WO2014023045A1 - 铝蚀刻液混酸浓度的电位滴定方法 - Google Patents

铝蚀刻液混酸浓度的电位滴定方法 Download PDF

Info

Publication number
WO2014023045A1
WO2014023045A1 PCT/CN2012/080481 CN2012080481W WO2014023045A1 WO 2014023045 A1 WO2014023045 A1 WO 2014023045A1 CN 2012080481 W CN2012080481 W CN 2012080481W WO 2014023045 A1 WO2014023045 A1 WO 2014023045A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
concentration
acid
mixed acid
aluminum etching
Prior art date
Application number
PCT/CN2012/080481
Other languages
English (en)
French (fr)
Inventor
徐蕊
张维维
巫景铭
朱洪辉
王俐
何小波
黄红青
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/699,638 priority Critical patent/US8945934B2/en
Publication of WO2014023045A1 publication Critical patent/WO2014023045A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • G01N31/162Determining the equivalent point by means of a discontinuity
    • G01N31/164Determining the equivalent point by means of a discontinuity by electrical or electrochemical means

Definitions

  • the present invention relates to an etching solution or to a potentiometric titration method for a mixed acid concentration of an aluminum etching solution. Background technique
  • wet etching is a core process in which a metal etching layer is patterned by an acidic etching solution in a TFT manufacturing process to form a gate, a source-drain, and an indium tin oxide (ITO) electrode.
  • ITO indium tin oxide
  • aluminum and molybdenum are often used as conductive materials to form gates, and etchants can use a variety of different acids, but most of them are dissolved and redoxed by a strong acid mixture (phosphoric acid, nitric acid and acetic acid). Patterning of the gate film layer.
  • the composition of the mixed acid of the aluminum etching solution is probably streptoic acid (70-72%), nitric acid (1.8%-2.0%), and acetic acid (8.0% ⁇ 10.0%).
  • nitric acid plays the role of 3 ⁇ 40+, wet etching with oxidized metal aluminum molybdenum; and phosphoric acid provides stearate, which forms a complex with oxidized metal to dissolve metal oxide; acetic acid can adhere to the surface of the reactant, reduce etching Liquid viscosity to increase its wettability and adjust the etch rate. Therefore, controlling the concentration of each acid in the etching liquid is of great significance for the adjustment of the etching rate and the formation of the etching shape.
  • the strength of an acid or a base exhibited by a substance in a solution is related not only to the nature of the acid or base but also to the nature of the solvent.
  • the difference in PKa between the acid components should be about 5 to be determined by titration separately, so it is impossible to distinguish nitric acid (PKa value - 1.32) and primary ionization of phosphoric acid in aqueous solution (its PKal value is 1.96), it is also impossible to distinguish between acetic acid (PKa value of 4.73) and secondary ionization of phosphoric acid (the PKa2 value is 7.12). Due to this leveling effect in aqueous solution, it is usually only possible to distinguish the acids in the mixed acid by a multi-step process or in a non-aqueous solvent.
  • Potentiometric titration determines the end point of the titration by measuring the potential jump in the titration process. It has high sensitivity and accuracy, and can be automated and continuously measured, so it is widely used. Most of the existing potentiometric titration mixed acid methods are mainly carried out in a two-step method, and are combined with an appropriate nonaqueous solvent system.
  • the first step is to use tetrabutylammonium bromide in ethanol as a titrant, absolute ethanol as solvent, or potassium hydroxide (KOH) in isopropanol as a titrant, sterol as Solvent, titrate the content of nitric acid in the mixed acid;
  • the second step using sodium hydroxide (NaOH) aqueous solution as the titrant, saturated sodium chloride solution as the solvent, titration of phosphoric acid and acetic acid in the mixed acid, the titration process produces two End point, the first end point is the first of nitric acid and phosphoric acid Hydrogen ion, the second end point is the second hydrogen ion of phosphoric acid and acetic acid, and the contents of the three acids are obtained by automatic calculation.
  • NaOH sodium hydroxide
  • the object of the present invention is to provide a potentiometric titration method for mixed acid concentration of an aluminum etching solution, which uses a one-step potentiometric titration mixed acid instead of the existing two-step potentiometric titration mixed acid in a nonaqueous solvent system, thereby reducing the experimental operation process and reducing The error of the test results achieves the purpose of improving test accuracy and saving test time.
  • the present invention provides a potentiometric titration method for a mixed acid concentration of an aluminum etching solution, comprising the following steps:
  • Step 1 Using a strong base as a solute and an absolute ethanol as a solvent, a strong alkali-ethanol solution having a concentration of 0.8 to 1.2 mol/L is disposed;
  • Step 2 After the prepared strong alkali-ethanol solution is allowed to stand for 20 to 30 days, the supernatant liquid is taken; Step 3. The supernatant liquid is diluted with absolute ethanol to a concentration of 0.1 to 0.2 mol/L, and is carried out. Vacuum suction filtration to obtain a strong alkali-ethanol solution for titration;
  • Step 4 The potassium hydrogen phthalate is baked in an oven at 105 ° C for 10 to 12 hours, and then cooled in a desiccator for at least 1 hour;
  • Step 5 taking the above potassium hydrogen phthalate as a solute, using distilled water as a solvent, weighing an appropriate amount of the above potassium hydrogen phthalate and adding distilled water to prepare a potassium hydrogen phthalate solution in an automatic potentiometric titrator , weighing the potassium hydrogen phthalate, the weighing result is accurate to 0.1 mg;
  • Step 6 The titration is made by adding a strong alkali-ethanol solution to the potassium hydrogen phthalate solution by an automatic potentiometric titrator until the first end point occurs, and the concentration of the strong alkali-ethanol solution for titration is calculated; Step 7. Repeat step 6 twice, and calculate the average of the concentration of the strong alkali-ethanol solution for three titrations to determine the actual concentration of the strong base-ethanol solution for titration;
  • Step 8 taking a certain amount of aluminum etching solution mixed acid, that is, a mixed acid sample of nitric acid, phosphoric acid and acetic acid, adding a first solvent and a second solvent to the mixed acid sample, stirring and hooking, to obtain an aluminum etching solution mixed acid solution, the first
  • the solvent is a monohydric alcohol
  • the second solvent is a glycol
  • Step 9 The above-mentioned titration is dropped into the aluminum etching solution mixed acid solution by an automatic potentiometric titrator until the first, second, and third points appear, according to the occurrence of the first, second, and
  • the titration consumed at the third-class point is calculated by the amount of strong alkali-ethanol solution used to calculate the concentration of nitric acid, phosphoric acid and acetic acid in the mixed acid solution of the aluminum etching solution.
  • C the concentration of the strong base-ethanol solution
  • V EP1 is the first The volume of the strong base-ethanol solution consumed at the point
  • ⁇ ( ⁇ ⁇ ⁇ ⁇ ⁇ is the volume difference of the strong base consumed by the second and first equivalence points
  • V ( ⁇ 3- ⁇ 2) is the third The difference between the volume of the strong alkali-ethanol solution consumed by the second and the equivalent point
  • m is the mass of the mixed acid of the aluminum etching solution weighed by the test
  • M is the molar mass of each acid
  • Step 10 Repeat step 9 and calculate the average concentration of nitric acid, phosphoric acid and acetic acid in the mixed acid solution of the aluminum etching solution to determine the actual concentration of nitric acid, strepic acid and acetic acid in the mixed acid solution of the aluminum etching solution.
  • the strong base is potassium hydroxide having an analytically pure concentration greater than or equal to 85%.
  • the monohydric alcohol is decyl alcohol or ethanol.
  • the glycol is ethylene glycol, 1,2-propanediol, or 1,4-butanediol.
  • the volume ratio between the first solvent and the second solvent is from 3:1 to 3:5.
  • the value of the sum of the volumes of the first solvent and the second solvent is 200 400 times the value of the mass of the mixed acid sample of the aluminum etching solution.
  • the strong base is sodium hydroxide and has an analytical pure concentration of greater than or equal to 96%.
  • the concentration of the strong alkali-ethanol solution is 1 mol/L.
  • the time during which the strong alkali-ethanol solution was allowed to settle was 30 days.
  • the baking time of potassium hydrogen phthalate is 12 hours.
  • the invention also provides a potentiometric titration method for mixed acid concentration of an aluminum etching solution, comprising the following steps:
  • Step 1 Using a strong base as a solute and an absolute ethanol as a solvent, a strong alkali-ethanol solution having a concentration of 0.8 to 1.2 mol/L is disposed;
  • Step 2 After the prepared strong alkali-ethanol solution is allowed to stand for 20 to 30 days, the supernatant liquid is taken; Step 3. The supernatant liquid is diluted with absolute ethanol to a concentration of 0.1 to 0.2 mol/L, and is carried out. Vacuum suction filtration to obtain a strong alkali-ethanol solution for titration;
  • Step 4 The potassium hydrogen phthalate is baked in an oven at 105 ° C for 10 to 12 hours, and then cooled in a desiccator for at least 1 hour;
  • Step 5 taking the above potassium hydrogen phthalate as a solute, using distilled water as a solvent, weighing an appropriate amount of the above potassium hydrogen phthalate and adding distilled water to prepare a potassium hydrogen phthalate solution in an automatic potentiometric titrator , weighing the potassium hydrogen phthalate, the weighing result is accurate to 0.1 mg;
  • Step 6 Drip the strong alkali-ethanol solution into the phthalic acid by an automatic potentiometric titrator In the potassium hydroxide solution, until the first end point occurs, and calculate the concentration of the strong base-ethanol solution for titration; Step 7, repeat step 6 twice, and calculate the average value of the concentration of the strong alkali-ethanol solution for three titrations to determine The actual concentration of the strong base-ethanol solution used for titration;
  • Step 8 taking a certain amount of aluminum etching solution mixed acid, that is, a mixed acid sample of nitric acid, phosphoric acid and acetic acid, adding a first solvent and a second solvent to the mixed acid sample, stirring and hooking, to obtain an aluminum etching solution mixed acid solution, the first
  • the solvent is a monohydric alcohol
  • the second solvent is a glycol
  • Step 9 The above-mentioned titration is dropped into the aluminum etching solution mixed acid solution by an automatic potentiometric titrator until the first, second, and third points appear, according to the occurrence of the first, second, and
  • the titration consumed at the third-class point is calculated by the amount of strong alkali-ethanol solution used to calculate the concentration of nitric acid, phosphoric acid and acetic acid in the mixed acid solution of the aluminum etching solution.
  • the calculation formula is:
  • V EP1 is the volume of the strong base-ethanol solution consumed by the first equivalence point
  • V ( E P2_ EP1 ) is the volume difference of the strong base consumed by the second and first equivalence points
  • (EP3-EP2) is the volume difference of the strong alkali-ethanol solution consumed by the third and second equivalence points
  • m is the mass of the mixed acid of the aluminum etching solution weighed by the test
  • M is the molar mass of each acid;
  • Step 10 Repeat step 2 and calculate the average value of the concentration of nitric acid, phosphoric acid and acetic acid in the mixed acid solution of the aluminum etching solution to determine the actual concentration of nitric acid, strepic acid and acetic acid in the mixed acid solution of the aluminum etching solution;
  • the strong base is potassium hydroxide, and the analytical pure concentration is greater than or equal to 85%;
  • the monohydric alcohol is decyl alcohol or ethanol
  • glycol is ethylene glycol, 1,2-propanediol, or 1,4-butanediol;
  • volume ratio between the first solvent and the second solvent is 3:1 to 3:5;
  • the value of the sum of the volumes of the first solvent and the second solvent is 200 400 times the value of the mass of the mixed sample of the aluminum etching solution
  • the concentration of the strong alkali-ethanol solution is lmol/L
  • the time for the static alkali-ethanol solution to stand still is 30 days; wherein, in the step 4, the baking time of the potassium hydrogen phthalate is 12 hours.
  • the potentiometric titration method of mixed acid concentration of aluminum etching solution according to the present invention uses a monohydric alcohol and a glycol as a non-aqueous medium of an aluminum etching solution mixed with acid, and a potassium hydroxide-ethanol solution Or the sodium hydroxide-ethanol solution is a titrant, which realizes the concentration of each monoacid in the mixed acid of the aluminum etching solution by one-step potentiometric titration, thereby reducing the operational complexity of the experimental process and the uncertainty of the test results, and achieving accurate testing and high-efficiency testing.
  • the method can quickly and accurately test the concentration of nitric acid, phosphoric acid and acetic acid in the mixed acid of aluminum etching solution, which is of great significance for adjusting the etching rate and forming a good gate shape, and can be widely promoted in the TFT industry.
  • FIG. 1A and FIG. 1B are titration charts of a conventional two-step potentiometric titration aluminum etching solution
  • FIG. 2 is a flow chart of a potentiometric titration method for a mixed acid concentration of an aluminum etching solution according to the present invention
  • Fig. 3 is a titration chart of the titration of the mixed acid of the aluminum etching solution by the potentiometric titration method of the mixed acid concentration of the aluminum etching solution of the present invention.
  • the present invention provides a potentiometric titration method for mixed acid concentration of an aluminum etching solution, and a potentiometric titration method for mixed acid concentration of an aluminum etching solution according to the present invention, wherein a monohydric alcohol and a glycol are used as an aluminum etching solution mixed with an acid.
  • a monohydric alcohol and a glycol are used as an aluminum etching solution mixed with an acid.
  • the strong base may be potassium hydroxide, and the analytically pure (AR) concentration is greater than or equal to 85.
  • the strong base may also be sodium hydroxide having an analytically pure concentration greater than or equal to 96%.
  • Step 1 Using potassium hydroxide as a solute and anhydrous ethanol as a solvent, a potassium hydroxide-ethanol solution having a concentration of 0.8 to 1.2 mol/L is disposed.
  • a certain amount of potassium hydroxide (analytically pure, content greater than or equal to 85%) was accurately weighed by an electronic balance, and dissolved in an appropriate amount of absolute ethanol to prepare a KOH-ethanol having a concentration of 1 mol/L.
  • Step 2 The prepared potassium hydroxide-ethanol solution is allowed to stand for 20 to 30 days, and then the supernatant is taken.
  • the time during which the strong alkali-ethanol solution is allowed to settle is preferably 30 days.
  • Step 3 Dilute the supernatant with absolute ethanol to a concentration of 0.1 to 0.2 mol/L, and vacuum-filter to obtain a potassium hydroxide-ethanol solution for titration.
  • the supernatant is diluted with absolute ethanol, preferably to 0.1 mol/L or 0.2 mol/L.
  • Step 4 Potassium hydrogen phthalate is baked in an oven at 105 °C for 10 to 12 hours, then placed in a desiccator for at least 1 hour.
  • a large amount of potassium hydrogen phthalate was placed in an oven at 105 ° C for 12 hours and then placed in a desiccator for at least 1 hour.
  • Step 5 taking the above potassium hydrogen phthalate as a solute, using distilled water as a solvent, accurately weighing an appropriate amount of the above potassium hydrogen phthalate and adding distilled water to prepare potassium hydrogen phthalate in an automatic potentiometric titrator Solution.
  • Step 6 Titrate the potassium hydroxide-ethanol solution into the potassium hydrogen phthalate solution by an automatic potentiometric titrator until the first end point occurs, and calculate the concentration of the potassium hydroxide-ethanol solution for titration.
  • the concentration of the potassium hydroxide-ethanol solution for titration was calculated by the amount of potassium hydrogen phthalate and the volume of the potassium hydroxide-ethanol solution used for titration consumed at the first end point.
  • Step 7 Repeat step 6 twice and calculate the average of the concentration of the potassium hydroxide-ethanol solution for the three titrations to determine the actual concentration of the potassium hydroxide-ethanol solution for titration.
  • Step 8 Take a certain amount of aluminum etching solution mixed with acid, that is, a mixed acid sample of nitric acid, phosphoric acid and acetic acid, add a first solvent and a second solvent to the mixed acid sample, and stir and hook to obtain an aluminum etching solution mixed with an acid solution.
  • a mixed acid sample of nitric acid, phosphoric acid and acetic acid add a first solvent and a second solvent to the mixed acid sample, and stir and hook to obtain an aluminum etching solution mixed with an acid solution.
  • the first solvent of (mL) and the second solvent of V2 (mL) are stirred to obtain an aluminum etching solution mixed with an acid solution.
  • the first solvent is a monohydric alcohol, preferably decyl alcohol or ethanol; and the second solvent is a glycol, preferably ethylene glycol, 1,2-propanediol, or 1,4-butanediol;
  • the volume ratio between a solvent and a second solvent VI: V2 is between 3:1 and 3:5; the sum of the volume of the first solvent and the second solvent V1+V2 (mL) is the amount of mixed acid sample of the aluminum etching solution 200 (400 times) m ( g ).
  • Step 9 The above titration is dropped into the aluminum etching solution mixed acid solution by an automatic potentiometric titrator until the first, second and third points appear, according to the occurrence of the first and second
  • the titration consumed at the third equivalence point is calculated by the amount of potassium hydroxide-ethanol solution.
  • concentration of nitric acid, phosphoric acid and acetic acid in the liquid mixed acid solution is calculated as:
  • M HAC% V (EP3-EP2) XCXM HAC/ M ⁇
  • C concentration of the potassium hydroxide-ethanol solution
  • V EP1 is the volume of the potassium hydroxide-ethanol solution consumed by the first equivalence point
  • (EP2-EP1) is the volume difference of the potassium hydroxide-ethanol solution consumed by the second and first equivalence points
  • V ( E p ⁇ Ep 2 ) is consumed by the third and second equivalence points
  • m is the mass of the mixed acid of the aluminum etching solution weighed
  • M is the molar mass of each acid.
  • Step 10 Repeat step 9 and calculate the average concentration of nitric acid, phosphoric acid and acetic acid in the mixed acid solution of the aluminum etching solution to determine the actual concentration of nitric acid, strepic acid and acetic acid in the mixed acid solution of the aluminum etching solution.
  • the method for potentiometric titration of the mixed acid concentration of the aluminum etching solution uses a monohydric alcohol and a glycol as a non-aqueous medium for mixing an acid in an aluminum etching solution, and a potassium hydroxide-ethanol solution or a sodium hydroxide-ethanol solution.
  • one-step potentiometric titration of the concentration of each acid in the mixed acid of the aluminum etching solution reduces the operational complexity of the experimental process and the uncertainty of the test results, and achieves the purpose of accurate testing and high-efficiency testing; Accurately testing the concentration of nitric acid, strepic acid and acetic acid in aluminum etching solution is of great significance for adjusting the etching rate and forming a good gate shape, which can be greatly promoted in the TFT industry; this method reduces the complexity of the experimental process. Uncertainty in the nature and test results, the purpose of accurate testing and efficient testing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

一种铝蚀刻液混酸浓度的电位滴定方法,其通过配置并标定好的氢氧化钾-乙醇溶液或氢氧化钠-乙醇溶液为滴定剂,采用一元醇和二元醇作为铝蚀刻液混酸的非水介质,对铝蚀刻液混酸进行电位滴定,实现一步法电位滴定铝蚀刻液混酸中各单酸浓度,从而降低了实验过程的操作复杂性和测试结果的不确定性,实现精确测试和高效测试的目的;所述方法可快速准确地测试铝蚀刻液混酸中硝酸、磷酸和醋酸的浓度。

Description

铝蚀刻液混酸浓度的电位滴定方法 技术领域
本发明涉及蚀刻液领 i或, 尤其涉及一种铝蚀刻液混酸浓度的电位滴定 方法。 背景技术
湿式蚀刻是 TFT制造过程中用酸性腐蚀液对金属膜层进行图形化, 进 而形成栅极 (Gate)、 源漏极 (Source-Drain)、 像素 (Indium Tin Oxides, ITO) 电极的核心工艺。 其中, 铝和钼常作为导电材料来形成栅极, 其蚀刻液可 使用多种不同的酸, 但大多都是利用强酸混合物 (磷酸、 硝酸和水醋酸) 对其进行溶解和氧化还原, 从而实现栅极膜层的图形化。
铝蚀刻液混酸的组成大概为碑酸 (70~72%)、 硝酸 (1.8%~2.0%)、 水醋 酸 (8.0%~10.0%)。 其中, 硝酸扮演提供 ¾0+的角色, 以氧化金属铝钼进行 湿式蚀刻; 而磷酸是提供碑酸根, 与氧化的金属形成络合物从而溶解金属 氧化物; 水醋酸可附着于反应物表面, 降低蚀刻液黏度以提高其浸润性和 调整蚀刻速率。 因此, 控制好蚀刻液中各酸的浓度, 对于蚀刻速率的调整 和蚀刻形状的形成具有重大的意义。
根据酸碱质子理论, 一种物质在某种溶液中表现出的酸或碱的强度, 不仅与酸碱的本质有关, 也与溶剂的性质的有关。 在水溶液中, 各酸组分 之间 PKa值的差别应达到约 5时才能通过滴定分别测定, 因此在水溶液中 无法区分硝酸 (PKa 值为 -1.32 ) 和磷酸的一级电离 (其 PKal 值为 1.96 ) , 也无法区分醋酸(PKa值为 4.73 )和磷酸的二级电离 (其 PKa2 值为 7.12 ) 。 由于水溶液中的这种拉平效应, 通常只能通过多步法或在非 水溶剂中才能将混酸中各酸区别开来。
电位滴定法通过测量滴定过程中电位突跃变化来确定滴定终点, 其灵 敏度和准确度高, 并可实现自动化和连续测定, 因此用途十分广泛。 现有 的电位滴定混酸方法大多以两步法为主, 配合以适当的非水溶剂体系来实 现。 如下图 1A 所示, 第一步, 以四丁基溴化铵的乙醇溶液为滴定剂, 无 水乙醇作为溶剂, 或者以氢氧化钾(KOH ) 的异丙醇溶液为滴定剂, 曱醇 作为溶剂, 滴定混酸中硝酸含量; 如下图 1B 所示, 第二步, 以氢氧化钠 ( NaOH ) 水溶液作为滴定剂, 饱和氯化钠溶液作为溶剂, 滴定混酸中的 磷酸和醋酸, 滴定过程产生两个终点, 第一个终点为硝酸和磷酸的第一个 氢离子, 第二个终点为磷酸的第二个氢离子和醋酸, 通过自动计算得到三 种酸的含量。 这些方法都是通过两步滴定和计算来实现, 滴定过程操作繁 瑣, 且用到多种滴定剂和溶剂体系, 增加了滴定结果的不确定度, 从而降 低滴定结果的准确度和重复性。 发明内容
本发明的目的在于提供一种铝蚀刻液混酸浓度的电位滴定方法, 其在 非水溶剂体系中釆用一步法电位滴定混酸代替现有的两步法电位滴定混 酸, 从而减少实验操作过程, 降低测试结果的误差, 达到提高测试准确度 和节省测试时间的目的。
为实现上述目的, 本发明提供一种铝蚀刻液混酸浓度的电位滴定方 法, 包括如下步骤:
步骤 1、 以强碱为溶质, 无水乙醇为溶剂, 配置浓度为 0.8~1.2mol/L 的强碱 -乙醇溶液;
步骤 2、 将制得的强碱 -乙醇溶液静置沉降 20~30天后, 取上层清液; 步骤 3、 用无水乙醇稀释该上层清液, 至浓度为 0.1 ~ 0.2 mol/L, 并进 行真空抽滤得到滴定用强碱 -乙醇溶液;
步骤 4、 将邻苯二曱酸氢钾放入 105 °C的烘箱中烘烤 10~12小时, 然 后置于干燥器中冷却至少 1小时;
步骤 5、 取上述邻苯二曱酸氢钾为溶质, 以蒸馏水为溶剂, 称量适量 上述邻苯二曱酸氢钾并加入蒸馏水在自动电位滴定仪中制得邻苯二曱酸氢 钾溶液, 称量邻苯二曱酸氢钾时称量结果精确到 0.1 mg;
步骤 6、 通过自动电位滴定仪将滴定用强碱 -乙醇溶液滴入邻苯二曱酸 氢钾溶液中, 至出现第一个终点, 并计算滴定用强碱 -乙醇溶液的浓度; 步骤 7、 重复两次步骤 6, 并计算三次滴定用强碱 -乙醇溶液浓度的平 均值, 以确定滴定用强碱-乙醇溶液的实际浓度;
步骤 8、 取一定量铝蚀刻液混酸即硝酸、 磷酸与醋酸的混酸样品, 在 该混酸样品中加入第一溶剂和第二溶剂, 搅拌均勾, 制得铝蚀刻液混酸溶 液, 所述第一溶剂为一元醇, 所述第二溶剂为二元醇;
步骤 9、 通过自动电位滴定仪将上述滴定用强碱-乙醇溶液滴入铝蚀刻 液混酸溶液中, 至出现第一、 第二与第三等当点, 根据出现该第一、 第二 与第三等当点时所消耗的滴定用强碱-乙醇溶液的用量计算铝蚀刻液混酸溶 液中硝酸、 磷酸和醋酸的浓度, 其计算公式为: m H3P04°/° = V(EP2EP1) X C X M H3POy m m HAC% = V (EP3-EP2) X C X M HAC/ m · 其中, C为强碱 -乙醇溶液的浓度; VEP1为第一个等当点所消耗的强碱- 乙醇溶液的体积; ν (Ερ^ Ερυ为第二个和第一个等当点所消耗的强碱的体积 差; V (ΕΡ3- ΕΡ2)为第三个和第二个等当点所消耗的强碱-乙醇溶液的体积 差; m为测试所称取的铝蚀刻液混酸的质量; M为各酸的摩尔质量;
步骤 10、 重复两次步骤 9, 并计算三次铝蚀刻液混酸溶液中硝酸、 磷 酸和醋酸的浓度的平均值, 以确定铝蚀刻液混酸溶液中硝酸、 碑酸和醋酸 的实际浓度。
所述强碱为氢氧化钾, 其分析纯浓度大于或等于 85%。
所述一元醇为曱醇或乙醇。
所述二元醇为乙二醇、 1,2-丙二醇、 或 1,4-丁二醇。
所述第一溶剂与第二溶剂之间的体积配比为 3:1~3:5。
所述第一溶剂与第二溶剂的体积之和的数值是所述铝蚀刻液混酸样品 质量的数值的 200 400倍。
所述强碱为氢氧化钠, 其分析纯浓度大于或等于 96%。
所述步骤 1中, 强碱 -乙醇溶液的浓度为 lmol/L。
所述步骤 2中, 强碱-乙醇溶液静置沉降的时间为 30天。
所述步骤 4中, 邻苯二曱酸氢钾的烘烤时间为 12小时。
本发明还提供一种铝蚀刻液混酸浓度的电位滴定方法, 包括如下步 骤:
步骤 1、 以强碱为溶质, 无水乙醇为溶剂, 配置浓度为 0.8~1.2mol/L 的强碱 -乙醇溶液;
步骤 2、 将制得的强碱 -乙醇溶液静置沉降 20~30天后, 取上层清液; 步骤 3、 用无水乙醇稀释该上层清液, 至浓度为 0.1 ~ 0.2 mol/L, 并进 行真空抽滤得到滴定用强碱 -乙醇溶液;
步骤 4、 将邻苯二曱酸氢钾放入 105 °C的烘箱中烘烤 10~12小时, 然 后置于干燥器中冷却至少 1小时;
步骤 5、 取上述邻苯二曱酸氢钾为溶质, 以蒸馏水为溶剂, 称量适量 上述邻苯二曱酸氢钾并加入蒸馏水在自动电位滴定仪中制得邻苯二曱酸氢 钾溶液, 称量邻苯二曱酸氢钾时称量结果精确到 0.1 mg;
步骤 6、 通过自动电位滴定仪将滴定用强碱 -乙醇溶液滴入邻苯二曱酸 氢钾溶液中, 至出现第一个终点, 并计算滴定用强碱 -乙醇溶液的浓度; 步骤 7、 重复两次步骤 6, 并计算三次滴定用强碱 -乙醇溶液浓度的平 均值, 以确定滴定用强碱-乙醇溶液的实际浓度;
步骤 8、 取一定量铝蚀刻液混酸即硝酸、 磷酸与醋酸的混酸样品, 在 该混酸样品中加入第一溶剂和第二溶剂, 搅拌均勾, 制得铝蚀刻液混酸溶 液, 所述第一溶剂为一元醇, 所述第二溶剂为二元醇;
步骤 9、 通过自动电位滴定仪将上述滴定用强碱-乙醇溶液滴入铝蚀刻 液混酸溶液中, 至出现第一、 第二与第三等当点, 根据出现该第一、 第二 与第三等当点时所消耗的滴定用强碱-乙醇溶液的用量计算铝蚀刻液混酸溶 液中硝酸、 磷酸和醋酸的浓度, 其计算公式为:
m HN03°/° = VEP1 X C X M HN03 m · m H3P04% = V(Ep2Epi) X C X MH3poym m HAC% = V (EP3-EP2) X C X M HAC/ m · 其中, C为强碱 -乙醇溶液的浓度; VEP1为第一个等当点所消耗的强碱- 乙醇溶液的体积; V (EP2_ EP1)为第二个和第一个等当点所消耗的强碱的体 积差; V (EP3- EP2)为第三个和第二个等当点所消耗的强碱-乙醇溶液的体积 差; m为测试所称取的铝蚀刻液混酸的质量; M为各酸的摩尔质量;
步骤 10、 重复两次步骤 9, 并计算三次铝蚀刻液混酸溶液中硝酸、 磷 酸和醋酸的浓度的平均值, 以确定铝蚀刻液混酸溶液中硝酸、 碑酸和醋酸 的实际浓度;
其中, 所述强碱为氢氧化钾, 其分析纯浓度大于或等于 85%;
其中, 所述一元醇为曱醇或乙醇;
其中, 所述二元醇为乙二醇、 1,2-丙二醇、 或 1,4-丁二醇;
其中, 所述第一溶剂与第二溶剂之间的体积配比为 3:1~3:5;
其中, 所述第一溶剂与第二溶剂的体积之和的数值是所述铝蚀刻液混 酸样品质量的数值的 200 400倍;
其中, 所述步骤 1中, 强碱 -乙醇溶液的浓度为 lmol/L;
其中, 所述步骤 2中, 强碱-乙醇溶液静置沉降的时间为 30天; 其中, 所述步骤 4中, 邻苯二曱酸氢钾的烘烤时间为 12小时。
本发明的有益效果: 本发明所述的铝蚀刻液混酸浓度的电位滴定方法 釆用一元醇和二元醇作为铝蚀刻液混酸的非水介质, 以氢氧化钾-乙醇溶液 或氢氧化钠 -乙醇溶液为滴定剂, 实现一步法电位滴定铝蚀刻液混酸中各单 酸浓度, 从而降低了实验过程的操作复杂性和测试结果的不确定性, 实现 精确测试和高效测试的目的; 所述方法可快速准确地测试铝蚀刻液混酸中 硝酸、 磷酸和醋酸各酸浓度, 对于调整蚀刻速率和形成良好的栅极形状具 有重大的意义, 可在 TFT行业中大力推广。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1A和图 1B为现有的两步法电位滴定铝蚀刻液混酸的滴定坐标图; 图 2为本发明铝蚀刻液混酸浓度的电位滴定方法的流程图;
图 3 为用本发明铝蚀刻液混酸浓度的电位滴定方法滴定铝蚀刻液混酸 的滴定坐标图。 具体实施方式
为更进一步阐述本发明所釆取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图 2及图 3 , 本发明提供一种铝蚀刻液混酸浓度的电位滴定方 法, 本发明所述的铝蚀刻液混酸浓度的电位滴定方法釆用一元醇和二元醇 作为铝蚀刻液混酸的非水介质, 以强碱-乙醇溶液为滴定剂, 实现一步法电 位滴定铝蚀刻液混酸中各单酸浓度, 所述强碱可为氢氧化钾, 其分析纯 ( AR ) 浓度大于或等于 85%; 所述强碱还可为氢氧化钠, 其分析纯浓度 大于或等于 96%。
现以氢氧化钾为例具体说明:
步骤 1、 以氢氧化钾为溶质, 无水乙醇为溶剂, 配置浓度为 0.8~1.2mol/L的氢氧化钾 -乙醇溶液。
用电子天平准确地称取一定量的氢氧化钾(分析纯, 含量大于或等于 85% ) , 用适量无水乙醇溶解, 配置成浓度为 lmol/L的 KOH-乙醇。
步骤 2、 将制得的氢氧化钾-乙醇溶液并静置沉降 20~30天后, 取上层 清液。 所述强碱 -乙醇溶液静置沉降的时间优选为 30天。
步骤 3、 用无水乙醇稀释该上层清液, 至浓度为 0.1 ~ 0.2 mol/L, 并进 行真空抽滤得到滴定用氢氧化钾 -乙醇溶液。
用无水乙醇稀释该上层清液, 优选至 0.1 mol/L或 0.2 mol/L。
步骤 4、 将邻苯二曱酸氢钾放入 105 °C的烘箱中烘烤 10~12小时, 然 后置于干燥器中冷却至少 1小时。
取大量邻苯二曱酸氢钾放入 105 °C的烘箱中烘 12 小时, 然后置于干 燥器中冷却至少 1小时。
步骤 5、 取上述邻苯二曱酸氢钾为溶质, 以蒸馏水为溶剂, 精密称量 适量上述邻苯二曱酸氢钾并加入蒸馏水在自动电位滴定仪中制得邻苯二曱 酸氢钾溶液。
精密称取适量(0.2~0.3g )邻苯二曱酸氢钾(精确到 0.1 mg )到滴定 杯中, 加入适量蒸馏水以淹没到电极为准, 室温下搅拌至完全溶解, 制得 邻苯二曱酸氢钾溶液。
步骤 6、 通过自动电位滴定仪将滴定用氢氧化钾-乙醇溶液滴入邻苯二 曱酸氢钾溶液中, 至出现第一个终点, 并计算滴定用氢氧化钾 -乙醇溶液的 浓度。
通过邻苯二曱酸氢钾的用量及出现第一个终点时所消耗的滴定用氢氧 化钾 -乙醇溶液的体积, 计算滴定用氢氧化钾 -乙醇溶液的浓度。
步骤 7、 重复两次步骤 6 , 并计算三次滴定用氢氧化钾-乙醇溶液浓度 的平均值, 以确定滴定用氢氧化钾 -乙醇溶液的实际浓度。
步骤 8、 取一定量铝蚀刻液混酸即硝酸、 磷酸与醋酸的混酸样品, 在 该混酸样品中加入第一溶剂和第二溶剂, 搅拌均勾, 制得铝蚀刻液混酸溶 液。
准确称取 m ( g )硝酸、 碑酸与醋酸的铝蚀刻液混酸样品, 加入 VI
( mL ) 的第一溶剂和 V2 ( mL ) 的第二溶剂, 搅拌均勾, 制得铝蚀刻液混 酸溶液。
其中, 所述第一溶剂为一元醇, 优选为曱醇或乙醇; 所述第二溶剂为 二元醇, 优选为乙二醇、 1,2-丙二醇, 或 1,4-丁二醇; 第一溶剂和第二溶 剂之间的体积配比 VI: V2 为 3: 1 ~ 3: 5之间; 第一溶剂和第二溶剂的 体积之和 V1+V2 ( mL )为铝蚀刻液混酸样品量 m ( g ) 的 200 400倍。
步骤 9、 通过自动电位滴定仪将上述滴定用氢氧化钾-乙醇溶液滴入铝 蚀刻液混酸溶液中, 至出现第一、 第二与第三等当点, 根据出现该第一、 第二与第三等当点时所消耗的滴定用氢氧化钾-乙醇溶液的用量计算铝蚀刻 液混酸溶液 硝酸、 磷酸和醋酸的浓度, 其计算公式为:
Figure imgf000009_0001
m H3P04% - V(Ep2Epi) X C X ΜΗ04/ ^
M HAC% = V (EP3-EP2) X C X M HAC/ M · 其中, C为氢氧化钾 -乙醇溶液的浓度; VEP1为第一个等当点所消耗的 氢氧化钾 -乙醇溶液的体积; V (EP2- EP1)为第二个和第一个等当点所消耗的 氢氧化钾-乙醇溶液的体积差; V (Ep^ Ep2)为第三个和第二个等当点所消耗 的氢氧化钾-乙醇溶液的体积差; m为测试所称取的铝蚀刻液混酸的质量; M为各酸的摩尔质量。
步骤 10、 重复两次步骤 9, 并计算三次铝蚀刻液混酸溶液中硝酸、 磷 酸和醋酸的浓度的平均值, 以确定铝蚀刻液混酸溶液中硝酸、 碑酸和醋酸 的实际浓度。
综上所述, 本发明所述的铝蚀刻液混酸浓度的电位滴定方法釆用一元 醇和二元醇作为铝蚀刻液混酸的非水介质, 以氢氧化钾-乙醇溶液或氢氧化 钠 -乙醇溶液为滴定剂, 实现一步法电位滴定铝蚀刻液混酸中各单酸浓度, 从而降低了实验过程的操作复杂性和测试结果的不确定性, 实现精确测试 和高效测试的目的; 所述方法可快速准确地测试铝蚀刻液中硝酸、 碑酸和 醋酸各酸浓度, 对于调整蚀刻速率和形成良好的栅极形状具有重大的意 义, 可在 TFT行业中大力推广; 此方法降低了实验过程的操作复杂性和测 试结果的不确定性, 实现精确测试和高效测试的目的。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
1、 一种铝蚀刻液混酸浓度的电位滴定方法, 包括如下步骤:
步骤 1、 以强碱为溶质, 无水乙醇为溶剂, 配置浓度为 0.8~1.2mol/L 的强碱 -乙醇溶液;
步骤 2、 将制得的强碱 -乙醇溶液静置沉降 20~30天后, 取上层清液; 步骤 3、 用无水乙醇稀释该上层清液, 至浓度为 0.1 ~ 0.2 mol/L, 并进 行真空抽滤得到滴定用强碱 -乙醇溶液;
步骤 4、 将邻苯二曱酸氢钾放入 105 °C的烘箱中烘烤 10~12小时, 然 后置于干燥器中冷却至少 1小时;
步骤 5、 取上述邻苯二曱酸氢钾为溶质, 以蒸馏水为溶剂, 称量适量 上述邻苯二曱酸氢钾并加入蒸馏水在自动电位滴定仪中制得邻苯二曱酸氢 钾溶液, 称量邻苯二曱酸氢钾时称量结果精确到 0.1 mg;
步骤 6、 通过自动电位滴定仪将滴定用强碱 -乙醇溶液滴入邻苯二曱酸 氢钾溶液中, 至出现第一个终点, 并计算滴定用强碱 -乙醇溶液的浓度; 步骤 7、 重复两次步骤 6, 并计算三次滴定用强碱 -乙醇溶液浓度的平 均值, 以确定滴定用强碱-乙醇溶液的实际浓度;
步骤 8、 取一定量铝蚀刻液混酸即硝酸、 磷酸与醋酸的混酸样品, 在 该混酸样品中加入第一溶剂和第二溶剂, 搅拌均勾, 制得铝蚀刻液混酸溶 液, 所述第一溶剂为一元醇, 所述第二溶剂为二元醇;
步骤 9、 通过自动电位滴定仪将上述滴定用强碱-乙醇溶液滴入铝蚀刻 液混酸溶液中, 至出现第一、 第二与第三等当点, 根据出现该第一、 第二 与第三等当点时所消耗的滴定用强碱-乙醇溶液的用量计算铝蚀刻液混酸溶 液中硝酸、 磷酸和醋酸的浓度, 其计算公式为:
Figure imgf000010_0001
m HAC% = V (EP3-EP2) X C X M HAC/ m 其中, c为强碱 -乙醇溶液的浓度; VEP1为第一个等当点所消耗的强碱- 乙醇溶液的体积; V (ΕΡ^ EP1)为第二个和第一个等当点所消耗的强碱的体 积差; V (EP3- EP2)为第三个和第二个等当点所消耗的强碱-乙醇溶液的体积 差; m为测试所称取的铝蚀刻液混酸的质量; M为各酸的摩尔质量;
步骤 10、 重复两次步骤 9, 并计算三次铝蚀刻液混酸溶液中硝酸、 磷 酸和醋酸的浓度的平均值, 以确定铝蚀刻液混酸溶液中硝酸、 碑酸和醋酸 的实际浓度。
2、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述强碱为氢氧化钾, 其分析纯浓度大于或等于 85%。
3、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述一元醇为曱醇或乙醇。
4、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述二元醇为乙二醇、 1,2-丙二醇、 或 1,4-丁二醇。
5、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述第一溶剂与第二溶剂之间的体积配比为 3:1~3:5。
6、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述第一溶剂与第二溶剂的体积之和的数值是所述铝蚀刻液混酸样品质量 的数值的 200~400倍。
7、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述强碱为氢氧化钠, 其分析纯浓度大于或等于 96%。
8、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述步骤 1中, 强碱 -乙醇溶液的浓度为 lmol/L。
9、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述步骤 2中, 强碱-乙醇溶液静置沉降的时间为 30天。
10、 如权利要求 1 所述的铝蚀刻液混酸浓度的电位滴定方法, 其中, 所述步骤 4中, 邻苯二曱酸氢钾的烘烤时间为 12小时。
11、 一种铝蚀刻液混酸浓度的电位滴定方法, 包括如下步骤: 步骤 1、 以强碱为溶质, 无水乙醇为溶剂, 配置浓度为 0.8~1.2mol/L 的强碱 -乙醇溶液;
步骤 2、 将制得的强碱 -乙醇溶液静置沉降 20~30天后, 取上层清液; 步骤 3、 用无水乙醇稀释该上层清液, 至浓度为 0.1 ~ 0.2 mol/L, 并进 行真空抽滤得到滴定用强碱 -乙醇溶液;
步骤 4、 将邻苯二曱酸氢钾放入 105 °C的烘箱中烘烤 10~12小时, 然 后置于干燥器中冷却至少 1小时; 步骤 5、 取上述邻苯二曱酸氢钾为溶质, 以蒸馏水为溶剂, 称量适量 上述邻苯二曱酸氢钾并加入蒸馏水在自动电位滴定仪中制得邻苯二曱酸氢 钾溶液, 称量邻苯二曱酸氢钾时称量结果精确到 0.1 mg;
步骤 6、 通过自动电位滴定仪将滴定用强碱 -乙醇溶液滴入邻苯二曱酸 氢钾溶液中, 至出现第一个终点, 并计算滴定用强碱 -乙醇溶液的浓度; 步骤 7、 重复两次步骤 6 , 并计算三次滴定用强碱 -乙醇溶液浓度的平 均值, 以确定滴定用强碱-乙醇溶液的实际浓度;
步骤 8、 取一定量铝蚀刻液混酸即硝酸、 磷酸与醋酸的混酸样品, 在 该混酸样品中加入第一溶剂和第二溶剂, 搅拌均勾, 制得铝蚀刻液混酸溶 液, 所述第一溶剂为一元醇, 所述第二溶剂为二元醇;
步骤 9、 通过自动电位滴定仪将上述滴定用强碱-乙醇溶液滴入铝蚀刻 液混酸溶液中, 至出现第一、 第二与第三等当点, 根据出现该第一、 第二 与第三等当点时所消耗的滴定用强碱-乙醇溶液的用量计算铝蚀刻液混酸溶 液中硝酸、 磷酸和醋酸的浓度, 其计算公式为: m HN03°/° VEPi X C X M誦; m . m H3P04°/° V(EP2- EP1) X C X MH3P04/ m m HAc°/o = V(EP3_EP2) X C X M HAC
m 其中, c为强碱 -乙醇溶液的浓度; VEP1为第一个等当点所消耗的强碱- 乙醇溶液的体积; V (ΕΡ^ EP1)为第二个和第一个等当点所消耗的强碱的体 积差; V (Ep3- EP2)为第三个和第二个等当点所消耗的强碱-乙醇溶液的体积 差; m为测试所称取的铝蚀刻液混酸的质量; M为各酸的摩尔质量;
步骤 10、 重复两次步骤 9, 并计算三次铝蚀刻液混酸溶液中硝酸、 磷 酸和醋酸的浓度的平均值, 以确定铝蚀刻液混酸溶液中硝酸、 碑酸和醋酸 的实际浓度;
其中, 所述强碱为氢氧化钾, 其分析纯浓度大于或等于 85%;
其中, 所述一元醇为曱醇或乙醇;
其中, 所述二元醇为乙二醇、 1,2-丙二醇、 或 1,4-丁二醇;
其中, 所述第一溶剂与第二溶剂之间的体积配比为 3: 1~3:5;
其中, 所述第一溶剂与第二溶剂的体积之和的数值是所述铝蚀刻液混 酸样品质量的数值的 200 400倍; 其中, 所述步骤 1中, 强碱 -乙醇溶液的浓度为 lmol/L;
其中, 所述步骤 2中, 强碱-乙醇溶液静置沉降的时间为 30天; 其中, 所述步骤 4中, 邻苯二曱酸氢钾的烘烤时间为 12小时。
PCT/CN2012/080481 2012-08-10 2012-08-23 铝蚀刻液混酸浓度的电位滴定方法 WO2014023045A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/699,638 US8945934B2 (en) 2012-08-10 2012-08-23 Potentiometric titration method for measuring concentration of acid mixture of aluminum etchant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210285189.4 2012-08-10
CN201210285189.4A CN102778532B (zh) 2012-08-10 2012-08-10 铝蚀刻液混酸浓度的电位滴定方法

Publications (1)

Publication Number Publication Date
WO2014023045A1 true WO2014023045A1 (zh) 2014-02-13

Family

ID=47123507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080481 WO2014023045A1 (zh) 2012-08-10 2012-08-23 铝蚀刻液混酸浓度的电位滴定方法

Country Status (2)

Country Link
CN (1) CN102778532B (zh)
WO (1) WO2014023045A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759073A (zh) * 2021-09-26 2021-12-07 山西沁新能源集团股份有限公司 一种混合酸的废液或回收液中多组分的分析检测方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604856B (zh) * 2013-11-15 2015-11-25 深圳市华星光电技术有限公司 一种混酸溶液的电位滴定方法
CN103868866B (zh) * 2014-03-12 2016-03-23 深圳市华星光电技术有限公司 蚀刻液浓度测量装置及方法
CN107132263A (zh) * 2017-06-30 2017-09-05 深圳市华星光电技术有限公司 铝蚀刻液中铝离子含量的测试方法
CN107589216A (zh) * 2017-08-25 2018-01-16 武汉华星光电半导体显示技术有限公司 刻蚀液浓度的监测系统及其滴定装置、监测方法
CN109738577A (zh) * 2019-01-10 2019-05-10 惠科股份有限公司 一种检测铝蚀刻液中混酸含量的方法
CN109406433A (zh) * 2019-01-10 2019-03-01 惠科股份有限公司 一种检测铝蚀刻液中硝酸含量的方法
CN111751491B (zh) * 2020-07-24 2022-02-25 苏州市晶协高新电子材料有限公司 一种硅蚀刻液混酸浓度的分析方法
CN112108023A (zh) * 2020-08-03 2020-12-22 中国原子能科学研究院 一种电位滴定用碱液的配制装置及方法
CN113358813A (zh) * 2021-06-09 2021-09-07 合肥中聚合臣电子材料有限公司 盐酸和三氯化铁系ito蚀刻液组成的检测方法
CN113485494B (zh) * 2021-07-01 2022-04-15 安徽普冈电子材料有限公司 阳极铝箔生产的混酸工艺系统
CN114264769B (zh) * 2021-12-23 2024-02-20 江阴江化微电子材料股份有限公司 一种电子级混酸体系的组分浓度检测方法
CN115343410B (zh) * 2022-08-10 2024-06-25 易安爱富(武汉)科技有限公司 一种含高氯酸的混酸蚀刻液中酸浓度定量的测定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012026A1 (fr) * 1997-08-28 1999-03-11 Nippon Kasei Chemical Company Limited Procede d'analyse quantitative, analyseur quantitatif, procede de controle d'attaque pour fluide acide mixte en processus d'attaque, et production dudit fluide
CN1379288A (zh) * 2001-04-03 2002-11-13 三菱化学株式会社 蚀刻方法以及蚀刻液的定量分析方法
KR100816657B1 (ko) * 2006-11-24 2008-03-26 테크노세미켐 주식회사 혼산액의 정량 분석 방법
JP2012058032A (ja) * 2010-09-07 2012-03-22 Nippon Kasei Chem Co Ltd 硝酸含有混酸液中の硝酸分析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100368800C (zh) * 2004-11-29 2008-02-13 华南师范大学 锂离子电池电解液中氢氟酸的定量分析方法
CN102087243A (zh) * 2009-12-07 2011-06-08 立邦涂料(中国)有限公司 利用电位滴定法测定深色树脂的酸值的方法
CN102023197A (zh) * 2010-11-09 2011-04-20 广西大学 小分子羧基酸和氨基酸的连续电位滴定分析方法
CN102534621B (zh) * 2012-02-21 2013-11-13 上海正帆科技有限公司 一种酸性蚀刻液的处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012026A1 (fr) * 1997-08-28 1999-03-11 Nippon Kasei Chemical Company Limited Procede d'analyse quantitative, analyseur quantitatif, procede de controle d'attaque pour fluide acide mixte en processus d'attaque, et production dudit fluide
CN1379288A (zh) * 2001-04-03 2002-11-13 三菱化学株式会社 蚀刻方法以及蚀刻液的定量分析方法
KR100816657B1 (ko) * 2006-11-24 2008-03-26 테크노세미켐 주식회사 혼산액의 정량 분석 방법
JP2012058032A (ja) * 2010-09-07 2012-03-22 Nippon Kasei Chem Co Ltd 硝酸含有混酸液中の硝酸分析方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113759073A (zh) * 2021-09-26 2021-12-07 山西沁新能源集团股份有限公司 一种混合酸的废液或回收液中多组分的分析检测方法

Also Published As

Publication number Publication date
CN102778532A (zh) 2012-11-14
CN102778532B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2014023045A1 (zh) 铝蚀刻液混酸浓度的电位滴定方法
US9164069B2 (en) Potentiometric titration method of a mixed acid solution
US8945934B2 (en) Potentiometric titration method for measuring concentration of acid mixture of aluminum etchant
CN104893728B (zh) 一种用于ITO/Ag/ITO薄膜的低张力的蚀刻液
CN111751491B (zh) 一种硅蚀刻液混酸浓度的分析方法
CN102967686A (zh) 在线测定和控制ito蚀刻液中各酸浓度的方法
CN107132263A (zh) 铝蚀刻液中铝离子含量的测试方法
CN110907509A (zh) 一种电子级混酸中氢氟酸的检测方法
CN106680420A (zh) 一种生石灰有效氧化钙含量的检测方法
US10274458B2 (en) Method for detecting surface coating performance of cathode active material
CN106018384A (zh) 一种矿石中钨钼含量的测定方法
CN109738577A (zh) 一种检测铝蚀刻液中混酸含量的方法
KR100816657B1 (ko) 혼산액의 정량 분석 방법
CN105628683A (zh) 一种测定氧化锡电极材料中杂质含量的方法
CN114264769B (zh) 一种电子级混酸体系的组分浓度检测方法
CN108240984B (zh) 一种用化学法测定双氯磺酰亚胺纯度的方法
JP7056498B2 (ja) アミド硫酸の定量方法
CN108241036A (zh) 一种双草酸硼酸锂纯度及其杂质含量的测定方法
CN114280221A (zh) 一种磷含量的检测方法
CN117607346B (zh) 水质中葡萄糖酸钠的测定方法
CN114839314B (zh) 一种氧化镁含量的测定方法
CN105467061A (zh) 用四苯砷氯盐酸盐重量法测定Ti45Nb钛合金中铌量的方法
CN114324738B (zh) 一种铝蚀刻液中醋酸的检测方法
CN103774148B (zh) 半导体工艺常温铝蚀刻制程
CN104459019A (zh) 一种检测四氯化钛水溶液中游离盐酸含量的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13699638

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882827

Country of ref document: EP

Kind code of ref document: A1