WO2014021290A1 - 非水電解質電池用セパレータ及び非水電解質電池 - Google Patents

非水電解質電池用セパレータ及び非水電解質電池 Download PDF

Info

Publication number
WO2014021290A1
WO2014021290A1 PCT/JP2013/070538 JP2013070538W WO2014021290A1 WO 2014021290 A1 WO2014021290 A1 WO 2014021290A1 JP 2013070538 W JP2013070538 W JP 2013070538W WO 2014021290 A1 WO2014021290 A1 WO 2014021290A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
adhesive
porous layer
electrolyte battery
resin
Prior art date
Application number
PCT/JP2013/070538
Other languages
English (en)
French (fr)
Inventor
西川 聡
吉冨 孝
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to KR20157001087A priority Critical patent/KR20150032295A/ko
Priority to CN201380040432.9A priority patent/CN104508864B/zh
Priority to JP2014510334A priority patent/JP5643465B2/ja
Priority to US14/413,521 priority patent/US9905825B2/en
Priority to KR1020167020461A priority patent/KR102137131B1/ko
Publication of WO2014021290A1 publication Critical patent/WO2014021290A1/ja
Priority to US15/866,590 priority patent/US10622611B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a nonaqueous electrolyte battery and a nonaqueous electrolyte battery.
  • Non-aqueous secondary batteries represented by lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders. Furthermore, in recent years, these batteries have been studied for application to automobiles and the like because of their high energy density.
  • the exterior of non-aqueous secondary batteries has been simplified.
  • a battery can made of an aluminum can has been developed in place of the initially used stainless steel battery can, and a soft pack exterior made of an aluminum laminate pack is currently being developed.
  • a porous layer made of a polyvinylidene fluoride resin (hereinafter, also referred to as “adhesive porous layer”) is formed on a polyolefin microporous film which is a conventional separator. It has been proposed (see, for example, Patent Document 1).
  • the adhesive porous layer has a function as an adhesive that satisfactorily bonds the electrode and the separator when the electrode is hot-pressed on the electrode. Therefore, the adhesive porous layer contributes to the improvement of the cycle life of the soft pack battery.
  • an adhesive porous layer is formed on a porous substrate such as a polyolefin microporous membrane (hereinafter also simply referred to as a substrate) by coating
  • unevenness associated with coating in other words, coating
  • the substrate usually has variations in thickness.
  • the adhesiveness with the electrode also tends to vary.
  • Such adhesive variation is directly related to the non-uniformity of ion permeability in the battery. Therefore, it is easy for ions to permeate between the part having the desired adhesion and the part having reduced adhesion in the separator. Is different.
  • film deterioration tends to proceed at a portion where ion permeation is likely to occur, which causes a significant decrease in long-term cycle characteristics of the battery as a whole.
  • the present invention has been made in view of the above, and is excellent in adhesiveness with an electrode, improves the cycle characteristics of the battery, and improves the cycle characteristics of the battery, and non-aqueous stably expresses the excellent cycle characteristics. It aims at providing an electrolyte battery, and makes it a subject to achieve this objective.
  • ⁇ 3> The non-aqueous electrolyte battery separator according to ⁇ 1> or ⁇ 2>, wherein the adhesive resin is a polyvinylidene fluoride resin.
  • the polyvinylidene fluoride-based resin has a weight average molecular weight of 600,000 to 3,000,000.
  • ⁇ 5> The separator for a nonaqueous electrolyte battery according to any one of ⁇ 1> to ⁇ 4>, wherein an elongation in the MD direction or TD direction of the porous substrate is 50% or more and 200% or less.
  • ⁇ 6> The separator for a nonaqueous electrolyte battery according to any one of ⁇ 1> to ⁇ 5>, wherein the puncture strength of the porous substrate is 200 g or more and 800 g or less.
  • the adhesive porous layer contains a filler, and a mass ratio of the filler to the adhesive resin (mass of filler / mass of adhesive resin) is 0.01 or more and 0.05 or less.
  • ⁇ 1>- ⁇ 6> The separator for a nonaqueous electrolyte battery according to any one of ⁇ 1> to ⁇ 6>.
  • a separator for a non-aqueous electrolyte battery that is excellent in adhesiveness with an electrode and improves the cycle characteristics of the battery. Moreover, according to this invention, the nonaqueous electrolyte battery which expresses the outstanding cycling characteristics stably is provided.
  • the nonaqueous electrolyte battery separator of the present invention and the nonaqueous electrolyte battery using the same will be described in detail.
  • the numerical value range indicated by “ ⁇ ” means a numerical range including an upper limit value and a lower limit value.
  • the “MD direction” is a so-called “machine direction” and means the long direction of the separator manufactured in a long shape.
  • the “TD direction” is a so-called “width direction” and means a direction orthogonal to the long direction of the separator manufactured in a long shape.
  • the separator for a non-aqueous electrolyte battery of the present invention is provided with a porous substrate and an adhesive porous layer provided on one or both sides of the porous substrate and containing an adhesive resin.
  • the ratio of the standard deviation of the basis weight of the adhesive porous layer to the average value [g / m 2 ] (standard deviation / average value) is 0.3 or less.
  • the basis weight of the adhesive porous layer can be regarded as the basis weight of the adhesive resin in the adhesive porous layer when the adhesive porous layer is composed only of the adhesive resin.
  • the adhesive porous layer can be regarded as a mass of a solid content constituting the adhesive porous layer.
  • the basis weight (g / m 2 ) of the adhesive porous layer or adhesive resin is the coating amount (g / m 2 ) after drying when the adhesive porous layer is provided by coating.
  • ions are conducted mainly through the pores in the separator. Therefore, if there is variation in the thickness of the adhesive porous layer, the path length of each hole through which ions pass.
  • the (distance) is long and short, and the ion permeability throughout the separator cannot be kept uniform.
  • film deterioration easily proceeds in regions that easily transmit ions, and as a result, the cycle characteristics of the entire battery may be adversely affected. is there.
  • One cause of the quality of ion permeability is variation in the basis weight of the adhesive porous layer.
  • the adhesiveness of the adhesive porous layer in particular, when the adhesiveness with the electrode is improved and a battery is constructed, the cycle characteristics over a long period of time are dramatically improved. Further, by adjusting the variation in the basis weight of the adhesive porous layer within the range of the present invention, it is possible to reduce defects due to the slit when slitting the separator to a desired size, and to improve the manufacturing yield.
  • the ratio represented by “(standard deviation of basis weight) / (average value of basis weight)” of the adhesive resin layer is more preferably 0.2 or less, further preferably 0.1 or less, and zero ( Ideally, there should be no variation.
  • the ratio of the adhesive porous layer represented by “(standard deviation of basis weight) / (average value of basis weight)” was determined by obtaining the basis weight of the adhesive porous layer as follows. It is calculated using the average value and standard deviation obtained from (g / m 2 ).
  • the basis weight of the adhesive porous layer is measured as follows. That is, first, 10 sample pieces obtained by cutting the separator into a size of 10 cm ⁇ 10 cm are prepared, and the basis weight of each sample piece is measured. Subsequently, the adhesive porous layer (coating layer) provided in each sample piece is dissolved and removed with a solvent, and the basis weight of each porous substrate is measured. Then, the basis weight of the adhesive porous layer of each sample piece is required by subtracting the basis weight of the porous substrate from the basis weight of the separator.
  • standard deviation and average value mean general standard deviation and average value, and are defined as follows. That is, when there is a population composed of N pieces of data x 1 , x 2 ,..., X N , the “average value” is an arithmetic average (population average) of the population as shown in the following formula: m). That is, in the present invention, the average value of the basis weight of the adhesive porous layer can be obtained by summing the 10 basis weight values measured for a certain separator and dividing the result by 10.
  • the unbiased variance ⁇ 2 is defined as follows:
  • the positive square root ⁇ of this unbiased variance ⁇ 2 is defined as “standard deviation”. That is, in the present invention, the standard deviation of the basis weight of the adhesive porous layer is obtained by calculating the square root by obtaining the unbiased variance ⁇ 2 by applying the basis weight and average value of 10 points measured for a certain separator to the above formula. can get.
  • the physical properties of the porous substrate for example, the variation in the thickness of the porous substrate.
  • a method of selecting appropriate physical properties such as elongation, puncture strength, tensile strength, and Young's modulus of the porous substrate, or when the filler is included in the adhesive porous layer, The method of adjusting etc. are mentioned.
  • the ratio (thickness variation) of the standard deviation of the thickness of the porous substrate to the average value of the thickness of the porous substrate is obtained from the obtained thickness ( ⁇ m) as follows. Calculated using the average value and standard deviation.
  • the thickness of the porous substrate is measured as follows. That is, the porous substrate was cut into a size of 10 cm ⁇ 10 cm, and 10 sample pieces were prepared. For each sample piece, the thickness of the central part in the width direction (TD) is measured at 10 points at intervals of 1 cm in the length direction (MD) to obtain a total thickness of 100 points. Based on the thickness data of 100 points, the average value and the standard deviation are calculated in the same manner as in the case of the basis weight.
  • a contact-type thickness meter for example, LITEMASIC manufactured by Mitutoyo Corporation
  • a cylindrical terminal having a diameter of 5 mm is used for the measurement terminal, and the load is adjusted so that a load of 7 g is applied during the measurement.
  • the porous substrate when the value represented by “(standard deviation of thickness) / (average value of thickness)” is 0.02 or less, there is a thickness variation in the surface direction of the layer provided on the substrate. Since it is kept small, the path length (distance) of the hole through which ions pass becomes more uniform. Thereby, the in-plane ion permeability can be made uniform, and the cycle characteristics when the battery is constructed can be stably maintained over a long period of time.
  • the ratio represented by “(thickness standard deviation) / (average thickness)” is more preferably 0.01 or less, further preferably 0.005 or less, and ideally zero (no variation). .
  • the method for controlling the variation in the thickness of the porous substrate is not particularly limited. For example, a commercially available porous substrate that satisfies the above-described thickness condition may be selected.
  • the porous substrate in the present invention means a substrate having pores or voids therein.
  • a substrate include a microporous film, a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet, or one or more other porous layers laminated on the microporous film or the porous sheet.
  • Composite porous sheet and the like are examples of such a substrate.
  • a microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.
  • the material constituting the porous substrate may be either an organic material or an inorganic material as long as it is an electrically insulating material.
  • the material constituting the porous substrate is preferably a thermoplastic resin from the viewpoint of imparting a shutdown function to the porous substrate.
  • the shutdown function refers to a function of preventing the thermal runaway of the battery by blocking the movement of ions by dissolving the constituent materials and closing the pores of the porous base material when the battery temperature increases.
  • the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
  • a polyolefin microporous membrane As the porous substrate using polyolefin, a polyolefin microporous membrane is suitable.
  • the polyolefin microporous membrane those having sufficient mechanical properties and ion permeability can be suitably used from among polyolefin microporous membranes applied to conventional separators for nonaqueous electrolyte batteries.
  • the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of exhibiting a shutdown function, and the polyethylene content is preferably 95% by mass or more.
  • a polyolefin microporous film containing polyethylene and polypropylene is suitable from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
  • a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one layer.
  • Such a microporous membrane preferably contains 95% by mass or more of polyethylene and 5% by mass or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
  • the polyolefin microporous membrane has a laminated structure of two or more layers, and at least one layer contains polyethylene and at least one layer contains a polyolefin microporous membrane having a structure containing polypropylene. .
  • the polyolefin contained in the polyolefin microporous membrane preferably has a weight average molecular weight of 100,000 to 5,000,000. When the weight average molecular weight is 100,000 or more, sufficient mechanical properties can be secured. On the other hand, when the weight average molecular weight is 5 million or less, the shutdown characteristics are good and the film can be easily formed.
  • the polyolefin microporous membrane can be produced, for example, by the following method. That is, (i) the molten polyolefin resin is extruded from a T-die to form a sheet, (ii) the sheet is crystallized, (iii) stretched, and (iv) the stretched sheet is heat treated. Thus, a method of forming a microporous film can be mentioned.
  • a polyolefin resin is melted together with a plasticizer such as liquid paraffin, extruded from a T-die, cooled to form a sheet, (ii) the sheet is stretched, iii) A method of forming a microporous film by extracting a plasticizer from the stretched sheet and further (iv) heat-treating it may be mentioned.
  • a plasticizer such as liquid paraffin
  • porous sheet made of a fibrous material examples include polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene; heat-resistant polymers such as aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide; And the like, or a porous sheet made of a mixture of the fibrous materials.
  • a composite porous sheet the structure which laminated
  • a composite porous sheet is preferable in that a further function can be added by the functional layer.
  • the functional layer for example, from the viewpoint of imparting heat resistance, a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and an inorganic filler can be adopted.
  • the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone and polyetherimide.
  • a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be suitably used.
  • a method of applying a functional layer to a microporous membrane or a porous sheet a method of bonding the microporous membrane or porous sheet and the functional layer with an adhesive, a microporous membrane or a porous layer Examples thereof include a method of thermocompression bonding the sheet and the functional layer.
  • the puncture strength As described above, from the viewpoint of adjusting the ratio of the standard deviation of the basis weight of the adhesive resin to the average value of the basis weight of the adhesive resin to a range of 0.3 or less, for example, the elongation of the porous substrate, the puncture strength The tensile strength and Young's modulus are preferably adjusted to the following ranges.
  • the elongation in the MD direction or TD direction of the porous substrate is preferably 50% or more and 200% or less.
  • the lower limit is more preferably 80% or more, still more preferably 100% or more.
  • the upper limit is preferably 180% or less, more preferably 150% or less.
  • the puncture strength of the porous substrate is preferably 200 g or more and 800 g or less.
  • the lower limit is more preferably 250 g or more, and still more preferably 300 g or more.
  • the upper limit is preferably 700 g or less, more preferably 600 g or less.
  • the tensile strength in the MD direction or TD direction of the porous substrate is preferably 1 N / cm or more and 25 N / cm or less.
  • the lower limit is more preferably 3 N / cm or more, and further preferably 5 N / cm or more.
  • the upper limit is preferably 22 N / cm or less, more preferably 20 N / cm or less.
  • the Young's modulus of the porous substrate is preferably 800 MPa or more and 5000 MPa or less.
  • the lower limit is more preferably 900 MPa or more, and still more preferably 1000 MPa or more.
  • the upper limit is preferably 4000 MPa or less, and preferably 3000 MPa or less.
  • the Young's modulus is the amount of elastic deformation when a force is applied within the range showing elasticity, that is, the stress required per unit strain. For example, a stress-strain curve in which the vertical axis is stressed and the horizontal axis is strained This corresponds to the inclination of the straight line portion.
  • the film thickness (average value) of the porous substrate is preferably in the range of 5 ⁇ m to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
  • the Gurley value (JIS P8117) of the porous substrate is preferably in the range of 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining sufficient ion permeability.
  • the adhesive porous layer in the present invention has a large number of micropores inside and has a porous structure in which these micropores are connected to each other, allowing gas or liquid to pass from one surface to the other. It is the layer that became.
  • the porous structure of the adhesive porous layer is an important technical element.
  • the adhesive porous layer is provided as the outermost layer of the separator on one side or both sides of the porous substrate, and can be adhered to the electrode by this adhesive porous layer. That is, the adhesive porous layer is a layer that can adhere the separator to the electrode when hot-pressed with the separator and the electrode overlapped.
  • the separator for nonaqueous electrolyte batteries of the present invention has an adhesive porous layer only on one side of the porous substrate, the adhesive porous layer is bonded to either the positive electrode or the negative electrode.
  • the separator for nonaqueous electrolyte batteries of this invention has an adhesive porous layer on both sides of the said porous base material, an adhesive porous layer is adhere
  • the adhesive porous layer is preferable not only on one side of the porous base material but also on both sides in terms of excellent battery cycle characteristics. This is because the adhesive porous layer is on both surfaces of the porous substrate, so that both surfaces of the separator are well bonded to both electrodes via the adhesive porous layer.
  • the coating amount (average weight per unit area) of the adhesive porous layer is the amount on one side of the porous substrate.
  • 0.5 g / m 2 to 1.5 g / m 2 is preferable, and 0.7 g / m 2 to 1.3 g / m 2 is more preferable.
  • the coating amount is 0.5 g / m 2 or more, the adhesion with the electrode is also improved. Thus, the cycle characteristics of the battery are excellent.
  • the coating amount is 1.5 g / m 2 or less, it is easy to suppress variation in the coating amount of the adhesive porous layer within the aforementioned range, and good ion permeability is ensured, and the load on the battery is reduced. Good characteristics.
  • the difference between the coating amount on one side and the coating amount on the other side is 20% with respect to the total coating amount on both sides.
  • the following is preferable. If it is 20% or less, the separator is difficult to curl. As a result, the handling property is good and the problem that the cycle characteristics are deteriorated hardly occurs.
  • the thickness of the adhesive porous layer is preferably 0.3 ⁇ m to 5 ⁇ m on one side of the porous substrate.
  • the thickness is 0.3 ⁇ m or more, the coating amount variation of the adhesive porous layer can be easily suppressed within the above-described range, and the adhesiveness to the electrode becomes better. Thus, the cycle characteristics of the battery are good.
  • the thickness is 5 ⁇ m or less, better ion permeability is ensured and the load characteristics of the battery are excellent.
  • the thickness of the adhesive porous layer is more preferably 0.5 ⁇ m to 5 ⁇ m, still more preferably 1 ⁇ m to 2 ⁇ m on one side of the porous substrate.
  • the adhesive porous layer preferably has a sufficiently porous structure from the viewpoint of ion permeability.
  • the porosity is preferably 30% to 60%.
  • the porosity is 30% or more, the ion permeability is good and the battery characteristics are more excellent.
  • the porosity is 60% or less, sufficient mechanical properties are obtained such that the porous structure is not crushed when bonded to the electrode by hot pressing.
  • the porosity is 60% or less, the surface porosity becomes low, and the area occupied by the adhesive resin (preferably polyvinylidene fluoride resin) increases, so that a better adhesive force can be secured. it can.
  • the porosity of the adhesive porous layer is more preferably in the range of 30 to 50%.
  • the adhesive porous layer preferably has an average pore size of 1 nm to 100 nm.
  • the average pore size of the adhesive porous layer is 100 nm or less, a porous structure in which uniform pores are uniformly dispersed can be easily obtained, and the adhesion points with the electrode can be evenly dispersed. Sex is obtained. In that case, the movement of ions is also uniform, better cycle characteristics can be obtained, and better load characteristics can be obtained.
  • the average pore diameter is desirably as small as possible from the viewpoint of uniformity, but it is practically difficult to form a porous structure smaller than 1 nm.
  • the resin for example, polyvinylidene fluoride resin
  • the resin may swell. If the average pore diameter is too small, the pores are blocked by swelling and the ion permeability is impaired. It is. From this point of view.
  • the average pore diameter is preferably 1 nm or more.
  • the average pore size of the adhesive porous layer is more preferably 20 nm to 100 nm.
  • the fibril diameter of the polyvinylidene fluoride resin in the adhesive porous layer is preferably in the range of 10 nm to 1000 nm from the viewpoint of cycle characteristics.
  • the adhesive porous layer in the present invention contains at least an adhesive resin, and preferably contains a filler. Moreover, the adhesive porous layer can be constituted by using other components as required.
  • the adhesive resin contained in the adhesive porous layer is not particularly limited as long as it can adhere to the electrode.
  • the adhesive porous layer may contain only one type of adhesive resin or two or more types.
  • the adhesive resin is preferably a polyvinylidene fluoride resin from the viewpoint of adhesiveness with the electrode.
  • the polyvinylidene fluoride resin a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride); a copolymer of vinylidene fluoride and another copolymerizable monomer (polyvinylidene fluoride copolymer); a mixture thereof ;
  • the monomer copolymerizable with vinylidene fluoride include tetrafluoroethylene, hexafluoropropylene (HFP), trifluoroethylene, trichloroethylene, vinyl fluoride, and the like, and one kind or two or more kinds can be used.
  • the polyvinylidene fluoride resin is obtained by emulsion polymerization or suspension polymerization.
  • a copolymer obtained by copolymerizing at least vinylidene fluoride and hexafluoropropylene is preferable from the viewpoint of adhesion to an electrode, and moreover, a structural unit derived from vinylidene fluoride and a mass standard And more preferably 0.1 to 5 mol% (preferably 0.5 to 2 mol%) of a hexafluoropropylene-derived structural unit.
  • the polyvinylidene fluoride resin preferably contains a resin containing 98 mol% or more of vinylidene fluoride as a structural unit. When 98 mol% or more of vinylidene fluoride is contained, sufficient mechanical properties and heat resistance can be ensured even under severe hot press conditions.
  • the adhesive resin preferably has a weight average molecular weight (Mw) in the range of 600,000 to 3,000,000.
  • Mw weight average molecular weight
  • the lower limit of the weight average molecular weight is more preferably 700,000 or more, and even more preferably 800,000 or more.
  • the upper limit of the weight average molecular weight is preferably 2 million or less, and more preferably 1.5 million or less.
  • the weight average molecular weight (Dalton) of the adhesive resin is a molecular weight measured by gel permeation chromatography (hereinafter also referred to as GPC) under the following conditions and expressed in terms of polystyrene.
  • GPC gel permeation chromatography
  • the degree of swelling of the resin contained in the adhesive porous layer varies depending on the type of resin and the composition of the electrolytic solution.
  • a polyvinylidene fluoride-based resin containing a large amount of a copolymer component tends to swell, whereas a polyvinylidene fluoride-based resin containing 98 mol% or more of vinylidene fluoride is less likely to swell.
  • Polyvinylidene fluoride-based resins have a high cyclic carbonate content such as ethylene carbonate and propylene carbonate, and are likely to swell in electrolytes having a high dielectric constant. Polyvinylidene fluoride-based resins containing 98 mol% or more of vinylidene fluoride are It is suitable because it is relatively difficult to swell.
  • the adhesive porous layer may contain a filler made of an inorganic material or an organic material.
  • the adhesive porous layer contains a filler, the slipperiness and heat resistance of the separator are improved.
  • the inorganic filler include metal oxides such as alumina and metal hydroxides such as magnesium hydroxide.
  • an organic filler an acrylic resin etc. are mentioned, for example.
  • the mass ratio of the filler to the adhesive resin is preferably 0.01 or more and 0.05 or less.
  • the separator for a nonaqueous electrolyte battery of the present invention preferably has a total film thickness of 5 ⁇ m to 35 ⁇ m from the viewpoint of mechanical strength and energy density when used as a battery.
  • the porosity of the separator for a nonaqueous electrolyte battery of the present invention is preferably 30% to 60% from the viewpoint of mechanical strength, handling properties, and ion permeability.
  • the Gurley value (JIS P8117) of the nonaqueous electrolyte battery separator of the present invention is preferably 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of a good balance between mechanical strength and membrane resistance.
  • the separator for a nonaqueous electrolyte battery of the present invention has a difference between the Gurley value of the porous substrate and the Gurley value of the separator provided with the adhesive porous layer on the porous substrate from the viewpoint of ion permeability. 300 seconds / 100 cc or less, more preferably 150 seconds / 100 cc or less, and even more preferably 100 seconds / 100 cc or less.
  • Membrane resistance of the separator for a nonaqueous electrolyte battery of the present invention from the viewpoint of the load characteristics of the battery, it is preferable that 1ohm ⁇ cm 2 ⁇ 10ohm ⁇ cm 2.
  • the membrane resistance is a resistance value when the separator is impregnated with an electrolytic solution, and is measured by an alternating current method.
  • the above numerical values are values measured at 20 ° C. using 1 M LiBF 4 -propylene carbonate / ethylene carbonate (mass ratio 1/1) as the electrolytic solution.
  • the curvature of the separator for a nonaqueous electrolyte battery of the present invention is preferably 1.5 to 2.5 from the viewpoint of ion permeability.
  • the separator for a non-aqueous electrolyte battery of the present invention is formed by, for example, applying a coating liquid containing an adhesive resin such as a polyvinylidene fluoride resin on a porous substrate to form a coating layer. It is manufactured by a method in which the adhesive porous layer is integrally formed on the porous substrate by solidifying the resin.
  • an adhesive porous layer is formed using a polyvinylidene fluoride resin will be described.
  • the adhesive porous layer using the polyvinylidene fluoride resin as the adhesive resin can be suitably formed by, for example, the following wet coating method.
  • the wet coating method includes (i) a step of dissolving a polyvinylidene fluoride resin in an appropriate solvent to prepare a coating solution, (ii) a step of applying this coating solution to a porous substrate, (iii) By immersing the porous base material in an appropriate coagulating liquid, a step of solidifying the polyvinylidene fluoride resin while inducing phase separation, (iv) a water washing step, and (v) a drying step are performed to obtain a porous material.
  • This is a film forming method for forming a porous layer on a substrate.
  • the details of the wet coating method suitable for the present invention are as follows.
  • Solvents for dissolving the polyvinylidene fluoride resin used for preparing the coating liquid include polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylformamide. Preferably used. From the viewpoint of forming a good porous structure, it is preferable to mix a phase separation agent that induces phase separation in addition to a good solvent. Examples of the phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
  • the phase separation agent is preferably added in a range that can ensure a viscosity suitable for coating.
  • the solvent is preferably a mixed solvent containing 60% by mass or more of a good solvent and 40% by mass or less of a phase separation agent from the viewpoint of forming a good porous structure.
  • the coating liquid preferably contains a polyvinylidene fluoride resin at a concentration of 3% by mass to 10% by mass from the viewpoint of forming a good porous structure. What is necessary is just to mix or dissolve in a coating liquid, when making an adhesive porous layer contain a filler and another component.
  • the coagulation liquid is generally composed of a good solvent used for preparing the coating liquid, a phase separation agent, and water. It is preferable in production that the mixing ratio of the good solvent and the phase separation agent is adjusted to the mixing ratio of the mixed solvent used for dissolving the polyvinylidene fluoride resin.
  • the water concentration is suitably 40% by mass to 90% by mass from the viewpoint of formation of a porous structure and productivity.
  • the conventional coating method such as Meyer bar, die coater, reverse roll coater or gravure coater may be applied to the coating liquid on the porous substrate.
  • the adhesive porous layer is formed on both surfaces of the porous substrate, it is preferable from the viewpoint of productivity to apply the coating liquid to both surfaces simultaneously on both surfaces.
  • the adhesive porous layer can be produced by a dry coating method other than the wet coating method described above.
  • the dry coating method refers to, for example, coating a porous substrate with a coating liquid containing a polyvinylidene fluoride resin and a solvent, and drying the coating layer to volatilize and remove the solvent. It is a method of obtaining a layer.
  • the wet coating method is preferred in that a good porous structure can be obtained.
  • the separator for a non-aqueous electrolyte battery of the present invention is produced by a method in which an adhesive porous layer is produced as an independent sheet, and this adhesive porous layer is laminated on a porous substrate and combined by thermocompression bonding or an adhesive. Can also be manufactured.
  • a method for producing the adhesive porous layer as an independent sheet a coating liquid containing a resin is applied onto a release sheet, and the above-mentioned wet coating method or dry coating method is applied to form the adhesive porous layer.
  • the method of forming and peeling an adhesive porous layer from a peeling sheet is mentioned.
  • the non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery that obtains an electromotive force by doping or dedoping lithium, and includes a positive electrode, a negative electrode, and the separator for a non-aqueous electrolyte battery of the present invention described above.
  • the dope means occlusion, support, adsorption, or insertion, and means a phenomenon in which lithium ions enter the active material of an electrode such as a positive electrode.
  • the nonaqueous electrolyte battery has a structure in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is impregnated with an electrolytic solution.
  • the nonaqueous electrolyte battery of the present invention is suitable for a nonaqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
  • the nonaqueous electrolyte battery of the present invention is provided with the above-described separator for nonaqueous electrolyte batteries of the present invention as a separator, so that the adhesiveness between the electrode and the separator is excellent, and the yield in the manufacturing process is high. It also has excellent retention. Therefore, the nonaqueous electrolyte battery of the present invention exhibits stable cycle characteristics.
  • the positive electrode can have a structure in which an active material layer containing a positive electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the positive electrode active material include lithium-containing transition metal oxides. Specifically, LiCoO 2 , LiNiO 2 , LiMn 1/2 Ni 1/2 O 2 , LiCo 1/3 Mn 1/3 Ni 1 / 3 O 2, LiMn 2 O 4 , LiFePO 4, LiCo 1/2 Ni 1/2 O 2, LiAl 1/4 Ni 3/4 O 2 and the like.
  • the binder resin include polyvinylidene fluoride resins and styrene-butadiene copolymers.
  • the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • the current collector include aluminum foil, titanium foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m.
  • the separator when the separator includes an adhesive porous layer containing a polyvinylidene fluoride resin, and the adhesive porous layer is disposed on the positive electrode side, the polyvinylidene fluoride resin has oxidation resistance. Since it is excellent, it is easy to apply positive electrode active materials such as LiMn 1/2 Ni 1/2 O 2 and LiCo 1/3 Mn 1/3 Ni 1/3 O 2 that can be operated at a high voltage of 4.2 V or more. is there.
  • the negative electrode may have a structure in which an active material layer including a negative electrode active material and a binder resin is formed on a current collector.
  • the active material layer may further contain a conductive additive.
  • the negative electrode active material include materials that can occlude lithium electrochemically, and specifically include carbon materials, silicon, tin, aluminum, wood alloys, and the like.
  • the binder resin include polyvinylidene fluoride resins and styrene-butadiene copolymers.
  • the conductive aid include carbon materials such as acetylene black, ketjen black, and graphite powder.
  • Examples of the current collector include copper foil, nickel foil, and stainless steel foil having a thickness of 5 ⁇ m to 20 ⁇ m. Moreover, it may replace with said negative electrode and may use metal lithium foil as a negative electrode.
  • the electrolytic solution is a solution in which a lithium salt is dissolved in a non-aqueous solvent.
  • the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
  • non-aqueous solvents include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluorine-substituted products thereof; ⁇ -butyrolactone And cyclic esters such as ⁇ -valerolactone, and these may be used alone or in combination.
  • a solution in which a cyclic carbonate and a chain carbonate are mixed at a mass ratio (cyclic carbonate / chain carbonate) of 20/80 to 40/60 and a lithium salt is dissolved in an amount of 0.5 M to 1.5 M is preferable. is there.
  • Examples of the exterior material include a metal can and a pack made of an aluminum laminate film.
  • the shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the nonaqueous electrolyte battery separator of the present invention is suitable for any shape.
  • the thickness of the separator or porous substrate was measured as follows. First, a separator or a porous substrate was cut into a size of 10 cm ⁇ 10 cm, and 10 sample pieces were prepared. For each sample piece, the thickness of the central part in the width direction (TD) was measured 10 points at 1 cm intervals in the length direction (MD) to obtain a total of 100 points of thickness data. Then, an average value and a standard deviation were calculated based on the thickness data of 100 points.
  • a contact-type thickness meter for example, LITEMASIC manufactured by Mitutoyo Corporation
  • a cylindrical terminal having a diameter of 5 mm was used for the measurement terminal, and the load was adjusted so that a load of 7 g was applied during the measurement.
  • the ratio of the standard deviation of the basis weight of the adhesive porous layer to the average value of the basis weight of the adhesive porous layer is the basis weight (g / m 2 ) of the adhesive porous layer determined as described above. Obtained by dividing the standard deviation by the mean value.
  • the ratio (thickness variation) of the standard deviation of the thickness of the porous substrate to the average value of the thickness of the porous substrate is the average value of the thickness (g / m 2 ) of the porous substrate determined as described above. Calculated using standard deviation.
  • the tensile strength of the porous substrate or the separator was adjusted to 10 mm ⁇ 100 mm using a tensile tester (ATC, manufactured by A & D, RTC-1225A), the load cell load was 5 kgf, the distance between chucks was 50 mm, and the tensile speed was 100 mm / min. Measured under the conditions, the stress at break was taken as the tensile strength.
  • ATC tensile tester
  • Young's modulus The Young's modulus of the porous substrate or separator was adjusted to 10 mm ⁇ 100 mm using a tensile tester (manufactured by A & D, RTC-1225A), using a load cell load of 5 kgf, a distance between chucks of 50 mm, and a tensile speed of 100 mm / min. Under the conditions, Young's modulus was measured with reference to JIS K 7161.
  • the puncture strength of the porous substrate or separator is determined by holding the sample in a metal frame (sample holder) with a hole of ⁇ 11.3 mm together with a silicone rubber packing, and fixing the KES-G5 handy compression tester (Kato Tech). The measurement was performed using The measurement conditions were a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. The maximum puncture load was defined as the puncture strength.
  • the test battery produced below was repeatedly charged and discharged at a charge voltage of 4.2 V and a discharge voltage of 2.75 V, the discharge capacity at the 100th cycle was divided by the initial capacity, and the capacity was maintained when charge and discharge were repeated.
  • the average value and the fluctuation range (%) of the rate were evaluated as cycle characteristics.
  • the evaluation criteria were as follows. A: When the capacity retention rate is 85% or more and the fluctuation range is 7% or less B: When the capacity retention rate is 85% or more but the fluctuation range exceeds 7% C: The capacity retention rate is less than 85%, When the fluctuation range exceeds 7%
  • the test battery was disassembled, and the magnitude of the force when the negative electrode and the positive electrode were peeled off from the separator was measured using a tensile tester (manufactured by A & D, RTC-1225A). Evaluation was made as an index when the magnitude of the force in Example 1 was 100. An index of 80 or higher is a practically preferable level.
  • the separator is conveyed at a conveyance speed of 40 m / min, unwinding tension: 0.3 N / cm, winding tension: 0.1 N / cm, and applied horizontally at a 60 ° angle with a stainless steel leather blade.
  • the members that were dropped during the slitting process and those that were visually observed for the appearance of the end face (slit end face) were counted.
  • ⁇ Evaluation criteria> A: The number of chips derived from the adhesive porous layer of 0.5 mm or more is 5 or less.
  • B The number of chips derived from the adhesive porous layer of 0.5 mm or more is 10 or less.
  • C The number of chips derived from the adhesive porous layer of 0.5 mm or more is 20 or less.
  • D There are 20 or more chips derived from the adhesive porous layer of 0.5 mm or more.
  • a working solution was prepared.
  • a polyethylene microporous film (thickness: 9 ⁇ m, Gurley value: 160 sec / 100 cc, porosity: 43%) was used.
  • An equal amount of the coating solution obtained as described above was applied to both sides of a polyethylene microporous membrane.
  • Example 4 In Example 1, a separator was prepared in the same manner as in Example 1 except that a polyethylene microporous film having physical properties shown in Table 1 below was used as the porous substrate. Secondary battery).
  • Example 7 and 8 In Example 1, Examples 7 and 8 were carried out in the same manner as Example 1 except that a vinylidene fluoride / hexafluoropropylene copolymer having a weight average molecular weight of 600,000 or 3 million was used as the adhesive resin. A separator battery (lithium ion secondary battery) was prepared.
  • Example 2 separators of Comparative Examples 2 to 5 were prepared in the same manner as in Example 1 except that a polyethylene microporous film having physical properties shown in Table 1 below was used as the porous substrate.
  • a test battery lithium ion secondary battery
  • Example 9 As shown in Table 1, in the examples, by setting the “standard deviation of basis weight / average value of basis weight” of the adhesive porous layer within a predetermined range, the adhesiveness with the electrode is excellent as compared with the comparative example. Good cycle characteristics were exhibited, and the slit property was also good. In addition, the evaluation result comparable to Example 1 was obtained also about Example 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

 多孔質基材と、前記多孔質基材の片面又は両面に設けられ、接着性樹脂を含む接着性多孔質層とを有し、前記接着性多孔質層の目付の平均値(g/m)に対する前記接着性多孔質層の目付の標準偏差の比(標準偏差/平均値)が0.3以下である、非水電解質電池用セパレータ。

Description

非水電解質電池用セパレータ及び非水電解質電池
 本発明は、非水電解質電池用セパレータ及び非水電解質電池に関する。
 リチウムイオン二次電池に代表される非水系二次電池は、ノートパソコン、携帯電話、デジタルカメラ、カムコーダなどの携帯用電子機器の電源として広く利用されている。さらに近年では、これら電池は、高エネルギー密度を有するという特徴から自動車などへの適用も検討されている。
 携帯用電子機器の小型化・軽量化に伴ない、非水系二次電池の外装の簡素化がなされている。外装としては、当初使用されたステンレス製の電池缶に代えてアルミ缶製の電池缶が開発され、さらに現在では、アルミラミネートパック製のソフトパック外装が開発されている。
 アルミラミネート製のソフトパック外装の場合、外装が柔らかいため、充放電に伴なって電極とセパレータとの間に隙間が形成される場合がある。これは、サイクル寿命を悪化させる一因であり、電極やセパレータ等の接着部の接着性を均一に保つことは重要な技術的課題の一つである。
 接着性に関連する技術として、電極とセパレータとの接着性を高める技術が種々提案されている。このような技術の1つとして、従来のセパレータであるポリオレフィン微多孔膜にポリフッ化ビニリデン系樹脂からなる多孔質層(以下、「接着性多孔質層」ともいう)を成形したセパレータを用いる技術が提案されている(例えば、特許文献1参照)。接着性多孔質層は、電極に重ねて熱プレスした際に電極とセパレータとを良好に接合させる接着剤としての機能を担う。そのため、接着性多孔質層は、ソフトパック電池のサイクル寿命の改善に寄与している。
 上記のポリオレフィン微多孔膜に接着性多孔質層を積層したセパレータでは、充分な接着性の確保とイオン透過性の両立という観点から、ポリフッ化ビニリデン系樹脂層の多孔構造と厚みとに着眼することで新たな技術提案がされている。
特許第4127989号
 しかしながら、ポリオレフィン微多孔膜などの多孔質基材(以下、単に基材ともいう)の上に塗布により接着性多孔質層を形成しようとする場合、塗工に伴なうムラ、言い換えれば塗工量にバラツキが生じることがある。また、基材には、通常厚みにバラツキが存在している。
 特に、接着性多孔質層の塗工量にバラツキが生じると、電極との接着性にもバラツキが発生しやすい。このような接着バラツキは、電池内におけるイオン透過性の不均一さに直接関係するため、セパレータ内において所期の接着性を有する部分と接着性が低下した部分とでは、イオン透過のし易さが異なる。セパレータ内において、イオン透過が良好な部分と透過し難い部分とが存在すると、イオン透過しやすい部分での膜劣化が進みやすく、電池全体として長期でのサイクル特性が著しく低下する一因となる。
 本発明は、上記に鑑みなされたものであり、電極との接着性に優れており、電池のサイクル特性が向上する非水電解質電池用セパレータ、及び優れたサイクル特性を安定的に発現する非水電解質電池を提供することを目的とし、該目的を達成することを課題とする。
 前記課題を達成するための具体的手段は以下の通りである。
  <1> 多孔質基材と、前記多孔質基材の片面又は両面に設けられ、接着性樹脂を含む接着性多孔質層とを有し、前記接着性多孔質層の目付の平均値(g/m)に対する前記接着性多孔質層の目付の標準偏差の比(標準偏差/平均値)が0.3以下である、非水電解質電池用セパレータ。
  <2> 前記多孔質基材の厚みの平均値(μm)に対する多孔質基材の厚みの標準偏差の比(標準偏差/平均値)が、0.02以下である<1>に記載の非水電解質電池用セパレータ。
  <3> 前記接着性樹脂は、ポリフッ化ビニリデン系樹脂である<1>又は<2>に記載の非水電解質電池用セパレータ。
  <4> 前記ポリフッ化ビニリデン系樹脂の重量平均分子量は、60万以上300万以下である、<3>に記載の非水電解質電池用セパレータ。
  <5> 前記多孔質基材のMD方向あるいはTD方向の伸度が50%以上200%以下である、<1>~<4>のいずれか1項に記載の非水電解質電池用セパレータ。
  <6> 前記多孔質基材の突刺強度が200g以上800g以下である、<1>~<5>のいずれか1項に記載の非水電解質電池用セパレータ。
  <7> 前記接着性多孔質層にはフィラーが含まれており、前記フィラーの前記接着性樹脂に対する質量比(フィラーの質量/接着性樹脂の質量)が0.01以上0.05以下である、<1>~<6>のいずれか1項に記載の非水電解質電池用セパレータ。
  <8> 正極と、負極と、前記正極及び前記負極の間に配置された<1>~<7>のいずれか1項に記載の非水電解質電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池。
 本発明によれば、電極との接着性に優れており、電池のサイクル特性が向上する非水電解質電池用セパレータが提供される。また、本発明によれば、優れたサイクル特性を安定的に発現する非水電解質電池が提供される。
 以下、本発明の非水電解質電池用セパレータ及びこれを用いた非水電解質電池について詳細に説明する。なお、以下において数値範囲で「~」と示したものは、上限値および下限値を含む数値範囲であることを意味する。本発明の非水電解質電池用セパレータに関し、「MD方向」とは、いわゆる「機械方向」であり、長尺状に製造されるセパレータの長尺方向を意味する。また、「TD方向」とは、いわゆる「幅方向」であり、長尺状に製造されるセパレータの長尺方向に直交する方向を意味する。
<非水電解質電池用セパレータ>
 本発明の非水電解質電池用セパレータは、多孔質基材と、多孔質基材の片面又は両面に設けられ、接着性樹脂を含む接着性多孔質層とを設け、接着性多孔質層の目付の平均値[g/m]に対する接着性多孔質層の目付の標準偏差の比(標準偏差/平均値)を0.3以下として構成されている。
 接着性多孔質層の目付は、接着性多孔質層が接着性樹脂のみで構成されている場合、接着性多孔質層における接着性樹脂の目付として捉えることができる。接着性多孔質層が接着性樹脂およびフィラー等の他の材料を含んで構成されている場合、接着性多孔質層を構成する固形分の質量として捉えることができる。
 なお、接着性多孔質層又は接着性樹脂の目付(g/m)とは、接着性多孔質層を塗工により設けた場合に、その乾燥後の塗工量(g/m)を表す。
 多孔質基材上に接着性多孔質層を有するセパレータでは、主にセパレータ中の孔を通じてイオン伝導するため、接着性多孔質層の厚みにバラツキがあると、イオンが通過する各孔のパス長(距離)に長短が生じ、セパレータ全体でのイオン透過性を均一に保つことはできない。このように、セパレータ中にイオン透過のしやすい領域と透過しにくい領域とが存在すると、イオン透過しやすい領域での膜劣化が進行しやすく、結果として電池全体のサイクル特性に悪影響を与える場合がある。イオン透過性の良否をもたらす一因として、接着性多孔質層の目付のバラツキが挙げられる。そのため、本発明においては、接着性多孔質層の目付のバラツキ〔=(目付の標準偏差)/(目付の平均値)〕を所定の範囲に抑えることで、接着性多孔質層の接着性、特に電極との接着性が向上し、電池を構成したときには、長期に亘るサイクル特性が飛躍的に向上する。また、接着性多孔質層の目付のバラツキを本発明の範囲に調整することで、セパレータを所望のサイズにスリットする際にスリットによる欠陥を低減でき、製造歩留まりを向上させることができる。
 接着性多孔質層の「(目付の標準偏差)/(目付の平均値)」で表される値が0.3を超えて大きくなると、層の面方向における目付のバラツキが大きく、面内のイオン透過性が不均一になる。これにより、電池を構成したときには、サイクル特性の著しい低下を来すことになる。また、セパレータをスリットした際に接着性多孔質が欠落するなど、欠陥も発生し易くなる。
 本発明においては、接着性樹脂層の「(目付の標準偏差)/(目付の平均値)」で表される比は、0.2以下がより好ましく、0.1以下が更に好ましく、ゼロ(バラツキのないこと)が理想的である。
 接着性多孔質層の「(目付の標準偏差)/(目付の平均値)」で表される比(目付バラツキ)は、下記のようにして接着性多孔質層の目付を求め、求めた目付(g/m)から得られる平均値および標準偏差を用いて算出される。
 接着性多孔質層の目付は、以下のように測定される。すなわち、まず、セパレータを10cm×10cmサイズに切り出したサンプル片を10枚用意し、各サンプル片の目付を測定する。続いて、各サンプル片に設けられている接着性多孔質層(塗工層)を溶剤で溶解除去し、それぞれの多孔質基材の目付を測定する。その後、セパレータの目付から多孔質基材の目付を減算することで、各サンプル片の接着性多孔質層の目付が求められる。
 ここで、本発明において、「標準偏差」および「平均値」は一般的な標準偏差および平均値を意味しており、以下の通り定義される。
 すなわち、N個のデータx, x, ..., xからなる母集団がある場合に、「平均値」は下記式に示されるように、その母集団の相加平均(母平均m)として定義される。つまり、本発明において、接着性多孔質層の目付の平均値は、あるセパレータについて測定した10点の目付の値を合計し、それを10で除算することで求められる。
Figure JPOXMLDOC01-appb-M000001
 
 次に、母平均mを用いて、下記式の通り不偏分散σが定義される。
Figure JPOXMLDOC01-appb-M000002
 
 この不偏分散σの正の平方根σを「標準偏差」と定義する。つまり、本発明において、接着性多孔質層の目付の標準偏差は、あるセパレータについて測定した10点の目付と平均値を上記式にあてはめて不偏分散σを求め、その平方根を算出することで得られる。
 本発明において、接着性多孔質層の目付の平均値に対する標準偏差の比を0.3以下の範囲に調整する方法としては、多孔質基材の物性、例えば、多孔質基材における厚みのバラツキや、多孔質基材の伸度、突刺強度、引張強度、ヤング率などの諸物性の適切なものを選択する方法、あるいは、接着性多孔質層にフィラーを含ませる場合はそのフィラー含有量を調整する方法等が挙げられる。多孔質基材の諸物性を調節することにより、接着性多孔質層を例えば塗工法により形成する場合の塗工安定性が向上し、塗工量の均一化が図られ、均一性の高い塗工膜が得られる。
 多孔質基材の厚みについては、セパレータとしての電極に対する接着性の向上の観点から、多孔質基材の面方向における厚みのバラツキを一定値以下に抑えることが好ましい。厚みのバラツキを抑えることで、セパレータ内でのイオン透過のバラツキが軽減される。具体的には、多孔質基材の「厚みの平均値[μm]」に対する「多孔質基材の厚みの標準偏差」の比(=「(厚みの標準偏差)/(厚みの平均値)」)が0.02以下に調節されることが好ましい。
 多孔質基材の厚みの平均値に対する多孔質基材の厚みの標準偏差の比(厚みバラツキ)は、下記のようにして多孔質基材の厚みを求め、求めた厚み(μm)から得られる平均値、標準偏差を用いて算出される。
 多孔質基材の厚みは、以下のように測定される。すなわち、多孔質基材を10cm×10cmサイズに切り出し、サンプル片を10枚用意した。各サンプル片に対して、幅方向(TD)の中央部を、長さ方向(MD)に1cm間隔で10点ずつ厚みを測定し、合計100点の厚みデータを得る。そして、この100点の厚みデータに基づき、上記目付の場合と同様にして、平均値および標準偏差を算出する。厚みの測定には、接触式の厚み計(例えばミツトヨ社製LITEMATIC)を用い、測定端子には直径5mmの円柱状のものを用い、測定中に7gの荷重が印加されるように調整する。
 多孔質基材において、「(厚みの標準偏差)/(厚みの平均値)」で表される値が0.02以下であることで、基材上に設けられる層の面方向における厚みバラツキが小さく抑えられるために、イオンが通過する孔のパス長(距離)がより均一になる。これにより、面内のイオン透過性は均一化し、電池を構成したときのサイクル特性を長期に亘り安定的に保持することができる。
 「(厚みの標準偏差)/(厚みの平均値)」で表される比は、0.01以下がより好ましく、0.005以下が更に好ましく、ゼロ(バラツキのないこと)が理想的である。
 多孔質基材の厚みのバラツキを制御する手法としては特に限定されるものではない。例えば、市販の多孔質基材で上述した厚みの条件を満足するものを選定すればよい。
[多孔質基材]
 本発明における多孔質基材は、内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜や、不織布、紙状シート等の繊維状物からなる多孔性シート、あるいは、これら微多孔膜や多孔性シートに他の多孔性層を1層以上積層した複合多孔質シート等が挙げられる。
 微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
 多孔質基材を構成する材料は、電気絶縁性を有する材料であれば、有機材料及び無機材料のいずれでもよい。多孔質基材を構成する材料は、多孔質基材にシャットダウン機能を付与する観点からは、熱可塑性樹脂が好ましい。
 また、シャットダウン機能とは、電池温度が高まった場合に、構成材料が溶解して多孔質基材の孔を閉塞することによりイオンの移動を遮断し、電池の熱暴走を防止する機能をいう。
 前記熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、特にポリオレフィンが好ましい。
 ポリオレフィンを用いた多孔質基材としては、ポリオレフィン微多孔膜が好適である。
 ポリオレフィン微多孔膜としては、従来の非水電解質電池用セパレータに適用されているポリオレフィン微多孔膜の中から、充分な力学物性とイオン透過性を有するものを好適に用いることができる。
 ポリオレフィン微多孔膜は、シャットダウン機能を発現する観点から、ポリエチレンを含むことが好ましく、ポリエチレンの含有量としては95質量%以上が好ましい。
 上記のほか、高温に曝されたときに容易に破膜しない程度の耐熱性を付与する観点では、ポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜が好適である。このようなポリオレフィン微多孔膜としては、ポリエチレンとポリプロピレンが1つの層において混在している微多孔膜が挙げられる。このような微多孔膜においては、シャットダウン機能と耐熱性の両立という観点から、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、シャットダウン機能と耐熱性の両立という観点では、ポリオレフィン微多孔膜が2層以上の積層構造を備え、少なくとも1層はポリエチレンを含み、少なくとも1層はポリプロピレンを含む構造のポリオレフィン微多孔膜も好ましい。
 ポリオレフィン微多孔膜に含まれるポリオレフィンは、重量平均分子量が10万~500万のものが好適である。重量平均分子量が10万以上であると、充分な力学物性を確保できる。一方、重量平均分子量が500万以下であると、シャットダウン特性が良好であるし、膜の成形がしやすい。
 ポリオレフィン微多孔膜は、例えば以下の方法で製造可能である。すなわち、(i)溶融したポリオレフィン樹脂をT-ダイから押し出し、シート化し、(ii)このシートに結晶化処理を施した後、(iii)延伸し、さらに(iv)延伸後のシートを熱処理することで、微多孔膜を形成する方法が挙げられる。また別の方法として、(i)流動パラフィンなどの可塑剤と一緒にポリオレフィン樹脂を溶融し、これをT-ダイから押し出し、冷却してシート化した後、(ii)このシートを延伸し、(iii)延伸後のシートから可塑剤を抽出し、さらに(iv)熱処理することで、微多孔膜を形成する方法等も挙げられる。
 繊維状物からなる多孔性シートとしては、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミド等の耐熱性高分子;等の繊維状物からなる多孔性シート、又は前記繊維状物の混合物からなる多孔性シートが挙げられる。
 複合多孔質シートとしては、微多孔膜や繊維状物からなる多孔性シートに、機能層を積層した構成を採用できる。このような複合多孔質シートは、機能層によってさらなる機能付加が可能となる点で好ましい。機能層としては、例えば耐熱性を付与するという観点では、耐熱性樹脂からなる多孔質層や、耐熱性樹脂および無機フィラーからなる多孔質層を採用できる。耐熱性樹脂としては、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン及びポリエーテルイミドから選ばれる1種又は2種以上の耐熱性高分子が挙げられる。無機フィラーとしては、アルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等を好適に使用できる。
 なお、複合化の手法としては、微多孔膜や多孔性シートに機能層を塗工する方法、微多孔膜や多孔性シートと機能層とを接着剤で接合する方法、微多孔膜や多孔性シートと機能層とを熱圧着する方法等が挙げられる。
 上記のように、接着性樹脂の目付の平均値に対する接着性樹脂の目付の標準偏差の比を0.3以下の範囲に調整する観点からは、例えば、多孔質基材の伸度、突刺強度、引張強度、ヤング率が下記の範囲に調整されるのが好ましい。
 多孔質基材のMD方向あるいはTD方向の伸度は、50%以上200%以下であることが好ましい。その下限値としては、80%以上がより好ましく、100%以上が更に好ましい。その上限値としては180%以下が好ましく、150%以下が好ましい。
 多孔質基材の突刺強度は、200g以上800g以下であることが好ましい。その下限値としては、250g以上がより好ましく、300g以上が更に好ましい。その上限値としては、700g以下が好ましく、600g以下が好ましい。
 多孔質基材のMD方向あるいはTD方向の引張強度は、1N/cm以上25N/cm以下であることが好ましい。その下限値としては、3N/cm以上がより好ましく、5N/cm以上が更に好ましい。その上限値としては、22N/cm以下が好ましく、20N/cm以下が好ましい。
 多孔質基材のヤング率は、800MPa以上5000MPa以下であることが好ましい。その下限値としては、900MPa以上がより好ましく、1000MPa以上が更に好ましい。その上限値としては、4000MPa以下が好ましく、3000MPa以下が好ましい。
 ヤング率は、弾性を示す範囲で力を加えたときに弾性変形する量、すなわち単位歪みあたりに必要とされる応力であり、例えば縦軸を応力とし横軸を歪みとして引いた応力-歪み曲線の直線部の傾きに相当する。ヤング率は、一方向に引張り又は圧縮させた際の応力の方向に対する歪み量の関係から、下記式から求められる。
  E=σ/ε 〔E:ヤング率、σ:歪み、ε:応力〕
 多孔質基材の膜厚(平均値)としては、良好な力学物性と内部抵抗を得る観点から、5μm~25μmの範囲が好適である。
 多孔質基材のガーレ値(JIS P8117)としては、電池の短絡防止や充分なイオン透過性を得る観点から、50秒/100cc以上800秒/100cc以下の範囲が好適である。
[接着性多孔質層]
 本発明における接着性多孔質層は、内部に多数の微細孔を有し、これら微細孔が互いに連結された多孔構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層である。接着性多孔質層の多孔構造は重要な技術要素である。
 接着性多孔質層は、多孔質基材の片面又は両面にセパレータの最外層として設けられ、この接着性多孔質層によって電極と接着させることができる。すなわち、接着性多孔質層は、セパレータと電極とを重ねた状態で熱プレスしたときにセパレータを電極に接着させ得る層である。本発明の非水電解質電池用セパレータが前記多孔質基材の片側のみに接着性多孔質層を有する場合、接着性多孔質層は正極又は負極のいずれかに接着される。また、本発明の非水電解質電池用セパレータが前記多孔質基材の両側に接着性多孔質層を有する場合、接着性多孔質層は正極及び負極の双方に接着される。接着性多孔質層は、多孔質基材の片面のみに設けるのみならず両面に設けることで、電池のサイクル特性に優れる点で好ましい。接着性多孔質層が多孔質基材の両面にあることで、セパレータの両面が接着性多孔質層を介して両電極とよく接着するためである。
 本発明においては、接着性多孔質層が多孔質基材の両面に塗布形成される場合、接着性多孔質層の塗工量(目付の平均値)は、多孔質基材の片面の量として、0.5g/m~1.5g/mが好ましく、0.7g/m~1.3g/mがより好ましい。塗工量が0.5g/m以上であると、電極との接着性も良好になる。これより、電池のサイクル特性に優れる。一方、前記塗工量が1.5g/m以下であることで、接着性多孔質層の塗工量バラツキを既述の範囲に抑えやすく、良好なイオン透過性が確保され、電池の負荷特性がよい。
 接着性多孔質層が多孔質基材の両面に設けられている場合、一方の面の塗工量と他方の面の塗工量との差は、両面合計の塗工量に対して20%以下であることが好ましい。20%以下であると、セパレータがカールしにくいので、その結果、ハンドリング性がよく、またサイクル特性が低下する問題が起きにくい。
 接着性多孔質層の厚さは、多孔質基材の片面において、0.3μm~5μmであることが好ましい。厚さが0.3μm以上であると、接着性多孔質層の塗工量バラツキを既述の範囲に抑えやすく、電極との接着性がより良好になる。これより、電池のサイクル特性が良好である。厚さが5μm以下であると、より良好なイオン透過性が確保され、電池の負荷特性に優れる。接着性多孔質層の厚さは、上記同様の理由から、多孔質基材の片面において、0.5μm~5μmであることがより好ましく、1μm~2μmであることが更に好ましい。
 本発明において接着性多孔質層は、イオン透過性の観点から充分に多孔化された構造であることが好ましい。具体的には、空孔率が30%~60%であることが好ましい。空孔率が30%以上であると、イオン透過性が良好であり、電池特性がより優れる。また、空孔率が60%以下であると、熱プレスにより電極と接着させる際に、多孔質構造が潰れない程度の充分な力学物性が得られる。また、空孔率が60%以下であると、表面開孔率が低くなり、接着性樹脂(好ましくはポリフッ化ビニリデン系樹脂)が占める面積が増えるため、より良好な接着力を確保することができる。なお、接着性多孔質層の空孔率は、30~50%の範囲がより好ましい。
 接着性多孔質層は、平均孔径が1nm~100nmであることが好ましい。接着性多孔質層の平均孔径が100nm以下であると、均一な空孔が均一に分散した多孔質構造が得られ易く、電極との接着点が均一に散在させることができるため、良好な接着性が得られる。その場合、イオンの移動も均一となり、より良好なサイクル特性が得られ、さらに良好な負荷特性が得られる。一方、平均孔径は、均一性という観点からはできるだけ小さいことが望ましいが、1nmより小さい多孔構造を形成することは現実的には難しい。また、接着性多孔質層に電解液を含浸させた場合、樹脂(例えばポリフッ化ビニリデン系樹脂)が膨潤する場合があり、平均孔径が小さ過ぎると、膨潤により孔が閉塞しイオン透過性が損なわれる。このような観点からも。平均孔径は1nm以上であることが好ましい。
 接着性多孔質層の平均孔径としては、20nm~100nmがより好ましい。
 接着性多孔質層におけるポリフッ化ビニリデン系樹脂のフィブリル径は、サイクル特性の観点から、10nm~1000nmの範囲であることが好ましい。
 本発明における接着性多孔質層は、少なくとも接着性樹脂を含有し、好ましくはフィラーを含有する。また、接着性多孔質層は、必要に応じて、更に他の成分を用いて構成することができる。
(接着性樹脂)
 接着性多孔質層に含まれる接着性樹脂は、電極と接着し得るものであれば特に制限されない。例えば、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体、スチレン-ブタジエン共重合体、アクリロニトリル、メタクリロニトリル等のビニルニトリル類の単独重合体又は共重合体、ポリエチレンオキサイド、ポリプロピレンオキサイド等のポリエーテルが好適である。
 接着性多孔質層は、接着性樹脂を1種のみ含んでもよく、2種以上を含んでもよい。
 特に接着性樹脂としては、電極との接着性の観点から、ポリフッ化ビニリデン系樹脂であることが好ましい。
 ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体(即ちポリフッ化ビニリデン);フッ化ビニリデンと他の共重合可能なモノマーとの共重合体(ポリフッ化ビニリデン共重合体);これらの混合物;が挙げられる。
 フッ化ビニリデンと共重合可能なモノマーとしては、例えば、テトラフロロエチレン、ヘキサフロロプロピレン(HFP)、トリフロロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられ、1種類又は2種類以上を用いることができる。
 ポリフッ化ビニリデン系樹脂は、乳化重合または懸濁重合により得られる。
 ポリフッ化ビニリデン系樹脂の中では、電極との接着性の観点から、フッ化ビニリデンとヘキサフロロプロピレンとを少なくとも共重合した共重合体が好ましく、更には、フッ化ビニリデン由来の構造単位と質量基準で0.1モル%以上5モル%以下(好ましくは0.5モル%以上2モル%以下)のヘキサフロロプロピレン由来の構造単位とを含む共重合体であることがより好ましい。
 ポリフッ化ビニリデン系樹脂は、その構成単位としてフッ化ビニリデンが98モル%以上含まれているものを含むことが好ましい。フッ化ビニリデンが98モル%以上含まれている場合、厳しい熱プレス条件に対しても充分な力学物性と耐熱性を確保できる。
 接着性樹脂(特にポリフッ化ビニリデン系樹脂)は、重量平均分子量(Mw)が60万~300万の範囲であることが好ましい。重量平均分子量が60万以上であると、接着性多孔質層が電極との接着処理に耐え得る力学物性を確保でき、充分な接着性が得られる。一方、重量平均分子量が300万以下であると、成形時の粘度が高くなり過ぎず成形性及び結晶形成がよく、多孔化が良好である。重量平均分子量の下限値としては、70万以上がより好ましく、さらには80万以上が好ましい。重量平均分子量の上限値としては、200万以下が好ましく、さらには150万以下が好ましい。
 なお、接着性樹脂の重量平均分子量(ダルトン)は、ゲル浸透クロマトグラフィー(以下、GPCともいう。)により下記の条件で測定し、ポリスチレン換算して表した分子量である。
 <条件>
・GPC:Alliance GPC 2000型〔Waters社製〕
・カラム:TSKgel GMH-HT×2 +TSKgel GMH-HTL×2〔東ソー(株)製〕
・移動相溶媒:o-ジクロロベンゼン
・標準試料 :単分散ポリスチレン〔東ソー(株)製〕
・カラム温度:140℃
 接着性多孔質層に電解液を含浸させたとき、接着性多孔質層に含まれる樹脂の膨潤の度合いは、樹脂の種類や電解液の組成によって異なる。樹脂の膨潤に伴う不具合を抑制するためには、膨潤しにくいポリフッ化ビニリデン系樹脂を選定することが好ましい。例えば共重合成分を多く含むポリフッ化ビニリデン系樹脂は膨潤しやすいのに対し、フッ化ビニリデンを98モル%以上含むポリフッ化ビニリデン系樹脂は膨潤しにくく好ましい。
 また、ポリフッ化ビニリデン系樹脂は、例えばエチレンカーボネートやプロピレンカーボネートといった環状カーボネートの含有量が高く誘電率の高い電解液に膨潤しやすいが、フッ化ビニリデンを98モル%以上含むポリフッ化ビニリデン系樹脂は比較的膨潤しにくいので好適である。
(フィラー)
 接着性多孔質層は、無機物又は有機物からなるフィラーを含有していてもよい。接着性多孔質層がフィラーを含むことで、セパレータの滑り性や耐熱性が向上する。
 無機フィラーとしては、例えば、アルミナ等の金属酸化物、水酸化マグネシウム等の金属水酸化物等が挙げられる。また、有機フィラーとしては、例えばアクリル樹脂等が挙げられる。
 フィラーの前記接着性樹脂に対する質量比(フィラーの質量/接着性樹脂の質量)は、0.01以上0.05以下であることが好ましい。このようにフィラーの含有量を調整することで、接着性多孔質層の「(目付の標準偏差)/(目付の平均値)」で表される値を本発明の範囲内に調整しやすくなる。
[セパレータの諸特性]
 本発明の非水電解質電池用セパレータは、機械強度と電池としたときのエネルギー密度の観点から、全体の膜厚が5μm~35μmであることが好ましい。
 本発明の非水電解質電池用セパレータの空孔率は、機械的強度、ハンドリング性、及びイオン透過性の観点から、30%~60%であることが好ましい。
 本発明の非水電解質電池用セパレータのガーレ値(JIS P8117)は、機械強度と膜抵抗のバランスがよい点で、50秒/100cc~800秒/100ccであることが好ましい。
 本発明の非水電解質電池用セパレータは、イオン透過性の観点から、多孔質基材のガーレ値と、前記多孔質基材上に接着性多孔質層を設けたセパレータのガーレ値との差が、300秒/100cc以下であることが好ましく、150秒/100cc以下であることがより好ましく、100秒/100cc以下であることが更に好ましい。
 本発明の非水電解質電池用セパレータの膜抵抗は、電池の負荷特性の観点から、1ohm・cm~10ohm・cmであることが好ましい。ここで膜抵抗とは、セパレータに電解液を含浸させたときの抵抗値であり、交流法にて測定される。当然、電解液の種類、温度によって異なるが、上記の数値は電解液として1M LiBF-プロピレンカーボネート/エチレンカーボネート(質量比1/1)を用い、20℃にて測定した数値である。
 本発明の非水電解質電池用セパレータの曲路率は、イオン透過性の観点から、1.5~2.5であることが好ましい。
<セパレータの製造方法>
 本発明の非水電解質電池用セパレータは、例えば、ポリフッ化ビニリデン系樹脂等の接着性樹脂を含む塗工液を多孔質基材上に塗工し塗工層を形成し、次いで塗工層の樹脂を固化させることで、接着性多孔質層を多孔質基材上に一体的に形成する方法で製造される。
 以下、接着性多孔質層をポリフッ化ビニリデン系樹脂を用いて形成する場合について、説明する。
 接着性樹脂としてポリフッ化ビニリデン系樹脂を用いた接着性多孔質層は、例えば以下の湿式塗工法によって好適に形成することができる。
 湿式塗工法は、(i)ポリフッ化ビニリデン系樹脂を適切な溶媒に溶解させて塗工液を調製する工程、(ii)この塗工液を多孔質基材に塗工する工程、(iii)当該多孔質基材を適切な凝固液に浸漬させることで、相分離を誘発しつつポリフッ化ビニリデン系樹脂を固化させる工程、(iv)水洗工程、および(v)乾燥工程を行って、多孔質基材上に多孔質層を形成する製膜法である。本発明に好適な湿式塗工法の詳細は、以下のとおりである。
 塗工液の調製に用いる、ポリフッ化ビニリデン系樹脂を溶解する溶媒(以下、「良溶媒」とも称する。)としては、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の極性アミド溶媒が好適に用いられる。
 良好な多孔構造を形成する観点からは、良溶媒に加えて相分離を誘発させる相分離剤を混合させることが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。相分離剤は、塗工に適切な粘度が確保できる範囲で添加することが好ましい。
 溶媒としては、良好な多孔構造を形成する観点から、良溶媒を60質量%以上、相分離剤を40質量%以下含む混合溶媒が好ましい。
 塗工液は、良好な多孔構造を形成する観点から、ポリフッ化ビニリデン系樹脂が3質量%~10質量%の濃度で含まれていることが好ましい。
 接着性多孔質層にフィラーやその他の成分を含有させる場合は、塗工液中に混合あるいは溶解させればよい。
 凝固液は、塗工液の調製に用いた良溶媒と相分離剤、及び水から構成されるのが一般的である。良溶媒と相分離剤の混合比はポリフッ化ビニリデン系樹脂の溶解に用いた混合溶媒の混合比に合わせるのが生産上好ましい。水の濃度は40質量%~90質量%であることが、多孔構造の形成および生産性の観点から適切である。
 多孔質基材への塗工液の塗工は、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーターなど従来の塗工方式を適用してもよい。接着性多孔質層を多孔質基材の両面に形成する場合、塗工液を両面同時に基材へ塗工することが生産性の観点から好ましい。
 接着性多孔質層は、上述した湿式塗工法以外にも、乾式塗工法で製造し得る。ここで、乾式塗工法とは、例えばポリフッ化ビニリデン系樹脂と溶媒を含んだ塗工液を多孔質基材に塗工し、この塗工層を乾燥させて溶媒を揮発除去することにより、多孔層を得る方法である。ただし、乾式塗工法は湿式塗工法と比べて塗工層が緻密になり易いので、良好な多孔質構造を得られる点で湿式塗工法のほうが好ましい。
 本発明の非水電解質電池用セパレータは、接着性多孔質層を独立したシートとして作製し、この接着性多孔質層を多孔質基材に重ねて、熱圧着や接着剤によって複合化する方法によっても製造し得る。接着性多孔質層を独立したシートとして作製する方法としては、樹脂を含む塗工液を剥離シート上に塗工し、上述した湿式塗工法あるいは乾式塗工法を適用して接着性多孔質層を形成し、剥離シートから接着性多孔質層を剥離する方法が挙げられる。
<非水電解質電池>
 本発明の非水電解質電池は、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池であり、正極と、負極と、既述の本発明の非水電解質電池用セパレータとを設けて構成されている。なお、ドープとは、吸蔵、担持、吸着、又は挿入を意味し、正極等の電極の活物質にリチウムイオンが入る現象を意味する。
 非水電解質電池は、負極と正極とがセパレータを介して対向した構造体に電解液が含浸された電池要素が、外装材内に封入された構造を有している。本発明の非水電解質電池は、非水電解質二次電池、特にはリチウムイオン二次電池に好適である。
 本発明の非水電解質電池は、セパレータとして、既述の本発明の非水電解質電池用セパレータを備えることにより、電極とセパレータ間の接着性に優れると共に、製造工程での歩留まりが高く、電解液の保持性にも優れている。したがって、本発明の非水電解質電池は、安定的なサイクル特性を発現するものである。
 正極は、正極活物質及びバインダー樹脂を含む活物質層が集電体上に成形された構造とすることができる。活物質層は、さらに導電助剤を含んでもよい。
 正極活物質としては、例えばリチウム含有遷移金属酸化物等が挙げられ、具体的にはLiCoO、LiNiO、LiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3、LiMn、LiFePO、LiCo1/2Ni1/2、LiAl1/4Ni3/4等が挙げられる。
 バインダー樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体などが挙げられる。
 導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末といった炭素材料が挙げられる。
 集電体としては、例えば厚さ5μm~20μmの、アルミ箔、チタン箔、ステンレス箔等が挙げられる。
 本発明の非水電解質電池において、セパレータがポリフッ化ビニリデン系樹脂を含む接着性多孔質層を備え、該接着性多孔質層を正極側に配置した場合、ポリフッ化ビニリデン系樹脂が耐酸化性に優れるため、4.2V以上の高電圧で作動可能なLiMn1/2Ni1/2、LiCo1/3Mn1/3Ni1/3等の正極活物質を適用しやすく有利である。
 負極は、負極活物質及びバインダー樹脂を含む活物質層が集電体上に成形された構造としてよい。活物質層は、さらに導電助剤を含んでもよい。
 負極活物質としては、例えばリチウムを電気化学的に吸蔵し得る材料が挙げられ、具体的には炭素材料、シリコン、スズ、アルミニウム、ウッド合金等が挙げられる。
 バインダー樹脂としては、例えば、ポリフッ化ビニリデン系樹脂、スチレン-ブタジエン共重合体などが挙げられる。
 導電助剤としては、例えばアセチレンブラック、ケッチェンブラック、黒鉛粉末といった炭素材料が挙げられる。
 集電体としては、例えば厚さ5μm~20μmの、銅箔、ニッケル箔、ステンレス箔等が挙げられる。
 また、上記の負極に代えて、金属リチウム箔を負極として用いてもよい。
 電解液は、リチウム塩を非水系溶媒に溶解した溶液である。
 リチウム塩としては、例えばLiPF、LiBF、LiClO等が挙げられる。
 非水系溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、フロロエチレンカーボネート、ジフロロエチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、及びそのフッ素置換体等の鎖状カーボネート;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル;が挙げられ、これらは単独で用いても混合して用いてもよい。
 電解液としては、環状カーボネートと鎖状カーボネートとを質量比(環状カーボネート/鎖状カーボネート)20/80~40/60で混合し、リチウム塩を0.5M~1.5M溶解したものが好適である。
 外装材としては、金属缶やアルミラミネートフィルム製のパック等が挙げられる。
 電池の形状は角型、円筒型、コイン型等があるが、本発明の非水電解質電池用セパレータはいずれの形状にも好適である。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。
[測定・評価]
 以下に示す実施例及び比較例で作製したセパレータ及びリチウムイオン二次電池について、以下の測定、評価を行なった。
(厚みの平均値および標準偏差)
 セパレータあるいは多孔質基材の厚みは次の通り測定した。まず、セパレータあるいは多孔質基材を10cm×10cmサイズに切り出し、サンプル片を10枚用意した。各サンプル片に対して、幅方向(TD)の中央部を、長さ方向(MD)に1cm間隔で10点ずつ厚みを測定し、合計100点の厚みデータを得た。そして、この100点の厚みデータに基づき、平均値および標準偏差を算出した。厚みの測定には、接触式の厚み計(例えばミツトヨ社製LITEMATIC)を用い、測定端子には直径5mmの円柱状のものを用い、測定中に7gの荷重が印加されるように調整した。
(目付の平均値および標準偏差)
 セパレータを10cm×10cmサイズに切り出したサンプル片を10枚用意し、各サンプル片の質量を測定した。この質量を面積で除することにより、各セパレータの目付を求めた。続いて、各サンプル片に設けられている接着性多孔質層(塗工層)を溶剤で溶解除去し、多孔質基材の質量を測定した。この質量を面積で除することにより、多孔質基材の目付を求めた。その後、セパレータの目付から多孔質基材の目付を減算することで、各サンプル片の接着性多孔質層の目付を求めた。10点の接着性多孔質層の目付データに基づき、目付の平均値および標準偏差を算出した。
 接着性多孔質層の目付の平均値に対する接着性多孔質層の目付の標準偏差の比(目付バラツキ)は、上記のようにして求めた接着性多孔質層の目付(g/m)の標準偏差を平均値で除算して得た。
(多孔質基材の厚みの標準偏差/平均値)
 多孔質基材の厚みの平均値に対する多孔質基材の厚みの標準偏差の比(厚みバラツキ)は、上記のようにして求めた多孔質基材の厚み(g/m)の平均値および標準偏差を用いて算出した。
(引張強度)
 多孔質基材あるいはセパレータの引張強度は、10mm×100mmに調整したサンプルを、引張試験機(A&D社製、RTC-1225A)を用い、ロードセル荷重5kgf、チャック間距離50mm、引張速度100mm/分の条件で測定し、破断時の応力を引張強度とした。
(伸度)
 多孔質基材あるいはセパレータの引張伸度は、10mm×100mmに調整したサンプルを、引張試験機(A&D社製、RTC-1225A)を用い、ロードセル荷重5kgf、チャック間距離50mm、引張速度100mm/分の条件で測定し、破断時のチャック間距離を初期のチャック間距離50mmで除した値を伸度とした。
(ヤング率)
 多孔質基材あるいはセパレータのヤング率は、10mm×100mmに調整したサンプルを、引張試験機(A&D社製、RTC-1225A)を用い、ロードセル荷重5kgf、チャック間距離50mm、引張速度100mm/分の条件において、JIS K 7161を参考にヤング率を測定した。
(突刺強度)
 多孔質基材あるいはセパレータの突刺強度は、サンプルをφ11.3mmの穴があいた金枠(試料ホルダー)にシリコーンゴム製のパッキンと一緒に挟んで固定し、KES-G5ハンディー圧縮試験器(カトーテック社製)を用いて測定した。測定条件は、針先端の曲率半径を0.5mmとし、突刺速度を2mm/secとした。最大突刺荷重を突刺強度とした。
(サイクル特性)
 以下で作製した試験電池に対して、充電電圧4.2V、放電電圧2.75Vの充放電を繰返し、100サイクル目の放電容量を初期容量で除して、充放電を繰返したときの容量保持率の平均値及び変動幅(%)をサイクル特性として評価した。評価基準は以下の通りとした。
 A:容量保持率が85%以上で、かつ変動幅が7%以下の場合
 B:容量保持率が85%以上だが、変動幅が7%超の場合
 C:容量保持率が85%未満で、かつ変動幅が7%を超える場合
(電極との接着性)
 試験電池を解体し、セパレータから負極と正極とをそれぞれ剥がす時の力の大きさを、引張試験機(A&D社製、RTC-1225A)を用いて測定した。実施例1における前記力の大きさを100としたときの指数として評価した。指数80上が実用的に好ましいレベルである。
(スリット性)
 セパレータを搬送速度:40m/min、巻き出し張力:0.3N/cm、巻取り張力:0.1N/cmにて搬送し、水平に搬送しながらステンレス製レザー刃60°の角度で当て、セパレータを1000mスリット処理した。このスリット工程中に脱落した部材、端面(スリット端面)の外観を目視により観察されるものを数えた。
 <評価基準>
A:0.5mm以上の接着性多孔質層由来の切粉が5個以下である。
B:0.5mm以上の接着性多孔質層由来の切粉が10個以下である。
C:0.5mm以上の接着性多孔質層由来の切粉が20個以下である。
D:0.5mm以上の接着性多孔質層由来の切粉が20個以上である。
[実施例1]
-セパレータの作製-
 接着性樹脂として、フッ化ビニリデン/ヘキサフロロプロピレン共重合体(=98.9/1.1[モル比]、重量平均分子量:195万)を用いた。また、無機フィラーとして、平均粒子径0.8μmの水酸化マグネシウムを用い、無機フィラーのポリフッ化ビニリデン系樹脂に対する比率[質量比]を0.01(=無機フィラー/ポリフッ化ビニリデン系樹脂)とした。
 ポリフッ化ビニリデン系樹脂と上記の比率の水酸化マグネシウムとを、ジメチルアセトアミドとトリプロピレングリコールとの混合溶媒(=7/3[質量比])に5質量%の濃度となるように溶解し、塗工液を調製した。
 多孔質基材として、ポリエチレン微多孔膜(厚さ:9μm、ガーレ値:160秒/100cc、空孔率:43%)を用いた。
 上記のようにして得られた塗工液を、ポリエチレン微多孔膜の両面に等量塗工した。続いて、水とジメチルアセトアミドとトリプロピレングリコールとを混合した凝固液(=57/30/13[質量比])を用意し、この凝固液(40℃)に上記ポリエチレン微多孔膜を浸漬し、接着性樹脂を固化させた。
 次に、水洗、乾燥させて、ポリオレフィン系微多孔膜の両面にポリフッ化ビニリデン系樹脂からなる接着性多孔質層が形成されたセパレータを得た。
 このセパレータに関して、多孔質基材の物性(厚みの平均値、厚みの標準偏差/平均値、MD方向およびTD方向の伸度、突刺強度、MD方向およびTD方向の引張強度、ヤング率)、接着性多孔質層の物性(接着性樹脂の重量平均分子量(MW)、フィラー質量比(無機フィラーの質量/ポリフッ化ビニリデン系樹脂の質量)、接着性多孔質層(両面合計)の目付の平均値および標準偏差/平均値)、および、セパレータの物性(MD方向およびTD方向の伸度、突刺強度、MD方向およびTD方向の引張強度、ヤング率)を表1にまとめて示した。また、以下の実施例および比較例についても同様にまとめて表1に示した。
-非水電解質電池の作製-
(1)負極の作製
 負極活物質である人造黒鉛300g、バインダーであるスチレン-ブタジエン共重合体の変性体を40質量%含む水溶性分散液7.5g、増粘剤であるカルボキシメチルセルロース3g、及び適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
(2)正極の作製
 正極活物質であるコバルト酸リチウム粉末89.5g、導電助剤であるアセチレンブラック4.5g、及びバインダーであるポリフッ化ビニリデン6gを、ポリフッ化ビニリデンの濃度が6質量%となるようにN-メチル-ピロリドン(NMP)に溶解し、双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
(3)電池の作製
 前記の正極と負極にリードタブを溶接した後、正極、セパレータ、および負極をこの順に重ねて接合し、電解液を染み込ませてアルミパック中に真空シーラーを用いて封入した。電解液には、エチレンカーボネート(EC)とエチルメチルカーボネート(DMC)とを3:7の質量比(=EC:DMC)で混合した1M LiPF混合溶液を用いた。
 電解液が封入されたアルミパックに対して、熱プレス機により電極1cm当たり20kgの荷重をかけ、90℃、2分間の熱プレスを行なうことで、試験電池(リチウムイオン二次電池)を作製した。
[実施例2]
 実施例1において、無機フィラーのポリフッ化ビニリデン系樹脂に対する比率[質量比]を0.03(=無機フィラー/ポリフッ化ビニリデン系樹脂)とすることにより、ポリフッ化ビニリデン系樹脂からなる接着性多孔質層の「目付の標準偏差/目付の平均値」を下記表1に示す値に調節したこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例3]
 実施例1において、無機フィラーのポリフッ化ビニリデン系樹脂に対する比率[質量比]を0.05(=無機フィラー/ポリフッ化ビニリデン系樹脂)とすることにより、ポリフッ化ビニリデン系樹脂からなる接着性多孔質層の「目付の標準偏差/目付の平均値」を下記表1に示す値に調節したこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例4]
 実施例1において、多孔質基材として下記表1に示す物性値を有したポリエチレン微多孔膜を用いたこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例5,6]
 実施例1において、多孔質基材として下記表1に示す物性値を有したポリエチレン微多孔膜を用い、無機フィラーのポリフッ化ビニリデン系樹脂に対する比率[質量比]を0.5(=無機フィラー/ポリフッ化ビニリデン系樹脂)にしたこと以外は、実施例1と同様にして、実施例5,6のセパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例7,8]
 実施例1において、接着性樹脂として、重量平均分子量が60万あるいは300万のフッ化ビニリデン/ヘキサフロロプロピレン共重合体を用いたこと以外は、実施例1と同様にして、実施例7,8のセパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[実施例9]
 塗工液として、スチレン-ブタジエン共重合体及びカルボキシルメチルセルロースを含む塗布液(スチレン-ブタジエン共重合体:カルボキシルメチルセルロース:水=3:2:95[質量比])を用意し、これを実施例1と同様のポリエチレン微多孔膜の両面に等量塗工し、これを乾燥することで、スチレン-ブタジエン共重合体からなる接着性多孔質層が形成されたセパレータを得た。得られたセパレータにおける接着性多孔質層の目付は1.9g/mであり、目付の標準偏差/平均値は0.19であった。
[比較例1]
 実施例1において、無機フィラーのポリフッ化ビニリデン系樹脂に対する比率[質量比]を0.10(=無機フィラー/ポリフッ化ビニリデン系樹脂)とすることにより、ポリフッ化ビニリデン系樹脂からなる接着性多孔質層の「目付の標準偏差/目付の平均値」を下記表1に示す値に調節したこと以外は、実施例1と同様にして、セパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
[比較例2~5]
 実施例1において、多孔質基材として下記表1に示す物性値を有したポリエチレン微多孔膜を用いたこと以外は、実施例1と同様にして、比較例2~5のセパレータを作製し、試験電池(リチウムイオン二次電池)を作製した。
Figure JPOXMLDOC01-appb-T000003
 前記表1に示すように、実施例では、接着性多孔質層の「目付の標準偏差/目付の平均値」を所定の範囲にすることで、比較例に比べ、電極との接着性に優れ、良好なサイクル特性を示し、スリット性も良好であった。なお、実施例9についても実施例1と同程度の評価結果が得られた。

Claims (8)

  1.  多孔質基材と、前記多孔質基材の片面又は両面に設けられ、接着性樹脂を含む接着性多孔質層とを有し、
     前記接着性多孔質層の目付の平均値(g/m)に対する前記接着性多孔質層の目付の標準偏差の比(標準偏差/平均値)が0.3以下である、非水電解質電池用セパレータ。
  2.  前記多孔質基材の厚みの平均値(μm)に対する多孔質基材の厚みの標準偏差の比(標準偏差/平均値)が、0.02以下である請求項1に記載の非水電解質電池用セパレータ。
  3.  前記接着性樹脂は、ポリフッ化ビニリデン系樹脂である請求項1又は請求項2に記載の非水電解質電池用セパレータ。
  4.  前記ポリフッ化ビニリデン系樹脂の重量平均分子量は、60万以上300万以下である、請求項3に記載の非水電解質電池用セパレータ。
  5.  前記多孔質基材のMD方向あるいはTD方向の伸度が50%以上200%以下である、請求項1~請求項4のいずれか1項に記載の非水電解質電池用セパレータ。
  6.  前記多孔質基材の突刺強度が200g以上800g以下である、請求項1~請求項5のいずれか1項に記載の非水電解質電池用セパレータ。
  7.  前記接着性多孔質層にはフィラーが含まれており、前記フィラーの前記接着性樹脂に対する質量比(フィラーの質量/接着性樹脂の質量)が0.01以上0.05以下である、請求項1~請求項6のいずれか1項に記載の非水電解質電池用セパレータ。
  8.  正極と、負極と、前記正極及び前記負極の間に配置された請求項1~請求項7のいずれか1項に記載の非水電解質電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池。
PCT/JP2013/070538 2012-07-30 2013-07-30 非水電解質電池用セパレータ及び非水電解質電池 WO2014021290A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR20157001087A KR20150032295A (ko) 2012-07-30 2013-07-30 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
CN201380040432.9A CN104508864B (zh) 2012-07-30 2013-07-30 非水电解质电池用隔膜及非水电解质电池
JP2014510334A JP5643465B2 (ja) 2012-07-30 2013-07-30 非水電解質電池用セパレータ及び非水電解質電池
US14/413,521 US9905825B2 (en) 2012-07-30 2013-07-30 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
KR1020167020461A KR102137131B1 (ko) 2012-07-30 2013-07-30 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
US15/866,590 US10622611B2 (en) 2012-07-30 2018-01-10 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012168989 2012-07-30
JP2012-168989 2012-07-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/413,521 A-371-Of-International US9905825B2 (en) 2012-07-30 2013-07-30 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US15/866,590 Continuation US10622611B2 (en) 2012-07-30 2018-01-10 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
WO2014021290A1 true WO2014021290A1 (ja) 2014-02-06

Family

ID=50027964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070538 WO2014021290A1 (ja) 2012-07-30 2013-07-30 非水電解質電池用セパレータ及び非水電解質電池

Country Status (5)

Country Link
US (2) US9905825B2 (ja)
JP (1) JP5643465B2 (ja)
KR (2) KR20150032295A (ja)
CN (1) CN104508864B (ja)
WO (1) WO2014021290A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170027715A (ko) 2014-06-30 2017-03-10 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
US9711775B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
JP2017226119A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 積層体
JP2017226120A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 積層体
WO2018221503A1 (ja) * 2017-05-30 2018-12-06 東レ株式会社 セパレータ
WO2019107521A1 (ja) 2017-11-30 2019-06-06 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US10811654B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
JPWO2020189795A1 (ja) * 2019-03-20 2021-04-08 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
US11777175B2 (en) 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8070708B2 (en) 2004-02-03 2011-12-06 V-Wave Limited Device and method for controlling in-vivo pressure
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
US20210161637A1 (en) 2009-05-04 2021-06-03 V-Wave Ltd. Shunt for redistributing atrial blood volume
WO2010128501A1 (en) 2009-05-04 2010-11-11 V-Wave Ltd. Device and method for regulating pressure in a heart chamber
US11135054B2 (en) 2011-07-28 2021-10-05 V-Wave Ltd. Interatrial shunts having biodegradable material, and methods of making and using same
CN105555204B (zh) 2013-05-21 2018-07-10 V-波有限责任公司 用于递送减小左房压力的装置的设备
WO2016178171A1 (en) 2015-05-07 2016-11-10 The Medical Research Infrastructure And Health Services Fund Of The Tel-Aviv Medical Center Temporary interatrial shunts
US10835394B2 (en) 2016-05-31 2020-11-17 V-Wave, Ltd. Systems and methods for making encapsulated hourglass shaped stents
US20170340460A1 (en) 2016-05-31 2017-11-30 V-Wave Ltd. Systems and methods for making encapsulated hourglass shaped stents
JP7074419B2 (ja) 2016-06-21 2022-05-24 住友化学株式会社 積層体
JP6647973B2 (ja) * 2016-06-21 2020-02-14 住友化学株式会社 積層体
JP6754628B2 (ja) * 2016-06-21 2020-09-16 住友化学株式会社 積層体
JP6736375B2 (ja) * 2016-06-21 2020-08-05 住友化学株式会社 積層体
AU2018228451B2 (en) 2017-03-03 2022-12-08 V-Wave Ltd. Shunt for redistributing atrial blood volume
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11744589B2 (en) 2018-01-20 2023-09-05 V-Wave Ltd. Devices and methods for providing passage between heart chambers
US10898698B1 (en) 2020-05-04 2021-01-26 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
US11458287B2 (en) 2018-01-20 2022-10-04 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same
CN114335889B (zh) * 2018-04-11 2024-04-05 宁德新能源科技有限公司 隔离膜及储能装置
US11495866B2 (en) 2018-07-26 2022-11-08 Lg Energy Solution, Ltd. Separator and electrochemical device comprising same
US11612385B2 (en) 2019-04-03 2023-03-28 V-Wave Ltd. Systems and methods for delivering implantable devices across an atrial septum
EP3972499A1 (en) 2019-05-20 2022-03-30 V-Wave Ltd. Systems and methods for creating an interatrial shunt
CN112259901B (zh) * 2019-07-03 2022-03-18 比亚迪股份有限公司 锂离子电池用涂胶隔膜及其制备方法和应用
US11234702B1 (en) 2020-11-13 2022-02-01 V-Wave Ltd. Interatrial shunt having physiologic sensor
KR102582948B1 (ko) * 2021-05-27 2023-09-27 더블유스코프코리아 주식회사 분리막 및 이를 포함하는 전기화학소자
CN116134673A (zh) * 2022-03-31 2023-05-16 宁德新能源科技有限公司 一种隔膜、包含该隔膜的电化学装置及电子装置
AU2023252664A1 (en) 2022-04-14 2024-10-17 V-Wave Ltd. Interatrial shunt with expanded neck region

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172606A (ja) * 1996-12-04 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JP2001118558A (ja) * 1999-10-19 2001-04-27 Asahi Kasei Corp 部分被覆されたセパレータ
JP2004111160A (ja) * 2002-09-17 2004-04-08 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレーターおよびそれを用いたリチウムイオン二次電池
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
JP2012043762A (ja) * 2010-07-21 2012-03-01 Toray Ind Inc 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP2012129116A (ja) * 2010-12-16 2012-07-05 Teijin Ltd 非水電解質電池用セパレータ及び非水電解質電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127989B2 (ja) 2001-09-12 2008-07-30 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
CN101005129A (zh) * 2002-08-22 2007-07-25 帝人株式会社 非水系二次电池及该电池中使用的隔板
KR100573358B1 (ko) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
JP5202948B2 (ja) * 2005-06-24 2013-06-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜の製造方法
KR101156248B1 (ko) * 2006-10-30 2012-06-13 아사히 가세이 케미칼즈 가부시키가이샤 폴리올레핀제 미다공막
ATE538167T1 (de) * 2007-01-30 2012-01-15 Asahi Kasei E Materials Corp Mikroporöse polyolefinmembran
JPWO2009136648A1 (ja) * 2008-05-09 2011-09-08 旭化成イーマテリアルズ株式会社 高出力密度リチウムイオン二次電池用セパレータ
CN103280547B (zh) * 2008-12-19 2015-09-23 旭化成电子材料株式会社 聚烯烃制微多孔膜及锂离子二次电池用分隔件
JP5511214B2 (ja) * 2009-04-03 2014-06-04 旭化成イーマテリアルズ株式会社 多層多孔膜
CN103069612B (zh) * 2010-08-09 2015-05-06 日本瑞翁株式会社 二次电池用多孔膜、制造方法及用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172606A (ja) * 1996-12-04 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JP2001118558A (ja) * 1999-10-19 2001-04-27 Asahi Kasei Corp 部分被覆されたセパレータ
JP2004111160A (ja) * 2002-09-17 2004-04-08 Tomoegawa Paper Co Ltd リチウムイオン二次電池用セパレーターおよびそれを用いたリチウムイオン二次電池
JP2006120462A (ja) * 2004-10-21 2006-05-11 Sanyo Electric Co Ltd 非水電解質電池
JP2012043762A (ja) * 2010-07-21 2012-03-01 Toray Ind Inc 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP2012129116A (ja) * 2010-12-16 2012-07-05 Teijin Ltd 非水電解質電池用セパレータ及び非水電解質電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714723B2 (en) 2014-06-30 2020-07-14 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
KR20170027715A (ko) 2014-06-30 2017-03-10 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
US9711775B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9711776B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9865857B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US10014506B2 (en) 2014-08-29 2018-07-03 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US11777175B2 (en) 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
US10811654B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2017226119A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 積層体
JP2017226120A (ja) * 2016-06-21 2017-12-28 住友化学株式会社 積層体
JPWO2018221503A1 (ja) * 2017-05-30 2020-04-02 東レ株式会社 セパレータ
WO2018221503A1 (ja) * 2017-05-30 2018-12-06 東レ株式会社 セパレータ
JP7070565B2 (ja) 2017-05-30 2022-05-18 東レ株式会社 セパレータの製造方法
WO2019107521A1 (ja) 2017-11-30 2019-06-06 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JPWO2020189795A1 (ja) * 2019-03-20 2021-04-08 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Also Published As

Publication number Publication date
US20150180002A1 (en) 2015-06-25
US10622611B2 (en) 2020-04-14
KR20160093096A (ko) 2016-08-05
CN104508864A (zh) 2015-04-08
US9905825B2 (en) 2018-02-27
KR20150032295A (ko) 2015-03-25
US20180130988A1 (en) 2018-05-10
JP5643465B2 (ja) 2014-12-17
JPWO2014021290A1 (ja) 2016-07-21
KR102137131B1 (ko) 2020-07-24
CN104508864B (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP5643465B2 (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP5624251B2 (ja) 非水電解質電池用セパレータ及び非水電解質電池
US10096811B2 (en) Separator for a non-aqueous secondary battery and non-aqueous secondary battery
US9431641B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5670811B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP5964951B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP5603522B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
KR20170095904A (ko) 비수 전해질 전지용 세퍼레이터, 비수 전해질 전지, 및, 비수 전해질 전지의 제조 방법
JP5584371B2 (ja) 非水電解質電池用セパレータ、非水電解質電池、および、非水電解質電池の製造方法
JP5612797B1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
WO2013058368A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
TW201336154A (zh) 非水系蓄電池用分隔器及非水系蓄電池
WO2013058369A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2014136837A1 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP2014026946A (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP2014026947A (ja) 非水電解質電池用セパレータ及び非水電解質電池
JP6762089B2 (ja) 非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014510334

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14413521

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157001087

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825426

Country of ref document: EP

Kind code of ref document: A1