 covers the valve port 3403 so that the valve port 3403 is closed.
  • the magnetic field force generated by the coil will attract the moving iron core 301 to move upward, and it is necessary to overcome its own gravity and return spring force.
  • the through hole 3402 of the piston assembly 340 is temporarily pressed.
  • the moving iron core 301 drives the circlip upwardly against the spring force, it moves to the step surface of the sealing spring 303 where the upper surface of the sprocket spring contacts (ie, the distance Hh from the lower end surface of the static iron core 201).
  • the movable iron core 301 is attracted upwardly and forms an acceleration, and the sealing plug 303 is pushed upward by the upper surface of the circlip, and when the sealing plug 303 receives the urging force, the pressure drop force of the through hole 3042 of the piston assembly 340 is overcome.
  • valve port 3403 This is because the flow of fluid from the lower cavity of the piston assembly 340 through the gap between the slot 3401 of the piston assembly 340 and the valve body 3502 into the upper cavity of the piston assembly 340 does not flow into the upper cavity through the through hole 3402 of the piston assembly 340.
  • the flow rate of the valve port 3403 is large. This leads to the piston assembly
  • the pressure of the lower chamber of the 340 is greater than the pressure of the upper chamber, so that the piston assembly 340 gradually begins to leave the valve port 3403 under the pressure drop force between the upper chamber and the lower chamber, so that the inlet nozzle 3501 to the outlet nozzle
  • the port 3402 between 3503 is fully open. If the coil is always energized, the valve port 3403 will remain fully open.
  • the moving iron core 301 When the coil is de-energized, the magnetic force generated by the coil disappears, the moving iron core 301 will lose the upward attraction force, and at the same time, it is subjected to the self-gravity and the releasing force of the return spring 304, so that the moving iron core 301 is displaced downward, and the moving iron core
  • the 301 pushes the sealing plug 303 downward again until the lower surface of the sealing plug 303 covers the upper surface of the through hole 3042 of the piston assembly 340.
  • the fluid of the upper chamber of the piston assembly 340 stops the flow to the valve body outlet nozzle 3503, and the pressure drop between the upper chamber and the lower chamber of the piston assembly 340 passes through the piston teeth with the fluid of the lower chamber.
  • the piston assembly 340 is displaced downward by the thrust of the moving iron core 301, covering the valve port 3403, thereby stopping the flow of fluid from the valve body inlet nozzle 3501 to the outlet nozzle 3503. Thereafter, the piston type solenoid valve 300 is closed. While some embodiments of the present general inventive concept have been shown and described, it will be understood by those of ordinary skill in the art that the present invention may be modified without departing from the principles and spirit of the present general inventive concept. The scope is defined by the claims and their equivalents.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

一种用于电磁阀的动铁芯组件以及使用其的电磁阀。所述用于电磁阀的动铁芯组件包括:动铁芯(301),所述动铁芯在其中心处设置有导通孔,导通孔包括相互连通的上部导通孔(3011)和下部导通孔(3012);复位弹簧(304),设置在动铁芯的上部导通孔中;密封塞(303),间隙地设置在动铁芯的下部导通孔中,其中,所述密封塞能够在下部导通孔中沿上下方向自由地移位。

Description

动铁芯组件及使用其的电磁阀
本申请要求于 2012年 8月 23 日递交的、 申请号为 201210301827.7、 发明名称为 "动铁芯组件及使用其的电磁阀" 的中国专利申请的优先权, 其全部内容通过引用并 入本申请中。 技术领域
本发明涉及阀门控制开关领域, 尤其涉及动铁芯组件以及使用其的电磁阀。 背景技术
在现有技术中, 大多数电磁阀内部衔铁结构通常采用传统的直接提 (或直提式) 阀结构。 即在一个套管上部固定一个静铁芯, 在套管下部放置一个可上下移动的动铁 芯, 在静铁芯和动铁芯之间设有 个复位弹簧, 使动铁芯带动设置在其下部的活塞向 下压住阀口, 与静铁芯保持一定间隙。 工作原理是利用线圈通电产生的磁场力吸引动 铁芯向上移动, 向上移动的过程中需要克服阀口压降力、 复位弹簧力和动铁芯自身重 力, 才能将阀口打开。 这种结构的线圈功率要求较大, 间隙行程较小, 无法做到提供 成本较低、 功耗较小的电磁阀。
具体地, 在直提式电磁阀中, 线圈需要提供较大的吸合力 F0, 相应地线圈功率 及成本需要提高, 才能克服三个力 (FOF1+F2+F3 , 阔口压降力 Fl, 复位弹簧力 F2 和动铁芯自重力 F3 ) 从而使阀口打开, 而且直接提阀结构的间隙行程较小, 无法做 到阀体体积较小 (即成本较低) 的电磁阀。
鉴于上述, 确有必要提供可以降低线圈功率和 /或增加开阀行程的电磁阀。 发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
相应地, 本发明的目的之一是提供能够降低线圈功率的用于电磁阀的动铁芯组 件。
本发明的另一目的是提供能够提高电磁阀的开阀行程的用于电磁阀的动铁芯组 件。
本发明的还一目的是提供能够使用上述动铁芯组件的膜片式电磁阀。
在本发明的一个方面中, 提供了一种用于电磁阀的动铁芯组件, 其中所述动铁芯 组件包括:
动铁芯, 所述动铁芯在其中心处设置有导通孔, 所述导通孔包括相互连通的上部 导通孔和下部导通孔;
复位弹簧, 设置在动铁芯的上部导通孔中;
密封塞, 间隙地设置在动铁芯的下部导通孔中, 其中, 所述密封塞能够在下部导 通孔中沿上下方向自由地移位。
另外, 在本发明的其它方面中, 还提供了使用上述的动铁芯组件的直提式电磁阀 和活塞式电磁阀。 附图说明
本发明的这些和 /或其他方面和优点从下面结合附图对优选实施例的描述中将变 得明显和容易理解, 其中:
图 1是根据本发明的一个实施例的膜片式电磁阀的视图;
图 2是图 1中显示的膜片式电磁阀的部分视图;
图 3是图 1中显示的斜孔的可替代结构的视图;
图 4是图 1中显示的卡簧的视图;
图 5是用在本发明的膜片式电磁阀的导阀口构件的可替代结构的视图; 图 6是图 1中显示的分气盘的放大视图;
图 7是图 1中显示的托盘的视图;
图 8是根据本发明的另一实施例的直提式电磁阀的视图; 和
图 9是根据本发明的另一实施例的活塞式电磁阀的视图。 具体实施方式
下面通过实施例, 并结合附图 1-9, 对本发明的技术方案作进一步具体的说明。 在说明书中, 相同或相似的附图标号指示相同或相似的部件。 下述参照附图对本发明 实施方式的说明旨在对本发明的总体发明构思进行解释, 而不应当理解为对本发明的 一种限制。 第一实施例
下面参考附图对根据本发明的第一实施例的膜片式电磁阀进行描述。 参考图 1和图 2, 在本发明的一个实施例中, 提供了一种膜片式电磁阀, 包括: 设置有阀口 504的阀体组件 50; 膜片组件 40, 所述膜片组件 40的中心部分密封阀口 504且所述膜片组件 40的周边部分覆盖设置在所述阀口 504与所述阀体组件 50之间 的环形腔体 508, 所述环形腔体 508与所述电磁阀的进口接管 501连通, 所述膜片组 件 40还包括导阀口构件 402; 动铁芯组件 30, 所述动铁芯组件 30包括相互连接的动 铁芯 301和密封塞 303, 所述动铁芯 301推动所述密封塞 303以封闭所述导阀口构件 402的导阀口通孔 406; 通过动铁芯 301带动所述密封塞 303 向上移动以打开所述导 阀口通孔 406, 由于在膜片组件 40上方的膜片上方腔体 507 中的流体通过所述导阀 口通孔 406经由阀口 504流入到膜片组件 40下方的阀体出口腔体 509的流量大于从 电磁阀的进口接管 501 经由膜片组件 40中的膜片通气孔或平衡孔以及其边缘与阀体 之间的间隙流入到所述膜片上方腔体 507 的流量 (在此产生流量差别), 由于该流量 差别在膜片组件 40 上下端面上产生方向 (朝向) 向上的压差力, 从而所述压差力使 得膜片组件 40 向上移动, 从而开启所述阀口 504。 可以理解, 所述环形腔体 508 的 形状可以设置成底部和两侧具有一定的倾斜度或曲率。
参考图 2, 下述将逐一对电磁阀中的主要部件诸如线圈 10、 静铁芯组件 20、 动 铁芯组件 30、 膜片组件 40、 阀体组件 50、 密封组件 60和阀盖组件 70等进行具体说 明。
线圈 10大致设置于包围静铁芯组件 20和动铁芯组件 30的套管 703的外部。 所 述线圈 10在通电时能够产生磁力以吸引动铁芯组件 30中的动铁芯 301向上移动。 动 铁芯组件 30设置在阀盖组件 70的套管 703的腔体内且能够在所述腔体内上下移动。 通常, 为动铁芯组件 30中的动铁芯 301在所述套管 703的腔体内上下移动。
静铁芯组件 20 包括静铁芯 201 和分磁环 202。 静铁芯 201 下部设有一环形槽 (未图示), 将分磁环 202 铆压固定在所述环形槽内。 由图可见, 所述环形槽设置在 所述静铁芯 201的底部附近处, 静铁芯 201下部外圆面插入套管 703上部内圆面一定 长度, 将套管 703上端面与静铁芯 201下部外圆面焊接固定。
具体地, 如图 1和 2所示, 在动铁芯 301和静铁芯 201未相互吸引时, 它们之间 设置成间隔距离或间隙11。 当动铁芯 301和静铁芯 201完全相互吸引时, 它们之间设 置的距离 H变为零或不再存在间隙。
动铁芯组件 30包括相互协同操作的动铁芯 301、 卡簧 302、 密封塞 303和复位弹 簧 304。 动铁芯 301为大体圆柱形, 且在其中心处设置有导通孔 3011和 3012, 所述 导通孔包括相互连通的上部导通孔 3011和下部导通孔 3012。 复位弹簧 304设置在动 铁芯 301 的上部导通孔 3011 中。 密封塞 303间隙地设置在动铁芯 301 的下部导通孔 3012中, 其中, 所述密封塞 303能够在下部导通孔 3012中沿上下方向自由地移位。
如图 4所示, 所述下部导通孔 3012的底部内侧开设槽口 (未标示), 将卡簧 302 安装于所述槽口内。 所述卡簧 302为切掉一部分的圆环形的弹性金属材料以便于将其 压缩后安装于所述动铁芯 301的槽口中。 可替代地, 还可以使用挡圈来替代所述卡簧 302。
所述密封塞 303具有一体地连接在一起的上部 3032和下部 3033, 所述上部 3032 与下部 3033连接处设置有一台阶面 3031。 所述密封塞 303为大体圆柱形塑料棒, 且 其的上部 3032的尺寸大于下部 3033的尺寸。 所述密封塞 303的中心设置有一密封塞 通孔 3034, 且通过位于所述上部导通孔 3011和下部导通孔 3012之间的支撑件 3014 抵靠和密封所述密封塞通孔 3034的上部。 所述支撑件 3014为动铁芯的 部分且从所 述动铁芯 301 的主体突出到所述下部导通孔 3012 中, 其形状为一锥形件或半球形 件。 所述支撑件 3014的作用之一是用于支撑抵靠和密封所述密封塞通孔 3034。 密封 塞通孔 3034的作用: 当动芯铁 301 向上移动时, 支撑件 3014离开密封塞通孔 3034 之后, 有利于将密封塞 304上方腔体的压力或流体通过出口接管 503排出, 此时密封 塞 304上下端面上形成压差, 以便克服导阀口处的压差或压力降。
在图 1-2显示的本发明的实施例中, 通过斜孔 3013连通所述下部导通孔 3012和 上部导通孔 3011。 当然, 还可以如图 3所示, 通过直孔 3013来连接下部导通孔 3012 和上部导通孔 3011。 从图 3可见, 直孔 3013位于支撑件 3014的左侧, 且其的上端 连通上部导通孔 3011, 而其的下端连通下部导通孔 3012。
在密封塞 3034 向下移动至第一位置 (即最下面位置) 时, 在所述第一位置处由 所述卡簧 302 抵靠支撑所述密封塞的台阶面 3031 以使其不再向下移动。 当密封塞 303 处于在所述第一位置上方的第二位置 (即图 2 中显示密封塞 303 所处的位置) 时, 由所述锥形件 3014的前端抵靠和密封所述密封塞通孔 3034, 使得其不能向上移 动。 此时所述密封塞的台阶面 3031 与卡簧 302 之间存在第一间隙 h。 但是由于此 时, 密封塞 303 的下端面密封住了导阀口构件 402 的导阀口通孔 406且密封塞通孔 3034也被锥形件 3014密封, 故电磁阀处于关闭状态。
此外, 当线圈 10被通电时, 动铁芯 301和静铁芯 201之间产生磁力, 该磁力吸 引动铁芯 301 向上移位。 在动铁芯组件 30中的动铁芯 301与静铁芯 201吸合在一起 的期间, 首先通过静铁芯 201和动铁芯 301之间的吸引力使得动铁芯 301向上移动第 一间隙 h直至卡簧 302接触所述密封塞的台阶面 3031为止; 之后在所述吸引力的作 用下, 所述动铁芯 301带动所述密封塞 303—起向上移位, 使得打开所述导阀口通孔 406, 进而打开所述电磁阀的阀口 504, 从而电磁阀处于打开状态。
阀体组件 50包括阀体 502、 与环形腔体 508连通的进口接管 501和与阀体出口 腔体 509连通的出口接管 503。 所述阀体 502通过在其中心处设置中心台阶 506而形 成环形阀口 504。 由图 1可见, 所述环形腔体 508为所述环形阀口 504与阀体组件 50 形成的 (密封) 腔体。
阀盖组件 70包括阀盖 701、 螺栓 702和套管 703, 所述阀盖 701为一方形盖板且 在其四个角处设置有四个螺孔 (未图示), 通过螺栓 702和阀盖 701和阀体 502中的 对应的螺孔的配合连接将阀体 502与阀盖 701固定, 用于形成包围环形阀口 504的腔 体 (可知, 所述腔体在设置了膜片组件 40 之后被分成膜片上方腔体 507, 和膜片下 方的环形腔体 508 和阀体出口腔体 509)。 阀盖 701 的中央设置有一阀盖孔 (未示 出), 所述套管 703 的下端插入到所述阀盖孔中且通过焊接方法固定。 优选地, 采用 银钎焊等方法将套管 703的下端与阀盖孔悍接在一起。 如本领域技术人员已知的, 套 管 703与阀盖孔之间采用密封连接, 以免电磁阀泄漏在其中流过的流体或冷媒, 它们 之间只要能够实现密封连接即可, 所述连接方法不限于焊接等方法, 也可以采用其他 方法。
密封组件 60包括支撑板 601和密封圈 602, 所述支撑板 601与环形腔体 508相 对, 设置在所述膜片上方腔体 507外周且在所述膜片组件 40 的周边的上方。 该支撑 板 601 的外部与阀体 502配合连接, 密封圈 602被压缩在支撑板 601和阀盖 701之 间。 密封圈 602为一种圆环形的密封圈, 优选为一种橡胶材料。
参见图 2, 膜片组件 40设置在所述阀体组件 50的中心台阶 506上, 所述膜片组 件 40完全地覆盖或部分地覆盖所述中心台阶 506与所述阀体 502之间形成的环形腔 体 508。 或者说, 所述膜片组件 40被设置在所述中心台阶 506上, 所述膜片组件 40 覆盖在其下方的所述中心台阶 506与所述阀体之间形成的环形腔体 508。
需要注意的是, 在本发明中膜片组件 40 下方具有两个腔体: 在其周边附近的环 形腔体 508和在阀口 504处的阀体出口腔体 509。
膜片组件 40设置在中心台阶 506上, 且覆盖在其下方的环形腔体 508和阀体出 口腔体 509。 膜片组件 40 包括分气盘 405、 膜片 404、 垫片 403、 导阀口构件 402 和托盘 401, 所述分气盘 405设置在所述环形腔体 508 内。 所述膜片 404设置在分气盘 405 上, 所述膜片 404的上表面的边缘被支撑板 601的下部台阶至少部分地盖住。 所述膜 片 404的 (下表面的) 中心部分密封所述阀口 504。 由图 1和 2可见, 当电磁阀处于 关闭状态中时, 由动铁芯组件中的密封塞 303的下端面密封或压盖住所述导阀口通孔 406。
可知, 所述膜片 404的上表面的边缘通常被支撑板 601间隙地盖住, 以便于流体 能够从进口接管 501流入到膜片 404上方的膜片上方腔体 507中。
所述导阀口构件 402的下部依次穿过托盘 401的中间孔、 膜片 404的中间孔和为 圆环形金属冲压件的垫片 403的中间孔, 之后通过导阀口构件 402的下部向外翻边将 它们固定在一起。 另外, 所述导阀口构件 402通过中部的突出构件 407覆盖压住托盘 401。
具体地, 如图 7所示, 所述托盘 401 的外周可以通过冲压工艺在托盘 401 的每 个平面上形成六个大致半圆形的凸凹结构 4011。 如本领域技术人员所理解, 所述托 盘 401的另一种可替代的形式是其外周边向上翻边。
在本发明的第一实施例中, 导阀口构件 402为一大致圆筒形构件, 其中心处设置 有导阀口通孔 406。 在其中部的外周设置有突出件 407, 且其的底部向外翻边。 所述 突出件 407可以为鳍状的突出构件或环形的突出构件。 通过将导阔口构件 402的底部 向外翻边, 且通过与其连接在一起的垫片、 托盘等支撑膜片或导阀口构件等部件。 具 体地, 垫片、 托盘等可以通过焊接或螺纹连接等方式与导阀口构件 402连接在一起。
参见图 5, 提供了一种导阀口构件的替代形式。 具体地, 所述导阀口构件 402上 部为锥形台阶 4021, 下部为两段式圆柱形台阶。 所述两段式圆柱形台阶包括相互连 接的上部圆柱形台阶 4022和下部圆柱形台阶 4023。 所述导阀口构件 402的内部设置 有连通膜片上方腔体 507和阀体出口腔体 509的导阀口通孔 406。 具体地, 在本发明 中, 导阀口通孔 406的上部直径小于其下面的直径。 可以理解, 导阀口通孔 406的上 部直径设置成较小, 而其的下部直径设置成较大, 以及导阀口构件 402的上部设置成 锥形台阶 4021, 都是为了在保持导阀口通孔的流通能力的情况下, 尽可能减小导阀 口构件 402的重量。 此外, 导阀口通孔 406的下部设置成具有较大的直径, 还便于其 底部向外翻边 4024 固定垫片、 膜片、 托盘等部件。 可以理解, 所述垫片 403可以直 接焊接到导阀口构件的底端上, 以便于通过托盘 401 支撑膜片 404、 导阀口构件 402 等部件。
所述膜片 404和所述分气盘 405的边缘处分别设置有多个通气孔或平衡孔。 具体 地, 如图 6所示, 所述分气盘 405沿着其靠近外圆周的一圆周设置有多个间隔开的通 气孔 4052; 所述膜片 404 沿着围绕圆心的一圆周上设置有两个间隔开的通气孔 (未 示出), 且使得在将分气盘 405 和膜片 404 如图 2 所示地装配在一起时, 所述膜片 404的通气孔与所述分气盘 405的通气孔 4052相连通。 流体通过所述通气孔 4052以 及膜片 404和分气盘 405的边缘与所述阀体组件 50的内侧边缘之间的间隙流入到所 述膜片组件 40的上方腔体 507内。
具体地, 在本发明的一个实施例中, 所述膜片 404为一种圆片状塑料制成, 中间 有一中间孔, 靠近边缘沿其圆周设置有一较小的两个或更多个通气孔 (未示出)。 优 选为由一种聚四氟乙烯材料制成膜片 404, 所述膜片 404的内部还可以加入玻璃纤维 物以增强其的性能。
垫片 403为一圆形的金属冲压件, 分气盘 405 为一圆形的金属冲压件。
参见图 6, 所述分气盘 405, 为一种圆环形冲压件, 中间设有一中间孔 4051, 边 缘环面均匀分布若干个通气孔 4052。 该分气盘 405被放置在膜片 404下方。 以上对本发明的电磁阀的结构进行了详细描述, 下面将对其的工作原理进行说 明, 以使得本领域技术人员能够更好地理解本发明的公开内容。
阀口闭合状态→打开状态
当流体从进口接管 501进入阀体 502 (如图 1 的箭头所示) 后且线圈 10未被通 电时, 此时膜片上方腔体 507和环形腔体 508内的流体压力相等。 由于复位弹簧 304 被压缩在静铁芯 201和动铁芯 301之间, 复位弹簧 304的弹簧力推着动铁芯组件 30 向下移动。 经由支撑件 3014 (此时支撑件 3014密封住密封塞的通孔) 使密封塞 303 压住导阀口构件 402的上端面并推着膜片组件 40向下移动, 使膜片 404下端面盖住 阀口 504, 此时阀口 504处于关闭状态。 动铁芯 301上表面距离静铁芯 201下表面的 距离或行程 H大于密封塞 303的台阶面 3031距离卡簧 302 (确切地说是卡簧 302的 上表面) 的距离 h (即 H>h)。
当线圈 10通电后, 线圈 10产生的磁力将吸引动铁芯 301克服其自身重力和复位 弹簧 304的弹簧力向上移动, 由于密封塞 303受到导阀口通孔 (或其的进出口) 处压 力降的吸附, 暂时压住且盖住导阀口构件 402。 起初, 动铁芯 301 克服复位弹簧 304 的弹簧力和自身重力带动卡簧 302向上移动或移位, 直至卡簧 302的上表面接触到密 封塞 303的台阶面 3031 (即 h=0)。 此时, 动铁芯 301被吸引向上移动且形成了一定 的加速度, 通过卡簧 302的上表面推动密封塞 303向上移位。 密封塞 303由于受到推 力而克服阀口 504 (具体地是导阀口通孔) 处的压降力离开导阀口构件 402 的上表 面。 需要注意的是, 由于动铁芯 301 向上移动, 导致支撑件 3014 离开密封塞通孔 3034, 这样有利于将密封塞 303的上方腔体的流体排入到出口接管 503中, 由此在密 封塞 303的上下端面上形成压差力, 该压差力帮助克服导阀口构件 402对密封塞 303 的吸附力, 使得密封塞 303 较容易向上移动。 当动铁芯 301 的上表面移位到静铁芯 201下表面时 (此时动铁芯 301和静铁芯 201相互接触且它们之间的吸合力达到最大 值), 密封塞 303 已经离开导阀口构件 402—距离, 此时膜片上方腔体 507内的流体 会从导阀口通孔 406流入阀体出口腔体 509 (即阀体右侧出口方向) 进而从出口接管 503流出。 此时, 膜片上方腔体 507内的流体向出口接管 503排泄的流量造成膜片上 方腔体 507 内的压力开始变低。 由于膜片 404下方的环形腔体 508 的流体通过膜片 404的边缘及膜片 404中的对应的通气孔流入膜片上方腔体 507的流量小于从膜片上 方腔体 507通过导阀口通孔 406流入阀口 504的流量, 形成了膜片 404下方的环形腔 体 508的压力比膜片上方腔体 507的压力大, 从而膜片 404在其上方腔体 507和下方 的环形腔体 508之间的压降力作用下, 膜片 404的中间部分逐渐离开阀口 504, 拱起 至支撑板 601的下表面。 故进口接管 501至出口接管 503之间的阔口 504完全打开。 如果线圈 10始终保持通电状态, 则导阀口通孔 406和阀口 504会一直处于完全打开 状态。
具体地, 在阀口 504被打开时, 由于膜片组件上方的膜片上方腔体 507此时为低 压腔而膜片组件下方的环形腔体 508由于与进口接管 501连通为高压腔, 因此在所述 膜片上方腔体 507和环形腔体 508之间形成向上的压差力, 使得导阀口构件 402向上 移动, 且通过固定在导阀口构件 402上的垫片 403带动膜片 404和托盘 401—起向上 移动, 进而使得所述膜片 404的中间部分向上拱起至抵靠支撑板 601的下表面, 此时 进口接管 501至出口接管 503之间的阀口 504完全打开。 阀口打开状态→闭合状态
当线圈 10断电后, 线圈 10产生的磁场力消失, 动铁芯 301 将失去向上的吸引 力, 同时受到复位弹簧 304释放的弹簧力, 推动动铁芯 301向下移位。 继而, 动铁芯 301再经由其上的锥形件 3014推动密封塞 303 向下移位, 直到密封塞 303 的下端面 盖住导阀口通孔 406的上表面。 此时膜片上方腔体 507的流体停止了经由导阀口通孔 406向阀体出口接管 503流动, 膜片上方腔体 507和膜片下方的环形腔体 508之间的 压力降, 会随着膜片下方的环形腔体 508的流体通过膜片 404的边缘及通气孔流入膜 片上方腔体 507, 达到膜片上方腔体 507和环形腔体 508压力相等。 膜片 404中间拱 起部分会受到动铁芯 301的推力经由托盘 401和导阀口构件 402向下移位, 盖住了阀 口 504, 从而停止了流体从进口接管 501 向出口接管 503的流动。 最终, 使得电磁阀 处于关闭状态。
通过上述描述可知, 在本发明的第一实施例中, 最初使动铁芯 301 向上移位时, 仅需要克服自身重力和复位弹簧 304的弹簧力即可; 之后在动铁芯 301向上移动且形 成一定的加速度之后, 再带动相应的密封塞 303 向上移动。 这样, 本发明所述的电磁 阀所需耍的线圈功率比普通的电磁阀的小, 且开阀的行程较大, 从而实现电磁阀的成 本更低。 第二实施例
参见图 8, 本发明的第一实施例所述的动铁芯组件也可以用于直提式电磁阀。 图 8 仅示意性地示出了本领域中的直提式电磁阀的一个实施例, 可以理解, 相关技术人 员可以将本发明的动铁芯组件用于其它类型的现有技术的直提式电磁阔中, 以实现相 应的功能。 此外, 本领域技术人员通过上述关于膜片式电磁阀的具体描述可知, 当本 发明的动铁芯组件 230用于直提式电磁阀 200时, 其具体结构和工作原理与本发明的 第一实施例所述的相同, 为了简便起见, 不再对此进行详细描述。 故, 动铁芯组件 230 中的各个部件采用与第一实施例相同的参考标记标识, 以避免混淆。 需要指出的 是, 在第二实施例中, 采用直孔 2301连接动铁芯 301的上部导通孔 2302和下部导通 孔 2303。
直提式电磁阀 200包括阀体组件 250、 静铁芯组件 220、 与静铁芯组件 220相互 配合的动铁芯组件 230以及密封组件 260。 具体地, 阀体组件 250包括阀体 2502、 通 过阀体 2502中心处的阀口 2402相互连通的进口接管 2501和出口接管 2503。 阀口闭合状态→打开状态
当流体从阀体 2502左侧的进口接管 2501进入阀体 2502 (如由图 8中的箭头所 示) 后且安装在静铁芯 201和动铁芯 301的外围的线圈 (未显示) 未被通电时, 由于 复位弹簧 304被压缩在静铁芯 201和动铁芯 301之间, 复位弹簧力推着动铁芯 301向 下位移, 使密封塞 303压住阀口 2402, 从而阀口 2402处于关闭状态。
当线圈通电后, 线圈产生的磁场力将吸引动铁芯 301 向上位移, 此时需要克服自 身重力和复位弹簧的弹簧力。 由于动铁芯组件 230中的密封塞 303受到阀口 (或进出 口) 压力降的吸附, 暂时被压盖住阀口 2402。 当动铁芯 301 克服自身重力和弹簧力 带动卡簧 (未标示) 向上移动, 移至卡簧上表面接触到密封塞 303的台阶面 (即距离 静铁芯 201 的下端面的距离为 H-h)。 此时, 动铁芯 301 被吸引向上位移形成了一个 加速度, 通过卡簧上表面推动密封塞 304向上位移。 密封塞 304受到推动力时, 克服 阀口压降力离开阀口 2402所在的平面。 当动铁芯 301上表面位移到静铁芯 201下表 面时, 密封塞 304 已经离开阀口 2402, 进口接管 2501至出口接管 2503之间的阀口 2402 完全打开。 如果线圈 直保持通电状态, 则阀口 2402 会 直处 Τ·完全打开状 态。 阀口打开状态→闭合状态
当线圈断电后, 线圈产生的磁场力消失, 动铁芯 301将失去向上的吸引力, 同时 受到复位弹簧 304 的释放力和自身重力的作用, 使得动铁芯 301 向下位移, 动铁芯 301再推动密封塞 303 向下位移, 直到密封塞 303下表面盖住阔口 2402的上表面, 从而停止了流体从进口接管 2501 向出口接管 2503的流动。 此后, 直提式电磁阀 200 处于关闭状态。 第三实施例
参见图 9, 本发明的第一实施例所述的动铁芯组件也可以用于活塞式电磁阀 300。 图 9 仅示意性地示出了本领域中的活塞式电磁阀的一个实施例, 可以理解, 本 领域技术人员可以将所述的动铁芯组件用于其它类型的现有技术的活塞式电磁阀中, 以实现相应的功能。 此外, 本领域技术人员通过上述关于膜片式电磁阀的具体描述可 知, 当本发明的动铁芯组件 330用于活塞式电磁阀 300时, 其具体结构和工作原理与 本发明的第一实施例所述的相同, 为了简便起见, 不再对此进行详细描述。 故, 动铁 芯组件 330中的各个部件采用与第一实施例相同的参考标记标识, 以避免混淆。 需要 指出的是, 在第三实施例中, 采用直孔 3301连接动铁芯 301的上部导通孔 3302和下 部导通孔 3303。
活塞式电磁阀 300包括阀体组件 350、 静铁芯组件 320、 与静铁芯组件 320相互 配合的动铁芯组件 330、 活塞组件 340以及密封组件 360。 具体地, 阀体组件 350包 括阀体 3502、 通过阀体 3502中心处的阀口 3403相互连通的进口接管 3501和出口接 管 3503。 所述活塞组件 340的通孔 3402被密封塞 303的下端面密封住。 阀口闭合状态→打开状态
当流体从阀体 3502 左侧的进口接管 3501 进入阀体 3502 (如图 9 中的箭头所 示) 后且安装在静铁芯 201和动铁芯 301的外围的线圈 (未示出) 未通电时, 此时活 塞组件 340 的上方腔体和下方腔体 (该下方腔体是指活塞组件 340 下方的除阀口 3403部分之外的腔体, 其与进口接管 3501连通; 需要指出的是, 活塞组件 340下方 的阀口 3403位置处的腔体在此处被称为出口腔体, 其与出口接管 3503连通) 内的流 体压力相等。 由于复位弹簧 304被压缩在静铁芯 201 和动铁芯 301 之间, 复位弹簧 304的弹簧力推着动铁芯 301向下位移, 使密封塞 303压住活塞组件 340的通孔 3402 并推着活塞组件 340 向下位移, 使活塞组件 340 下表面盖住阀口 3403, 从而阀口 3403处于关闭状态。 当线圈通电后, 线圈产生的磁场力将吸引动铁芯 301 向上位移, 此时需要克服自 身重力和复位弹簧力。 由于密封塞 303 受到活塞组件的通孔 3402 (或进出口) 处压 力降的吸附, 暂时被压盖住活塞组件 340 的通孔 3402。 当动铁芯 301 克服弹簧力带 动卡簧向上位移, 移动至卡簧上表面接触到密封塞 303 的台阶面 (即距离静铁芯 201 的下端面的距离为 H-h)。 此时, 动铁芯 301 被吸引向上位移且形成了一个加速度, 通过卡簧上表面推动密封塞 303向上位移, 密封塞 303受到推动力时, 克服活塞组件 340的通孔 3042处压降力离开其所在的平面。 当动铁芯 301上表面位移到静铁芯 201 下表面时, 密封塞 303 已经离开活塞组件 340的通孔 3402, 此时活塞组件 340上方 腔体内的流体会从活塞组件的通孔 3402流入出口腔体 (与阀体右侧的出口接管 3503 连通)。 活塞组件 340的上方腔体内的流体向出口接管 3503排泄的流量, 造成活塞组 件 340的上方腔体内压力开始变低。 这是由于活塞组件 340的下方腔体的流体通过活 塞组件 340的齿槽 3401与阀体 3502的间隙流入活塞组件 340的上方腔体的流量没有 该上方腔体通过活塞组件 340的通孔 3402流入阀口 3403的流量大。 这导致活塞组件 340的下方腔体的压力比上方腔体的压力大, 使得活塞组件 340在上方腔体和下方腔 体之间的压降力作用下, 逐渐开始离开阀口 3403, 从而进口接管 3501 至出口接管 3503 之间的阀口 3402完全打开。 如果线圈始终保持通电状态, 则阀口 3403 会一直 处于完全打开状态。 阀口打开状态→闭合状态
当线圈断电后, 线圈产生的磁场力消失, 动铁芯 301将失去向上的吸引力, 同时 受到自身重力和复位弹簧 304 的释放力的作用, 使得动铁芯 301 向下位移, 动铁芯 301 再推动密封塞 303 向下位移, 直到密封塞 303 下表面盖住活塞组件 340 的通孔 3042的上表面。 此时活塞组件 340的上方腔体的流体停止了向阀体出口接管 3503的 流动, 活塞组件 340的上方腔体和下方腔体之间的压力降, 会随着下方腔体的流体通 过活塞齿槽 3401与阀体 3502的间隙流入上方腔体, 达到活塞组件 340的上方腔体和 下方腔体压力相等。 活塞组件 340 会受到动铁芯 301 的推力向下位移, 盖住了阀口 3403 , 从而停止了流体从阀体进口接管 3501 向出口接管 3503的流动。 此后, 活塞式 电磁阀 300处于关闭状态。 虽然本总体发明构思的一些实施例已被显示和说明, 本领域普通技术人员将理 解, 在不背离本总体发明构思的原则和精神的情况下, 可对这些实施例做出改变, 本 发明的范围以权利要求和它们的等同物限定。

Claims

权 利 要 求 书
1. 一种用于电磁阀的动铁芯组件, 其中所述动铁芯组件包括:
动铁芯, 所述动铁芯在其中心处设置有导通孔, 所述导通孔包括相互连通的上部 导通孔和下部导通孔;
复位弹簧, 设置在动铁芯的上部导通孔中;
密封塞, 间隙地设置在动铁芯的下部导通孔中, 其中, 所述密封塞能够在下部导 通孔中沿上下方向自由地移位。
2. 根据权利要求 1所述的用于电磁阀的动铁芯组件, 其特征在于,
所述下部导通孔的底部内侧开设槽口, 将卡簧或挡圈安装于所述槽口内。
3. 根据权利要求 2所述的用于电磁阀的动铁芯组件, 其特征在于,
所述卡簧为切掉 部分的圆环形的弹性金属材料以便 τ·将其压缩后安装丁 ·所述动 铁芯的槽口中; 且通过斜孔或直孔连通所述下部导通孔和上部导通孔。
4. 根据权利要求 1-3中任一项所述的用于电磁阀的动铁芯组件, 其特征在于, 所述密封塞具有一体地连接在一起的上部和下部, 所述上部与下部连接处设置有 一台阶面。
5. 根据权利要求 4所述的用于电磁阀的动铁芯组件, 其特征在于,
所述密封塞为圆柱形塑料棒, 且密封塞的上部尺寸大于下部尺寸。
6. 根据权利要求 4所述的用于电磁阀的动铁芯组件, 其特征在于,
所述密封塞的中心设置有一密封塞通孔, 且通过位于所述上部导通孔和下部导通 孔之间的支撑件抵靠和密封所述密封塞通孔的上部。
7. 根据权利要求 6所述的用于电磁阀的动铁芯组件, 其特征在于,
所述支撑件为动铁芯的一部分且从所述动铁芯的主体突出到所述下部导通孔中, 其形状为一锥形件或半球形件。
8. 根据权利要求 7所述的用于电磁阀的动铁芯组件, 其特征在于,
在密封塞向下移动至第一位置时, 在所述第一位置处由所述卡簧抵靠支撑所述密 封塞的台阶面以使其不再向下移动。
9. 根据权利要求 7所述的用于电磁阀的动铁芯组件, 其特征在于,
当密封塞处于在所述第一位置上方的第二位置时, 由所述支撑件的前端抵靠和密 封所述密封塞通孔, 使得其不能向上移动, 此时所述密封塞的台阶面与卡簧之间存在 第一间隙, 但是由于此时, 密封塞的下端面密封住了电磁阀的导阀口构件中的导阀口 通孔且密封塞通孔也被支撑件密封, 故电磁阀处于关闭状态。
10. 根据权利要求 9所述的用于电磁阀的动铁芯组件, 其特征在于,
在动铁芯组件中的动铁芯与电磁阀中的处于动铁芯上方的静铁芯吸合在一起的期 间, 首先通过静铁芯和动铁芯之间的吸引力使得动铁芯向上移动第一间隙直至卡簧接 触所述密封塞的台阶面为止; 之后在所述吸引力的作用下, 所述动铁芯带动所述密封 塞一起向上移位, 使得打开所述导阀口通孔, 进而打开所述电磁阀的阀口, 从而电磁 阀处于打开状态。
11. 一种膜片式电磁阀, 所述膜片式电磁阀包括:
设置有阀口的阀体组件;
膜片组件, 所述膜片组件的中心部分密封所述阀口且所述膜片组件的周边部分覆 盖设置在所述阀口与所述阀体组件之间的环形腔体, 所述环形腔体与所述电磁阀的进 口接管连通, 所述膜片组件还包括导阀口构件;
动铁芯组件, 所述动铁芯组件为根据权利要求 1-10 中任一项所述的动铁芯组 件, 所述动铁芯推动所述密封塞移动以封闭所述导阀口构件中的导阀口通孔;
通过动铁芯带动所述密封塞向上移动以打开所述导阀口通孔, 由于在膜片组件上 方的膜片上方腔体中的流体通过所述导阀口通孔经由阀口流入到在膜片组件下方的阀 体出口腔体的流量大于从所述电磁阔的进口接管流入到所述膜片上方腔体中的流量而 产生流量差别, 由于所述流量差别在膜片组件上产生方向向上的压差力, 从而所述压 差力使得膜片组件向上移动, 从而开启所述阀口。
12. 根据权利要求 11所述的膜片式电磁阀, 其特征在于,
所述阀体组件包括阀体、 与环形腔体连通的进口接管和与阀体出口腔体连通的出 口接管, 所述阀体通过在其中心处设置中心台阶而形成环形阀口。
13. 根据权利要求 12所述的膜片式电磁阀, 其特征在于,
所述膜片式电磁阀还包括阀盖组件, 所述阀盖组件包括阀盖、 螺栓和套管, 所述 阀盖为一方形盖板且在其四个角处设置有四个螺孔, 通过螺栓依次插入到阀盖的螺孔 和阀体的螺孔中而将它们固定在一起, 且用于形成包围环形阀口的腔体, 阀盖的中央 设置有一阀盖孔, 所述套管的下端插入到所述阀盖孔中且通过焊接方法固定。
14. 根据权利要求 13所述的膜片式电磁阀, 其特征在于,
所述套管的下端通过银钎焊与所述阀盖孔固定连接。
15. 根据权利要求 13所述的膜片式电磁阀, 其特征在于,
还包括密封组件, 所述密封组件包括支撑板和密封圈, 所述支撑板与所述环形腔 体相对且设置在所述膜片组件的周边的上方, 该支撑板的外部与阀体配合, 密封圈被 压缩在支撑板和阀盖之间。
16. 根据权利要求 11-15中任一项所述的膜片式电磁阀, 其特征在于, 所述膜片组件被设置在所述中心台阶上, 所述膜片组件覆盖在其下方的所述中心 台阶与所述阀体之间所形成的环形腔体。
17. 根据权利要求 16所述的膜片式电磁阀, 其特征在于,
所述膜片组件包括分气盘、 膜片、 垫片、 导阀口构件和托盘, 所述分气盘设置在 所述环形腔体内, 所述膜片设置在分气盘上, 所述膜片的上表面的边缘被支撑板的下 部台阶至少部分地盖住, 所述膜片的下表面密封所述阀口。
18. 根据权利耍求 17所述的膜片式电磁阀, 其特征在丁 ·,
所述导阀口构件上部为锥形台阶, 下部为具有上部圆柱形台阶和下部圆柱形台阶 的两段式圆柱形台阶, 其中所述上部圆形台阶的尺寸大于下部圆柱形台阶的尺寸, 所 述上部圆柱形台阶覆盖压住托盘, 所述导阀口构件的内部设置有连通膜片组件的上方 腔体和阀体出口腔体的导阀口通孔, 所述导阀口通孔的上部的直径小于其下部的直 径。
19. 根据权利要求 17所述的膜片式电磁阔, 其特征在于,
所述导阀口构件为一大致圆筒形构件, 其中心处设置有导阀口通孔, 在其中部的 外周设置有突出件, 所述突出件覆盖压住托盘, 且其的底部向外翻边。
20. 根据权利要求 18或 19所述的膜片式电磁阀, 其特征在于,
所述导阀口构件的下部依次穿过托盘的中间孔、 膜片的中间孔和为圆环形金属冲 压件的垫片的中间孔, 之后通过导阀口构件的下部向外翻边将它们固定在一起。
21. 根据权利要求 20所述的膜片式电磁阀, 其特征在于,
所述膜片和所述分气盘的边缘处分别设置有相互连通的通气孔, 所述托盘的外边 向上卷起或通过冲压工艺在周边处形成凸凹结构, 流体通过所述膜片组件中的通气孔 和 /或与所述阀体的内侧边缘之间的间隙流入到所述膜片组件的上方腔体内。
22. 根据权利要求 21所述的膜片式电磁阀, 其特征在于,
在阀口被打开时, 由于膜片上方腔体此时为低压腔而膜片组件下方的环形腔体由 于与进口接管连通为高压腔, 因此在所述膜片上方腔体和环形腔体之间形成向上的压 差力, 使得膜片组件带动导阀口构件向上移动, 且通过固定在导阀口构件上的垫片带 动膜片和托盘一起向上移动, 进而使得所述膜片的中间部分向上拱起至抵靠支撑板的 下表面, 此时进口接管至出口接管之间的阀口完全打开。
23. 根据权利要求 21所述的膜片式电磁阀, 其特征在于,
在关闭阀口时, 动铁芯在自身重力和复位弹簧的释放力作用下, 带动锥形件向下 移动, 从而锥形件推动密封塞朝向导阀口构件移动, 直到密封塞密封导阀口通孔, 此 时膜片组件上方腔体的流体停止通过导阀口通孔向阀体出口接管流动, 膜片上方腔体 和环形腔体之间的压力降随着环形腔体中的流体全都通过膜片组件的边缘和 /或通气 孔流入上方腔体, 到达膜片上方腔体和环形腔体的压力相等, 膜片中间拱起部分经由 导阀口构件和托盘受到动铁芯的推力的作用向下移动以密封阀口。
24. 根据权利要求 16所述的膜片式电磁阀, 其特征在于,
动铁芯组件设置在所述套管内且能够在其中上下移动; 线圈设置在所述套管外 部, 所述线圈在通电时能够产生磁力以吸引动铁芯组件中的动铁芯向上移动。
25. 根据权利要求 24所述的膜片式电磁阀, 其特征在于,
所述套管内设置有包括静铁芯和分磁环的静铁芯组件, 所述静铁芯的下部设置有 环形槽, 所述分磁环铆压固定在所述环形槽内, 静铁芯的下部插入到套管的上部内, 且套管的上端面与静铁芯的下部外圆面焊接固定。
26. 一种直提式电磁阔, 其中所述直提式电磁阔包括:
动铁芯组件, 所述动铁芯组件为根据权利要求 1-10 中任一项所述的动铁芯组 件, 所述动铁芯组件中的动铁芯推动所述密封塞移动以封闭直提式电磁阀的阀口。
27. 一种活塞式电磁阀, 其中所述活塞式电磁阀包括:
动铁芯组件, 所述动铁芯组件为根据权利要求 1-10 中任一项所述的动铁芯组 件, 所述动铁芯组件中的动铁芯推动所述密封塞移动以封闭所述活塞式电磁阀的活塞 组件的通孔, 进而使得活塞组件密封活塞式电磁阀的阀口。
PCT/CN2013/082053 2012-08-23 2013-08-22 动铁芯组件及使用其的电磁阀 WO2014029348A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13831566.8A EP2889520A4 (en) 2012-08-23 2013-08-22 MOBILE IRON CORE ASSEMBLY AND ELECTROVALVE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210301827.7A CN103629415B (zh) 2012-08-23 2012-08-23 动铁芯组件及使用其的电磁阀
CN201210301827.7 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014029348A1 true WO2014029348A1 (zh) 2014-02-27

Family

ID=50149460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082053 WO2014029348A1 (zh) 2012-08-23 2013-08-22 动铁芯组件及使用其的电磁阀

Country Status (3)

Country Link
EP (1) EP2889520A4 (zh)
CN (1) CN103629415B (zh)
WO (1) WO2014029348A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633224A (zh) * 2014-12-05 2015-05-20 西安航空动力控制科技有限公司 一种带有截止活门的电磁铁
CN106641430A (zh) * 2016-10-12 2017-05-10 诸暨市亿霸电子阀门有限公司 一种新型电子膨胀阀
CN106763995A (zh) * 2017-03-21 2017-05-31 上海巨良电磁阀制造有限公司 小口径大流量静音电磁阀
CN106958683A (zh) * 2017-03-17 2017-07-18 奉化鑫益气动工程有限公司 一种两位两通高低压全能阀
CN107013708A (zh) * 2017-06-06 2017-08-04 宁波纽帕得机械有限公司 一种高压电磁阀换向阀
CN107061837A (zh) * 2016-12-26 2017-08-18 重庆科技学院 用于血液透析的电磁阀
CN107575623A (zh) * 2017-11-07 2018-01-12 湖北中生汽车电器有限公司 一种控制汽车防冻液供给的电磁阀
CN107990039A (zh) * 2017-12-29 2018-05-04 深圳市摩控自动化设备有限公司 电磁阀先导装置及具有它的本安隔爆电磁阀
CN108561561A (zh) * 2018-05-22 2018-09-21 刘广朋 防积水自保持阀门
CN108626434A (zh) * 2018-07-02 2018-10-09 厦门科际精密器材有限公司 一种两位三通电磁阀
CN109058012A (zh) * 2018-10-12 2018-12-21 平原滤清器有限公司 自动排水装置、使用该装置的燃油滤清器及其使用方法
CN109723860A (zh) * 2017-10-31 2019-05-07 芜湖美的厨卫电器制造有限公司 电磁阀及热水器
CN110069142A (zh) * 2019-04-29 2019-07-30 贵阳鸿德科技有限公司 一种数据处理中心
CN110107725A (zh) * 2019-04-28 2019-08-09 宁波佳音机电科技股份有限公司 灌溉阀
CN110131467A (zh) * 2019-06-06 2019-08-16 福建洁博利厨卫科技有限公司 一种双稳态电磁阀及感应出水装置
CN111059340A (zh) * 2019-12-29 2020-04-24 上海肇民新材料科技股份有限公司 低压脉冲电磁阀
CN112833227A (zh) * 2021-01-06 2021-05-25 上海瑞帮科技有限公司靖江分公司 定量吸压阀
CN113404891A (zh) * 2021-06-24 2021-09-17 嘉兴米克气动设备有限公司 一种便于更换弹性件的电磁阀
CN113915372A (zh) * 2021-11-04 2022-01-11 无锡市海鹰传感器有限公司 一种新型双层密封电磁阀
CN114001191A (zh) * 2020-07-27 2022-02-01 行益科技(宁波)有限公司 组合式超高频微型电磁阀系统
CN114087417A (zh) * 2020-08-24 2022-02-25 蒙冬强 一种带手动应急开关电磁阀
CN114263783A (zh) * 2022-01-27 2022-04-01 刘文华 一种阀板开闭式密封装置
CN116292913A (zh) * 2023-03-03 2023-06-23 江苏申氢宸科技有限公司 一种大流量低压损电磁阀

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603617B (zh) * 2016-02-11 2020-09-04 丹佛斯有限公司 阀安排以及用于阀安排的隔膜组件
CN206980095U (zh) * 2017-03-31 2018-02-09 上海荣威塑胶工业有限公司 一种滑水娱乐装置
CN108253617B (zh) * 2018-03-16 2023-11-24 芜湖美的厨卫电器制造有限公司 进水装置和电热水器
IT201900003069A1 (it) * 2019-03-04 2020-09-04 Elbi Int Spa Dispositivo elettrovalvolare per apparecchi elettrodomestici e relativo apparecchio elettrodomestico.
CN110985741B (zh) * 2020-01-06 2021-11-23 温州立晨汽车零部件有限公司 一种电磁阀工作间隙调整方法
JP7490215B2 (ja) 2020-03-27 2024-05-27 株式会社パロマ ガス比例弁ユニット及び給湯器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534375A (en) * 1982-02-17 1985-08-13 Borg-Warner Corporation Proportional solenoid valve
CN2277473Y (zh) * 1996-10-08 1998-04-01 陈银和 触摸式节水冲洗阀
US20030201418A1 (en) * 2002-04-24 2003-10-30 Hyundai Mobis, Co., Ltd. Anti-lock brake equipment solenoid valve
EP1536169A1 (de) * 2003-11-29 2005-06-01 Asco Joucomatic GmbH Elektromagnetisches Ventil
CN201354853Y (zh) * 2009-02-11 2009-12-02 赵旭 高压电磁阀
CN201916543U (zh) * 2011-01-11 2011-08-03 宁波利达气动成套有限公司 电磁阀
CN202252258U (zh) * 2011-09-09 2012-05-30 宁波利达气动成套有限公司 不锈钢电磁阀

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2145500B (en) * 1983-08-24 1986-09-24 Imp Clevite Inc Pilot-operated valve
CN2064450U (zh) * 1990-03-10 1990-10-24 广州金星仪器厂 膜片式电磁阀
US7828265B2 (en) * 2004-07-30 2010-11-09 Emerson Electric Co. Solenoid valve
CN101949461B (zh) * 2009-07-10 2013-04-17 浙江三花制冷集团有限公司 一种通电关闭的电磁阀及其制造方法
JP5421059B2 (ja) * 2009-10-21 2014-02-19 豊興工業株式会社 電磁弁
CN201627933U (zh) * 2009-12-25 2010-11-10 浙江艾默樱零部件有限公司 空调热水机用长寿命电磁水阀
DE102010055308A1 (de) * 2010-12-21 2012-06-21 Svm Schultz Verwaltungs-Gmbh & Co. Kg Ventil
CN202254535U (zh) * 2011-07-29 2012-05-30 浙江盾安人工环境股份有限公司 电磁驱动式膨胀阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534375A (en) * 1982-02-17 1985-08-13 Borg-Warner Corporation Proportional solenoid valve
CN2277473Y (zh) * 1996-10-08 1998-04-01 陈银和 触摸式节水冲洗阀
US20030201418A1 (en) * 2002-04-24 2003-10-30 Hyundai Mobis, Co., Ltd. Anti-lock brake equipment solenoid valve
EP1536169A1 (de) * 2003-11-29 2005-06-01 Asco Joucomatic GmbH Elektromagnetisches Ventil
CN201354853Y (zh) * 2009-02-11 2009-12-02 赵旭 高压电磁阀
CN201916543U (zh) * 2011-01-11 2011-08-03 宁波利达气动成套有限公司 电磁阀
CN202252258U (zh) * 2011-09-09 2012-05-30 宁波利达气动成套有限公司 不锈钢电磁阀

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633224A (zh) * 2014-12-05 2015-05-20 西安航空动力控制科技有限公司 一种带有截止活门的电磁铁
CN106641430A (zh) * 2016-10-12 2017-05-10 诸暨市亿霸电子阀门有限公司 一种新型电子膨胀阀
CN106641430B (zh) * 2016-10-12 2024-04-26 诸暨市亿霸电子阀门有限公司 一种新型电子膨胀阀
CN107061837A (zh) * 2016-12-26 2017-08-18 重庆科技学院 用于血液透析的电磁阀
CN106958683A (zh) * 2017-03-17 2017-07-18 奉化鑫益气动工程有限公司 一种两位两通高低压全能阀
CN106763995A (zh) * 2017-03-21 2017-05-31 上海巨良电磁阀制造有限公司 小口径大流量静音电磁阀
CN107013708A (zh) * 2017-06-06 2017-08-04 宁波纽帕得机械有限公司 一种高压电磁阀换向阀
CN109723860A (zh) * 2017-10-31 2019-05-07 芜湖美的厨卫电器制造有限公司 电磁阀及热水器
CN109723860B (zh) * 2017-10-31 2024-04-26 芜湖美的厨卫电器制造有限公司 电磁阀及热水器
CN107575623A (zh) * 2017-11-07 2018-01-12 湖北中生汽车电器有限公司 一种控制汽车防冻液供给的电磁阀
CN107575623B (zh) * 2017-11-07 2023-09-12 湖北中生汽车电器有限公司 一种控制汽车防冻液供给的电磁阀
CN107990039B (zh) * 2017-12-29 2023-12-08 深圳市摩控自动化设备有限公司 电磁阀先导装置及具有它的本安隔爆电磁阀
CN107990039A (zh) * 2017-12-29 2018-05-04 深圳市摩控自动化设备有限公司 电磁阀先导装置及具有它的本安隔爆电磁阀
CN108561561A (zh) * 2018-05-22 2018-09-21 刘广朋 防积水自保持阀门
CN108626434A (zh) * 2018-07-02 2018-10-09 厦门科际精密器材有限公司 一种两位三通电磁阀
CN109058012A (zh) * 2018-10-12 2018-12-21 平原滤清器有限公司 自动排水装置、使用该装置的燃油滤清器及其使用方法
CN109058012B (zh) * 2018-10-12 2024-01-23 平原滤清器有限公司 自动排水装置、使用该装置的燃油滤清器及其使用方法
CN110107725A (zh) * 2019-04-28 2019-08-09 宁波佳音机电科技股份有限公司 灌溉阀
CN110069142A (zh) * 2019-04-29 2019-07-30 贵阳鸿德科技有限公司 一种数据处理中心
CN110069142B (zh) * 2019-04-29 2022-08-05 华软智云(深圳)软件有限公司 一种数据处理中心
CN110131467A (zh) * 2019-06-06 2019-08-16 福建洁博利厨卫科技有限公司 一种双稳态电磁阀及感应出水装置
CN111059340B (zh) * 2019-12-29 2024-05-24 上海肇民新材料科技股份有限公司 低压脉冲电磁阀
CN111059340A (zh) * 2019-12-29 2020-04-24 上海肇民新材料科技股份有限公司 低压脉冲电磁阀
CN114001191A (zh) * 2020-07-27 2022-02-01 行益科技(宁波)有限公司 组合式超高频微型电磁阀系统
CN114001191B (zh) * 2020-07-27 2024-05-10 行益科技(宁波)有限公司 组合式超高频微型电磁阀系统
CN114087417A (zh) * 2020-08-24 2022-02-25 蒙冬强 一种带手动应急开关电磁阀
CN112833227A (zh) * 2021-01-06 2021-05-25 上海瑞帮科技有限公司靖江分公司 定量吸压阀
CN113404891B (zh) * 2021-06-24 2023-07-14 嘉兴米克气动设备有限公司 一种便于更换弹性件的电磁阀
CN113404891A (zh) * 2021-06-24 2021-09-17 嘉兴米克气动设备有限公司 一种便于更换弹性件的电磁阀
CN113915372A (zh) * 2021-11-04 2022-01-11 无锡市海鹰传感器有限公司 一种新型双层密封电磁阀
CN114263783A (zh) * 2022-01-27 2022-04-01 刘文华 一种阀板开闭式密封装置
CN116292913A (zh) * 2023-03-03 2023-06-23 江苏申氢宸科技有限公司 一种大流量低压损电磁阀

Also Published As

Publication number Publication date
CN103629415B (zh) 2016-03-02
CN103629415A (zh) 2014-03-12
EP2889520A4 (en) 2016-04-13
EP2889520A1 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2014029348A1 (zh) 动铁芯组件及使用其的电磁阀
JP6333086B2 (ja) 三方電磁弁
WO2013097446A1 (en) Solenoid valve
US20150028237A1 (en) Solenoid valve
US10823162B2 (en) Variable-capacity compressor control valve
JP2013233920A5 (zh)
US10830370B2 (en) Variable-capacity compressor control valve
JP2014066340A (ja) 燃料電池用電磁弁
US20210010466A1 (en) Variable-capacity compressor control valve [as amended]
JP2004360770A (ja) 電空変換式空気レギュレータ
US20190316697A1 (en) Variable-capacity compressor control valve [as amended]
JP5026160B2 (ja) パイロット式電磁弁
JP5102384B2 (ja) ダイヤフラム式圧力調整器
CN218152527U (zh) 一种滑块连杆驱动的反向止回管道燃气自闭阀
JP6924499B2 (ja) 電磁弁
JP2011196113A (ja) 真空弁の制御装置
JP2001041340A (ja) 電磁弁
JP4822180B2 (ja) 圧力増幅三方弁
JP2007032701A (ja) 弁構造
EP2455644A1 (en) Magnetic control valve
CN214889116U (zh) 带弹簧复位的自闭阀
CN210446689U (zh) 烹饪器具的锅盖总成和具有其的烹饪器具
JP4790936B2 (ja) 流体制御弁
JP7130601B2 (ja) 電磁コイル及び弁装置
JP2016217513A (ja) 制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013831566

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE