WO2012057257A1 - 透明導電ガラス基板 - Google Patents

透明導電ガラス基板 Download PDF

Info

Publication number
WO2012057257A1
WO2012057257A1 PCT/JP2011/074797 JP2011074797W WO2012057257A1 WO 2012057257 A1 WO2012057257 A1 WO 2012057257A1 JP 2011074797 W JP2011074797 W JP 2011074797W WO 2012057257 A1 WO2012057257 A1 WO 2012057257A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
conductive polymer
transparent conductive
acid
compound
Prior art date
Application number
PCT/JP2011/074797
Other languages
English (en)
French (fr)
Inventor
敦 谷口
吉田 一義
藤木 弘直
榮 西山
一馬 竹内
宏隆 羽鳥
Original Assignee
信越ポリマー株式会社
株式会社Nsc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社, 株式会社Nsc filed Critical 信越ポリマー株式会社
Priority to SG2013032073A priority Critical patent/SG190020A1/en
Priority to KR1020137010429A priority patent/KR101815337B1/ko
Priority to JP2012540930A priority patent/JP5888700B2/ja
Priority to CN201180051309.8A priority patent/CN103189931B/zh
Publication of WO2012057257A1 publication Critical patent/WO2012057257A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/09Materials and properties inorganic glass

Definitions

  • the present invention relates to a transparent conductive glass substrate.
  • a transparent conductive film obtained by sputtering a conductive ceramic such as ITO on a glass substrate is currently used in many electronic members.
  • ITO has a problem of depletion of indium, which is a raw material, and a problem of price increase. Therefore, an alternative to other conductive materials is required, and technically, a flexible substrate having flexibility from a conventional hard substrate is required. Substrates have been craved for design and function.
  • ITO is generally sputtered or coated with a dispersion as a transparent conductive material on a glass substrate, but these glasses are thick and inflexible moldings.
  • a technique for applying a conductive polymer to glass using a slit coater is disclosed (for example, see Patent Document 2).
  • the glass used here does not have flexibility and is not used on a curved surface.
  • this conductive polymer is used as a hole injection layer of organic EL applied on ITO, and the degree of consideration with respect to adhesion to a glass substrate is small.
  • Patent Document 1 has no problem in bending property and flexibility, but has problems in warpage, hardness, scratching property, optical transparency, etc. It was necessary to apply a material or the like as a base for the conductive layer.
  • the glass disclosed in Patent Document 2 is not flexible and is not used on a curved surface, and the conductive polymer is used by being applied on ITO as a hole injection layer of organic EL.
  • the degree of consideration with respect to the adhesion to the glass substrate is small.
  • the present invention has been made in view of the above problems, and has flexibility similar to that of plastics substrates, and has flexibility and adhesion that can withstand use on curved surfaces, realizing hardness and transparency not found in plastics.
  • An object of the present invention is to provide a transparent conductive glass substrate.
  • the conductive polymer coating forming the conductive polymer layer includes a conductive polymer and a polyanion, and further selected from the group including a binder, a curing agent, a high conductivity agent, a surfactant, a catalyst, and an adhesion improver.
  • the conductive polymer is an organic polymer whose main chain is composed of a ⁇ -conjugated system.
  • Polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes The transparent conductive glass substrate according to claim 2, comprising one or a plurality of polymers belonging to one or a plurality selected from a group including a copolymer thereof.
  • the polyanion is one or more polymers having one or more anionic groups selected from the group comprising a monosubstituted sulfate group, a monosubstituted phosphate group, a phosphate group, a carboxy group, and a sulfo group
  • the transparent conductive glass substrate according to claim 2 comprising:
  • the binder is a binder resin, and the binder resin is one or a plurality of thermosetting resins and / or thermoplastic resins that are compatible or mixed with the conductive polymer paint.
  • Item 3 The transparent conductive glass substrate according to Item 2.
  • the highly conductive agent is a nitrogen-containing aromatic cyclic compound, a compound having two or more hydroxy groups, a compound having two or more carboxy groups, one or more hydroxy groups, and one or more carboxy groups.
  • One or more compounds selected from the group consisting of a compound having a group, a compound having an amide group, a compound having an imide group, a lactam compound, a compound having a glycidyl group, a silane coupling agent, DMSO, and a water-soluble organic solvent The transparent conductive glass substrate according to claim 2, wherein
  • the conductive polymer layer is produced by applying a conductive polymer coating, followed by drying and heating and / or irradiation with infrared rays or ultraviolet rays.
  • Conductive polymer coating is applied by a screen printing method, a gravure printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a spin coating method, a die coating method including a slit coater method, a curtain coating method and a cap coating method.
  • the transparent conductive glass according to claim 1 wherein the glass substrate has a thickness in the range of 0.03 to 0.7 mm, and the glass surface has a contact angle with water of 5 to 40 degrees. substrate.
  • a flexible transparent conductive glass substrate having the same flexibility as a plastic substrate, having a hardness and transparency not found in plastics, and having adhesion capable of withstanding use on a curved surface. Can do.
  • the present inventors have formed a conductive polymer layer on a glass substrate having a thickness of 0.03 to 0.7 mm and an arithmetic average roughness Ra of 0.2 ⁇ m or less.
  • the present inventors have investigated that a flexible transparent conductive glass substrate having the same flexibility as a plastic substrate, having a hardness and transparency not found in plastics, and having adhesion capable of withstanding use on a curved surface can be manufactured.
  • the thickness of the glass substrate is preferably in the range of 0.03 to 0.7 mm, and the arithmetic average roughness Ra is preferably 0.2 ⁇ m or less.
  • the material of the glass substrate include alkali glass, nonionic glass, and quartz glass. Among these, nonionic glass can be preferably used from the viewpoint of environmental load.
  • Thin film glass manufacturing methods include chemical etching with hydrofluoric acid.
  • chemicals used for chemical etching include hydrochloric acid, sulfuric acid, nitric acid, a mixture of two or more kinds including phosphoric acid and hydrofluoric acid.
  • hydrofluoric acid is preferably used from the viewpoint of glass slimming.
  • a liquid temperature of 25 to 55 degrees is desirable for reasons of slimming accuracy.
  • the glass substrate in the present invention is preferably thinned by chemical etching because the bending strength is inferior. Moreover, even if the glass is thinned by grinding, the arithmetic average roughness Ra is 0.2 ⁇ m or less, and the surface that has been improved in wettability with a conductive polymer by treating the surface with hydrofluoric acid or the like is stronger than the conductive polymer film. A product that can be used can be obtained.
  • the choice of the conductive polymer is selected from polyaniline, polypyrrole, and polythiophene, but the polythiophene is preferable from the viewpoint of transparency and color conductivity, and polyethylene dioxythiophene and polystyrene sulfone are preferred. Those consisting of complexes with acids are most preferred.
  • the glass substrate in the present invention preferably has a contact angle with water of 5 to 40 degrees, more preferably 5 It is between -7 degrees.
  • the contact angle exceeds 40 degrees, the conductive polymer dispersion solution is repelled and does not become a beautiful coating film, and adhesion strength cannot be obtained.
  • a method of applying a conductive polymer coating on a glass substrate screen printing method, gravure printing method, flexographic printing method, offset printing method, ink jet printing method, spin coating method, die coating method including slit coater method, curtain coating method, Examples thereof include a cap coat method.
  • the conductive polymer needs to form a low resistance and highly transparent film with a thin film of 10 to 1000 nm, which is advantageous for forming a thin film.
  • Gravure printing method, flexographic printing method, inkjet printing method, spin coating method, die coating method It is preferable to apply by a method such as a method. Of these, gravure printing, flexographic printing, and die coating are preferred because they can easily handle large areas, and more specifically, the fast-drying solvent contained in the conductive polymer paint is dried and solidified during application. It is desirable to use a die coating method that allows easy ink supply in a closed system so that the minute amount does not fluctuate or foreign matter is generated. In particular, when a slit coater is used in the die coating method, it is possible to coat a thin film uniformly with less solvent drying, that is, less ink fluctuation during coating, and less loss of expensive conductive polymer paint.
  • a slit coater is a device that coats a thin film with a slot die that moves in a non-contact manner on the substrate. It consumes less material than a spin coater, reduces the takt time, and does not wrap around the back of the fringe. Have advantages such as.
  • the material of the wetted part needs to be a material resistant to corrosion because the conductive polymer solution often has strong acidity.
  • SUS metal is used. It is desirable from the viewpoint of acid resistance.
  • the nozzle gap is preferably 80 to 150 ⁇ m from the viewpoint of coating accuracy. If the thickness is less than 80 ⁇ m, the entire coated surface becomes thin. If the thickness exceeds 150 ⁇ m, the entire coated surface becomes thick, so this range is appropriate.
  • the coating speed is preferably 10 to 60 mm / sec, and preferably 20 to 50 mm / sec from the viewpoint of coating accuracy. If it is less than 10 mm / sec, the entire coated surface becomes thick, and if it exceeds 60 mm / sec, the entire coated surface becomes thin, so this range is appropriate.
  • the work distance is preferably 80 to 150 ⁇ m from the viewpoint of coating accuracy. If it is less than 80 ⁇ m, a thin film is formed, and if it exceeds 150 ⁇ m, a thick film is formed.
  • the discharge flow rate is preferably 0.05 to 0.7 ml, and preferably 0.1 to 0.55 ml from the viewpoint of thickness accuracy. If it is less than 0.05 ml, the central coating location of the head becomes thick, and if it exceeds 0.7 ml, the coating location on both ends of the head becomes thick, so this range is appropriate.
  • the conductive polymer used in the present invention is a binder for solidifying and curing the conductive polymer composition, a curing agent, and a high conductivity for improving the conductivity.
  • a conductive agent, a surfactant, a catalyst, an adhesion improver, and the like may be included.
  • the conductive polymer can be used as long as the main chain is an organic polymer having a ⁇ -conjugated system.
  • examples thereof include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of easy polymerization and stability in air, polypyrroles, polythiophenes and polyanilines are preferred.
  • Such conductive polymers include polypyrrole, poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), poly (3-butylpyrrole), poly ( 3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3-carboxypyrrole), Poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3-hydroxypyrrole), poly (3- Methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyloxypyrrole), Li (3-methyl-4-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (thioc
  • polypyrrole from one or two selected from polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene), and poly (3,4-ethylenedioxythiophene)
  • the (co) polymer is preferably used from the viewpoints of resistance and reactivity.
  • polypyrrole and poly (3,4-ethylenedioxythiophene) are more preferable because they have higher conductivity and improved heat resistance.
  • a polyanion is a polymer that solubilizes a conductive polymer, and examples of the polyanion include a polymer having an anion group.
  • the anion group of the polyanion may be any functional group capable of causing chemical oxidation doping to the conductive polymer.
  • An ester group, a phosphate group, a carboxy group, a sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacryl sulfonic acid, polymethacryl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl carboxylic acid.
  • examples include acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, and polyacrylic acid. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • polyvinyl sulfonic acid polyacryl sulfonic acid, polymethacryl sulfonic acid, and polystyrene sulfonic acid, which are excellent in thermal stability and dispersibility, are preferable, and polystyrene sulfonic acid is most preferable because good conductivity can be obtained.
  • the polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • the content of the polyanion is preferably in the range of 0.1 to 10 mol, more preferably in the range of 1 to 7 mol, relative to 1 mol of the conductive polymer.
  • the polyanion content is less than 0.1 mol, the doping effect on the conductive polymer tends to be weak, and the conductivity may be insufficient. In addition, the dispersibility and solubility in the solvent are reduced, making it difficult to obtain a uniform dispersion.
  • the polyanion content is more than 10 mol, the content of the conductive polymer decreases, and it is difficult to obtain sufficient conductivity.
  • a polyanion component is dissolved in a solvent for dissolving the polyanion component, and a precursor monomer of the conductive polymer and, if necessary, a dopant are added and sufficiently stirred and mixed.
  • an oxidant is dropped into the resulting mixture to advance the polymerization, and a complex of polyanion and conductive polymer is obtained.
  • a dopant or binder resin is added as necessary to obtain a conductive polymer coating.
  • the solvent for the conductive polymer coating is not particularly limited, and examples thereof include water, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylene phosphortriamide, acetonitrile, Polar solvents such as benzonitrile, phenols such as cresol, phenol and xylenol, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methyl acetate, ethyl acetate and propyl acetate Esters, hydrocarbons such as hexane, benzene, toluene, xylene, carboxylic acids such as formic acid and acetic acid, carbonate compounds such as ethylene carbonate and propylene carbonate, dioxane, diethyl ether Et
  • the transparent conductive glass substrate of the present invention is preferably formed by etching with hydrofluoric acid, so that 5 mass of a water-soluble solvent is added to improve the wettability to the surface. %, Preferably 10% by mass or more.
  • soluble in water means that 1 g or more is dissolved in 100 g of water at 25 ° C.
  • the composite of the conductive polymer and the polyanion described above is most preferably an aqueous solution because the polyanion exhibits water solubility, and it is desirable to select a solvent that is soluble in water. is there.
  • the solvent soluble in water is preferably 99% by mass or less, and 95% by mass. % Or less is desirable.
  • the boiling point of the solvent is preferably 200 ° C. or less, and preferably 180 ° C. or less, because the conductive polymer paint needs to be dried and cured at a low temperature.
  • the boiling point of the solvent is preferably 50 ° C. or higher, and more preferably 70 ° C. or higher, from the viewpoints of workability at the time of coating such as a slit coater, leveling properties, and brushing prevention.
  • the transparent conductive glass substrate of the present invention Since the transparent conductive glass substrate of the present invention is used as an electrode for a liquid crystal display or the like, it must be cured in the presence of various organic substances such as a liquid crystal material. For this reason, it is necessary to cure at a temperature of 120 ° C. or less including the transpiration of water or an organic solvent.
  • a temperature of 120 ° C. or less including the transpiration of water or an organic solvent As an example of such crosslinking, irradiation with infrared rays, ultraviolet rays or the like and curing by heating are effective.
  • curing by ultraviolet irradiation curing can be achieved by adding a compound having a polyfunctional acrylic group, a sensitizer, and a photoinitiator.
  • thermosetting it is also possible to fix the conductive polymer by adding a binder and curing it, and it is also possible to crosslink the polyanion.
  • a polyfunctional epoxy compound, a polyfunctional oxetane compound, a polyfunctional aziridine compound, or the like is used as a cross-linking agent. It is recommended to use a curing catalyst. Further, water-soluble or emulsified polyfunctional carbodiimide can be used.
  • the conductive polymer paint preferably contains a binder resin because the environmental durability and scratch resistance of the coating film are increased and the adhesion to the substrate is improved.
  • the binder resin in the conductive polymer paint, the pencil hardness (JIS K 5400) of the conductive polymer film formed from the conductive polymer paint is easily set to HB or higher. That is, the binder resin exhibits a function as a hard coat component.
  • the binder resin may be a thermosetting resin or a thermoplastic resin as long as it is compatible with or mixed with the conductive polymer paint.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyimides such as polyimide and polyamideimide; polyamides such as polyamide 6, polyamide 6,6, polyamide 12, and polyamide 11; polyvinylidene fluoride, polyvinyl fluoride, poly Fluorine resins such as tetrafluoroethylene, ethylenetetrafluoroethylene copolymer, polychlorotrifluoroethylene; vinyl resins such as polyvinyl alcohol, polyvinyl ether, polyvinyl butyral, polyvinyl acetate, and polyvinyl chloride; epoxy resins; oxetane resins; aziridine resins: Oxazoline resin: Xylene resin; Aramid resin; Polyimide silicone; Polyurethane; Polyurea; Melamine resin
  • binder resins may be dissolved in an organic solvent, may be provided with a functional group such as a sulfo group or a carboxy group, may be made into an aqueous solution, or may be dispersed in water such as emulsification.
  • the binder resin can be used by adding a curing agent such as a cross-linking agent and a polymerization initiator, a polymerization accelerator, a solvent, and a viscosity adjusting agent, if necessary.
  • a curing agent such as a cross-linking agent and a polymerization initiator, a polymerization accelerator, a solvent, and a viscosity adjusting agent
  • binder resins one or more of polyurethane, polyester, acrylic resin, polyamide, polyimide, epoxy resin, oxetane resin, aziridine resin, melamine resin, and polyimide silicone are preferable because they can be easily mixed.
  • Acrylic resins are suitable for applications such as glass substrates because of their high hardness and excellent transparency.
  • the binder resin preferably contains a liquid polymer that is cured by thermal energy and / or light energy.
  • examples of the liquid polymer that is cured by thermal energy include a reactive polymer and a self-crosslinking polymer.
  • the reactive polymer is a polymer in which a monomer having a substituent is polymerized, and examples of the substituent include a hydroxy group, a carboxy group, an acid anhydride, an oxetane group, a glycidyl group, and an amino group.
  • Specific monomers include polyfunctional alcohols such as ethylene glycol, diethylene glycol, dipropylene glycol, and glycerin, malonic acid, succinic acid, glutamic acid, pimelic acid, ascorbic acid, phthalic acid, acetylsalicylic acid, adipic acid, and isophthalic acid.
  • Acid anhydrides such as acid, benzoic acid, carboxylic acid compounds such as m-toluic acid, maleic anhydride, phthalic anhydride, dodecyl succinic anhydride, dichloromaleic anhydride, tetrachlorophthalic anhydride, tetrahydrophthalic anhydride, pimelic anhydride ,
  • Oxetane compounds such as 3,3-dimethyloxetane, 3,3-dichloromethyloxetane, 3-methyl-3-hydroxymethyloxetane, azidomethylmethyloxetane, bisphenol A diglycidyl ether, bisphenol F diglycidyl Ether, phenol novolac polyglycidyl ether, N, N-diglycidyl-p-aminophenol glycidyl ether, tetrabromobisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether (ie 2,2-
  • a crosslinking agent In the reactive polymer, a crosslinking agent, a catalyst, a cationic polymerization initiator described later, and the like may be used in combination.
  • a crosslinking agent a melamine resin, an epoxy resin, a metal oxide etc. are mentioned, for example.
  • the metal oxide include basic metal compounds Al (OH) 3 , Al (OOC ⁇ CH 3 ) 2 (OOCH), Al (OOC ⁇ CH 3 ) 2 , ZrO (OCH 3 ), Mg (OOC ⁇ CH 3). ), Ca (OH) 2 , Ba (OH) 3 and the like can be used as appropriate.
  • the self-crosslinking polymer is self-crosslinking between functional groups by heating, and examples thereof include those containing glycidyl group and carboxy group or those containing both N-methylol and carboxy group.
  • liquid polymer that is cured by light energy examples include oligomers or prepolymers such as polyester, epoxy resin, oxetane resin, polyacryl, polyurethane, polyimide, polyamide, polyamideimide, and polyimide silicone.
  • Examples of monomer units constituting a liquid polymer that is cured by light energy include bisphenol A / ethylene oxide-modified diacrylate, dipentaerythritol hexa (penta) acrylate, dipentaerythritol monohydroxypentaacrylate, and dipropylene glycol diacrylate.
  • Acrylate trimethylolpropane triacrylate, glycerin propoxytriacrylate, 4-hydroxybutyl acrylate, 1,6-hexanediol diacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobornyl acrylate, polyethylene glycol diacrylate, Pentaerythritol triacrylate, tetrahydrofurfuryl acrylate, trimethylolpropane tri Acrylates such as acrylate, tripropylene glycol diacrylate, tetraethylene glycol dimethacrylate, alkyl methacrylate, allyl methacrylate, 1,3-butylene glycol dimethacrylate, n-butyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, diethylene glycol dimethacrylate, 2- Such as ethylhexyl methacrylate, glycidyl methacrylate, 1,6
  • Methacrylate Glycidyl ethers such as allyl glycidyl ether, butyl glycidyl ether, higher alcohol glycidyl edel, 1,6-hexanediol glycidyl ether, phenyl glycidyl ether, stearyl glycidyl ether, diacetone acrylamide, N, N-dimethylacrylamide, dimethylaminopropyl Acrylamide, dimethylaminopropylmethacrylamide, methacrylamide, N-methylolacrylamide, N, N-dimethylacrylamide, acryloylmorpholine, N-vinylformamide, N-methylacrylamide, N-isopropylacrylamide, Nt-butylacrylamide, N- Acrylics such as phenylacrylamide, acryloylpiperidine, 2-hydroxyethylacrylamide (Methacryl) amides, 2-chloroethyl vinyl ether,
  • the liquid polymer that is cured by light energy is cured by the photopolymerization initiator.
  • the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime ester, tetramethylthiuram monosulfide, thioxanthones, and the like.
  • n-butylamine, triethylamine, tri-n-butylphosphine and the like can be mixed as a photosensitizer.
  • cationic polymerization initiator examples include aryldiazonium salts, diarylhalonium salts, triphenylsulfonium salts, silanol / aluminum chelates, ⁇ -sulfonyloxy ketones, and the like.
  • the content of the binder resin is 1 to 1000% by mass and preferably 10 to 400% by mass with respect to 100% by mass in total of the conductive polymer and the polyanion.
  • the content of the binder resin is less than 1% by mass, the durability of the conductive polymer layer may be insufficient.
  • the content exceeds 1000% by mass the content of the conductive polymer in the conductive polymer layer decreases. , Sufficient conductivity cannot be obtained.
  • a highly conductive agent is a component that improves the conductivity of a conductive coating film formed from a conductive polymer solution.
  • the highly conductive agent comprises a nitrogen-containing aromatic cyclic compound, a compound having two or more hydroxy groups, a compound having two or more carboxy groups, one or more hydroxy groups, and one or more A compound having a carboxy group, a compound having an amide group, a compound having an imide group, a lactam compound, a compound having a glycidyl group, a silane coupling agent, DMSO, and at least one compound selected from the group consisting of water-soluble organic solvents. is there.
  • nitrogen-containing aromatic cyclic compounds include pyridines and derivatives thereof containing one nitrogen atom, imidazoles and derivatives thereof containing two nitrogen atoms, pyrimidines and derivatives thereof, pyrazines and derivatives thereof And triazines containing three nitrogen atoms and derivatives thereof. From the viewpoint of solvent solubility and the like, pyridines and derivatives thereof, imidazoles and derivatives thereof, and pyrimidines and derivatives thereof are preferable.
  • pyridines and derivatives thereof include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 4-ethylpyridine, N-vinylpyridine, 2,4-dimethylpyridine, 2,4 , 6-trimethylpyridine, 3-cyano-5-methylpyridine, 2-pyridinecarboxylic acid, 6-methyl-2-pyridinecarboxylic acid, 4-pyridinecarboxaldehyde, 4-aminopyridine, 2,3-diaminopyridine, 2 , 6-diaminopyridine, 2,6-diamino-4-methylpyridine, 4-hydroxypyridine, 4-pyridinemethanol, 2,6-dihydroxypyridine, 2,6-pyridinedimethanol, methyl 6-hydroxynicotinate, 2 -Hydroxy-5-pyridinemethanol, ethyl 6-hydroxynicotinate, 4- Pyridinemethanol, 4-pyridineethanol, 2-phenylpyridine, 3-methylquinoline, 3-ethylquinoline, quinolinol, 2, 2,4
  • imidazoles and derivatives thereof include imidazole, 2-methylimidazole, 2-propylimidazole, 2-undecylimidazole, 2-phenylimidazole, N-methylimidazole, N-vinylimidazole, and N-allylimidazole.
  • Examples include imidazole and 2- (2-pyridyl) benzimidazole.
  • pyrimidines and derivatives thereof include 2-amino-4-chloro-6-methylpyrimidine, 2-amino-6-chloro-4-methoxypyrimidine, 2-amino-4,6-dichloropyrimidine, 2-amino-4,6-dihydroxypyrimidine, 2-amino-4,6-dimethylpyrimidine, 2-amino-4,6-dimethoxypyrimidine, 2-aminopyrimidine, 2-amino-4-methylpyrimidine, 4,6 -Dihydroxypyrimidine, 2,4-dihydroxypyrimidine-5-carboxylic acid, 2,4,6-triaminopyrimidine, 2,4-dimethoxypyrimidine, 2,4,5-trihydroxypyrimidine, 2,4-pyrimidinediol, etc. Is mentioned.
  • pyrazines and derivatives thereof include pyrazine, 2-methylpyrazine, 2,5-dimethylpyrazine, pyrazinecarboxylic acid, 2,3-pyrazinedicarboxylic acid, 5-methylpyrazinecarboxylic acid, pyrazineamide, 5 -Methylpyrazineamide, 2-cyanopyrazine, aminopyrazine, 3-aminopyrazine-2-carboxylic acid, 2-ethyl-3-methylpyrazine, 2,3-dimethylpyrazine, 2,3-diethylpyrazine and the like.
  • triazines and derivatives thereof include 1,3,5-triazine, 2-amino-1,3,5-triazine, 3-amino-1,2,4-triazine, and 2,4-diamino.
  • the content of the nitrogen-containing aromatic cyclic compound is preferably in the range of 0.1 to 100 mol, more preferably in the range of 0.5 to 30 mol, with respect to 1 mol of the anion group unit of the polyanion.
  • a range of 1 to 10 moles is particularly preferable from the viewpoints of physical properties and conductivity of the conductive coating film.
  • the content of the nitrogen-containing aromatic cyclic compound is less than 0.1 mol, the interaction between the nitrogen-containing aromatic cyclic compound, the polyanion and the conjugated conductive polymer tends to be weak, and the conductivity May be insufficient. Further, when the nitrogen-containing aromatic cyclic compound is contained in an amount exceeding 100 mol, the content of the conjugated conductive polymer is decreased, and it is difficult to obtain sufficient conductivity.
  • Examples of the compound having two or more hydroxy groups include propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, D-glucose, D-glucitol, isoprene glycol, dimethylolpropionic acid, butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol, thiodiethanol, glucose, tartaric acid, D-glucar Polyhydric aliphatic alcohols such as acids and glutaconic acids; polymeric alcohols such as cellulose, polysaccharides and sugar alcohols; 1,4-dihydroxybenzene, 1,3-dihydroxybenzene, 2,3-dihydroxy-1-pentadec
  • the content of the compound having two or more hydroxy groups is preferably in the range of 0.05 to 50 mol, more preferably in the range of 0.3 to 10 mol, with respect to 1 mol of the anion group unit of the polyanion. More preferred. If the content of the compound having two or more hydroxy groups is less than 0.05 mol with respect to 1 mol of the anion group unit of the polyanion, conductivity and heat resistance may be insufficient. In addition, when the content of the compound having two or more hydroxy groups is more than 50 moles per mole of the anion group unit of the polyanion, the content of the ⁇ -conjugated conductive polymer in the conductive coating film is small. Therefore, it is difficult to obtain sufficient conductivity.
  • Compound having two or more carboxy groups examples include maleic acid, fumaric acid, itaconic acid, citraconic acid, malonic acid, 1,4-butanedicarboxylic acid, succinic acid, tartaric acid, adipic acid, D-glucaric acid, glutaconic acid Aliphatic carboxylic acid compounds such as citric acid; phthalic acid, terephthalic acid, isophthalic acid, tetrahydrophthalic anhydride, 5-sulfoisophthalic acid, 5-hydroxyisophthalic acid, methyltetrahydrophthalic anhydride, 4,4′-oxydiphthalic acid , Aromatic compounds in which at least one carboxy group is bonded to an aromatic ring, such as biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, naphthalene dicarboxylic acid, trimellitic acid, pyromellitic acid
  • the compound having two or more carboxy groups is preferably in the range of 0.1 to 30 mol, more preferably in the range of 0.3 to 10 mol, relative to 1 mol of the anion group unit of the polyanion.
  • the content of the compound having two or more carboxy groups is less than 0.1 mol relative to 1 mol of the anion group unit of the polyanion, conductivity and heat resistance may be insufficient.
  • the content of the compound having two or more carboxy groups is more than 30 mol with respect to 1 mol of the anion group unit of the polyanion, the content of the ⁇ -conjugated conductive polymer in the conductive coating film decreases. Also, it is difficult to obtain sufficient conductivity, and the physical properties of the conductive coating film may change.
  • Examples of the compound having one or more hydroxy groups and one or more carboxy groups include tartaric acid, glyceric acid, dimethylolbutanoic acid, dimethylolpropanoic acid, D-glucaric acid, glutaconic acid and the like.
  • the content of the compound having one or more hydroxy groups and one or more carboxy groups is preferably 1 to 5000 parts by mass with respect to 100 parts by mass in total of the polyanion and the ⁇ -conjugated conductive polymer. More preferably, it is ⁇ 500 parts by mass.
  • the content of the compound having one or more hydroxy groups and one or more carboxy groups is less than 1 part by mass, conductivity and heat resistance may be insufficient.
  • the content of the compound having one or more hydroxy groups and one or more carboxy groups is more than 5000 parts by mass, the content of the ⁇ -conjugated conductive polymer in the conductive coating film is decreased. It is difficult to obtain sufficient conductivity.
  • the compound having an amide group is a monomolecular compound having an amide bond represented by —CO—NH— (the CO portion is a double bond) in the molecule. That is, as the amide compound, for example, a compound having functional groups at both ends of the bond, a compound in which a cyclic compound is bonded to one end of the bond, urea and urea derivatives in which the functional groups at both ends are hydrogen Etc.
  • amide compound examples include acetamide, malonamide, succinamide, maleamide, fumaramide, benzamide, naphthamide, phthalamide, isophthalamide, terephthalamide, nicotinamide, isonicotinamide, 2-fluamide, formamide, N-methylformamide, propionamide , Propioluamide, butyramide, isobutylamide, methacrylamide, palmitoamide, stearylamide, oleamide, oxamide, glutaramide, adipamide, cinnamamide, glycolamide, lactamide, glyceramide, tartaramide, citrulamide, glyoxylamide, pyruvamide, acetoacetamide, dimethyl Acetamide, benzylamide, anthranilamide, ethylenediamine Traacetamide, diacetamide, triacetamide, dibenzamide, tribenzamide, rhodanine, urea, 1-acetyl-2-thiourea,
  • Acrylamide can also be used as the amide compound.
  • Acrylamide includes N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-ethylmethacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N, N-diethylacrylamide, N, Examples thereof include N-diethyl methacrylamide, 2-hydroxyethyl acrylamide, 2-hydroxyethyl methacrylamide, N-methylol acrylamide, N-methylol methacrylamide and the like.
  • the molecular weight of the amide compound is preferably 46 to 10,000, more preferably 46 to 5,000, and particularly preferably 46 to 1,000.
  • the content of the amide compound is preferably 1 to 5000 parts by mass, more preferably 50 to 500 parts by mass with respect to 100 parts by mass in total of the polyanion and the ⁇ -conjugated conductive polymer.
  • the content of the amide compound is less than 1 part by mass, conductivity and heat resistance may be insufficient.
  • the content of the amide compound exceeds 5000 parts by mass, the content of the ⁇ -conjugated conductive polymer in the conductive coating film decreases, and it is difficult to obtain sufficient conductivity.
  • an imide compound a monomolecular compound having an imide bond (hereinafter referred to as an imide compound) is preferable because of higher conductivity.
  • the imide compound include phthalimide and phthalimide derivatives, succinimide and succinimide derivatives, benzimide and benzimide derivatives, maleimide and maleimide derivatives, naphthalimide and naphthalimide derivatives from the skeleton.
  • the imide compounds are classified into aliphatic imides, aromatic imides and the like depending on the types of functional groups at both ends, but aliphatic imides are preferable from the viewpoint of solubility.
  • the aliphatic imide compound is classified into a saturated aliphatic imide compound having an unsaturated bond between carbons in the molecule and an unsaturated aliphatic imide compound having an unsaturated bond between carbons in the molecule.
  • the saturated aliphatic imide compound is a compound represented by R 1 —CO—NH—CO—R 2 , and is a compound in which both R 1 and R 2 are saturated hydrocarbons.
  • R 1 saturated aliphatic imide compound
  • R 2 saturated hydrocarbons.
  • the unsaturated aliphatic imide compound is a compound represented by R 1 —CO—NH—CO—R 2 , and one or both of R 1 and R 2 are one or more unsaturated bonds.
  • R 1 and R 2 are one or more unsaturated bonds.
  • Specific examples are 1,3-dipropylene urea, maleimide, N-methylmaleimide, N-ethylmaleimide, N-hydroxymaleimide, 1,4-bismaleimide butane, 1,6-bismaleimide hexane, 1,8-bis.
  • the molecular weight of the imide compound is preferably 60 to 5,000, more preferably 70 to 1,000, and particularly preferably 80 to 500.
  • the content of the imide compound is preferably 10 to 10,000 parts by mass, more preferably 50 to 5000 parts by mass with respect to 100 parts by mass in total of the ⁇ -conjugated conductive polymer and the polyanion. If the addition amount of the amide compound and the imide compound is less than the lower limit, the effect of the addition of the amide compound and the imide compound is lowered, which is not preferable. Moreover, when the said upper limit is exceeded, since the electroconductive fall resulting from the fall of (pi) conjugated system conductive polymer concentration will occur, it is unpreferable.
  • a lactam compound is an intramolecular cyclic amide of an aminocarboxylic acid, and a part of the ring is —CO—NR— (R is hydrogen or an optional substituent). However, one or more carbon atoms in the ring may be replaced with an unsaturated or heteroatom.
  • Examples of the lactam compound include pentano-4-lactam, 4-pentanelactam-5-methyl-2-pyrrolidone, 5-methyl-2-pyrrolidinone, hexano-6-lactam, 6-hexane lactam and the like.
  • the content of the lactam compound is preferably 10 to 10,000 parts by mass, and more preferably 50 to 5000 parts by mass with respect to 100 parts by mass in total of the ⁇ -conjugated conductive polymer and the polyanion. If the amount of the lactam compound added is less than the lower limit, the effect of the addition of the lactam compound is reduced, which is not preferable. Moreover, when the said upper limit is exceeded, since the electroconductive fall resulting from the fall of (pi) conjugated system conductive polymer concentration will occur, it is unpreferable.
  • Compound having glycidyl group examples include ethyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, allyl glycidyl ether, benzyl glycidyl ether, glycidyl phenyl ether, bisphenol A, diglycidyl ether, glycidyl acrylate, methacrylic acid Examples thereof include glycidyl compounds such as glycidyl ether.
  • the content of the compound having a glycidyl group is preferably 10 to 10000 parts by mass, and more preferably 50 to 5000 parts by mass with respect to 100 parts by mass in total of the ⁇ -conjugated conductive polymer and the polyanion.
  • the amount of the compound having a glycidyl group is less than the lower limit, the effect of adding the compound having a glycidyl group is undesirably reduced.
  • the said upper limit is exceeded, since the electroconductive fall resulting from the fall of (pi) conjugated system conductive polymer concentration will occur, it is unpreferable.
  • silane coupling agent Specific examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3 -Glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyl Methyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (amino
  • the content of the silane coupling agent is not particularly limited, and any amount can be added as necessary.
  • the amount is preferably 10 to 10,000 parts by mass with respect to 100 parts by mass in total of the ⁇ -conjugated conductive polymer and the polyanion.
  • 2000 ml of ion-exchanged water was added to the resulting reaction solution, and about 2000 ml of solution was removed using an ultrafiltration method. This operation was repeated three times. Then, 200 ml of sulfuric acid diluted to 10% by mass and 2000 ml of ion-exchanged water are added to the treatment liquid that has been subjected to the filtration treatment, and about 2000 ml of the treatment liquid is removed using an ultrafiltration method. Ion exchange water was added and about 2000 ml of liquid was removed using ultrafiltration. This operation was repeated three times. Furthermore, 2000 ml of ion-exchanged water was added to the obtained treatment liquid, and about 2000 ml of the treatment liquid was removed using an ultrafiltration method.
  • a glass substrate was prepared by chemical etching (liquid temperature 38 to 42 ° C.) while bubbling nonionic glass using a mixed solution of hydrofluoric acid / hydrochloric acid / nitric acid.
  • the glass substrate had a thickness of 0.4 mm, a surface water contact angle of 6.2 degrees, and an arithmetic average roughness Ra of 0.0008 ⁇ m.
  • a glass substrate was produced by chemical etching (liquid temperature 38 to 42 ° C.) while bubbling nonionic glass using a blower.
  • the glass substrate had a thickness of 0.4 mm, a surface water contact angle of 6.2 degrees, and an arithmetic average roughness Ra of 0.195 ⁇ m.
  • Light transmittance The light transmittance was measured according to JIS K7136 using a Nippon Denshoku Industries Co., Ltd. haze meter measuring device (NDH5000).
  • Example 1 To 600 g of the PEDOT-PSS aqueous solution obtained in [2], 3.6 g of methyl garlic acid, 0.9 g of Irgacure 127 (manufactured by Ciba Specialty Chemicals), 20 g of dimethyl sulfoxide, 2.5 g of hydroxy acrylate, pentaerythritol triacrylate 7 0.2 g and 300 g of ethanol were mixed and stirred to obtain a conductive polymer solution A.
  • Irgacure 127 manufactured by Ciba Specialty Chemicals
  • Example 2 To 600 g of the PEDOT-PSS aqueous solution obtained in [2], 3.6 g of methyl garlic acid, 0.9 g of Irgacure 127 (manufactured by Ciba Specialty Chemicals), 20 g of dimethyl sulfoxide, 9.2 g of diethylene glycol diglycidyl ether, 2-methyl 0.2 g of imidazole, 250 g of ethanol, and 50 g of ethylene glycol were mixed and stirred to obtain a conductive polymer solution B. Using a slit coater manufactured by Innext, Model No.
  • IS-7900IL-NSC on one surface of the glass substrate obtained from [3] with the conductive polymer solution B, a nozzle gap of 150 ⁇ m, a coating speed of 40 mm / sec, a work distance of 100 ⁇ m, It was applied at a discharge flow rate of 0.3 ml and dried and cured by infrared irradiation at 120 ° C. for 2 minutes to form a conductive coating film.
  • the surface resistance and light transmittance of the conductive coating film, the pencil hardness, and the flexibility of the transparent conductive glass substrate were measured.
  • Example 3 600 g of PEDOT-PSS aqueous solution (Clevios PH1000: Starck), 3.6 g of methyl garlic acid, 0.9 g of Irgacure 127 (manufactured by Ciba Specialty Chemicals), 20 g of dimethyl sulfoxide, 9.2 g of diethylene glycol diglycidyl ether, 2 -0.2 g of methylimidazole, 0.5 g of garlic acid, 250 g of ethanol and 50 g of ethylene glycol were mixed and stirred to obtain a conductive polymer solution C.
  • a slit coater manufactured by Innext, Model No.
  • the conductive polymer solution C was used.
  • the surface resistance and light transmittance of the conductive coating film, the pencil hardness, and the flexibility of the transparent conductive glass substrate were measured.
  • Example 4 Using a slit coater manufactured by Innext, Model No. IS-7900IL-NSC on one surface of the glass substrate obtained from [4], the conductive polymer solution C was used. A nozzle gap of 130 ⁇ m, a coating speed of 60 mm / sec, a work distance of 80 ⁇ m, It was applied at a discharge flow rate of 0.6 ml and dried and cured by infrared irradiation at 120 ° C. for 2 minutes to form a conductive coating film. The surface resistance and light transmittance of the conductive coating film, the pencil hardness, and the flexibility of the transparent conductive glass substrate were measured.
  • Example 5 To 500 g of the PEDOT-PSS aqueous solution obtained in [2], 2 g of 2-methylimidazole, 150 g of a water-dispersible polyester resin (Vylonal MD1480: solid content 25% by mass), 3.6 g of garlic acid, 20 g of dimethyl sulfoxide, and 1500 g of methanol are mixed. And stirred to obtain a conductive polymer solution D. Using a slit coater manufactured by Innext Model No. IS-7900IL-NSC on one side of the glass substrate obtained from [3], the conductive polymer solution D was used.
  • a slit coater manufactured by Innext Model No. IS-7900IL-NSC on one side of the glass substrate obtained from [3]
  • the film was applied at a discharge flow rate of 0.3 ml and dried by infrared irradiation at 120 ° C. for 2 minutes to form a conductive coating film.
  • the surface resistance and light transmittance of the conductive coating film, the pencil hardness, and the flexibility of the transparent conductive glass substrate were measured.
  • Table 1 compares the results of Examples 1 to 4 and Comparative Examples 1 to 3.
  • the transparent conductive glass substrate of the present invention is used as a glass substrate material such as a VA liquid crystal, a TN liquid crystal, and an IPS liquid crystal, and is used for preventing liquid crystal surface charging that causes a viewing angle inhibition of a liquid crystal driving electrode or IPS.
  • the transparent conductive glass substrate used for these may be coated with a conductive polymer after encapsulating the liquid crystal for the reason of production yield.
  • the liquid crystal material is an organic material that is weak against heat.
  • the temperature of drying and curing of the conductive polymer layer is preferably 200 ° C. or less, and preferably 160 ° C. or less.
  • a transparent conductive film made of a conductive polymer does not require a reduced pressure environment such as a high vacuum, and can be applied at normal pressure, and thus has an advantage that there is no destruction in vacuum.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】プラスチックス基板と同様の柔軟性を持ち、且つプラスチックスにはない硬さと透明度を実現し曲面での使用に耐えうる密着性を有するフレキシブルな透明導電ガラス基板を提供する。  【解決手段】 薄いガラス基板上の少なくとも一面に導電性ポリマー層を有し、表面抵抗が1.8GΩ/□以下、全光線透過率が85%以上、表面鉛筆硬度H以上で、R 25mmの折り曲げで破損しない透明導電ガラス基板を製造する。また、導電性ポリマー層を形成する導電性ポリマー塗料が、導電性ポリマー及びポリアニオンを含み、さらにバインダ、硬化剤、高導電化剤、界面活性剤、触媒及び接着性向上剤を含む群から選択される1つ又は複数を含む。

Description

透明導電ガラス基板
 本発明は、透明導電ガラス基板に関する。
 ガラス基材にITOなど導電性セラミックスをスパッタリングした透明導電性膜は現在多くの電子部材に使用されている。しかしながら、ITOには原材料であるインジウムの枯渇、価格高騰問題が存在するため、他の導電材料への代替が求められており、又技術的には従来の固い基板からフレキシブル性を持った柔軟な基板がデザインや機能の面から渇望されてきている。
 このため、フィルム基材に金属ナノ粒子の分散体、また透明導電性ポリマーなどを種々のプラスチックスに塗工することが試みられている(例えば、特許文献1参照)。従来ガラス基板に用いられてきたITOは可撓性が無く近来はこれらに代わるものとして上記導電性組成物が検討されている。プラスチックスシート例えば広範囲に用いられるポリエチレンテレフタレート樹脂などの場合、これらの導電性組成物を塗工する為に多くの場合「易接着層」といった層を設けることが一般的である。この層は塗工を容易にし、またプラスチックスシートと導電性材料との密着性を向上させたり、気泡を含ませない等、商品としての品位や性能を向上させるために設けられる。
 一方、ガラス基板に透明導電材料としてITOのスパッタリングや分散体の塗工が一般的に行われているがこれらのガラスは厚みが厚く柔軟性のない成型体である。導電性ポリマーをガラスにスリットコーターを用いて塗布する技術が開示されている(例えば、特許文献2参照)。ここで用いられているガラスはフレキシビリティーを有するものではなく曲面で用いられることもない。又、この導電性ポリマーは、有機ELの正孔注入層としてITO上に塗布して用いられておりガラス基板との密着性については考慮すべき度合いが小さい。 
特開2008-288067号公報 特開2004-139814号公報
 しかしながら、特許文献1に開示されているようなプラスチックス基材では、折り曲げ性や柔軟性に問題は無いものの反りや硬さ或いは擦傷性、光学透過性が劣化することなどに問題がありハードコート材料などを導電層の下地として塗工する必要があった。
 又、特許文献2に開示されているようなガラスはフレキシビリティーを有するものではなく曲面で用いられることもなく、導電性ポリマーは、有機ELの正孔注入層としてITO上に塗布して用いられておりガラス基板との密着性については考慮すべき度合いが小さい。
 本発明は上記問題点に鑑みなされたものであって、プラスチックス基板と同様の柔軟性を持ち、且つプラスチックスにはない硬さと透明度を実現し曲面での使用に耐えうる密着性を有するフレキシブルな透明導電ガラス基板を提供することを目的とする。
 このような目的は、下記(1)~(15)の本発明により達成される。
 (1)ガラス基板上の少なくとも一面に導電性ポリマー層を有し、表面抵抗が1.8GΩ/□以下、全光線透過率が85%以上、表面鉛筆硬度H以上、R
25mmの折り曲げで破損しないことを特徴とする透明導電ガラス基板。
 (2)導電性ポリマー層を形成する導電性ポリマー塗料が、導電性ポリマー及びポリアニオンを含み、さらにバインダ、硬化剤、高導電化剤、界面活性剤、触媒及び接着性向上剤を含む群から選択される1つ又は複数を含むことを特徴とする請求項1に記載の透明導電ガラス基板。
 (3)導電性ポリマーは、主鎖がπ共役系で構成されている有機高分子である、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びそれらの共重合体を含む群から選択される1つ又は複数に属する1つ又は複数のポリマーからなることを特徴とする請求項2に記載の透明導電ガラス基板。
 (4)導電性ポリマーは、少なくともポリマーアニオンとチオフェンまたはチオフェン誘導体のポリマーとを含むことを特徴とする請求項2又は3に記載の透明導電ガラス基板。
 (5)ポリマーアニオンはポリスチレンスルホン酸であり、チオフェンまたはチオフェン誘導体のポリマーはポリ-3,4-エチレンジオキシチオフェンであることを特徴とする請求項4に記載の透明導電ガラス基板。
 (6)ポリアニオンは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基及びスルホ基を含む群から選択される1つ又は複数のアニオン基を有する1つ又は複数のポリマーを含むことを特徴とする請求項2に記載の透明導電ガラス基板。
 (7)バインダはバインダ樹脂であり、バインダ樹脂が、1つ又は複数の、導電性ポリマー塗料と相溶又は混合分散可能な熱硬化性樹脂及び/又は熱可塑性樹脂であることを特徴とする請求項2に記載の透明導電ガラス基板。
 (8)高導電化剤は、窒素含有芳香族性環式化合物、2個以上のヒドロキシ基を有する化合物、2個以上のカルボキシ基を有する化合物、1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物、アミド基を有する化合物、イミド基を有する化合物、ラクタム化合物、グリシジル基を有する化合物、シランカップリング剤、DMSO及び水溶性有機溶媒からなる群より選択される1つ又は複数の化合物であることを特徴とする請求項2に記載の透明導電ガラス基板。
 (9)導電性ポリマー塗料は、沸点が50~200℃の範囲であり且つ水に可溶の溶剤を5~95質量%含むことを特徴とする特許請求項2~8のいずれか1項に記載の透明導電ガラス基板。
 (10)導電性ポリマー層は、導電性ポリマー塗料の塗布に続き、乾燥及び加熱並びに/又は赤外線もしくは紫外線の照射の工程を経て作製されたものであることを特徴とする請求項1~9のいずれか1項に記載の透明導電ガラス基板。
 (11)導電性ポリマー塗料の塗布は、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、スピンコート法、スリットコーター法を含むダイコート法、カーテンコート法及びキャップコート法を含む群から選択されるいずれかの方法によって行うことを特徴とする請求項10に記載の透明導電ガラス基板。
 (12)ガラス基板の厚みが0.03~0.7mmの範囲にあり、ガラス表面の水に対する接触角が5~40度の範囲にあることを特徴とする請求項1に記載の透明導電ガラス基板。
 (13)ガラス基板上の少なくとも導電性ポリマー層を有する面がフッ化水素酸含有混合液によるエッチングによって成形された部位を含むものであることを特徴とする請求項1又は12に記載の透明導電ガラス基板。
 (14)導電性ポリマー層は、加熱及び/又は赤外線もしくは紫外線の照射によって硬化されたものであることを特徴とする請求項1~13のいずれか1項に記載の透明導電ガラス基板。
 (15)導電性ポリマー層は160℃以下の温度で硬化されてなることを特徴とする請求項1~14のいずれか1項に記載の透明導電ガラス基板。
 本発明によれば、プラスチックス基板と同様の柔軟性を持ち、且つプラスチックスにはない硬さと透明度を実現し曲面での使用に耐えうる密着性を有するフレキシブルな透明導電ガラス基板を提供することができる。
 以下、本発明を実施するための形態(以下、実施形態という。)について詳細に説明する。
 本発明者らは、上記目的を達成するために種々検討した結果、厚み0.03~0.7mm、算術平均粗さRaが0.2μm以下のガラス基板上に、導電性ポリマー層を形成することにより、プラスチックス基板と同様の柔軟性を持ち、且つプラスチックスにはない硬さと透明度を実現し曲面での使用に耐えうる密着性を有するフレキシブルな透明導電ガラス基板を製造できることを究明した。
 本発明の目的を達成するためには、まず柔軟性があり、且つ強度のあるガラス基板が必要である。このためガラス基板の厚みは 0.03~0.7mmの範囲にあり、算術平均粗さRaが0.2μm以下であることが望ましい。厚みが0.7mmを超える場合には十分な屈曲性が得られず0.03mm未満である場合には強度が伴わない。ガラス基板は、材質としてアルカリガラス、ノニオンガラス、石英ガラスなどが挙げられるが、このうち、環境負荷の観点からノニオンガラスが好ましく使用できる。
 薄膜ガラスの製造方法にはフッ酸によるケミカルエッチング等がある。ケミカルエッチングに使用する薬品としては塩酸、硫酸、硝酸、リン酸とフッ酸を含む2種以上の混合液が挙げられる。このうち、ガラススリミングの観点からフッ酸が好ましく使用される。ケミカルエッチングの条件として、スリミング精度の理由から液温25~55度であることが望ましい。
 表面に研削痕がある場合には曲げ強度が劣ることなどから、本発明におけるガラス基板は化学エッチングで薄化したものが好ましい。また、研削によって薄化したガラスでも算術平均粗さRaが0.2μm以下であり、表面をフッ酸などで処理することによって導電性ポリマーとの濡れ性を改善したものは導電性ポリマー被膜により強度が増し使用可能な製品を得ることができる。
 導電性ポリマーを塗布する場合に於いて、導電性ポリマーの選択肢はポリアニリン、ポリピロール、ポリチオフェン系から選択されるが、透明度及び色調導電性の観点からポリチオフェン系が望ましく更にはポリエチレンジオキシチオフェンとポリスチレンスルフォン酸との錯体からなるものが最も好ましい。
 この場合導電性ポリマー分散体は水若しくは水を含んだ溶媒に分散されているため、本発明におけるガラス基板は水との接触角が5~40度の間にあることが好ましく、より好ましくは5~7度の間である。接触角が40度を超えると導電性ポリマー分散体溶液はハジキを起こし綺麗な塗膜にならず密着強度も得られない。
 導電性ポリマー塗料をガラス基板上に塗布する方法として、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、スピンコート法、スリットコーター法を含むダイコート法、カーテンコート法、キャップコート法などの方法が挙げられる。
 導電性ポリマーは、10~1000nmといった薄膜で低抵抗かつ高透明な膜を形成する必要があることから、薄膜の形成に有利なグラビア印刷法、フレキソ印刷法、インクジェット印刷法、スピンコート法、ダイコート法などの方法で塗布することが好ましい。このうち、大面積にも対応しやすいことから、グラビア印刷法、フレキソ印刷法、ダイコート法が好ましく、さらにいえば、導電性ポリマー塗料に含まれる乾燥の速い溶媒が、塗布中に乾燥して固形分が変動したり、異物が発生しないように密閉系でのインク供給が容易なダイコート法が望ましい。
特に、ダイコート法の中でもスリットコーターを用いれば、薄膜を均一に、溶媒乾燥が少なく、すなわち塗工中のインク変動が少なく、また高価な導電性ポリマー塗料のロスも少ないコーティングが可能になる。
 スリットコーターとは、基板上を非接触で動くスロットダイにより薄膜を塗工する装置であり、スピンコーターに比べ、材料の消費が少なく、タクトタイムの短縮が可能、フリンジの裏面への回り込みが無いなどの利点を有する。
 接液部の材質は、後述するように、導電性ポリマー溶液が強い酸性を有することが多いことから腐食に強い材質とすることが必要であり、たとえば、SUS系金属が用いられ、特にSUS304であることが耐酸性の観点から望ましい。
 スリットコーターによるコーティング条件では、ノズルギャップ、塗布速度、ワークディスタンス、塗出流量等のコントロールが重要であり、ノズルギャップは塗布精度の観点から、80~150μmであることが好ましい。80μm未満であると塗工面全体が薄くなり、150μmを超えると塗工面全体が厚くなることからこの範囲が適切である。
 塗付速度は塗布精度の観点から、10~60mm/secであることが好ましく、20~50mm/secであることが望ましい。10mm/sec未満であると塗工面全体が厚くなり、60mm/secを超えると塗工面全体が薄くなることからこの範囲が適切である。
 ワークディスタンスは塗布精度の観点から、80~150μmであることが好ましい。80μm未満であると薄膜となり、150μmを超えると厚膜となることからこの範囲が適切である。
 吐出流量は厚みの精度の観点から、0.05~0.7mlであることが好ましく、 0.1ml~0.55mlであることが望ましい。0.05ml未満であるとヘッドの中央塗工場所が厚くなり、0.7mlを超えるとヘッドの両端の塗工場所が厚くなることからこの範囲が適切である。
 本発明に用いられる導電性ポリマーは導電性ポリマーとドーパント兼媒体に分散させるためのポリアニオン以外に、導電性ポリマー組成物を固化、硬化させるためのバインダ、硬化剤、導電性を向上させるための高導電化剤、界面活性剤、触媒、接着性向上剤などを含んでも良い。
 以下に、導電性ポリマー、ポリアニオン、バインダ樹脂及び高導電化剤について詳細に説明する。
 (導電性ポリマー)
 導電性ポリマーは、主鎖がπ共役系で構成されている有機高分子であれば使用できる。例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。重合の容易さ、空気中での安定性の点からは、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましい。
 このような導電性ポリマーの具体例としては、ポリピロール、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(チオフェン)、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)等が挙げられる。
 中でも、ポリピロール、ポリチオフェン、ポリ(N-メチルピロール)、ポリ(3-メチルチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)から選ばれる1種又は2種からなる(共)重合体が抵抗値、反応性の点から好適に用いられる。さらには、ポリピロール、ポリ(3,4-エチレンジオキシチオフェン)は、導電性がより高い上に、耐熱性が向上する点から、より好ましい。
 (ポリアニオン)
 ポリアニオンとは、導電性ポリマーを可溶化する高分子であり、ポリアニオンとしては、アニオン基を有する高分子が挙げられる。
 ポリアニオンのアニオン基としては、導電性ポリマーへの化学酸化ドープが起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基の導電性ポリマーへのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
 これらのうち、熱安定性、分散性に優れるポリビニルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリスチレンスルホン酸が好ましく、中でもポリスチレンスルホン酸は良好な導電性を得られることからもっとも好ましい。
 ポリアニオンの重合度は、モノマー単位が10~100000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50~10000個の範囲がより好ましい。
 ポリアニオンの含有量は、導電性ポリマー1モルに対して0.1~10モルの範囲であることが好ましく、1~7モルの範囲であることがより好ましい。ポリアニオンの含有量が0.1モルより少なくなると、導電性ポリマーへのドーピング効果が弱くなる傾向にあり、導電性が不足することがある。その上、溶媒への分散性及び溶解性が低くなり、均一な分散液を得ることが困難になる。また、ポリアニオンの含有量が10モルより多くなると、導電性ポリマーの含有割合が少なくなり、やはり充分な導電性が得られにくい。
 導電性ポリマー塗料を製造するには、まず、ポリアニオン成分を、これを溶解する溶媒に溶解し、導電性ポリマーの前躯体モノマーと必要に応じてドーパントとを加えて十分攪拌混合する。次いで、これにより得られた混合物に酸化剤を滴下して重合を進行させてポリアニオンと導電性ポリマーとの複合体を得る。次いで、その複合体から、酸化剤、残留モノマー、副生成物を除去、精製した後、適切な溶媒に溶解し、必要に応じてドーパントやバインダ樹脂を添加して導電性ポリマー塗料を得る。
 導電性ポリマー塗料の溶媒としては特に制限されず、例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド、アセトニトリル、ベンゾニトリル等の極性溶媒、クレゾール、フェノール、キシレノール等のフェノール類、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸メチル、酢酸エチル、酢酸プロピルなどのエステル類、ヘキサン、ベンゼン、トルエン、キシレン等の炭化水素類、ギ酸、酢酸等のカルボン酸、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールアルキルエーテル、プロピレングリコールアルキルエーテル、ポリエチレングリコールアルキルエーテル、ポリプロピレングリコールアルキルエーテル等の鎖状エーテル類、3-メチル-2-オキサゾリジノン等の複素環化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上の混合物としてもよいし、他の有機溶媒との混合物としてもよい。
 本発明の透明導電ガラス基板は、後述するように、望ましくはフッ化水素酸によるエッチングによって表面を成型することから、この表面への濡れ性を向上させるために水に可溶な溶剤を5質量%以上含むことが好ましく、10質量%以上含むことがより望ましい。ここで、水に可溶とは、25℃の水100gに対して1g以上溶解するものである。
 これは、前述した導電性ポリマーとポリアニオンとの複合体は、ポリアニオンが水溶性を示すことから水溶液であることが最も安定なこともあり、水に可溶な溶剤を選択することが望ましいものである。ただし、水以外の溶剤の割合が多くなりすぎると導電性ポリマーが溶液に分散できなくなって塗料としての形態を保てなくなることから、水に可溶な溶剤は99質量%以下が好ましく、95質量%以下が望ましい。
 さらに後述するように、導電性ポリマー塗料の乾燥、硬化を低温で行う必要性から溶媒の沸点は200℃以下であることが好ましく、180℃以下であることが望ましい。しかしながら、スリット系のコーターなどの塗工時の作業性、レベリング性、ブラッシング防止などの観点からは、溶媒の沸点は50℃以上が好ましく、70℃以上がより好ましい。
 (バインダ)
 本発明の透明導電ガラス基板は液晶ディスプレイ等の電極等として用いられるため、液晶材料など種々の有機物が存在した状態で硬化させる必要がある。このため硬化温度が水や有機溶剤などの蒸散も含めて120℃以下の温度で硬化させる必要がある。このような架橋の例として赤外線、紫外線等の照射、加熱による硬化が有効である。紫外線照射による硬化の場合多官能アクリル基を有する化合物、増感剤、光開始剤を添加することによって硬化が達成できる。また熱硬化の場合には、バインダを添加しそれを硬化することによって導電性ポリマーを固定化することも可能であり、またポリアニオンを架橋させることも可能である。比較的短時間で120℃以下の温度で硬化させるためには架橋剤として多官能エポキシ化合物、多官能オキセタン化合物、多官能アジリジン化合物などを用い、更にはこれらとの反応性の高いポリマーカルボン酸や硬化触媒を用いることが推奨される。また、水溶性或いはエマルジョン化した多官能のカルボジイミドなども使用できる。
 [バインダ樹脂]
 導電性ポリマー塗料は、塗膜の環境耐久性や耐傷性が高くなり、基材との密着性が向上することから、バインダ樹脂を含むことが好ましい。導電性ポリマー塗料がバインダ樹脂を含むことにより、導電性ポリマー塗料から形成された導電性ポリマー膜の鉛筆硬度(JIS K 5400)をHB以上にしやすい。すなわち、バインダ樹脂はハードコート成分としての機能を発揮する。
 バインダ樹脂としては、導電性ポリマー塗料と相溶又は混合分散可能であれば熱硬化性樹脂であってもよいし、熱可塑性樹脂であってもよい。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリイミド、ポリアミドイミド等のポリイミド;ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11等のポリアミド;ポリフッ化ビニリデン、ポリフッ化ビニル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、ポリクロロトリフルオロエチレン等のフッ素樹脂;ポリビニルアルコール、ポリビニルエーテル、ポリビニルブチラール、ポリ酢酸ビニル、ポリ塩化ビニル等のビニル樹脂;エポキシ樹脂;オキセタン樹脂;アジリジン樹脂:オキサゾリン樹脂:キシレン樹脂;アラミド樹脂;ポリイミドシリコーン;ポリウレタン;ポリウレア;メラミン樹脂;フェノール樹脂;ポリエーテル;アクリル樹脂及びこれらの共重合体等が挙げられる。
 これらバインダ樹脂は、有機溶剤に溶解されていてもよいし、スルホ基やカルボキシ基などの官能基が付与されて水溶液化されていてもよいし、乳化など水に分散されていてもよい。
 また、バインダ樹脂には、必要に応じて、架橋剤、重合開始剤等の硬化剤、重合促進剤、溶媒、粘度調整剤等を加えて使用することができる。
 バインダ樹脂の中でも、容易に混合できることから、ポリウレタン、ポリエステル、アクリル樹脂、ポリアミド、ポリイミド、エポキシ樹脂、オキセタン樹脂、アジリジン樹脂、メラミン樹脂、ポリイミドシリコーンのいずれか1種以上が好ましい。また、アクリル樹脂は、硬度が硬いとともに透明性に優れるため、ガラス基板のような用途には適している。
 また、バインダ樹脂は、熱エネルギー及び/又は光エネルギーによって硬化する液状重合体を含むことが好ましい。
 ここで、熱エネルギーにより硬化する液状重合体としては、反応型重合体及び自己架橋型重合体が挙げられる。
 反応型重合体は、置換基を有する単量体が重合した重合体であり、置換基としては、ヒドロキシ基、カルボキシ基、酸無水物、オキセタン基、グリシジル基、アミノ基などが挙げられる。具体的な単量体としては、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン等の多官能アルコール、マロン酸、コハク酸、グルタミン酸、ピメリン酸、アスコルビン酸、フタル酸、アセチルサルチル酸、アジピン酸、イソフタル酸、安息香酸、m-トルイル酸等のカルボン酸化合物、無水マレイン酸、無水フタル酸、ドデシル無水コハク酸、ジクロル無水マレイン酸、テトラクロル無水フタル酸、テトラヒドロ無水フタル酸、無水ピメリット酸等の酸無水物、3,3-ジメチルオキセタン、3,3-ジクロロメチルオキセタン、3-メチル-3-ヒドロキシメチルオキセタン、アジドメチルメチルオキセタン等のオキセタン化合物、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、フェノールノボラックポリグリシジルエーテル、N,N-ジグリシジル-p-アミノフェノールグリシジルエーテル、テトラブロモビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル(すなわち、2,2-ビス(4-グリシジルオキシシクロヘキシル)プロパン)、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、脂肪酸変性エポキシ、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンポリグリシジルエーテル、ジグリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテル、ソルビトール系ポリグリシジルエーテル、エチレンオキシドラウリルアルコールグリシジルエーテル、エチレンオキシドフェノールグリシジルエーテル、アジピン酸グリシジルエーテル等のグリシジルエーテル化合物、N,N-ジグリシジルアニリン、テトラグリシジルジアミノジフェニルメタン、N,N,N,N-テトラグリシジル-m-キシリレンジアミン、トリグリシジルイソシアヌレート、N,N-ジグリシジル-5,5-ジアルキルヒダントイン等のグリシジルアミン化合物、ジエチレントリアミン、トリエチレンテトラミン、ジメチルアミノプロピルアミン、N-アミノエチルピペラジン、ベンジルジメチルアミン、トリス(ジメチルアミノメチル)フェノール、DHP30-トリ(2-エチルヘクソエート)、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジシアンジアミド、三フッ化ホウ素、モノエチルアミン、メタンジアミン、キシレンジアミン、エチルメチルイミダゾール等のアミン化合物、1分子中に2個以上のオキシラン環を含む化合物のうち、ビスフェノールAのエピクロロヒドリンによるグリシジル化合物、あるいはその類似物が挙げられる。
 反応型重合体においては、架橋剤や、触媒、後述するカチオン重合開始剤などを併用しても良い。架橋剤としては、例えば、メラミン樹脂、エポキシ樹脂、金属酸化物などが挙げられる。金属酸化物としては、塩基性金属化合物のAl(OH)、Al(OOC・CH(OOCH)、Al(OOC・CH、ZrO(OCH)、Mg(OOC・CH)、Ca(OH)、Ba(OH)等を適宜使用できる。
 自己架橋型重合体は、加熱により官能基同士で自己架橋するものであり、例えば、グリシジル基とカルボキシ基を含むもの、あるいは、N-メチロールとカルボキシ基の両方を含むものなどが挙げられる。
 光エネルギーによって硬化する液状重合体としては、例えば、ポリエステル、エポキシ樹脂、オキセタン樹脂、ポリアクリル、ポリウレタン、ポリイミド、ポリアミド、ポリアミドイミド、ポリイミドシリコーン等のオリゴマー又はプレポリマーが挙げられる。
 光エネルギーによって硬化する液状重合体を構成する単量体単位としては、例えば、ビスフェノールA・エチレンオキサイド変性ジアクリレート、ジペンタエリスリトールヘキサ(ペンタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、グリセリンプロポキシトリアクリレート、4-ヒドロキシブチルアクリレート、1,6-ヘキサンジオールジアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、イソボルニルアクリレート、ポリエチレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、テトラヒドロフルフリルアクリレート、トリメチロールプロパントリアクリレート、トリプロピレングリコールジアクリレート等のアクリレート類、テトラエチレングリコールジメタクリレート、アルキルメタクリレート、アリルメタクリレート、1,3-ブチレングリコールジメタクリレート、n-ブチルメタクリレート、ベンジルメタクリレート、シクロヘキシルメタクリレート、ジエチレングリコールジメタクリレート、2-エチルヘキシルメタクリレート、グリシジルメタクリレート、1,6-ヘキサンジオールジメタクリレート、2-ヒドロキシエチルメタクリレート、イソボルニルメタクリレート、ラウリルメタクリレート、フェノキシエチルメタクリレート、t-ブチルメタクリレート、テトラヒドロフルフリルメタクリレート、トリメチロールプロパントリメタクリレート等のメタクリレート類、アリルグリシジルエーテル、ブチルグリシジルエーテル、高級アルコールグリシジルエーデル、1,6-ヘキサンジオールグリシジルエーテル、フェニルグリシジルエーテル、ステアリルグリシジルエーテル等のグリシジルエーテル類、ダイアセトンアクリルアミド、N,N-ジメチルアクリルアミド、ジメチルアミノプロピルアクリルアミド、ジメチルアミノプロピルメタクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアクリルアミド、アクリロイルモルホリン、N-ビニルホルムアミド、N-メチルアクリルアミド、N-イソプロピルアクリルアミド、N-t-ブチルアクリルアミド、N-フェニルアクリルアミド、アクリロイルピペリジン、2-ヒドロキシエチルアクリルアミド等のアクリル(メタクリル)アミド類、2-クロロエチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル、ヒドロキシブチルビニルエーテル、イソブチルビニルエーテル、トリエチレングリコールビニルエーテル等のビニルエーテル類、酪酸ビニル、モノクロロ酢酸ビニル、ピバリン酸ビニル等のカルボン酸ビニルエステル類の単官能モノマー並びに多官能モノマーが挙げられる。
 光エネルギーによって硬化する液状重合体は、光重合開始剤によって硬化する。その光重合開始剤としては、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチウラムモノサルファイド、チオキサントン類などが挙げられる。さらに、光増感剤として、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等を混合できる。
 また、カチオン重合開始剤としては、アリールジアゾニウム塩類、ジアリールハロニウム塩類、トリフェニルスルホニウム塩類、シラノール/アルミニウムキレート、α-スルホニルオキシケトン類等が挙げられる。
 バインダ樹脂の含有量は導電性ポリマーとポリアニオンとの合計100質量%に対して、1~1000質量%であり、10~400質量%であることが好ましい。バインダ樹脂の含有量が1質量%未満であると、導電性ポリマー層の耐久性が不足することがあり、1000質量%を超えると、導電性ポリマー層中の導電性ポリマーの含有量が少なくなり、充分な導電性が得られない。
(高導電化剤)
 高導電化剤は、導電性高分子溶液から形成される導電性塗膜の導電性を向上させる成分である。
 具体的に、高導電化剤は、窒素含有芳香族性環式化合物、2個以上のヒドロキシ基を有する化合物、2個以上のカルボキシ基を有する化合物、1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物、アミド基を有する化合物、イミド基を有する化合物、ラクタム化合物、グリシジル基を有する化合物、シランカップリング剤、DMSO、水溶性有機溶媒からなる群より選ばれる少なくとも1種の化合物である。
 [窒素含有芳香族性環式化合物]
 窒素含有芳香族性環式化合物としては、例えば、一つの窒素原子を含有するピリジン類及びその誘導体、二つの窒素原子を含有するイミダゾール類及びその誘導体、ピリミジン類及びその誘導体、ピラジン類及びその誘導体、三つの窒素原子を含有するトリアジン類及びその誘導体等が挙げられる。溶媒溶解性等の観点からは、ピリジン類及びその誘導体、イミダゾール類及びその誘導体、ピリミジン類及びその誘導体が好ましい。
 ピリジン類及びその誘導体の具体的な例としては、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、4-エチルピリジン、N-ビニルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3-シアノ-5-メチルピリジン、2-ピリジンカルボン酸、6-メチル-2-ピリジンカルボン酸、4-ピリジンカルボキシアルデヒド、4-アミノピリジン、2,3-ジアミノピリジン、2,6-ジアミノピリジン、2,6-ジアミノ-4-メチルピリジン、4-ヒドロキシピリジン、4-ピリジンメタノール、2,6-ジヒドロキシピリジン、2,6-ピリジンジメタノール、6-ヒドロキシニコチン酸メチル、2-ヒドロキシ-5-ピリジンメタノール、6-ヒドロキシニコチン酸エチル、4-ピリジンメタノール、4-ピリジンエタノール、2-フェニルピリジン、3-メチルキノリン、3-エチルキノリン、キノリノール、2,3-シクロペンテノピリジン、2,3-シクロヘキサノピリジン、1,2-ジ(4-ピリジル)エタン、1,2-ジ(4-ピリジル)プロパン、2-ピリジンカルボキシアルデヒド、2-ピリジンカルボン酸、2-ピリジンカルボニトリル、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3-ピリジンスルホン酸等が挙げられる。
 イミダゾール類及びその誘導体の具体的な例としては、イミダゾール、2-メチルイミダゾール、2-プロピルイミダゾール、2-ウンデジルイミダゾール、2-フェニルイミダゾール、N-メチルイミダゾール、N-ビニルイミダゾール、N-アリルイミダゾール、1-(2-ヒドロキシエチル)イミダゾール(N-ヒドロキシエチルイミダゾール)、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、1-アセチルイミダゾール、4,5-イミダゾールジカルボン酸、4,5-イミダゾールジカルボン酸ジメチル、ベンズイミダゾール、2-アミノべンズイミダゾール、2-アミノべンズイミダゾール-2-スルホン酸、2-アミノ-1-メチルべンズイミダゾール、2-ヒドロキシべンズイミダゾール、2-(2-ピリジル)べンズイミダゾール等が挙げられる。
 ピリミジン類及びその誘導体の具体的な例としては、2-アミノ-4-クロロ-6-メチルピリミジン、2-アミノ-6-クロロ-4-メトキシピリミジン、2-アミノ-4,6-ジクロロピリミジン、2-アミノ-4,6-ジヒドロキシピリミジン、2-アミノ-4,6-ジメチルピリミジン、2-アミノ-4,6-ジメトキシピリミジン、2-アミノピリミジン、2-アミノ-4-メチルピリミジン、4,6-ジヒドロキシピリミジン、2,4-ジヒドロキシピリミジン-5-カルボン酸、2,4,6-トリアミノピリミジン、2,4-ジメトキシピリミジン、2,4,5-トリヒドロキシピリミジン、2,4-ピリミジンジオール等が挙げられる。
 ピラジン類及びその誘導体の具体的な例としては、ピラジン、2-メチルピラジン、2,5-ジメチルピラジン、ピラジンカルボン酸、2,3-ピラジンジカルボン酸、5-メチルピラジンカルボン酸、ピラジンアミド、5-メチルピラジンアミド、2-シアノピラジン、アミノピラジン、3-アミノピラジン-2-カルボン酸、2-エチル-3-メチルピラジン、2,3-ジメチルピラジン、2,3-ジエチルピラジン等が挙げられる。
 トリアジン類及びその誘導体の具体的な例としては、1,3,5-トリアジン、2-アミノ-1,3,5-トリアジン、3-アミノ-1,2,4-トリアジン、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、2,4,6-トリアミノ-1,3,5-トリアジン、2,4,6-トリス(トリフルオロメチル)-1,3,5-トリアジン、2,4,6-トリ-2-ピリジン-1,3,5-トリアジン、3-(2-ピリジン)-5,6-ビス(4-フェニルスルホン酸)-1,2,4―トリアジン二ナトリウム、3-(2-ピリジン)-5,6-ジフェニル-1,2,4-トリアジン、3-(2-ピリジン)-5,6-ジフェニル-1,2,4―トリアジン-ρ,ρ’-ジスルホン酸二ナトリウム、2-ヒドロキシ-4,6-ジクロロ-1,3,5-トリアジン等が挙げられる。
 窒素含有芳香族性環式化合物の含有量は、ポリアニオンのアニオン基単位1モルに対して0.1~100モルの範囲であることが好ましく、0.5~30モルの範囲であることがより好ましく、導電性塗膜の物性及び導電性の観点からは、1~10モルの範囲が特に好ましい。窒素含有芳香族性環式化合物の含有率が0.1モルより少なくなると、窒素含有芳香族性環式化合物とポリアニオン及び共役系導電性高分子との相互作用が弱くなる傾向にあり、導電性が不足することがある。また、窒素含有芳香族性環式化合物が100モルを超えて含まれると共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくい。
 [2個以上のヒドロキシ基を有する化合物]
 2個以上のヒドロキシ基を有する化合物としては、例えば、プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、D-グルコース、D-グルシトール、イソプレングリコール、ジメチロールプロピオン酸、ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、チオジエタノール、グルコース、酒石酸、D-グルカル酸、グルタコン酸等の多価脂肪族アルコール類;セルロース、多糖、糖アルコール等の高分子アルコール;1,4-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、2,3-ジヒドロキシ-1-ペンタデシルベンゼン、2,4-ジヒドロキシアセトフェノン、2,5-ジヒドロキシアセトフェノン、2,4-ジヒドロキシベンゾフェノン、2,6-ジヒドロキシベンゾフェノン、3,4-ジヒドロキシベンゾフェノン、3,5-ジヒドロキシベンゾフェノン、2,4’-ジヒドロキシジフェニルスルフォン、2,2’,5,5’-テトラヒドロキシジフェニルスルフォン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシジフェニルスルフォン、ヒドロキシキノンカルボン酸及びその塩類、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、1,4-ヒドロキノンスルホン酸及びその塩類、4,5-ヒドロキシベンゼン-1,3-ジスルホン酸及びその塩類、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン-2,6-ジカルボン酸、1,6-ジヒドロキシナフタレン-2,5-ジカルボン酸、1,5-ジヒドロキシナフトエ酸、1,4-ジヒドロキシ-2-ナフトエ酸フェニルエステル、4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸及びその塩類、1,8-ジヒドロキシ-3,6-ナフタレンジスルホン酸及びその塩類、6,7-ジヒドロキシ-2-ナフタレンスルホン酸及びその塩類、1,2,3-トリヒドロキシベンゼン(ピロガロール)、1,2,4-トリヒドロキシベンゼン、5-メチル-1,2,3-トリヒドロキシベンゼン、5-エチル-1,2,3-トリヒドロキシベンゼン、5-プロピル-1,2,3-トリヒドロキシベンゼン、トリヒドロキシ安息香酸、トリヒドロキシアセトフェノン、トリヒドロキシベンゾフェノン、トリヒドロキシベンゾアルデヒド、トリヒドロキシアントラキノン、2,4,6-トリヒドロキシベンゼン、テトラヒドロキシ-p-ベンゾキノン、テトラヒドロキシアントラキノン、ガーリック酸メチル(没食子酸メチル)、ガーリック酸エチル(没食子酸エチル)等の芳香族化合物、ヒドロキノンスルホン酸カリウム等が挙げられる。
 2個以上のヒドロキシ基を有する化合物の含有量は、ポリアニオンのアニオン基単位1モルに対して0.05~50モルの範囲であることが好ましく、0.3~10モルの範囲であることがより好ましい。2個以上のヒドロキシ基を有する化合物の含有量が、ポリアニオンのアニオン基単位1モルに対して0.05モルより少なくなると、導電性及び耐熱性が不足することがある。また、2個以上のヒドロキシ基を有する化合物の含有量が、ポリアニオンのアニオン基単位1モルに対して50モルより多くなると、導電性塗膜中のπ共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくい。
 [2個以上のカルボキシ基を有する化合物]
 2個以上のカルボキシ基を有する化合物としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、マロン酸、1,4-ブタンジカルボン酸、コハク酸、酒石酸、アジピン酸、D-グルカル酸、グルタコン酸、クエン酸等の脂肪族カルボン酸類化合物;フタル酸、テレフタル酸、イソフタル酸、テトラヒドロ無水フタル酸、5-スルホイソフタル酸、5-ヒドロキシイソフタル酸、メチルテトラヒドロ無水フタル酸、4,4’-オキシジフタル酸、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ナフタレンジカルボン酸、トリメリット酸、ピロメリット酸等の、芳香族性環に少なくとも一つ以上のカルボキシ基が結合している芳香族カルボン酸類化合物;ジグリコール酸、オキシ二酪酸、チオ二酢酸(チオジ酢酸)、チオ二酪酸、イミノ二酢酸、イミノ酪酸等が挙げられる。
 2個以上のカルボキシ基を有する化合物は、ポリアニオンのアニオン基単位1モルに対して0.1~30モルの範囲であることが好ましく、0.3~10モルの範囲であることがより好ましい。2個以上のカルボキシ基を有する化合物の含有量が、ポリアニオンのアニオン基単位1モルに対して0.1モルより少なくなると、導電性及び耐熱性が不足することがある。また2個以上のカルボキシ基を有する化合物の含有量が、ポリアニオンのアニオン基単位1モルに対して30モルより多くなると、導電性塗膜中のπ共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくく、導電性塗膜の物性が変化することがある。
 [1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物]
 1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物としては、酒石酸、グリセリン酸、ジメチロールブタン酸、ジメチロールプロパン酸、D-グルカル酸、グルタコン酸等が挙げられる。
 1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物の含有量は、ポリアニオンとπ共役系導電性高分子の合計100質量部に対して1~5000質量部であることが好ましく、50~500質量部であることがより好ましい。1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物の含有量が1質量部より少なくなると、導電性及び耐熱性が不足することがある。また、1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物の含有量が5000質量部より多くなると、導電性塗膜中のπ共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得ることが難しい。
 [アミド化合物]
 アミド基を有する化合物は、-CO-NH-(COの部分は二重結合)で表されるアミド結合を分子中に有する単分子化合物である。すなわち、アミド化合物としては、例えば、上記結合の両末端に官能基を有する化合物、上記結合の一方の末端に環状化合物が結合された化合物、上記両末端の官能基が水素である尿素及び尿素誘導体などが挙げられる。
 アミド化合物の具体例としては、アセトアミド、マロンアミド、スクシンアミド、マレアミド、フマルアミド、ベンズアミド、ナフトアミド、フタルアミド、イソフタルアミド、テレフタルアミド、ニコチンアミド、イソニコチンアミド、2-フルアミド、ホルムアミド、N-メチルホルムアミド、プロピオンアミド、プロピオルアミド、ブチルアミド、イソブチルアミド、メタクリルアミド、パルミトアミド、ステアリルアミド、オレアミド、オキサミド、グルタルアミド、アジプアミド、シンナムアミド、グリコールアミド、ラクトアミド、グリセルアミド、タルタルアミド、シトルアミド、グリオキシルアミド、ピルボアミド、アセトアセトアミド、ジメチルアセトアミド、ベンジルアミド、アントラニルアミド、エチレンジアミンテトラアセトアミド、ジアセトアミド、トリアセトアミド、ジベンズアミド、トリベンズアミド、ローダニン、尿素、1-アセチル-2-チオ尿素、ビウレット、ブチル尿素、ジブチル尿素、1,3-ジメチル尿素、1,3-ジエチル尿素及びこれらの誘導体等が挙げられる。
 また、アミド化合物として、アクリルアミドを使用することもできる。アクリルアミドとしては、N-メチルアクリルアミド、N-メチルメタクリルアミド、N-エチルアクリルアミド、N-エチルメタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、2-ヒドロキシエチルアクリルアミド、2-ヒドロキシエチルメタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミドなどが挙げられる。
 アミド化合物の分子量は46~10000であることが好ましく、46~5000であることがより好ましく、46~1000であることが特に好ましい。
 アミド化合物の含有量は、ポリアニオンとπ共役系導電性高分子の合計100質量部に対して1~5000質量部であることが好ましく、50~500質量部であることがより好ましい。アミド化合物の含有量が1質量部より少なくなると、導電性及び耐熱性が不足することがある。また、アミド化合物の含有量が5000質量部より多くなると、導電性塗膜中のπ共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得ることが難しい。
 [イミド化合物]
 アミド化合物としては、導電性がより高くなることから、イミド結合を有する単分子化合物(以下、イミド化合物という。)が好ましい。イミド化合物としては、その骨格より、フタルイミド及びフタルイミド誘導体、スクシンイミド及びスクシンイミド誘導体、ベンズイミド及びベンズイミド誘導体、マレイミド及びマレイミド誘導体、ナフタルイミド及びナフタルイミド誘導体などが挙げられる。
 また、イミド化合物は両末端の官能基の種類によって、脂肪族イミド、芳香族イミド等に分類されるが、溶解性の観点からは、脂肪族イミドが好ましい。
 さらに、脂肪族イミド化合物は、分子内の炭素間に不飽和結合を有する飽和脂肪族イミド化合物と、分子内の炭素間に不飽和結合を有する不飽和脂肪族イミド化合物とに分類される。
 飽和脂肪族イミド化合物は、R-CO-NH-CO-Rで表される化合物であり、R,Rの両方が飽和炭化水素である化合物である。具体的には、シクロヘキサン-1,2-ジカルボキシイミド、アラントイン、ヒダントイン、バルビツル酸、アロキサン、グルタルイミド、スクシンイミド、5-ブチルヒダントイン酸、5,5-ジメチルヒダントイン、1-メチルヒダントイン、1,5,5-トリメチルヒダントイン、5-ヒダントイン酢酸、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド、セミカルバジド、α,α-ジメチル-6-メチルスクシンイミド、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン、α-メチル-α-プロピルスクシンイミド、シクロヘキシルイミドなどが挙げられる。
 不飽和脂肪族イミド化合物は、R-CO-NH-CO-Rで表される化合物であり、R,Rの一方又は両方が1つ以上の不飽和結合である化合物である。具体例は、1,3-ジプロピレン尿素、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-ヒドロキシマレイミド、1,4-ビスマレイミドブタン、1,6-ビスマレイミドヘキサン、1,8-ビスマレイミドオクタン、N-カルボキシヘプチルマレイミドなどが挙げられる。
 イミド化合物の分子量は60~5000であることが好ましく、70~1000であることがより好ましく、80~500であることが特に好ましい。
 イミド化合物の含有量は、π共役系導電性高分子とポリアニオンの合計100質量部に対して10~10000質量部であることが好ましく、50~5000質量部であることがより好ましい。アミド化合物及びイミド化合物の添加量が前記下限値未満であると、アミド化合物及びイミド化合物添加による効果が低くなるため好ましくない。また、前記上限値を超えると、π共役系導電性高分子濃度の低下に起因する導電性の低下が起こるため好ましくない。
 [ラクタム化合物]
 ラクタム化合物とは、アミノカルボン酸の分子内環状アミドであり、環の一部が-CO-NR-(Rは水素又は任意の置換基)である化合物である。ただし、環の一個以上の炭素原子が不飽和やヘテロ原子に置き換わっていてもよい。
 ラクタム化合物としては、例えば、ペンタノ-4-ラクタム、4-ペンタンラクタム-5-メチル-2-ピロリドン、5-メチル-2-ピロリジノン、ヘキサノ-6-ラクタム、6-ヘキサンラクタム等が挙げられる。
 ラクタム化合物の含有量は、π共役系導電性高分子とポリアニオンの合計100質量部に対して10~10000質量部であることが好ましく、50~5000質量部であることがより好ましい。ラクタム化合物の添加量が前記下限値未満であると、ラクタム化合物添加による効果が低くなるため好ましくない。また、前記上限値を超えると、π共役系導電性高分子濃度の低下に起因する導電性の低下が起こるため好ましくない。
 [グリシジル基を有する化合物]
 グリシジル基を有する化合物としては、例えば、エチルグリシジルエーテル、ブチルグリシジルエーテル、t-ブチルグリシジルエーテル、アリルグリシジルエーテル、ベンジルグリシジルエーテル、グリシジルフェニルエーテル、ビスフェノールA、ジグリシジルエーテル、アクリル酸グリシジルエーテル、メタクリル酸グリシジルエーテル等のグリシジル化合物などが挙げられる。
 グリシジル基を有する化合物の含有量は、π共役系導電性高分子とポリアニオンの合計100質量部に対して10~10000質量部であることが好ましく、50~5000質量部であることがより好ましい。グリシジル基を有する化合物の添加量が前記下限値未満であると、グリシジル基を有する化合物添加による効果が低くなるため好ましくない。また、前記上限値を超えると、π共役系導電性高分子濃度の低下に起因する導電性の低下が起こるため好ましくない。
 [シランカップリング剤]
 シランカップリング剤の具体例としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-
2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。
 シランカップリング剤の含有量は、必要に応じて任意量を添加することができ、特に限定しない。π共役系導電性高分子とポリアニオンの合計100質量部に対して10~10000質量部であることが好ましい。
 以下、本発明に係る実施例1~4と比較例1~3を、表1を参照して説明する。
 (材料の調製)
 [1]ポリスチレンスルホン酸の調製
 1000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を2時間攪拌した。これにより得られたスチレンスルホン酸ナトリウム含有溶液に10質量%に希釈した硫
酸を1000mlと10000mlのイオン交換水を添加し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約10000ml溶液を除去し、残液に10000mlのイオン交換水を加え、限外ろ過法を用いて約10000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。さらに、得られたろ液に約10000mlのイオン交換水を添加し、限外ろ過法を用いて約10000ml溶液を除去した。この限外ろ過操作を3回繰り返した。限外ろ過条件は下記の通りとした。
  限外ろ過膜の分画分子量:30000
  クロスフロー式
  供給液流量:3000ml/分
  膜分圧:0.12Pa
 得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。
 [2]ポリスチレンスルホン酸ドープポリ(3,4-エチレンジオキシチオフェン)水溶液の調製
 14.2gの3,4-エチレンジオキシチオフェンと、36.7gの[1]で得たポリスチレンスルホン酸を2000mlのイオン交換水に溶かした溶液とを20℃で混合した。これにより得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。得られた反応液に2000mlのイオン交換水を添加し、限外ろ過法を用いて約2000ml溶液を除去した。この操作を3回繰り返した。そして、上記ろ過処理が行われた処理液に200mlの10質量%に希釈した硫酸と2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの処理液を除去し、これに2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの液を除去した。この操作を3回繰り返した。さらに、得られた処理液に2000mlのイオン交換水を加え、限外ろ過法を用いて約2000mlの処理液を除去した。この操作を5回繰り返し、約1.5質量%の青色のポリスチレンスルホン酸ドープポリ(3,4-エチレンジオキシチオフェン)(PEDOT
-PSS)水溶液を得た。限外ろ過条件は[1]と同様である。
 [3]ガラス基板の調製
 フッ酸・塩酸・硝酸の混合液を用いてノニオンガラスをバブリングしながらケミカルエッチング(液温38~42℃)することによりにより、ガラス基板を作製した。このガラス基板の厚みは0.4mm、表面の水接触角は6.2度、算術平均粗さRaは0.0008μmであった。
 [4]ガラス基板の調製
 ブロアーを用いてノニオンガラスをバブリングしながらケミカルエッチング(液温38~42℃)することによりにより、ガラス基板を作製した。このガラス基板の厚みは0.4mm、表面の水接触角は6.2度、算術平均粗さRaは0.195μmであった。
 [5]ガラス基板の調製
 ブロアーを用いてノニオンガラスをバブリングしながらケミカルエッチング(液温38~42℃)することによりにより、ガラス基板を作製した。このガラス基板の厚みは2mm、表面の水接触角は6.2度、算術平均粗さRaは0.0008μmであった。
 (測定と評価)
 (算術平均粗さRa)
 JIS B 0601-2001に準じて測定した。
 (表面抵抗値)
 三菱化学社製ロレスタMCP-T600を用い、JIS K 7194に準じて測定した。
 (光透過率)
 日本電色工業社製ヘイズメータ測定器(NDH5000)を用い、JIS K7136に準じて光透過率を測定した。
 (鉛筆硬度)
 JIS S 6006に規定された試験用鉛筆を用いて、JIS K 5600に従い、750gの荷重の際に傷が認められない硬度を測定した。
 (可撓性)
透明導電ガラス基板を半径(R)25mmの筒に180度接するように巻きつける⇔戻す操作を5回行い、その前後の表面抵抗値の変化を測定した。
 (実施例1)
 [2]で得たPEDOT-PSS水溶液600gに、ガーリック酸メチル3.6g、イルガキュア127(チバ・スペシャルティ・ケミカルズ社製)0.9g、ジメチルスルホキシド20g、ヒドロキシアクリレート2.5g、ペンタエリスリトールトリアクリレート7.2g、エタノール300gを混合し、撹拌して、導電性高分子溶液Aを得た。
 導電性高分子溶液Aを[3]で得たガラス基板の1面に、インネクスト製 型番IS-7900IL-NSCのスリットコーターを用い、ノズルギャップ 150μm、塗付速度20mm/sec、ワークディスタンス100μm、吐出流量0.11mlにより塗布し、100℃、2分間、赤外線照射により乾燥した後、紫外線(高圧水銀灯120W、500mJ/cm、178mW/cm)照射し、硬化させて、導電性塗膜を形成させた。導電性塗膜の表面抵抗と光透過率、鉛筆硬度、透明導電ガラス基板の可撓性とを以下の方法により測定した。
 (実施例2)
 [2]で得たPEDOT-PSS水溶液600gに、ガーリック酸メチル3.6g、イルガキュア127(チバ・スペシャルティ・ケミカルズ社製)0.9g、ジメチルスルホキシド20g、ジエチレングリコールジグリシジルエーテル9.2g、2-メチルイミダゾール0.2g、エタノール250g、エチレングリコール50gを混合し、撹拌して、導電性高分子溶液Bを得た。
 導電性高分子溶液Bを[3]で得たガラス基板の1面に、インネクスト製 型番IS-7900IL-NSCのスリットコーターを用い、ノズルギャップ 150μm、塗付速度40mm/sec、ワークディスタンス100μm、吐出流量0.3mlにより塗布し、120℃、2分間、赤外線照射により乾燥して硬化させて、導電性塗膜を形成させた。導電性塗膜の表面抵抗と光透過率、鉛筆硬度、透明導電ガラス基板の可撓性とを測定した。
 (実施例3)
 PEDOT-PSS水溶液(クレビオス PH1000:スタルク社製)600gに、ガーリック酸メチル3.6g、イルガキュア127(チバ・スペシャルティ・ケミカルズ社製)0.9g、ジメチルスルホキシド20g、ジエチレングリコールジグリシジルエーテル9.2g、2-メチルイミダゾール0.2g、ガーリック酸0.5g、エタノール250g、エチレングリコール50gを混合し、撹拌して、導電性高分子溶液Cを得た。
 導電性高分子溶液Cを[3]で得たガラス基板の1面に、インネクスト製 型番IS-7900IL-NSCのスリットコーターを用い、ノズルギャップ 130μm、塗付速度40mm/sec、ワークディスタンス 100μm、吐出流量0.21mlにより塗布し、120度、2分間、赤外線照射により乾燥して硬化させて、導電性塗膜を形成させた。導電性塗膜の表面抵抗と光透過率、鉛筆硬度、透明導電ガラス基板の可撓性とを測定した。
 (実施例4)
 導電性高分子溶液Cを[4]で得たガラス基板の1面に、インネクスト製 型番IS-7900IL-NSCのスリットコーターを用い、ノズルギャップ 130μm、塗付速度60mm/sec、ワークディスタンス80μm、吐出流量0.6mlにより塗布し、120℃、2分間、赤外線照射により乾燥して硬化させて、導電性塗膜を形成させた。導電性塗膜の表面抵抗と光透過率、鉛筆硬度、透明導電ガラス基板の可撓性とを測定した。
 (実施例5)
 [2]で得たPEDOT-PSS水溶液500gに、2-メチルイミダゾール2g、水分散性ポリエステル樹脂(バイロナールMD1480:固形分25質量%)150g、ガーリック酸3.6g、ジメチルスルホキシド20g、メタノール1500gを混合し、撹拌して、導電性高分子溶液Dを得た。この導電性高分子溶液Dを[3]で得たガラス基板の1面に、インネクスト製 型番IS-7900IL-NSCのスリットコーターを用い、ノズルギャップ 150μm、塗付速度 40mm/sec、ワークディスタンス 100μm、吐出流量 0.3mlにより塗布し、120℃、2分間、赤外線照射により乾燥して、導電性塗膜を形成させた。導電性塗膜の表面抵抗と光透過率、鉛筆硬度、透明導電ガラス基板の可撓性とを測定した。
 (比較例1)
 [3]で得たガラス基板の1面に、スパッタリングによりITO膜を形成し、導電性塗膜を形成させた。導電性塗膜の表面抵抗と光透過率、鉛筆硬度、透明導電ガラス基板の可撓性とを測定した。
 (比較例2)
 [4]で得たガラス基板の1面に、スパッタリングによりITO膜を形成し、導電性塗膜を形成させた。導電性塗膜の表面抵抗と光透過率、鉛筆硬度、透明導電ガラス基板の可撓性とを測定した。
 (比較例3)
導電性高分子溶液Cを[5]で得たガラス基板の1面に、インネクスト製 型番IS-7900IL-NSCのスリットコーターを用い、ノズルギャップ 130μm、塗付速度60mm/sec、ワークディスタンス80μm、吐出流量0.6mlにより塗布したところ、導電性塗膜の表面抵抗、光透過率及び鉛筆硬度は測定不能で、透明導電ガラス基板の可撓性測定では、試料が破損した。
 表1は、実施例1~4と比較例1~3の結果を比較したものである。
Figure JPOXMLDOC01-appb-T000001
 以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。またその様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 本発明の透明導電ガラス基板は、VA方式液晶、TN方式液晶、IPS方式液晶などのガラス基板材料として用いられ、液晶駆動電極やIPSの視野角阻害を起こす液晶表面帯電の防止として使用される。これらに用いられる透明導電ガラス基板は生産歩留まりの理由から、先に液晶を封入した後に導電性ポリマーを塗布することがあり、この場合、液晶材料は熱に弱い有機材料であるため、液晶材料の熱変性防止のために上記導電性ポリマー層の乾燥、硬化などの温度は200℃以下であることが好ましく、160℃以下であることが望ましい。なお、従来、ITO成膜時は、高真空環境下で実施されることから、ITO成膜前に液晶が封入されていると、液晶が減圧膨張し、ガラスが破壊される。導電性ポリマーによる透明導電膜は、高真空等の減圧された環境は必要なく、常圧で施工できることから、真空中の破壊がなくなるといった利点も有する。

Claims (15)

  1.  ガラス基板上の少なくとも一面に導電性ポリマー層を有し、表面抵抗が1.8GΩ/□以下、全光線透過率が85%以上、表面鉛筆硬度H以上、R
    25mmの折り曲げで破損しないことを特徴とする透明導電ガラス基板。
  2.  前記導電性ポリマー層を形成する導電性ポリマー塗料が、導電性ポリマー及びポリアニオンを含み、さらにバインダ、硬化剤、高導電化剤、界面活性剤、触媒及び接着性向上剤を含む群から選択される1つ又は複数を含むことを特徴とする請求項1に記載の透明導電ガラス基板。
  3.  前記導電性ポリマーは、主鎖がπ共役系で構成されている有機高分子である、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びそれらの共重合体を含む群から選択される1つ又は複数に属する1つ又は複数のポリマーからなることを特徴とする請求項2に記載の透明導電ガラス基板。
  4.  前記導電性ポリマーは、少なくともポリマーアニオンとチオフェンまたはチオフェン誘導体のポリマーとを含むことを特徴とする請求項2又は3に記載の透明導電ガラス基板。
  5.  前記ポリマーアニオンはポリスチレンスルホン酸であり、前記チオフェンまたはチオフェン誘導体のポリマーはポリ-3,4-エチレンジオキシチオフェンであることを特徴とする請求項4に記載の透明導電ガラス基板。 
  6.  前記ポリアニオンは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基及びスルホ基を含む群から選択される1つ又は複数のアニオン基を有する1つ又は複数のポリマーを含むことを特徴とする請求項2に記載の透明導電ガラス基板。
  7.  前記バインダはバインダ樹脂であり、前記バインダ樹脂が、1つ又は複数の、前記導電性ポリマー塗料と相溶又は混合分散可能な熱硬化性樹脂及び/又は熱可塑性樹脂であることを特徴とする請求項2に記載の透明導電ガラス基板。
  8.  前記高導電化剤は、窒素含有芳香族性環式化合物、2個以上のヒドロキシ基を有する化合物、2個以上のカルボキシ基を有する化合物、1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物、アミド基を有する化合物、イミド基を有する化合物、ラクタム化合物、グリシジル基を有する化合物、シランカップリング剤、DMSO及び水溶性有機溶媒からなる群より選択される1つ又は複数の化合物であることを特徴とする請求項2に記載の透明導電ガラス基板。
  9.  前記導電性ポリマー塗料は、沸点が50~200℃の範囲であり且つ水に可溶の溶剤を5~95質量%含むことを特徴とする特許請求項2~8のいずれか1項に記載の透明導電ガラス基板。
  10.  前記導電性ポリマー層は、前記導電性ポリマー塗料の塗布に続き、乾燥及び加熱並びに/又は赤外線もしくは紫外線の照射の工程を経て作製されたものであることを特徴とする請求項1~9のいずれか1項に記載の透明導電ガラス基板。
  11.  前記導電性ポリマー塗料の塗布は、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、スピンコート法、スリットコーター法を含むダイコート法、カーテンコート法及びキャップコート法を含む群から選択されるいずれかの方法によって行うことを特徴とする請求項10に記載の透明導電ガラス基板。
  12.  前記ガラス基板の厚みが0.03~0.7mmの範囲にあり、ガラス表面の水に対する接触角が5~40度の範囲にあることを特徴とする請求項1に記載の透明導電ガラス基板。
  13.  前記ガラス基板上の少なくとも前記導電性ポリマー層を有する面がフッ化水素酸含有混合液によるエッチングによって成形された部位を含むものであることを特徴とする請求項1又は12に記載の透明導電ガラス基板。
  14.  前記導電性ポリマー層は、加熱及び/又は赤外線もしくは紫外線の照射によって硬化されたものであることを特徴とする請求項1~13のいずれか1項に記載の透明導電ガラス基板。
  15.  前記導電性ポリマー層は160℃以下の温度で硬化されてなることを特徴とする請求項1~14のいずれか1項に記載の透明導電ガラス基板。
     
PCT/JP2011/074797 2010-10-29 2011-10-27 透明導電ガラス基板 WO2012057257A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2013032073A SG190020A1 (en) 2010-10-29 2011-10-27 Transparent conductive glass substrate
KR1020137010429A KR101815337B1 (ko) 2010-10-29 2011-10-27 투명 도전 유리 기판
JP2012540930A JP5888700B2 (ja) 2010-10-29 2011-10-27 透明導電ガラス基板
CN201180051309.8A CN103189931B (zh) 2010-10-29 2011-10-27 透明导电玻璃基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010244358 2010-10-29
JP2010-244358 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012057257A1 true WO2012057257A1 (ja) 2012-05-03

Family

ID=45993961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074797 WO2012057257A1 (ja) 2010-10-29 2011-10-27 透明導電ガラス基板

Country Status (6)

Country Link
JP (1) JP5888700B2 (ja)
KR (1) KR101815337B1 (ja)
CN (1) CN103189931B (ja)
SG (1) SG190020A1 (ja)
TW (1) TWI556263B (ja)
WO (1) WO2012057257A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931354A (zh) * 2012-11-16 2013-02-13 中国科学技术大学 复合透明电极、聚合物太阳能电池及它们的制备方法
WO2014024735A1 (ja) * 2012-08-09 2014-02-13 アルプス電気株式会社 インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法
JP2014191974A (ja) * 2013-03-27 2014-10-06 Fujifilm Corp 導電膜の製造方法および導電膜
JP2017036375A (ja) * 2015-08-07 2017-02-16 信越ポリマー株式会社 導電性高分子分散液、常温延伸用導電性フィルムの製造方法及び導電性延伸フィルムの製造方法
JP2020132660A (ja) * 2019-02-13 2020-08-31 荒川化学工業株式会社 組成物、硬化物及び物品
US20210086986A1 (en) 2010-07-22 2021-03-25 K-Fee System Gmbh Portion capsule having an identifier

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101749919B1 (ko) 2014-01-14 2017-06-22 신에츠 폴리머 가부시키가이샤 도전성 고분자 분산액 및 도전성 도막
TWI507474B (zh) * 2014-05-07 2015-11-11 Far Eastern New Century Corp 製造高分子透明導電膜的方法
CN104849900A (zh) 2015-06-03 2015-08-19 京东方科技集团股份有限公司 显示面板的制备方法及显示面板、显示装置
KR20180121875A (ko) * 2016-03-17 2018-11-09 도레이 카부시키가이샤 감광성 도전 페이스트 및 도전 패턴이 있는 기판의 제조 방법
KR102528774B1 (ko) * 2017-05-24 2023-05-08 도레이 카부시키가이샤 투명 수지 조성물, 투명 피막 및 투명 수지 피복 유리 기판
JP2019197158A (ja) * 2018-05-10 2019-11-14 信越ポリマー株式会社 光制御フィルター
CN110317525B (zh) * 2019-07-17 2022-03-22 周海涛 一种导电高分子水性浆料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113635A (ja) * 1999-10-22 2001-04-24 Oji Paper Co Ltd 透明導電性フィルム
JP2006028439A (ja) * 2004-07-21 2006-02-02 Shin Etsu Polymer Co Ltd 導電性高分子溶液及び導電性塗膜
JP2010159365A (ja) * 2009-01-09 2010-07-22 Shin Etsu Polymer Co Ltd 導電性高分子溶液、導電性積層体および入力デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390578B1 (ko) * 1998-12-17 2003-12-18 제일모직주식회사 고굴절율 전도성 고분자 박막 투명 필름 코팅액 조성물
US7410825B2 (en) * 2005-09-15 2008-08-12 Eastman Kodak Company Metal and electronically conductive polymer transfer
JP2007095506A (ja) * 2005-09-29 2007-04-12 Shin Etsu Polymer Co Ltd タッチパネル用透明導電シート並びにその製造方法、及びタッチパネル
JP5367939B2 (ja) * 2006-07-26 2013-12-11 帝人デュポンフィルム株式会社 導電性フィルムおよび当該フィルムを用いたタッチパネル
CN101781092B (zh) * 2009-01-16 2011-11-09 深圳南玻显示器件科技有限公司 透明导电膜玻璃的制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113635A (ja) * 1999-10-22 2001-04-24 Oji Paper Co Ltd 透明導電性フィルム
JP2006028439A (ja) * 2004-07-21 2006-02-02 Shin Etsu Polymer Co Ltd 導電性高分子溶液及び導電性塗膜
JP2010159365A (ja) * 2009-01-09 2010-07-22 Shin Etsu Polymer Co Ltd 導電性高分子溶液、導電性積層体および入力デバイス

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11554910B2 (en) 2010-07-22 2023-01-17 K-Fee System Gmbh Portion capsule having an identifier
US11542094B2 (en) 2010-07-22 2023-01-03 K-Fee System Gmbh Portion capsule having an identifier
US11465829B2 (en) 2010-07-22 2022-10-11 K-Fee System Gmbh Portion capsule having an identifier
US11667465B2 (en) 2010-07-22 2023-06-06 K-Fee System Gmbh Portion capsule having an identifier
US11465830B2 (en) 2010-07-22 2022-10-11 K-Fee System Gmbh Portion capsule having an identifier
US20210086986A1 (en) 2010-07-22 2021-03-25 K-Fee System Gmbh Portion capsule having an identifier
US10994923B2 (en) 2010-07-22 2021-05-04 K-Fee System Gmbh Portion capsule having an identifier
US11820586B2 (en) 2010-07-22 2023-11-21 K-Fee System Gmbh Portion capsule having an identifier
US11919703B2 (en) 2010-07-22 2024-03-05 K-Fee System Gmbh Portion capsule having an identifier
US11548722B2 (en) 2010-07-22 2023-01-10 K-Fee System Gmbh Portion capsule having an identifier
US11254491B2 (en) 2010-07-22 2022-02-22 K-Fee System Gmbh Portion capsule having an identifier
WO2014024735A1 (ja) * 2012-08-09 2014-02-13 アルプス電気株式会社 インク組成物、インク組成物の製造方法、透明導電膜及び透明導電膜の製造方法
CN102931354A (zh) * 2012-11-16 2013-02-13 中国科学技术大学 复合透明电极、聚合物太阳能电池及它们的制备方法
JP2014191974A (ja) * 2013-03-27 2014-10-06 Fujifilm Corp 導電膜の製造方法および導電膜
JP2017036375A (ja) * 2015-08-07 2017-02-16 信越ポリマー株式会社 導電性高分子分散液、常温延伸用導電性フィルムの製造方法及び導電性延伸フィルムの製造方法
JP2020132660A (ja) * 2019-02-13 2020-08-31 荒川化学工業株式会社 組成物、硬化物及び物品
JP7225879B2 (ja) 2019-02-13 2023-02-21 荒川化学工業株式会社 組成物、硬化物及び物品

Also Published As

Publication number Publication date
SG190020A1 (en) 2013-06-28
KR20140015265A (ko) 2014-02-06
KR101815337B1 (ko) 2018-01-04
JPWO2012057257A1 (ja) 2014-05-12
CN103189931B (zh) 2015-10-07
TW201222570A (en) 2012-06-01
CN103189931A (zh) 2013-07-03
TWI556263B (zh) 2016-11-01
JP5888700B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
JP5888700B2 (ja) 透明導電ガラス基板
JP5612814B2 (ja) 導電性高分子溶液、導電性塗膜および入力デバイス
US8323531B2 (en) Method for producing conductive polymer solution
JP5460007B2 (ja) 導電性高分子溶液、導電性塗膜および入力デバイス
JP6745153B2 (ja) 導電性離型層形成用塗料及びその製造方法、並びに導電性離型フィルム及びその製造方法
JP5460008B2 (ja) 導電性高分子溶液、導電性塗膜および入力デバイス
JP6655484B2 (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP5978397B2 (ja) 導電性高分子分散液及び導電性塗膜
JP2010159365A (ja) 導電性高分子溶液、導電性積層体および入力デバイス
JP6607832B2 (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルム及びその製造方法
JP2018053191A (ja) 導電性複合体のアミン付加物の製造方法、導電性複合体のアミン付加物液の製造方法、及び導電性フィルムの製造方法
JP2018115269A (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2016094495A (ja) 導電性組成物、導電性組成物の製造方法、帯電防止樹脂組成物ならびに帯電防止樹脂皮膜
JP5337468B2 (ja) 導電性シートおよびその製造方法、ならびに入力デバイス
JP6010389B2 (ja) 導電性高分子の製造方法、導電性組成物の製造方法、およびフィルムの製造方法
JP5337469B2 (ja) 導電性シートおよびその製造方法、ならびに入力デバイス
JP5581084B2 (ja) 透明導電体及びその製造方法、入力デバイス
JP2018110073A (ja) 導電性高分子分散液及びその製造方法、並びに帯電防止フィルム及びその製造方法
JP2018111763A (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP6628412B2 (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法
JP2018145305A (ja) 導電性高分子分散液及びその製造方法、並びに帯電防止フィルム及びその製造方法
JP2018111738A (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルム及びその製造方法
JP2018009051A (ja) 帯電防止フィルムの製造方法
JP2018123186A (ja) 導電性高分子分散液及びその製造方法、並びに帯電防止フィルム及びその製造方法
JP2018095728A (ja) 導電性高分子分散液及びその製造方法、並びに帯電防止フィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540930

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137010429

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836390

Country of ref document: EP

Kind code of ref document: A1