WO2014024735A1 - インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法 - Google Patents

インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法 Download PDF

Info

Publication number
WO2014024735A1
WO2014024735A1 PCT/JP2013/070637 JP2013070637W WO2014024735A1 WO 2014024735 A1 WO2014024735 A1 WO 2014024735A1 JP 2013070637 W JP2013070637 W JP 2013070637W WO 2014024735 A1 WO2014024735 A1 WO 2014024735A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
weight
pedot
parts
aqueous solution
Prior art date
Application number
PCT/JP2013/070637
Other languages
English (en)
French (fr)
Inventor
順彦 佐々木
由宗 鈴木
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2014024735A1 publication Critical patent/WO2014024735A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond

Definitions

  • the present invention relates to an ink composition used for the production of a transparent conductive film, a method for producing the ink composition, a transparent conductive film, and a method for producing the transparent conductive film, and is suitably used for, for example, forming a transparent conductive film of a screen printing method.
  • the present invention relates to an ink composition, a method for producing an ink composition, a transparent conductive film, and a method for producing a transparent conductive film.
  • Transparent conductive films are used in the fields of liquid crystal displays, electroluminescence displays, plasma displays, electrochromic displays, solar cells, touch panels and the like.
  • a conductive inorganic material such as ITO (indium-tin oxide) or a conductive organic material such as polyethylenedioxythiophene (PEDOT) / polystyrene sulfonic acid (PSS) is used.
  • PEDOT polyethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • the transparent conductive film using the conductive organic material one using an ink composition containing a PEDOT / PSS aqueous solution has been proposed (for example, see Patent Document 1).
  • the ink composition described in Patent Document 1 by including a silane coupling agent, it is possible to form a coating film having excellent wear resistance and moisture resistance and high conductivity.
  • the ink composition described in Patent Document 1 is formed by a wet process. In this wet process, it is desirable to use a screen printing method capable of reducing the cost. In this screen printing method, a high viscosity of several hundred cp or more is required at a cone rotation speed of 5 rpm of the rotational viscometer. On the other hand, the ink composition described in Patent Document 1 has a problem that it is not suitable for the screen printing method because the viscosity of the ink composition is low (10 cp or less).
  • the conventional ink composition it is possible to adjust the viscosity to a high viscosity suitable for the screen printing method by adding various electrically insulating polymer binders as a thickener.
  • various electrically insulating polymer binders as a thickener.
  • the conductivity of the transparent conductive film obtained from the ink composition decreases (specific resistance). Increase).
  • it is necessary to increase the film thickness, the decrease in the transparent conductive film due to the increase in the film thickness, the decrease in display visibility, and the electrode pattern of the transparent conductive film There was a problem of being visually recognized.
  • the present invention has been made in view of the above points, and is capable of forming a transparent conductive film by a screen printing method.
  • the ink composition of the present invention is formed by converting a solution obtained by mixing 100 parts by weight of a PEDOT / PSS aqueous solution, 300 parts by weight or less of a mixed alcohol, and a silane coupling agent, and the concentration of the PEDOT / PSS aqueous solution is The relational expression (1) is satisfied, and the mixed alcohol includes a low viscosity solvent and a high viscosity alcohol.
  • Formula (1) 1.3 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.5 wt%
  • the concentration range in which gelation can be realized shifts to the low concentration side.
  • the PEDOT / PSS aqueous solution is in an appropriate gelation state within a range satisfying the above formula (1), so that the ink composition is suitable for screen printing without adding various polymer binders as a thickener. A highly viscous solution.
  • the low viscosity solvent is preferably a lower alcohol.
  • the low viscosity solvent is preferably methanol, ethanol or propanol.
  • the low-viscosity solvent is preferably glycol monoalkyl ether.
  • the highly viscous alcohol is preferably glycol.
  • the glycol is preferably propylene glycol or butanediol.
  • the ink composition of the present invention preferably contains 100 parts by weight of the PEDOT / PSS aqueous solution and 300 parts by weight of the mixed alcohol.
  • the mixing ratio of the low viscosity solvent and the high viscosity alcohol is preferably 4: 1.
  • the concentration of the PEDOT / PSS aqueous solution satisfies the following relational expression (2), and the mixed alcohol is 100 to 150 parts by weight of the low-viscosity solvent and 200 parts by weight of the high-viscosity alcohol. It is preferable that it contains 150 parts by weight or more.
  • Formula (2) 1.3 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 2.0 wt%
  • the concentration of the PEDOT / PSS aqueous solution satisfies the following relational expression (3), and the mixed alcohol is 15 to 180 parts by weight of the low-viscosity solvent and 285 parts by weight of the high-viscosity alcohol. It is preferable that it contains 120 parts by weight or less.
  • Formula (3) 2.0 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.0 wt%
  • the concentration of the PEDOT / PSS aqueous solution satisfies the following relational expression (4), and the mixed alcohol is 10 to 200 parts by weight of the low-viscosity solvent and 290 parts by weight of the high-viscosity alcohol. It is preferable that it contains 100 parts by weight or less.
  • Formula (4) 3.0 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.5 wt%
  • the concentration of the PEDOT / PSS aqueous solution satisfies the following relational expression (2), and the mixed alcohol is 80 to 200 parts by weight of the low-viscosity solvent and 20 parts by weight of the high-viscosity alcohol. It is preferable that it contains 50 parts by weight or less.
  • Formula (2) 1.3 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 2.0 wt%
  • the concentration of the PEDOT / PSS aqueous solution satisfies the following relational expression (3), and the mixed alcohol is 10 parts by weight or more and 220 parts by weight or less of the low viscosity solvent and 2 parts by weight of the high viscosity alcohol. It is preferable that it contains 55 parts by weight or less.
  • Formula (3) 2.0 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.0 wt%
  • the concentration of the PEDOT / PSS aqueous solution satisfies the following relational expression (4), and the mixed alcohol is 5 parts by weight or more and 250 parts by weight or less of the low viscosity solvent and 1 part by weight of the high viscosity alcohol. It is preferable that it contains 65 parts by weight or less.
  • Formula (4) 3.0 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.5 wt%
  • the method for producing an ink composition of the present invention is a method for producing the ink composition, wherein the solution containing the PEDOT / PSS aqueous solution, the mixed alcohol, and the silane coupling agent is stirred to gel. And a gelation step of producing an ink composition by converting the gelled solution into an ink.
  • a solution containing the PEDOT / PSS aqueous solution, the mixed alcohol, and the silane coupling agent becomes an appropriate gelation state without adding a thickener such as a binder polymer.
  • the viscosity of the ink composition can be adjusted to an appropriate range, so that an ink composition suitable for a screen printing method can be produced.
  • this ink composition has increased viscosity without containing an insulating polymer binder, it becomes possible to produce a transparent conductive film having high conductivity.
  • the transparent conductive film of the present invention is formed using the above ink composition.
  • the method for producing a transparent conductive film of the present invention is characterized by using the ink composition produced by the method for producing an ink composition.
  • an ink composition capable of forming a transparent conductive film by a screen printing method and obtaining a transparent conductive film excellent in conductivity and transmittance, a method for producing the ink composition, a transparent conductive film, and The manufacturing method of a transparent conductive film is realizable.
  • Examples of the conductive organic material used for forming the transparent conductive film include an ink composition containing a PEDOT / PSS aqueous solution and a silane coupling agent.
  • This ink composition can be formed into a transparent conductive film by screen printing with excellent production cost by adding various insulating polymer binders to increase the viscosity.
  • various insulating polymer binders when various insulating polymer binders are added, it is necessary to increase the film thickness of the transparent conductive film, which reduces the light transmittance of the transparent conductive film and the visibility of the conductive pattern by the transparent conductive film. Decrease is a problem.
  • the present inventors are suitable even in a region where the PEDOT / PSS aqueous solution has a low concentration. It was found that gelation proceeds. Then, the present inventors converted this appropriately gelled solution into an ink to form an ink composition, thereby forming a transparent conductive film for screen printing without using a thickener such as various polymer binders. The present inventors have found that an ink composition that is suitable and excellent in electrical conductivity and light transmittance can be realized, and has completed the present invention.
  • the ink composition according to the present invention is an ink composition obtained by mixing 100 parts by weight of an aqueous PEDOT / PSS solution, 300 parts by weight or less of a mixed alcohol, and a silane coupling agent.
  • the following relational expression (1) is satisfied, and the mixed alcohol includes a low viscosity solvent and a high viscosity alcohol.
  • Formula (1) 1.3 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.5 wt%
  • the ink composition of the present invention since a predetermined amount of mixed alcohol containing a low-viscosity solvent and a high-viscosity alcohol is contained, a predetermined amount of PEDOT / PSS aqueous solution, a predetermined amount of mixed alcohol, and a silane coupling agent are added.
  • the concentration range of the appropriate gelation of the contained solution is shifted to the lower concentration side.
  • the PEDOT / PSS aqueous solution is in an appropriate gelation state within a range satisfying the above formula (1), so that the ink composition is suitable for screen printing without adding various polymer binders as a thickener.
  • a highly viscous solution since a predetermined amount of mixed alcohol containing a low-viscosity solvent and a high-viscosity alcohol is contained, a predetermined amount of PEDOT / PSS aqueous solution, a predetermined amount of mixed alcohol, and a silane coupling agent are added.
  • the concentration range of the appropriate gelation of the contained solution is
  • “appropriate gelation state” means a state in which a solution containing a predetermined amount of PEDOT / PSS aqueous solution, a predetermined amount of mixed alcohol and a silane coupling agent is gelled, and high viscosity. Any solution state shall be included.
  • the gelled state may be a state where a part of the solution is gelled, or may be a state where all of the solution is gelled and solidified.
  • FIG. 1 is a conceptual diagram of an ink composition according to the present invention.
  • a cross-link is formed by the silane coupling agent 13 as a binder between the PEDOT 11 as a conductive polymer compound and the PSS 12 as a polymer charge transfer complex.
  • The By this cross-linking, a three-dimensional network through a silane coupling agent is formed between the conductive compounds including PEDOT11 and PSS12, so that the film strength of the transparent conductive film formed using the ink composition Will improve.
  • the PEDOT / PSS aqueous solution satisfies the above formula (1) and contains a predetermined amount of mixed alcohol
  • the PEDOT / PSS is appropriately dispersed and the above 3
  • the mixed alcohol molecules enter between the dimensional networks to form an appropriate gel state. Since the viscosity of the ink composition can be appropriately improved by this appropriate gelation state, the viscosity of the ink composition can be increased to an extent necessary for forming a transparent conductive film by a screen printing method.
  • the necessary conductivity of the transparent conductive film can be ensured without increasing the film thickness of the transparent conductive film, thereby reducing the transmittance of the transparent conductive film and the visibility of the conductive pattern formed by the transparent conductive film. Is possible.
  • FIG. 2 is an explanatory diagram of the interaction between molecules of PEDOT / PSS in the ink composition according to the present invention
  • FIG. 3 is a diagram showing an infrared absorption spectrum of the transparent conductive film according to the present invention.
  • an interaction via sulfur atoms occurs between the PEDOT molecule 21 and the PSS molecule 22 (see the dotted line in FIG. 2).
  • the state where the PEDOT 11 is arranged along the PSS 12 shown in FIG. 1 corresponds to this.
  • an appropriate gelation state that can be obtained in a high-viscosity solution is the proximity due to Coulomb interaction mainly in the presence of a low-viscosity solvent or high-viscosity alcohol to which PSS molecules 22 of an ionic polymer are added at a predetermined ratio. This is a state where distance order is formed.
  • PEDOT / PSS aqueous solution various PEDOT / PSS aqueous solutions can be used as long as the concentration range shown in the above formula (1) is satisfied.
  • this PEDOT / PSS you may use a commercial item as it is.
  • Examples of commercially available PEDOT / PSS aqueous solutions include Clevios (registered trademark: manufactured by Heraeus) P, Clevios PH500, and Clevios PH1000.
  • silane coupling agent various silane coupling agents can be used as long as they can be used as a binder within the scope of the effects of the present invention.
  • silane coupling agent for example, dialkoxysilane containing an epoxy group, trialkoxysilane containing an epoxy group, and the like can be used.
  • diepoxysilane containing an epoxy group for example, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and the like can be used.
  • triepoxysilane containing an epoxy group examples include 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 2- (3,4-epoxycyclohexyl). Examples thereof include ethyltriethoxysilane.
  • the mixed alcohol a mixture of a low viscosity solvent and a high viscosity alcohol is used.
  • the low viscosity solvent has a viscosity of less than 2.5 cp
  • the high viscosity alcohol has a viscosity of 20 cp or more.
  • the low viscosity solvent is not particularly limited as long as the effects of the present invention are achieved.
  • the mixed alcohol is 300 parts by weight or less with respect to 100 parts by weight of the PEDOT / PSS aqueous solution. Thereby, the ink composition can be appropriately gelled. Moreover, it is preferable that mixed alcohol exists in the range of 100 to 300 weight part with respect to 100 weight part of PEDOT / PSS aqueous solution.
  • a lower alcohol for example, methanol, ethanol or propanol is preferable. By using this lower alcohol, an appropriate gelled state can be easily obtained.
  • propanol 1-propanol or 2-propanol (isopropanol) may be used.
  • glycol monoalkyl ether is one in which one hydroxyl group of glycol is etherified, and since one hydroxyl group remains, it has characteristics close to that of alcohol, so the same effect as lower alcohol can be obtained.
  • examples of the glycol monoalkyl ether include propylene glycol monomethyl ether (PGME), diethylene glycol monomethyl ether, and ethylene glycol monomethyl ether.
  • the high-viscosity alcohol is not particularly limited as long as it has the effects of the present invention.
  • various diol compounds can be used as the highly viscous alcohol.
  • the high viscosity alcohol it is preferable to use ethylene glycol, propylene glycol, butanediol, or diethylene glycol, and more preferable is propylene glycol or butanediol.
  • a highly viscous solvent as an enhancer may be used as long as the effects of the present invention are achieved.
  • highly viscous compounds include dimethyl sulfoxide (DMSO).
  • the present inventors examined in detail the relationship between the composition of the ink composition and gelation.
  • Table 1 a commercially available PEDOT / PSS aqueous solution (trade name: Clevios (registered trademark) P (concentration 1.8% by weight)) was used, and PEDOT / PSD was diluted by water or concentrated by heating.
  • the relationship between the PEDOT / PSS concentration and the composition of the mixed alcohol (alcohol and glycol) and the appropriate gelation state when the PSS concentration is changed will be described.
  • the silane coupling agent is used in an amount equivalent to the solid content of PEDOT / PSS.
  • the amount of the mixed alcohol is changed by setting the mixing ratio (IPA: PG) of isopropanol (IPA) as the low viscosity solvent and propylene glycol (PG) as the high viscosity alcohol to 4: 1.
  • the composition ratio of the low-viscosity solvent and the high-viscosity alcohol is changed by setting the total amount of the mixed alcohol to 300 parts by weight with respect to 100 parts by weight of the PEDOT / PSS aqueous solution.
  • the concentration of the PEDOT / PSS aqueous solution to be used is in the range of 1.3% by weight or more, so that the ink composition is mixed and appropriately gelled. It becomes possible to be in a state. Further, by setting the concentration of the aqueous PEDOT / PSS solution to be 3.5 or less, it is possible to prevent solidification of the entire solution, and it is possible to concentrate and collect the ink composition.
  • IPA low viscosity solvent
  • PG high viscosity alcohol
  • the mixed alcohol contains 100 to 150 parts by weight of the low-viscosity solvent and 200 to 150 parts by weight of the high-viscosity alcohol. It can be gelled.
  • Formula (2) 1.3 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 2.0 wt%
  • mixed alcohol contains 15 to 180 weight part of low-viscosity solvent and 285 to 120 weight part of high-viscosity alcohol. It can be gelled in a range.
  • Formula (3) 2.0 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.0 wt%
  • the mixed alcohol includes 10 to 200 parts by weight of the low-viscosity solvent and 290 to 100 parts by weight of the high-viscosity alcohol. It can be gelled in a range.
  • Formula (4) 3.0 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.5 wt%
  • the mixed alcohol contains 80 to 200 parts by weight of the low-viscosity solvent and 20 to 50 parts by weight of the high-viscosity alcohol. It becomes possible to make it an appropriate gelation state.
  • Formula (2) 1.3 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 2.0 wt%
  • mixed alcohol contains 10 to 220 weight part of low-viscosity solvent and 2 to 55 weight part or less of high-viscosity glycol. It becomes possible to make it a gelation state appropriately in the range.
  • Formula (3) 2.0 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.0 wt%
  • the mixed alcohol includes 5 to 250 parts by weight of the low-viscosity solvent and 1 to 65 parts by weight of the high-viscosity alcohol. It becomes possible to make it an appropriate gelation state in the range.
  • Formula (4) 3.0 wt% ⁇ PEDOT / PSS aqueous solution ⁇ 3.5 wt%
  • the ink composition according to the present invention, by setting the PEDOT / PSS aqueous solution in a range that satisfies the above relational expression (1), the ink composition can be appropriately gel in a wide range with respect to the composition and total amount of the mixed alcohol. It becomes possible to make it into a conversion state. As a result, the viscosity of the ink composition can be made suitable for screen printing without using various non-conductive binder polymers, so that it is possible to obtain a transparent conductive film excellent in conductivity and transmittance. It becomes.
  • FIG. 4 is a flowchart showing an outline of the manufacturing process of the transparent conductive film according to the present embodiment.
  • the method for producing an ink according to the present invention includes a gelling step in which a PEDOT / PSS aqueous solution, a mixed alcohol, and a silane coupling agent are mixed to form a gel, and an ink composition is manufactured by converting the gel into an ink. An inking process.
  • DMSO dimethyl sulfoxide
  • aqueous solution containing only PEDOT / PSS aqueous solution containing only PEDOT / PSS
  • silane coupling agent equivalent to the solid content of PEDOT: PSS a silane coupling agent equivalent to the solid content of PEDOT: PSS
  • a predetermined composition PEDOT / PSS aqueous solution is prepared by adding mixed alcohol having (ST1, ST2). And after stirring and mixing this PEDOT / PSS aqueous solution for a predetermined time, stirring is stopped and it is left to stand for several hours to overnight, and let a mixed solution be a suitable gelled state (ST3, ST4). Next, in the ink forming step, the gelled solution is stirred for about 1 hour to make ink, thereby producing an ink composition (ST5).
  • the viscosity of the ink composition can be adjusted to an appropriate range by gelation without adding a thickener such as a binder polymer, which is suitable for screen printing.
  • An ink composition having a high viscosity (100 cp or more: stirring speed 5 rpm) can be produced. And since this ink composition has increased viscosity without containing an insulating polymer binder, it becomes possible to produce a transparent conductive film having high conductivity.
  • the ink composition according to the above embodiment contains a predetermined amount of mixed alcohol containing a low-viscosity solvent and a high-viscosity alcohol, so that a predetermined amount of PEDOT / PSS aqueous solution, a predetermined amount of Since the concentration range of the appropriate gelation state of the solution containing the mixed alcohol and the silane coupling agent shifts to the low concentration side, the gel state is in an appropriate range as long as the concentration of the aqueous solution of PEDOT / PSS satisfies the above formula (1). . By setting it to this appropriate gel state, the viscosity of the ink composition falls within a range suitable for screen printing, so there is no need to add various polymer binders as thickeners.
  • the viscosity of the ink composition can be increased without using a high-concentration binder or a high-viscosity solvent, the resistance and durability of the transparent conductive film obtained using the ink composition can be improved. Moreover, it becomes possible to perform baking at a low temperature (for example, 110 ° C. or less, 20 minutes).
  • the ink composition according to the present embodiment and the ink composition according to the comparative example were produced, and the characteristics of the produced ink compositions were evaluated. Moreover, the transparent conductive film was produced using the produced ink composition, and the physical property was evaluated. Below, various physical property measurement conditions are shown.
  • the viscosity was measured using a cone rotation type viscosity measuring device (trade name rheometer / viscosimeter, manufactured by HAAKE) RotoVisco 1 under the condition of a cone rotation speed of 5 rpm.
  • the sheet resistance of the transparent conductive film was the sheet resistance (sheet resistance value) obtained by measuring the surface resistance of the transparent conductive film using a four-probe type area resistance meter (LORESTA EP MCP-1360, manufactured by Mitsubishi Chemical Corporation).
  • the conductivity was determined by the product of the sheet resistance value and the film thickness.
  • the film thickness was measured on the step portion of the screen printing pattern using a contact type step meter (DEKTAK).
  • Total light transmittance and (Haze) The total light transmittance and haze of the transparent conductive film were measured using a haze meter (trade name HZ-2, manufactured by Suga Test Instruments Co., Ltd.). The total light transmittance was measured based on JIS-K7361-1, and haze was measured based on JIS-K7136.
  • the present inventors prepared an ink composition by changing the composition ratio of PEDOT and a mixed alcohol solution under the condition that the silane coupling agent was a constant amount, and the ink composition was obtained using the prepared ink composition.
  • the physical properties of the transparent conductive film were examined (Example 1 to Example 3, Comparative Example 1 and Comparative Example 2).
  • Example 1 (Preparation of ink composition)
  • the PEDOT / PSS aqueous solution a commercial product (Clevios P, manufactured by Heraeus) having a solid content of 1.8% by weight was used.
  • An aqueous solution was prepared by adding an equivalent amount of a silane coupling agent to the PEDOT / PSS solid content to this PEDOT / PSS aqueous solution.
  • 100 parts by weight of this aqueous solution 100 parts by weight of mixed alcohol (isopropanol (80 parts by weight): propylene glycol (20 parts by weight)) and 10 parts by weight of dimethyl sulfoxide (DMSO) as an enhancer were added.
  • the ink composition was prepared by stirring for 1 hour.
  • the obtained transparent conductive film had a film thickness of 860 nm, a sheet resistance of 370 ⁇ / ⁇ , a conductivity of 31 S / cm, a total light transmittance of 83.2%, and a haze of 1.0. It was. The results are shown in Table 3 below.
  • Example 2 (Adjustment of ink composition)
  • the ink composition was prepared in the same manner as in Example 1 except that the addition amount of dimethyl sulfoxide was 15 parts by weight and the mixed alcohol was 200 parts by weight (isopropanol (160 parts by weight): propylene glycol (40 parts by weight)). Produced.
  • This ink composition was brought into an appropriate gelation state as in Example 1.
  • the viscosity was 840 cp. The results are shown in Table 2 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 980 nm, an area resistance of 261 ⁇ / ⁇ , an electrical conductivity of 39 S / cm, a total light transmittance of 84.1%, and a haze of 1.0. It was. The results are shown in Table 3 below.
  • Example 3 (Adjustment of ink composition) Ink composition was the same as in Example 1 except that the addition amount of dimethyl sulfoxide was 17.5 parts by weight and the mixed alcohol was 250 parts by weight (isopropanol (200 parts by weight): propylene glycol (50 parts by weight)). A product was made. This ink composition was gelled as in Example 1. The viscosity was 580 cp. The results are shown in Table 2 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 890 nm, an area resistance of 261 ⁇ / ⁇ , an electrical conductivity of 26 S / cm, a total light transmittance of 80.2%, and a haze of 1.2. It was. The results are shown in Table 3 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. Since the ink composition of Comparative Example 1 had a low viscosity, the flow of the ink composition was large during screen printing, and it was impossible to control the shape of the transparent conductive film.
  • the obtained transparent conductive film had a thickness of 300 nm, an area resistance of 1100 ⁇ / ⁇ , an electrical conductivity of 30 S / cm, a total light transmittance of 86.5%, and a haze of 0.9. It was. The results are shown in Table 3 below.
  • the inventors prepared an ink composition by changing the concentration of the aqueous PEDOT / PSS solution, the content of the silane coupling agent, and the content of the mixed alcohol, and obtained the ink composition using the ink composition thus prepared.
  • the physical properties of the obtained transparent conductive film were examined (Examples 4 to 11, Comparative Examples 3 to 5).
  • the transparent conductive film was produced using the commercially available ink composition, and the physical property of the produced transparent conductive film was investigated.
  • Example 4 (Adjustment of ink composition)
  • concentration of the aqueous PEDOT / PSS solution is 1.7% by weight
  • the silane coupling agent is 0.43 parts by weight
  • the amount of dimethyl sulfoxide added is 20 parts by weight
  • the mixed alcohol is 300 parts by weight (isopropanol (100 parts by weight)).
  • Propylene glycol (200 parts by weight)) an ink composition was prepared in the same manner as in Example 1. This ink composition was in an appropriate gelled state as in Example 1. The viscosity was 400 cp. The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 45 nm, a sheet resistance of 750 ⁇ / ⁇ , a conductivity of 290 S / cm, a total light transmittance of 87%, and a haze of 0.9. It was. The results are shown in Table 5 below.
  • Example 5 (Adjustment of ink composition) An ink composition was prepared in the same manner as in Example 4 except that the concentration of the PEDOT / PSS aqueous solution was 2.2 wt% and the silane coupling agent was 0.55 parts by weight. This ink composition was in an appropriate gelled state as in Example 4. The viscosity was 530 cp. The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 60 nm, a sheet resistance of 343 ⁇ / ⁇ , a conductivity of 490 S / cm, a total light transmittance of 88%, and a haze of 0.8. It was. The results are shown in Table 5 below.
  • Example 6> Adjustment of ink composition
  • concentration of the aqueous solution of PEDOT / PSS was 2.5% by weight
  • the silane coupling agent was 0.63 parts by weight
  • the mixed alcohol was 300 parts by weight (isopropanol (60 parts by weight): propylene glycol (240 parts by weight)).
  • an ink composition was prepared in the same manner as in Example 4.
  • This ink composition was in an appropriate gelled state as in Example 4.
  • the viscosity was 600 cp.
  • Table 4 The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 75 nm, a sheet resistance of 290 ⁇ / ⁇ , a conductivity of 460 S / cm, a total light transmittance of 88%, and a haze of 0.8. It was. The results are shown in Table 5 below.
  • Example 7 (Adjustment of ink composition) The concentration of the PEDOT / PSS aqueous solution was 2.5% by weight, the silane coupling agent was 0.63 parts by weight, and the mixed alcohol was 300 parts by weight (isopropanol (50 parts by weight): propylene glycol (250 parts by weight)). Except for this, an ink composition was prepared in the same manner as in Example 4. This ink composition was in an appropriate gelled state as in Example 1. The viscosity was 600 cp. The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 72 nm, a sheet resistance of 260 ⁇ / ⁇ , a conductivity of 533 S / cm, a total light transmittance of 88%, and a haze of 0.8. It was. The results are shown in Table 5 below.
  • Example 8> Adjustment of ink composition
  • the concentration of the aqueous solution of PEDOT / PSS was 2.6% by weight
  • the silane coupling agent was 0.65 parts by weight
  • the mixed alcohol was 300 parts by weight (isopropanol (130 parts by weight): propylene glycol (170 parts by weight)).
  • an ink composition was prepared in the same manner as in Example 4.
  • This ink composition was in an appropriate gelled state as in Example 1.
  • the viscosity was 660 cp.
  • Table 4 The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 80 nm, a sheet resistance of 250 ⁇ / ⁇ , a conductivity of 500 S / cm, a total light transmittance of 87%, and a haze of 0.9. It was. The results are shown in Table 5 below.
  • Example 9 (Adjustment of ink composition) The concentration of the aqueous PEDOT / PSS solution was 2.8% by weight, the silane coupling agent was 0.70 part by weight, and the mixed alcohol was 300 parts by weight (isopropanol (40 parts by weight): propylene glycol (260 parts by weight)). Except for this, an ink composition was prepared in the same manner as in Example 4. This ink composition was in an appropriate gelled state as in Example 1. The viscosity was 790 cp. The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 105 nm, a sheet resistance of 210 ⁇ / ⁇ , a conductivity of 453 S / cm, a total light transmittance of 86%, and a haze of 0.9. It was. The results are shown in Table 5 below.
  • Example 10> Adjustment of ink composition
  • concentration of the PEDOT / PSS aqueous solution was 2.9% by weight
  • silane coupling agent was 0.73 parts by weight
  • the mixed alcohol was 300 parts by weight (isopropanol (140 parts by weight): propylene glycol (160 parts by weight)).
  • an ink composition was prepared in the same manner as in Example 4. This ink composition was in an appropriate gelled state as in Example 1. The viscosity was 830 cp. The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a thickness of 120 nm, an area resistance of 205 ⁇ / ⁇ , an electrical conductivity of 407 S / cm, a total light transmittance of 85%, and a haze of 1.0. It was. The results are shown in Table 5 below.
  • Example 11> Adjustment of ink composition
  • the concentration of the aqueous solution of PEDOT / PSS was 3.3% by weight
  • the silane coupling agent was 0.83 parts by weight
  • the mixed alcohol was 300 parts by weight (isopropanol (100 parts by weight): propylene glycol (200 parts by weight)).
  • an ink composition was prepared in the same manner as in Example 4.
  • This ink composition was in an appropriate gelled state as in Example 1.
  • the viscosity was 920 cp. The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 135 nm, a sheet resistance of 350 ⁇ / ⁇ , a conductivity of 211 S / cm, a total light transmittance of 84%, and a haze of 1.2. It was. The results are shown in Table 5 below.
  • Example 12 (Adjustment of ink composition) An ink composition was prepared in the same manner as in Example 7, except that the mixed alcohol was 300 parts by weight (propylene glycol monomethyl ether (50 parts by weight): propylene glycol (250 parts by weight)). This ink composition was in an appropriate gelled state as in Example 1. The viscosity was 560 cp. The results are shown in Table 4 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 64 nm, a sheet resistance of 300 ⁇ / ⁇ , a conductivity of 520 S / cm, a total light transmittance of 88%, and a haze of 0.8. It was. The results are shown in Table 5 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 27 nm, a sheet resistance of 1200 ⁇ / ⁇ , a conductivity of 309 S / cm, a total light transmittance of 88%, and a haze of 0.9. It was. The results are shown in Table 7 below.
  • a transparent conductive film was produced by screen printing in the same manner as in Example 1. The screen printing state was as good as in Example 1.
  • the obtained transparent conductive film had a film thickness of 30 nm, a sheet resistance of 1200 ⁇ / ⁇ , a conductivity of 278 S / cm, a total light transmittance of 88%, and a haze of 0.9. It was. The results are shown in Table 7 below.
  • the present invention has an effect that a transparent conductive film can be formed by a screen printing method, and an ink composition capable of obtaining a transparent conductive film having excellent conductivity and transmittance and a method for producing the ink composition can be realized.
  • the present invention is applicable to devices using various transparent conductive films such as a liquid crystal display, an electroluminescence display, a plasma display, an electrochromic display, a transparent electrode and an electromagnetic wave shield used for solar cells, touch panels, and electronic paper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

【課題】スクリーン印刷方式による透明導電膜の形成が可能であり、しかも導電率及び透過率に優れた透明導電膜が得られるインク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法を提供すること。 【解決手段】本発明のインク組成物は、PEDOT/PSS水溶液100重量部と、混合アルコール300重量部以下と、シランカップリング剤と、を混合した溶液をインク化してなり、PEDOT/PSS水溶液の濃度が下記関係式(1)を満たし、混合アルコールが低粘性溶媒と高粘性アルコールとを含むことを特徴とする。本発明のインク組成物においては、低粘性溶媒が低級アルコールであることが好ましい。また、本発明のインク組成物においては、高粘性アルコールがグリコールであることが好ましい。 式(1) 1.3重量%≦PEDOT/PSS水溶液<3.5重量%

Description

インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法
 本発明は、透明導電膜の製造に用いられるインク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法に関し、例えば、スクリーン印刷方式の透明導電膜の形成に好適に用いられるインク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法に関する。
 液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ、エレクトロクロミックディスプレイ、太陽電池、タッチパネルなどの分野では、透明導電膜が用いられている。透明導電膜の材料としては、ITO(インジウム-スズ酸化物)などの導電性無機材料や、ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンスルホン酸(PSS)などの導電性有機材料が用いられている。この導電性有機材料を用いた透明導電膜としては、PEDOT/PSS水溶液を含むインク組成物を用いたものが提案されている(例えば、特許文献1参照)。特許文献1に記載のインク組成物においては、シランカップリング剤を含むことにより、耐摩耗性や耐湿性に優れ、且つ高導電性である塗布膜を形成することが可能となる。
特開2005-145987号公報
 ところで、特許文献1に記載のインク組成物は、ウェットプロセスで成膜される。このウェットプロセスにおいては、低コスト化が可能なスクリーン印刷方式を用いることが望ましい。このスクリーン印刷方式では、回転粘度計のコーン回転速度5rpmにおいて、数100cp以上の高粘度が要求される。一方で、特許文献1に記載のインク組成物は、インク組成物の粘度が低い(10cp以下)ことから、スクリーン印刷方式には適さない問題がある。
 また、従来のインク組成物においては、電気的に絶縁性の各種ポリマーバインダーを増粘剤として添加することにより、スクリーン印刷方式に適した高粘度に調整することは可能となる。しかしながら、従来のインク組成物においてスクリーン印刷方式に用いる場合には、インク組成物に各種ポリマーバインダーを多量に添加する必要があり、インク組成物から得られる透明導電膜の導電率が低下(比抵抗が増加)する。このため、面積抵抗を目標値に適合させるためには、膜厚を厚くすることが必要となり、膜厚の増大による透明導電膜の低下や、表示の視認性の低下及び透明導電膜の電極パターンが視認される問題があった。
 本発明は、かかる点に鑑みてなされたものであり、スクリーン印刷方式による透明導電膜の形成が可能であり、しかも導電率及び透過率に優れた透明導電膜が得られるインク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法を提供することを目的とする。
 本発明のインク組成物は、PEDOT/PSS水溶液100重量部と、混合アルコール300重量部以下と、シランカップリング剤と、を混合した溶液をインク化してなり、前記PEDOT/PSS水溶液の濃度が下記関係式(1)を満たし、前記混合アルコールが低粘性溶媒と高粘性アルコールとを含むことを特徴とする。
式(1)
 1.3重量%≦PEDOT/PSS水溶液<3.5重量%
 この構成によれば、低粘性溶媒と高粘性アルコールとを含む混合アルコールを所定量含有することから、所定量のPEDOT/PSS水溶液、所定量の混合アルコール及びシランカップリング剤を含む溶液の適切なゲル化を実現できる濃度範囲が低濃度側にシフトする。これにより、PEDOT/PSS水溶液の濃度が上記式(1)を満たす範囲で適切なゲル化状態となるので、増粘剤としての各種ポリマーバインダーを添加することなく、インク組成物がスクリーン印刷に適した高粘度溶液となる。そして、非導電性の各種ポリマーバインダーを添加することなくスクリーン印刷が可能となるので、インク組成物から得られた透明導電膜の膜厚の増大を防ぐことが可能となると共に、絶縁抵抗の増大を防ぐことができる。この結果、絶縁抵抗値に優れた透明導電膜を実現することができる。
 本発明のインク組成物においては、低粘性溶媒が低級アルコールであることが好ましい。
 本発明のインク組成物においては、前記低粘性溶媒がメタノール、エタノール又はプロパノールであることが好ましい。
 本発明のインク組成物においては、前記低粘性溶媒がグリコールモノアルキルエーテルであるこが好ましい。
 本発明のインク組成物においては、前記高粘性アルコールがグリコールであることが好ましい。
 本発明のインク組成物においては、前記グリコールがプロピレングリコール又はブタンジオールであることが好ましい。
 本発明のインク組成物においては、前記PEDOT/PSS水溶液100重量部と、前記混合アルコール300重量部と、を含むことが好ましい。
 本発明のインク組成物においては、前記低粘性溶媒と前記高粘性アルコールとの混合比(低粘性溶媒:高粘性アルコール)が4:1であることが好ましい。
 本発明のインク組成物においては、前記PEDOT/PSS水溶液の濃度が下記関係式(2)を満たし、前記混合アルコールが前記低粘性溶媒100重量部以上150重量部以下と前記高粘性アルコール200重量部以上150重量部以下とを含むことが好ましい。
式(2)
 1.3重量%≦PEDOT/PSS水溶液<2.0重量%
 本発明のインク組成物においては、前記PEDOT/PSS水溶液の濃度が下記関係式(3)を満たし、前記混合アルコールが前記低粘性溶媒15重量部以上180重量部以下と前記高粘性アルコール285重量部以上120重量部以下とを含むことが好ましい。
式(3)
 2.0重量%≦PEDOT/PSS水溶液<3.0重量%
 本発明のインク組成物においては、前記PEDOT/PSS水溶液の濃度が下記関係式(4)を満たし、前記混合アルコールが前記低粘性溶媒10重量部以上200重量部以下と前記高粘性アルコール290重量部以上100重量部以下とを含むことが好ましい。
式(4)
 3.0重量%≦PEDOT/PSS水溶液<3.5重量%
 本発明のインク組成物においては、前記PEDOT/PSS水溶液の濃度が下記関係式(2)を満たし、前記混合アルコールが前記低粘性溶媒80重量部以上200重量部以下と前記高粘性アルコール20重量部以上50重量部以下とを含むことが好ましい。
式(2)
 1.3重量%≦PEDOT/PSS水溶液<2.0重量%
 本発明のインク組成物においては、前記PEDOT/PSS水溶液の濃度が下記関係式(3)を満たし、前記混合アルコールが前記低粘性溶媒10重量部以上220重量部以下と前記高粘性アルコール2重量部以上55重量部以下とを含むことが好ましい。
式(3)
 2.0重量%≦PEDOT/PSS水溶液<3.0重量%
 本発明のインク組成物においては、前記PEDOT/PSS水溶液の濃度が下記関係式(4)を満たし、前記混合アルコールが前記低粘性溶媒5重量部以上250重量部以下と前記高粘性アルコール1重量部以上65重量部以下とを含むことが好ましい。
式(4)
 3.0重量%≦PEDOT/PSS水溶液<3.5重量%
 本発明のインク組成物の製造方法は、上記インク組成物の製造方法であって、前記PEDOT/PSS水溶液と、前記混合アルコールと、前記シランカップリング剤と、を含む溶液を撹拌してゲル化するゲル化工程と、ゲル化した前記溶液をインク化してインク組成物を製造するインク化工程と、を含むことを特徴とする。
 この方法によれば、バインダーポリマーなどの増粘剤を加えることなく、PEDOT/PSS水溶液と、混合アルコールと、シランカップリング剤と、を含む溶液が適切なゲル化状態となる。そして、ゲル化した溶液をインク化することにより、インク組成物の粘度を適度な範囲とすることができるので、スクリーン印刷方式に適したインク組成物を製造することができる。そして、このインク組成物は、絶縁性のポリマーバインダーを含まずに粘度を上げていることから、導電率が高い透明導電膜を製造することが可能となる。
 本発明の透明導電膜は、上記インク組成物を用いて形成されたことを特徴とする。
 本発明の透明導電膜の製造方法は、上記インク組成物の製造方法によって製造されたインク組成物を用いることを特徴とする。
 本発明によれば、スクリーン印刷方式による透明導電膜の形成が可能であり、しかも導電率及び透過率に優れた透明導電膜が得られるインク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法を実現できる。
本実施の形態に係るインク組成物の概念図である。 本実施の形態に係るインク組成物におけるPEDOT/PSSの分子間の相互作用の説明図である。 本実施の形態に係る透明導電膜の赤外吸収スペクトルを示す図である。 本実施の形態に係る透明導電膜の製造工程の概略を示すフロー図である。
 透明導電膜の形成に用いる導電性有機材料としては、PEDOT/PSS水溶液と、シランカップリング剤と、を含むインク組成物が挙げられる。このインク組成物は、絶縁性の各種ポリマーバインダーなどを加えて高粘度化することにより、製造コストに優れたスクリーン印刷による透明導電膜の形成が可能となる。一方で、絶縁性の各種ポリマーバインダーを添加した場合には、透明導電膜の膜厚を厚くする必要があり、透明導電膜の光の透過率の低下や透明導電膜による導電パターンの視認性の低下が問題となる。
 本発明者らは、所定量のPEDOT/PSS水溶液と、所定量のシランカップリング剤と、所定量の混合アルコールと、を含む溶液においては、PEDOT/PSS水溶液が低濃度の領域においても適切なゲル化が進行することを見出した。そして、本発明者らは、この適切にゲル化した溶液をインク化してインク組成物とすることにより、各種ポリマーバインダーなどの増粘剤を用いずに、スクリーン印刷方式の透明導電膜の形成に適し、しかも導電率及び光透過性に優れたインク組成物を実現できることを見出し、本発明を完成させるに至った。
 以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。
 本発明に係るインク組成物は、PEDOT/PSS水溶液100重量部と、混合アルコール300重量部以下と、シランカップリング剤と、を混合した溶液をインク化してなり、前記PEDOT/PSS水溶液の濃度が下記関係式(1)を満たし、前記混合アルコールが低粘性溶媒と高粘性アルコールとを含む。
式(1)
 1.3重量%≦PEDOT/PSS水溶液<3.5重量%
 本発明に係るインク組成物によれば、低粘性溶媒と高粘性アルコールとを含む混合アルコールを所定量含有することから、所定量のPEDOT/PSS水溶液、所定量の混合アルコール及びシランカップリング剤を含む溶液の適切なゲル化の濃度範囲が低濃度側にシフトする。これにより、PEDOT/PSS水溶液の濃度が上記式(1)を満たす範囲で適切なゲル化状態となるので、増粘剤としての各種ポリマーバインダーを添加することなく、インク組成物がスクリーン印刷に適した高粘度溶液となる。そして、非導電性の各種ポリマーバインダーを添加することなくスクリーン印刷が可能となるので、インク組成物から得られた透明導電膜の膜厚の増大を防ぐことが可能となると共に、絶縁抵抗の増大を防ぐことができる。この結果、絶縁抵抗値に優れた透明導電膜を実現することができる。
 なお、本発明に係るインク組成物において、「適切なゲル化状態」とは、所定量のPEDOT/PSS水溶液、所定量の混合アルコール及びシランカップリング剤を含む溶液がゲル化した状態及び高粘度溶液の状態のいずれも含むものとする。ゲル化した状態としては、溶液の一部がゲル化した状態であってもよく、溶液の全てがゲル化して固化した状態であってもよい。
 図1は、本発明に係るインク組成物の概念図である。本発明に係るインク組成物においては、導電性高分子化合物としてのPEDOT11との高分子電荷移動錯体としてのPSS12との間にバインダーとしてのシランカップリング剤13によって架橋結合(クロスリンク)が形成される。この架橋結合により、PEDOT11とPSS12とを含む導電性化合物の間にシランカップリング剤を介した3次元的なネットワークが形成されるので、インク組成物を用いて形成される透明導電膜の膜強度が向上する。
 ここで、本発明に係るインク組成物においては、PEDOT/PSS水溶液が上記式(1)を満たすと共に、所定量の混合アルコールを含むことから、PEDOT/PSSが適度に分散される共に、上記3次元的なネットワーク間に混合アルコール分子が侵入して適切なゲル化状態となる。この適切なゲル化状態により、インク組成物の粘度が適度に向上できるので、スクリーン印刷方式による透明導電膜の形成に必要な程度にインク組成物を高粘度化できる。これにより、透明導電膜の膜厚を増大させずに透明導電膜に必要な導電率を確保できるので、透明導電膜の透過率及び透明導電膜によって形成された導電パターンの視認性を低下させることが可能となる。
 まず、本発明者らは、本発明に係るインク組成物の適切なゲル化状態の痕跡について詳細に調べた。図2は、本発明に係るインク組成物におけるPEDOT/PSSの分子間の相互作用の説明図であり、図3は、本発明に係る透明導電膜の赤外吸収スペクトルを示す図である。
 図2に示すように、本発明に係るインク組成物においては、PEDOT分子21とPSS分子22との間に硫黄原子を介した相互作用(図2の点線参照)が生じている。これはPSS分子22によるPEDOT分子21のドーピング状態を表し、PEDOT分子21に正電荷が供給され、これがホールキャリアのポーラロンやバイポーラロンとなる。図1に示したPSS12に沿ってPEDOT11が配置されている状態がこれに対応する。一方、高粘度溶液に出来る適切なゲル化の状態は、主にイオン性高分子のPSS分子22が所定の割合で添加される低粘性溶媒や高粘性アルコールの存在下で、クーロン相互作用による近距離秩序が形成されている状態である。
 このようにして形成された近距離秩序により、図3のゲル化処理をする前のインク組成物を塗布して形成した透明導電膜の赤外吸収スペクトルを示す実線L1に対して、L2及びL3に示すように、ゲル化後に攪拌処理を行ったインク組成物を塗布して形成した透明導電膜の赤外吸収スペクトルにおいて、スルホン酸基に基づくピーク(1087cm-1、1203cm-1、1309cm-1、1523cm-1)の強度が変化する。また、この近距離秩序は、インク組成物の撹拌処理の強度によって変化し、撹拌処理を強く行った場合(図3の実線L3)に対して、撹拌処理を弱く行った場合は、スルホン酸基に基づくピークの強度が相対的に小さくなることが分かる。これらの結果から、本発明に係るインク組成物においては、撹拌処理の前後でゲル化が生じていることが分かる。
 次に、本実施の形態に係るインク組成物に用いられる材料について詳細に説明する。
 PEDOT/PSS水溶液としては、上記式(1)に示す濃度範囲を満たすものであれば、本発明の効果を奏する範囲で各種PEDOT/PSS水溶液を用いることができる。このPEDOT/PSSとしては、市販品をそのまま用いてもよい。PEDOT/PSS水溶液の市販品としては、例えば、Clevios(登録商標:Heraeus社製) P、Clevios PH500、Clevios PH1000などが挙げられる。
 シランカップリング剤としては、バインダーとして用いることができるものであれば、本発明の効果を奏する範囲で各種シランカップリング剤を用いることができる。シランカップリング剤としては、例えば、エポキシ基を含有するジアルコキシシランや、エポキシ基を含有するトリアルコキシシランなどを用いることができる。エポキシ基を含有するジエポキシシランとしては、例えば、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルジエトキシシランなどを用いることができる。また、エポキシ基を含有するトリエポキシシランとしては、例えば、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランなどが挙げられる。
 混合アルコールとしては、低粘性溶媒と高粘性アルコールとを混合したものを用いる。ここで、低粘性溶媒とは、粘性が2.5cp未満のものであり、高粘性アルコールとは、粘性が20cp以上ものである。低粘性溶媒としては、本発明の効果を奏する範囲であれば特に制限はない。
 混合アルコールは、PEDOT/PSS水溶液100重量部に対して、300重量部以下である。これにより、インク組成物を適切にゲル化させることが可能となる。また、混合アルコールは、PEDOT/PSS水溶液100重量部に対して、100重量部以上300重量部以下の範囲内であることが好ましい。
 低粘性溶媒としては、低級アルコールを用いることが好ましい。低級アルコールとしては、例えば、メタノール、エタノール又はプロパノールなどが好ましい。この低級アルコールを用いることにより、適切なゲル化状態を容易に得ることができる。なお、プロパノールとしては、1-プロパノールを用いてもよく、2-プロパノール(イソプロパノール)を用いてもよい。
 また、低粘性溶媒としては、グリコールモノアルキルエーテルを用いることも好ましい。グリコールモノアルキルエーテルは、グリコールの一方の水酸基がエーテル化されたものであり、一方の水酸基が残存していることから、アルコールに近い特性を有するので、低級アルコールと同様の効果を得ることができる。グリコールモノアルキルエーテルとしては、例えば、プロピレングリコールモノメチルエーテル(PGME)やジエチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルなどが挙げられる。
 高粘性アルコールとしては、本発明の効果を奏する範囲であれば特に制限はない。高粘性アルコールとしては、例えば、各種ジオール化合物(各種グリコール)を用いることができる。これらの中でも、高粘性アルコールとしては、エチレングリコール、プロピレングリコール、ブタンジオール又はジエチレングリコールを用いることが好ましく、プロピレングリコール又はブタンジオールであることがより好ましい。
 また、本発明に係るインク組成物においては、本発明の効果を奏する範囲でエンハンサーとしての高粘性溶媒を用いてもよい。このような高粘性化合物としては、例えば、ジメチルスルホキシド(DMSO)などが挙げられる。
 次に、本発明者らは、インク組成物の組成とゲル化との関係について詳細に調べた。ここでは、下記表1を参照しながら、市販品のPEDOT/PSS水溶液(商品名:Clevios(登録商標)P(濃度1.8重量%))を使用し、水による希釈や加熱濃縮によってPEDOT/PSSの濃度を変化させた場合のPEDOT/PSS濃度及び混合アルコール(アルコールとグリコール)の組成と適切なゲル化状態との関係について説明する。なお、以下の例では、シランカップリング剤は、PEDOT/PSSの固形分と等量用いている。また、混合アルコールとしては、低粘性溶媒としてのイソプロパノール(IPA)と高粘性アルコールとしてのプロピレングリコール(PG)との混合比(IPA:PG)を4:1として混合アルコールの量を変化させた場合と、PEDOT/PSS水溶液100重量部に対して混合アルコールの総量を300重量部として低粘性溶媒と高粘性アルコールとの組成比を変化させている。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、本発明に係るインク組成物においては、用いるPEDOT/PSS水溶液の濃度を1.3重量%以上の範囲とすることにより、インク組成物を混合して適切にゲル化状態にすることが可能となる。また、用いるPEDOT/PSS水溶液の濃度を3.5以下とすることにより、溶液全体の固化を防ぐことが可能となり、インク組成物を濃縮して回収することが可能となる。
 まず、混合アルコールの組成を低粘性溶媒(IPA):高粘性アルコール(PG)=4:1とした場合について説明する。この場合、PEDOT/PSS水溶液の濃度が大きくなるにつれて低粘性の低級アルコールの量を少なくしても適正なゲル化状態にすることが可能となる。この結果は、適正なゲル化状態になるためのイオン性高分子、主にPSSの濃度が高い為、少量の低粘性の低級アルコールでも可能となると考えられる。
 PEDOT/PSS水溶液の濃度が下記関係式(2)を満たす場合には、混合アルコールが低粘性溶媒100重量部以上150重量部以下と高粘性アルコール200重量部以上150重量部以下とを含む範囲でゲル化させることができる。
式(2)
 1.3重量%≦PEDOT/PSS水溶液<2.0重量%
 また、PEDOT/PSS水溶液の濃度が下記関係式(3)を満たす場合には、混合アルコールが低粘性溶媒15重量部以上180重量部以下と高粘性アルコール285重量部以上120重量部以下とを含む範囲でゲル化させることができる。
式(3)
 2.0重量%≦PEDOT/PSS水溶液<3.0重量%
 さらに、PEDOT/PSS水溶液の濃度が下記関係式(4)を満たす場合には、混合アルコールが低粘性溶媒10重量部以上200重量部以下と高粘性アルコール290重量部以上100重量部以下とを含む範囲でゲル化させることができる。
式(4)
 3.0重量%≦PEDOT/PSS水溶液<3.5重量%
 次に、PEDOT/PSS水溶液100重量部に対して混合アルコール300重量部を用いた場合について説明する。この場合、用いるPEDOT/PSS水溶液の濃度が高くなるにつれて低粘性溶媒の割合を小さくしてもインク組成物を適正にゲル化状態にすることができる。この結果は、適正なゲル化状態になる為のイオン性高分子、主にPSSの濃度が高いため、少量の低粘性の低級アルコールでも可能となるためと考えられる。
 PEDOT/PSS水溶液の濃度が下記関係式(2)を満たす場合には、混合アルコールが低粘性溶媒80重量部以上200重量部以下と高粘性アルコール20重量部以上50重量部以下とを含む範囲で適正なゲル化状態にさせることが可能となる。
式(2)
 1.3重量%≦PEDOT/PSS水溶液<2.0重量%
 また、PEDOT/PSS水溶液の濃度が下記関係式(3)を満たす場合には、混合アルコールが低粘性溶媒10重量部以上220重量部以下と高粘性グリコール2重量部以上55重量部以下とを含む範囲で適正にゲル化状態にさせることが可能となる。
式(3)
 2.0重量%≦PEDOT/PSS水溶液<3.0重量%
 さらに、PEDOT/PSS水溶液の濃度が下記関係式(4)を満たす場合には、混合アルコールが低粘性溶媒5重量部以上250重量部以下と高粘性アルコール1重量部以上65重量部以下とを含む範囲で適正なゲル化状態にさせることが可能となる。
式(4)
 3.0重量%≦PEDOT/PSS水溶液<3.5重量%
 このように、本発明に係るインク組成物においては、PEDOT/PSS水溶液を上記関係式(1)を満たす範囲とすることにより、混合アルコールの組成及び総量に関して広い範囲でインク組成物を適正なゲル化状態にさせることが可能となる。これにより、非導電性の各種バインダーポリマーを用いることなく、インク組成物の粘度をスクリーン印刷に適した範囲にすることができるので、導電性及び透過率に優れた透明導電膜をえることが可能となる。
 次に、本発明に係るインク組成物の製造方法について説明する。図4は、本実施の形態に係る透明導電膜の製造工程の概略を示すフロー図である。本発明に係るインクの製造方法は、PEDOT/PSS水溶液と、混合アルコールと、シランカップリング剤と、を混合してゲル化するゲル化工程と、このゲルをインク化してインク組成物を製造するインク化工程と、を含む。
 ゲル化工程においては、上述したPEDOT/PSS原液(PEDOT/PSSのみを含む水溶液)にエンハンサーとしてのDMSO(ジメチルスルホキシド)、PEDOT:PSSの固形分と等量のシランカップリング剤、及び所定の組成を有する混合アルコールを添加してPEDOT/PSS水溶液を調合する(ST1、ST2)。そして、このPEDOT/PSS水溶液を所定時間の撹拌・混合した後、撹拌を停止して数時間から1晩放置することにより混合溶液を適切なゲル化状態にさせる(ST3、ST4)。次に、インク化工程においては、ゲル化状態の溶液を約1時間撹拌してインク化し、インク組成物を製造する(ST5)。
 本発明に係るインク組成物の製造方法によれば、バインダーポリマーなどの増粘剤を加えることなく、ゲル化によりインク組成物の粘度を適度な範囲とすることができるので、スクリーン印刷に適した高粘度(100cp以上:撹拌速度5rpm)インク組成物を製造することができる。そして、このインク組成物は、絶縁性のポリマーバインダーを含まずに粘度を上げていることから、導電率が高い透明導電膜を製造することが可能となる。
 以上説明したように、上記実施の形態に係るインク組成物によれば、低粘性溶媒と高粘性アルコールとを含む混合アルコールを所定量含有することから、所定量のPEDOT/PSS水溶液、所定量の混合アルコール及びシランカップリング剤を含む溶液の適切なゲル化状態の濃度範囲が低濃度側にシフトするので、PEDOT/PSS水溶液の濃度が上記式(1)を満たす範囲で適切なゲル状態となる。この適切なゲル状態とすることにより、インク組成物の粘度がスクリーン印刷に適した範囲となるので、増粘剤としての各種ポリマーバインダーを添加する必要がない。これにより、スクリーン印刷やディスペンサーによる塗布に対応することが可能となる。また、高濃度バインダーの添加や高粘度溶媒を用いずにインク組成物を高粘度化できるので、インク組成物を用いて得られる透明導電膜の低抵抗化及び耐久性を向上できる。また、低温での焼成(例えば、110℃以下、20分)することが可能となる。
 次に、本発明の効果を明確にするために行った実施例について説明する。なお、本発明は、以下の実施例によって限定されるものではない。
 以下の実施例においては、本実施の形態に係るインク組成物及び比較例に係るインク組成物を作製し、作製したインク組成物の特性について評価した。また、作製したインク組成物を用いて透明導電膜を作製し、その物性について評価した。以下に、各種物性測定条件を示す。
(インク組成物のゲル化)
 インク組成物の適正なゲル化状態は、粘度計にて測定した粘度により判断した。
(粘度の測定)
 粘度は、コーン回転式粘度測定器(商品名レオメータ・粘度計、ハーケ社製)RotoVisco 1を用いてコーン回転速度5rpmの条件にて測定した。
(面積抵抗)
 透明導電膜の面積抵抗は、透明導電膜の表面抵抗を4探針式面積抵抗計(三菱化学社製、LORESTA EP MCP-1360)を用いて測定した面積抵抗(シート抵抗値)を用いた。
(導電率)
 導電率は、面積抵抗値と膜厚の積で求めた。膜厚は、接触式段差計(DEKTAK)を用いてスクリーン印刷パターンの段差部を測定した。
(全光線透過率)及び(ヘイズ)
 透明導電膜の全光線透過率及びヘイズは、ヘイズメータ(商品名HZ-2、スガ試験機社製)を用いて測定した。全光線透過率は、JIS-K7361-1、また、ヘイズは、JIS-K7136に基づく計測を実施した。
 まず、本発明者らは、シランカップリング剤を一定量とした条件でPEDOT及び混合アルコール溶液の組成比とを変化させてインク組成物を作製し、作製したインク組成物を用いて得られた透明導電膜の物性について調べた(実施例1~実施例3、比較例1及び比較例2)。
<実施例1>
(インク組成物の調合)
 PEDOT/PSS水溶液としては、固形分の濃度が1.8重量%の市販品(Clevios P、Heraeus社製)を用いた。このPEDOT/PSS水溶液にPEDOT/PSS固形分と等量のシランカップリング剤を添加した水溶液を調製した。この水溶液100重量部に、混合アルコール100重量部(イソプロパノール(80重量部):プロピレングリコール(20重量部))及びエンハンサーとしてのジメチルスルホキシド(DMSO)10重量部を添加して22℃の条件下、1時間撹拌してインク組成物を作製した。次に、撹拌を停止して2間放置したところ、インク組成物が適正なゲル化状態となった。次に、ゲル化した溶液を22℃の条件下、1時間撹拌したインク化してインク組成物を作製し、作製したインク組成物の粘度を測定したところ、粘度は540cpであった。結果を下記表2に示す。
(透明導電膜の作製)
 市販のスクリーン印刷版(テトロン材355メッシュ、メッシュ工業社製)を用いて、スクリーン印刷によりフィルム基材(PETフィルム:厚み100μm、100mm四方)上にインク組成物を塗布して薄膜を形成した。スクリーン印刷の状態は、良好であった。
 次に、得られた薄膜を120℃で20分間ベークした。得られた透明導電膜は、膜厚が860nmであり、面積抵抗が370Ω/□であり、導電率が31S/cmであり、全光線透過率が83.2%、ヘイズが1.0であった。結果を下記表3に示す。
<実施例2>
(インク組成物の調整)
 ジメチルスルホキシドの添加量を15重量部とし、混合アルコールを200重量部(イソプロパノール(160重量部):プロピレングリコール(40重量部))としたこと以外は、実施例1と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様に適正なゲル化状態にした。また、粘度は840cpであった。結果を下記表2に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が980nmであり、面積抵抗が261Ω/□であり、導電率が39S/cmであり、全光線透過率が84.1%、ヘイズが1.0であった。結果を下記表3に示す。
<実施例3>
(インク組成物の調整)
 ジメチルスルホキシドの添加量を17.5重量部とし、混合アルコールを250重量部(イソプロパノール(200重量部):プロピレングリコール(50重量部))としたこと以外は、実施例1と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様にゲル化した。また、粘度は580cpであった。結果を下記表2に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が890nmであり、面積抵抗が261Ω/□であり、導電率が26S/cmであり、全光線透過率が80.2%、ヘイズが1.2であった。結果を下記表3に示す。
<比較例1>
(インク組成物の調整)
 ジメチルスルホキシドの添加量を8.5重量部とし、混合アルコールを70重量部(イソプロパノール(56重量部):プロピレングリコール(16重量部))としたこと以外は、実施例1と同様にしてインク組成物を作製した。このインク組成物は、実施例1とは異なりゲル化しなかった。また、粘度は260cpであった。結果を下記表2に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。比較例1のインク組成物は、粘度が低いことからスクリーン印刷時にインク組成物の流れが大きく、透明導電膜の形状制御が不可能であった。得られた透明導電膜は、膜厚が300nmであり、面積抵抗は1100Ω/□であり、導電率が30S/cmであり、全光線透過率が86.5%、ヘイズが0.9であった。結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
 表2及び表3から分かるように、シランカップリング剤を含有し、所定量の混合アルコールを含む場合には、インク組成物の適正なゲル化状態の濃度範囲が低濃度にシフトして適正なゲル化状態になることが分かる(実施例1から実施例3)。そして、適正なゲル化状態のインク組成物を用いることによりスクリーン印刷が可能となり、良好な膜厚、面積抵抗、導電率、全光線透過率及びヘイズを有する透明導電膜が得られることが分かる。これに対して、混合アルコールの含有量が少なすぎる場合や多すぎる場合には、インク組成物が適正なゲル化状態にならず、スクリーン印刷が不良となることが分かる(比較例1)。また、混合アルコールの含有量が少なすぎる場合には、インク組成物の流れが大きく、透明導電膜の形状制御ができない状態となった(比較例1)。また、混合アルコールの含有量が多すぎる場合には、透明導電膜の表面に凹凸が生じて梨地状態となり、部分的に連続な膜とはならなかった。このため、導電率が大幅に低下した。
 次に、本発明者らは、PEDOT/PSS水溶液の濃度、シランカップリング剤の含有量、及び混合アルコールの含有量を変化させてインク組成物を作製し、作製したインク組成物を用いて得られた透明導電膜の物性について調べた(実施例4~実施例11、比較例3から比較例5)。また、市販のインク組成物を用いて透明導電膜を作製し、作製した透明導電膜の物性を調べた。
<実施例4>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を1.7重量%とし、シランカップリング剤を0.43重量部とし、ジメチルスルホキシドの添加量を20重量部とし、混合アルコールを300重量部(イソプロパノール(100重量部):プロピレングリコール(200重量部))としたこと以外は、実施例1と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様に適切なゲル化状態となった。また、粘度は400cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が45nmであり、面積抵抗が750Ω/□であり、導電率が290S/cmであり、全光線透過率が87%であり、ヘイズが0.9であった。結果を下記表5に示す。
<実施例5>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を2.2重量%とし、シランカップリング剤を0.55重量部としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、実施例4と同様に適正なゲル化状態となった。また、粘度は530cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が60nmであり、面積抵抗が343Ω/□であり、導電率が490S/cmであり、全光線透過率が88%であり、ヘイズが0.8であった。結果を下記表5に示す。
<実施例6>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を2.5重量%とし、シランカップリング剤を0.63重量部とし、混合アルコールを300重量部(イソプロパノール(60重量部):プロピレングリコール(240重量部))としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、実施例4と同様に適正なゲル化状態となった。また、粘度は600cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が75nmであり、面積抵抗が290Ω/□であり、導電率が460S/cmであり、全光線透過率が88%であり、ヘイズが0.8であった。結果を下記表5に示す。
<実施例7>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を2.5重量%とし、シランカップリング剤を0.63重量部とし、混合アルコールを300重量部(イソプロパノール(50重量部):プロピレングリコール(250重量部))としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様に適正なゲル化状態となった。また、粘度は600cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が72nmであり、面積抵抗が260Ω/□であり、導電率が533S/cmであり、全光線透過率が88%であり、ヘイズが0.8であった。結果を下記表5に示す。
<実施例8>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を2.6重量%とし、シランカップリング剤を0.65重量部とし、混合アルコールを300重量部(イソプロパノール(130重量部):プロピレングリコール(170重量部))としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様に適正なゲル化状態となった。また、粘度は660cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が80nmであり、面積抵抗が250Ω/□であり、導電率が500S/cmであり、全光線透過率が87%であり、ヘイズが0.9であった。結果を下記表5に示す。
<実施例9>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を2.8重量%とし、シランカップリング剤を0.70重量部とし、混合アルコールを300重量部(イソプロパノール(40重量部):プロピレングリコール(260重量部))としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様に適正なゲル化状態となった。また、粘度は790cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が105nmであり、面積抵抗が210Ω/□であり、導電率が453S/cmであり、全光線透過率が86%であり、ヘイズが0.9であった。結果を下記表5に示す。
<実施例10>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を2.9重量%とし、シランカップリング剤を0.73重量部とし、混合アルコールを300重量部(イソプロパノール(140重量部):プロピレングリコール(160重量部))としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様に適正なゲル化状態となった。また、粘度は830cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が120nmであり、面積抵抗が205Ω/□であり、導電率が407S/cmであり、全光線透過率が85%であり、ヘイズが1.0であった。結果を下記表5に示す。
<実施例11>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を3.3重量%とし、シランカップリング剤を0.83重量部とし、混合アルコールを300重量部(イソプロパノール(100重量部):プロピレングリコール(200重量部))としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様に適正なゲル化状態となった。また、粘度は920cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が135nmであり、面積抵抗が350Ω/□であり、導電率が211S/cmであり、全光線透過率が84%であり、ヘイズが1.2であった。結果を下記表5に示す。
<実施例12>
(インク組成物の調整)
 混合アルコールを300重量部(プロピレングリコールモノメチルエーテル(50重量部):プロピレングリコール(250重量部))としたこと以外は、実施例7と同様にしてインク組成物を作製した。このインク組成物は、実施例1と同様に適正なゲル化状態となった。また、粘度は560cpであった。結果を下記表4に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が64nmであり、面積抵抗が300Ω/□であり、導電率が520S/cmであり、全光線透過率が88%であり、ヘイズが0.8であった。結果を下記表5に示す。
<比較例2>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を3.5重量%とし、実施例4と同様にしてインク組成物の調製を試みたが、インク組成物が析出・固化し、その後の操作ができなかった。結果を下記表6及び下記表7に示す。
<比較例3>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を1.1重量%とし、シランカップリング剤を0.3重量部とし、混合アルコールを300重量部(イソプロパノール(50重量部):プロピレングリコール(350重量部))としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、比較例1と同様に適正なゲル化状態にならなかった。また、粘度は230cpであった。結果を下記表6に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が27nmであり、面積抵抗が1200Ω/□であり、導電率が309S/cmであり、全光線透過率が88%であり、ヘイズが0.9であった。結果を下記表7に示す。
<比較例4>
(インク組成物の調整)
 PEDOT/PSS水溶液の濃度を1.2重量%とし、シランカップリング剤を0.3重量部とし、混合アルコールを300重量部(イソプロパノール(100重量部):プロピレングリコール(200重量部))としたこと以外は、実施例4と同様にしてインク組成物を作製した。このインク組成物は、比較例1と同様に適正なゲル化状態にならなかった。また、粘度は260cpであった。結果を下記表6に示す。
(透明導電膜の作製)
 実施例1と同様にしてスクリーン印刷により透明導電膜を作製した。スクリーン印刷の状態は、実施例1と同様に良好であった。得られた透明導電膜は、膜厚が30nmであり、面積抵抗が1200Ω/□であり、導電率が278S/cmであり、全光線透過率が88%であり、ヘイズが0.9であった。結果を下記表7に示す。
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
 表4から表7から分かるように、PEDOT/PSS水溶液の濃度が所定範囲内にある場合には、シランカップリング剤の含有量や混合アルコールの組成を変化させた場合においても、広い範囲でゲル化が可能となることが分かる(実施例4から実施例12)。これに対して、表5及び表6から分かるように、PEDOT/PSS水溶液の濃度が高すぎる場合には、析出・固化しインク組成物として取り扱うことが不可能となり(比較例2)、PEDOT/PSS水溶液の濃度が低すぎる場合には、インク組成物の適正なゲル化状態が得られなくなることが分かる(比較例3及び比較例4)。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 本発明は、スクリーン印刷方式による透明導電膜の形成が可能であり、しかも導電率及び透過率に優れた透明導電膜が得られるインク組成物及びインク組成物の製造方法を実現できるという効果を有し、特に、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ、エレクトロクロミックディスプレイ、太陽電池、タッチパネル、電子ペーパー等に用いられる透明電極及び電磁波シールドなど、各種透明導電膜を用いたデバイスに適用可能である。
 11 PEDOT
 12 PSS
 13 シランカップリング剤
 21 PEDOT分子
 22 PSS分子

Claims (17)

  1.  PEDOT/PSS水溶液100重量部と、混合アルコール300重量部以下と、シランカップリング剤と、を混合した溶液をインク化してなり、前記PEDOT/PSS水溶液の濃度が下記関係式(1)を満たし、前記混合アルコールが低粘性溶媒と高粘性アルコールとを含むことを特徴とするインク組成物。
    式(1)
     1.3重量%≦PEDOT/PSS水溶液<3.5重量%
  2.  前記低粘性溶媒が低級アルコールであることを特徴とする請求項1記載のインク組成物。
  3.  前記低級アルコールがメタノール、エタノール又はプロパノールであることを特徴とする請求項2記載のインク組成物。
  4.  前記低粘性溶媒がグリコールモノアルキルエーテルであることを特徴とする請求項1記載のインク組成物。
  5.  前記高粘性アルコールがグリコールであることを特徴とする請求項1から請求項4のいずれかに記載のインク組成物。
  6.  前記グリコールがプロピレングリコール又はブタンジオールであることを特徴とする請求項5記載のインク組成物。
  7.  前記PEDOT/PSS水溶液100重量部と、前記混合アルコール300重量部と、を含むことを特徴とする請求項1から請求項6のいずれかに記載のインク組成物。
  8.  前記低粘性溶媒と前記高粘性アルコールとの混合比(低粘性溶媒:高粘性アルコール)が4:1であることを特徴とする請求項1から請求項6のいずれかに記載のインク組成物。
  9.  前記PEDOT/PSS水溶液の濃度が下記関係式(2)を満たし、前記混合アルコールが前記低粘性溶媒100重量部以上150重量部以下と前記高粘性アルコール200重量部以下150重量部以上とを含むことを特徴とする請求項7記載のインク組成物。
    式(2)
     1.3重量%≦PEDOT/PSS水溶液<2.0重量%
  10.  前記PEDOT/PSS水溶液の濃度が下記関係式(3)を満たし、前記混合アルコールが前記低粘性溶媒15重量部以上180重量部以下と前記高粘性アルコール285重量部以下120重量部以上とを含むことを特徴とする請求項7記載のインク組成物。
    式(3)
     2.0重量%≦PEDOT/PSS水溶液<3.0重量%
  11.  前記PEDOT/PSS水溶液の濃度が下記関係式(4)を満たし、前記混合アルコールが前記低粘性溶媒10重量部以上200重量部以下と前記高粘性アルコール290重量部以下100重量部以上とを含むことを特徴とする請求項7記載のインク組成物。
    式(4)
     3.0重量%≦PEDOT/PSS水溶液<3.5重量%
  12.  前記PEDOT/PSS水溶液の濃度が下記関係式(2)を満たし、前記混合アルコールが前記低粘性溶媒80重量部以上200重量部以下と前記高粘性アルコール20重量部以下50重量部以上とを含むことを特徴とする請求項8記載のインク組成物。
    式(2)
     1.3重量%≦PEDOT/PSS水溶液<2.0重量%
  13.  前記PEDOT/PSS水溶液の濃度が下記関係式(3)を満たし、前記混合アルコールが前記低粘性溶媒10重量部以上220重量部以下と前記高粘性アルコール2重量部以上55重量部以下とを含むことを特徴とする請求項8記載のインク組成物。
    式(3)
     2.0重量%≦PEDOT/PSS水溶液<3.0重量%
  14.  前記PEDOT/PSS水溶液の濃度が下記関係式(4)を満たし、前記混合アルコールが前記低粘性溶媒5重量部以上250重量部以下と前記高粘性アルコール1重量部以上65重量部以下とを含むことを特徴とする請求項8記載のインク組成物。
    式(4)
     3.0重量%≦PEDOT/PSS水溶液<3.5重量%
  15.  請求項1から請求項14のいずれかに記載のインク組成物の製造方法であって、前記PEDOT/PSS水溶液と、前記混合アルコールと、前記シランカップリング剤と、を含む溶液を撹拌してゲル化するゲル化工程と、ゲル化した前記溶液をインク化してインク組成物を製造するインク化工程と、を含むことを特徴とするインク組成物の製造方法。
  16.  請求項1から請求項14のいずれかに記載のインク組成物を用いて形成されたことを特徴とする透明導電膜。
  17.  請求項15に記載のインク組成物の製造方法によって製造されたインク組成物を用いることを特徴とする透明導電膜の製造方法。
PCT/JP2013/070637 2012-08-09 2013-07-30 インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法 WO2014024735A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-177489 2012-08-09
JP2012177489A JP2015180708A (ja) 2012-08-09 2012-08-09 インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法

Publications (1)

Publication Number Publication Date
WO2014024735A1 true WO2014024735A1 (ja) 2014-02-13

Family

ID=50067966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070637 WO2014024735A1 (ja) 2012-08-09 2013-07-30 インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法

Country Status (2)

Country Link
JP (1) JP2015180708A (ja)
WO (1) WO2014024735A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928614A (zh) * 2014-04-21 2014-07-16 电子科技大学 一种高填充因子的有机薄膜太阳能电池
CN106810945A (zh) * 2015-11-30 2017-06-09 比亚迪股份有限公司 导电油墨组合物及其应用方法以及导电油墨材料层和电子器材与打印机
JP2018104633A (ja) * 2016-12-28 2018-07-05 日本合成化学工業株式会社 樹脂溶液、それを用いてなる樹脂層および粘着シート
CN111410870A (zh) * 2020-02-16 2020-07-14 陕西科技大学 一种有机导电聚合物墨水和基于丝网印刷的防伪系统及其制作方法
CN113053565A (zh) * 2021-06-02 2021-06-29 苏州华星光电技术有限公司 导电膜及其制备方法、显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040969A (ja) * 2007-08-10 2009-02-26 Shin Etsu Polymer Co Ltd 撥水性導電性高分子塗料及び撥水性導電性塗膜
WO2009044894A1 (ja) * 2007-10-05 2009-04-09 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液、導電性塗膜および入力デバイス
JP2009170408A (ja) * 2007-12-20 2009-07-30 Shin Etsu Polymer Co Ltd 導電性シートおよびその製造方法、ならびに入力デバイス
JP2010114066A (ja) * 2008-10-06 2010-05-20 Fujifilm Corp 有機導電性高分子塗布液、有機導電性高分子膜、導電体、及び抵抗膜式タッチパネル
JP2010146944A (ja) * 2008-12-22 2010-07-01 Shin Etsu Polymer Co Ltd 導電性シートおよびその製造方法、ならびに入力デバイス
WO2011099474A1 (ja) * 2010-02-09 2011-08-18 王子製紙株式会社 導電性積層体およびそれを用いたタッチパネル
WO2012057257A1 (ja) * 2010-10-29 2012-05-03 信越ポリマー株式会社 透明導電ガラス基板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040969A (ja) * 2007-08-10 2009-02-26 Shin Etsu Polymer Co Ltd 撥水性導電性高分子塗料及び撥水性導電性塗膜
WO2009044894A1 (ja) * 2007-10-05 2009-04-09 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液、導電性塗膜および入力デバイス
JP2009170408A (ja) * 2007-12-20 2009-07-30 Shin Etsu Polymer Co Ltd 導電性シートおよびその製造方法、ならびに入力デバイス
JP2010114066A (ja) * 2008-10-06 2010-05-20 Fujifilm Corp 有機導電性高分子塗布液、有機導電性高分子膜、導電体、及び抵抗膜式タッチパネル
JP2010146944A (ja) * 2008-12-22 2010-07-01 Shin Etsu Polymer Co Ltd 導電性シートおよびその製造方法、ならびに入力デバイス
WO2011099474A1 (ja) * 2010-02-09 2011-08-18 王子製紙株式会社 導電性積層体およびそれを用いたタッチパネル
WO2012057257A1 (ja) * 2010-10-29 2012-05-03 信越ポリマー株式会社 透明導電ガラス基板

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928614A (zh) * 2014-04-21 2014-07-16 电子科技大学 一种高填充因子的有机薄膜太阳能电池
CN103928614B (zh) * 2014-04-21 2016-08-17 电子科技大学 一种高填充因子的有机薄膜太阳能电池
CN106810945A (zh) * 2015-11-30 2017-06-09 比亚迪股份有限公司 导电油墨组合物及其应用方法以及导电油墨材料层和电子器材与打印机
CN106810945B (zh) * 2015-11-30 2019-09-13 比亚迪股份有限公司 导电油墨组合物及其应用方法以及导电油墨材料层和电子器材与打印机
JP2018104633A (ja) * 2016-12-28 2018-07-05 日本合成化学工業株式会社 樹脂溶液、それを用いてなる樹脂層および粘着シート
CN111410870A (zh) * 2020-02-16 2020-07-14 陕西科技大学 一种有机导电聚合物墨水和基于丝网印刷的防伪系统及其制作方法
CN113053565A (zh) * 2021-06-02 2021-06-29 苏州华星光电技术有限公司 导电膜及其制备方法、显示面板

Also Published As

Publication number Publication date
JP2015180708A (ja) 2015-10-15

Similar Documents

Publication Publication Date Title
WO2014024735A1 (ja) インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法
JP2007531233A (ja) 有機電極コーティング用組成物及びこれを用いた高透明性有機電極の製造方法
JP5232867B2 (ja) ポリチオフェン系伝導性高分子膜
US7683124B2 (en) Dispersions of intrinsically conductive polymers, and methods for the production thereof
JP6005832B2 (ja) 硬化性帯電防止オルガノポリシロキサン組成物および帯電防止シリコーン皮膜
Liu et al. Enhancements in conductivity and thermal and conductive stabilities of electropolymerized polypyrrole with caprolactam-modified clay
JP2017133022A (ja) 導電性組成物、帯電防止樹脂組成物および帯電防止樹脂皮膜
CN103113786A (zh) 一种石墨烯导电油墨及其制备方法
CN104449377A (zh) 一种石墨烯导电涂料及其制备方法
KR20110073272A (ko) 전도성 고분자 조성물 및 이를 이용한 전도성 필름
JP2012124107A (ja) 透明導電膜の製造方法、透明導電膜、導電性繊維の製造方法、導電性繊維、カーボンナノチューブ・導電性ポリマー複合分散液、カーボンナノチューブ・導電性ポリマー複合分散液の製造方法および電子機器
Hasanin et al. Electrical properties of conducting tertiary composite based on biopolymers and polyaniline
JP6093779B2 (ja) 液晶表示装置の背面電極形成用導電性組成物およびこれを用いた背面電極の形成方法
JP2019075265A (ja) 導電性粒子及びその製造方法、並びに導電性樹脂組成物
JP2015221871A (ja) 導電性ディスパージョン
JP2012056990A (ja) 導電性ベンゾチアジアゾール共重合体組成物
Zhao et al. Ionic liquid induced supramolecular self-assembly of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) thin films with enhanced conductivity and tunable nanoporosity
JP2023032464A (ja) 導電性高分子含有液、並びに前記導電性高分子含有液の硬化層を備えた導電性積層体及びその製造方法
KR100475550B1 (ko) 전자파차폐용 도전성 블랙착색 코팅액 조성물, 그를이용한 코팅필름의 제조방법 및 그 코팅필름
JP2022050974A (ja) 硫黄含有導電性複合体及びその製造方法、導電性高分子分散液、並びに、導電性積層体及びその製造方法
KR20110122677A (ko) 도전성 코팅 조성물
JP2017502337A (ja) 液晶表示装置の背面電極形成用導電性組成物
KR20090087530A (ko) 투명한 전도성 코팅 조성물
KR100417173B1 (ko) 정전기방지투명하드코팅액조성물
KR101933383B1 (ko) 액정표시장치의 배면전극 형성용 도전성 조성물의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP