WO2014021385A1 - ペーパー状触媒及びペーパー状触媒配列体並びにペーパー状触媒又はペーパー状触媒配列体を備えた固体酸化物形燃料電池 - Google Patents

ペーパー状触媒及びペーパー状触媒配列体並びにペーパー状触媒又はペーパー状触媒配列体を備えた固体酸化物形燃料電池 Download PDF

Info

Publication number
WO2014021385A1
WO2014021385A1 PCT/JP2013/070767 JP2013070767W WO2014021385A1 WO 2014021385 A1 WO2014021385 A1 WO 2014021385A1 JP 2013070767 W JP2013070767 W JP 2013070767W WO 2014021385 A1 WO2014021385 A1 WO 2014021385A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
catalyst
reforming
porous carrier
array
Prior art date
Application number
PCT/JP2013/070767
Other languages
English (en)
French (fr)
Inventor
祐介 白鳥
ワントウエン トラン
卓也 北岡
一成 佐々木
鉄平 小倉
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to US14/418,586 priority Critical patent/US20150263366A1/en
Priority to JP2014528197A priority patent/JP6041162B2/ja
Publication of WO2014021385A1 publication Critical patent/WO2014021385A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0637Direct internal reforming at the anode of the fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a paper-like catalyst for hydrocarbon reforming, a paper-like catalyst array, and an internal reforming solid oxide fuel cell using hydrocarbon as a fuel gas.
  • SOFC solid oxide fuel cells
  • anode fuel electrode
  • a cathode air electrode
  • the SOFC can use not only hydrogen but also a gas obtained by reforming a gas containing hydrocarbons such as city gas, propane gas, biogas, and coal gasification gas as a fuel gas.
  • hydrocarbons such as city gas, propane gas, biogas, and coal gasification gas
  • high-grade hydrocarbons such as low-grade biogas (mixed gas of CH 4 and CO 2 ) and biodiesel fuel (BDF, C 18 H 34.8 O 2 ) generated during methane fermentation treatment of food waste and livestock waste
  • a gas containing is expected as a fuel gas candidate for a fuel cell.
  • SOFC uses a porous sintered body made of the same material as the hydrocarbon reforming catalyst for the anode and is operated at a high temperature at which the reforming reaction occurs, in principle, it is based on direct supply of hydrocarbon fuel. Internal reforming operation is possible. However, when a hydrocarbon fuel mixed with water vapor or carbon dioxide is supplied directly to the anode side, a steam reforming reaction or a dry reforming reaction, which is a strong endothermic reaction, occurs in the anode. Since there is no degree of freedom in the structure of the bonded body, there is a problem that the cell is destroyed within a short time due to thermal shock.
  • Patent Document 1 reports an internal reforming SOFC using city gas as fuel gas.
  • the hydrocarbon fuel is reformed into hydrogen and carbon monoxide by the reforming catalyst arranged in the preceding stage of the anode in the SOFC, and the reformed hydrogen-rich reformed gas is used as the succeeding anode. Can be supplied.
  • the city gas contains hydrocarbons having 2 or more carbon atoms that easily generate pyrolytic carbon in addition to the main component methane, and the carbon generated by the thermal decomposition of the hydrocarbon is liable to cause clogging of the anode. Poor reliability during long-term operation.
  • a reforming reaction apparatus having a hydrocarbon reforming catalyst is provided in the front stage of the SOFC, and the reformed gas is supplied to the SOFC in the rear stage.
  • Systems that are configured to generate electricity are commonly used.
  • a reforming reaction apparatus for hydrocarbon gas a granular reforming catalyst carrying a catalyst is filled in the reforming reaction apparatus, and the catalyst is heated and activated in a state where the hydrocarbon is activated.
  • the hydrocarbon fuel is reformed into a fuel gas containing hydrogen, carbon monoxide, and carbon dioxide.
  • a reforming catalyst used in such a reforming reaction apparatus a noble metal supported catalyst such as Ru or Rh having a low carbon deposition activity is used in order to suppress carbon deposition generated as a side reaction (patent document). 1 paragraph 0037).
  • Paper-like catalysts which are paper-shaped catalyst structures
  • Paper-like catalyst is flexible and superior in molding processability compared with conventional granular reforming catalyst, and the fiber network laminated structure unique to paper provides a suitable catalytic reaction field, and the catalytic reaction is highly efficient. It exhibits excellent practical performance such as suppression of side reactions, stabilization of thermal environment, and improvement of catalyst durability.
  • Patent Document 2 discloses a paper catalyst for alcohol reforming
  • Patent Document 3 discloses a paper catalyst for methane reforming.
  • the construction of the above-mentioned known paper-like catalyst does not function well even when applied to reforming biodiesel containing CO 2 or biodiesel containing higher hydrocarbons due to deactivation due to carbon deposition. Further, the reforming catalyst activity for hydrocarbons is not sufficient, and it has not been applicable to fuel gases such as biogas and biodiesel.
  • the present invention provides the following.
  • a paper-like porous carrier formed by molding inorganic fibers into a paper shape, and a metal catalyst having a reforming activity for hydrocarbons dispersed and supported on the surface of the paper-like porous carrier,
  • ⁇ 3> The paper catalyst according to ⁇ 1> or ⁇ 2>, wherein the ratio of the ion conductive oxide fiber to the whole inorganic fiber constituting the paper porous carrier is 10% by weight or more.
  • ⁇ 4> The paper catalyst according to any one of ⁇ 1> to ⁇ 3>, wherein the ion conductive oxide fiber includes a stabilized zirconia fiber.
  • ⁇ 5> The paper-like catalyst according to any one of ⁇ 1> to ⁇ 4>, wherein the paper-like porous carrier includes alumina fibers or alumina-silica composite oxide fibers.
  • ⁇ 6> The paper-like catalyst according to ⁇ 1>, wherein the inorganic fibers constituting the paper-like porous carrier are substantially composed of ion-conductive oxide fibers.
  • ⁇ 7> The paper-like catalyst according to ⁇ 6>, wherein the ion conductive oxide fiber is a stabilized zirconia fiber.
  • ⁇ 8> The paper-like porous carrier, wherein the inorganic fibers, formed by formed by sintering wearing a binder comprising a CeO 2 ⁇ 1> according to any one of ⁇ 7> paper-like catalyst.
  • ⁇ 9> The paper-like catalyst according to any one of ⁇ 1> to ⁇ 8>, wherein the porosity of the paper-like porous carrier is 75% by volume or more and 95% by volume or less.
  • the metal catalyst is a metal catalyst containing Ni and Mg.
  • ⁇ 12> The paper-like catalyst array according to ⁇ 11>, wherein the paper-like catalyst array is a planar array.
  • a mixed gas of a raw material gas containing hydrocarbons and water vapor or carbon dioxide is supplied from the paper-like catalyst side having a low reforming ability for hydrocarbons in the paper-like catalyst array according to ⁇ 11> or ⁇ 12>.
  • the hydrocarbon reforming method according to ⁇ 13>, wherein the raw material gas containing hydrocarbon is biogas or biodiesel.
  • a paper-like material according to any one of ⁇ 1> to ⁇ 10> comprising a solid electrolyte, an anode disposed on one surface of the solid electrolyte, and a cathode disposed on the other surface of the solid electrolyte.
  • solid electrolyte is composed of an ion conductive oxide of the same type as the ion conductive oxide fiber constituting the paper-like porous carrier in the paper-like catalyst or paper-like catalyst array.
  • the present invention has excellent hydrocarbon reforming activity, has high durability against thermal stress fracture, is easily molded and processed into a predetermined size and shape, and has a high degree of freedom in catalyst arrangement.
  • a high paper-like catalyst is provided.
  • a paper-like catalyst array in which a plurality of paper-like catalysts are arranged is less susceptible to destruction of the catalyst structure and adjacent materials due to thermal shock, so that hydrocarbon reforming can be performed more stably.
  • the internal reforming solid oxide fuel cell using the paper-like catalyst or the paper-like catalyst array as a hydrocarbon reforming catalyst is capable of destroying thermal stress even when reforming a raw material gas containing hydrocarbon. In addition, since deterioration due to carbon deposition can be suppressed, power generation can be performed more stably.
  • FIG. 3 is a schematic view of an SOFC in which a paper-like catalyst array is placed in contact with the anode front stage (fuel gas supply: parallel supply system).
  • 2 is an appearance photograph of a paper-like porous carrier A.
  • 2 is an FE-SEM image of a paper-like porous carrier D, (a) is 200 times magnification, and (b) is 1000 times magnification.
  • FIG. 12 is an explanatory diagram of changes over time in the H 2 concentration and C 2 H 4 concentration of the paper-like catalysts 2A to 2C in FIG. It is the result of having observed the paper-like catalyst after a BDF steam reforming test with the probe microscope, (a): Paper-like catalyst 1A, (b): Paper-like catalyst 2A is shown.
  • Reforming reaction apparatus (first embodiment) 10a reforming reaction apparatus 10b fuel cell system 11 reforming reaction apparatus (second embodiment) 12 Fuel Cell System (Third Embodiment) 20 reforming reaction section 20a reforming section 20b vaporization section (heating section) 20c Fuel cell part 21 Reaction tube 21a Inlet 21b Outlet 22 Electric furnace (upper stage) 23 Electric furnace (lower) 24 Fixator 27a Anode-side inlet 27b Anode-side outlet 28a Cathode-side inlet 28b Cathode-side outlet 30 Gas supply part 30A Hydrocarbon supply part 30B Water supply part 30C Inert gas supply part 30D Carbon dioxide supply part 30E Air supply Part 30a-30e Flow control means 40 Gas chromatograph 41 Cold trap 60 Electrochemical measuring device P, P1-P9 Paper-like catalyst P 'Paper-like catalyst array (stacked type) P '' Paper-like catalyst array (planar array type) A Anode (fuel electrode) C cathode (air electrode) E Solid electrolyte F Solid oxide fuel cell (
  • the present invention includes a paper-like porous carrier formed by molding inorganic fibers into a paper shape, and a metal catalyst having a reforming activity for hydrocarbons dispersed and supported on the surface of the paper-like porous carrier,
  • the present invention relates to a paper-like catalyst (hereinafter referred to as “paper-like catalyst of the present invention”) in which at least a part of inorganic fibers constituting the porous carrier is an ion conductive oxide fiber.
  • FIG. 1A shows a conceptual diagram of the paper catalyst of the present invention.
  • the paper-like catalyst of the present invention is a metal catalyst (hereinafter referred to as “reforming catalyst”) having inorganic paper formed into a paper shape to constitute a paper-like porous carrier and having a hydrocarbon-reforming activity on its surface.
  • reforming catalyst a metal catalyst having inorganic paper formed into a paper shape to constitute a paper-like porous carrier and having a hydrocarbon-reforming activity on its surface.
  • the paper-like catalyst of the present invention a paper-like porous carrier having an inorganic fiber skeleton produced by a papermaking technique capable of micro spatial control is used as the carrier, so that the voids in the carrier can be enlarged. Therefore, the paper-like catalyst of the present invention has an excellent resistance to thermal stress destruction accompanying the reforming reaction of hydrocarbon fuel. Furthermore, the ion conductive oxide fiber contained in the paper-like porous carrier functions as a co-catalyst, and enhances the reforming catalytic activity of the metal catalyst having reforming activity for hydrocarbons, and suppresses carbon deposition. it can. Therefore, even if carbon is precipitated as a side reaction of the reforming reaction of the hydrocarbon fuel, it is possible to avoid completely closing the gap.
  • Paper-like porous carrier has a role of supporting a metal catalyst having a reforming activity on hydrocarbons.
  • the paper-like porous carrier is formed by molding inorganic fibers into a paper shape (non-woven fabric) and joined so that the inorganic fibers are entangled with each other, and the gap formed by the gaps between the inorganic fibers expresses at least air permeability. It communicates to the extent you want.
  • the porosity of the paper-like porous carrier is determined within a range in which the mechanical strength is maintained. If the porosity of the paper-like porous carrier is too small, the flow of fuel gas is suppressed, and the porosity becomes easy to block. If it is too large, the mechanical strength is insufficient and it is easy to break.
  • the porosity of the paper-like porous carrier is preferably 75% by volume or more and 95% by volume or less. The porosity of the paper-like porous carrier can be measured by a mercury intrusion method.
  • a pressure is applied to allow mercury to enter the pores of the powder sample, a mercury intrusion curve representing the relationship between the pressure applied to the mercury and the amount of mercury intrusion is obtained, and based on the mercury intrusion curve. , Pore distribution curve, pore volume, specific surface area and the like.
  • the measurement by a mercury intrusion method can be performed with a mercury porosimeter.
  • the pore volume determined from the mercury intrusion method is preferably 1.5 to 3 cm 3 / g, the specific surface area is preferably 3 to 10 m 2 / g, The mode diameter is preferably 10 to 30 ⁇ m.
  • the paper-like porous carrier is a method according to the wet papermaking method disclosed in Japanese Patent Application Laid-Open No. 2005-89206, On-paper Synthesis of Silver Nanoparticles for Antibacterial Applications (ISBN: 978-953-307-028-5), etc. Can be produced. Briefly, first, a predetermined amount of inorganic fibers, a binder component, and other components (porosity adjusting agent, dispersing agent, etc.) as required are placed in a predetermined amount of solvent and dispersed until uniform. Make a slurry.
  • a predetermined flocculant is sequentially added to the slurry to form a floc, and the floc is collapsed by applying a hydraulic shear force, and at the same time dehydrated and formed using a 200-mesh net, and a homogeneous sheet To obtain a complex.
  • the obtained sheet-like composite is dried and subjected to predetermined heat treatment and pressure treatment to obtain a paper-like (non-woven fabric) porous carrier having a uniform thickness.
  • a specific method will be described later in Examples.
  • the formation of a paper-like porous carrier and the loading of the metal catalyst are simultaneously performed using a slurry to which a precursor of a metal catalyst (reforming catalyst) is added together with inorganic fibers and a binder component. May be.
  • the paper-like porous carrier according to the present invention contains ion conductive oxide fibers as at least a part of the inorganic fibers.
  • the ion conductive oxide one having high thermal stability and chemical stability under the use conditions (for example, 500 ° C. or higher, reducing atmosphere) of the paper catalyst of the present invention can be used.
  • Specific examples include zirconia (ZrO 2 ) -based oxides, ceria (CeO 2 ) -based oxides, ion conductive composite oxides (for example, SrTiO 3 , LaAlO 3 ) and the like.
  • the ion conductive oxide may be a composite oxide or may contain a dopant.
  • stabilized zirconia fiber is preferably included as the ion conductive oxide fiber because it has high chemical stability in a high-temperature reducing atmosphere and has sufficient mechanical strength.
  • yttria stabilized zirconia YSZ
  • ScSZ scandia stabilized zirconia
  • CSZ calcia stabilized zirconia
  • YSZ yttria-stabilized zirconia
  • inorganic fibers other than the ion conductive oxide constituting the paper-like porous carrier thermal stability and chemical stability under the use conditions (for example, 500 ° C. or higher, reducing atmosphere) of the paper-like catalyst of the present invention.
  • a fiber made of an inorganic material having high properties can be used.
  • inorganic fibers other than ion conductive oxides include fibers such as metal oxides (non-ion conductive oxides), metal carbides, and metal nitrides, and these may be used in combination at any ratio.
  • metal oxides that are non-ion conductive oxides used as inorganic fibers include alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), magnesium oxide (MgO), and barium titanate (BaTiO 3). ) And the like. Further, the metal oxide may be a complex oxide or may contain a dopant. Examples of the metal carbide include silicon carbide (SiC), molybdenum carbide (Mo 2 C), zirconium carbide (ZrC), titanium carbide (TiC), and the like.
  • metal nitride examples include silicon nitride (Si 3 N 4 ), zirconium nitride (ZrN), titanium nitride (TiN), niobium nitride (NbN), and the like.
  • the ion conductive oxide fiber contained as a part of the paper-like porous carrier according to the present invention functions as a co-catalyst as described above and has an action of promoting the hydrocarbon reforming reaction of the metal catalyst.
  • the ratio of the ion-conductive oxide fiber to the whole inorganic fiber constituting the paper-like porous carrier is preferably 10% by weight or more, and more preferably 20% by weight or more (including 100% by weight).
  • the paper-like porous carrier has thermal stability and chemical stability in the SOFC operating temperature range in terms of increasing the mechanical strength of the paper-like catalyst. It is preferable to include high inorganic fibers. Suitable inorganic fibers for increasing the mechanical strength include inorganic fibers made of alumina (Al 2 O 3 ) and silica-alumina composite oxide (SiO 2 —Al 2 O 3 ). In particular, inorganic fibers of silica-alumina composite oxide having excellent flexibility are preferred. The weight ratio of SiO 2 to Al 2 O 3 in the silica-alumina composite oxide is arbitrary, but 0.25 to 3 is preferred for SiO 2 / Al 2 O 3 .
  • the paper-like porous carrier when the paper-like catalyst of the present invention is disposed in contact with the anode in the internal reforming SOFC, the paper-like porous carrier has ion conductivity, so that the operation of the solid oxide fuel cell is performed. At temperature, oxygen ions are supplied to the paper-like catalyst, and the reforming reaction of the hydrocarbon fuel tends to be promoted.
  • the inorganic fibers constituting the paper-like porous carrier are substantially ion-conductive oxide fibers. Since stabilized zirconia, which is a particularly suitable ion conductive oxide, has sufficient mechanical strength, a paper-like porous carrier can also be constituted by only stabilized zirconia fibers.
  • the inorganic fibers constituting the paper-like porous carrier are usually bonded to each other with a binder component.
  • a binder component a conventionally known inorganic binder may be used as long as it has sufficient chemical stability and can bind inorganic fibers with sufficient mechanical strength under the use conditions of the paper-like catalyst of the present invention.
  • a binder containing Al 2 O 3, SiO 2, ZrO 2, oxides such as CeO 2.
  • CeO 2 not only can bind inorganic fibers with sufficient mechanical strength as a binder, but also has a particularly strong action as a co-catalyst for a hydrocarbon reforming catalyst. Hydrocarbon reforming activity is improved, and generation of precipitated carbon can be suppressed, which is preferable.
  • the length and thickness of the inorganic fibers (ion-conductive oxide fibers and other inorganic fibers) constituting the paper-like porous carrier may be within the range that can form the paper-like porous carrier, and the paper-like shape of the present invention. It is determined appropriately in consideration of the use of the catalyst. Usually, the total length is 30 ⁇ m to 6 mm, preferably 50 ⁇ m to 3 mm, and the diameter is 2 ⁇ m to 20 ⁇ m. When two or more types of inorganic fibers are used, those having different thicknesses and lengths may be used. In addition, the length and thickness of inorganic fiber can be confirmed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the size and thickness of the paper-like porous carrier are appropriately determined in consideration of the use of the paper-like catalyst of the present invention.
  • the metal catalyst is not particularly limited as long as it has a reforming activity on hydrocarbons.
  • the operating temperature of SOFC 600 ° C.
  • Ni, Co, Fe, Ru, Rh, Pt, Pd, and alloys thereof are mentioned in terms of having both heat resistance in the above) and catalytic activity.
  • These metal species are appropriately selected according to the use of the paper-like catalyst of the present invention, the composition of the raw material gas, the reaction conditions, and the like.
  • noble metals such as Pt have sufficient reforming activity and are difficult to generate pyrolytic carbon, so that carbon deposition is likely to occur, for example, low grade biogas (mixture of CH 4 and CO 2 Gas) and biodiesel fuel (BDF), etc., can be suitably used when used for reforming raw material gas containing higher hydrocarbons.
  • a metal catalyst is usually produced by reducing a precursor compound (for example, an oxide), but if it has a reforming activity on hydrocarbons, it is not completely reduced to a metal and a part of it is a precursor. It may be in the state of a compound.
  • Ni is excellent in reforming catalytic properties, but there is a problem that pyrolytic carbon is likely to be generated.
  • a raw material gas containing higher hydrocarbons such as BDF carbon deposition may not be sufficiently suppressed.
  • the metal catalyst containing Ni and Mg is superior in reforming catalytic properties and suppression of carbon deposition, and is lower in cost than noble metals, and therefore includes higher hydrocarbons such as BDF, which are likely to cause carbon deposition. Suitable for reforming raw material gas.
  • the ratio of Ni and Mg (Ni / Mg) in the metal catalyst containing Ni and Mg is usually 0.1 to 4 (atomic ratio), preferably 0.67 to 1.5 (atomic ratio). . This ratio can be measured using EDX.
  • the metal catalyst containing Ni and Mg can be obtained, for example, by reducing a composite oxide (NiMgO) obtained by drying and heat-treating an aqueous solution containing each precursor (nitrate or the like).
  • the average particle size of the metal catalyst depends on the production method, the average particle size is usually in the range of 2 nm to 2 ⁇ m, and since the surface property is increased and the reforming reaction can be promoted, the average particle size is preferably 20 nm or less. It is.
  • the average particle size of the metal catalyst was determined by arbitrarily extracting 100 particles each with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), measuring the particle size (diameter) of each 100, It is a value calculated as an average value of the individual particle diameters.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the metal catalyst is 50 nm or less under the SOFC operating conditions (for example, 800 ° C., reducing atmosphere). From the balance with the catalytic activity, the thickness is preferably 100 nm to 1 ⁇ m.
  • the amount of the metal catalyst supported is appropriately selected according to the type of the metal catalyst, the use of the paper catalyst, the composition of the raw material gas, and the like.
  • the supported amount of the metal catalyst is usually in the range of 0.1 to 25% by weight when the entire paper-like catalyst is 100% by weight.
  • the supported amount of the metal catalyst is 0.5 to 20% by weight based on the weight in terms of Ni because of the balance between catalytic activity and dispersibility. It is preferable.
  • the method for producing the paper-like catalyst of the present invention that is, the method for dispersing and supporting the metal catalyst on the surface of the paper-like porous carrier is not particularly limited, and for example, the paper-like porous in the solution containing the metal catalyst precursor There is a method in which after impregnating the carrier, a particulate metal catalyst is formed on the surface of the paper-like porous carrier by drying, firing, reduction treatment or the like. Further, in the method for producing a paper-like porous carrier by the wet paper-making method described above, the paper-like porous carrier is made by using a slurry to which a metal catalyst precursor is added together with inorganic fibers and a binder component. The metal catalyst may be supported on the porous carrier at the same time.
  • a paper-like catalyst containing a metal catalyst dispersed more uniformly can be obtained more easily.
  • the precursor of a metal catalyst should just be converted into a particulate metal catalyst by methods, such as heat processing and a reduction process, Nitrate, carbonate, sulfate, acetate, halide of each metal seed
  • the paper-like catalyst of the present invention is basically composed of a paper-like porous carrier and a metal catalyst supported thereon, but may contain other components as long as the object of the present invention is not impaired.
  • a co-catalyst component for increasing the catalytic activity, a binder for joining the paper-like catalyst to other members, and the like can be mentioned.
  • barium titanate (BaTiO 3 ) has a high effect of suppressing carbon deposition and is a suitable example as another component.
  • the paper-like catalyst of the present invention can be suitably used as a reforming catalyst for a conventional reforming catalyst device or a reforming catalyst for an internal reforming solid oxide fuel cell, instead of a granular catalyst.
  • the paper-like catalyst of the present invention may be used in a single layer depending on the purpose, or may be used as a paper-like catalyst array by arranging (stacking) a predetermined number of sheets.
  • a paper-like catalyst array particularly suitable for suppressing thermal stress destruction and an internal reformer equipped with the paper-like catalyst of the present invention are provided.
  • a solid oxide fuel cell of the quality type will be described.
  • the paper-like catalyst array of the present invention is a paper-like catalyst array in which a plurality of paper-shaped catalysts having the above-described configuration of the present invention are arranged, and the reforming ability is reduced from the paper-like catalyst having low reforming ability for hydrocarbons. It is characterized by being sequentially arranged so as to be a high paper-like catalyst.
  • the reforming reaction in the fuel flow direction can occur uniformly in the order of the paper-like catalyst having a low reforming ability with respect to the hydrocarbon and the paper-like catalyst having a high reforming ability.
  • the temperature difference inside the paper-like catalyst array due to the reforming reaction (endothermic reaction) is reduced, and the temperature distribution can be made uniform.
  • the paper-like catalyst array and the paper constituting the array The thermal stress failure of the catalyst and the adjacent material is less likely to occur.
  • the paper-like catalyst array is a stacked type in which a plurality of paper-like catalysts are stacked and arranged (see FIG. 1B (a), sometimes referred to as a paper-like catalyst stack). Any of the planar arrangement types arranged in the direction) may be used.
  • a paper-like catalyst may be arrayed on a support (see FIG. 1B (b)).
  • the SOFC itself may be used as a support.
  • the raw material gas is supplied perpendicularly to each surface of the paper-like catalyst of the paper-like catalyst array to be reformed.
  • the raw material gas is supplied in parallel to the respective surfaces of the paper-like catalyst of the paper-like catalyst array. Even in the parallel supply method, the paper-like catalyst having a low reforming ability for hydrocarbons is sequentially arranged so as to become a paper-like catalyst having a high reforming ability.
  • the reforming ability for hydrocarbons can be designed by appropriately selecting characteristics such as the type and loading of the metal catalyst, the type and porosity of the paper-like porous carrier.
  • the hydrocarbon reforming method of the present invention is a hydrocarbon reforming method using the paper-like catalyst array, wherein a mixed gas of a raw material gas containing hydrocarbon and water vapor or carbon dioxide is converted into the paper-like form.
  • the catalyst array is supplied from the side of the paper-like catalyst having a low ability to reform hydrocarbons, and the paper-like catalyst constituting the paper-like catalyst array is sequentially reformed. With such a method, the temperature difference inside the paper-like catalyst array is reduced, and the temperature distribution can be made uniform.
  • the paper-like catalyst array, the paper-like catalyst constituting the array, and the adjacent material Therefore, it is possible to reform hydrocarbons stably for a long period of time.
  • the paper-like catalyst according to the present invention is a hydrocarbon fuel gas (for example, low-grade biogas (mixed gas of CH 4 and CO 2 ), biodiesel fuel (BDF), etc. Even when used for reforming a fuel gas containing higher hydrocarbons), carbon deposition is suppressed and thermal stress failure is unlikely to occur. Therefore, the paper-like catalyst array of the present invention uses biogas or biodiesel as a raw material gas. Even if it is used, the reforming can be carried out continuously in the long term.
  • a hydrocarbon fuel gas for example, low-grade biogas (mixed gas of CH 4 and CO 2 ), biodiesel fuel (BDF), etc.
  • SOFC of the present invention an internal reforming type solid oxide fuel cell (hereinafter referred to as “SOFC of the present invention”), which is a preferred use example of the paper-like catalyst of the present invention, will be described.
  • the SOFC of the present invention comprises a solid electrolyte, an anode disposed on one side of the solid electrolyte, and a cathode disposed on the other side of the solid electrolyte, and the paper-like catalyst of the present invention comprises the anode of the anode. It is arranged in the previous stage.
  • the hydrocarbon fuel gas is reformed into hydrogen and carbon monoxide by the paper-like catalyst of the present invention provided in front of the anode of the internal reforming SOFC.
  • the reformed gas can be supplied to the anode. For this reason, it is possible to suppress the destruction of the anode structure due to the rapid temperature drop accompanying the reforming of hydrocarbons and the clogging of the voids held by the anode due to the precipitated carbon, which are problems when reforming with the anode itself described above. it can.
  • the paper-like catalyst according to the present invention is a hydrocarbon fuel gas (for example, low-grade biogas (mixed gas of CH 4 and CO 2 ), biodiesel fuel (BDF), etc. Even when used for reforming a fuel gas containing higher hydrocarbons), carbon deposition is suppressed. Therefore, the SOFC of the present invention can be continuously used for a long time even when biogas or biodiesel is used as the fuel gas. It can generate electricity.
  • a hydrocarbon fuel gas for example, low-grade biogas (mixed gas of CH 4 and CO 2 ), biodiesel fuel (BDF), etc.
  • the paper-like catalyst or the paper-like catalyst array is disposed in contact with the anode.
  • oxygen ions O 2 ⁇
  • the reforming reaction in the paper-like catalyst is promoted, and carbon deposition is further suppressed.
  • the paper-like catalyst array of the present invention which is sequentially arranged so as to become a paper-like catalyst having a high reforming ability, from a paper-like catalyst having a low reforming ability for hydrocarbons, is used for the anode of the internal reforming SOFC.
  • the reforming reaction in the fuel flow direction can be uniformly generated, the temperature distribution of the paper-like catalyst array can be made uniform, and even when a hydrocarbon-based fuel is used, The thermal stress failure of the anode is difficult to occur.
  • the temperature distribution of the reaction field becomes non-uniform due to reforming, and if a local temperature drop portion is present, carbon deposition is significantly accelerated. More preferably, a catalyst-like array is used.
  • the solid electrolyte is preferably made of an ion conductive oxide of the same type as the ion conductive oxide fiber constituting the paper-like porous carrier.
  • the solid electrolyte by making the solid electrolyte the same type of ion conductive oxide as the ion conductive oxide fiber constituting the paper-like porous carrier, chemical / mechanical matching can be enhanced and deterioration can be suppressed. it can.
  • the “same kind of ion conductive oxide” is not limited as long as the ion conductive oxide as a base is the same.
  • the solid electrolyte may be scandia-stabilized zirconia (ScSZ), and the ion conductive oxide fiber may be yttria-stabilized zirconia (YSZ).
  • ScSZ scandia-stabilized zirconia
  • YSZ yttria-stabilized zirconia
  • FIG. 2A is a conceptual diagram of a reforming reaction apparatus using a paper-like catalyst according to the first embodiment of the present invention.
  • the reforming reaction apparatus 10 according to the present embodiment includes a reforming reaction unit 20 and a gas supply unit 30 that supplies a raw material gas to the reforming reaction unit 20.
  • the reforming reaction unit 20 includes a reaction tube 21 that can place a paper-like catalyst at a predetermined position, and electric furnaces 22 and 23 that heat the reaction tube 21 to a predetermined temperature.
  • the reaction tube 21 includes a reforming unit 20a and a vaporizing unit 20b, and can be controlled to different temperatures by an upper electric furnace 22 and a lower electric furnace 23, respectively.
  • the material of the reaction tube 21 is an alumina tube in this embodiment, but any material that is chemically stable in the temperature range (about 800 ° C.) in which the hydrocarbon reforming reaction is performed may be used.
  • the gas supply unit 30 is a mechanism for supplying a raw material gas, and includes a hydrocarbon supply unit 30A, a water supply unit 30B, and an inert gas supply unit 30C.
  • a predetermined amount of hydrocarbon fuel, water, and inert gas (N 2 ) are supplied from the inlet 21a of the reaction tube 21 to the reaction tube 21 in a state where the supply amount is controlled by appropriate flow rate control means 30a to 30c.
  • the raw material gas After being vaporized in the vaporization unit 20b, the raw material gas is supplied to the reforming unit 20a including the paper-like catalyst P. The supplied raw material gas is reformed by the paper catalyst P and then discharged from the discharge port 21b.
  • palm BDF is used as the hydrocarbon that is the fuel, and thus the flow rate is controlled by a liquid pump.
  • the flow rate may be controlled by a mass flow controller (MFC) or the like.
  • the supplied palm BDF and water become gas in the vaporization section 20b and are reformed by the paper-like catalyst disposed in the upper stage (rear stage) of the reaction tube 21 to generate a hydrogen-rich reformed gas.
  • the paper-like catalyst P is fixed by a fixing device 24.
  • the fixing device 24 is designed so that it can be adjusted according to the thickness of the paper-like catalyst and the number of stacked layers.
  • the paper catalyst is the paper catalyst of the present invention described above.
  • the configuration of the paper-like catalyst is appropriately selected in consideration of the component of the raw material gas to be used and its concentration. In this embodiment, one paper-like catalyst is used, but two or more sheets can be arranged and used.
  • the reformed gas is discharged from the outlet 21b of the reaction tube 21.
  • a gas chromatograph 40 for component analysis is provided to analyze the exhausted gas, and the reformed gas to be generated is analyzed by an automatic gas chromatograph, and the conversion rate of the fuel, each of the reformed gas
  • the concentration of components can be measured. Note that when the component analysis is not performed, the gas chromatograph 40 is unnecessary.
  • the reforming reaction apparatus 10 can be used as a reforming reaction apparatus for various hydrocarbon reforming. Moreover, it can be suitably used as a pre-reformer in a fuel cell system. That is, a fuel cell system (not shown) is provided at the rear stage of the reforming reaction apparatus 10, and hydrogen-rich reformed gas discharged from the reforming reaction apparatus 10 is supplied to the fuel cell system as a fuel gas. It can generate electricity.
  • a fuel cell system (not shown) is provided at the rear stage of the reforming reaction apparatus 10, and hydrogen-rich reformed gas discharged from the reforming reaction apparatus 10 is supplied to the fuel cell system as a fuel gas. It can generate electricity.
  • Various hydrocarbons for example, methane, ethane, propane, city gas, alcohol, etc.
  • carbon dioxide may be used as the reforming gas instead of water vapor.
  • S / C ratio it is also possible to change the S / C ratio.
  • S / C is about 1.0 to 3.0
  • S / C 0. About 5 to 1.5.
  • the reforming conditions such as gas flow rate and temperature are high in conversion rate of the raw material gas in consideration of the kind of hydrocarbons contained in the raw material gas, the S / C ratio, etc. ) May be set as appropriate.
  • the reforming temperature is usually about 500 to 900 ° C.
  • the contact time (W / F) is about 0.001 to 1.5 g-cat h mol ⁇ 1 .
  • the reforming reaction apparatus 10a according to the present embodiment and the SOFC system 10b are installed in series, the reforming reaction apparatus 10a reforms the raw material gas, and the reformed gas is used as fuel. It can also be used as an external reforming SOFC that generates power in the SOFC system 10b as a gas.
  • FIG. 3 is a conceptual diagram of a reforming reaction apparatus using the paper-like catalyst array according to the second embodiment of the present invention.
  • the reforming reaction apparatus 11 according to this embodiment uses a stacked paper-like catalyst array P ′ instead of the paper-like catalyst P in the reforming reaction unit 20.
  • the reforming reaction apparatus 11 has the same configuration as that of the reforming reaction apparatus 10 of the first embodiment described above except for the configuration of the reforming reaction unit 20 and the partial configuration of the gas supply unit 30, and therefore will be described as appropriate. Is omitted.
  • the gas supply unit 30 in the present embodiment has the same configuration as that of the first embodiment except that a carbon dioxide supply unit 30D is used instead of methane and the water supply unit 30B as hydrocarbons in the hydrocarbon supply unit 30A. It is.
  • the paper-like catalyst array P ′ is formed by arranging a plurality of the above-described paper-like catalysts of the present invention.
  • sheets of P5 are arranged.
  • the paper-like catalysts P1 to P5 constituting the paper-like catalyst array P ′ are paper-like catalysts having different reforming ability for hydrocarbons, and are P1, P2, P3, P4, and P5 having the lowest reforming ability for hydrocarbons. In order, the reforming ability for hydrocarbons is increased.
  • the temperature decreases when a raw material gas mixed with water vapor or carbon dioxide is supplied to the paper-like catalyst. Since the decrease in temperature (endothermic amount) depends on the amount of reformed hydrocarbon, in the case of a paper-like catalyst array, the initial concentration of hydrocarbon (before reforming) and steam or carbon dioxide are first In the foremost paper-like catalyst in contact (P1 in FIG. 3), the temperature decreases most. As the process proceeds to the subsequent stage, the hydrocarbon concentration decreases, so the amount of heat absorbed by the reforming reaction also decreases, and the temperature to decrease decreases.
  • the reforming activity of the former paper-like catalyst is too high, a large amount of hydrocarbon is reformed in that part, and the hydrocarbon concentration in the latter stage becomes small, which may hardly contribute to the reforming reaction.
  • a large temperature difference may occur between the front and rear stages of the paper-like catalyst array.
  • the paper-like catalyst array or a member adjacent to the paper-like catalyst array may be destroyed by thermal shock due to temperature unevenness due to the position of the paper-like catalyst in the paper-like catalyst array.
  • a paper-like catalyst having a low reforming ability for hydrocarbons is arranged to suppress an endothermic reaction, unreacted hydrocarbons may remain in the reformed gas.
  • the paper-like catalyst P1 having a low reforming ability for hydrocarbons is arranged in the order of the paper-like catalysts P2, P3, P4, and P5 having a higher reforming ability. Therefore, the reforming reaction in the fuel flow direction can be generated uniformly. As a result, the temperature difference between the paper-like catalysts P1 to P5 due to the reforming reaction (endothermic reaction) is reduced, the temperature distribution inside the paper-like catalyst array P ′ can be equalized, and the paper-like catalyst array P By applying ', it becomes a reforming reaction zone where thermal stress failure of itself and adjacent materials is difficult to occur.
  • the reforming ability for hydrocarbons can be designed by appropriately selecting characteristics such as the type and loading of the metal catalyst, the type and porosity of the paper-like porous carrier. Since the reforming ability for hydrocarbons is particularly dependent on the type and loading of the metal catalyst, the reforming ability of the paper-like catalyst used for hydrocarbons is usually controlled by the type and loading of the metal catalyst.
  • all of P1, P2, P3, P4, and P5 use paper-like catalysts having different reforming capabilities.
  • the vertical supply method is used to supply the raw material gas vertically to each surface of the paper-like catalyst of the paper-like catalyst array.
  • the present invention is not limited to this, and the paper of the paper-like catalyst array is used.
  • a parallel supply method may be used in which the raw material gas is supplied in parallel to each surface of the catalyst. Even in the parallel supply method, the paper-like catalyst having a low reforming ability for hydrocarbons is sequentially arranged so as to become a paper-like catalyst having a high reforming ability. Specific examples of using the paper-like catalyst array in the parallel supply system will be described in the examples described later.
  • the ratio of CH 4 / CO 2 may be changed.
  • CH 4 or CO 2 is added to the biogas as necessary, and the CH 4 / CO 2 in the source gas is added.
  • the ratio may be changed, and other hydrocarbon fuels may be added as long as carbon deposition does not occur.
  • Actual biogas may be used as raw material gas, various hydrocarbons (for example, methane, ethane, propane, city gas, alcohol, biodiesel, etc.) instead of methane, and carbon dioxide as reforming gas. Instead, steam may be used.
  • various hydrocarbons for example, methane, ethane, propane, city gas, alcohol, biodiesel, etc.
  • steam may be used.
  • the raw material hydrocarbon is methane, ethane, propane, city gas
  • S / C about 1.0 to 3.0
  • the raw material hydrocarbon is biodiesel
  • S / C 2.0.
  • S / C is about 0.5 to 1.5.
  • the reforming conditions such as gas flow rate and temperature are high in conversion rate of the raw material gas in consideration of the kind of hydrocarbons contained in the raw material gas, the S / C ratio, etc. ) May be set as appropriate.
  • the reforming temperature is usually about 500 to 900 ° C.
  • the contact time (W / F) is about 0.001 to 1.5 g-cat h mol ⁇ 1 .
  • FIG. 4A is a conceptual diagram of an internal reforming SOFC system according to a third embodiment of the present invention.
  • the fuel cell system 12 according to this embodiment includes a fuel cell unit 20c including a solid oxide fuel cell F instead of the reforming unit 20a in the first and second embodiments.
  • the structure of the reaction tube 21 and the gas supply part 30 is changed in connection with this.
  • the solid oxide fuel cell F of this embodiment includes a solid electrolyte E, an anode A disposed on one surface of the solid electrolyte E, and a solid electrolyte.
  • the paper-like catalyst P of the present invention described above is disposed in front of the anode.
  • the solid oxide fuel cell F according to the present embodiment is obtained by diverting a conventionally known solid oxide fuel cell as it is.
  • the components will be briefly described.
  • the solid electrolyte E is a gas non-permeable dense membrane made of an oxygen ion conductive oxide.
  • a known oxygen ion conductive oxide can be used as an electrolyte of a solid oxide fuel cell.
  • YSZ, ScSZ, etc. stabilized zirconia (YSZ, ScSZ, etc.), ceria-based oxide (SDC, GDC, etc.)
  • SDC, GDC, etc. ceria-based oxide
  • the fuel cell operating conditions high temperature (about 800 ° C.) This is preferable because the problem of contamination in a reducing atmosphere is avoided.
  • the anode A is made of a so-called cermet obtained by mixing and baking a metal powder having hydrogen oxidation activity and an oxygen ion conductive oxide powder.
  • the metal having hydrogen oxidation activity include Ni and its alloys.
  • the oxygen ion conductive oxide powder the same kind of oxygen ion conductive oxide as the solid electrolyte E is used.
  • the “same kind of ion conductive oxide” is not particularly limited as long as the base ion conductive oxide is the same.
  • the oxygen ion conductive oxide constituting the anode A and the ion conductive oxide fiber constituting the paper porous support constituting the paper catalyst P are the same kind of oxygen ion conductive oxide, a solid Chemical / mechanical matching of the electrolyte E, the anode A, and the paper-like catalyst P is enhanced, and deterioration can be suppressed.
  • a conductive metal oxide having a perovskite structure can be used, and examples thereof include (La, Sr) MnO 3 and (Sm, Sr) CoO 3 .
  • the thickness of the solid electrolyte E, the anode A, and the cathode C varies depending on the form and purpose of use.
  • the solid electrolyte support type the solid electrolyte E is about 100 to 500 ⁇ m
  • the anode A is about 20 to 100 ⁇ m
  • the cathode C is It is about 20 to 100 ⁇ m.
  • the anode A and the cathode C are connected to the electrochemical measuring device 60 and are designed so that various electrochemical evaluations can be performed. If the power generation is simply performed, the electrochemical measurement device 60 is not necessary and only an external load may be used.
  • the fuel cell unit 20c is an example of a single cell.
  • a fuel cell stack in which a single cell is stacked in a number corresponding to the power generation performance is formed, and other accompanying devices are assembled.
  • the paper-like catalyst P may be disposed in front of the single cell anode to which the hydrocarbon fuel gas before reforming is substantially supplied.
  • palm BDF and water as fuel are supplied into the reaction tube 21 from the inlet 27a on the anode side by the hydrocarbon supply unit 30A and the water supply unit 30B, respectively, and the vaporization unit 20b.
  • the fuel cell unit 20c is supplied.
  • steam reforming of palm BDF is performed by the paper-like catalyst P provided in the front stage of the anode A, and hydrogen-rich reformed gas is supplied to the anode A and used for power generation.
  • the exhaust gas is discharged from the outlet 27b, and after condensing water vapor by the cold trap 41 and removing moisture, the exhaust gas is analyzed by the gas chromatograph 40 for component analysis, and the fuel conversion rate and each component in the exhaust gas are analyzed.
  • the concentration of hydrogen carbon monoxide, carbon dioxide, methane, ethylene, etc.
  • the gas chromatograph 40 is unnecessary.
  • the paper-like catalyst P according to the present invention has a very high degree of freedom in the arrangement and lamination of the catalyst as compared with the powdery and granular reforming catalysts used conventionally. Therefore, an optimum paper-like catalyst can be used in combination in consideration of various conditions such as the type of fuel gas to be used.
  • the paper-like catalyst P has a high carbon reforming ability and is difficult to cause carbon deposition, even if biogas or biodiesel is used as a fuel gas, SOFC can be continuously generated for a long time.
  • the paper-like catalyst P is disposed in contact with the anode A.
  • O 2 ⁇ is supplied to the paper-like catalyst P via the anode A, and the reforming reaction in the paper-like catalyst P is promoted.
  • carbon deposition is further suppressed.
  • the paper-like catalyst P and the anode A are not necessarily in contact with each other, and it is preferable that the paper-like catalyst P and the anode A are not in contact with each other particularly when the difference in thermal expansion coefficient between the paper-like catalyst P and the anode A is large.
  • one paper-like catalyst P is arranged, but two or more may be arranged. Further, the paper-like catalyst array P ′ shown in the second embodiment may be arranged in front of the anode.
  • FIG. 4B shows a schematic diagram of an SOFC in which a paper-like catalyst array is placed in contact with the anode (fuel gas: parallel supply system).
  • the paper-like catalyst array P ′′ in this embodiment is composed of four paper-like catalysts P6, P7, P8, and P9 having different reforming capacities for hydrocarbons.
  • palm BDF and a mixed gas of water vapor are used as the fuel gas, but this is merely an example for explaining the present invention, and palm BDF is used as the fuel hydrocarbon.
  • various hydrocarbons for example, methane, ethane, propane, city gas, alcohol, etc.
  • carbon dioxide may be used as the reforming gas instead of water vapor, and S / C
  • S / C The ratio may be changed.
  • S / C is about 1.0 to 3.0
  • S / C 0. About 5 to 1.5.
  • CH 4 or CO 2 may be added to the biogas to change the ratio of CH 4 / CO 2 in the fuel gas, or other hydrocarbons within the range where no carbon deposition occurs. Fuel may be added.
  • the reforming conditions such as gas flow rate and temperature are high in conversion rate of the raw material gas in consideration of the kind of hydrocarbons contained in the raw material gas, the S / C ratio, etc. ) May be set as appropriate.
  • the reforming temperature is usually about 500 to 900 ° C.
  • the contact time (W / F) is about 0.001 to 1.5 g-cat h mol ⁇ 1 .
  • Ionic polymer PDADMAC polydiallyldimethylammonium chloride, Aldrich, Ltd.
  • Cationic molecular weight about 3 ⁇ 10 5
  • A-PAM anionic polyacrylamide, Kurita, Ltd.
  • Anionic molecular weight about 4 ⁇ 10 6
  • Preparation of paper-like porous carrier As inorganic fibers, 2 g of YSZ fiber and 3 g of alumina fiber were put into appropriate amounts of distilled water and mixed with a mixer for about 3 minutes. Next, distilled water was added so that the solid content concentration was 0.15 wt / vol%, and while stirring with a stirrer, the cationic polymer PDADMAC was 0.25 to 1 wt% with respect to the total solid content. In addition, the surface of the dispersed inorganic fiber was positively charged.
  • an oxide sol Al 2 O 3 sol
  • an anionic polymer A-PAM is added to a solid content of 0.5 wt%. It was added to become.
  • the inorganic fibers and the like are aggregated into a ball shape at the moment when the anionic polymer is added. Therefore, the drainage efficiency and the yield rate at the time of papermaking (at the time of filtration), which is a subsequent process, are improved.
  • an appropriate amount of commercially available pulp was defibrated, added to the slurry, and stirred for 3 minutes.
  • the pulp ensures the strength of the wet state after paper making, and makes it easy to collect the paper-like porous carrier before firing from the mesh for filtration. Further, the pulp is burned off during the firing of the paper-like porous carrier, and voids (diffusion paths) are generated.
  • the obtained slurry was poured into a commercially available papermaking apparatus (manufactured by Kumagai Riki Kogyo Co., Ltd.), and the suspension mixture was deposited on a metal mesh for filtration (200 mesh) by dehydration. The formed deposit was peeled off from the mesh, pressed at 350 kPa for 3 minutes, and dried at 105 ° C. to obtain a paper-like porous carrier (before firing). The diameter was about 16 cm.
  • a paper-like porous carrier A (binder: Al 2 O 3 ) was obtained by firing the paper-like porous carrier (before firing) in an air atmosphere at 1300 ° C. for 10 hours.
  • FIG. 5 shows a photograph of the appearance of the paper-like porous carrier A.
  • paper-like porous carrier D As an inorganic fiber, alumina fiber is not used, YSZ fiber (7 mol% Y 2 O 3 -93 mol% ZrO 2 ) is 5 g, and instead of Al 2 O 3 sol, ZrO is used. A paper-like porous carrier D was obtained in the same manner as the paper-like porous carrier A, except that 2 sol was used.
  • the paper-like porous carrier according to the present invention is a structure having a sufficient gap, and the inorganic fibers are bound by the binder component. It could be confirmed.
  • FIGS. 6A and 6B show SEM images of the paper-like porous carrier D.
  • FIG. It can be seen that the YSZ fibers are in contact with each other, and the binder component derived from the ZrO 2 sol assists the bonding of the inorganic fibers.
  • the binder component derived from the ZrO 2 sol assists the bonding of the inorganic fibers.
  • a portion where the YSZ fibers were in contact with each other was confirmed.
  • Table 1 shows the results of measuring the porosity and mode diameter of paper-like porous carriers A to C by mercury porosimetry. Measurement conditions: Pressure range: 0.5 to 5000 psia (3.45 KPa to 34.5 MPa) Measurement pore diameter range: about 300 ⁇ m to 37 nm
  • Ni-Mg catalyst-supported paper-like catalyst Paper-like porous carriers A to D were each immersed in a solution containing 1 mol / L of Ni nitrate and Mg nitrate, taken out after 1 hour, Dry for hours. Next, heat treatment was performed at 800 ° C. for 5 hours to obtain paper-like catalysts 2A to 2D in which NiMgO fine particles were dispersed and supported on a paper-like porous carrier. In addition, in the paper-like catalysts 2A to 2D, it was confirmed by XRD evaluation that a solid solution of NiO and MgO was formed.
  • Ni—Mg a metal catalyst containing Ni and Mg
  • Table 2 summarizes the configurations of the paper-like catalysts 1A to 1C and the paper-like catalysts 2A to 2D.
  • FIG. 8A shows the structure of the surface of the paper-like catalyst 1A (after reduction) taken with a scanning probe microscope (Nanocute, manufactured by SII Nanotechnology).
  • FIG. 8B shows the structure of the surface of the paper-like catalyst 2A (after reduction) subjected to the same reduction treatment.
  • the size of the metal catalyst particles of the paper-like catalyst 1A (after reduction) and the paper-like catalyst 2A (after reduction) was smaller in the paper-like catalyst 2A. From this, it was suggested that refinement
  • Biodiesel Fuel (BDF) Steam Reforming Experiment Using the reforming reaction apparatus (catalytic activity evaluation apparatus) of the first embodiment of the present invention having the configuration of FIG. 2A, biodiesel fuel (palm A steam reforming experiment of BDF (C 18 H 34.8 O 2 )) was performed.
  • BDF Biodiesel Fuel
  • Example 1 two sheets of paper-like catalyst 1A ( ⁇ 20 mm) were set in the reforming section in FIG. 2A, and H 2 was supplied, and reduction treatment was performed at 900 ° C. for 1 hour.
  • N 2 gas as an inert gas 50 mL / min is used as a carrier gas
  • BDF 6 ⁇ L / min on a liquid volume basis
  • distilled water 21 ⁇ L / min for liquid chromatography so that S / C is 3.5.
  • the raw material gas gasified by supplying to a vaporizer at 600 ° C. with a pump was supplied to the reforming section at 800 ° C.
  • the generated reformed gas was analyzed by an automatic gas chromatograph, and the conversion of fuel and the concentrations of hydrogen, carbon monoxide, carbon dioxide, methane, and ethylene in the reformed gas were measured.
  • Table 3 summarizes the paper-like catalysts used in the reforming experiments of Examples 1 to 4 and Comparative Examples 1 and 2.
  • the BDF steam reforming reaction is as follows: 1. Steam reforming of BDF, 2. Thermal decomposition of BDF to lower hydrocarbons, 3. Steam reforming of lower hydrocarbons, 4. Aqueous Various reactions such as shift reaction, 5. hydrogenation reaction of precipitated carbon, 6. hydrogenation reaction of CO, 7. gasification of precipitated carbon, 8. budoir reaction occur and proceed.
  • C 2 H 4 by-produced by the reforming reaction of BDF is known as a precursor that induces carbon deposition, and it is required to reduce this as much as possible.
  • FIGS. 9A and 9B show the results of the BDF steam reforming test of Example 1.
  • FIG. 9B From 8 hours after the start of the BDF supply, the amount of CH 4 and C 2 H 4 produced in the reformed gas suddenly increases (see FIG. 9B), and the amount of CH 4 and C 2 H 4 produced Simultaneously with the rapid increase, the conversion rate of BDF decreased (see FIG. 9A).
  • FIG. 10 shows an FE-SEM image of the paper-like catalyst 1A after the 20-hour BDF steam reforming test with respect to the paper-like catalyst 1A. From the result of FIG. 10, it can be seen that carbon is deposited on the paper-like catalyst 1A after the 20-hour test.
  • C 2 H 4 is known as a precursor that induces carbon deposition, and it is considered that carbon deposition was promoted by increasing the concentration of C 2 H 4 .
  • the surface of the YSZ fiber constituting the paper-like catalyst 1A there are a portion where carbon is deposited and a portion where carbon is hardly deposited.
  • EDX analysis revealed that carbon deposition was selectively detected on Al 2 O 3 binders (derived from Al 2 O 3 sol), indicating that the use of Al 2 O 3 sol induces carbon deposition. . It was also confirmed that Ni coarsening was progressing in the region where carbon deposition occurred. From these results, the paper-like catalyst 1A supporting Ni as a metal catalyst and having an Al 2 O 3 binder has a high initial activity with respect to steam reforming of BDF, but the activity decreases due to carbon deposition. It became clear.
  • FIG. 12 summarizes the H 2 concentration and C 2 H 4 concentration of Examples 2 to 4 (paper catalysts 2A to 2C).
  • FIG. 11 (a) all of Examples 2 to 4 have a high BDF conversion rate and a value close to 90%, which is higher than that of Comparative Example 1 (Ru / Al 2 O 3 catalyst). The rate was high.
  • the paper-like catalyst 1A supporting only Ni caused a significant decrease in activity in 8 hours (see FIG. 9A), but in Examples 2 to 4, no significant decrease in activity was observed during the 50-hour test. It was. From these results, it was confirmed that Examples 2 to 4 in which the metal catalyst was Ni—Mg were excellent in BDF steam reforming performance.
  • Example 2 paper-like catalyst 2A
  • Example 3 paper-like catalyst 2B
  • ZrO 2 sol ZrO 2 sol as the inorganic binder
  • H 2 Concentration gradually decreased. This is presumably because the shift reaction was inhibited.
  • Example 4 paper-like catalyst 2C in which CeO 2 sol was applied as an inorganic binder
  • the H 2 concentration was stable at 70% (equilibrium value: 71%) throughout the test. This result indicates that the CeO 2 sol added as a binder functions as a promoter and promotes the BDF steam reforming reaction.
  • both CH 4 and C 2 H 4 are reduced as compared with the case of using the Ru / Al 2 O 3 catalyst.
  • the paper-like catalyst 2C to which CeO 2 sol was applied as an inorganic binder reforming of lower hydrocarbons proceeded well, and no unreacted C 2 H 4 was detected during the test.
  • FIG. 13A shows the result of the paper catalyst 1A
  • FIG. 13B shows the result of the paper catalyst 2A.
  • the metal catalyst particles are coarser than the paper-like catalyst 2A in which the metal catalyst is Ni—Mg.
  • An image considered to be precipitated carbon was also observed.
  • the paper-like catalyst 2A neither metal catalyst particle aggregation nor precipitated carbon contrast was observed after the test. This observation result shows that the aggregation resistance and the carbon deposition resistance are improved by including Mg together with Ni in the metal catalyst.
  • Paper-like catalysts with different Ni loadings were produced by the following method.
  • a paper-like porous carrier E was produced by the same production method as that for the paper-like porous carrier A except that the length was 5 h.
  • the paper-like porous carrier E was immersed in a Ni nitrate solution having an appropriate concentration, taken out after 1 hour, and dried at 105 ° C. for 3 hours. Next, by carrying out heat treatment at 400 ° C. for 5 hours in the atmosphere, the paper-like catalyst 1E (before reduction) in which 0.1 to 25% by weight of NiO fine particles as Ni is dispersed and supported on the paper-like porous carrier E is supported. Obtained.
  • Each of the Ni-supported paper-like catalysts 1E (before reduction) was subjected to reduction treatment in H 2 at 800 ° C. for 1 hour to reduce NiO to Ni, and then 800 ° C., CH 4 : 20 mL / min.
  • FIG. 14 (a) shows the methane conversion rate
  • FIG. 14 (b) shows the hydrogen generation rate.
  • the Ni loading increases, the methane conversion and hydrogen generation rate increase, and the Ni loading is 3% by weight. It became almost constant. Further, when the Ni loading amount exceeds 20% by weight, the aggregated particles increase. Therefore, the preferable Ni loading amount range was determined to be 1% by weight to 20% by weight.
  • FIG. 15 also shows a reference example of a conventional reforming catalyst (Asami K, Lia X, Fujimoto K, Koyama Y, Sakurama A, Kometani N, CO 2 reforming of CH 4 over ceria-supported metal catalysts.
  • the data (reforming temperature: 850 ° C.) using the Ni / CeO 2 powder catalyst disclosed in Catal Today 2003; 84: 27-31.) are also shown.
  • Example 5 paper-like catalyst 1E has an excellent reforming performance for the methane dry reforming reaction than the conventional powder catalyst.
  • the spatial structure with a high degree of freedom created by the inorganic fiber network promotes three-dimensional diffusion of gas, and the contact efficiency between the fuel gas and the supported metal catalyst fine particles is extremely high. This is because it becomes higher.
  • Paper-like catalysts P6 to P9 (1.25 ⁇ 5 cm, thickness: 1.5 mm) constituting the paper-like catalyst array of the examples were prepared as follows.
  • the porous carrier F is supported by Ni or Ni—Mg by the same method as the method for producing the paper-like catalysts 1A and 2A by the impregnation method.
  • Table 5 summarizes the catalyst types, Ni loadings, and Ni / Mg (atomic ratio) of the paper-like catalysts P6 to P9.
  • Alumina-silica fiber (Ibiden, Ibi wool) was used instead of alumina fiber, ZrO 2 sol was used instead of Al 2 O 3 sol as a binder, and the firing conditions were 800 ° C. and 5 h.
  • a paper-like porous carrier F was produced by the same production method as that for the paper-like porous carrier A.
  • the paper-like catalysts P6 to P9 were arranged in a plane in order to obtain a paper-like catalyst array (5 ⁇ 5 cm) of the example in which the catalytic ability was inclined.
  • the reason why Ni—Mg is used for P8 and P9 is to suppress the carbon precipitation that becomes conspicuous as the amount of Ni supported increases.
  • a paper-like catalyst in which Ni is uniformly supported (no inclination) on a paper-like porous carrier F (5 ⁇ 5 cm, thickness: 1.5 mm) at a Ni loading amount of 3.8% by weight (no inclination) 5 ⁇ 5 cm) was used as a comparative example.
  • FIG. 17A and 17B are schematic cross-sectional views of the paper-like catalyst array of the example and the paper-like catalyst of the comparative example arranged in the planar reformer.
  • FIG. 18 shows the temperature distribution in the gas flow direction when the simulated biogas is supplied from the P6 side to the P9 side under the conditions of 800 ° C.
  • FIG. 18 shows the results of the same evaluation using the paper-like catalyst of the comparative example having the same size as the paper-like catalyst array of the example (with inclination).
  • the CH 4 conversion rate was 91% in both the examples and the comparative examples, and the reaction had proceeded to near the conversion rate (97%) calculated in equilibrium.
  • the maximum temperature gradient in the paper-like catalyst of the comparative example was 86 Kcm ⁇ 1
  • the maximum temperature gradient generated in the paper-like catalyst array of the example was reduced to 19 Kcm ⁇ 1 . That is, it was shown that by optimizing the arrangement of the paper-like catalyst in the paper-like catalyst array, it is possible to suppress the occurrence of a temperature gradient in the flat reactor without reducing the conversion rate.
  • FIG. 19 shows the results of a 100-hour methane dry reforming test in the planar reactor of FIG. 16 using the paper-like catalyst array of the example.
  • the reforming has been carried out stably for 100 hours, and during the test, the 240 ⁇ m thick YSZ plate placed adjacent to the reforming reaction field as a fuel / air separator was not destroyed. It was. Further, after the test, the YSZ plate was removed and the paper-like catalyst array was observed, and no carbon deposition occurred (see FIG. 20 (a)).
  • An anode material and a cathode material were applied to a YSZ plate by screen printing at 4 ⁇ 4 cm and fired under predetermined conditions (anode: 1300 ° C., 3 h, cathode: 1200 ° C., 5 h) to obtain an electrolyte-supported SOFC. .
  • a paper-like catalyst array having a structure as shown in FIG. 21A was disposed so as to come into contact with the anode to obtain an internal reforming SOFC of the example.
  • This paper-like catalyst array is the same as the paper-like catalyst array described in (3-4) (1) above.
  • a paper-like catalyst having a configuration as shown in FIG. 21B was arranged so as to contact the anode, and an internal reforming SOFC of the comparative example was obtained.
  • the paper-like catalyst used in the comparative example is the same size as the paper-like catalyst array used in the examples.
  • FIG. 23A shows the results of a power generation test with simulated biogas.
  • Paper-shaped catalyst 3E and paper-shaped catalyst 1G were produced as paper-shaped catalysts for evaluation of simulated BDF power generation.
  • Paper-like catalyst 3E ( ⁇ 20 mm) was prepared in the above (3-3) (1) except that the catalyst was supported by dipping in a solution containing 1.0 mol / L Ni nitrate and 1.0 mol / LMg nitrate. The same manufacturing method as that for the paper-like catalyst 1E was used.
  • the paper-like catalyst 1G ( ⁇ 20 mm) was prepared by using BaTiO 3 powder instead of YSZ fiber and carrying the catalyst by immersing it in a 1.0 mol / L ruthenium chloride solution.
  • the paper-like catalyst 1E was prepared by the same production method. Table 6 summarizes the configurations of the paper-like catalysts 3E and 1G.
  • the paper-like catalyst 1G is set on the first stage (fuel inlet side) and the paper-like catalyst 3E is placed on the second stage (SOFC side), and the SOFC system 10b is set.
  • the anode supported button cell was set. First, H 2 was supplied to the reforming reaction apparatus 10a, and the paper catalyst was reduced at 800 ° C. for 5 hours.
  • FIG. 23B shows the result of the power generation test with the simulated BDF.
  • Simulated BDF 1: 1 mixture water vapor addition amount (S / C) of palmitic acid methyl ester (C 17 H 34 O 2 ) and oleic acid methyl ester (C 19 H 36 O 2 ): 2.0
  • Anode-side flow rate (liquid flow rate): Simulated BDF: 6 ⁇ L / min, Water: 12 ⁇ L / min
  • Cathode side flow rate Air: 150 mL / min Measurement temperature: 800 ° C
  • the paper-like catalyst of the present invention has a high hydrocarbon reforming activity, is resistant to thermal stress destruction, can be easily molded into a predetermined size and shape, and has a high degree of freedom when arranging the catalyst. High performance and downsizing become easy.
  • a paper-like catalyst array in which a plurality of paper-like catalysts are arranged is less susceptible to destruction of the catalyst structure and adjacent materials due to thermal shock, so that hydrocarbon reforming can be performed more stably.
  • the internal reforming solid oxide fuel cell using the paper-like catalyst or paper-like catalyst array of the present invention as a hydrocarbon reforming catalyst can suppress deterioration due to thermal stress breakdown and carbon deposition. It is possible to generate power more stably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 改質触媒活性が高く、炭化水素ガスの改質を効率よく行わせることができ、サーマルショックによる触媒構造の破壊や、触媒空隙の閉塞や破壊が起こりづらいペーパー状触媒及び該ペーパー状触媒を用いた内部改質型固体酸化物形燃料電池を提供する。本発明のペーパー状触媒は、無機繊維をペーパー状に成形してなるペーパー状多孔質担体と、該ペーパー状多孔質担体の表面に分散担持された炭化水素に対する改質活性を有する金属触媒とを含み、前記ペーパー状多孔質担体を構成する無機繊維の少なくとも一部がイオン伝導性酸化物繊維であり、炭化水素の改質活性が高く、熱応力破壊に強く、所定の大きさ・形状に成型が容易で、触媒配列時の自由度が高い。本発明のペーパー状触媒を炭化水素改質触媒として用いた内部改質型固体酸化物形燃料電池は、熱応力破壊および炭素析出による劣化を抑制することができるため、より安定的に発電を行うことができる。

Description

ペーパー状触媒及びペーパー状触媒配列体並びにペーパー状触媒又はペーパー状触媒配列体を備えた固体酸化物形燃料電池
 本発明は、炭化水素改質用のペーパー状触媒及びペーパー状触媒配列体、並びに炭化水素を燃料ガスとして使用する内部改質型の固体酸化物形燃料電池に関する。
 近年、エネルギー変換効率の高い固体酸化物形燃料電池(SOFC)が、次世代のエネルギー供給システムとして注目を集めている。
 SOFCは、電解質膜にイオン伝導性固体電解質を使用し、その電解質膜の一方の面に多孔質焼結体からなるアノード(燃料極)を、他の面にカソ-ド(空気極)を接合して構成される。アノードに燃料である水素、カソードに空気(酸素)をそれぞれ供給すると、以下の電気化学反応によって電気エネルギーを取り出すことができる。
  アノ-ド反応:2H2+2O2- → 2H2O+4e- (反応1)
  カソ-ド反応:O2+4e-→ 2O2-       (反応2)
  全反応   :2H2+O2→2H2
 SOFCは、水素だけでなく、都市ガスやプロパンガス、バイオガス、石炭ガス化ガスなどの炭化水素を含むガスを改質したガスを燃料ガスとして使用することができる。近年では、食品廃棄物および家畜排泄物のメタン発酵処理時に発生する低品位バイオガス(CH4とCO2の混合ガス)や、バイオディーゼル燃料(BDF、C1834.82)等高級炭化水素を含むガスが燃料電池用燃料ガスの候補として期待されている。
 SOFCは、アノードに炭化水素改質触媒と同等の材料からなる多孔質焼結体が使用され、かつ、改質反応が起こる高温で運転されるため、原理的に炭化水素系燃料の直接供給による内部改質運転が可能である。ところが、水蒸気あるいは二酸化炭素と混合された炭化水素系燃料をアノード側に直接供給すると、強い吸熱反応である水蒸気改質反応やドライリフォーミング反応がアノード内で生じるが、アノードを構成する多孔質焼結体は構造に自由度がないため、熱衝撃(サーマルショック)により短時間の内にセルの破壊に至るという問題がある。
 このような問題に対し、燃料電池内部のアノードの前段に改質触媒を配置した、いわゆる内部改質型SOFCが検討されている。例えば、特許文献1には、都市ガスを燃料ガスとした内部改質型SOFCが報告されている。このような構成とすると、SOFC内のアノードの前段に配置された改質触媒によって、炭化水素燃料が水素、一酸化炭素に改質され、改質後の水素リッチ改質ガスを後段のアノードに供給することができる。しかしながら、都市ガスには主成分のメタン以外にも熱分解炭素を生成しやすい炭素数2以上の炭化水素が含まれ、該炭化水素の熱分解によって生成する炭素によって、アノードの閉塞が起こりやすく、長期的運転の際の信頼性に乏しい。
 そのため、炭化水素を含むガスを燃料として使用する燃料電池システムとして、SOFCの前段に、炭化水素改質触媒を有する改質反応装置を設けて、後段のSOFCに改質後のガスを供給して発電させるように構成されたシステムが一般的に用いられている。
 このような炭化水素ガスの改質反応装置は、触媒が担持された粒状の改質触媒を改質反応装置の内部に充填し、該触媒を加熱して活性化させた状態で、炭化水素を含む燃料ガスと水蒸気を通過させることで、炭化水素燃料を水素、一酸化炭素、二酸化炭素を含む燃料ガスに改質する。このような改質反応装置に用いられる改質用触媒としては、副反応として生成する炭素析出を抑制するため、炭素析出活性の低いRu、Rh等の貴金属担持触媒が使用されている(特許文献1段落0037参照)。
 しかしながら、上記粒状の改質触媒を使用した従来の改質反応装置では、たとえ貴金属触媒を用いたとしても、炭化水素の改質に伴う急激な温度低下に起因するサーマルショックや炭素析出により、粒状の改質触媒の触媒構造が破壊される問題が解決されているわけではない。特にCO2を含むバイオガスや高級炭化水素を含むバイオディーゼル燃料(BDF)等は、熱応力破壊や炭素析出による触媒閉塞の問題が特に顕著であった。
 一方、紙形状の触媒構造体であるペーパー状触媒が注目されている。ペーパー状触媒は、従来の粒状の改質触媒と比較して、フレキシブルで成型加工性に優れており、紙特有の繊維ネットワーク積層構造が、好適な触媒反応場を与え、触媒反応の高効率化、副反応の抑制、熱環境の安定化、触媒耐久性の向上など、優れた実用性能を発揮する。例えば、特許文献2にはアルコール改質用ペーパー状触媒、特許文献3にはメタン改質用ペーパー状触媒が開示されている。
 しかしながら、上記公知のペーパー状触媒の構成では、CO2を含むバイオガスや高級炭化水素を含むバイオディーゼルの改質に適用しても、炭素析出による失活等のためうまく機能しない。また、炭化水素に対する改質触媒活性が十分ではなく、バイオガスやバイオディーゼル等の燃料ガスに適用できるものではなかった。
特開2004-71450号公報 特開2008-307471号公報 特開2011-92825号公報
 このように従来のペーパー状触媒では、CO2を含むバイオガスや、バイオディーゼル等の高級炭化水素を含む燃料ガスを用いた場合、サーマルショックによる触媒構造の破壊や、炭素析出による触媒空隙の閉塞や破壊の問題が依然として解決されていない。
 かかる状況下、本発明の目的は、改質触媒活性が高く、炭化水素系原料ガスの改質を効率よく行わせることができ、サーマルショックによる触媒構造および隣接材料の破壊や、触媒空隙の閉塞や破壊が起こりづらいペーパー状触媒を提供することである。
 また、本発明の他の目的は、前記ペーパー状触媒を複数枚配列した、サーマルショックによる触媒構造および隣接材料の破壊が起こりづらいペーパー状触媒配列体を提供することである。
 また、本発明の他の目的は、前記ペーパー状触媒を備えた内部改質型の固体酸化物形燃料電池を提供することである。
 本発明は、以下を提供する。
 <1> 無機繊維をペーパー状に成形してなるペーパー状多孔質担体と、該ペーパー状多孔質担体の表面に分散担持された炭化水素に対する改質活性を有する金属触媒とを含み、前記ペーパー状多孔質担体を構成する無機繊維の少なくとも一部がイオン伝導性酸化物繊維であるペーパー状触媒。
 <2> 前記ペーパー状多孔質担体において、前記イオン伝導性酸化物繊維の少なくとも一部が互いに接触している<1>記載のペーパー状触媒。
 <3> 前記ペーパー状多孔質担体を構成する無機繊維全体に対する、前記イオン伝導性酸化物繊維の割合が10重量%以上である<1>又は<2>に記載のペーパー状触媒。
 <4> 前記イオン伝導性酸化物繊維が、安定化ジルコニア繊維を含む<1>から<3>のいずれかに記載のペーパー状触媒。
 <5> 前記ペーパー状多孔質担体が、アルミナ繊維又はアルミナ-シリカ複合酸化物繊維を含む<1>から<4>のいずれかに記載のペーパー状触媒。
 <6> 前記ペーパー状多孔質担体を構成する無機繊維が、実質的にイオン伝導性酸化物繊維からなる<1>に記載のペーパー状触媒。
 <7> 前記イオン伝導性酸化物繊維が、安定化ジルコニア繊維である<6>に記載のペーパー状触媒。
 <8> 前記ペーパー状多孔質担体が、前記無機繊維を、CeO2を含むバインダーで結着させて形成されてなる<1>から<7>のいずれかに記載のペーパー状触媒。
 <9> 前記ペーパー状多孔質担体の空隙率が、75体積%以上95体積%以下である<1>から<8>のいずれかに記載のペーパー状触媒。
 <10> 前記金属触媒が、Ni及びMgを含む金属触媒である<1>から<9>のいずれかに記載のペーパー状触媒。
 <11> <1>から<10>のいずれかに記載のペーパー状触媒を複数枚配列したペーパー状触媒配列体であって、炭化水素に対する改質能が低いペーパー状触媒から、改質能が高いペーパー状触媒となるように順次配列していることを特徴とするペーパー状触媒配列体。
 <12> ペーパー状触媒の配列が、平面配列である<11>に記載のペーパー状触媒配列体。
 <13> 炭化水素を含む原料ガスと水蒸気又は二酸化炭素との混合ガスを、<11>又は<12>に記載のペーパー状触媒配列体における炭化水素に対する改質能が低いペーパー状触媒側から供給し、前記ペーパー状触媒配列体を構成するペーパー状触媒によって順次改質する炭化水素の改質方法。
 <14> 前記炭化水素を含む原料ガスが、バイオガス又はバイオディーゼルである<13>に記載の炭化水素の改質方法。
 <15> 固体電解質と、前記固体電解質の一方面に配置されたアノードと、前記固体電解質の他方面に配置されたカソードとを備え、<1>から<10>のいずれかに記載のペーパー状触媒又は<11>又は<12>に記載のペーパー状触媒配列体が、前記アノードの前段に配置されている固体酸化物形燃料電池。
 <16> 前記ペーパー状触媒又はペーパー状触媒配列体が、アノードと接触して配置されてなる<15>に記載の固体酸化物形燃料電池。
 <17> 前記固体電解質が、前記ペーパー状触媒又はペーパー状触媒配列体におけるペーパー状多孔質担体を構成するイオン伝導性酸化物繊維と同種のイオン伝導性酸化物からなる<15>又は<16>に記載の固体酸化物形燃料電池。
 <18> 燃料ガスが、バイオガス又はバイオディーゼルである<15>から<17>のいずれかに記載の固体酸化物形燃料電池。
 本発明によれば、優れた炭化水素の改質活性を有し、かつ、熱応力破壊に対する耐久性が高く、所定の大きさ・形状に成型・加工が容易で、触媒配列の自由度が極めて高いペーパー状触媒が提供される。また、該ペーパー状触媒を複数配列したペーパー状触媒配列体は、サーマルショックによる触媒構造および隣接材料の破壊が起こりづらいため、より安定的に炭化水素の改質を行うことができる。また、該ペーパー状触媒またはペーパー状触媒配列体を炭化水素改質触媒として用いた内部改質型固体酸化物形燃料電池は、炭化水素を含む原料ガスの改質を行っても、熱応力破壊および炭素析出による劣化を抑制することができるため、より安定的に発電を行うことができる。
本発明のペーパー状触媒の概念図である。 本発明のペーパー状触媒配列体の概念図であり、(a)は積層型、(b)は平面配列型である。 本発明の第1の実施形態である、ペーパー状触媒を備えた改質反応装置の構成図である。 本発明の第1の実施形態である、ペーパー状触媒を備えた改質反応装置を有するSOFCシステムの構成図である。 本発明の第2の実施形態である、ペーパー状触媒配列体(積層型)を備えた改質反応装置の概念図である。 本発明の第3の実施形態である、ペーパー状触媒を備えた内部改質型SOFCシステムの構成図である(燃料ガス供給:垂直供給方式)。 ペーパー状触媒配列体をアノード前段に接触させて配置したSOFCの模式図である(燃料ガス供給:平行供給方式)。 ペーパー状多孔質担体Aの外観写真である。 ペーパー状多孔質担体DのFE-SEM像であり、(a)は倍率200倍、(b)は、倍率1000倍である。 ペーパー状触媒1A(還元後)のFE-SEM像であり、(a)はペーパー状触媒全体図、(b)はYSZ繊維の拡大図、(c)は、アルミナ繊維の拡大図である。 ペーパー状触媒(還元後)の走査プローブ顕微鏡像であり、それぞれ(a)はペーパー状触媒1A、(b)はペーパー状触媒2Aである。 ペーパー状触媒1Aによる800℃におけるパームBDF(C1834.82)水蒸気改質試験(S/C=3.5)の結果であり、(a):BDF転化率、改質ガス中のH2およびCO濃度、(b):改質ガス中のCH4およびC24濃度を示す。 ペーパー状触媒1Aに対して、20時間のBDF水蒸気改質試験後のFE-SEM像である。 ペーパー状触媒2A~2CおよびRu/Al23粉末触媒を用いた800℃におけるパームBDF(C1834.82)水蒸気改質試験(S/C=3.5)の結果であり、(a):BDF転化率、(b)~(f)はそれぞれ、改質ガス中の(b):H2濃度、(c):CO2濃度、(d):CO濃度、(e):CH4濃度及び(f):C24濃度を示す。 図11におけるペーパー状触媒2A~2CのH2濃度、C24濃度の経時変化の説明図である。 BDF水蒸気改質試験後のペーパー状触媒をプローブ顕微鏡で観察した結果であり、(a):ペーパー状触媒1A、(b):ペーパー状触媒2Aを示す。 ペーパー状触媒1EにおけるNi担持量依存性を評価した結果であり、(a):メタン転化率、(b):水素発生速度である。 ペーパー状触媒1E(Ni担持量:0.08~15.2重量%)及びNi/CeO2粉末触媒を用いたメタンドライリォーミング(CH4/CO2=1)におけるメタン転化率のW/F依存性の評価結果である。 平面配列型のペーパー状触媒配列体を使用した平面型改質器の説明図である。 (a)実施例のペーパー状触媒配列体(触媒傾斜化あり)の断面模式図、(b)比較例(ペーパー状触媒、触媒傾斜化なし)の断面模式図である。 実施例のペーパー状触媒配列体及び比較例のペーパー状触媒によるバイオガス(模擬ガス(CH4+CO2)、CH4/CO2=1)の改質による温度部分布を示す図である。 実施例(触媒傾斜化あり)のペーパー状触媒配列体の耐久試験の結果である。 (a)バイオガス改質試験後の実施例のペーパー状触媒配列体の外観写真(100時間後)、(b)比較例の外観写真(35時間後)である。 (a)実施例のペーパー状触媒配列体を配置した内部改質型SOFCの断面模式図及び外観写真、及び(b)が比較例の断面模式図及び外観写真である。 (a)実施例のペーパー状触媒配列体を配置した内部改質型SOFCによる、バイオガス(模擬ガス(CH4+CO2)、CH4/CO2=1)供給時における耐久試験の結果であり、(b)が比較例のペーパー状触媒を使用した同様の試験結果である。 実施例の外部改質型SOFC及び比較例のSOFC((ペーパー状触媒積層体なし)による、バイオガス(模擬ガス(CH4+CO2)、CH4/CO2=1)供給時における電流電圧(IV)特性である。 実施例の外部改質型SOFC及び比較例のSOFC(ペーパー状触媒積層体なし)による、加湿バイオディーゼル供給時における電流電圧(IV)特性である。
 10 改質反応装置(第1の実施形態)
 10a 改質反応装置
 10b 燃料電池システム
 11 改質反応装置(第2の実施形態)
 12 燃料電池システム(第3の実施形態)
 20 改質反応部
 20a 改質部
 20b 気化部(加熱部)
 20c 燃料電池部
 21 反応管
 21a 導入口
 21b 排出口
 22 電気炉(上段)
 23 電気炉(下段)
 24 固定器
 27a アノード側導入口
 27b アノード側排出口
 28a カソード側導入口
 28b カソード側排出口
 30 ガス供給部
 30A 炭化水素供給部
 30B 水供給部
 30C 不活性ガス供給部
 30D 二酸化炭素供給部
 30E 空気供給部
 30a~30e 流量制御手段
 40 ガスクロマトグラフ
 41 コールドトラップ
 60 電気化学測定装置
 P,P1~P9 ペーパー状触媒
 P’ ペーパー状触媒配列体(積層型)
 P’’ ペーパー状触媒配列体(平面配列型)
 A アノード(燃料極)
 C カソード(空気極)
 E 固体電解質
 F 固体酸化物形燃料電池(SOFC)
 以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
<1.ペーパー状触媒>
 本発明は、無機繊維をペーパー状に成形してなるペーパー状多孔質担体と、該ペーパー状多孔質担体の表面に分散担持された炭化水素に対する改質活性を有する金属触媒とを含み、前記ペーパー状多孔質担体を構成する無機繊維の少なくとも一部がイオン伝導性酸化物繊維であるペーパー状触媒(以下、「本発明のペーパー状触媒」と記載する。)に関する。
 図1Aに本発明のペーパー状触媒の概念図を示す。
 本発明のペーパー状触媒は、無機繊維がペーパー状に成形されてペーパー状多孔質担体を構成し、その表面に炭化水素に対する改質活性を有する金属触媒(以下、「改質触媒」と称す場合がある。)が担持された構成を有する。
 本発明のペーパー状触媒は、担体としてミクロな空間制御が可能な抄紙技術により作製された無機繊維を骨格とするペーパー状多孔質担体が使用されるため、担体における空隙を大きくすることができる。そのため、本発明のペーパー状触媒は、炭化水素燃料の改質反応に伴う熱応力破壊に対する優れた耐性を有する。さらに、ペーパー状多孔質担体に含まれるイオン伝導性酸化物繊維が助触媒として機能し、炭化水素に対する改質活性を有する金属触媒の改質触媒活性を高めると共に、炭素の析出を抑制することができる。そのため、炭化水素燃料の改質反応の副反応で炭素が析出しても、空隙が完全に閉塞することを回避できる。
 以下、本発明のペーパー状触媒の構成要素を詳細に説明する。
<1-1.ペーパー状多孔質担体>
 ペーパー状多孔質担体は、炭化水素に対する改質活性を有する金属触媒を担持させる役割を有する。ペーパー状多孔質担体は、無機繊維をペーパー状(不織布状)に成形してなり、無機繊維同士が絡み合うように接合したものであり、当該無機繊維の隙間からなる空隙は、少なくとも通気性を発現する程度に連通している。
 ペーパー状多孔質担体の空隙率は、機械的強度が保たれる範囲で決定され、ペーパー状多孔質担体の空隙率が小さすぎると燃料ガスの流通が抑制され、閉塞しやすくなり、空隙率が大きすぎると、機械的強度が不足して破損しやすくなる。本発明のペーパー状触媒において、ペーパー状多孔質担体の空隙率は、好適には75体積%以上95体積%以下である。なお、ペーパー状多孔質担体の空隙率は、水銀圧入法で測定することができる。
 水銀圧入法は、粉体試料の細孔に水銀を浸入させるために圧力を加え、水銀に加えた圧力と水銀圧入量との関係を表す水銀圧入曲線を得て、該水銀圧入曲線に基づいて、細孔分布曲線、細孔容積、比表面積などを求める方法である。なお、水銀圧入法による測定は、水銀ポロシメータにより行うことができる。
 また、ペーパー状多孔質担体において、水銀圧入法から求めた細孔容積は、好ましくは1.5~3cm3/gであり、比表面積は、好ましくは3~10m2/gであり、第1モード径は好ましくは、10~30μmである。
 ペーパー状多孔質担体は、特開2005-89206号公報や、On-paper Synthesis of Silver Nanoparticles for Antibacterial Applications(ISBN:978-953-307-028-5)等で開示された湿式抄紙法に準じる方法で作製することができる。
 簡単に説明すると、まず、所定量の無機繊維、バインダー成分、及び必要に応じて他の成分(気孔量調製剤、分散剤等)を所定量の溶媒にいれて、均一になるまで分散させたスラリーを作製する。次いで、スラリーに所定の凝集剤を順次添加してフロックを生成し、そのフロックに水力学的せん断力を加えて崩壊させると同時に200メッシュの抄き網を用いて脱水・抄造し、均質なシート状の複合体を得る。得られたシート状複合体を乾燥し、所定の熱処理及び加圧処理を行うことにより、均一な厚さのペーパー状(不織布状)の多孔質担体を得る。具体的な方法は実施例にて後述する。
 なお、後述するように、無機繊維、バインダー成分と共に、金属触媒(改質触媒)の前駆体を添加したスラリーを使用して、ペーパー状多孔質担体の形成と、金属触媒の担持とを同時に行ってもよい。
 本発明に係るペーパー状多孔質担体は、無機繊維の少なくとも一部として、イオン伝導性酸化物繊維を含む。イオン伝導性酸化物としては、本発明のペーパー状触媒の使用条件(例えば、500℃以上、還元雰囲気)での熱的安定性、化学的安定性が高いものを用いることができる。具体例を示すと、ジルコニア(ZrO2)系酸化物、セリア(CeO2)系酸化物、イオン伝導性複合酸化物(例えば、SrTiO3、LaAlO3)等が挙げられる。また、イオン伝導性酸化物は、複合酸化物であってもよく、ドーパントを含んでいてもよい。特に高温還元雰囲気中での化学的安定性が高く、かつ、十分な機械的強度を有すことからイオン伝導性酸化物繊維として、安定化ジルコニア繊維を含むことが好ましい。
 安定化ジルコニアとしては、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(ScSZ)、カルシア安定化ジルコニア(CSZ)などが挙げられる。これらの中でも、イットリア安定化ジルコニア(YSZ)が、コスト、安定性の点で好ましく使用される。
 上記ペーパー状多孔質担体を構成するイオン伝導性酸化物以外の無機繊維としては、本発明のペーパー状触媒の使用条件(例えば、500℃以上、還元雰囲気)での熱的安定性、化学的安定性が高い無機物からなる繊維を用いることができる。イオン伝導性酸化物以外の無機繊維としては、金属酸化物(非イオン伝導性酸化物)、金属炭化物、金属窒化物等の繊維が挙げられ、これらを任意の割合で組み合わせて用いてもよい。
 無機繊維として用いられる非イオン伝導性酸化物である金属酸化物としてはアルミナ(Al23)、シリカ(SiO2)、チタニア(TiO2)、酸化マグネシウム(MgO)、チタン酸バリウム(BaTiO3)等が挙げられる。また、金属酸化物は、複合酸化物であってもよく、ドーパントを含んでいてもよい。金属炭化物としては、炭化ケイ素(SiC)、炭化モリブデン(Mo2C)、炭化ジルコニウム(ZrC)、炭化チタン(TiC)等が挙げられる。金属窒化物としては、窒化ケイ素(Si34)、窒化ジルコニウム(ZrN)、窒化チタン(TiN)、窒化ニオブ(NbN)等が挙げられる。
 本発明に係るペーパー状多孔質担体の一部として含まれるイオン伝導性酸化物繊維は、上述のように助触媒として機能し、金属触媒の炭化水素改質反応を促進する作用を有する。前記ペーパー状多孔質担体において、イオン伝導性酸化物繊維の少なくとも一部が互いに接触していることが好ましい。このような構成であると、炭化水素改質活性が高まる傾向にある。助触媒として機能し、金属触媒の炭化水素改質反応を促進する作用を十分に発現させるためには、ペーパー状多孔質担体を構成する無機繊維全体に対する、イオン伝導性酸化物繊維の割合(無機繊維全体を100重量%とする)が、好適には10重量%以上であり、より好適には20重量%以上(100重量%含む。)である。
 ペーパー状多孔質担体の機械的強度が不足する場合には、ペーパー状触媒の機械的強度を高める点で、ペーパー状多孔質担体はSOFC作動温度域での熱的安定性、化学的安定性が高い無機繊維を含ませることが好ましい。機械的強度を高めるための好適な無機繊維としては、アルミナ(Al23)、シリカ-アルミナ複合酸化物(SiO2-Al23)からなる無機繊維が挙げられる。特に柔軟性に優れたシリカ-アルミナ複合酸化物の無機繊維が好ましい。シリカ-アルミナ複合酸化物におけるSiO2とAl23の重量比は任意であるが、SiO2/Al23で0.25~3が好ましい。
 また、本発明のペーパー状触媒を、内部改質型SOFCにおけるアノードに接触して配置する場合には、ペーパー状多孔質担体が、イオン伝導性を有することにより、固体酸化物形燃料電池の作動温度において、ペーパー状触媒に酸素イオンが供給され、炭化水素燃料の改質反応が促進する傾向にある。上記改質反応の促進効果をより得るためには、ペーパー状多孔質担体を構成する無機繊維が、実質的にイオン伝導性酸化物繊維であることが好ましい。特に好適なイオン伝導性酸化物である安定化ジルコニアは、十分な機械的強度を有すため、安定化ジルコニア繊維のみで、ペーパー状多孔質担体を構成することもできる。
 また、ペーパー状多孔質担体を構成する無機繊維は、通常、バインダー成分によってそれぞれが接着されている。バインダー成分としては、本発明のペーパー状触媒の使用条件において、十分な化学的安定性を有し、且つ、無機繊維を十分な機械的強度に結着できるものであれば、従来公知の無機バインダーを使用できる。例えば、Al23、SiO2、ZrO2、CeO2等の酸化物を含むバインダーが挙げられる。この中でも、CeO2はバインダーとして、無機繊維を十分な機械的強度に結着できるのみならず、炭化水素改質触媒の助触媒として、特に強い作用を有し、本発明に係るペーパー状触媒の炭化水素改質活性を向上させ、さらには析出炭素の発生を抑制することができるため好ましい。
 ペーパー状多孔質担体を構成する無機繊維(イオン伝導性酸化物繊維及びその他の無機繊維)の長さ及び太さは、ペーパー状多孔質担体を形成できる範囲であればよく、本発明のペーパー状触媒の用途等を考慮して適宜決定される。通常、全長30μm~6mm、好ましくは50μm~3mm、直径が2μm~20μmである。2種類以上の無機繊維を使用する場合は、それぞれ異なる太さ、長さのものを使用してもよい。なお、無機繊維の長さ、太さは、走査型電子顕微鏡(SEM)で確認することができる。
 ペーパー状多孔質担体の大きさ、厚みは、本発明のペーパー状触媒の用途等を考慮して適宜決定される。
<1-2.炭化水素に対する改質活性を有する金属触媒>
 本発明のペーパー状触媒において、金属触媒としては、炭化水素に対する改質活性を有するものであれば特に制限はないが、本発明のペーパー状触媒の好適な用途であるSOFCの作動温度(600℃以上)での耐熱性と、触媒活性を併せもつという点で、Ni、Co、Fe、Ru、Rh、Pt、Pd及びこれらの合金が挙げられる。これらの金属種は、本発明のペーパー状触媒の用途や、原料ガスの組成、反応条件などに応じて適宜選択される。例えば、Pt等の貴金属は、十分な改質活性を有し、かつ、熱分解炭素の生成が起こりづらいため、炭素析出が起こりやすい条件、例えば、低品位バイオガス(CH4とCO2の混合ガス)や、バイオディーゼル燃料(BDF)等高級炭化水素を含む原料ガスの改質に使用する場合に好適に使用できる。なお、金属触媒は、通常、その前駆体化合物(例えば、酸化物)を還元して製造するが、炭化水素に対する改質活性があれば、完全に金属まで還元されずに、一部が前駆体化合物の状態であってもよい。
 一方で、貴金属は高コストであるため、コストの観点からは、Niを含む金属触媒が好ましい。Niは改質触媒性に優れるが、熱分解炭素の生成が起こりやすいという問題があり、BDF等の高級炭化水素を含む原料ガスの場合には炭素析出を十分に抑制できない場合がある。ここで、Ni及びMgを含む金属触媒は、改質触媒性と炭素析出の抑制に優れ、かつ、貴金属に比べて低コストであるため、炭素析出が起こりやすい、BDF等の高級炭化水素を含む原料ガスの改質に好適である。Ni及びMgを含む金属触媒におけるNiとMgの比率(Ni/Mg)は、通常、0.1~4(原子比)であり、好ましくは、0.67~1.5(原子比)である。この比率は、EDXを用いて測定することができる。
 Ni及びMgを含む金属触媒は、例えば、それぞれの前駆体(硝酸塩等)を含む水溶液を乾燥、熱処理して得られる複合酸化物(NiMgO)を還元して得ることができる。
 金属触媒の大きさは、その製造方法にも依存するが、通常、平均粒径が2nm~2μmの範囲であり、表面性が増加し改質反応を促進できることから、好ましくは平均粒径20nm以下である。金属触媒の平均粒径は、走査型電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)にて、100個ずつ粒子を任意に抽出して、それぞれにつき粒径(直径)を測定して、100個の粒径の平均値として算出した値である。また、金属触媒の形状が、球形以外の場合は、顕微鏡像における粒子の周囲長を解析ソフトで測定し、該周囲長を円周としたときの直径を粒径とする。なお、後述するように、本発明のペーパー状触媒を内部改質型SOFCのアノード前段で使用する場合には、SOFC作動条件(例えば、800℃、還元雰囲気)では、金属触媒が50nm以下であると凝集しやすいため、触媒活性とのバランスから100nm~1μmであることが好ましい。
 金属触媒の担持量は、金属触媒の種類、ペーパー状触媒の用途、原料ガスの組成などに応じて適宜選択される。金属触媒の担持量は通常、ペーパー状触媒全体を100重量%としたときに、0.1~25重量%の範囲である。Niのみからなる金属触媒やNi及びMgを含む金属触媒の場合には、触媒活性と分散性の兼ね合いから、金属触媒の担持量は、Ni換算の重量基準で0.5~20重量%であることが好ましい。
 本発明のペーパー状触媒の製造方法、すなわち、ペーパー状多孔質担体の表面に、金属触媒を分散担持する方法としては特に制限はなく、例えば、金属触媒の前駆体を含む溶液にペーパー状多孔質担体を含浸させた後に、乾燥、焼成、還元処理等によって、粒子状の金属触媒をペーパー状多孔質担体の表面に生成させる方法が挙げられる。
 また、上述の湿式抄紙法によるペーパー状多孔質担体の製造方法において、無機繊維、バインダー成分と共に、金属触媒の前駆体を添加したスラリーを使用して、ペーパー状多孔質担体の抄造と該ペーパー状多孔質担体への金属触媒の担持を同時に行ってもよい。この方法では、より簡便に均一に分散した金属触媒を含むペーパー状触媒を得ることができる。なお、金属触媒の前駆体は、熱処理や還元処理等の方法により、粒子状の金属触媒に転化するものであればよく、それぞれの金属種の硝酸塩、炭酸塩、硫酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩等を適宜選択して使用すればよい。
<1-3.他の成分>
 本発明のペーパー状触媒は、ペーパー状多孔質担体及びこれに担持された金属触媒を基本構成とするが、本発明の目的を損なわない範囲で、他の成分を含んでいてもよい。例えば、より触媒活性を高めるための助触媒成分や、ペーパー状触媒を他の部材に接合させるためのバインダー等が挙げられる。例えば、チタン酸バリウム(BaTiO3)は炭素析出の抑制効果が高く、他の成分として好適な一例である。
<2.本発明のペーパー状触媒の用途>
 本発明のペーパー状触媒は、粒状触媒に代えて、従来の改質触媒器用の改質触媒や、内部改質型の固体酸化物形燃料電池用の改質触媒として好適に用いることができる。なお、本発明のペーパー状触媒は、その目的に応じて、単層で使用してもよいし、所定枚数を配列(積層)させてペーパー状触媒配列体として使用してもよい。
 以下、本発明のペーパー状触媒の好適な応用例として、熱応力破壊の抑制に特に適したペーパー状触媒配列体および、本発明のペーパー状触媒(ペーパー状触媒配列体含む)を備えた内部改質型の固体酸化物形燃料電池について説明する。
<2-1.ペーパー状触媒配列体>
 本発明のペーパー状触媒配列体は、上記本発明の構成を有するペーパー状触媒を複数配列したペーパー状触媒配列体であって、炭化水素に対する改質能が低いペーパー状触媒から、改質能が高いペーパー状触媒となるように順次配列していることを特徴とする。
 このような構成であれば、炭化水素に対する改質能が低いペーパー状触媒から、改質能が高いペーパー状触媒の順番で燃料流れ方向の改質反応が均一に生じるようすることができる。結果として、改質反応(吸熱反応)に起因するペーパー状触媒配列体の内部での温度差が小さくなり、温度分布の均一化が可能となり、ペーパー状触媒配列体、該配列体を構成するペーパー状触媒および隣接材料の熱応力破壊がより起こりづらくなる。
 ペーパー状触媒配列体は、複数のペーパー状触媒を積層して配列した積層型(図1B(a)参照、ペーパー状触媒積層体と呼ぶ場合もある。)、複数のペーパー状触媒を平面(水平方向)に配列した平面配列型のいずれでもよい。平面配列型のペーパー状触媒配列体は支持体上にペーパー状触媒を配列してもよい(図1B(b)参照)。なお、内部改質型SOFCに平面配列型のペーパー状触媒配列体を用いる場合には、SOFC自体を支持体としてもよい。積層型のペーパー状触媒配列体の場合には、原料ガスは、ペーパー状触媒配列体のペーパー状触媒それぞれの面に対し、垂直に供給されて改質される。平面配列型のペーパー状触媒配列体の場合には、原料ガスは、ペーパー状触媒配列体のペーパー状触媒それぞれの面に対し、平行に供給される。平行供給方式においても、炭化水素に対する改質能が低いペーパー状触媒から、改質能が高いペーパー状触媒となるように順次配列する。
 なお、炭化水素に対する改質能は、金属触媒の種類や担持量、ペーパー状多孔質担体の種類や空隙率等の特性を適宜選択することで設計することができる。
 本発明の炭化水素の改質方法は、上記ペーパー状触媒配列体を用いた炭化水素の改質方法であって、炭化水素を含む原料ガスと水蒸気又は二酸化炭素との混合ガスを、該ペーパー状触媒配列体における炭化水素に対する改質能が低いペーパー状触媒側から供給し、前記ペーパー状触媒配列体を構成するペーパー状触媒によって順次改質することを特徴とする。このような方法であると、ペーパー状触媒配列体の内部での温度差が小さくなり、温度分布の均一化が可能となり、ペーパー状触媒配列体、該配列体を構成するペーパー状触媒および隣接材料の熱応力破壊がより起こりづらくなるため、長期間安定的に炭化水素の改質を行うことができる。
 また、上述のように本発明に係るペーパー状触媒は、炭素析出が起こりやすい炭化水素燃料ガス(例えば、低品位バイオガス(CH4とCO2の混合ガス)や、バイオディーゼル燃料(BDF)等高級炭化水素を含む燃料ガス)の改質に使用する場合でも、炭素析出が抑制され、熱応力破壊が起こりづらいため、本発明のペーパー状触媒配列体は、バイオガス又はバイオディーゼルを原料ガスとして用いても、長期的に連続して改質を行うことができる。
<2-2.内部改質型固体酸化物形燃料電池>
 以下、本発明のペーパー状触媒の好適な使用例である内部改質型の固体酸化物形燃料電池(以下、「本発明のSOFC」と記載する。)について説明する。
 本発明のSOFCは、固体電解質と、前記固体電解質の一方面に配置されたアノードと、前記固体電解質の他方面に配置されたカソードとを備え、上記本発明のペーパー状触媒が、前記アノードの前段に配置されていることを特徴とする。
 このような構成であると、内部改質型SOFCのアノードの前段に設けられた本発明のペーパー状触媒によって、炭化水素系燃料ガスが水素と一酸化炭素に改質されるため、水素リッチな改質ガスをアノードに供給できることになる。そのため、上述したアノード自体で改質を行った場合に問題となる、炭化水素の改質に伴う急激な温度低下によるアノード構造の破壊や、析出炭素によるアノードが有する空隙の閉塞を抑制することができる。
 また、上述のように本発明に係るペーパー状触媒は、炭素析出が起こりやすい炭化水素燃料ガス(例えば、低品位バイオガス(CH4とCO2の混合ガス)や、バイオディーゼル燃料(BDF)等高級炭化水素を含む燃料ガス)の改質に使用する場合でも、炭素析出が抑制されるので、本発明のSOFCは、バイオガス又はバイオディーゼルを燃料ガスとして用いても、長期的に連続して発電を行うことができる。
 これまでにも、粉末状、粒状の改質触媒をアノードの前段に配置した内部改質型SOFCは存在したが、本発明のSOFCに適用される本発明のペーパー状触媒は、従来使用されている粉末状、粒状の改質触媒と比較して、触媒の配列や積層化における自由度が極めて高い。そのため、単に粉末状、粒状の改質触媒をアノードの前段に配置した、従来の内部改質型SOFCと比較して、改質触媒のセッティングや交換が容易であり、使用する燃料ガスの種類等の諸条件を考慮して、最適なペーパー状触媒を組み合わせて使用することができるという利点がある。
 本発明のSOFCにおいて、ペーパー状触媒又はペーパー状触媒配列体がアノードと接触して配置されていることが好ましい。このような構成であると、アノードを介してペーパー状触媒へ酸素イオン(O2-)が供給され、ペーパー状触媒における改質反応が促進されると共に、炭素析出がより抑制される。
 ここで、炭化水素に対する改質能が低いペーパー状触媒から、改質能が高いペーパー状触媒となるように順次配列させた本発明のペーパー状触媒配列体を、内部改質型SOFCのアノードの前段に配置してもよく、アノードに接触させて配置してもよい。上述のように燃料流れ方向の改質反応が均一に生じるようすることができ、ペーパー状触媒配列体の温度分布の均一化が可能となり、炭化水素系燃料を使用した場合にもペーパー状触媒やアノードの熱応力破壊が起こりづらくなる。特にバイオガス又はバイオディーゼルを燃料ガスとして用いる場合には、改質により反応場の温度分布が不均一になり、局所温度低下部が存在すると、炭素析出が著しく促進されるため、本発明のペーパー状触媒配列体を使用することがより好適である。
 本発明のSOFCにおいて、固体電解質が、ペーパー状多孔質担体を構成するイオン伝導性酸化物繊維と同種のイオン伝導性酸化物からなることが好ましい。このように固体電解質を、ペーパー状多孔質担体を構成するイオン伝導性酸化物繊維と同種のイオン伝導性酸化物とすることで、化学的・機械的マッチングが高められ、劣化を抑制することができる。ここで、「同種のイオン伝導性酸化物」は、ベースとなるイオン伝導性酸化物が同一であればよく、ドーパントの種類は問わない。好適な具体例を挙げると、安定化ジルコニアの場合、固体電解質がスカンジア安定化ジルコニア(ScSZ)、イオン伝導性酸化物繊維をイットリア安定化ジルコニア(YSZ)とすることができる。
 以下に、本発明のペーパー状触媒の好適な実施形態を、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。また、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 (第1の実施形態)
 図2Aは、本発明の第1の実施形態のペーパー状触媒を使用した改質反応装置の概念図である。本実施形態に係る改質反応装置10は、改質反応部20と、改質反応部20に原料ガスを供給するガス供給部30とを備えている。
 改質反応部20は、所定の位置にペーパー状触媒を配置できる反応管21と、反応管21を所定の温度に加熱する電気炉22,23とからなる。反応管21は、改質部20aと気化部20bを含み、上段の電気炉22、下段の電気炉23により、それぞれ異なる温度に制御することができる。
 反応管21の材質は、本実施形態では、アルミナ管を使用しているが、炭化水素改質反応を行う温度域(800℃程度)で化学的に安定なものであればよい。
 ガス供給部30は、原料ガスを供給するための機構であり、炭化水素供給部30A、水供給部30B及び不活性ガス供給部30Cから構成される。これらにより、所定量の炭化水素燃料、水及び不活性ガス(N2)が、適当な流量制御手段30a~30cによって、供給量を制御された状態で反応管21の導入口21aから反応管21内に供給され、気化部20bで気化されたのちに、ペーパー状触媒Pを備える改質部20aへ原料ガスとして供給される。供給された原料ガスは、ペーパー状触媒Pによって改質されたのちに排出口21bから排出されるよう構成されている。
 なお、本実施形態においては、燃料である炭化水素として、パームBDFを使用しているため、液体ポンプ(Liquid Pump)で流量を制御しているが、気体状の炭化水素を燃料とする場合には、マスフローコントローラー(MFC)等で流量制御を行えばよい。
 供給されたパームBDF及び水は、気化部20bにて気体になり、反応管21の上段(後段)に配置されたペーパー状触媒により改質され、水素リッチの改質ガスを生成する。
 ここで、図2Aの改質部20aの拡大図に示すように、ペーパー状触媒Pは、固定器24により固定されている。固定器24は、ペーパー状触媒の厚さや積層数に対応して調整できるよう設計されている。
 ペーパー状触媒は、上述した本発明のペーパー状触媒である。ペーパー状触媒の構成は、使用する原料ガスの成分及びその濃度を考慮して適宜選択される。なお、本実施形態は、1枚のペーパー状触媒を使用しているが、2枚以上を配列させて使用することもできる。
 改質されたガスは、反応管21の排出口21bから排出される。本実施形態では、排出後のガスを分析するために成分分析用のガスクロマトグラフ40を備えており、生成する改質ガスを自動ガスクロマトグラフで分析し、燃料の転化率、改質ガス中の各成分(水素、一酸化炭素、二酸化炭素、メタン、エチレン等)の濃度を計測することができる。なお、成分分析を行わない場合、ガスクロマトグラフ40は不要である。
 本実施形態に係る改質反応装置10は、各種炭化水素改質用の改質反応装置として用いることができる。また、燃料電池システムにおけるプレ改質器としても好適に用いることができる。すなわち、改質反応装置10の後段に燃料電池システム(図視せず)を設け、改質反応装置10から排出される水素リッチの改質ガスを、燃料ガスとして燃料電池システムに供給して、発電を行うことができる。
 なお、本実施形態では、原料ガスとしてパームBDF、水蒸気の混合ガス(水蒸気/炭素比(S/C)=3.5)を用いているがあくまで本発明の説明のための例示であり、原料炭化水素として、パームBDFに代えて各種炭化水素(例えば、メタン、エタン、プロパン、都市ガス、アルコール等)を用いてもよいし、改質用ガスとして、水蒸気に代えて二酸化炭素を用いてもよいし、S/Cの比率を変えてもよい。例えば、原料炭化水素がメタン、エタン、プロパン、都市ガスの場合には、S/C=1.0~3.0程度、原料炭化水素がエタノール等のアルコールの場合には、S/C=0.5~1.5程度である。
 また、原料ガスとしてメタン、二酸化炭素の混合ガスであるバイオガス(CH4/CO2=1)を用いてもよい。また、必要に応じて、バイオガスにCH4あるいはCO2を添加して、原料ガス中のCH4/CO2の比率を変えてもよいし、炭素析出が起こらない範囲で、他の炭化水素燃料を添加してもよい。
 また、ガス流量、温度を初めとする改質条件も、原料ガスに含まれる炭化水素の種類やS/Cの比率等を考慮して、原料ガスの転化率が高く、副生成物(エチレン等)の発生が少ない好適な条件を適宜設定すればよい。
 改質温度は、通常、500~900℃程度であり、接触時間(W/F)は、0.001~1.5g-cat h mol-1程度である。
 また、図2Bに示すよう本実施形態に係る改質反応装置10aと、SOFCシステム10bを直列に設置して、改質反応装置10aで原料ガスの改質を行い、改質されたガスを燃料ガスとしてSOFCシステム10bで発電を行う外部改質型SOFCとして使用することもできる。
 (第2の実施形態)
 図3は、本発明の第2の実施形態のペーパー状触媒配列体を使用した改質反応装置の概念図である。
 本実施形態に係る改質反応装置11は、改質反応部20において、ペーパー状触媒Pに代えて積層型のペーパー状触媒配列体P’を使用したものである。改質反応装置11において、改質反応部20の構成及びガス供給部30の一部の構成以外は、上述した第1の実施形態の改質反応装置10と同様の構成であるため、適宜説明を省略する。
 本実施形態におけるガス供給部30は、炭化水素供給部30Aにおける炭化水素としてメタン、水供給部30Bに代えて、二酸化炭素供給部30Dを使用した以外は、上記第1の実施形態と同一の構成である。
 ガス供給部30により、CH4/CO2=1になるような流量で、反応管21内に供給されたメタン及びにCO2は、適当な温度に加熱された加熱部20bでプレ加熱された後に、ペーパー状触媒配列体P’を備える改質部20aへ供給され、ペーパー状触配列体P’によって改質されたのちに排出口21bから排出されるよう構成されている。
 ペーパー状触媒配列体P’は、上述の本発明のペーパー状触媒を複数枚配列したものであり、本実施形態では、図3の改質部20aの拡大図に示すようにペーパー状触媒P1~P5の5枚を配列している。
 ペーパー状触媒配列体P’を構成するペーパー状触媒P1~P5は炭化水素に対する改質能が異なるペーパー状触媒であり、炭化水素に対する改質能が最も低いP1、P2、P3、P4、P5の順番で炭化水素に対する改質能が高くなるように配列している。
 炭化水素の改質反応は、吸熱反応であるため、水蒸気あるいは二酸化炭素と混合した原料ガスを、ペーパー状触媒に供給すると温度が低下する。
 温度の低下(吸熱量)は、改質された炭化水素量に依存するため、ペーパー状触媒配列体の場合には、(改質前の)初期濃度の炭化水素及び水蒸気あるいは二酸化炭素と最初に接触する最前段のペーパー状触媒(図3におけるP1)において最も温度が低下する。後段に進むにしたがって、炭化水素濃度が減少するため、改質反応による吸熱量も減少し、低下する温度も小さくなる。特に前段のペーパー状触媒の改質活性が高すぎると、その部分で多量の炭化水素が改質され、後段における炭化水素濃度が小さくなり、改質反応にほとんど寄与しなくなる場合があり、結果として、ペーパー状触媒配列体の前段と後段において大きな温度差を生じることがある。このような場合には、ペーパー状触媒配列体におけるペーパー状触媒の位置による温度むらにより、サーマルショックによって、ペーパー状触媒配列体やペーパー状触媒配列体に隣接する部材が破壊されるおそれがある。一方で、吸熱反応を抑制するため、炭化水素に対する改質能が低いペーパー状触媒のみを配列すると、未反応の炭化水素が改質ガスに残存するおそれがある。
 本実施形態に係るペーパー状触媒配列体P’では、炭化水素に対する改質能が低いペーパー状触媒P1から、より改質能が高いペーパー状触媒P2,P3,P4、P5の順番で配列しているため、燃料流れ方向の改質反応が均等に生じるようすることができる。結果として、改質反応(吸熱反応)に起因するペーパー状触媒P1~P5の温度差が小さくなり、ペーパー状触媒配列体P’内部の温度分布の均等化が可能となり、ペーパー状触媒配列体P’の適用により、それ自体や隣接材料の熱応力破壊が起こりづらい改質反応部となる。
 なお、炭化水素に対する改質能は、金属触媒の種類や担持量、ペーパー状多孔質担体の種類や空隙率等の特性を適宜選択することで設計することができる。炭化水素に対する改質能は、特に金属触媒の種類や担持量に依存しやすいため、通常、金属触媒の種類や担持量によって、使用するペーパー状触媒の炭化水素に対する改質能は制御される。
 また、本実施形態では、P1、P2、P3、P4及びP5の全てが改質能の異なるペーパー状触媒を用いているが、ペーパー状触媒配列体全体として、改質能が低いものから、改質能が高いものなるようにペーパー状触媒が配列していればよく、本実施形態のように、すべてのペーパー状触媒の改質能が異なる(すなわち、改質能:P1<P2<P3<P4<P5)のみならず、一部のペーパー状触媒が同じ改質能(例えば、改質能:P1=P2<P3<P4=P5)であってもよい。
 なお、本実施形態では、ペーパー状触媒配列体のペーパー状触媒それぞれの面に対し、原料ガスを垂直に供給する垂直供給方式であるが、この方式に限定されず、ペーパー状触媒配列体のペーパー状触媒それぞれの面に対し、原料ガスを平行に供給する平行供給方式でもよい。平行供給方式においても、炭化水素に対する改質能が低いペーパー状触媒から、改質能が高いペーパー状触媒となるように順次配列する。平行供給方式でペーパー状触媒配列体を使用する具体例は、後述の実施例にて説明する。
 また、本実施形態では、バイオガスを想定して、原料ガスとしてメタン、二酸化炭素の混合ガス(CH4/CO2=1)を用いているがあくまで本発明の説明のための例示であり、CH4/CO2の比率を変えてもよい。
 原料ガスとして実際のバイオガス(CH4/CO2=1)を用いる場合には、必要に応じて、バイオガスにCH4あるいはCO2を添加して、原料ガス中のCH4/CO2の比率を変えてもよいし、炭素析出が起こらない範囲で、他の炭化水素燃料を添加してもよい。
 原料ガスとして、実際のバイオガスを用いてもよいし、メタンに代えて各種炭化水素(例えば、メタン、エタン、プロパン、都市ガス、アルコール、バイオディーゼル等)、改質用ガスとして、二酸化炭素に代えて水蒸気を用いてもよい。例えば、原料炭化水素がメタン、エタン、プロパン、都市ガスの場合には、S/C=1.0~3.0程度、原料炭化水素がバイオディーゼルの場合には、S/C=2.0~3.5程度、原料炭化水素がエタノール等のアルコールの場合には、S/C=0.5~1.5程度である。
 また、ガス流量、温度を初めとする改質条件も、原料ガスに含まれる炭化水素の種類やS/Cの比率等を考慮して、原料ガスの転化率が高く、副生成物(エチレン等)の発生が少ない好適な条件を適宜設定すればよい。
 改質温度は、通常、500~900℃程度であり、接触時間(W/F)は、0.001~1.5g-cat h mol-1程度である。
 (第3の実施形態)
 図4Aは、本発明の第3の実施形態の内部改質型SOFCシステムの概念図である。
 本実施形態に係る燃料電池システム12は、上記第1、第2の実施形態における改質部20aに代えて、固体酸化物形燃料電池Fを含む燃料電池部20cを備えたものである。また、これに併せて反応管21、ガス供給部30の構成を変更している。
 図4Aの燃料電池部20cの拡大図に示されるように、本実施形態の固体酸化物形燃料電池Fは、固体電解質Eと、固体電解質Eの一方面に配置されたアノードAと、固体電解質Eの他方面に配置されたカソードCとを備え、上述の本発明のペーパー状触媒Pが、前記アノードの前段に配置されている。
 本実施形態に係る固体酸化物形燃料電池Fは、従来公知の固体酸化物形燃料電池をそのまま転用したものである。その構成要素について簡単に説明する。
 固体電解質Eは、酸素イオン伝導性酸化物からなるガス非透過の緻密膜である。その材料としては、固体酸化物形燃料電池の電解質として公知の酸素イオン伝導性酸化物を使用することができ、例えば、安定化ジルコニア(YSZ,ScSZ等)、セリア系酸化物(SDC、GDC等)等が挙げられる。特に固体電解質Eが、ペーパー状触媒Pを構成するペーパー状多孔質担体を構成するイオン伝導性酸化物繊維と同種のイオン伝導性酸化物であると、燃料電池運転条件(高温(800℃程度)、還元雰囲気)におけるコンタミの問題が回避されるため好ましい。
 アノードAは、水素酸化活性を有する金属粉末と、酸素イオン伝導性酸化物粉末とを混合して焼成したいわゆるサーメットからなる。水素酸化活性を有する金属としては、例えば、Niやその合金が挙げられる。酸素イオン伝導性酸化物粉末としては、固体電解質Eと同種の酸素イオン伝導性酸化物が用いられる。「同種のイオン伝導性酸化物」は、ベースとなるイオン伝導性酸化物が同一であればよく、ドーパントの種類は問わない。
 そのため、アノードAを構成する酸素イオン伝導性酸化物と、ペーパー状触媒Pを構成するペーパー状多孔質担体を構成するイオン伝導性酸化物繊維が同種の酸素イオン伝導性酸化物であると、固体電解質E、アノードA及びペーパー状触媒Pの化学的・機械的マッチングが高められ、劣化を抑制することができる。
 カソードCとしては、例えば、ペロブスカイト型構造の導電性金属酸化物を用いることができ、例えば、(La,Sr)MnO3、(Sm,Sr)CoO3等が挙げられる。
 固体電解質E、アノードA、カソードCの厚みは、その形態や使用目的によっても異なるが、固体電解質支持型の場合、固体電解質Eが100~500μm程度、アノードAが20~100μm程度、カソードCが20~100μm程度である。
 本実施形態の固体酸化物形燃料電池Fでは、アノードA、カソードCは電気化学測定装置60と接続されており、各種電気化学的な評価を行うことができるように設計されている。
 なお、単純に発電を行うだけならば、電気化学測定装置60は必要なく、外部負荷のみでもよい。
 なお、本実施形態では燃料電池部20cが単セルの例を示しているが、実際には単セルが発電性能に応じた基数だけ積層された燃料電池スタックが形成され、その他付随する装置を組み立てることにより使用される。この場合には、実質的に改質前の炭化水素燃料ガスが供給される単セルのアノードの前段にペーパー状触媒Pを配置すればよい。
 本実施形態の燃料電池システム12において、燃料であるパームBDF及び水が、それぞれ炭化水素供給部30A及び水供給部30Bにより、アノード側の導入口27aから反応管21内に供給され、気化部20bで気化されたのちに、燃料電池部20cに供給される。燃料電池部20cでは、アノードAの前段に設けられたペーパー状触媒Pにより、パームBDFの水蒸気改質が行われ、水素リッチの改質ガスがアノードAに供給され、発電に用いられる。
 また、排ガスは、排出口27bから排出され、コールドトラップ41で水蒸気を凝縮して水分を除去した後に、成分分析用のガスクロマトグラフ40で排ガスを分析し、燃料の転化率、排ガス中の各成分(水素、一酸化炭素、二酸化炭素、メタン、エチレン等)の濃度を計測することができる。なお、成分分析を行わない場合、ガスクロマトグラフ40は不要である。
 一方、アノードAの反対面に配置されたカソードCには、空気供給部30Eによって空気が導入口28aから供給される。その結果、アノードAとカソードCには酸素ポテンシャルの差に起因する電位差が生じ、外部に電力を供給することができる。
 本発明に係るペーパー状触媒Pは、従来使用されている粉末状、粒状の改質触媒と比較して、触媒の配列や積層化における自由度が極めて高い。そのため、使用する燃料ガスの種類等の諸条件を考慮して、最適なペーパー状触媒を組み合わせて使用することができる。
 また、ペーパー状触媒Pは、炭素改質能が高く、炭素析出が起こりづらいため、バイオガス又はバイオディーゼルを燃料ガスとして用いても、SOFCを長期的に連続して発電を行うことができる。
 本実施形態において、ペーパー状触媒Pは、アノードAと接触して配置されている。このような構成とすると、固体酸化物形燃料電池Fで発電を行う際に、アノードAを介してO2-がペーパー状触媒Pに供給され、ペーパー状触媒Pにおける改質反応が促進されると共に、炭素析出がより抑制される。
 なお、ペーパー状触媒PとアノードAは、必ずしも接触させる必要はなく、特にペーパー状触媒PとアノードAとの熱膨張率の差が大きい場合などには、接触させないほうが好ましい。
 なお、本実施形態では、ペーパー状触媒Pを1枚配置しているが、2枚以上を配列してもよい。また、第2の実施形態で示したペーパー状触媒配列体P’を、アノードの前段に配置してもよい。上述のように配列を工夫することにより、燃料流れ方向の改質反応が均一に生じるようにすることができるため、ペーパー状触媒配列体P’内の温度分布の均一化が可能となる。
 また、第2の実施形態で示したペーパー状触媒配列体P’を使用した場合には、燃料ガスの供給は垂直供給方式で供給となるがこの方式に限定されず、燃料ガスの供給が平行供給方式となるようにペーパー状触媒配列体を配置してもよい。
 図4Bにペーパー状触媒配列体をアノードに接触させて配置したSOFCの模式図を示す(燃料ガス:平行供給方式)。
 図4Bに示すように、この形態でのペーパー状触媒配列体P’’は、4枚の炭化水素に対する改質能の異なるペーパー状触媒P6、P7、P8、P9が、炭化水素に対する改質能が最も低いP6、P7、P8、P9の順番で炭化水素に対する改質能が高くなるように配列したものであり、ペーパー状触媒P6、P7、P8、P9それぞれの面が、SOFCセルのアノードに接触するように配置されている。このような状態で、ペーパー状触媒P6側から燃料ガスを供給すると、ペーパー状触媒P6、P7、P8、P9それぞれの面に対して燃料ガスが平行に供給される。このような構成であると、セルに隣接する改質反応場の温度分布が均一化されるため、バイオガス又はバイオディーゼル等炭化水素燃料供給時の、特に大面積のSOFCセルを用いた直接内部改質発電に対して好適である。
 平行供給方式でペーパー状触媒配列体を使用する具体例は、後述の実施例にて説明する。
 また、本実施形態では、燃料ガスとしてパームBDF、水蒸気の混合ガス(S/C=3.5)を用いているがあくまで本発明の説明のための例示であり、燃料炭化水素として、パームBDFに代えて各種炭化水素(例えば、メタン、エタン、プロパン、都市ガス、アルコール等)を用いてもよいし、改質用ガスとして、水蒸気に代えて二酸化炭素を用いてもよいし、S/Cの比率を変えてもよい。例えば、燃料炭化水素がメタン、エタン、プロパン、都市ガスの場合には、S/C=1.0~3.0程度、燃料炭化水素がエタノール等のアルコールの場合には、S/C=0.5~1.5程度である。
 また、燃料ガスとしてメタン、二酸化炭素の混合ガスであるバイオガス(CH4/CO2=1)を用いてもよい。また、必要に応じて、バイオガスにCH4あるいはCO2を添加して、燃料ガス中のCH4/CO2の比率を変えてもよいし、炭素析出が起こらない範囲で、他の炭化水素燃料を添加してもよい。
 また、ガス流量、温度を初めとする改質条件も、原料ガスに含まれる炭化水素の種類やS/Cの比率等を考慮して、原料ガスの転化率が高く、副生成物(エチレン等)の発生が少ない好適な条件を適宜設定すればよい。
 改質温度は、通常、500~900℃程度であり、接触時間(W/F)は、0.001~1.5g-cat h mol-1程度である。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の要旨を変更しない範囲で、上記以外の様々な構成を採用することもできる。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 使用した原料
1.無機繊維
・安定化ジルコニア(YSZ)繊維:
         ジルカー社製(品番:ZYBF-2)直径:3~6μm
・アルミナ(Al23)繊維:
         電気化学工業社製(品番:B100)、直径:3~6μm
・シリカ-アルミナ複合酸化物(SiO2-Al23)繊維
         イビデン社製(イビウール)、直径:2~5μm
 なお、X線回折法にて、アルミナ繊維及びシリカ-アルミナ繊維を評価したところ、非晶質であることが確認された。
2.酸化物ゾル(バインダー)
・ZrO2ゾル(日産化学工業社製、品番:ナノユースZR-30BS、pH9.8)
・Al23ゾル(日産化学工業社製、品番:アルミナゾル520、酸性)
・CeO2ゾル(日産化学工業社製、品番:ナノユースCE-20B、pH9.6)
3.イオン性ポリマー
・PDADMAC(polydiallyldimethylammonium chloride, Aldrich, Ltd.)
  カチオン性
  分子量::約3×105
  電荷密度:5.5 meq/g
・A-PAM(anionic polyacrylamide, Kurita, Ltd.)
  アニオン性
  分子量::約4×106
  電荷密度:0.64 meq/g
1.ペーパー状多孔質担体の作製
(1)ペーパー状多孔質担体Aの作製
 無機繊維として、YSZ繊維2g、アルミナ繊維3gを、適量の蒸留水に投入し、ミキサーで約3分混合した。次いで、固形分濃度が0.15wt/vol%になるように蒸留水を添加し、スターラーで攪拌しながら、カチオン性ポリマーであるPDADMACを、固形分全量に対して、0.25~1wt%となるように加え、分散している無機繊維表面を正に帯電させた。
 次いで、焼成後に無機バインダーとして機能する酸化物ゾル(Al23ゾル)を、固形分重量で0.5~2g加えた後、アニオン性ポリマーであるA-PAMを対固形分0.5wt%となるように加えた。なお、この際、元々の懸濁物質が正に帯電しているため、アニオン性ポリマーを投入した瞬間に、無機繊維等が凝集して玉状になる。そのため、後工程である紙抄き時(ろ過時)におけるろ水効率および歩留まり率が向上する。
 次に、適量の市販のパルプを解繊してスラリーに加え、3分攪拌した。なお、パルプは、紙抄き後の湿潤状態の強度を確保し、ろ過用メッシュからの焼成前のペーパー状多孔質担体の採取を容易にする。また、パルプはペーパー状多孔質担体の焼成中に焼失し、空隙(拡散パス)を生成する。
 得られたスラリーを市販の抄紙装置(熊谷理機工業株式会社製)に注ぎ込み、ろ過用金属網(200メッシュ)に懸濁混合物を脱水により堆積させた。形成された堆積物をメッシュから剥がし取り、350kPaで3分プレスし、105℃で乾燥させることで、ペーパー状多孔質担体(焼成前)を得た。直径は約16cmであった。
 ペーパー状多孔質担体(焼成前)を大気雰囲気下、1300℃、10h焼成することにより、ペーパー状多孔質担体A(バインダー:Al23)を得た。図5にペーパー状多孔質担体Aの外観写真を示す。
(2)ペーパー状多孔質担体B及びCの作製
 バインダーとしての酸化物ゾルをAl23ゾルから、ZrO2ゾル又はCeO2ゾルに代えた以外は、ペーパー状多孔質担体Aと同様の方法で、それぞれペーパー状多孔質担体B(バインダー:ZrO2)、ペーパー状多孔質担体C(バインダー:CeO2)を得た。
(3)ペーパー状多孔質担体Dの作製
 無機繊維として、アルミナ繊維を使用せず、YSZ繊維(7mol%Y23 - 93mol%ZrO2)5gとし、Al23ゾルに代えて、ZrO2ゾルを使用した以外は、ペーパー状多孔質担体Aと同様の方法で、ペーパー状多孔質担体Dを得た。
 ペーパー状多孔質担体A~DをSEM観察したところ、本発明に係るペーパー状多孔質担体は、十分な隙間を有した構造体であり、無機繊維同士がバインダー成分で結着していることが確認できた。代表例として、図6(a)及び図6(b)にペーパー状多孔質担体DのSEM像を示す。YSZ繊維同士が互いに接触しており、ZrO2ゾル由来のバインダー成分が無機繊維同士の結合を補助していることが分かる。また、ペーパー状多孔質担体A~Cにおいても、YSZ繊維同士が互いに接触している部分が確認された。
(4)ペーパー状多孔質担体の全細孔容積、空隙率、モード径
 ペーパー状多孔質担体A~Cについて、水銀圧入法により、空隙率、モード径を測定した結果を表1に示す。
測定条件:圧力範囲:0.5~5000psia(3.45KPa~34.5MPa)
     測定気孔直径の範囲:約300μm~37nm
Figure JPOXMLDOC01-appb-T000001
2.ペーパー状多孔質担体への金属触媒の担持
(1)Ni担持ペーパー状触媒1A~1Cの作製
 ペーパー状多孔質担体A~Cを、それぞれ1mol/LのNi硝酸塩溶液に浸漬し、1時間後取り出し、105℃で3時間乾燥した。
 次いで、大気中で400℃、5時間熱処理することにより、ペーパー状多孔質担体にNiO微粒子が分散担持された、ペーパー状触媒1A~1C(還元前)を得た。
(2)Ni―Mg触媒担持ペーパー状触媒の作製
 ペーパー状多孔質担体A~Dを、それぞれ1mol/LのNi硝酸塩とMg硝酸塩とを含む溶液に浸漬し、1時間後取り出し、105℃で3時間乾燥した。
 次いで、800℃で5時間熱処理することにより、ペーパー状多孔質担体にNiMgO微粒子が分散担持された、ペーパー状触媒2A~2Dを得た。なお、ペーパー状触媒2A~2Dにおいて、XRDの評価によりNiOとMgOの固溶体が形成されていることが確認された。以下、NiとMgとを含む金属触媒を、「Ni-Mg」と表記する。
 表2にペーパー状触媒1A~1C及びペーパー状触媒2A~2Dの構成をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
3.評価
(3-1)還元後の触媒表面観察
 ペーパー状触媒1A(還元前)を、5%H2/N2中、900℃において、1時間還元処理を行った。図7(a)~(c)にペーパー状触媒1A(還元後)のFE-SEM像を示す。また、図7(b)に見られるように、100~500nm程度のNi微粒子が、YSZ繊維表面に均一に分散していることが確認された。
 一方、図7(c)にみられるように、Al23繊維の表面には、粗大なNi粒子が確認され、YSZ繊維と比較して、Niの分散性が低かった。このことから、Al23繊維の表面ではNi微粒子は凝集して粗大粒子になっていると考えられる。
 図8(a)に、走査プローブ顕微鏡(Nanocute、SIIナノテクノロジー製)で撮影した、ペーパー状触媒1A(還元後)表面の構造を示す。また、図8(b)に同様の還元処理を行ったペーパー状触媒2A(還元後)表面の構造を示す。
 ペーパー状触媒1A(還元後)とペーパー状触媒2A(還元後)の金属触媒粒子の大きさは、ペーパー状触媒2Aの方が小さかった。このことから、Mgの添加により、触媒表面の微細化が進んでいることが示唆された。
(3-2)バイオディーゼル燃料(BDF)水蒸気改質実験
 図2Aの構成を有する本発明の第1の実施形態の改質反応装置(触媒活性評価装置)を使用して、バイオディーゼル燃料(パームBDF(C1834.82))の水蒸気改質実験を行った。
 実施例1の改質実験として、図2Aにおける改質部にペーパー状触媒1A(φ20mm)を、2枚重ねてセットし、H2を供給し、900℃、1時間還元処理を行った。
 次いで、不活性ガスであるN2ガス:50mL/minをキャリヤガスとし、液体積ベースでBDF:6μL/min、蒸留水:21μL/minをS/Cが3.5となるように液クロ用ポンプで、600℃の気化器に供給してガス化した原料ガスを800℃の改質部に供給した。生成した改質ガスを自動ガスクロマトグラフで分析し、燃料の転化率、改質ガス中の水素、一酸化炭素、二酸化炭素、メタン、エチレンの濃度を計測した。
 また、実施例2~4の改質実験としてペーパー状触媒2A~2Cを改質部にセットし、同様の試験を行った。
 また、比較例1の改質実験として、貴金属触媒として、Ru/γ-Al23触媒ビーズ(以下、単に「Ru/Al23触媒」と記載する。)を改質部にセットし、同様の試験を行った。また、比較例2の改質実験として、SOFCアノードに準じる、ペレット状Ni/安定化ジルコニア(Ni/ScSZ、Ni含有量:NiOとして56重量%)を改質触媒として使用して、同様の実験を行った。
 表3に実施例1~4及び比較例1,2の改質実験において使用したペーパー状触媒をまとめて示す。
Figure JPOXMLDOC01-appb-T000003
 ここで、BDF水蒸気改質反応は、表4に示すように、1. BDFの水蒸気改質、2. BDFの低級炭化水素への熱分解、3. 低級炭化水素の水蒸気改質、4. 水性シフト反応、5. 析出炭素の水素化反応、6. COの水素化反応、7. 析出炭素のガス化、8. ブドワール反応等の様々な反応が生じて進行する。なお、BDFの改質反応により副生するC24は炭素析出を誘発する前駆体として知られており、これをできるだけ低減させることが求められている。
Figure JPOXMLDOC01-appb-T000004
実施例1
 図9(a)及び(b)に実施例1のBDF水蒸気改質試験の結果を示す。
 BDF供給開始8時間後から、改質ガス中のCH4およびC24の生成量が急激に増加し(図9(b)参照)、また、CH4およびC24の生成量の急激な増加と同時にBDFの転化率が低下した(図9(a)参照)。
 図10にペーパー状触媒1Aに対して、20時間のBDF水蒸気改質試験後のペーパー状触媒1AのFE-SEM像を示す。
 図10の結果から、20時間の試験後のペーパー状触媒1Aには、炭素が析出していることがわかる。C24は炭素析出を誘発する前駆体として知られており、C24の濃度増加により、炭素析出が促進したものと考えられる。
 一方で、ペーパー状触媒1Aを構成するYSZ繊維表面において、炭素が析出している部分とほとんどしていない部分が存在している。EDXの分析から炭素析出がAl23バインダー(Al23ゾル由来)上に選択的に検出されることから、Al23ゾルの使用が炭素析出を誘発することが明らかとなった。
 また、炭素析出が起こっている領域で、Niの粗大化が進行していることも確認された。
 これらの結果から、金属触媒としてNiを担持し、且つ、Al23バインダーを有するペーパー状触媒1Aは、BDFの水蒸気改質に対して、初期活性は高いが、炭素析出により活性が低下することが明らかとなった。
実施例2~4及び比較例1
 図11(a)~(f)に実施例2~4(ペーパー状触媒2A~2C)及び比較例1のパーム油BDF(C18.0H34.8O2)の水蒸気改質実験(S/C=3.5)の結果を示す。また、図12に実施例2~4(ペーパー状触媒2A~2C)のH2濃度、C24濃度についてまとめて示す。
 図11(a)に示されるように、実施例2~4のすべてが、BDF転化率が高く、90%に近い値を示し、比較例1(Ru/Al23触媒)よりもBDF転化率が高くかった。また、Niのみを担持したペーパー状触媒1Aでは8時間で大きな活性低下が生じたが(図9(a)参照)、実施例2~4では、50時間の試験中大きな活性低下は見られなかった。これらの結果から、金属触媒がNi-Mgである実施例2~4は、BDF水蒸気改質性能に優れることが確認された。
 図11(b)、図12に示すように、初期のH2濃度は、実施例2~4の全てにおいて、Ru/Al23触媒よりも高い値であった。一方で、無機バインダーとしてAl23ゾルを用いた実施例2(ペーパー状触媒2A)、無機バインダーとしてZrO2ゾルを用いた実施例3(ペーパー状触媒2B)については、20時間以降、H2濃度が徐々に低下した。これは、シフト反応が阻害されたためであると推察される。
 一方、無機バインダーとしてCeO2ゾルを適用した実施例4(ペーパー状触媒2C)では、試験を通してH2濃度は70%(平衡値:71%)で安定していた。この結果は、バインダーとして添加したCeO2ゾルが、助触媒として機能し、BDF水蒸気改質反応を促進していることを示している。
 また、図11(c)、(d)から明らかなように、比較例1のRu/Al23触媒と比較して、実施例2~4の全てにおいて、相対的にCO2濃度が高い値を示し、CO濃度は低い値を示した。このことは、シフト反応(CO + H2O → CO2 + H2)が促進されていることを示唆しており、これによりH2濃度も高い値を示したと考えられる(図11(b)参照)。
 また、図11(e)および(f)に見られるように、比較例1のRu/Al23触媒使用時は、改質ガス中に、炭素析出を誘発する前駆体となる未反応CH4およびC24が最大で3%および2%程度残留していることが分かる。
 これに対し、ペーパー状触媒2A~2Cの全てにおいて、CH4およびC24のいずれもが、Ru/Al23触媒使用時に比べて低減されている。特に、無機バインダーとしてCeO2ゾルを適用したペーパー状触媒2Cでは、低級炭化水素の改質が良好に進行しており、未反応C24は試験中検出されなかった。
 ペーパー状触媒2Cでは、C24に比較して反応性の低いCH4に関しては、CeO2ゾルを用いた場合でも35時間以降未反応分として検出され、その濃度が50時間においても1%程度であった。
 以上の結果から、実施例2~4(ペーパー状触媒2A~2C)のBDF水蒸気改質は、比較例1(従来の改質触媒)により優れることが確認された。特にNi-Mgではペーパー状触媒のBDF水蒸気改質に対する活性が大幅に向上し、特に無機バインダーとしてCeO2ゾルを用いた実施例4(ペーパー状触媒2C)の場合は、50時間の試験中、炭素析出の前駆体となるエチレンの生成はなく、炭素数が高く、C=C結合および硫黄不純物を含むBDFからの安定的な水素製造を達成した。
 また、同様に比較例2である従来のペレット状Ni-安定化ジルコニア燃料極のBDF水蒸気改質反応(S/C=3.5)に対する改質性能(図示せず)は、800℃、W/F=27[g-cat h mol-1]において燃料転化率が86%であった(図示せず)が、上記Ni-Mg担持ペーパー触媒(ペーパー状触媒2A~2C)は、W/F=1.2[g-cat h mol-1]の低W/Fにおいて転化率90%を示した。
 BDF水蒸気改質試験後のペーパー状触媒をプローブ顕微鏡で観察した。結果の一例として、図13(a)にペーパー状触媒1A、図13(b)にペーパー状触媒2Aの結果を示す。
 金属触媒がNiのみであるペーパー状触媒1Aの場合は、金属触媒がNi-Mgであるペーパー状触媒2Aに比較して金属触媒粒子が粗大であった。また、析出炭素と考えられる像も観察された。これに対し、ペーパー状触媒2Aでは、試験後も金属触媒粒子の凝集や析出炭素のコントラストも観察されなかった。この観察結果は、金属触媒がNiと共にMgを含むことにより耐凝集性、耐炭素析出性が向上したことを示している。
(3-3)メタンドライリフォーミング実験
(1)メタンドライリフォーミングに対する金属触媒(Ni)の担持量依存性
 実施例5のペーパー状触媒として、以下のNi担持ペーパー状触媒1Eを製造し、メタンドライリフォーミングとして、模擬バイオガスの改質に対する金属触媒(Ni)の担持量依存性を評価した。
ペーパー状触媒1Eの作製
 Ni担持量の異なるペーパー状触媒(総称して「ペーパー状触媒1E」と記載する)を以下の方法で作製した。
 まず、アルミナ繊維に代えて、同重量のアルミナ-シリカ繊維(イビデン社製、イビウール)を使用し、バインダーとしてAl23ゾルに代えて、ZrO2ゾルを使用し、焼成条件を800℃、5hとした以外は、上記ペーパー状多孔質担体Aと同様の製造方法にて、ペーパー状多孔質担体Eを作製した。
 ペーパー状多孔質担体Eを、適当な濃度のNi硝酸塩溶液に浸漬し、1時間後取り出し、105℃で3時間乾燥した。次いで、大気中で400℃、5時間熱処理することにより、ペーパー状多孔質担体Eに、Ni換算で0.1~25重量%のNiO微粒子が分散担持されたペーパー状触媒1E(還元前)を得た。
 異なるNi担持量のペーパー状触媒1E(還元前)のそれぞれを、H2中、800℃において、1時間還元処理を行い、NiOをNiに還元した後に、800℃、CH4:20mL/分、CO2:20mL/分、N2:20mL/分(CH4/CO2=1)の条件で模擬バイオガスを供給し、改質活性を評価した。
 図14(a)にメタン転化率、図14(b)に水素発生速度の結果を示すが、Ni担持量が大きくなるにつれ、メタン転化率、水素発生速度が大きくなり、Ni担持量3重量%でほぼ一定になった。また、Ni担持量が20重量%を超えると、凝集粒子が多くなるため、好適なNi担持量範囲は1重量%~20重量%と判断した。
(2)従来の改質触媒との対比
 実施例5のペーパー状触媒1Eのメタンドライリフォーミング性能評価を行った。図15にメタンドライリフォーミング(CH4/CO2=1、800℃)時のメタン転化率のW/F[g-cat h mol-1]依存性を示す。また、図15には従来の改質触媒の参考例として、先行文献(Asami K, Lia X, Fujimoto K, Koyama Y, Sakurama A, Kometani N, CO2 reforming of CH4 over ceria-supported metal catalysts. Catal Today 2003;84:27-31.)で開示されたNi/CeO2粉末触媒によるデータ(改質温度:850℃)を合わせて示す。
 実施例5(ペーパー状触媒1E)は、800℃において、W/F=0.08[g-cat h mol-1]の低W/F値の領域でメタン転化率91%を示した。すなわち、実施例5では、50℃低温、かつ、約1/12倍の触媒重量で、参考例のNi/CeO2粉末触媒と同等のメタン転化率を達成できている。また、比較例として、ペレット状Ni-安定化ジルコニア燃料極(Ni-YSZ,Ni含有量:NiOとして56重量%)のメタンドライリフォーミング反応に対する改質性能(図示せず)は、800℃、W/F=8.4[g-cat h mol-1]においてメタン転化率74%であった。
 すなわち、実施例5(ペーパー状触媒1E)は、従来の粉末触媒より、メタンドライリフォーミング反応に対する優れた改質性能を有することが分かった。これは、図1Aに模式的に示したように、無機繊維ネットワークが作り出す自由度の高い空間構造がガスの三次元的拡散を促進し、燃料ガスと担持された金属触媒微粒子の接触効率が極めて高くなるためである。
(3-4)ペーパー状触媒配列体によるバイオガスの改質(温度分布評価)
 図16の構成の改質反応装置(以下、「平面型改質器」と記載する場合がある。)を使用して、模擬バイオガス(CH4/CO2=1)の改質試験を行った。
(1)ペーパー状触媒配列体の作製
 実施例のペーパー状触媒配列体を構成するペーパー状触媒P6~P9(1.25×5cm、厚み:1.5mm)は、以下のように作製したペーパー状多孔質担体Fに対し、含浸法により上記ペーパー状触媒1A、2Aの製法と同様の方法により、Ni又はNi-Mgを担持したものである。表5にペーパー状触媒P6~P9の触媒種、Ni担持量、Ni/Mg(原子比)をまとめて示す。
(ペーパー状多孔質担体Fの作製)
 アルミナ繊維に代えて、アルミナ-シリカ繊維(イビデン社製、イビウール)を使用し、バインダーとしてAl23ゾルに代えて、ZrO2ゾルを使用し、焼成条件を800℃、5hとした以外は、ペーパー状多孔質担体Aと同様の製造方法にて、ペーパー状多孔質担体Fを作製した。
Figure JPOXMLDOC01-appb-T000005
 ペーパー状触媒P6~P9を順番に平面配列して、触媒能が傾斜化した実施例のペーパー状触媒配列体(5×5cm)を得た。なお、P8,P9にNi-Mgを使用したのは、Ni担持量の増加と共に顕著になる炭素析出を抑制するためである。
 また、比較例として、ペーパー状多孔質担体F(5×5cm、厚み:1.5mm)に、Ni担持量:3.8重量%でNiを均一に担持(傾斜化無し)したペーパー状触媒(5×5cm)を使用した。
(2)ペーパー状触媒配列体内の温度分布評価
 作製した実施例(傾斜化あり)のペーパー状触媒配列体及び比較例(傾斜化無し)のペーパー状触媒を図16に示すように配置し、YSZ板で封止した反応器(平面型改質器)を使用して、ペーパー状触媒配列体内(4cm×4cm内)の温度分布を評価する実験を行った。図17(a),(b)に平面型改質器内に配置された実施例のペーパー状触媒配列体及び比較例のペーパー状触媒の断面模式図をしめす。
 図18に実施例のペーパー状触媒配列体に対して、模擬バイオガスを、800℃、GHSV=2880h-1の条件で、P6側からP9側に供給した際のガス流れ方向の温度分布を示す。図中の横軸は、ペーパー状触媒配列体の左端から0.5mmの位置を0とした時のガス入口側からの距離であり、縦軸は、改質反応に起因する温度低下量である。また、図18には実施例(傾斜化あり)のペーパー状触媒配列体と同じ大きさである比較例のペーパー状触媒を用いて同様の評価を行った結果を示している。
 CH4転化率は、実施例及び比較例のいずれの場合も91%であり、平衡論的に計算される転化率(97%)近くまで反応が進行していた。一方で、比較例のペーパー状触媒内の最大温度勾配が86Kcm-1であったのに対し、実施例のペーパー状触媒配列体内に発生する最大温度勾配は、19Kcm-1に低減されていた。
 すなわち、ペーパー状触媒配列体におけるペーパー状触媒の配列を好適化することにより、転化率を落とさずに、平面型反応器内の温度勾配の発生を抑制できることが示された。
(3)耐久性評価
 図19は、図16の平面型反応器にて、実施例のペーパー状触媒配列体を用いて、100時間のメタンのドライリフォーミング試験を行った結果である。図のように、100時間安定して改質が行われており、試験中、燃料と空気のセパレーターとして改質反応場に隣接して配置した厚さ240μmのYSZ板が破壊されることはなかった。また、試験後、YSZ板を取り外してペーパー状触媒配列体を観察したところ、炭素析出は生じていなかった(図20(a)参照)。
 一方、均一に触媒が担持されている比較例のペーパー状触媒で同様の評価を行ったところ、燃料入口側の大きな温度低下に起因して熱応力が発生し、35時間後にYSZ板に割れが発生した。さらに、この温度低下に伴い熱力学的に炭素析出を生じやすい環境となり、炭素の生成が顕著に見られた(図20(b)参照)。
 このように触媒が傾斜化している実施例のペーパー状触媒配列体では、長時間安定的に水素および一酸化炭素を製造することができ、隣接するYSZ板の機械的劣化や破損の抑制に大きく寄与することが示された。
(3-5)SOFCでの評価
(3-5-1)内部改質型SOFC
(1)ペーパー状触媒配列体を備えた電解質支持型SOFCの作製
 アノード材料として、NiO-YSZ(NiO:56重量%)、カソード材料としてLa0.8Sr0.2MnO3-δ(LSM)とYSZ(LSM:50重量%)を使用し、電解質としてのYSZ板(5×5cm、厚み:240μm)を用いた。
 YSZ板にスクリーン印刷でアノード材料、カソード材料を4×4cmで塗布し、所定の条件(アノード:1300℃、3h、カソード:1200℃、5h)で焼成することにより、電解質支持型SOFCを得た。
 この電解質支持型SOFCのアノード側に、図21(a)に示すような構成のペーパー状触媒配列体をアノードと接触するように配置し、実施例の内部改質型SOFCを得た。
 なお、このペーパー状触媒配列体は、上記(3-4)(1)のペーパー状触媒配列体と同一である。
 また、比較例として、図21(b)に示すような構成のペーパー状触媒をアノードと接触するように配置し、比較例の内部改質型SOFCを得た。なお、比較例で用いられたペーパー状触媒は、実施例で用いられたペーパー状触媒配列体と同じ大きさである。
(2)模擬バイオガス供給時の長期安定性試験
 図21に示した構成の内部改質型SOFCシステムを用いて、模擬バイオガスを燃料ガスとした発電実験を行った。なお、燃料ガスの供給は、P6側から行った。
 まず、H2を供給し、ペーパー状触媒を800℃、1時間で還元処理した。次いで、下記条件で模擬バイオガスを供給して燃料ガスの改質及び発電を行い、100mA・cm-2の定電流密度下で電圧劣化率を評価した。
(発電条件)
燃料ガス:バイオガス:(CH4+CO2)、CH4/CO2=1
アノード側流量:CH4:90mL/min、CO2:90mL/min
カソード側:電気炉内の空気に暴露
測定温度:800℃
電流密度:100mA・cm-2
 図22に示すように、比較例の内部改質型SOFCでは、試験開始20時間程度から電圧が著しく低下し、40時間程度で発電することができなくなった。試験後のペーパー状触媒構造体を観察すると、多量の炭素析出が確認された。
 これに対し、触媒が傾斜化しているペーパー触媒配列体を備えた実施例の内部改質型SOFCでは、電圧は安定しており、試験後、ペーパー触媒配列体には炭素析出は見られなかった。
 また、実施例のペーパー状触媒配列体を5cm角のアノード支持型セルのアノード側に隣接して配置し、200mA・cm-2の定電流密度下で同様の長期安定性試験を行ったところ、電圧劣化率1.7%/1000hを達成した。また、600時間の試験後、ペーパー触媒配列体を積層したアノード側に炭素析出は見られなかった。
 以上の結果から、アノードに隣接してペーパー状触媒を配置した実施例の内部改質型SOFCは、従来のSOFCと比較して、模擬バイオガスを燃料ガスとして発電を行っても、安定的に高出力で発電することが可能であることが確認された。
(3-5-2)外部改質型SOFCでの評価
(1)アノード支持型SOFCの作製
 ボタン型アノード支持型ハーフセル(アノード支持体(NiO:YSZ=5.6:4.4)、厚さ:0.8mm、直径:20mm、YSZ電解質厚さ:8μm、佐賀県窯業技術センター製)の電解質側に、ペロブスカイト型カソードペースト及びカソード集電体ペーストを、アノード側にアノード集電体ペーストをスクリーン印刷し、900℃で5時間焼成してアノード支持型ボタンセルを作製した。
(2)発電実験
 図2Bに示した構成の外部改質型SOFCシステムを用いて、模擬バイオガス、又は模擬BDFを燃料ガスとした発電実験を行った。
(2-1)模擬バイオガスによる発電
 模擬バイオガス発電評価用のペーパー状触媒2E(φ20mm)は、0.1mol/LのNi硝酸塩と1.0mol/LMg硝酸塩とを含む溶液に浸漬して触媒担持を行った以外は、上記(3-3)(1)のペーパー状触媒1Eと同じ製法で作製した。表6にペーパー状触媒2Eの構成を示す。
 図2Bにおける改質反応装置10aにおける改質部に、ペーパー状触媒2Eを2枚重ねてセットし、SOFCシステム10bに上記アノード支持型ボタンセルをセットした。
 まず、改質反応装置10aにH2を供給し、ペーパー状触媒を800℃、15時間で還元処理した。次いで、下記発電条件で改質反応装置10aに模擬バイオガスを供給して燃料ガスの改質を行い、改質後のガスを後段のSOFCシステム10bに供給して、電流電圧特性を評価した。また、比較例として、改質反応装置10aにペーパー触媒を使用せずに同様の発電試験を行った。図23Aに模擬バイオガスでの発電試験の結果を示す。
(発電条件)
燃料ガス:バイオガス(CH4+CO2)、CH4/CO2=1
アノード側流量:CH4:20mL/min、CO2:20mL/min
カソード側流量:Air:150mL/min
測定温度:800℃
 図23Aに示されるように800℃、セル電圧0.7Vにおいて、模擬バイオガス供給時に比較例のSOFCでは、0.4Acm-2であったのに対し、実施例のSOFCでは、1.6Acm-2の値を示した。さらに、実施例のSOFCでは、模擬バイオガス供給時、750℃において、1.2Acm-2の高電流密度が得られ、発電効率45%LHV(at Uf = 78%)を達成した。
(2-2)模擬BDFによる発電
 模擬BDF発電評価用のペーパー状触媒として、ペーパー状触媒3E及びペーパー状触媒1Gを作製した。
 ペーパー状触媒3E(φ20mm)は、1.0mol/LのNi硝酸塩と1.0mol/LMg硝酸塩とを含む溶液に浸漬して触媒担持を行った以外は、上記(3-3)(1)のペーパー状触媒1Eと同じ製法で作製した。
 ペーパー状触媒1G(φ20mm)は、YSZ繊維に換えてBaTiO3粉末を用い、1.0mol/Lの塩化ルテニウム溶液に浸漬して触媒担持を行った以外は、上記(3-3)(1)のペーパー状触媒1Eと同じ製法で作製した。表6にペーパー状触媒3E及び1Gの構成をまとめて示す。
 図2Bにおける改質反応装置10aにおける改質部に、ペーパー状触媒1Gを一段目(燃料入口側)に、ペーパー状触媒3Eを二段目(SOFC側)に重ねてセットし、SOFCシステム10bに上記アノード支持型ボタンセルをセットした。
 まず、改質反応装置10aにH2を供給し、ペーパー状触媒を800℃、5時間で還元処理した。次いで、下記発電条件で改質反応装置10aに模擬BDFを供給して燃料ガスの改質を行い、改質後のガスを後段のSOFCシステム10bに供給して、電流電圧特性を評価した。また、参考例として、改質反応装置10aにペーパー触媒を使用せずに同様の発電試験を行った。図23Bに模擬BDFでの発電試験の結果を示す。
(発電条件)
燃料ガス:模擬BDF:パルミチン酸メチルエステル(C17H34O2)とオレイン酸メチルエステル(C19H36O2)の1:1混合液
水蒸気添加量(S/C):2.0
アノード側流量(液流量):模擬BDF:6μL/min、水:12μL/min
カソード側流量:Air:150mL/min
測定温度:800℃
 図23Bに示されるように、パーム油BDFの主成分であるパルミチン酸メチルエステル(C17342)とオレイン酸メチルエステル(C19362)を1:1で混合した加湿模擬BDF供給時(S/C=2.0)に、比較例のSOFCでは、セル電圧0.7Vにおいて、0.4Acm-2であったのに対し、実施例のSOFCでは、1.2Acm-2の値を示した。
 以上の結果から、外部改質器に本発明のペーパー状触媒を使用した、実施例の外部改質型SOFCシステムでは、模擬バイオガスや模擬BDF等の炭化水素を含む燃料ガスの発電を行っても、安定的に高出力で発電することが可能であることが確認された。
Figure JPOXMLDOC01-appb-T000006
 本発明のペーパー状触媒は、炭化水素の改質活性が高く、熱応力破壊に強く、所定の大きさ・形状に成型が容易で、触媒配列時の自由度が高いため、改質器のさらなる高性能化・小型化が容易になる。また、該ペーパー状触媒を複数配列したペーパー状触媒配列体は、サーマルショックによる触媒構造および隣接材料の破壊が起こりづらいため、より安定的に炭化水素の改質を行うことができる。また、本発明のペーパー状触媒またはペーパー状触媒配列体を炭化水素改質触媒として用いた内部改質型固体酸化物形燃料電池は、熱応力破壊および炭素析出による劣化を抑制することができるため、より安定的に発電を行うことができる。

Claims (18)

  1.  無機繊維をペーパー状に成形してなるペーパー状多孔質担体と、該ペーパー状多孔質担体の表面に分散担持された炭化水素に対する改質活性を有する金属触媒とを含み、前記ペーパー状多孔質担体を構成する無機繊維の少なくとも一部がイオン伝導性酸化物繊維であることを特徴とするペーパー状触媒。
  2.  前記ペーパー状多孔質担体において、前記イオン伝導性酸化物繊維の少なくとも一部が互いに接触している請求項1記載のペーパー状触媒。
  3.  前記ペーパー状多孔質担体を構成する無機繊維全体に対する、前記イオン伝導性酸化物繊維の割合が10重量%以上である請求項1又は2に記載のペーパー状触媒。
  4.  前記イオン伝導性酸化物繊維が、安定化ジルコニア繊維を含む請求項1から3のいずれかに記載のペーパー状触媒。
  5.  前記ペーパー状多孔質担体が、アルミナ繊維又はアルミナ-シリカ複合酸化物繊維を含む請求項1から4のいずれかに記載のペーパー状触媒。
  6.  前記ペーパー状多孔質担体を構成する無機繊維が、実質的にイオン伝導性酸化物繊維からなる請求項1に記載のペーパー状触媒。
  7.  前記イオン伝導性酸化物繊維が、安定化ジルコニア繊維である請求項6に記載のペーパー状触媒。
  8.  前記ペーパー状多孔質担体が、前記無機繊維を、CeO2を含むバインダーで結着させて形成されてなる請求項1から7のいずれかに記載のペーパー状触媒。
  9.  前記ペーパー状多孔質担体の空隙率が、75体積%以上95体積%以下である請求項1から8のいずれかに記載のペーパー状触媒。
  10.  前記金属触媒が、Ni及びMgを含む金属触媒である請求項1から9のいずれかに記載のペーパー状触媒。
  11.  請求項1から10のいずれかに記載のペーパー状触媒を複数枚配列したペーパー状触媒配列体であって、
     炭化水素に対する改質能が低いペーパー状触媒から、改質能が高いペーパー状触媒となるように順次配列していることを特徴とするペーパー状触媒配列体。
  12.  ペーパー状触媒の配列が、平面配列である請求項11に記載のペーパー状触媒配列体。
  13.  炭化水素を含む原料ガスと水蒸気又は二酸化炭素との混合ガスを、請求項11又は12に記載のペーパー状触媒配列体における炭化水素に対する改質能が低いペーパー状触媒側から供給し、前記ペーパー状触媒配列体を構成するペーパー状触媒によって順次改質することを特徴とする炭化水素の改質方法。
  14.  前記炭化水素を含む原料ガスが、バイオガス又はバイオディーゼルである請求項13に記載の炭化水素の改質方法。
  15.  固体電解質と、前記固体電解質の一方面に配置されたアノードと、前記固体電解質の他方面に配置されたカソードとを備え、請求項1から10のいずれかに記載のペーパー状触媒又は請求項11又は12に記載のペーパー状触媒配列体が、前記アノードの前段に配置されていることを特徴とする固体酸化物形燃料電池。
  16.  前記ペーパー状触媒又はペーパー状触媒配列体が、アノードと接触して配置されてなる請求項15に記載の固体酸化物形燃料電池。
  17.  前記固体電解質が、前記ペーパー状触媒又はペーパー状触媒配列体におけるペーパー状多孔質担体を構成するイオン伝導性酸化物繊維と同種のイオン伝導性酸化物からなる請求項15又は16に記載の固体酸化物形燃料電池。
  18.  燃料ガスが、バイオガス又はバイオディーゼルである請求項15から17のいずれかに記載の固体酸化物形燃料電池。
PCT/JP2013/070767 2012-08-01 2013-07-31 ペーパー状触媒及びペーパー状触媒配列体並びにペーパー状触媒又はペーパー状触媒配列体を備えた固体酸化物形燃料電池 WO2014021385A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/418,586 US20150263366A1 (en) 2012-08-01 2013-07-31 Paper-structured catalyst, paper-structured catalyst array body, and solid oxide fuel cell provided with paper-structured catalyst or paper-structured catalyst array body
JP2014528197A JP6041162B2 (ja) 2012-08-01 2013-07-31 炭化水素の改質用のペーパー状触媒及びペーパー状触媒配列体並びにペーパー状触媒又はペーパー状触媒配列体を備えた固体酸化物形燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-171248 2012-08-01
JP2012171248 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014021385A1 true WO2014021385A1 (ja) 2014-02-06

Family

ID=50028055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070767 WO2014021385A1 (ja) 2012-08-01 2013-07-31 ペーパー状触媒及びペーパー状触媒配列体並びにペーパー状触媒又はペーパー状触媒配列体を備えた固体酸化物形燃料電池

Country Status (3)

Country Link
US (1) US20150263366A1 (ja)
JP (1) JP6041162B2 (ja)
WO (1) WO2014021385A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170692A1 (ja) * 2014-05-04 2015-11-12 明和工業株式会社 バイオオイルを使用する燃料供給システム及び固体酸化物形燃料電池による発電システム
JP2016185529A (ja) * 2015-03-27 2016-10-27 戸田工業株式会社 水素製造用ペーパー状触媒前駆体及びその製造方法、並びに水素製造用ペーパー状触媒構造体
JP2016185528A (ja) * 2015-03-27 2016-10-27 戸田工業株式会社 水素製造用ペーパー状触媒構造体の製造方法
WO2016203944A1 (ja) * 2015-06-17 2016-12-22 エア・ウォーター株式会社 合成ガスの製造方法および装置
WO2017066949A1 (en) * 2015-10-22 2017-04-27 Kechuang Lin Fuel cell electrode material and apparatuses
JP2017087142A (ja) * 2015-11-10 2017-05-25 戸田工業株式会社 炭化水素改質触媒構造体及びその製造方法、並びに該炭化水素改質触媒構造体を用いた集電体及び固体酸化物形燃料電池
JP2018034081A (ja) * 2016-08-29 2018-03-08 国立大学法人九州大学 ペーパー状触媒およびその製造方法、ペーパー状触媒配列体並びに炭化水素の改質方法
JP2020124704A (ja) * 2019-01-31 2020-08-20 大阪瓦斯株式会社 燃料改質触媒、燃料電池システム及び燃料電池セル構造体
JPWO2019189844A1 (ja) * 2018-03-30 2021-05-13 大阪瓦斯株式会社 燃料電池装置及び燃料電池装置の運転方法
JP2021190208A (ja) * 2020-05-27 2021-12-13 地方独立行政法人東京都立産業技術研究センター 集電材用糸、集電材用糸からなる集電材、及び、集電材を用いた燃料電池システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275849B1 (de) * 2016-07-26 2020-04-08 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Die verwendung eines isolierformkörpers in einem rohrreaktor
CN113351217B (zh) * 2021-07-05 2022-07-01 济南大学 一种萤石型支撑体负载的Ni基纤维催化剂的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822835A (ja) * 1994-02-18 1996-01-23 Westinghouse Electric Corp <We> 炭化水素改質触媒部材構造及び電気化学的発電装置
JP2003519563A (ja) * 2000-01-11 2003-06-24 アクセンタス パブリック リミテッド カンパニー 触媒反応器
JP2008307471A (ja) * 2007-06-14 2008-12-25 F C C:Kk ガス改質ペーパー触媒及びその製造方法
JP2011092825A (ja) * 2009-10-28 2011-05-12 F C C:Kk ペーパー触媒及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019515A1 (fr) * 1999-09-09 2001-03-22 Hitachi Zosen Corporation Catalyseur a electrode de decharge ou support de catalyseur
KR100569239B1 (ko) * 2003-10-25 2006-04-07 한국과학기술연구원 이산화탄소와 탄화수소의 내부개질반응에 의해 전기와 합성가스를 동시에 생성하는 고체산화물 연료전지, 및 이를 이용한 전기화학적 전환반응시스템
JP4452097B2 (ja) * 2004-03-03 2010-04-21 出光興産株式会社 酸化セリウム成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822835A (ja) * 1994-02-18 1996-01-23 Westinghouse Electric Corp <We> 炭化水素改質触媒部材構造及び電気化学的発電装置
JP2003519563A (ja) * 2000-01-11 2003-06-24 アクセンタス パブリック リミテッド カンパニー 触媒反応器
JP2008307471A (ja) * 2007-06-14 2008-12-25 F C C:Kk ガス改質ペーパー触媒及びその製造方法
JP2011092825A (ja) * 2009-10-28 2011-05-12 F C C:Kk ペーパー触媒及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170692A1 (ja) * 2014-05-04 2015-11-12 明和工業株式会社 バイオオイルを使用する燃料供給システム及び固体酸化物形燃料電池による発電システム
JPWO2015170692A1 (ja) * 2014-05-04 2017-04-20 明和工業株式会社 バイオオイルを使用する燃料供給システム及び固体酸化物形燃料電池による発電システム
JP2016185529A (ja) * 2015-03-27 2016-10-27 戸田工業株式会社 水素製造用ペーパー状触媒前駆体及びその製造方法、並びに水素製造用ペーパー状触媒構造体
JP2016185528A (ja) * 2015-03-27 2016-10-27 戸田工業株式会社 水素製造用ペーパー状触媒構造体の製造方法
WO2016203944A1 (ja) * 2015-06-17 2016-12-22 エア・ウォーター株式会社 合成ガスの製造方法および装置
WO2017066949A1 (en) * 2015-10-22 2017-04-27 Kechuang Lin Fuel cell electrode material and apparatuses
JP2017087142A (ja) * 2015-11-10 2017-05-25 戸田工業株式会社 炭化水素改質触媒構造体及びその製造方法、並びに該炭化水素改質触媒構造体を用いた集電体及び固体酸化物形燃料電池
JP2018034081A (ja) * 2016-08-29 2018-03-08 国立大学法人九州大学 ペーパー状触媒およびその製造方法、ペーパー状触媒配列体並びに炭化水素の改質方法
JPWO2019189844A1 (ja) * 2018-03-30 2021-05-13 大阪瓦斯株式会社 燃料電池装置及び燃料電池装置の運転方法
JP7321999B2 (ja) 2018-03-30 2023-08-07 大阪瓦斯株式会社 燃料電池装置及び燃料電池装置の運転方法
JP2020124704A (ja) * 2019-01-31 2020-08-20 大阪瓦斯株式会社 燃料改質触媒、燃料電池システム及び燃料電池セル構造体
JP7391683B2 (ja) 2019-01-31 2023-12-05 大阪瓦斯株式会社 燃料改質触媒、燃料電池システム及び燃料電池セル構造体
JP2021190208A (ja) * 2020-05-27 2021-12-13 地方独立行政法人東京都立産業技術研究センター 集電材用糸、集電材用糸からなる集電材、及び、集電材を用いた燃料電池システム
JP6994723B2 (ja) 2020-05-27 2022-01-14 地方独立行政法人東京都立産業技術研究センター 集電材用糸、集電材用糸からなる集電材、及び、集電材を用いた燃料電池システム

Also Published As

Publication number Publication date
JP6041162B2 (ja) 2016-12-07
JPWO2014021385A1 (ja) 2016-07-21
US20150263366A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6041162B2 (ja) 炭化水素の改質用のペーパー状触媒及びペーパー状触媒配列体並びにペーパー状触媒又はペーパー状触媒配列体を備えた固体酸化物形燃料電池
JP5396386B2 (ja) 内部改質固体酸化物型燃料電池
US20120121999A1 (en) Cell of a high temperature fuel cell with internal reforming of hydrocarbons
JP4461088B2 (ja) 燃料電池用電極、膜電極複合体及び燃料電池
US8349521B2 (en) Membrane electrode assembly
TW201117461A (en) Internal reforming anode for solid oxide fuel cells
JP5858430B2 (ja) 固体酸化物形燃料電池用アノード支持体、アノード支持型ハーフセル及びアノード支持型固体酸化物形燃料電池単セル並びにアノード支持型ハーフセルの製造方法
Nguyen et al. Development of paper-structured catalyst for application to direct internal reforming solid oxide fuel cell fueled by biogas
JP2006351405A (ja) Sofc燃料極およびその製造方法
JP2010529591A (ja) 原子層堆積によってチューンされた固体酸化物形燃料電池構成要素
Shiratori et al. structured catalyst for the steam reforming of biodiesel fuel
CN111029595A (zh) 固体氧化物燃料电池催化剂的制备方法
Shiratori et al. Performance enhancement of biodiesel fueled SOFC using paper-structured catalyst
Shimada et al. Electrochemical behaviors of nickel/yttria-stabilized zirconia anodes with distribution controlled yttrium-doped barium zirconate by ink-jet technique
EP3488482B1 (en) Intermediate-temperature fuel cell tailored for efficient utilization of methane
Wang et al. A direct n-butane solid oxide fuel cell using Ba (Zr0. 1Ce0. 7Y0. 1Yb0. 1) 0.9 Ni0. 05Ru0. 05O3− δ perovskite as the reforming layer
JP4625658B2 (ja) 燃料電池用電極、膜電極複合体及び燃料電池
Arifin et al. Effects of Sn doping on the manufacturing, performance and carbon deposition of Ni/ScSZ cells in solid oxide fuel cells
CN111082070A (zh) 固体氧化物燃料电池的阳极
CN111029593A (zh) 固体氧化物燃料电池
JP6828877B2 (ja) ペーパー状触媒およびその製造方法、ペーパー状触媒配列体並びに炭化水素の改質方法
JP5110835B2 (ja) 燃料電池用触媒電極、それを用いた、膜・電極接合体、及び燃料電池
JP4037814B2 (ja) 燃料電池用膜−電極接合体及び燃料電池
JP4496119B2 (ja) 燃料電池用プロトン伝導性膜、膜電極複合体及び燃料電池
JP2021170447A (ja) 燃料電池セル積層構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528197

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14418586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825538

Country of ref document: EP

Kind code of ref document: A1