WO2014013622A1 - ハイブリッド車両の制御装置 - Google Patents
ハイブリッド車両の制御装置 Download PDFInfo
- Publication number
- WO2014013622A1 WO2014013622A1 PCT/JP2012/068519 JP2012068519W WO2014013622A1 WO 2014013622 A1 WO2014013622 A1 WO 2014013622A1 JP 2012068519 W JP2012068519 W JP 2012068519W WO 2014013622 A1 WO2014013622 A1 WO 2014013622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- command value
- generator
- control unit
- value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/46—Series type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/02—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
- B60L15/025—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by ac motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/24—Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
- B60L7/26—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/427—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/429—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/443—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a control device for a hybrid vehicle.
- a hybrid vehicle is a railway vehicle configured to convert the output of an engine into electric power by a generator, and drive and control the electric motor with the converted electric power and electric power from a power storage device such as a battery.
- a direct-current voltage command value for the direct-current bus is set based on the target output of the battery and the charge rate of the battery, and from the battery to reach the target output.
- a technique for controlling the output to the DC bus and controlling the output from the generator so that the DC voltage level of the converter approaches the DC voltage command value when the output from the battery to the DC bus reaches the target output is disclosed. Yes.
- the following non-patent document 1 will be described later.
- the present invention has been made in view of the above, and an object of the present invention is to provide a hybrid vehicle control device that can prevent overcharging and overvoltage of a power storage device.
- the present invention provides a generator connected to an engine, a converter that converts AC power output from the generator into DC power, and controls the converter to
- a hybrid vehicle control device comprising: a power generation control unit that controls a power generation amount of a generator; a power storage device that is electrically connected to the converter; and a host control unit that controls at least the operation of the power generation control unit.
- the power generation control unit based on information on a differential voltage value between a DC voltage command value for the electrical connection end of the power storage device and a DC voltage of the electrical connection end, a rotational speed for the generator A command value is calculated, and based on the rotation speed command value, the output of the converter is PWM-controlled so that the rotation speed of the generator follows the rotation speed command value and the DC voltage Characterized by comprising an overvoltage prevention portion for preventing the overvoltage be made to follow the DC voltage command value.
- FIG. 1 is a block diagram showing an overall configuration of a hybrid vehicle system including a hybrid vehicle control apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing a configuration of a power generation control unit constituting a main part of the hybrid vehicle control device according to Embodiment 1 of the present invention.
- FIG. 3 is a block diagram showing a more detailed configuration of the power generation control unit shown in FIG.
- FIG. 4 is a graph showing input / output characteristics of the DC voltage command value generator.
- FIG. 5 is a graph showing the input / output characteristics of the speed limiter.
- FIG. 6 is a block diagram showing a configuration of a power generation control unit that constitutes a main part of a control device for a hybrid vehicle according to Embodiment 2 of the present invention.
- FIG. 7 is a block diagram showing a more detailed configuration of the power generation control unit shown in FIG.
- FIG. 8 is a graph showing input / output characteristics of the torque corrector.
- FIG. 9 is a block diagram showing an overall configuration of a hybrid vehicle system including a hybrid vehicle control apparatus according to Embodiment 3 of the present invention.
- FIG. 1 is a block diagram showing an overall configuration of a hybrid vehicle system including a hybrid vehicle control apparatus according to Embodiment 1 of the present invention.
- the hybrid vehicle system includes an engine 1, a generator 2 driven by the engine 1, a converter 3 as a power converter, a load device 4 connected to the converter 3, and the load device 4.
- a battery 5 as a power storage device connected to the converter 3, an engine control unit 6 that controls the engine 1, and a power generation control unit 7 that controls the engine 1 and the converter 3 in order to control the power generation amount of the generator 2, ,
- a battery control unit 8 for adjusting the power of the battery 5
- a load device control unit 9 for controlling the load device 4
- an operation command Do_1 from a driver's cab (not shown)
- various sensors from the voltage sensor 11, the speed sensor 12, and the like.
- a high-order control unit 10 that controls the engine control unit 6, the power generation control unit 7, the battery control unit 8, and the load device control unit 9 is provided. Constructed.
- the engine 1 is, for example, a diesel engine, and transmits a driving force for power generation to the generator 2.
- the engine 1 closes the engine brake and a valve provided in the middle of the exhaust pipe to increase the exhaust pressure and increase the pumping loss of the engine 1. It is also possible to operate a so-called exhaust brake (enhanced engine brake) that suppresses the rotational speed.
- the engine 1 can also switch between the engine brake and the exhaust brake by performing on / off control of the exhaust valve.
- the generator 2 is, for example, a three-phase AC generator, and the rotor rotates by the driving force of the engine 1 to generate power.
- the generated power (AC power) is supplied to at least one of the load device 4 and the battery 5.
- the generator 2 can also operate as an electric motor, and consumes electric power by cranking the engine 1 when the engine 1 is started or by rotating the engine 1 using the driving force of the generator 2. Can do.
- the converter 3 as a power conversion device is configured to include a plurality of switching elements and rectifying elements (not shown), and between the DC link unit 13 and the generator 2 to which both the battery 5 and the load device 4 are electrically connected.
- the AC power generated by the generator 2 is converted into DC power based on a gate signal Gp_c from the generator control unit 7 described later. Further, when operating the generator 2 as an electric motor, the converter 3 performs an inverse conversion operation for converting DC power supplied from the battery 5 or the load device 4 into AC power.
- the load device 4 connected to the DC link unit 13 decelerates the drive wheels 4a, the axle 4b, the inverter 4e as a power conversion device in the load device 4, the motor 4d for driving the vehicle, and the output of the motor 4d.
- a reduction gear 4c that transmits to the axle 4b is provided.
- Inverter 4e is configured to include a plurality of switching elements and rectifying elements (not shown), and converts DC power supplied from at least one of battery 5 and converter 3 into AC power and supplies it to motor 4d.
- the inverter 4e when the inverter 4e performs a regenerative operation of the electric motor 4d in the load device 4, the inverter 4e can perform an inverse conversion operation for converting AC power regenerated by the electric motor 4d into DC power.
- the electric motor 4d in the load device 4 is, for example, a three-phase AC electric motor.
- the electric motor 4d generates a driving force and transmits the driving force to the driving wheels 4a via the speed reducer 4c.
- this electric motor 4d can operate
- the battery 5 connected to the DC link unit 13 as in the load device 4 is a lithium ion secondary battery, for example, and is charged by the output power of the generator 2 or the regenerative power of the motor 4d, while the generator 2 or Drive power for driving the electric motor 4d is supplied to the DC link unit 13.
- the engine control unit 6 1 Based on the engine torque command value Te_ref commanded from the host control unit 10 and a signal such as the engine rotation speed detected by a sensor (not shown) provided in the engine 1, the engine control unit 6 1 is controlled such that the engine 1 generates torque corresponding to the engine torque command value Te_ref.
- the power generation control unit 7 is a state of the rotational speed ⁇ c of the generator 2 detected by the speed sensor 12 attached to the generator 2 and the DC voltage value Vdc detected by the voltage sensor 11 provided in the DC link unit 13. Accordingly, the switching element constituting the converter 3 is subjected to switching control to control the voltage supplied to the generator 2. Further, the control state of the power generation control unit 7 is transmitted to the host control unit 10.
- the battery control unit 8 is detected by a battery current value Ibat as a charging current or discharging current of the battery 5 detected by a current sensor (not shown) of the battery 5 and a voltage sensor (not shown) of the battery 5. Based on the measured battery voltage value Vbat, the state of charge (SOC) of the battery 5 is estimated and output to the upper control unit 10.
- the battery current value Ibat and the battery voltage value Vbat may be detected by providing a current sensor and a voltage sensor in the DC link unit 13, and the detected values may be input to the battery control unit 8.
- the load device control unit 9 generates a gate signal GP_i, which is a so-called PWM switching signal, for controlling the inverter 4e so that the torque of the motor 4d follows the motor torque command value Ti_ref commanded from the host control unit 10.
- the generated gate signal GP_i is output to the load device 4 to control the inverter 4e.
- the host control unit 10 has a function of managing and monitoring the entire operation of each component described above. More specifically, the host control unit 10 generates the control 2 based on the rotational speed ⁇ c of the generator 2, the DC voltage Vdc information acquired by the voltage sensor 11 of the DC link unit 13, and the input operation command Do_1. Based on the command Do_2, the generator 2 is controlled through the power generation control unit 7 and the converter 3, and the engine 1 is controlled through the engine control unit 6. Further, the host control unit 10 controls the engine 1 via the engine control unit 6 based on the engine brake signal EB from the power generation control unit 7, monitors the limit signal from the power generation control unit 7, and operates a cab (not shown). Notify necessary information.
- FIG. 2 is a block diagram showing a configuration of the power generation control unit 7 constituting the main part of the hybrid vehicle control apparatus according to Embodiment 1 of the present invention.
- the power generation control unit 7 includes a rotation speed command value generation unit 7a, a speed control unit 7b, a voltage control unit 7c, and an exhaust valve operation control unit 7d.
- the rotation speed command value generation unit 7a, the speed control unit 7b, and the voltage control unit 7c are configured to control the rotation speed of the generator 2 to follow the rotation speed command value for the generator 2.
- the DC voltage of the DC link unit 13 is controlled to follow the command value of the DC voltage for the DC link unit 13, thereby operating as an overvoltage prevention unit 7A that prevents overvoltage.
- FIG. 3 is a block diagram showing a more detailed configuration of the power generation control unit 7 shown in FIG.
- the rotational speed command value generation unit 7a includes a DC voltage command value generator 7a_1, a voltage PI controller 7a_2, and the like.
- the DC voltage command value generator 7a_1 uses a DC voltage command value generator 7a_1.
- a value Vdc_ref is generated, and the rotation speed command value ⁇ c_ref1 is calculated by the voltage PI controller 7a_2 based on the differential voltage value between the generated DC voltage command value Vdc_ref and the DC voltage Vdc.
- FIG. 4 is a graph showing the input / output characteristics of the DC voltage command value generator 7a_1.
- the horizontal axis represents the DC voltage Vdc and the vertical axis represents the DC voltage command value Vdc_ref.
- an overvoltage limit voltage Vdc_max and an overvoltage threshold Vdc_lim are provided on the horizontal and vertical axes in FIG.
- the voltage value is set in a range not exceeding the overvoltage limit value Vdc_max.
- the DC voltage command value generator 7a_1 generates a DC voltage command value Vdc_ref corresponding to the DC voltage Vdc.
- the DC voltage command value Vdc_ref is determined as follows.
- Section (1) (section from the horizontal axis voltage 0 to overvoltage threshold Vdc_lim)
- the DC voltage command value Vdc_ref output from the DC voltage command value generator 7a_1 is a value that matches the DC voltage Vdc.
- Section (2) (section where the voltage on the horizontal axis is equal to or higher than the overvoltage threshold Vdc_lim)
- the DC voltage command value Vdc_ref output from the DC voltage command value generator 7a_1 is the value of the overvoltage threshold Vdc_lim regardless of the DC voltage Vdc.
- the DC voltage command value generator 7a_1 determines that the state of the battery 5 is overvoltage and starts engine brake control. A command value for causing the regenerative power from the load device 4 to be consumed by the rotational frictional force of the engine 1 is generated and output.
- the DC voltage command value generator 7a_1 transmits information on the overvoltage threshold value Vdc_lim to an exhaust valve operation control unit 7d and a host control unit 10 which will be described later.
- the overvoltage threshold value Vdc_lim may be calculated and set in advance within a range that does not exceed the overvoltage limit voltage Vdc_max based on the maximum regenerative power of the inverter power flowing from the inverter 4e to the DC link unit 13 for each route. Note that the overvoltage threshold Vdc_lim transmitted to the upper control unit 10 is stored in the upper control unit 10 for each elapsed time.
- the voltage PI controller 7a_2 receives the differential voltage value ⁇ Vdc between the DC voltage command value Vdc_ref generated by the DC voltage command value generator 7a_1 and the DC voltage Vdc.
- the voltage PI controller 7a_2 calculates and outputs the rotational speed command value ⁇ c_ref1 by performing, for example, a proportional integration operation on the differential voltage value ⁇ Vdc using a gain set in advance based on a desired voltage control response.
- the calculated rotation speed command value ⁇ c_ref1 is input to the subsequent speed control unit 7b.
- the speed controller 7b includes a speed limiter 7b_1, a speed PI controller 7b_2, and the like, and a speed limiter is added to the rotational speed command value ⁇ c_ref1 from the rotational speed command value generator 7a.
- 7b_1 puts a limit, and based on the differential rotational speed between the limited output value and the generator rotational speed (synonymous with the generator rotational speed) ⁇ c, the torque command value Tc_ref1 for the generator 2 is set by the speed PI controller 7b_2. Is generated.
- FIG. 5 is a graph showing the input / output characteristics of the speed limiter 7b_1.
- the speed limiter 7b_1 performs at least one of an upper limit process and a lower limit process on the rotation speed command value ⁇ c_ref1 (first rotation speed command value) output from the voltage PI controller 7a_2.
- the rotation speed command value ⁇ c_ref2 (second rotation speed command value) is output.
- the speed limiter 7b_1 transmits information when the rotational speed command value ⁇ c_ref2 is subjected to the limit process to the upper control unit 10 as a generator limit signal ⁇ c_lim.
- the speed PI controller 7b_2 receives a difference rotational speed value ⁇ c between the rotational speed command value ⁇ c_ref2 output from the speed limiter 7b_1 and the generator rotational speed ⁇ c acquired from the rotor shaft of the generator 2. Is entered.
- the speed PI controller 7b_2 calculates and outputs a torque command value Tc_ref1 by, for example, performing a proportional integration operation on the differential rotational speed value ⁇ c using a gain set in advance based on a desired speed control response.
- the calculated torque command value Tc_ref1 is input to the subsequent voltage control unit 7c.
- the voltage control unit 7c outputs to the converter 3 based on control (so-called vector control) that causes the output torque of the generator 2 to follow the torque command value Tc_ref1 input from the speed PI controller 7b_2.
- a voltage command value to be calculated is calculated, and a gate signal GP_c for PWM control of the converter 3 is generated based on the calculated voltage command value and output to the converter 3.
- the converter 3 is PWM-controlled by a PWM control device (not shown) based on the gate signal GP_c from the voltage controller 7 c to control the output torque of the generator 2.
- the torque control method based on vector control is a known technique. For example, see Non-Patent Document 1 described above.
- the exhaust valve operation control unit 7d includes comparators 7d_1 to 7d_3, a power running / coiling / regeneration determining unit 7d_4, an engine brake determining unit 7d_5, an exhaust brake determining unit 7d_6, and the like.
- the comparator 7d_1 compares the DC voltage Vdc of the DC link unit 13 with the overvoltage threshold value Vdc_lim generated by the rotation speed command value generation unit 7a. When the DC voltage Vdc exceeds the overvoltage threshold value Vdc_lim, the engine brake determination unit An ON signal of the signal Vdc_sig is output to 7d_5. Note that the overvoltage threshold Vdc_lim is determined within a range in which the battery 5 does not become overvoltage when the electric motor 4d of the load device 4 is regenerated as described above.
- the comparator 7d_2 compares the generator rotational speed ⁇ c with the idling rotational speed ⁇ e_idol of the engine 1, and when the generator rotational speed ⁇ c exceeds the idling rotational speed ⁇ e_idol, the ON signal of the signal ⁇ c_sig is sent to the engine brake determination unit 7d_5. Output.
- the comparator 7d_3 compares the generator rotational speed ⁇ c with the engine rotational speed ⁇ e_haiki when the exhaust brake of the engine 1 is executed.
- the generator rotational speed ⁇ c exceeds the engine rotational speed ⁇ e_haiki
- the exhaust brake determination device An ON signal of the signal ⁇ c_sig2 is output to 7d_6.
- the engine speed ⁇ e_haiki when the exhaust brake is executed is a speed between the idling speed ⁇ e_idol and the allowable maximum speed ⁇ e_lim of the engine 1 as shown in FIG.
- the engine speed ⁇ e_haiki at the time of exhaust braking is in the vicinity of 1200 rpm.
- the power running / coasting / regeneration determination unit 7d_4 receives the driving operation signal Do_2 from the host controller 10, and outputs the information to the engine brake determination unit 7d_5 as a Mode (powering / coiling / regeneration) signal.
- the engine brake determination unit 7d_5 can determine whether or not the engine brake operation can be performed from three signals based on the signal Vdc_sig from the comparator 7d_1, the Mode signal from the power running / collision / regeneration determination unit 7d_4, and the signal ⁇ c_sig1 from the comparator 7d_2.
- the engine brake signal EB is output to the exhaust brake determination device 7d_6 and the host control unit 10.
- this engine brake signal EB when the signal Vdc_sig is ON, the Mode signal is regenerated, and the signal ⁇ c_sig1 is ON, an ON signal is output to the exhaust brake determination unit 7d_6 and the upper control unit 10.
- an OFF signal is output to the exhaust brake determination unit 7d_6 and the upper control 10.
- the exhaust brake determination unit 7d_6 determines whether or not the exhaust brake is possible from two signals based on the engine brake signal EB from the engine brake determination unit 7d_5 and the signal ⁇ e_sig2 from the comparator 7d_3, and outputs a valve operation signal Bs. To do.
- This valve operation signal Bs is output when the engine brake signal EB is ON and the signal ⁇ e_sig2 is ON.
- an OFF signal is output except for the combination that becomes the ON signal.
- the control sequence of the power generation control unit 7 is as described above. With this control sequence, the host control unit 10 performs the following operation when the engine brake is used to prevent overvoltage of the battery 5.
- the host control unit 10 responds to the generator limit signal ⁇ c_lim from the speed limiter 7b_1 to control the load torque command from the load device control unit 9 so as to suppress the regenerative power from the load device 4.
- the value Ti_ref (see FIG. 1) is narrowed down. Then, the mechanical brake force is increased according to the amount of decrease in the load torque command value Ti_ref, and surplus regenerative power is consumed by the mechanical brake. Further, the generator limit signal ⁇ c_lim is notified to a driver's cab or the like (not shown) via the host controller 10 and is notified to the driver by a lamp display or the like.
- the power generation control unit 7 determines the differential voltage between the DC voltage Vdc and the DC voltage command value Vdc_ref. ⁇ Vdc is temporarily set to the rotational speed command value ⁇ c_ref1, and further, the speed limiter 7b_1 performs upper / lower limit processing to obtain the generator rotational speed ⁇ c_ref2.
- the DC voltage command value generator 7a_1 of the power generation control unit 7 preferably sets the overvoltage threshold Vdc_lim in consideration of the voltage drop of the battery 5 at the time of maximum regeneration of the load device 4. Considering this point, there is an effect of reliably preventing the DC voltage Vdc from rising and entering the overvoltage region due to the internal resistance of the battery 5.
- the speed limiter 7b_1 of the speed control system causes an abnormality in the rotational speed of the mechanical system composed of the generator 2 and the engine 1. This leads to the effect that can be prevented.
- the maximum value of current that can be absorbed by the battery 5 maximum absorption current
- the lower limit value X0 of the generator rotational speed of the speed limiter 7b_1 is set to be equal to or higher than the idling speed ⁇ e_idol of the engine 1.
- the rotation speed command value ⁇ c_ref2 of the power generation control unit 7 is controlled so as not to fall below the idling speed ⁇ e_idol, so that there is an effect that the reverse rotation of the engine 1 can be prevented and stable operation can be continued.
- the speed limiter 7b_1 provides a margin for the upper limit value Y0 of the generator rotational speed with respect to the allowable maximum rotational speed ⁇ e_max during engine braking / exhaust braking of the engine 1, and is slightly smaller than the allowable maximum rotational speed ⁇ e_max. It is preferable to set the value. By such setting, there is an effect that the engine 1 can be reliably prevented from being mechanically damaged due to high rotation.
- the upper control unit 10 can suppress the regenerative power from the load device 4, so that the period of the battery 5 close to the overvoltage can be kept short, and the battery There is an effect that the deterioration of 5 can be delayed.
- FIG. 6 is a block diagram showing a configuration of a power generation control unit 7 constituting a main part of the control device for a hybrid vehicle according to the second embodiment of the present invention.
- the valve operation signal Bs is transmitted from the exhaust valve operation control unit 7d to the speed control unit 7b and the internal processing of the speed control unit 7b is compared with the power generation control unit 7 of the first embodiment. Is the difference.
- FIG. 7 is a block diagram showing a more detailed configuration of the power generation control unit 7 shown in FIG.
- a torque corrector 7b_3 is newly installed as compared with the speed control unit 7b of the first embodiment.
- the torque command value Tc_ref1 calculated from the speed PI controller 7b_2, Tc_ref2 that is referred to the map from the torque corrector 7b_3 based on the generator rotational speed ⁇ c and the valve operation signal Bs.
- the differential torque command value ⁇ Tc_ref is calculated, and the calculated value is output to the voltage control unit 7c.
- FIG. 8 is a graph showing the input / output characteristics of the torque corrector 7b_3.
- the horizontal axis represents the rotational speed ⁇ c of the generator 2, and the vertical axis represents the torque correction value Tc_ref2 that is the output of the torque corrector 7b_3.
- the friction torque command characteristic Teb_chara1 at the time of engine braking with respect to the engine 1 and the friction torque command characteristic Teb_chara2 at the time of exhaust brake are functions as a function of the generator rotational speed ⁇ c. Each is set.
- the friction torque command characteristic Teb_chara1 is selected from the torque corrector 7b_3, and the friction torque command A torque correction value Tc_ref2 is output based on the characteristic Teb_chara1.
- the friction torque command characteristic Teb_chara2 is selected from the torque corrector 7b_3, and the selected friction torque command characteristic Teb_chara2 is selected. Based on the torque correction value Tc_ref2. Switching between the engine brake and the exhaust brake is performed based on the ON / OFF signal of the exhaust valve operation signal Bs.
- the lower limit value X0 of the generator rotational speed ⁇ c indicated by the alternate long and short dash line is set so that the generator rotational speed ⁇ c corresponds to the idling rotational speed ⁇ e_idol of the engine 1, and the torque
- the correction value Tc_ref2 is set so that the engine brake is lower than the exhaust brake.
- the upper limit value has a margin with respect to the allowable maximum rotational speed ⁇ e_lim which is a design limit value when the engine 1 applies the engine brake and the exhaust brake, and is a value slightly smaller than the allowable maximum rotational speed ⁇ e_lim ( Y0).
- the engine brake / exhaust brake upper limit set value Y0 is set to be less than the allowable maximum rotational speed ⁇ e_lim so as to be, for example, 0.9 times the allowable maximum rotational speed.
- the exhaust valve operation signal Bs is generated from the DC voltage command value generator 7a_1 based on the overvoltage threshold value Vdc_lim, so that the engine brake or This has the effect of simplifying the control sequence when using the exhaust brake.
- the voltage control unit 7c uses the speed command value ⁇ c_ref2 input via the speed limiter 7b_1 and the torque command value Tc_ref1 output via the PI controller 7b_2 and the torque correction output from the torque corrector 7b_3. Since the output of the converter 3 is PWM-controlled based on the value Tc_ref2, the torque correction value Tc_ref2 from the torque corrector 7b_3 with respect to the response delay of the voltage PI controller 7a_2 that occurs when the DC voltage Vdc changes. Works as a feed-forward function, and there is an effect that regenerative power consumption from the load device 4 can be executed promptly.
- the torque compensator 7b_3 includes a friction torque command characteristic Teb_chara1 during engine braking and a friction torque command characteristic Teb_chara2 during exhaust braking as a plurality of torque command characteristics based on the presence or absence of the exhaust valve operation command Bs. It is preferably set as a function with respect to the rotational speed ⁇ c.
- the torque correction value Tc_ref2 is output based on the generated friction torque command characteristic Teb_chara2, the torque correction value Tc_ref2 has a stronger feedforward function than when the engine brake alone, and the regenerative power from the load device 4 has a quick response, And there is an effect that it can be consumed quickly.
- the torque correction value Tc_ref2 output from the torque corrector 7b_3 is set to zero in a speed region that is equal to or greater than the allowable maximum rotational speed ⁇ e_lim of the engine 1. With this setting, even when the rotational speed ⁇ c of the generator 2 suddenly increases, the torque correction value Tc_ref2 from the torque corrector 7b_3 becomes zero, so that the control of the power generation control unit 7 is stabilized. .
- FIG. 9 is a block diagram showing an overall configuration of a hybrid vehicle system including a hybrid vehicle control apparatus according to Embodiment 3 of the present invention.
- the circuit breaker 14 is provided between the battery 5, the converter 3, and the inverter 4e of the load device 4, and the upper control. The difference is that a battery open control signal line is connected from the unit 10 to the battery 5.
- any one of the power generation control units 7 used in the first and second embodiments can be applied to the power generation control unit 7 in the third embodiment.
- the generator limit signal ⁇ c_lim is output from the speed limiter 7b_1 to the host control unit 10.
- the host controller 10 monitors the generator limit signal ⁇ c_lim, and if the generator limit signal ⁇ c_lim exceeds the allowable value, outputs the battery open signal BATOPEN to the circuit breaker 14 and performs control to open the battery 5. .
- the regenerative current does not flow to the battery 5 and the regenerative power from the load device 4 can be cut off, so that there is an effect of suppressing the overvoltage of the battery 5 and the excessive temperature rise of the battery 5.
- Embodiment 1-3 is an example of the configuration of the present invention, and can be combined with another known technique, and can be combined within the scope of the present invention. Needless to say, the configuration may be modified by omitting the unit.
- the present invention is useful as a control device for a hybrid vehicle that can prevent overcharging and overvoltage of the power storage device.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Automation & Control Theory (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Charge By Means Of Generators (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
図1は、この発明の実施の形態1に係るハイブリッド車両の制御装置を含むハイブリッド車両システムの全体構成を示すブロック図である。図1において、ハイブリッド車両システムは、エンジン1と、エンジン1によって駆動される発電機2と、電力変換装置としてのコンバータ3と、コンバータ3に接続された負荷装置4と、負荷装置4と同様にコンバータ3に接続された電力貯蔵装置としてのバッテリ5と、エンジン1を制御するエンジン制御部6と、発電機2の発電量を制御するためにエンジン1およびコンバータ3を制御する発電制御部7と、バッテリ5の電力調整を行うバッテリ制御部8と、負荷装置4を制御する負荷装置制御部9と、図示しない運転台からの運転指令Do_1や、電圧センサ11、速度センサ12などからの各種センサ出力に基づいて、エンジン制御部6、発電制御部7、バッテリ制御部8および負荷装置制御部9を制御する上位制御部10を備えて構成される。
この区間においては、直流電圧指令値生成器7a_1が出力する直流電圧指令値Vdc_refは、直流電圧Vdcと一致した値が出力される。
この区間においては、直流電圧指令値生成器7a_1が出力する直流電圧指令値Vdc_refは、直流電圧Vdcに依らず過電圧閾値Vdc_limの値が出力される。
電動機4dの回生動作時に直流電圧Vdcが過電圧閾値Vdc_lim以上となり、かつ、発電機回転数ωcがアイドリング回転数以上になると、エンジンブレーキ信号EBのON信号が上位制御部10に出力される。このとき、上位制御部10は、エンジン制御部6に「0(零)」のエンジントルク指令Te_ref(図1参照)を出力する。零のエンジントルク指令Te_refが出力されたエンジン制御部6は、エンジン1のスロットル開度St(図1参照)を閉じるようにエンジン1に指令を送り、エンジン1への燃料供給を停止させる。その後、負荷装置4からの回生電力はバッテリ5に充電されず、エンジン1の摩擦負荷によって消費され、バッテリ5が過電圧となるのを防止できる。
上記の制御を行う一方で、上位制御部10は、速度リミット器7b_1からの発電機リミット信号ωc_limに応じて、負荷装置4からの回生電力を抑えるように負荷装置制御部9からの負荷トルク指令値Ti_ref(図1参照)を絞る。そして、負荷トルク指令値Ti_refの減少量に応じて、機械ブレーキ力を増大させ余剰な回生電力を機械ブレーキで消費する。また、発電機リミット信号ωc_limは、上位制御部10を介し図示しない運転台等に通知しランプ表示等にて運転手に報知する。
つぎに、この発明の実施の形態2に係るハイブリッド車両の制御装置について説明する。図6は、この発明の実施の形態2に係るハイブリッド車両の制御装置の要部を成す発電制御部7の構成を示すブロック図である。実施の形態2では、実施の形態1の発電制御部7と比較して、排気弁操作制御部7dから速度制御部7bに弁操作信号Bsが伝達されることと、速度制御部7bの内部処理とが相違点である。
つぎに、この発明の実施の形態3に係るハイブリッド車両の制御装置について説明する。図9は、この発明の実施の形態3に係るハイブリッド車両の制御装置を含むハイブリッド車両システムの全体構成を示すブロック図である。この実施の形態3では、実施の形態1のシステム制御部と比較して、バッテリ5と、コンバータ3と、負荷装置4のインバータ4eとの間に遮断器14を設けている点と、上位制御部10からバッテリ5に対しバッテリ開放制御信号線が結線されている点とが相違点である。
Claims (15)
- エンジンで駆動される発電機と、前記発電機が出力する交流電力を直流電力に変換するコンバータと、前記コンバータを制御して前記発電機の発電量を制御する発電制御部と、前記コンバータと電気的に接続された電力貯蔵装置と、少なくとも前記発電制御部の動作を制御する上位制御部と、を備えたハイブリッド車両の制御装置であって、
前記発電制御部は、
前記電力貯蔵装置の電気的接続端に対する直流電圧指令値と、前記電気的接続端の直流電圧との差分電圧値の情報に基づいて前記発電機に対する回転速度指令値を算出し、前記回転速度指令値に基づいて、前記コンバータの出力をPWM制御して前記発電機の回転速度を前記回転速度指令値に追従させると共に前記直流電圧を前記直流電圧指令値に追従させる過電圧防止部を備えたことを特徴とするハイブリッド車両の制御装置。 - 前記過電圧防止部は、
前記直流電圧指令値と前記直流電圧とを用いて前記回転速度指令値を算出する回転速度指令値算出部と、
前記回転速度指令値と前記発電機の回転速度との差分値に基づいて、前記発電機に対するトルク指令値を生成する速度制御部と、
前記トルク指令値に基づいて前記コンバータをPWM制御する電圧制御部と、
を備えたことを特徴とする請求項1に記載のハイブリッド車両の制御装置。 - 前記回転速度指令値算出部は、
前記直流電圧指令値を生成する直流電圧指令生成器と、
前記差分電圧値に基づいて前記回転速度指令値を算出する電圧PI制御器と、
を備えたことを特徴とする請求項2に記載のハイブリッド車両の制御装置。 - 前記直流電圧指令生成器には、前記直流電圧指令値の制限を開始する過電圧閾値が設定されていることを特徴とする請求項3に記載のハイブリッド車両の制御装置。
- 前記過電圧閾値は、バッテリの内部抵抗と、バッテリの最大吸収電流とから予め想定される電圧変動幅を加味して設定されていることを特徴とする請求項4に記載のハイブリッド車両の制御装置。
- 前記速度制御部は、
前記回転速度指令値に対する下限値と上限値とのうちの少なくとも一方をリミットする速度リミット器と、
前記速度リミット器を介して入力された回転速度指令値に基づいて前記トルク指令値を算出する速度PI制御器と、
を備えたことを特徴とする請求項2に記載のハイブリッド車両の制御装置。 - 前記速度リミット器における前記回転速度指令値に対する下限値は、前記エンジンのアイドリング回転数以上に設定されていることを特徴とする請求項6に記載のハイブリッド車両の制御装置。
- 前記速度リミット器における前記回転速度指令値に対する上限値は、エンジンブレーキ動作時の許容回転数以下に設定されていることを特徴とする請求項6に記載のハイブリッド車両の制御装置。
- 前記速度リミット器のリミット処理情報を前記上位制御部に伝送することを特徴とする請求項6に記載のハイブリッド車両の制御装置。
- 前記上位制御部は、前記リミット処理情報に基づいて、負荷装置が発生する回生電力を調整すること特徴とする請求項9に記載のハイブリッド車両の制御装置。
- 前記上位制御部は、前記速度リミット器のリミット処理情報に基づいて、前記バッテリと前記コンバータとの電気的接続端を開放する信号を出力することを特徴とする請求項9に記載のハイブリッド車両の制御装置。
- 前記発電制御部は、前記直流電圧、前記発電機の回転速度および前記過電圧閾値に基づいて、前記エンジンの排気弁操作指令を出力する排気弁操作制御部をさらに具備することを特徴とする請求項4に記載のハイブリッド車両の制御装置。
- 前記エンジンのトルク指令特性を有し、前記発電機の回転速度に基づいてトルク補正値を出力するトルク補正器をさらに備え、
前記電圧制御部は、前記速度リミット器を介して入力された前記回転速度指令値と、前記トルク補正器から出力された前記トルク補正値とに基づいて前記コンバータの出力をPWM制御することを特徴とする請求項6に記載のハイブリッド車両の制御装置。 - 前記排気弁操作指令の有無に基づいた複数のトルク指令特性を有し、前記エンジンの排気弁操作に基づいて前記複数のトルク指令特性のうちの一つを選択し、この選択したトルク指令特性に基づいてトルク補正値を出力するトルク補正器をさらに備え、
前記電圧制御部は、前記速度リミット器を介して入力された前記回転速度指令値と、前記トルク補正器から出力された前記トルク補正値とに基づいて、前記コンバータの出力をPWM制御することを特徴とする請求項12に記載のハイブリッド車両の制御装置。 - 前記エンジンの許容最大回転数以上の速度領域では、前記トルク補正器から出力されるトルク補正値が零に設定されていることを特徴とする請求項13に記載のハイブリッド車両の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013506402A JP5384771B1 (ja) | 2012-07-20 | 2012-07-20 | ハイブリッド車両の制御装置 |
PCT/JP2012/068519 WO2014013622A1 (ja) | 2012-07-20 | 2012-07-20 | ハイブリッド車両の制御装置 |
US14/415,915 US9469185B2 (en) | 2012-07-20 | 2012-07-20 | Control device for hybrid vehicle |
EP12881189.0A EP2875978B1 (en) | 2012-07-20 | 2012-07-20 | Hybrid vehicle control device |
AU2012385593A AU2012385593B2 (en) | 2012-07-20 | 2012-07-20 | Hybrid vehicle control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/068519 WO2014013622A1 (ja) | 2012-07-20 | 2012-07-20 | ハイブリッド車両の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014013622A1 true WO2014013622A1 (ja) | 2014-01-23 |
Family
ID=49948473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/068519 WO2014013622A1 (ja) | 2012-07-20 | 2012-07-20 | ハイブリッド車両の制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9469185B2 (ja) |
EP (1) | EP2875978B1 (ja) |
JP (1) | JP5384771B1 (ja) |
AU (1) | AU2012385593B2 (ja) |
WO (1) | WO2014013622A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105452628A (zh) * | 2014-02-25 | 2016-03-30 | 三菱重工业株式会社 | 增压器及船舶 |
JP2017038499A (ja) * | 2015-08-12 | 2017-02-16 | 東洋電機製造株式会社 | 電力変換システム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2012387794B2 (en) * | 2012-08-13 | 2016-05-19 | Mitsubishi Electric Corporation | Propulsion control device of engine hybrid railroad vehicle |
JP6242863B2 (ja) * | 2013-04-02 | 2017-12-06 | パナソニック株式会社 | エンジン駆動車両に用いられる電動駆動装置 |
JP6272291B2 (ja) * | 2015-12-24 | 2018-01-31 | 株式会社Subaru | 車両用電源装置 |
US10183662B1 (en) * | 2016-01-04 | 2019-01-22 | Hydro-Gear Limited Partnership | Regeneration power control |
US11014549B1 (en) * | 2016-01-04 | 2021-05-25 | Hydro-Gear Limited Partnership | Regeneration power control |
US20180297466A1 (en) * | 2017-04-17 | 2018-10-18 | Autonomous Tractor Corporation | Electric and hydraulic drive system and methods |
JP7059790B2 (ja) * | 2018-05-15 | 2022-04-26 | トヨタ自動車株式会社 | 車両の駆動装置、および車両の制御方法 |
JP2020108256A (ja) * | 2018-12-27 | 2020-07-09 | トヨタ自動車株式会社 | 車載バッテリ充電システム |
EP3681034A1 (en) | 2019-01-08 | 2020-07-15 | Hamilton Sundstrand Corporation | Electric propulsion systems |
CN113734141B (zh) * | 2020-05-27 | 2024-05-28 | 广州汽车集团股份有限公司 | 一种车辆怠速发电功率控制方法及其系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07236203A (ja) * | 1994-02-23 | 1995-09-05 | Mitsubishi Electric Corp | 電気自動車の制御装置 |
JP2007195334A (ja) * | 2006-01-19 | 2007-08-02 | Hitachi Ltd | 鉄道車両の駆動装置 |
JP2010136553A (ja) * | 2008-12-05 | 2010-06-17 | Toyota Motor Corp | 電源システムおよびそれを搭載した電動車両 |
JP2011168226A (ja) | 2010-02-22 | 2011-09-01 | Mitsubishi Heavy Ind Ltd | シリーズハイブリッド車両の制御装置 |
JP2012051457A (ja) * | 2010-09-01 | 2012-03-15 | Nissan Motor Co Ltd | ハイブリッド車両の制御装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3094745B2 (ja) * | 1993-09-24 | 2000-10-03 | トヨタ自動車株式会社 | ハイブリッド車の発電制御装置 |
DE4446485C2 (de) * | 1994-12-23 | 2003-06-26 | Daimler Chrysler Ag | Verfahren und Vorrichtung zum Abbremsen eines Kraftfahrzeuges mit Hybridantrieb |
JPH08289407A (ja) * | 1995-02-13 | 1996-11-01 | Nippon Soken Inc | ハイブリッド車の発電制御装置 |
JP3536581B2 (ja) * | 1997-04-16 | 2004-06-14 | 日産自動車株式会社 | ハイブリッド電気自動車の発電制御装置 |
JP3767103B2 (ja) * | 1997-07-16 | 2006-04-19 | 日産自動車株式会社 | 電気自動車の制御装置 |
JP3908400B2 (ja) | 1998-12-01 | 2007-04-25 | 株式会社明電舎 | シリーズハイブリッド電気自動車 |
JP3912475B2 (ja) * | 2000-02-24 | 2007-05-09 | 三菱ふそうトラック・バス株式会社 | ハイブリッド電気自動車の発電制御装置 |
JP2002271908A (ja) | 2001-03-13 | 2002-09-20 | Meidensha Corp | シリーズハイブリッド電気自動車 |
JP3661689B2 (ja) * | 2003-03-11 | 2005-06-15 | トヨタ自動車株式会社 | モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体 |
JP2005253126A (ja) * | 2004-03-01 | 2005-09-15 | Nissan Motor Co Ltd | ハイブリッド車両の制動力制御装置および該制御装置を搭載した車両 |
US7267191B2 (en) * | 2004-07-30 | 2007-09-11 | Ford Global Technologies, Llc | System and method for battery protection strategy for hybrid electric vehicles |
FR2921884A1 (fr) * | 2007-10-03 | 2009-04-10 | Peugeot Citroen Automobiles Sa | Procede de pilotage d'une chaine de traction hybride base sur l'etat de charge de la batterie. |
JP2009232652A (ja) * | 2008-03-25 | 2009-10-08 | Aisin Aw Co Ltd | 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム |
-
2012
- 2012-07-20 WO PCT/JP2012/068519 patent/WO2014013622A1/ja active Application Filing
- 2012-07-20 US US14/415,915 patent/US9469185B2/en active Active
- 2012-07-20 AU AU2012385593A patent/AU2012385593B2/en not_active Ceased
- 2012-07-20 JP JP2013506402A patent/JP5384771B1/ja active Active
- 2012-07-20 EP EP12881189.0A patent/EP2875978B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07236203A (ja) * | 1994-02-23 | 1995-09-05 | Mitsubishi Electric Corp | 電気自動車の制御装置 |
JP2007195334A (ja) * | 2006-01-19 | 2007-08-02 | Hitachi Ltd | 鉄道車両の駆動装置 |
JP2010136553A (ja) * | 2008-12-05 | 2010-06-17 | Toyota Motor Corp | 電源システムおよびそれを搭載した電動車両 |
JP2011168226A (ja) | 2010-02-22 | 2011-09-01 | Mitsubishi Heavy Ind Ltd | シリーズハイブリッド車両の制御装置 |
JP2012051457A (ja) * | 2010-09-01 | 2012-03-15 | Nissan Motor Co Ltd | ハイブリッド車両の制御装置 |
Non-Patent Citations (1)
Title |
---|
HIDEHIKO SUGIMOTO; MASATO KOYAMA; SHINZO TAMAI, ACTUAL THEORY AND DESIGN OF AC SERVO SYSTEM, FROM BASIC TO SOFTWARE SERVO, pages 99 - 103 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105452628A (zh) * | 2014-02-25 | 2016-03-30 | 三菱重工业株式会社 | 增压器及船舶 |
EP2982844A4 (en) * | 2014-02-25 | 2016-05-25 | Mitsubishi Heavy Ind Ltd | CHARGER AND SHIP |
US9822699B2 (en) | 2014-02-25 | 2017-11-21 | Mitsubishi Heavy Industries, Ltd. | Turbocharger and marine vessel |
US10590839B2 (en) | 2014-02-25 | 2020-03-17 | Mitsubishi Heavy Industries, Ltd | Marine vessel operated with hybrid turbocharged internal combustion engine |
US10598085B2 (en) | 2014-02-25 | 2020-03-24 | Mitsubishi Heavy Industries, Ltd | Marine vessel operated with hybrid turbocharged internal combustion engine |
JP2017038499A (ja) * | 2015-08-12 | 2017-02-16 | 東洋電機製造株式会社 | 電力変換システム |
Also Published As
Publication number | Publication date |
---|---|
AU2012385593A1 (en) | 2015-02-05 |
US9469185B2 (en) | 2016-10-18 |
AU2012385593B2 (en) | 2016-02-25 |
US20150174998A1 (en) | 2015-06-25 |
EP2875978A4 (en) | 2016-08-10 |
JPWO2014013622A1 (ja) | 2016-06-30 |
EP2875978A1 (en) | 2015-05-27 |
EP2875978B1 (en) | 2020-04-15 |
JP5384771B1 (ja) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5384771B1 (ja) | ハイブリッド車両の制御装置 | |
KR101684543B1 (ko) | 하이브리드 차량의 운전 모드 제어 시스템 및 그 방법 | |
JP5477030B2 (ja) | 電動車両の制御装置 | |
EP1247687B1 (en) | Control apparatus for electric motor and control apparatus for hybrid vehicle | |
CN107985302B (zh) | 车辆 | |
US11332115B2 (en) | Power regeneration system of work vehicle | |
CN109689455B (zh) | 车辆 | |
JP5911513B2 (ja) | ハイブリッド車両の発電機制御装置 | |
JP2018043678A (ja) | ハイブリッド車の作動制御装置 | |
JP2019069679A (ja) | ハイブリッド車両 | |
JP2008295300A (ja) | 蓄電器を備えた車両の電力制限装置 | |
JP7459752B2 (ja) | 回生制御方法及び回生制御装置 | |
JP2012045996A (ja) | ハイブリッド車両の発電制御装置 | |
JP5419745B2 (ja) | シリーズハイブリッド車両の制御装置 | |
CN110271432B (zh) | 具备发电装置的车辆和车辆搭载发电装置的发电控制方法 | |
JP5353365B2 (ja) | 車両システム | |
JP5450238B2 (ja) | 電動車両 | |
WO2018066624A1 (ja) | 電源システム制御装置 | |
KR101171831B1 (ko) | 하이브리드 자동차의 pid 피드백 제어 시스템 | |
JP6147380B2 (ja) | ハイブリッド車両の発電機制御装置 | |
US11702062B2 (en) | MHEV operating strategy for optimized driving dynamics | |
WO2023127344A1 (ja) | 鉄道車両用駆動システムおよび鉄道車両用駆動システムの駆動方法 | |
JP6567362B2 (ja) | 電力変換システム | |
JP2022093977A (ja) | 電源システム | |
JP2016116397A (ja) | 回生制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013506402 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12881189 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012881189 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14415915 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2012385593 Country of ref document: AU Date of ref document: 20120720 Kind code of ref document: A |