WO2014021286A1 - 乳製品様の加工食品、及びその製造方法 - Google Patents

乳製品様の加工食品、及びその製造方法 Download PDF

Info

Publication number
WO2014021286A1
WO2014021286A1 PCT/JP2013/070533 JP2013070533W WO2014021286A1 WO 2014021286 A1 WO2014021286 A1 WO 2014021286A1 JP 2013070533 W JP2013070533 W JP 2013070533W WO 2014021286 A1 WO2014021286 A1 WO 2014021286A1
Authority
WO
WIPO (PCT)
Prior art keywords
rice
processed food
weight
pudding
slurry
Prior art date
Application number
PCT/JP2013/070533
Other languages
English (en)
French (fr)
Inventor
由春 奈良原
堀内 啓史
浩 越膳
豊 北村
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Priority to EP13825351.3A priority Critical patent/EP2880985A4/en
Priority to CA2880294A priority patent/CA2880294C/en
Priority to US14/417,526 priority patent/US20150272151A1/en
Priority to SG11201500665UA priority patent/SG11201500665UA/en
Priority to CN201380040970.8A priority patent/CN104540389A/zh
Priority to JP2014528157A priority patent/JP5964968B2/ja
Publication of WO2014021286A1 publication Critical patent/WO2014021286A1/ja
Priority to HK15105347.2A priority patent/HK1204753A1/xx

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/10Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • A23C9/1315Non-milk proteins or fats; Seeds, pulses, cereals or soja; Fatty acids, phospholipids, mono- or diglycerides or derivatives therefrom; Egg products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L9/00Puddings; Cream substitutes; Preparation or treatment thereof
    • A23L9/10Puddings; Dry powder puddings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a dairy processed food and a method for producing the same.
  • Non-Patent Document 1 describes that bread, confectionery, noodles, and the like are produced using rice flour.
  • the present invention is a dairy-like processed food containing rice.
  • the “dairy-like processed food” in the present invention is a so-called dairy product that uses milk or a dairy product as a raw material, and another raw material is used instead of a part or all of the milk or dairy product.
  • dairy product that uses milk or a dairy product as a raw material, and another raw material is used instead of a part or all of the milk or dairy product.
  • fermented milk including yogurt
  • milk drink lactic acid bacteria drink
  • pudding ice cream and the like
  • rice in the present invention includes not only unprocessed rice but also rice after some processing such as pulverization.
  • a method for producing a dairy-like processed food according to the present invention is a method for producing a dairy-like processed food, the step of wet pulverizing rice, the rice slurry produced by the wet pulverization, and the processed food And a predetermined raw material.
  • the “predetermined raw material of the processed food” in the present invention is a raw material other than rice slurry, which is appropriately selected according to the type of processed food.
  • processed food containing rice can be produced, so that consumption of rice can be promoted.
  • a processed food having a unique rice flavor and texture can be produced.
  • An object of the present invention is to provide a dairy-like processed food using rice and a method for producing the same.
  • 2 is a microscopic image (magnification: 450 times) of a 10% by weight aqueous solution of rice flour of Comparative Example 1-1. It is a microscope image (magnification: 450 times) of the 10 weight% aqueous solution of the rice slurry of Example 1. 2 is a microscopic image (magnification: 2000 times) of a 10% by weight aqueous solution of rice flour of Comparative Example 1-1.
  • Example 1 It is a microscope image (magnification: 2000 times) of the 10 weight% aqueous solution of the rice slurry of Example 1.
  • 4 is a graph showing shear stresses of rice puddings according to Example 2-1 to Example 2-3 and puddings according to Comparative Example 2.
  • 6 is a graph showing shear stresses of rice puddings according to Example 3-1 and Example 3-2 and puddings according to Comparative Example 3.
  • the dairy-like processed food according to the present embodiment contains rice.
  • This dairy-like processed food means a so-called dairy product that uses milk or a dairy product as a raw material, and uses a different raw material instead of part or all of the milk or dairy product.
  • a concrete processed food For example, various things, such as fermented milk (a yogurt is included), a milk drink, a lactic acid bacteria drink, a pudding, and ice cream, can be mentioned.
  • pudding egg ingredients and milk ingredients (milk protein, whey protein, etc.), etc., rather than those that gel by cooling the raw material liquid containing gelling agents and thickeners (cooled pudding)
  • a material that heats and solidifies a raw material solution containing sucrose heats and solidifies a raw material solution containing sucrose (heated pudding) because it can effectively utilize the flavor and texture (starch gelatinization (alpha) conversion) derived from rice.
  • the method for heating and solidifying the raw material liquid is not particularly limited, and examples thereof include various methods such as hot water bathing, steaming, or baking.
  • the concentration of rice solids in the above dairy-like processed food can be adjusted as appropriate according to the nature of the processed food and the consumer's preference.
  • the dairy-like processed food does not contain eggs.
  • WPI whey protein isolate
  • the solid content concentration is preferably 2.5% by weight to 10% by weight, more preferably 3% by weight to 9% by weight, and more preferably 3.5% by weight to 8% by weight. Further preferred.
  • the solids content of rice is 1 to 7% by weight. % Or less, more preferably 1.5 wt% or more and 6 wt% or less, and further preferably 1.5 wt% or more and 5 wt% or less.
  • the concentration of rice solids is preferably 2% by weight to 15% by weight, more preferably 3% by weight to 13% by weight, and more preferably 4% by weight or more. More preferably, the content is 12% by weight or less.
  • the dairy-like processed food is a pudding containing no whey protein and containing whey protein isolate (WPI) (eg, containing 2 to 5% by weight of whey protein isolate (WPI))
  • WPI whey protein isolate
  • the breaking strain is preferably 10% to 45%, more preferably 10% to 40%, further preferably 15% to 35%, and more preferably 15% to 30%.
  • the breaking strength is 10 g / cm 2 to 40 g / cm 2 , more preferably 15 g / cm 2 to 40 g / cm 2 , still more preferably 20 g / cm 2 to 40 g / cm 2 , and 25 g / cm 2 to 40 g / cm 2 . It is particularly preferred.
  • the processed food may be a mixture of crushed rice particles and rice slurry containing a dispersion medium.
  • the median diameter of the rice particles is 40 ⁇ m or less, there is no problem in terms of dispersibility and processability, but it is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less. More preferably, it is 8.5 ⁇ m or less.
  • the standard deviation of the grain size of rice is preferably less than 1, more preferably 0.8 or less, and even more preferably 0.7 or less.
  • the processed food like the dairy product is a gel-like food such as pudding
  • the solid texture is in a state where the shear stress is hardly lowered even if the shear rate is increased (physical properties).
  • the shear stress (temperature: 20 ° C.) at a shear rate of 100 (1 / s) is 200 Pa to 10,000 Pa. It is preferably 300 Pa or more and 5000 Pa or less, more preferably 500 Pa or more and 3000 Pa or less, further preferably 800 Pa or more and 2000 Pa or less, and particularly preferably 1000 Pa or more and 1500 Pa or less.
  • the rice solid content concentration of the rice slurry is preferably 5% by weight or more and 20% by weight or less, more preferably 5% by weight or more and 15% by weight or less, and more preferably 5% by weight or more and 10% by weight or less. More preferably.
  • the particle size of the rice can be effectively reduced and the distribution of the particle size of the rice can be narrowed.
  • the rice solid content concentration of the rice slurry within the predetermined range as described above, when the rice slurry is sterilized or sterilized alone, it can be efficiently processed while suppressing changes in the physical properties of the rice slurry. .
  • the rice contained in the rice slurry is not particularly limited, but is preferably sticky rice and / or sticky rice.
  • Table 1 shows an example of components of each variety of glutinous rice (brown rice). Among the varieties shown in Table 1, it is particularly preferable to use Hokuriku 193 with high protein and high lipid for the rice slurry.
  • rice slurry which is one of raw materials of processed food according to the present embodiment, is generated.
  • the moisture content of the rice is not particularly limited, but is preferably adjusted to about 20%.
  • the liquid for immersing rice is not particularly limited as long as it does not harm the human body, but tap water or distilled water is usually used. Moreover, it is preferable that the temperature of this liquid shall be 10 degrees C or less from a viewpoint of preventing propagation of various germs.
  • the soaking time is not particularly limited as long as the rice can be sufficiently softened. For example, the soaking time can be 1 hour or longer.
  • the dispersion medium is not particularly limited as long as it does not harm the human body, but tap water or distilled water is usually used.
  • the pulverizing apparatus 1 includes a milling mill 2 having an upper mill 21 and a lower mill 22, a supply unit 3 for feeding each rice and dispersion medium to the milling mill 2, and milled rice ( A tray 4 for collecting rice slurry S).
  • the upper die 21 is formed with a through-hole 211 penetrating in the vertical direction.
  • the upper mill 21 has a plurality of main grooves 213 and sub-grooves 214 formed on a surface 212 facing the lower mill 22.
  • Each main groove 213 extends radially from the center of the surface 212 toward the outer edge.
  • a plurality of sub-grooves 214 are provided between the main grooves 213, and each sub-groove 214 extends in parallel to the left main groove 213 in FIG.
  • the main groove 213 and the sub groove 214 may have the same depth or may be different.
  • main grooves and sub-grooves (not shown) similar to the upper mill 21 are formed on the surface facing the upper mill 21.
  • the lower die 22 is connected to a drive shaft 51 of the motor 5, and rotates around the central axis when the drive shaft 51 rotates when the motor 5 is driven.
  • the upper die 21 is supported by the drive shaft 51 and a support member (not shown). However, by providing a bearing or the like between the upper die 21 and the drive shaft 51, the upper die 21 is configured not to rotate even when the motor 5 is driven. ing.
  • the upper mortar 21 may not be supported by the drive shaft 51 and may be fixed so as not to rotate only on a support member (not shown).
  • the supply unit 3 includes a hopper 31 into which softened rice is introduced, a first supply pipe 32 for supplying rice from the hopper 31 to the mill 2, and a first supply pipe. 32 and a raw material supply screw 33 extending horizontally.
  • the raw material supply screw 33 rotates around the axis by driving the motor 34.
  • the supply unit 3 includes a storage tank 35 in which the dispersion medium is stored, a second supply pipe 36 for supplying the dispersion medium to the mill 2, and a second supply pipe 36 from the storage tank 35 to the dispersion medium. And a liquid feed pump 37 for feeding the inside.
  • the rice from the hopper 31 is moved in the first supply pipe 32 by the raw material supply screw 33 rotated by the motor 34, and the upper mill 21 is connected to the upper mill 21 through the through hole 211. It is supplied between the lower die 22 rotated by the motor 5.
  • the dispersion medium sent from the storage tank 35 to the second supply pipe 36 by the liquid feed pump 37 is supplied between the upper die 21 and the lower die 22 through the through hole 211.
  • the rice is wet-ground and rice slurry S is produced.
  • the rotational speed of the lower mill 22 at this time can be determined as appropriate, and can be, for example, 20 rpm to 50 rpm or 1000 rpm to 2000 rpm.
  • the wet pulverization as described above can be performed a plurality of times from the viewpoint of making the rice particles finer.
  • a pulverizing apparatus 10 including a first milling mill 2A, a second milling mill 2B, and a third milling mill 2C can be used.
  • the rice is wet pulverized by the first mill 2A to produce the first rice slurry S1.
  • the 1st rice slurry S1 is thrown into the 2nd milling mill 2B, and the 2nd rice slurry S2 is produced
  • the second rice slurry S2 is charged into the third milling mill 2C and wet pulverized by the third milling mill 2C, thereby producing the third rice slurry S3 as the final product.
  • a new dispersion medium is not added in the wet pulverization by the second and third milling dies 2B and 2C.
  • the first to third milling dies 2A to 2C may be the same, but the depth and number of main grooves and subgrooves formed in the upper mill 21 and the lower mill 22 may be different.
  • the main groove and the minor groove can be made deeper in the order of the first milling mill 2A, the second milling mill 2B, and the third milling mill 2C, or the number of the main groove and the minor groove can be reduced. You can also go.
  • the clearance between the upper mill 21 and the lower mill 22 is not particularly limited, but the second mill 2B is smaller than the first mill 2A and is smaller than the second mill 2B.
  • the third milling mill 2C is preferably smaller.
  • the pulverizing apparatus 10 it is possible to omit the third milling mill 2C and set the number of wet milling to two, or to add four milling mills to increase the number of wet milling to four or more. Is possible.
  • a commercially available pulverizing apparatus can also be used.
  • a super mass colloid made by Masuyuki Sangyo Co., Ltd. (electric millstone) with a grinding wheel of model number “MK-E 46 standard” or “MK-GA 120 standard” set, and a rotational speed of 1000 rpm to Wet grinding can be performed at 2000 rpm. If a pulverizer with a high rotational speed is used, the production efficiency of rice slurry is improved. In addition, even if it is a case where a commercially available grinding
  • the processed food according to the present embodiment is manufactured using the rice slurry generated by the pulverizer as described above.
  • a method for producing pudding (rice pudding) using rice slurry will be described.
  • Table 2 shows an example of the blending ratio and the component ratio of the raw materials for the rice pudding according to the present embodiment.
  • WPI whey protein isolate
  • Eggs can be used instead of WPI, but WPI is preferred because it can enhance the flavor of rice.
  • a unique texture (dense texture) with viscoelasticity can be obtained by the synergistic effect of WPI and rice slurry.
  • a suitable cream may be selected. For example, a cream having a milk fat content of about 30% to 50% can be used.
  • the compounding ratio and component ratio of the raw material of rice pudding are not limited to what is shown in Table 2, and can be suitably changed as needed.
  • the container filled with the rice pudding stock solution is placed in an oven and baked, for example, at 150 ° C. to 160 ° C. for 30 minutes to 60 minutes. At this time, hot water baking may be performed as necessary. Thereby, the rice pudding stock solution in the container is solidified.
  • the oven may be preheated, and the firing temperature and firing time conditions in the oven or the like can be adjusted as appropriate.
  • the oven-baked rice pudding container is cooled in ice water, refrigerator, freezer, etc.
  • the container is sealed and refrigerated. Thereby, the oven-baked rice pudding according to the present embodiment is completed.
  • Retort type rice pudding In the case of a retort type rice pudding, all raw materials shown in Table 2 are mixed to produce a rice pudding stock solution, and this rice pudding stock solution is homogenized as necessary. In addition, before mixing rice slurry and other raw materials, you may heat-sterilize or homogenize rice slurry. Subsequently, the rice pudding stock solution is filled into a suitable container, and the container is sealed.
  • the rice pudding stock solution filled in the container is retorted by a known method, for example, at 105 ° C. for 30 minutes. Thereby, the rice pudding stock solution in the container is solidified.
  • the conditions of the heating temperature and heating time in a retort process can be adjusted suitably.
  • the rice pudding container after retort treatment is refrigerated by cooling with ice water, refrigerator, freezer, etc. Thereby, the retort type rice pudding which concerns on this embodiment is completed.
  • the processed food according to the present embodiment contains rice, the consumption of rice can be promoted according to this processed food. Moreover, this processed food can implement
  • pudding using rice slurry
  • rice flour, white egg flour, or fresh powder can be used instead of rice slurry.
  • the blending ratio and component ratio of the raw materials may be adjusted as appropriate.
  • rice slurry is usually smaller in particle size and dispersibility than rice flour and white flour, it is preferable to use rice slurry from the viewpoint of processability.
  • rice slurry rice flour, white egg flour, or fine powder for processed foods such as dairy products other than rice pudding.
  • Example 1 Generation of rice slurry
  • sample rice variety: Hokuriku 193, brown rice
  • distilled water at 5 ° C. for about 12 hours (overnight).
  • pulverizer 10 as shown in FIG. 2, the rice after immersion is wet-pulverized three times while adding water so that the weight ratio of distilled water to rice is about 8 times.
  • rice slurry was prepared with 2 samples.
  • Comparative Example 1-1 Comparative Example 1-3
  • rice flour manufactured by Hari Co., Ltd.
  • white ball powder manufactured by Toei Shoten Co., Ltd.
  • Kamishin flour manufactured by Kadoya Co., Ltd.
  • a 10 wt% aqueous solution of rice flour is referred to as Comparative Example 1-1
  • a 10 wt% aqueous solution of white flour is referred to as Comparative Example 1-2
  • a 10 wt% aqueous solution of the upper flour is referred to as Comparative Example 1-3.
  • the median diameter of the rice particles contained in the rice slurry of Example 1 was measured using a laser diffraction particle size distribution analyzer (SALD-2200, manufactured by Shimadzu Corporation). Further, 10% by weight aqueous solution of rice flour of Comparative Example 1-1, 10% by weight aqueous solution of white flour of Comparative Example 1-2, and 10% by weight of aqueous solution of upper fresh powder of Comparative Example 1-3 The median diameter was also measured. Table 3 shows the median diameters of the rice particles in Example 1 and Comparative Examples 1-1 to 1-3. Table 3 also shows the pH of Example 1 and Comparative Examples 1-1 to 1-3.
  • the median diameter of the rice particles is 10 ⁇ m or less. Compared with each 10% by weight aqueous solution of rice flour, white flour, and fine powder, The median diameter is very small. From this, it can be seen that rice slurry has better dispersibility and superior processability than rice flour, white flour, and upper fresh flour.
  • the rice slurry of Example 1 and the 10% by weight aqueous solution of the rice flour of Comparative Example 1-1 were observed with a digital microscope.
  • Digital microscope images (magnification: 450 times, 2000 times) of a 10% by weight aqueous solution of the rice slurry of Example 1 and the rice flour of Comparative Example 1-1 are shown in FIGS. 4A, 4B, 5A, and 5B.
  • the 10% by weight aqueous solution of the rice flour of Comparative Example 1-1 contains a mixture of large and small rice particles, and the rice particle size is non-uniform. It can be seen that the particle size of the film is uniform.
  • the 10% by weight aqueous solution of the rice flour of Comparative Example 1-1 has a rounded rice particle shape, whereas the rice slurry of Example 1 has It can be seen that the shape of the particles is square.
  • Example 2-1 Manufacture of rice pudding without eggs
  • Example 2-1 The rice pudding according to Example 2-1 was manufactured according to the following procedure.
  • the rice slurry of Example 1 was mixed with cream, sugar, whey protein isolate (WPI), skim milk powder, dextrin, and raw water to obtain a rice pudding stock solution.
  • WPI whey protein isolate
  • the mixing ratio of the raw materials is 20.0% by weight of rice slurry, cream (fresh cream (milk fat content: 47% by weight), manufactured by Tomei Meiji Co., Ltd.): 12.0% by weight, sugar 10.0 wt%, WPI: 3.0 wt%, skim milk powder: 6.0 wt%, dextrin: 4.1 wt%, and raw water (distilled water): 44.9 wt%.
  • the rice solid concentration in the rice pudding stock solution was 2% by weight.
  • this rice pudding stock solution was heated to 60 ° C. and filled into a container. Then, with the upper surface of the container covered with aluminum foil, hot water was baked in an oven at 150 ° C. in the upper stage and 160 ° C. in the lower stage to obtain a rice pudding according to Example 2-1. Note that the number of samples per time placed in the oven was 8 (weight after firing: 130 g each).
  • Example 2-2 The rice pudding according to Example 2-2 is different from the rice pudding according to Example 2-1 in the mixing ratio of raw materials, but the number of samples and the manufacturing procedure are the same.
  • the blending ratio of the rice pudding raw materials according to Example 2-2 was as follows: rice slurry: 40.0% by weight, cream similar to Example 2-1: 12.0% by weight, sugar 10.0% by weight, WPI: 2.5% by weight, skim milk powder: 6.0% by weight, dextrin: 2.5% by weight, and raw water (distilled water): 27.0% by weight.
  • the rice solid concentration in the rice pudding stock solution according to Example 2-2 was 4% by weight.
  • Example 2-3 The rice pudding according to Example 2-3 is different from the rice pudding according to Example 2-1 in the mixing ratio of raw materials, but the number of samples and the manufacturing procedure are the same. As shown in Table 4, the ratio of the rice pudding ingredients according to Example 2-3 was 72.0% by weight of rice slurry, 12.0% by weight of the same cream as in Example 2-1, and sugar. 10.0% by weight, WPI: 2.0% by weight, and skim milk powder: 6.0% by weight. The rice solid concentration in the rice pudding stock solution according to Example 2-3 was 7% by weight.
  • Comparative Example 2 The purine according to Comparative Example 2 has the same number of samples and the same manufacturing procedure as the rice purine according to Example 2-1, but does not use rice slurry as a raw material. As shown in Table 4, the blending ratio of the raw materials for pudding according to Comparative Example 2 is the same cream as Example 2-1, 12.0% by weight, sugar: 10.0% by weight, WPI: 3.3% by weight. % And skim milk powder: 6.0% by weight.
  • the rice solid content concentration is 2.5% by weight to 10% by weight, preferably 3% by weight to 9% by weight, more preferably 3.5% by weight to 8%. It has been found that when the content is not more than wt%, more preferably not less than 4 wt% and not more than 7 wt%, the rice flavor can be firmly and reliably felt.
  • the rice solid content concentration is 2.5 wt% or more and 10 wt% or less, preferably 3 wt% or more and 9 wt% or less, more preferably 3.5 wt% or more and 8 wt% or less. If it is not more than% by weight, more preferably not less than 4% by weight and not more than 7% by weight, not only can the rice flavor be firmly and reliably felt, but it will surely have a strong viscoelastic texture (dense texture). I understood it.
  • Example 2-1 to Example 2- using a viscoelasticity measuring device (MCR-301, manufactured by Anton Paar) under conditions of a shear rate of 0.1 to 1000 (1 / s) and a temperature of 20 ° C.
  • No. 3 rice pudding and the pudding of Comparative Example 2 were measured for shear stress.
  • the shear stresses of the rice purines of Example 2-2 and Example 2-3 were compared with those of Example 2-1 particularly when the shear rate was 10 to 100 (1 / s). It is higher than the shear stress of the pudding of Example 2.
  • the shear stress of the pudding of Comparative Example 2 is 142 Pa
  • the shear stress of the rice pudding of Example 2-1 is 227 Pa
  • the rice of Example 2-2 The shear stress of pudding is 1105 Pa
  • the shear stress of rice pudding of Example 2-3 is 1474 Pa.
  • the rice solid content concentration is 2.5 wt% or more and 10 wt% or less, preferably 3 wt% or more and 9 wt% or less, more preferably 3.5 wt% or more.
  • the content is 8% by weight or less, more preferably 4% by weight or more and 7% by weight or less, a texture having a strong viscoelasticity (dense texture) is obtained.
  • the shear stress temperature: 20 ° C.
  • the pressure is more preferably 800 Pa to 2000 Pa, particularly preferably 1000 Pa to 1500 Pa.
  • Example 3-1 The rice pudding according to Example 3-1 was manufactured according to the following procedure.
  • the rice pudding according to Example 3-1 includes eggs unlike Example 2-1 to Example 2-3.
  • the rice slurry of Example 1 was mixed with whole egg liquid, cream, sugar, skim milk powder, and raw water to obtain a rice pudding stock solution.
  • the mixing ratio of the raw materials is 20.0% by weight of total egg liquid: 20.0% by weight of rice slurry, cream (Ajiwai cream (milk fat content: 40% by weight), Meiji Co., Ltd. Manufactured): 8.0 wt%, sugar: 12.0 wt%, skim milk powder (manufactured by Meiji Co., Ltd.): 5.0 wt%, and raw water (distilled water): 35.0 wt%.
  • the rice solid concentration in the rice pudding stock solution was 2% by weight.
  • this rice pudding stock solution was heated to 50 ° C. and filled into a container. Thereafter, baking was performed in an oven having an upper stage of 130 ° C. and a lower stage of 140 ° C. for 45 minutes, to obtain a rice pudding according to Example 3-1. In addition, the number of samples once put in the oven was 8 (weight after firing: 120 g each).
  • Example 3-2 The rice pudding according to Example 3-2 is different from the rice pudding according to Example 3-1 in the mixing ratio of raw materials, but the number of samples and the manufacturing procedure are the same. As shown in Table 8, the ratio of the rice pudding raw materials according to Example 3-2 was 40.0% by weight of the rice slurry, and 20.0% by weight of the whole egg solution, which was the same as that of Example 3-1. Cream: 8.0% by weight, sugar: 12.0% by weight, skim milk powder similar to Example 3-1, 3.0% by weight, and raw water (distilled water): 17.0% by weight. The rice solid concentration in the rice pudding stock solution was 4% by weight.
  • Comparative Example 3 The purine according to Comparative Example 3 has the same number of samples and the same production procedure as the rice purine according to Example 3-1, but does not use rice slurry as a raw material. As shown in Table 8, the blending ratio of the pudding raw materials according to Comparative Example 3 was 20.0% by weight of total egg liquid, 8.0% by weight of cream similar to Example 3-1, and sugar: 12.2. 0% by weight, skim milk powder similar to Example 3-1: 7.4% by weight, and raw water (distilled water): 52.6% by weight.
  • Example 3-1 and Example 3-2 and the pudding of Comparative Example 3 were subjected to a sensory evaluation by a panel of four persons.
  • the rice pudding of Example 3-1 and Example 3-2 was evaluated as having a viscoelastic texture (a dry texture). From this, in the case of rice pudding containing eggs, the rice solid content concentration is 1 to 7% by weight, preferably 1.5 to 6% by weight, more preferably 1.5 to 5% by weight. In the following, it was found that a texture with strong viscoelasticity can be realized if it is more preferably 2 wt% or more and 4 wt% or less.
  • Example 3-1 and Example 3- No. 2 rice pudding and the pudding of Comparative Example 3 were measured for shear stress.
  • the shear stress of the rice pudding of Example 3-1 and Example 3-2 is higher than the shear stress of the pudding of Comparative Example 3.
  • the shear stress of the pudding of Comparative Example 3 is about 105 Pa
  • the shear stress of the rice pudding of Example 3-1 is 836 Pa, which is that of Example 3-2.
  • the shear stress of rice pudding is 1176 Pa.
  • the rice solid content concentration is 1 to 7% by weight, preferably 1.5 to 6% by weight, more preferably 1.5 to 5% by weight. % Or less, more preferably 2% by weight or more and 4% by weight or less, it was found that a texture with strong viscoelasticity (dense texture) was obtained.
  • the shear stress (temperature: 20 ° C.) at a shear rate of 100 (1 / s) is 200 Pa to 10,000 Pa, preferably 300 Pa to 5000 Pa, more preferably 500 Pa to 3000 Pa. Further, it has been found that the pressure is more preferably 800 Pa to 2000 Pa, particularly preferably 1000 Pa to 1500 Pa.
  • Example 4-1 The rice pudding according to Example 4-1 was manufactured according to the following procedure.
  • the rice pudding according to Example 4-1 contains eggs as in Example 3-1 and Example 3-2.
  • the rice slurry of Example 1 was mixed with whole egg liquid, sugar, and milk to obtain a rice pudding stock solution.
  • the mixing ratio of the raw materials was 25.0% by weight of the whole rice slurry: 20.0% by weight, sugar: 12.0% by weight, and milk: 43.0% by weight, as shown in Table 9. did.
  • the rice solid concentration in the rice pudding stock solution was 3% by weight.
  • this rice pudding stock solution was heated to 50 ° C. and filled into a container. Subsequently, the rice was baked in a 160 ° C. oven for 40 minutes and then left in the oven for 5 minutes to obtain a rice pudding according to Example 4-1. Note that the number of samples per time placed in the oven was four.
  • Example 4-2 The rice pudding according to Example 4-2 is different from the rice pudding according to Example 4-1 in the mixing ratio of the raw materials, but the number of samples and the manufacturing procedure are the same. As shown in Table 9, the ratio of the rice pudding raw materials according to Example 4-2 was 50.0% by weight of rice slurry, 20.0% by weight of total egg liquid, and 12.0% by weight of sugar. And milk: 18.0% by weight. The rice solid content concentration in the rice pudding stock solution was 5% by weight.
  • Comparative Example 4 The purine according to Comparative Example 4 has the same number of samples and the same manufacturing procedure as the rice purine according to Example 4-1, but does not use rice slurry as a raw material. As shown in Table 9, the blending ratio of the pudding raw materials according to Comparative Example 4 is 20.0% by weight of total egg liquid, 12.0% by weight of sugar, and 68.0% by weight of milk.
  • Example 5-6 In the same manner as in Example 5-1, after the rice slurry was heated, milk and sugar were mixed to obtain a raw material liquid for rice fermented milk. Lactic acid bacteria were added to this rice fermented milk raw material liquid and fermented under the same conditions as in Example 5-1, to produce rice fermented milk according to Example 5-6. As shown in Table 11, the mixing ratio of each raw material and lactic acid bacteria was 46.5% by weight of milk for the rice slurry: 46.5% by weight, 5.0% by weight of sugar, and 2.0% by weight of lactic acid bacteria. did.
  • Example 13 As shown in Table 13, in the rice slurries of Example 6-1 and Example 6-2, even when the number of wet pulverizations was one, the median diameter of the rice particles was 40 ⁇ m or less, and rice flour, white flour, and It turns out that it is smaller than the median diameter (Table 3) of the particle
  • Example 7-2 A rice slurry was prepared in the same manner as in Example 7-1 except for the amount of distilled water supplied to the pulverizer 10. At this time, the supply amount of distilled water was set to 90.0 g / min.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Grain Derivatives (AREA)
  • Cereal-Derived Products (AREA)
  • Dairy Products (AREA)

Abstract

米を消費することが可能な乳製品様の加工食品、及びその製造方法を提供する。乳製品様の加工食品は、米を含有する。この加工食品は、粉砕された米及び分散媒を含むコメスラリー、米粉、白玉粉、または上新粉が混合されたものであってもよい。乳製品様の加工食品の製造方法は、米を湿式粉砕する工程と、湿式粉砕により生成されたコメスラリーと、当該加工食品の所定の原材料と、を混合する工程と、を備える。

Description

乳製品様の加工食品、及びその製造方法
 本発明は、乳製品様の加工食品、及びその製造方法に関する。
 近年、米の消費量を増加させ、我が国の食料自給率を向上させるために、様々な米の利用方法が検討されている。例えば、非特許文献1には、米粉を用いて、パンや菓子、麺類等を製造することが記載されている。
"米粉の利用促進について"、[online]、農林水産省、[平成24年7月4日検索]、インターネット〈URL:http://www.maff.go.jp/j/seisan/keikaku/komeko/pdf/20120614.pdf〉
 上述したように、米粉を用いたパン等の製造が提案されているものの、米の消費量は一貫して減少傾向にある。このため、さらなる米の利用方法を開発し、米の消費をより促進することが求められている。
 本発明は、米を含有する、乳製品様の加工食品である。
 上記乳製品様の加工食品は、米を含有しているため、この加工食品によれば、米の消費が促進される。また、この加工食品は、米独特の風味及び食感を実現することができる。なお、本発明における「乳製品様の加工食品」とは、乳または乳加工品を原材料とする、いわゆる乳製品において、乳または乳加工品の一部または全部に代えて別の原材料を用いたもの、を意味する。例えば、本発明の「乳製品様の加工食品」としては、発酵乳(ヨーグルトを含む)、乳飲料、乳酸菌飲料、プリン、及びアイスクリーム類等を挙げることができるが、これらの食品は、必ずしも乳または乳加工品を含んでいなくてもよい。また、本発明における「米」は、非加工の米だけでなく、例えば粉砕等、何らかの加工が施された後の米をも含む。
 本発明に係る乳製品様の加工食品の製造方法は、乳製品様の加工食品の製造方法であって、米を湿式粉砕する工程と、前記湿式粉砕により生成されたコメスラリーと、当該加工食品の所定の原材料と、を混合する工程と、を備える。なお、本発明における「当該加工食品の所定の原材料」とは、加工食品の種類に応じて適宜選択される、コメスラリー以外の原材料である。
 上記製造方法によれば、米を含有する加工食品を製造することができるため、米の消費を促進させることができる。また、この製造法によって、米独特の風味及び食感を有する加工食品を製造することができる。
 本発明の目的は、米を用いた乳製品様の加工食品、及びその製造方法を提供することである。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面によって、明白となる。
本発明の一実施形態に係る粉砕装置の正面断面図である。 上記粉砕装置における上臼の底面図である。 上記粉砕装置の変形例の正面断面図である。 比較例1-1の米粉の10重量%水溶液の顕微鏡画像(倍率:450倍)である。 実施例1のコメスラリーの10重量%水溶液の顕微鏡画像(倍率:450倍)である。 比較例1-1の米粉の10重量%水溶液の顕微鏡画像(倍率:2000倍)である。 実施例1のコメスラリーの10重量%水溶液の顕微鏡画像(倍率:2000倍)である。 実施例2-1~実施例2-3に係るライスプリン、及び比較例2に係るプリンのせん断応力を示すグラフである。 実施例3-1及び実施例3-2に係るライスプリン、並びに比較例3に係るプリンのせん断応力を示すグラフである。
 以下、本発明の実施の形態について詳細に説明する。
 本実施形態に係る乳製品様の加工食品は、米を含有している。この乳製品様の加工食品とは、乳または乳加工品を原材料とする、いわゆる乳製品において、乳または乳加工品の一部または全部に代えて別の原材料を用いたものを意味している。具体的な加工食品としては、特に限定されるものではないが、例えば、発酵乳(ヨーグルトを含む)、乳飲料、乳酸菌飲料、プリン、及びアイスクリーム類等、種々のものを挙げることができる。プリンであれば、ゲル化剤や増粘剤などを含む原料液を冷却することでゲル化するタイプのもの(冷却型プリン)よりも、卵成分や乳成分(ミルクプロテイン、ホエイプロテインなど)などを含む原料液を加熱凝固することでゲル化するタイプのもの(加熱型プリン)が米由来の風味や食感(デンプンの糊化(α化)など)を効果的に活用できるので好ましい。原料液を加熱凝固する方法としては、特に限定されるものではないが、例えば、湯煎、蒸し、又は焼き等、種々の方法を挙げることができる。
 上記乳製品様の加工食品における米固形分濃度は、加工食品の性質や消費者の嗜好に合わせて適宜調整することが可能であるが、例えば、上記乳製品様の加工食品が卵を含まず、ホエイプロテイン単離物(WPI)を含むプリンである場合(例えば、ホエイプロテイン単離物(WPI)を2~5重量%で含むプリンである場合)、風味及び食感向上の観点から、米固形分濃度として、2.5重量%以上10重量%以下とすることが好ましく、3重量%以上9重量%以下とすることがより好ましく、3.5重量%以上8重量%以下とすることがさらに好ましい。上記乳製品様の加工食品が卵を含むプリンである場合(例えば、卵(全卵液)を15~25重量%で含むプリンである場合)、米固形分濃度として、1重量%以上7重量%以下とすることが好ましく、1.5重量%以上6重量%以下とすることがより好ましく、1.5重量%以上5重量%以下とすることがさらに好ましい。加工食品が液状の発酵乳であれば、米固形分濃度として、2重量%以上15重量%以下とすることが好ましく、3重量%以上13重量%以下とすることがより好ましく、4重量%以上12重量%以下とすることがさらに好ましい。
 また、例えば、上記乳製品様の加工食品が卵を含まず、ホエイプロテイン単離物(WPI)を含むプリンである場合(例えば、ホエイプロテイン単離物(WPI)を2~5重量%で含むプリンである場合)、破断歪として、10%~45%であることが好ましく、10%~40%であることがより好ましく、15%~35%であることがさらに好ましく、15%~30%であることが特に好ましい。上記乳製品様の加工食品が卵を含むプリンである場合(例えば、卵(全卵液)を15~25重量%で含むプリンである場合)、破断強度として、10g/cm~40g/cmであることが好ましく、15g/cm~40g/cmであることがより好ましく、20g/cm~40g/cmであることがさらに好ましく、25g/cm~40g/cmであることが特に好ましい。
 上記加工食品は、粉砕された米の粒子及び分散媒を含むコメスラリーが混合されたものとすることができる。このコメスラリーにおいては、米の粒子のメディアン径として、40μm以下であれば分散性及び加工適性の点で問題ないが、20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることがさらに好ましく、8.5μm以下であることが特に好ましい。また、米の粒径の標準偏差として、1未満が好ましく、0.8以下がより好ましく、0.7以下がさらに好ましい。このとき、例えば、上記乳製品様の加工食品がプリンのようなゲル状の食品である場合、もっちりとした食感は、せん断速度を増加させても、せん断応力が低下しにくい状態(物性)となっており、粘弾性の強さとして表現される。つまり、上記乳製品様の加工食品がプリンのようなゲル状の食品である場合、せん断速度が100(1/s)における、せん断応力(温度:20℃)として、200Pa以上10000Pa以下であることが挙げられ、300Pa以上5000Pa以下であることが好ましく、500Pa以上3000Pa以下であることがより好ましく、800Pa以上2000Pa以下であることがさらに好ましく、1000Pa以上1500Pa以下であることが特に好ましい。また、コメスラリーの米固形分濃度としては、5重量%以上20重量%以下とすることが好ましく、5重量%以上15重量%以下とすることがより好ましく、5重量%以上10重量%以下とすることがさらに好ましい。コメスラリーの米固形分濃度を上記のような所定の範囲に設定することで、米の粒径を効果的に小さくできると共に、米の粒径の分布を狭くすることができる。また、コメスラリーの米固形分濃度を上記のような所定の範囲に設定することで、コメスラリーを単独で殺菌又は滅菌する際に、コメスラリーの物性の変化を抑制して効率的に処理することができる。
 なお、コメスラリーに含まれる米は、特に限定されるものではないが、うるち米および/またはもち米であることが好ましい。表1に、うるち米(玄米)の各品種の成分の一例を示す。表1に示す品種の中では、高タンパク質及び高脂質の北陸193号をコメスラリーに用いることが特に好ましい。
Figure JPOXMLDOC01-appb-T000001
 
 以下、上述した加工食品の製造方法について説明する。
 まず、本実施形態に係る加工食品の原材料の1つであるコメスラリーを生成する。
 生米を準備し、必要に応じて乾燥殺菌した後、液体に浸漬して軟化する。このとき、米の含水率は、特に限定されるものではないが、20%程度に調整されることが好ましい。米を浸漬するための液体としては、人体に害がないものであれば特に限定されないが、通常、水道水または蒸留水が用いられる。また、この液体の温度は、雑菌などの繁殖を防止する観点から、10℃以下とすることが好ましい。浸漬時間は、米を十分に軟化することができれば特に限定されないが、例えば、1時間以上とすることができる。
 次に、軟化した米に対し、例えば、1~15重量倍の分散媒を加えながら、この米を湿式粉砕する。分散媒としては、人体に害がないものであれば特に限定されないが、通常、水道水または蒸留水が用いられる。
 ここで、米を湿式粉砕するための粉砕装置について、図面を参照しつつ説明する。図1に示すように、粉砕装置1は、上臼21及び下臼22を有するひき臼2と、ひき臼2に各米及び分散媒を供給するための供給部3と、粉砕後の米(コメスラリーS)を回収するための受け皿4と、を備えている。
 上臼21は、図1に示すように、上下方向に貫通する貫通孔211が形成されている。また、上臼21は、図2に示すように、下臼22と対向する面212に、複数の主溝213及び副溝214が形成されている。各主溝213は、面212の中心から外縁に向かって放射状に延びている。この主溝213間には複数の副溝214が設けられており、各副溝214は、図2において、左側の主溝213に平行に延びている。なお、主溝213及び副溝214は、その深さが同じであってもよいし、異なっていてもよい。下臼22においても、上臼21と対向する面に、上臼21と同様の主溝及び副溝(図示省略)が形成されている。
 下臼22は、図1に示すように、モータ5の駆動軸51と連結されており、モータ5の駆動時に駆動軸51が回転することにより、中心軸周りに回転する。上臼21は、駆動軸51及び図示しない支持部材によって支持されているが、上臼21と駆動軸51との間にベアリング等を設けることにより、モータ5の駆動時にも回転しないように構成されている。あるいは、上臼21を駆動軸51によって支持せず、図示しない支持部材のみに回転しないように固定する構成であってもよい。
 供給部3は、図1に示すように、軟化した米が投入されるホッパ31と、ホッパ31からの米をひき臼2に供給するための第1の供給管32と、第1の供給管32内に水平に延びる原料供給スクリュ33と、を備えている。この原料供給スクリュ33は、モータ34の駆動により軸周りに回転する。また、供給部3は、分散媒が貯留される貯留タンク35と、分散媒をひき臼2に供給するための第2の供給管36と、分散媒を貯留タンク35から第2の供給管36内に送り出す送液ポンプ37と、を備えている。
 このように構成された粉砕装置1において、ホッパ31からの米が、モータ34により回転する原料供給スクリュ33によって第1の供給管32内を移動し、貫通孔211を介して、上臼21とモータ5により回転する下臼22との間に供給される。これと同時に、送液ポンプ37によって貯留タンク35から第2の供給管36に送られた分散媒が、貫通孔211を介して、上臼21と下臼22との間に供給される。これにより、米が湿式粉砕され、コメスラリーSが生成される。なお、このときの下臼22の回転速度は、適宜決定することが可能であるが、例えば、20rpm~50rpmや1000rpm~2000rpmとすることができる。
 上述したような湿式粉砕は、米粒子をより微細化する観点から、複数回で行うこともできる。この場合、図3に示すように、第1のひき臼2A、第2のひき臼2B、及び第3のひき臼2Cを備える粉砕装置10を用いることができる。
 粉砕装置10においては、まず、粉砕装置1と同様に、第1のひき臼2Aによって米が湿式粉砕され、第1のコメスラリーS1が生成される。次に、第1のコメスラリーS1が第2のひき臼2Bに投入され、第2のひき臼2Bにより湿式粉砕されることで、第2のコメスラリーS2が生成される。最後に、第2のコメスラリーS2が第3のひき臼2Cに投入され、第3のひき臼2Cにより湿式粉砕されることで、最終生成物である第3のコメスラリーS3が生成される。なお、第2及び第3のひき臼2B、2Cによる湿式粉砕に際しては、新たな分散媒は加えられない。このように、湿式粉砕を複数回で行うことにより、コメスラリーに含まれる米粒子をより微粒子化することができる。
 第1~第3のひき臼2A~2Cは、同じものであってもよいが、上臼21及び下臼22に形成された主溝及び副溝の深さや数が異なるものであってもよい。例えば、第1のひき臼2A、第2のひき臼2B、第3のひき臼2Cの順に、主溝及び副溝を深くしていくこともできるし、主溝及び副溝の数を減らしていくこともできる。
 また、上臼21と下臼22とのクリアランスは、特に限定されるものではないが、第1のひき臼2Aよりも第2のひき臼2Bの方が小さく、第2のひき臼2Bよりも第3のひき臼2Cの方が小さいことが好ましい。
 粉砕装置10において、第3のひき臼2Cを省略して湿式粉砕の回数を2回とすることも可能であるし、ひき臼をさらに追加して湿式粉砕の回数を4回以上とすることも可能である。
 上述したような粉砕装置1または粉砕装置10に代えて、市販の粉砕装置を用いることもできる。例えば、増幸産業株式会社製のスーパーマスコロイダー(電動石臼)に、型番「MK-E 46標準」または「MK-GA 120標準」の摩砕砥石をセットしたものを使用し、回転速度を1000rpm~2000rpmとして、湿式粉砕を行うことができる。このように回転速度の速い粉砕装置を使用すれば、コメスラリーの製造効率が向上する。なお、市販の粉砕装置を用いる場合であっても、湿式粉砕を2回以上で行うことができる。
 上述したような粉砕装置により生成されたコメスラリーを用いて、本実施形態に係る加工食品を製造する。ここでは、コメスラリーを用いたプリン(ライスプリン)の製造方法について説明する。表2に、本実施形態に係るライスプリンについて、原材料の配合比及び成分比の一例を示す。
Figure JPOXMLDOC01-appb-T000002
 
 本実施形態においては、ライスプリンを凝固させるために、ホエイプロテイン単離物(WPI)を使用する。WPIに代えて卵を使用することも可能であるが、WPIの方が、米の風味をより引き立てることができるため、好ましい。また、WPIとコメスラリーとの相乗効果により、粘弾性のある独特の食感(もっちりとした食感)も得ることができる。クリームは、適当なものを選択すればよいが、例えば、乳脂肪分が30%~50%程度のものを使用することができる。なお、ライスプリンの原材料の配合比及び成分比は、表2に示すものに限定されず、必要に応じて適宜変更することができる。
 以下、オーブン焼成式の場合とレトルト式の場合とに分けて、ライスプリンの製造方法を説明する。
 (オーブン焼成式のライスプリン)
 オープン焼成式のライスプリンの場合、表2に示すWPI以外の原材料を混合して混合液を生成し、この混合液を必要に応じてホモゲナイザーで均質化する。なお、コメスラリーと他の原材料とを混合する前に、コメスラリーの加熱殺菌や均質化を行ってもよい。続いて、混合液を、例えば、130℃、2秒の条件で超高温瞬間殺菌(UHT)する。その後、混合液にWPI溶液を添加してライスプリン原液を生成し、このライスプリン原液を適当な容器に充填する。
 ライスプリン原液が充填された容器をオーブンに入れ、例えば、150℃~160℃、30分間~60分間の条件で焼成する。このとき、必要に応じて湯煎焼成としてもよい。これにより、容器内のライスプリン原液が凝固する。なお、オーブンは予熱されていてもよく、オーブンなどにおける焼成温度及び焼成時間の条件は、適宜調整することができる。
 最後に、オーブン焼成後のライスプリン入り容器を氷水中や、冷蔵庫、冷凍庫などで冷却した後、容器をシールして冷蔵する。これにより、本実施形態に係るオーブン焼成式のライスプリンが完成する。
 (レトルト式のライスプリン)
 レトルト式のライスプリンの場合、表2に示す原材料を全て混合してライスプリン原液を生成し、このライスプリン原液を必要に応じて均質化する。なお、コメスラリーと他の原材料とを混合する前に、コメスラリーの加熱殺菌や均質化を行ってもよい。続いて、このライスプリン原液を適当な容器に充填し、この容器をシールする。
 容器に充填されたライスプリン原液に対し、公知の方法により、例えば、105℃、30分間の条件でレトルト処理する。これにより、容器内のライスプリン原液が凝固する。なお、レトルト処理における加熱温度及び加熱時間の条件は、適宜調整することができる。
 最後に、レトルト処理後のライスプリン入り容器を氷水中や、冷蔵庫、冷凍庫などで冷却して冷蔵する。これにより、本実施形態に係るレトルト式のライスプリンが完成する。
 以上のように、本実施形態に係る加工食品は、米を含有しているため、この加工食品によれば、米の消費を促進することができる。また、この加工食品は、米を含有することにより、米独特の風味及び食感を実現することができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。
 上記実施形態においては、コメスラリーを用いたプリン(ライスプリン)について説明したが、コメスラリーに代えて、米粉、白玉粉、または上新粉を用いることも可能である。この場合、原材料の配合比及び成分比は適宜調整すればよい。ただし、通常、コメスラリーの方が米粉及び白玉粉よりも粒子径が小さく、分散性が良好であるため、加工適性の観点からはコメスラリーを用いることが好ましい。
 また、ライスプリン以外の乳製品様の加工食品にも、コメスラリー、米粉、白玉粉、または上新粉を使用することが可能である。
 以下、各実施例により、本発明をさらに詳しく説明する。ただし、本発明は下記実施例に限定されるものではない。
 (実施例1)
 (コメスラリーの生成)
 まず、試料米(品種:北陸193号、玄米)を、5℃の蒸留水に約12時間(一晩)で浸漬した。次に、図2に示すような粉砕装置10を用いて、米に対する蒸留水の重量比が8倍程度となるように加水しながら、浸漬後の米を3回で繰り返して湿式粉砕し、コメスラリーを調製した。同様の条件で、コメスラリーを2サンプルで調製した。
 (比較例1-1~比較例1-3)
 実施例1のコメスラリーとの比較のため、米粉(株式会社 波里製)、白玉粉(株式会社 渡英商店製)、及び上新粉(カドヤ株式会社製)の各10重量%水溶液を調製した。米粉の10重量%水溶液を比較例1-1、白玉粉の10重量%水溶液を比較例1-2、上新粉の10重量%水溶液を比較例1-3とする。
 (評価)
 レーザ回折式粒子径分布測定装置(株式会社島津製作所製、SALD-2200)を用いて、実施例1のコメスラリーに含まれる米の粒子のメディアン径を測定した。また、比較例1-1の米粉の10重量%水溶液、比較例1-2の白玉粉の10重量%水溶液、及び比較例1-3の上新粉の10重量%水溶液に含まれる米の粒子のメディアン径も測定した。実施例1及び比較例1-1~比較例1-3における米の粒子のメディアン径を、表3に示す。また、実施例1及び比較例1-1~比較例1-3のpHも、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 表3に示すように、実施例1のコメスラリーは、米の粒子のメディアン径が10μm以下となっており、米粉、白玉粉、及び上新粉の各10重量%水溶液と比較して、米の粒子のメディアン径が非常に小さい。このことから、コメスラリーは、米粉、白玉粉、及び上新粉よりも分散性が良好であり、加工適性に優れていることがわかる。
 また、実施例1のコメスラリー及び比較例1-1の米粉の10重量%水溶液を、デジタル顕微鏡で観察した。実施例1のコメスラリー及び比較例1-1の米粉の10重量%水溶液のデジタル顕微鏡画像(倍率:450倍、2000倍)を、図4A、図4B、図5A、及び図5Bに示す。これらの図から、比較例1-1の米粉の10重量%水溶液は、大小様々な米の粒子が混在し、米の粒径が不均一であるのに対し、実施例1のコメスラリーは、米の粒径が均一であることがわかる。また、図5A及び図5Bから、比較例1-1の米粉の10重量%水溶液は、米の粒子の形状が丸みを帯びたものとなっているのに対し、実施例1のコメスラリーは、米の粒子の形状が角ばったものとなっていることがわかる。
 なお、実施例1のコメスラリーの米固形分濃度を、乾燥重量法により測定したところ、9.8重量%であった。また、実施例1のコメスラリーは、玄米をそのまま使用しているため、GABA(ギャバ)が多く、栄養価が高い。
 (卵を含まないライスプリンの製造)
 (実施例2-1)
 以下の手順で、実施例2-1に係るライスプリンを製造した。
 まず、実施例1のコメスラリーを、クリーム、砂糖、ホエイプロテイン単離物(WPI)、脱脂粉乳、デキストリン、及び原料水と混合して、ライスプリン原液を得た。原材料の配合比は、表4に示すように、コメスラリー:20.0重量%に対し、クリーム(生クリーム(乳脂肪分:47重量%)、株式会社 明治製):12.0重量%、砂糖:10.0重量%、WPI:3.0重量%、脱脂粉乳:6.0重量%、デキストリン:4.1重量%、及び原料水(蒸留水):44.9重量%とした。ライスプリン原液中の米固形分濃度は、2重量%であった。
 次に、このライスプリン原液を60℃まで加温し、容器に充填した。その後、容器の上面をアルミホイルで覆った状態で、上段が150℃・下段が160℃のオーブンにおいて50分間で湯煎焼成し、実施例2-1に係るライスプリンを得た。なお、オーブンに入れた1回のサンプル数は8(焼成後の重量:各130g)とした。
 (実施例2-2)
 実施例2-2に係るライスプリンは、原材料の配合比が実施例2-1に係るライスプリンとは異なるが、サンプル数及び製造の手順は同じである。実施例2-2に係るライスプリンの原材料の配合比は、表4に示すように、コメスラリー:40.0重量%に対し、実施例2-1と同様のクリーム:12.0重量%、砂糖:10.0重量%、WPI:2.5重量%、脱脂粉乳:6.0重量%、デキストリン:2.5重量%、及び原料水(蒸留水):27.0重量%である。実施例2-2に係るライスプリン原液中の米固形分濃度は、4重量%であった。
 (実施例2-3)
 実施例2-3に係るライスプリンは、原材料の配合比が実施例2-1に係るライスプリンとは異なるが、サンプル数及び製造の手順は同じである。実施例2-3に係るライスプリンの原材料の配合比は、表4に示すように、コメスラリー:70.0重量%に対し、実施例2-1と同様のクリーム:12.0重量%、砂糖:10.0重量%、WPI:2.0重量%、及び脱脂粉乳:6.0重量%である。実施例2-3に係るライスプリン原液中の米固形分濃度は、7重量%であった。
 (比較例2)
 比較例2に係るプリンは、サンプル数及び製造の手順が実施例2-1に係るライスプリンと同じであるが、原材料としてコメスラリーを使用していない。比較例2に係るプリンの原材料の配合比は、表4に示すように、実施例2-1と同様のクリーム:12.0重量%、砂糖:10.0重量%、WPI:3.3重量%、及び脱脂粉乳:6.0重量%である。
Figure JPOXMLDOC01-appb-T000004
 
 (評価)
 (官能評価)
 実施例2-1~実施例2-3のライスプリン、及び比較例2のプリンについて、順位法による官能評価を行った。具体的には、実施例2-1~実施例2-3のライスプリン、及び比較例2のプリンについて、米風味の強さ及び粘弾性(もっちりとした食感)の強さの2項目を、米風味の強い順、及び粘弾性の強い順として、10名のパネルに評価させた。そして、実施例2-1~実施例2-3のライスプリン、及び比較例2のプリンの各々について、項目ごとの順位の合計、及び順位の合計同士の差を算出した。米風味の強さ及び粘弾性の強さについて、各パネルが評価した順位、順位の合計、及び順位の合計同士の差を、表5及び表6に示す。米風味の強さ及び粘弾性の強さについて、順位の合計が大きい方から並べると、比較例2、実施例2-1、実施例2-2、実施例2-3であった。
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
 (米風味の強さ)
 順位の合計同士の差の絶対値が15以上であれば、有意差ありと判定した。すなわち、表5に示すように、米風味の強さに関しては、比較例2の順位の合計と実施例2-1の順位の合計との差の絶対値は9であるため、比較例2と実施例2-1との間に有意差はない。また、実施例2-1の順位の合計と実施例2-2の順位の合計との差の絶対値は11であるので、実施例2-1と実施例2-2との間に有意差はない。そして、実施例2-2の順位の合計と実施例2-3の順位の合計との差の絶対値は3であるため、実施例2-2と実施例2-3との間に有意差はない。しかしながら、比較例2の順位の合計と実施例2-2の順位の合計との差の絶対値は20であるので、比較例2と実施例2-2との間には有意差がある。このことから、卵を含まないライスプリンの場合、米固形分濃度が2.5重量%以上10重量%以下、好ましくは3重量%以上9重量%以下、より好ましくは3.5重量%以上8重量%以下、さらに好ましくは4重量%以上7重量%以下であれば、しっかりと確実に米風味を感じられるものとなることがわかった。
 (粘弾性の強さ)
 表6に示すように、粘弾性の強さに関しては、比較例2の順位の合計と実施例2-1の順位の合計との差の絶対値は6であるため、比較例2と実施例2-1との間に有意差はない。また、実施例2-1の順位の合計と実施例2-2の順位の合計との差の絶対値は12であるので、実施例2-1と実施例2-2との間に有意差はない。そして、実施例2-2の順位の合計と実施例2-3の順位の合計との差の絶対値は10であるため、実施例2-2と実施例2-3との間に有意差はない。しかしながら、比較例2の順位の合計と実施例2-2の順位の合計との差の絶対値は18であるので、比較例2と実施例2-2との間には有意差がある。このことから、卵を含まないライスプリンの場合、米固形分濃度が2.5重量%10重量%以下以上、好ましくは3重量%以上9重量%以下、より好ましくは3.5重量%以上8重量%以下、さらに好ましくは4重量%以上7重量%以下であれば、しっかりと確実に米風味を感じられるだけでなく、確実に粘弾性の強い食感(もっちりとした食感)となることがわかった。
 (せん断応力の測定)
 粘弾性測定装置(Anton Paar社製、MCR-301)を使用し、せん断速度が0.1~1000(1/s)、温度が20℃の条件で、実施例2-1~実施例2-3のライスプリン、及び比較例2のプリンのせん断応力を測定した。図6に示すように、実施例2-2及び実施例2-3のライスプリンのせん断応力は、特にせん断速度が10~100(1/s)において、実施例2-1のライスプリン及び比較例2のプリンのせん断応力よりも高くなっている。例えば、せん断速度が100(1/s)において、比較例2のプリンのせん断応力が142Paであるのに対し、実施例2-1のライスプリンのせん断応力は227Pa、実施例2-2のライスプリンのせん断応力は1105Pa、実施例2-3のライスプリンのせん断応力は1474Paとなっている。この結果からも、卵を含まないライスプリンの場合、米固形分濃度が2.5重量%以上10重量%以下、好ましくは3重量%以上9重量%以下、より好ましくは3.5重量%以上8重量%以下、さらに好ましくは4重量%以上7重量%以下であれば、粘弾性の強い食感(もっちりとした食感)となることがわかった。そして、卵を含まないライスプリンの場合、せん断速度が100(1/s)における、せん断応力(温度:20℃)として、200Pa以上10000Pa以下、好ましくは300Pa以上5000Pa以下、より好ましくは500Pa以上3000Pa以下、さらに好ましくは800Pa以上2000Pa以下、特に好ましくは1000Pa以上1500Pa以下となることがわかった。
 (破断強度及び破断歪の測定)
 クリープメーター(山電製、RHEONERII)を使用し、実施例2-1~実施例2-3のライスプリン、及び比較例2のプリンの破断強度及び破断歪を3回ずつ測定し、その平均値を計算した。表7に平均値の計算結果を示す。表7に示すように、比較例2のプリンの破断歪の平均値が45%超となっているのに対し、実施例2-1、実施例2-2及び実施例2-3のライスプリンの破断歪の平均値は、10%~45%の範囲内となっており、実施例2-2及び実施例2-3のライスプリンの破断歪の平均値は、15%~35%の範囲内となっている。このことから、卵を含まないライスプリンの場合、米固形分濃度の増加とともに破断歪が小さくなることがわかる。
Figure JPOXMLDOC01-appb-T000007
 
 (卵を含むライスプリンの製造)
 (実施例3-1)
 以下の手順で、実施例3-1に係るライスプリンを製造した。実施例3-1に係るライスプリンは、実施例2-1~実施例2-3と異なり、卵を含んでいる。
 まず、実施例1のコメスラリーを、全卵液、クリーム、砂糖、脱脂粉乳、及び原料水と混合して、ライスプリン原液を得た。原材料の配合比は、表8に示すように、コメスラリー:20.0重量%に対し、全卵液:20.0重量%、クリーム(あじわいクリーム(乳脂肪分:40重量%)、株式会社 明治製):8.0重量%、砂糖:12.0重量%、脱脂粉乳(株式会社 明治製):5.0重量%、及び原料水(蒸留水):35.0重量%とした。ライスプリン原液中の米固形分濃度は、2重量%であった。
 次に、このライスプリン原液を50℃まで加温し、容器に充填した。その後、上段が130℃・下段が140℃のオーブンにおいて45分間で焼成し、実施例3-1に係るライスプリンを得た。なお、オーブンに入れた1回のサンプル数は8(焼成後の重量:各120g)とした。
 (実施例3-2)
 実施例3-2に係るライスプリンは、原材料の配合比が実施例3-1に係るライスプリンとは異なるが、サンプル数及び製造の手順は同じである。実施例3-2に係るライスプリンの原材料の配合比は、表8に示すように、コメスラリー:40.0重量%に対し、全卵液:20.0重量%、実施例3-1と同様のクリーム:8.0重量%、砂糖:12.0重量%、実施例3-1と同様の脱脂粉乳:3.0重量%、及び原料水(蒸留水):17.0重量%である。ライスプリン原液中の米固形分濃度は、4重量%であった。
 (比較例3)
 比較例3に係るプリンは、サンプル数及び製造の手順が実施例3-1に係るライスプリンと同じであるが、原材料としてコメスラリーを使用していない。比較例3に係るプリンの原材料の配合比は、表8に示すように、全卵液:20.0重量%、実施例3-1と同様のクリーム:8.0重量%、砂糖:12.0重量%、実施例3-1と同様の脱脂粉乳:7.4重量%、及び原料水(蒸留水):52.6重量%である。
Figure JPOXMLDOC01-appb-T000008
 
 (評価)
 (官能評価)
 実施例3-1及び実施例3-2のライスプリン、並びに比較例3のプリンについて、4名のパネルによる官能評価を行ったところ、実施例3-1及び実施例3-2のライスプリンについては、粘弾性のある食感(もっちりとした食感)であるとの評価を得た。このことから、卵を含むライスプリンの場合、米固形分濃度が1重量%以上7重量以下、好ましくは1.5重量%以上6重量%以下、より好ましくは1.5重量%以上5重量%以下、さらに好ましくは2重量%以上4重量%以下であれば、粘弾性の強い食感を実現できることがわかった。
 (せん断応力の測定)
 粘弾性測定装置(Anton Paar社製、MCR-301)を使用し、せん断速度が0.1~1000(1/s)、温度が20℃の条件で、実施例3-1及び実施例3-2のライスプリン、並びに比較例3のプリンのせん断応力を測定した。図7に示すように、実施例3-1及び実施例3-2のライスプリンのせん断応力は、比較例3のプリンのせん断応力よりも高くなっている。例えば、せん断速度が100(1/s)において、比較例3のプリンのせん断応力が105Pa程度であるのに対し、実施例3-1のライスプリンのせん断応力は836Pa、実施例3-2のライスプリンのせん断応力は1176Paとなっている。このことからも、卵を含むライスプリンの場合、米固形分濃度が1重量%以上7重量以下、好ましくは1.5重量%以上6重量%以下、より好ましくは1.5重量%以上5重量%以下、さらに好ましくは2重量%以上4重量%以下であれば、粘弾性の強い食感(もっちりとした食感)となることがわかった。そして、卵を含むライスプリンの場合、せん断速度が100(1/s)における、せん断応力(温度:20℃)として、200Pa以上10000Pa以下、好ましくは300Pa以上5000Pa以下、より好ましくは500Pa以上3000Pa以下、さらに好ましくは800Pa以上2000Pa以下、特に好ましくは1000Pa以上1500Pa以下となることがわかった。
 (実施例4-1)
 以下の手順で、実施例4-1に係るライスプリンを製造した。実施例4-1に係るライスプリンは、実施例3-1及び実施例3-2と同様、卵を含んでいる。
 まず、実施例1のコメスラリーを、全卵液、砂糖、牛乳と混合して、ライスプリン原液を得た。原材料の配合比は、表9に示すように、コメスラリー:25.0重量%に対し、全卵液:20.0重量%、砂糖:12.0重量%、及び牛乳:43.0重量%とした。ライスプリン原液中の米固形分濃度は、3重量%であった。
 次に、このライスプリン原液を50℃まで加温し、容器に充填した。続いて、160℃のオーブンにおいて40分間で湯煎焼成した後、オーブン内に5分間で放置して、実施例4-1に係るライスプリンを得た。なお、オーブンに入れた1回のサンプル数は4とした。
 (実施例4-2)
 実施例4-2に係るライスプリンは、原材料の配合比が実施例4-1に係るライスプリンとは異なるが、サンプル数及び製造の手順は同じである。実施例4-2に係るライスプリンの原材料の配合比は、表9に示すように、コメスラリー:50.0重量%に対し、全卵液:20.0重量%、砂糖:12.0重量%、及び牛乳:18.0重量%である。ライスプリン原液中の米固形分濃度は、5重量%であった。
 (比較例4)
 比較例4に係るプリンは、サンプル数及び製造の手順が実施例4-1に係るライスプリンと同じであるが、原材料としてコメスラリーを使用していない。比較例4に係るプリンの原材料の配合比は、表9に示すように、全卵液:20.0重量%、砂糖:12.0重量%、及び牛乳:68.0重量%である。
Figure JPOXMLDOC01-appb-T000009
 
 (評価)
 (破断強度及び破断歪の測定)
 クリープメーター(山電製、RHEONERII)を使用し、実施例4-1及び実施例4-2のライスプリン、並びに比較例4のプリンの破断強度及び破断歪を2回ずつ測定し、その平均値を計算した。表10に平均値の計算結果を示す。表10に示すように、比較例4のプリンの破断強度の平均値が45g/cm超となっているのに対し、実施例4-1及び実施例4-2のライスプリンの破断強度の平均値は、10g/cm~40g/cmの範囲内となっている。このことから、卵を含むライスプリンの場合、米固形分濃度の増加とともに破断強度が小さくなることがわかる。
Figure JPOXMLDOC01-appb-T000010
 
 (ライス発酵乳の製造)
 (実施例5-1)
 実施例1のコメスラリーを121℃、1分間の条件で加熱した後、乳酸菌を添加して、43℃、16時間の条件で発酵させ、実施例5-1に係るライス発酵乳を製造した。コメスラリー及び乳酸菌の配合比は、表11に示すように、コメスラリー:98.0重量%に対し、乳酸菌:2.0重量%とした。
 (実施例5-2)
 実施例5-1と同様にして、コメスラリーを加熱した後、牛乳を混合して、ライス発酵乳の原料液を得た。このライス発酵乳の原料液に乳酸菌を添加して、実施例5-1と同様の条件で発酵させ、実施例5-2に係るライス発酵乳を製造した。表11に示すように、各原材料及び乳酸菌の配合比は、コメスラリー:49.0重量%に対し、牛乳:49.0重量%、乳酸菌:2.0重量%とした。
 (実施例5-3)
 実施例5-1と同様にして、コメスラリーを加熱した後、食塩を混合してライス発酵乳の原料液を得た。このライス発酵乳の原料液に乳酸菌を添加して、実施例5-1と同様の条件で発酵させ、実施例5-3に係るライス発酵乳を製造した。表11に示すように、各原材料及び乳酸菌の配合比は、コメスラリー:97.0重量%に対し、食塩:1.0重量%、乳酸菌:2.0重量%とした。
 (実施例5-4)
 実施例5-1と同様にして、コメスラリーを加熱した後、砂糖を混合して、ライス発酵乳の原料液を得た。このライス発酵乳の原料液に乳酸菌を添加して、実施例5-1と同様の条件で発酵させ、実施例5-4に係るライス発酵乳を製造した。表11に示すように、各原材料及び乳酸菌の配合比は、コメスラリー:93.0重量%に対し、砂糖:5.0重量%、乳酸菌:2.0重量%とした。
 (実施例5-5)
 実施例5-1と同様にして、コメスラリーを加熱した後、牛乳及び食塩を混合してライス発酵乳の原料液を得た。このライス発酵乳の原料液に乳酸菌を添加して、実施例5-1と同様の条件で発酵させ、実施例5-5に係るライス発酵乳を製造した。表11に示すように、各原材料及び乳酸菌の配合比は、コメスラリー:48.5重量%に対し、牛乳:48.5重量%、食塩:1.0重量%、乳酸菌:2.0重量%とした。
 (実施例5-6)
 実施例5-1と同様にして、コメスラリーを加熱した後、牛乳及び砂糖を混合してライス発酵乳の原料液を得た。このライス発酵乳の原料液に乳酸菌を添加して、実施例5-1と同様の条件で発酵させ、実施例5-6に係るライス発酵乳を製造した。表11に示すように、各原材料及び乳酸菌の配合比は、コメスラリー:46.5重量%に対し、牛乳:46.5重量%、砂糖:5.0重量%、乳酸菌:2.0重量%とした。
Figure JPOXMLDOC01-appb-T000011
 
 (評価)
 実施例5-1~実施例5-6のライス発酵乳の風味について、4名のパネルに評価させたところ、各ライス発酵乳の風味は全体として良好であるとの評価を得た。特に、実施例5-3及び実施例5-5のライス発酵乳に関しては、適度な塩味を感じ、独特で面白い風味であるとの評価を得た。また、実施例5-4及び実施例5-6のライス発酵乳に関しては、適度な甘味を感じ、濃厚で美味しく、飲みやすい風味であるとの評価を得た。
 なお、表11には、実施例5-1~実施例5-6のライス発酵乳について、発酵の開始から16時間後のpHも示している。ライス発酵乳のpHが表11に示す程度の値であれば、十分に発酵が進んでいるということを意味する。つまり、一般的な発酵乳(ヨーグルト)では、発酵の開始から16時間後のpHが3.8程度であれば、発酵の開始から3~4時間後のpHが4程度まで低下している。このことから、ライス発酵乳の場合、発酵温度を好ましくは30℃~50℃、より好ましくは35℃~45℃、さらに好ましくは40℃~45℃として、発酵時間が好ましくは3時間~24時間、より好ましくは4時間~20時間、さらに好ましくは5~16時間であれば、良好な発酵を実現できることがわかった。そして、ライス発酵乳の場合、米固形分濃度が好ましくは2重量%以上15重量%以下、より好ましくは3重量%以上13重量%以下、さらに好ましくは4重量%以上12重量%以下であれば、良好な風味を実現できることがわかった。このとき、ライス発酵乳の場合、乳固形分濃度が1重量%以上10重量%以下、1重量%以上8重量%以下、1重量%以上6重量%以下などであっても、良好な風味を実現できることがわかった。
 (市販の粉砕装置を用いたコメスラリーの生成)
 (実施例6-1)
 まず、試料米(品種:北陸193号、玄米)を、5℃の蒸留水に約12時間(一晩)で浸漬した。次に、浸漬後の米:1.0kg及び蒸留水:4.0kgを、市販の粉砕装置(増幸産業株式会社製、スーパーマスコロイダー(電動石臼))に投入して湿式粉砕し、コメスラリーを調製した。型番「MK-E 46標準」の摩砕砥石を使用し、回転速度は1500rpmとした。また、湿式粉砕の回数は3回とし、処理時間は、1回目:1分、2回目:6分30秒、3回目:6分10秒とした。表12に粉砕条件の詳細を示す。
 (実施例6-2)
 摩砕砥石を型番「MK-GA 120標準」に変更し、実施例6-1と同じ粉砕装置を用いて、コメスラリーを調製した。粉砕装置の回転速度、湿式粉砕の回数、使用した試料米、及びその浸漬条件は、実施例6-1と同様である。ただし、湿式粉砕の処理時間は、1回目:1分、2回目:14分20秒、3回目:5分10秒とした(表12)。
Figure JPOXMLDOC01-appb-T000012
 
 (評価)
 実施例6-1及び実施例6-2において、コメスラリーに含まれる米の粒子の平均径、25%径、及びメディアン径を、湿式粉砕の回数毎に測定した。また、実施例6-1及び実施例6-2のコメスラリーに含まれる米の粒径の標準偏差を、湿式粉砕の回数毎に計算した。表13に測定結果及び計算結果を示す。
Figure JPOXMLDOC01-appb-T000013
 
 表13に示すように、実施例6-1及び実施例6-2のコメスラリーにおいて、湿式粉砕の回数が1回であっても、米の粒子のメディアン径は40μm以下となり、米粉、白玉粉、及び上新粉の水溶液に含まれる米の粒子のメディアン径(表3)よりも小さいことがわかる。さらに、湿式粉砕の回数が2回以上になると、米の粒子のメディアン径が8μm以下となり、米がより微細化されるため、分散性及び加工適性に非常に優れたコメスラリーとなることがわかる。
 また、湿式粉砕の回数が1回であっても、標準偏差は1未満と小さく、米が均一に粉砕されていることがわかる。湿式粉砕の回数が2回以上になると、標準偏差は0.8以下となり、米がより微細化されるだけでなく、米の粒子の寸法(大きさ)がより均一になることがわかる。
 (コメスラリー生成時の米及び水の比率)
 図2に示す粉砕装置10に対する米及び水の供給量と、コメスラリーに含まれる米の粒径との対応関係を調べることにより、米及び水の適当な比率を確認した。
 (実施例7-1)
 まず、試料米(品種:北陸193号、玄米)を、5℃の蒸留水に約12時間(一晩)で浸漬した。次に、浸漬後の米及び蒸留水を粉砕装置10に供給し、コメスラリーを調製した。このとき、粉砕装置10に対する米の供給量を27.5g/min、蒸留水の供給量を46.7g/minとした。
 (実施例7-2)
 粉砕装置10に対する蒸留水の供給量以外は実施例7-1と同様にして、コメスラリーを調製した。このとき、蒸留水の供給量を90.0g/minとした。
 (実施例7-3)
 粉砕装置10に対する蒸留水の供給量以外は実施例7-1と同様にして、コメスラリーを調製した。このとき、蒸留水の供給量を130.0g/minとした。
 (実施例7-4)
 粉砕装置10に対する米及び蒸留水の供給量以外は実施例7-1と同様にして、コメスラリーを調製した。このとき、米の供給量を17.8g/min、蒸留水の供給量を46.7g/minとした。
 (実施例7-5)
 粉砕装置10に対する蒸留水の供給量以外は実施例7-4と同様にして、コメスラリーを調製した。このとき、蒸留水の供給量を90.0g/minとした。
 (実施例7-6)
 粉砕装置10に対する蒸留水の供給量以外は実施例7-4と同様にして、コメスラリーを調製した。このとき、蒸留水の供給量を130.0g/minとした。
 (評価)
 実施例7-1~実施例7-6において、コメスラリーに含まれる米の粒子の平均径、25%径、及びメディアン径を測定した。また、米の供給量に対する蒸留水の供給量の比、及び実施例7-1~実施例7-6のコメスラリーに含まれる米の粒径の標準偏差を計算した。表14に測定結果及び計算結果を示す。表14に示すように、実施例7-1~実施例7-4のコメスラリーは、米の粒子のメディアン径が30μm以下であり、米粉、白玉粉、及び上新粉の水溶液に含まれる米の粒子のメディアン径(表3)よりも小さい。その中でも、実施例7-1及び実施例7-4は、米の粒子のメディアン径が特に小さくなっている。よって、米の供給量に対する蒸留水の供給量は、米を微細化する観点から、5重量倍以下とすることが好ましく、3重量倍以下とすることがより好ましいことがわかる。
Figure JPOXMLDOC01-appb-T000014
 
 また、実施例7-1~実施例7-6のコメスラリーは、いずれも米の粒径の標準偏差が1以下と小さく、米の粒子の寸法(大きさ)が均一であることがわかる。特に、実施例7-1及び実施例7-4のコメスラリーは、米の粒径の標準偏差が0.7以下であり、米の粒子の寸法(大きさ)がより均一になることがわかる。
 (まとめ)
 以上の通り、各実施例から、コメスラリーを様々な加工食品に適用して、米の消費を促進することができるだけでなく、コメスラリーを用いることで、米独特の風味及び食感を有する加工食品を製造することができることがわかった。また、コメスラリーは、米粉などと比較して、米の粒子が小さく均一であることもわかった。
 この発明を添付図面に示す実施態様について説明したが、この発明は、その詳細な説明の記載をもって制約しようとするものではなく、特許請求の範囲に記載する範囲において広く構成される。

Claims (12)

  1.  米を含有する、乳製品様の加工食品。
  2.  請求項1に記載の加工食品であって、
     米の粒子のメディアン径が15μm以下である、加工食品。
  3.  請求項1に記載の加工食品であって、
     粉砕された米の粒子及び分散媒を含むコメスラリーが混合されている、加工食品。
  4.  請求項1に記載の加工食品であって、
     米粉、白玉粉、または上新粉が混合されている、加工食品。
  5.  請求項1に記載の加工食品であって、
     当該加工食品は、
     卵を含まないプリンであり、
     せん断速度が100(1/s)における、せん断応力(温度:20℃)が200Pa以上10000Pa以下であり、
     米固形分濃度が2.5重量%以上10重量%以下である、加工食品。
  6.  請求項1に記載の加工食品であって、
     当該加工食品は、
     卵を含むプリンであり、
     せん断速度が100(1/s)における、せん断応力(温度:20℃)が200Pa以上10000Pa以下であり、
     米固形分濃度が1重量%以上7重量以下である、加工食品。
  7.  請求項5に記載の加工食品であって、
     ホエイプロテイン単離物を含むプリンである、加工食品。
  8.  請求項6に記載の加工食品であって、
     ホエイプロテイン単離物を含むプリンである、加工食品。
  9.  請求項1に記載の加工食品であって、
     当該加工食品は、
     発酵温度が30℃~50℃、発酵時間が3時間~24時間の発酵乳であり、
     米固形分濃度が2重量%以上15重量%以下である、加工食品。
  10.  請求項9に記載の加工食品であって、
     乳固形分濃度が1重量%以上10重量%以下の発酵乳である、加工食品。
  11.  乳製品様の加工食品の製造方法であって、
     米を湿式粉砕する工程と、
     前記湿式粉砕により生成されたコメスラリーと、当該加工食品の所定の原材料と、を混合する工程と、
    を備える、製造方法。
  12.  請求項11に記載の製造方法であって、
     前記湿式粉砕する工程は、複数回で繰り返される、製造方法。
PCT/JP2013/070533 2012-08-01 2013-07-30 乳製品様の加工食品、及びその製造方法 WO2014021286A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP13825351.3A EP2880985A4 (en) 2012-08-01 2013-07-30 MILK PRODUCT-PROCESSED FOODS AND METHOD OF MANUFACTURING THE SAME
CA2880294A CA2880294C (en) 2012-08-01 2013-07-30 Dairy product-like processed food and method of manufacturing the same
US14/417,526 US20150272151A1 (en) 2012-08-01 2013-07-30 Dairy product-like processed food and method of manufacturing the same
SG11201500665UA SG11201500665UA (en) 2012-08-01 2013-07-30 Dairy product-like processed food and method of manufacturing the same
CN201380040970.8A CN104540389A (zh) 2012-08-01 2013-07-30 乳制品状的加工食品及其制造方法
JP2014528157A JP5964968B2 (ja) 2012-08-01 2013-07-30 乳製品様の加工食品、及びその製造方法
HK15105347.2A HK1204753A1 (en) 2012-08-01 2015-06-05 Dairy product-like processed food and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-171326 2012-08-01
JP2012171326 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014021286A1 true WO2014021286A1 (ja) 2014-02-06

Family

ID=50027960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070533 WO2014021286A1 (ja) 2012-08-01 2013-07-30 乳製品様の加工食品、及びその製造方法

Country Status (8)

Country Link
US (1) US20150272151A1 (ja)
EP (1) EP2880985A4 (ja)
JP (1) JP5964968B2 (ja)
CN (1) CN104540389A (ja)
CA (1) CA2880294C (ja)
HK (1) HK1204753A1 (ja)
SG (1) SG11201500665UA (ja)
WO (1) WO2014021286A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3539392B1 (en) * 2016-11-10 2021-04-21 Yanmar Power Technology Co., Ltd. Rice gel production system and rice gel production method
US11191289B2 (en) 2018-04-30 2021-12-07 Kraft Foods Group Brands Llc Spoonable smoothie and methods of production thereof
CN116649418A (zh) * 2022-02-17 2023-08-29 内蒙古伊利实业集团股份有限公司 一种米布丁牛奶制品及制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209462A (ja) * 2000-12-26 2002-07-30 Academia Sinica トランスジェニック植物種子におけるタンパク質産生
JP2002262787A (ja) * 2001-03-14 2002-09-17 Morinaga Milk Ind Co Ltd ゲル状食品およびその製造方法
JP2007145741A (ja) * 2005-11-25 2007-06-14 Univ Of Tokyo IgE捕捉剤、並びに抗アレルギー性の医薬組成物、化粧料組成物、食料組成物、飲料組成物及び飼料組成物
JP2009515507A (ja) * 2005-07-15 2009-04-16 クリエイティブ リサーチ マネージメント 全粒の非乳製品の製造、製品及び使用
WO2012026460A1 (ja) * 2010-08-24 2012-03-01 株式会社明治 ゲル状食品の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4744992A (en) * 1986-04-24 1988-05-17 Mitchell Cheryl R Nutritional rice milk production
US4919958A (en) * 1989-01-30 1990-04-24 The United States Of America As Represented By The Secretary Of Agriculture Flan-type pudding
EP1198991B1 (en) * 2000-10-20 2012-12-19 Nutriz N.V: Non-dairy products derived from rice
US6737099B2 (en) * 2001-03-29 2004-05-18 The United States Of America As Represented By The Secretary Of Agriculture Process for the deagglomeration and the homogeneous dispersion of starch particles
ITMI20021300A1 (it) * 2002-06-12 2003-12-12 Ezio Bartocci Alimento a base di riso particolarmente studiato per l'alimentazione umana e relativo metodo di lavorazione
CN1711891A (zh) * 2004-06-23 2005-12-28 丽江市华坪县洪全鲜玉米有限责任公司 鲜玉米布丁酥(糕)
US20060263506A1 (en) * 2005-05-20 2006-11-23 Scinto Christopher J Low carbohydrate pudding
US20080241320A1 (en) * 2007-03-30 2008-10-02 Dsm Ip Assets B.V. Protective hydrocolloid for active ingredients

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209462A (ja) * 2000-12-26 2002-07-30 Academia Sinica トランスジェニック植物種子におけるタンパク質産生
JP2002262787A (ja) * 2001-03-14 2002-09-17 Morinaga Milk Ind Co Ltd ゲル状食品およびその製造方法
JP2009515507A (ja) * 2005-07-15 2009-04-16 クリエイティブ リサーチ マネージメント 全粒の非乳製品の製造、製品及び使用
JP2007145741A (ja) * 2005-11-25 2007-06-14 Univ Of Tokyo IgE捕捉剤、並びに抗アレルギー性の医薬組成物、化粧料組成物、食料組成物、飲料組成物及び飼料組成物
WO2012026460A1 (ja) * 2010-08-24 2012-03-01 株式会社明治 ゲル状食品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2880985A4 *

Also Published As

Publication number Publication date
JPWO2014021286A1 (ja) 2016-07-21
JP5964968B2 (ja) 2016-08-03
EP2880985A4 (en) 2016-01-13
CA2880294C (en) 2018-09-04
EP2880985A1 (en) 2015-06-10
CA2880294A1 (en) 2014-02-06
HK1204753A1 (en) 2015-12-04
SG11201500665UA (en) 2015-05-28
CN104540389A (zh) 2015-04-22
US20150272151A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
CN1291664C (zh) 豆奶组合物和生产方法
CN106689945A (zh) 燕麦植物蛋白饮料及其制备方法
JP4749363B2 (ja) マイルドな酸味を有する酸性乳食品
US20110020523A1 (en) Method for Preparing a Low Viscosity Whole Grain Flour Slurry Via Mechanical Treatment
CN111567619B (zh) 一种高品质火麻发酵乳的制作方法及其应用
CN102007967A (zh) 一种薏苡仁百合酸奶
JP5964968B2 (ja) 乳製品様の加工食品、及びその製造方法
JP6434777B2 (ja) セルロース複合体
JP6203050B2 (ja) 液状発酵乳及びその製造方法
CN107624874B (zh) 一种制备天然核桃乳的方法及天然核桃乳
CN1512840A (zh) 含细纤维素的复合物
Kwasi Kpodo et al. Effect of Ingredient Variation on Microbial Acidification, Susceptibility to Syneresis, Water Holding Capacity and Viscosity of Soy-Peanut-Cow Milk Yoghurt. J Nutritional Health Food Engg 1 (2): 00012
JP6231235B1 (ja) 乳化剤の製造方法、該乳化剤を含有する化粧品及び/又は食品の製造方法、及びマヨネーズ様食品の製造方法
JP2018201504A (ja) 酸性殺菌タンパク質含有飲食品、酸性殺菌タンパク質含有飲食品の製造方法、酸性殺菌タンパク質含有飲食品の凝集抑制方法、酸性殺菌タンパク質含有飲食品の流通方法及び酸性殺菌タンパク質含有飲食品の保存方法
JP2010259425A (ja) ヨーグルト
JP2019170274A (ja) 発酵乳及びその製造方法
KR102270627B1 (ko) 식물성 대체우유의 제조방법 및 이에 따른 식물성 대체우유
CN107836614A (zh) 一种谷物发酵饮料及其制备方法
JP6546405B2 (ja) カルシウム強化食品
WO2021200163A1 (ja) フォーミング用ナッツミルク及びその製造方法
JP4101720B2 (ja) 弱酸性乳加工品の製造方法および弱酸性乳加工品
JP2010098954A (ja) プリン
CN110495498A (zh) 一种鱼肉蛋白核桃原浆及其制备方法
JP6313372B2 (ja) コメスラリー製造方法
JP2000069907A (ja) 酸性乳飲料およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528157

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013825351

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2880294

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14417526

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE