JP2022093977A - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
JP2022093977A
JP2022093977A JP2020206740A JP2020206740A JP2022093977A JP 2022093977 A JP2022093977 A JP 2022093977A JP 2020206740 A JP2020206740 A JP 2020206740A JP 2020206740 A JP2020206740 A JP 2020206740A JP 2022093977 A JP2022093977 A JP 2022093977A
Authority
JP
Japan
Prior art keywords
power
battery
capacitor
voltage
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020206740A
Other languages
English (en)
Other versions
JP7469219B2 (ja
Inventor
宏和 小熊
Hirokazu Oguma
健太 鈴木
Kenta Suzuki
研一 清水
Kenichi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020206740A priority Critical patent/JP7469219B2/ja
Priority to US17/643,171 priority patent/US20220185147A1/en
Priority to CN202111504909.7A priority patent/CN114619895A/zh
Publication of JP2022093977A publication Critical patent/JP2022093977A/ja
Application granted granted Critical
Publication of JP7469219B2 publication Critical patent/JP7469219B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Abstract

【課題】高温状態のバッテリに意図しない電流が流れてしまうことによるバッテリの劣化を抑制できる電源システムを提供すること。【解決手段】電源システムは、第1バッテリを有する第1電力回路と、閉回路電圧に対する使用電圧範囲が第1バッテリと重複しかつ静的電圧が第1バッテリよりも低い第2バッテリを有する第2電力回路と、電圧変換器及び電力変換器を操作することにより第1及び第2バッテリと駆動モータとの間の電力の授受を制御するマネジメントECU、モータECU、及びコンバータECUと、を備える。マネジメントECUは、第2バッテリB2の温度Tbat2が第1温度閾値T1より高い場合、第2バッテリB2に供給される回生電力を、第2回生電力上限P2in_limを上限とする範囲内に制御する入力制限制御を実行するとともに、第2バッテリB2の温度が高くなるほど第2回生電力上限P2in_limを0に近づける。【選択図】図8

Description

本発明は、電源システムに関する。より詳しくは、閉回路電圧に対する使用電圧範囲が重複する第1蓄電器及び第2蓄電器を備える電源システムに関する。
近年、動力発生源として駆動モータを備える電動輸送機器や、動力発生源として駆動モータと内燃機関とを備えるハイブリッド車両等の電動車両の開発が盛んである。このような電動車両には、駆動モータに電気エネルギを供給するために蓄電器(バッテリ、及びキャパシタ等)も搭載されている。また近年では、電動車両に特性が異なる複数の蓄電器を搭載するものも開発されている。
特許文献1には、駆動モータやインバータ等によって構成される駆動部と第1蓄電器とを接続する電力回路と、この電力回路と電圧変換器を介して接続された第2蓄電器と、この電圧変換器をスイッチング制御する制御装置と、を備える電動車両の電源システムが示されている。制御装置は、運転者からの要求に応じて電圧変換器を通過する電流である通過電流に対する目標電流を設定するとともに、通過電流が目標電流になるように電圧変換器のスイッチング制御を行い、第1蓄電器から出力される電力と第2蓄電器から出力される電力とを合成し、駆動モータに供給する。これにより、第1蓄電器からの出力電力だけでは運転者の要求に応じた要求電力を達成できなくなるような加速時には、第2蓄電器からの出力電力を追加的に合成することにより、要求電力を達成することができる。
特開2017-169311号公報
ところで蓄電器は、高温状態で充放電するとその劣化を促進するおそれがある。このため上述のように2つの蓄電器を備える電源システムでは、運転者による加速要求に応じて補助的に用いる第2蓄電器の温度が所定温度より高い場合、加速要求の有無によらず第2蓄電器の充放電を禁止する場合がある。
一方、特許文献1に示す電源システムのように、第1蓄電器と、この第1蓄電器よりも電圧が低い第2蓄電器とを電圧変換器で接続した場合、第2蓄電器から出力される電力は、基本的には電圧変換器のスイッチング制御によって制御することが可能である。しかしながら上述のように第2蓄電器の充放電を禁止している状態で駆動モータにおいて大きな電力が要求されると、第1蓄電器を流れる電流が増加し、第1蓄電器の閉回路電圧が第2蓄電器の静的電圧より低くなってしまう場合がある。この場合、第2蓄電器の放電を禁止しているにも関わらず第2蓄電器が放電に転じてしまい、電圧変換器を第2蓄電器側から第1蓄電器側へ意図しない電流が流れ、第2蓄電器の劣化が促進するおそれがある。
本発明は、高温状態の蓄電器に意図しない電流が流れてしまうことによる蓄電器の劣化を抑制できる電源システムを提供することを目的とする。
(1)本発明に係る電源システム(例えば、後述の電源システム1)は、第1蓄電器(例えば、後述の第1バッテリB1)を有する高電圧回路(例えば、後述の第1電力回路2)と、閉回路電圧に対する使用電圧範囲が前記第1蓄電器と重複しかつ静的電圧が前記第1蓄電器よりも低い第2蓄電器(例えば、後述の第2バッテリB2)を有する低電圧回路(例えば、後述の第2電力回路3)と、前記高電圧回路と前記低電圧回路との間で電圧を変換する電圧変換器(例えば、後述の電圧変換器5)と、駆動輪(例えば、後述の駆動輪W)と連結された回転電機(例えば、後述の駆動モータM)と前記高電圧回路との間で電力を変換する電力変換器(例えば、後述の電力変換器43)と、前記第2蓄電器の温度である第2蓄電器温度(例えば、後述の温度Tbat2)を取得する第2蓄電器温度取得手段(例えば、後述の第2バッテリECU75及び第2バッテリセンサユニット82)と、前記電圧変換器及び前記電力変換器を操作することにより前記第1及び第2蓄電器と前記回転電機との間の電力の授受を制御する制御装置(例えば、後述のマネジメントECU71、モータECU72、及びコンバータECU73)と、を備え、前記制御装置は、前記第2蓄電器温度が第1温度閾値(例えば、後述の第1温度閾値T1)より高い場合、前記第2蓄電器に供給される回生電力を、第2回生電力上限(例えば、後述の第2回生電力上限P2in_lim)を上限とする範囲内に制御する入力制限制御を実行するとともに、前記第2蓄電器温度が高くなるほど前記第2回生電力上限を0に近づけることを特徴とする。
(2)この場合、前記電源システムは、前記第1蓄電器の残量に応じて増加する第1残量パラメータ(例えば、後述の第1バッテリB1の充電率)を取得する第1残量パラメータ取得手段(例えば、後述の第1バッテリECU74及び第1バッテリセンサユニット81)をさらに備え、前記制御装置は、前記入力制限制御の実行中に前記回転電機に対する要求回生電力が前記第2回生電力上限を超えかつ前記第1残量パラメータが第1残量閾値未満である場合、前記第1蓄電器に回生電力を供給することが好ましい。
(3)この場合、前記制御装置は、前記入力制限制御の実行中でありかつ前記第1残量パラメータが前記第1残量閾値より大きい場合、前記回転電機から前記高電圧回路へ供給される回生電力を、総回生電力上限を上限とする範囲内に制御するとともに、前記第2蓄電器温度が高くなるほど前記総回生電力上限を0に近づけることが好ましい。
(4)この場合、前記制御装置は、前記第2蓄電器温度が前記第1温度閾値より高く定められた第3温度閾値(例えば、後述の第3温度閾値T3)より高い場合、前記第2蓄電器の出力電力を、第2出力電力上限(例えば、後述の第2出力電力上限P2out_lim)を上限とする範囲内に制御するとともに、前記第2蓄電器温度が高くなるほど前記第2出力電力上限を0に近づけることが好ましい。
(5)この場合、前記制御装置は、前記第2蓄電器温度が前記第3温度閾値より高い場合、前記第1蓄電器の出力電力を、第1出力電力上限(例えば、後述の第1出力電力上限P1out_lim)を上限とする範囲内に制御するとともに、前記第1出力電力上限を前記第1蓄電器の閉回路電圧が前記第2蓄電器の静的電圧以上になるように設定することが好ましい。
(6)この場合、前記制御装置は、前記第2蓄電器温度が前記第1温度閾値より高く定められた第4温度閾値(例えば、後述の第4温度閾値T4)より高い場合、前記第2蓄電器の充放電を禁止することが好ましい。
(1)本発明の電源システムでは、第1蓄電器を有する高電圧回路と、閉回路電圧に対する使用電圧範囲が第1蓄電器と重複しかつ静的電圧が第1蓄電器よりも低い第2蓄電器を有する低電圧回路とを電圧変換器で接続し、高電圧回路と回転電機とを電力変換器で接続し、制御装置は、電圧変換器及び電力変換器を操作することにより、第1及び第2蓄電器と回転電機との間の電力の授受を制御する。第1蓄電器と第2蓄電器とで使用電圧範囲が重複していると、回転電機における要求電力が大きくなり、第1蓄電器を流れる電流が増加すると、第1蓄電器の閉回路電圧が第2蓄電器の静的電圧より低くなってしまう場合がある。このように第1蓄電器の閉回路電圧が第2蓄電器の静的電圧より低くなってしまうと、第2蓄電器から意図せず電力が出力される場合がある。これに対し本発明では、第2蓄電器温度が第1温度閾値より高い場合、第2蓄電器に供給される回生電力を、第2回生電力上限を上限とする範囲内に制御する入力制限制御を実行するとともに、第2蓄電器温度が高くなるほど第2回生電力上限を0に近づける。すなわち本発明によれば、第2蓄電器温度が第1温度閾値を超えた段階で第2蓄電器への回生電力を制限することにより、その後第2蓄電器がさらに高温になるまでの間に、第2蓄電器の残量及び静的電圧を徐々に下げ、第1蓄電器と第2蓄電器との電圧差を広げることができる。よって本発明によれば、高温状態における第2蓄電器の意図しない放電による劣化を抑制することができる。また本発明によれば、第2蓄電器温度が第1温度閾値を超えた段階で第2蓄電器への充電を制限することにより、高温状態で充電が行われることによる第2蓄電器の劣化を抑制することができる。また本発明によれば、第2蓄電器温度が高くなるほど第2回生電力上限を0に近づけることにより、運転者に違和感を与えることなく第2蓄電器の残量を低下させることができる。
(2)本発明において制御装置は、入力制限制御の実行中に回転電機に対する要求回生電力が第2回生電力上限を超えかつ第1残量パラメータが第1残量閾値未満である場合、第1蓄電器に回生電力を供給する。よって本発明によれば、第2蓄電器に供給しきれなかった回生電力を第1蓄電器に供給することができるので、回生電力を無駄にすることなく第2蓄電器の劣化を抑制することができる。
(3)本発明において制御装置は、入力制限制御の実行中でありかつ第1残量パラメータが第1残量閾値より大きい場合、回転電機から高電圧回路へ供給される回生電力を、総回生電力上限を上限とする範囲内に制御するとともに、第2蓄電器温度が高くなるほど総回生電力上限を0に近づける。よって本発明によれば、第2蓄電器への回生電力を制限している間に第1蓄電器が過充電に至るのを防止することができるので、第1蓄電器及び第2蓄電器の両方の劣化を抑制することができる。また本発明では、第2蓄電器温度が高くなるほど総回生電力上限を0に近づけることにより、急激に回生制動が小さくなるのを防止することができる。
(4)本発明において制御装置は、第2蓄電器温度が第1温度閾値より高く定められた第3温度閾値よりも高い場合、第2蓄電器の出力電力を、第2出力電力上限を上限とする範囲内に制御するとともに、第2蓄電器温度が高くなるほど第2出力電力上限を0に近づける。すなわち本発明では、第2蓄電器の出力電力の制限を開始する第3温度閾値を、第2蓄電器への回生電力の制限を開始する第1温度閾値よりも高く定めることにより、第2蓄電器温度が第1温度閾値から第3温度閾値までの間にある間では、第2蓄電器への回生電力を制限しながら第2蓄電器の放電を許容できるので、第2蓄電器温度が第1温度閾値を超えた後における第1蓄電器と第2蓄電器との間の電圧差をさらに広げることができる。よって本発明によれば、高温状態における第2蓄電器の意図しない放電による劣化をさらに抑制することができる。また本発明によれば、第2蓄電器温度が高くなるほど第2出力電力上限を0に近づけることにより、運転者に違和感を与えることなく第2蓄電器の残量を低下させることができる。
(5)本発明において制御装置は、第2蓄電器温度が第3温度閾値より高い場合、第1蓄電器の出力を、第1出力電力上限を上限とする範囲内に制御するとともに、第1出力電力上限を第1蓄電器の閉回路電圧が第2蓄電器の静的電圧以上になるように設定する。よって本発明によれば、入力制限制御を実行しても第2蓄電器の静的電圧が十分に低下しなかった場合であっても、第1蓄電器の閉回路電圧が第2蓄電器の静的電圧を下回らないように第1蓄電器の出力電力を制限できるので、第2蓄電器からの意図しない放電をより確実に抑制でき、ひいては第2蓄電器の劣化を抑制することができる。
(6)本発明では、制御装置は、第2蓄電器温度が第1温度閾値よりも高く定められた第4温度閾値より高い場合、第2蓄電器の充放電を禁止する。よって本発明では、第2蓄電器温度が第2蓄電器の充放電を禁止する第4温度閾値よりも低く定められた第1温度閾値を超えた段階で第2蓄電器への回生電力を制限することにより、その後第2蓄電器温度が第4温度閾値に到達するまでの間に、第2蓄電器の残量及び静的電圧を下げることができるので、第2蓄電器温度が第4温度閾値に到達した時点では、第1蓄電器と第2蓄電器との間に十分な電圧差を確保することができる。よって本発明によれば、第2蓄電器温度が第4温度閾値より高い状態における第2蓄電器からの意図しない放電をより確実に抑制できる。
本発明の一実施形態に係る電源システムを搭載する電動車両の構成を示す図である。 第1バッテリ及び第2バッテリの使用電圧範囲を比較した図である。 電圧変換器の回路構成の一例を示す図である。 駆動モータの力行時における電力マネジメント処理の具体的な手順を示すフローチャートである。 第2バッテリの開放率算出マップの一例を示す図である。 第1バッテリに対する第1出力電力上限を算出する手順を示すフローチャートである。 第2バッテリの温度が第3温度閾値より高い状態で加速したときにおける第1バッテリの電圧、第2バッテリの電圧、及び第2バッテリの充電率の変化を示すタイムチャートである。 駆動モータの回生時における電力マネジメント処理の具体的な手順を示すフローチャートである。
以下、本発明の一実施形態について図面を参照しながら説明する。
図1は、本実施形態に係る電源システム1を搭載する電動車両V(以下、単に「車両」という)の構成を示す図である。
車両Vは、駆動輪Wと、この駆動輪Wに連結された回転電機としての駆動モータMと、この駆動モータMと後述の第1バッテリB1及び第2バッテリB2との間での電力の授受を行う電源システム1と、を備える。なお本実施形態では、車両Vは、主として駆動モータMで発生する動力によって加減速するもの例に説明するが、本発明はこれに限らない。車両Vは、動力発生源として駆動モータMとエンジンとを搭載する所謂ハイブリッド車両としてもよい。
駆動モータMは、図示しない動力伝達機構を介して駆動輪Wに連結されている。電源システム1から駆動モータMに三相交流電力を供給することによって駆動モータMで発生させた駆動トルクは、図示しない動力伝達機構を介して駆動輪Wに伝達され、駆動輪Wを回転させ、車両Vを走行させる。また駆動モータMは、車両Vの減速時には発電機の機能を発揮し、回生電力を発電するとともに、この回生電力の大きさに応じた回生制動トルクを駆動輪Wに付与する。駆動モータMによって発電された回生電力は、電源システム1のバッテリB1,B2に適宜充電される。
電源システム1は、第1蓄電器としての第1バッテリB1を有する第1電力回路2と、第2蓄電器としての第2バッテリB2を有する第2電力回路3と、これら第1電力回路2と第2電力回路3とを接続する電圧変換器5と、駆動モータMを含む各種電気負荷を有する負荷回路4と、これら電力回路2,3,4及び電圧変換器5を操作する電子制御ユニット群7と、を備える。電子制御ユニット群7は、それぞれコンピュータであるマネジメントECU71と、モータECU72と、コンバータECU73と、第1バッテリECU74と、第2バッテリECU75と、を備える。
第1バッテリB1は、化学エネルギを電気エネルギに変換する放電と、電気エネルギを化学エネルギに変換する充電との両方が可能な二次電池である。以下では、この第1バッテリB1として、電極間をリチウムイオンが移動することで充放電を行う所謂リチウムイオン蓄電池を用いた場合について説明するが、本発明はこれに限らない。第1バッテリB1としては、キャパシタを用いてもよい。
第1バッテリB1には、第1バッテリB1の内部状態を推定するための第1バッテリセンサユニット81が設けられている。第1バッテリセンサユニット81は、第1バッテリECU74において第1バッテリB1の充電率(バッテリの蓄電量を百分率で表したものであり、第1バッテリB1の残量に応じて増加する)や温度等を取得するために必要な物理量を検出し、検出値に応じた信号を第1バッテリECU74へ送信する複数のセンサによって構成される。より具体的には、第1バッテリセンサユニット81は、第1バッテリB1の端子電圧を検出する電圧センサ、第1バッテリB1を流れる電流を検出する電流センサ、及び第1バッテリB1の温度を検出する温度センサ等によって構成される。
第2バッテリB2は、化学エネルギを電気エネルギに変換する放電と、電気エネルギを化学エネルギに変換する充電との両方が可能な二次電池である。以下では、この第2バッテリB2として、電極間をリチウムイオンが移動することで充放電を行う所謂リチウムイオン蓄電池を用いた場合について説明するが、本発明はこれに限らない。第2バッテリB2は、例えばキャパシタを用いてもよい。
第2バッテリB2には、第2バッテリB2の内部状態を推定するための第2バッテリセンサユニット82が設けられている。第2バッテリセンサユニット82は、第2バッテリECU75において第2バッテリB2の充電率や温度等を取得するために必要な物理量を検出し、検出値に応じた信号を第2バッテリECU75へ送信する複数のセンサによって構成される。より具体的には、第2バッテリセンサユニット82は、第2バッテリB2の端子電圧を検出する電圧センサ、第2バッテリB2を流れる電流を検出する電流センサ、及び第2バッテリB2の温度を検出する温度センサ等によって構成される。
ここで第1バッテリB1の特性と第2バッテリB2の特性とを比較する。
第1バッテリB1は、第2バッテリB2よりも出力重量密度が低くかつエネルギ重量密度が高い。また第1バッテリB1は第2バッテリB2よりも容量が大きい。すなわち、第1バッテリB1は、エネルギ重量密度の点で第1バッテリB1よりも優れる。なお、エネルギ重量密度とは、単位重量あたりの電力量[Wh/kg]であり、出力重量密度とは、単位重量あたりの電力[W/kg]である。したがって、エネルギ重量密度が優れている第1バッテリB1は、高容量を主目的とした容量型の蓄電器であり、出力重量密度が優れている第2バッテリB2は、高出力を主目的とした出力型の蓄電器である。このため電源システム1では、第1バッテリB1を主電源として用い、第2バッテリB2をこの第1バッテリB1を補う副電源として用いる。
図2は、電源システム1における第1バッテリB1及び第2バッテリB2の使用電圧範囲を比較した図である。図2において、左側は第1バッテリB1の使用電圧範囲を示す図であり、右側は第2バッテリB2の使用電圧範囲を示す図である。図2において、横軸はバッテリを流れる電流を示し、縦軸はバッテリの電圧を示す。
図2に示すように、バッテリB1,B2の静的電圧(すなわち、バッテリに電流が流れていない状態における電圧であって、開回路電圧ともいう)は、充電率が高くなるほど高くなる特性がある。したがってバッテリB1,B2の静的電圧に対する使用電圧範囲の上限は、充電率が最大値(例えば、100%)のときにおける各々の静的電圧であり、下限は、充電率が最小値(例えば、0%)のときにおける各々の静的電圧である。図2に示すように、第2バッテリB2の静的電圧に対する使用電圧範囲の上限は、第1バッテリB1の静的電圧に対する使用電圧範囲の上限よりも低い。このため車両Vの走行中、第2バッテリB2の静的電圧は、基本的には第1バッテリB1の静的電圧よりも低く維持される。
図2に示すように、バッテリB1,B2の閉回路電圧(すなわち、バッテリに電流が流れている状態における電圧)も、充電率が高くなるほど高くなる特性がある。またバッテリB1,B2には内部抵抗が存在することから、その閉回路電圧は、放電電流が大きくなるほど静的電圧から低くなり、充電電流が大きくなるほど静的電圧から高くなる特性がある。したがってバッテリB1,B2の閉回路電圧に対する使用電圧範囲の上限は、各々の静的電圧に対する使用電圧範囲の上限よりも高く、下限は、各々の静的電圧に対する使用電圧範囲の下限よりも低くなっている。換言すれば、バッテリB1,B2の閉回路電圧に対する使用電圧範囲は、各々の静的電圧に対する使用電圧範囲を含む。図2に示すように、第1バッテリB1の閉回路電圧に対する使用電圧範囲は、第2バッテリB2の閉回路電圧に対する使用電圧範囲と重複する。
また充電電流が大きくなりすぎるとバッテリB1,B2の劣化が促進されることから、これらバッテリB1,B2の閉回路電圧に対する使用電圧範囲の上限は、これらバッテリB1,B2の状態に基づいて、これらバッテリB1,B2が劣化しないように定められる。以下では、これらバッテリB1,B2の閉回路電圧の使用範囲の上限を、劣化上限電圧ともいう。
また放電電流が大きくなりすぎると、バッテリB1,B2の劣化が促進されることから、これらバッテリB1,B2の閉回路電圧に対する使用電圧範囲の下限は、これらバッテリB1,B2の状態に基づいて、これらバッテリB1,B2が劣化しないように定められる。以下では、これらバッテリB1,B2の閉回路電圧に対する使用電圧範囲の下限を、劣化下限電圧ともいう。
図1に戻り、第1電力回路2は、第1バッテリB1と、この第1バッテリB1の正負両極と電圧変換器5の高圧側の正極端子及び負極端子とを接続する第1電力線21p,21nと、これら第1電力線21p,21nに設けられた正極コンタクタ22p及び負極コンタクタ22nと、を備える。
コンタクタ22p,22nは、外部からの指令信号が入力されていない状態では開成して第1バッテリB1の両電極と第1電力線21p,21nとの導通を絶ち、指令信号が入力されている状態では閉成して第1バッテリB1と第1電力線21p,21nとを接続するノーマルオープン型である。これらコンタクタ22p,22nは、第1バッテリECU74から送信される指令信号に応じて開閉する。なお正極コンタクタ22pは、第1電力回路2や負荷回路4等に設けられる複数の平滑コンデンサへの突入電流を緩和するためのプリチャージ抵抗を有するプリチャージコンタクタとなっている。
第2電力回路3は、第2バッテリB2と、この第2バッテリB2の正負両極と電圧変換器5の低圧側の正極端子及び負極端子とを接続する第2電力線31p,31nと、これら第2電力線31p,31nに設けられた正極コンタクタ32p及び負極コンタクタ32nと、第2電力線31pに設けられた電流センサ33と、を備える。
コンタクタ32p,32nは、外部からの指令信号が入力されていない状態では開成して第2バッテリB2の両電極と第2電力線31p,31nとの導通を絶ち、指令信号が入力されている状態では閉成して第2バッテリB2と第2電力線31p,31nとを接続するノーマルオープン型である。これらコンタクタ32p,32nは、第2バッテリECU75から送信される指令信号に応じて開閉する。なお正極コンタクタ32pは、第1電力回路2や負荷回路4等に設けられる複数の平滑コンデンサへの突入電流を緩和するためのプリチャージ抵抗を有するプリチャージコンタクタとなっている。
電流センサ33は、第2電力線31pを流れる電流、すなわち電圧変換器5を流れる電流である通過電流に応じた検出信号をコンバータECU73へ送信する。なお本実施形態では、通過電流の向きは、第2電力回路3側から第1電力回路2側を正とし、第1電力回路2側から第2電力回路3側を負とする。
負荷回路4は、車両補機42と、駆動モータMが接続された電力変換器43と、これら車両補機42及び電力変換器43と第1電力回路2とを接続する負荷電力線41p,41nと、を備える。
車両補機42は、バッテリヒータ、エアコンプレッサ、DCDCコンバータ、及び車載充電器等の複数の電気負荷によって構成される。車両補機42は、負荷電力線41p,41nによって第1電力回路2の第1電力線21p,21nに接続されており、第1電力線21p,21nにおける電力を消費することによって作動する。車両補機42を構成する各種電気負荷の作動状態に関する情報は、例えばマネジメントECU71へ送信される。
電力変換器43は、負荷電力線41p,41nによって、車両補機42と並列になるように第1電力線21p,21nに接続されている。電力変換器43は、第1電力線21p,21nと駆動モータMとの間で電力を変換する。電力変換器43は、例えば、複数のスイッチング素子(例えば、IGBT)をブリッジ接続して構成されるブリッジ回路を備えた、パルス幅変調によるPWMインバータであり、直流電力と交流電力とを変換する機能を備える。電力変換器43は、その直流入出力側において第1電力線21p,21nに接続され、その交流入出力側において駆動モータMのU相、V相、W相の各コイルに接続されている。電力変換器43は、モータECU72の図示しないゲートドライブ回路から所定のタイミングで生成されるゲート駆動信号に従って各相のスイッチング素子をオン/オフ駆動することにより、第1電力線21p,21nにおける直流電力を三相交流電力に変換して駆動モータMに供給し、駆動モータMに駆動トルクを発生させたり、駆動モータMから供給される三相交流電力を直流電力に変換して第1電力線21p,21nに供給し、駆動モータMに回生制動トルクを発生させたりする。
電圧変換器5は、第1電力回路2と第2電力回路3とを接続し、これら両回路2,3の間で電圧を変換する。この電圧変換器5には、既知の昇圧回路が用いられる。
図3は、電圧変換器5の回路構成の一例を示す図である。電圧変換器5は、第1バッテリB1が接続される第1電力線21p,21nと、第2バッテリB2が接続される第2電力線31p,31nと、を接続し、これら第1電力線21p,21n及び第2電力線31p,31nの間で電圧を変換する。電圧変換器5は、第1リアクトルL1と、第2リアクトルL2と、第1ハイアーム素子53Hと、第1ローアーム素子53Lと、第2ハイアーム素子54Hと、第2ローアーム素子54Lと、負母線55と、低圧側端子56p,56nと、高圧側端子57p,57nと、図示しない平滑コンデンサと、を組み合わせて構成されるフルブリッジ型のDCDCコンバータである。
低圧側端子56p,56nは、第2電力線31p,31nに接続され、高圧側端子57p,57nは第1電力線21p,21nに接続される。負母線55は、低圧側端子56nと高圧側端子57nとを接続する配線である。
第1リアクトルL1は、その一端側が低圧側端子56pに接続され、その他端側が第1ハイアーム素子53Hと第1ローアーム素子53Lとの接続ノード53に接続される。第1ハイアーム素子53H及び第1ローアーム素子53Lは、それぞれ、IGBTやMOSFET等の既知のパワースイッチング素子と、このパワースイッチング素子に接続された還流ダイオードと、を備える。これらハイアーム素子53H及びローアーム素子53Lは、高圧側端子57pと負母線55との間で、直列に、この順で接続される。
第1ハイアーム素子53Hのパワースイッチング素子のコレクタは高圧側端子57pに接続され、そのエミッタは第1ローアーム素子53Lのコレクタに接続される。第1ローアーム素子53Lのパワースイッチング素子のエミッタは、負母線55に接続される。第1ハイアーム素子53Hに設けられる還流ダイオードの順方向は、第1リアクトルL1から高圧側端子57pへ向かう向きである。また第1ローアーム素子53Lに設けられる還流ダイオードの順方向は、負母線55から第1リアクトルL1へ向かう向きである。
第2リアクトルL2は、その一端側が低圧側端子56pに接続され、その他端側が第2ハイアーム素子54Hと第2ローアーム素子54Lとの接続ノード54に接続される。第2ハイアーム素子54H及び第2ローアーム素子54Lは、それぞれ、IGBTやMOSFET等の既知のパワースイッチング素子と、このパワースイッチング素子に接続された還流ダイオードと、を備える。これらハイアーム素子54H及びローアーム素子54Lは、高圧側端子57pと負母線55との間で、直列に、この順で接続される。
第2ハイアーム素子54Hのパワースイッチング素子のコレクタは高圧側端子57pに接続され、そのエミッタは第2ローアーム素子54Lのコレクタに接続される。第2ローアーム素子54Lのパワースイッチング素子のエミッタは、負母線55に接続される。第2ハイアーム素子54Hに設けられる還流ダイオードの順方向は、第2リアクトルL2から高圧側端子57pへ向かう向きである。また第2ローアーム素子54Lに設けられる還流ダイオードの順方向は、負母線55から第2リアクトルL2へ向かう向きである。
電圧変換器5は、コンバータECU73の図示しないゲートドライブ回路から所定のタイミングで生成されるゲート駆動信号に従い、第1ハイアーム素子53H及び第2ローアーム素子54Lと、第1ローアーム素子53L及び第2ハイアーム素子54Hとを交互にオン/オフ駆動することにより、第1電力線21p,21nと第2電力線31p,31nとの間で電圧を変換する。
図2を参照して説明したように、車両Vの走行中、第2バッテリB2の静的電圧は、基本的には第1バッテリB1の静的電圧よりも低く維持される。したがって基本的には、第1電力線21p,21nの電圧は第2電力線31p,31nの電圧よりも高い。そこでコンバータECU73は、第1バッテリB1から出力される電力と第2バッテリB2から出力される電力との両方を用いて駆動モータMを駆動する場合には、電圧変換器5において昇圧機能が発揮されるように電圧変換器5を操作する。昇圧機能とは、低圧側端子56p,56nが接続されている第2電力線31p,31nにおける電力を昇圧して、高圧側端子57p,57nが接続されている第1電力線21p,21nに出力する機能をいい、これにより第2電力線31p,31n側から第1電力線21p,21n側へ正の通過電流が流れる。また第2バッテリB2の放電を抑制し、第1バッテリB1から出力される電力のみで駆動モータMを駆動する場合、コンバータECU73は、電圧変換器5をオフにし、第1電力線21p,21nから第2電力線31p,31nへ電流が流れないようにする。ただしこの場合、第2電力線31p,31nの電圧が第1電力線21p,21nの電圧よりも高くなった場合、第2バッテリB2が放電に転じ、第2電力線31p,31nから第1電力線21p,21nへ、ハイアーム素子53H,54Hの還流ダイオードを介して電圧差に応じた大きさの正の通過電流が流れる場合がある。
また減速時に駆動モータMから第1電力線21p,21nに出力される回生電力によって第1バッテリB1や第2バッテリB2を充電する場合には、コンバータECU73は、電圧変換器5において降圧機能を発揮されるように電圧変換器5を操作する。降圧機能とは、高圧側端子57p,57nが接続されている第1電力線21p,21nにおける電力を降圧して、低圧側端子56p,56nが接続されている第2電力線31p,31nに出力する機能をいい、これにより第1電力線21p,21n側から第2電力線31p,31n側へ負の通過電流が流れる。
図1に戻り、第1バッテリECU74は、主に第1バッテリB1の状態監視及び第1電力回路2のコンタクタ22p,22nの開閉操作を担うコンピュータである。第1バッテリECU74は、第1バッテリセンサユニット81から送信される検出値を用いた既知のアルゴリズムに基づいて、第1バッテリB1の内部状態を表す様々なパラメータ、より具体的には、第1バッテリB1の温度、第1バッテリB1の内部抵抗、第1バッテリB1の静的電圧、第1バッテリB1の閉回路電圧、第1バッテリB1の劣化上限電圧、第1バッテリB1の劣化下限電圧、及び第1バッテリB1の充電率等を算出する。第1バッテリECU74において取得した第1バッテリB1の内部状態を表すパラメータに関する情報は、例えばマネジメントECU71へ送信される。
第2バッテリECU75は、主に第2バッテリB2の状態監視及び第2電力回路3のコンタクタ32p,32nの開閉操作を担うコンピュータである。第2バッテリECU75は、第2バッテリセンサユニット82から送信される検出値を用いた既知のアルゴリズムに基づいて、第2バッテリB2の内部状態を表す様々なパラメータ、より具体的には、第2バッテリB2の温度、第2バッテリB2の内部抵抗、第2バッテリB2の静的電圧、第2バッテリB2の閉回路電圧、及び第2バッテリB2の充電率等を算出する。第2バッテリECU75において取得した第2バッテリB2の内部状態を表すパラメータに関する情報は、例えばマネジメントECU71へ送信される。
マネジメントECU71は、主に電源システム1全体における電力の流れを管理するコンピュータである。マネジメントECU71は、後に図4及び図8を参照して説明する電力マネジメント処理を実行することにより、駆動モータMで発生する駆動トルクや回生制動トルクに対する指令に相当するトルク指令信号と、電圧変換器5を通過する電力に対する指令に相当する通過電力指令信号とを生成する。
モータECU72は、主に第1電力回路2から駆動モータMへの電力の流れを管理するコンピュータである。モータECU72は、マネジメントECU71から送信されるトルク指令信号に基づいて、この指令に応じた駆動トルク又は回生制動トルクが駆動モータMにおいて発生するように電力変換器43を操作する。
コンバータECU73は、主に電圧変換器5を通過する電力である通過電力の流れを管理するコンピュータである。コンバータECU73は、マネジメントECU71から送信される通過電力指令信号に応じて、指令に応じた通過電力が電圧変換器5を通過するように電圧変換器5を操作する。より具体的には、コンバータECU73は、通過電力指令信号に基づいて、電圧変換器5における通過電流に対する目標である目標電流を算出するとともに、電流センサ33によって検出される通過電流(以下、「実通過電流」ともいう)が目標電流になるように、既知のフィードバック制御アルゴリズムに従って電圧変換器5を操作する。
図4は、駆動モータMの力行時における電力マネジメント処理の具体的な手順を示すフローチャートである。この電力マネジメント処理(力行時)は、駆動モータMの力行時にマネジメントECU71において所定の周期で繰り返し実行される。
初めにS1では、マネジメントECU71は、車両補機42において要求されている電力である要求補機電力Pauxを算出し、S2に移る。マネジメントECU71は、車両補機42から送信される各種電気負荷の作動状態に関する情報に基づいて要求補機電力Pauxを算出する。
次にS2では、マネジメントECU71は、駆動モータMの力行時に電力変換器43を介して第1電力回路2から駆動モータMへ供給する電力に対する要求に相当する要求駆動電力Pout_dを算出し、S3に移る。マネジメントECU71は、運転者によるアクセルペダルやブレーキペダル等のペダル類P(図1参照)の操作量に基づいて駆動モータMで発生させる駆動トルクに対する要求に相当する要求駆動トルクを算出し、この要求駆動トルクを電力に換算することによって要求駆動電力Pout_dを算出する。
次にS3では、マネジメントECU71は、S1で算出した要求補機電力PauxとS2で算出した要求駆動電力Pout_dとを合算することにより、第1バッテリB1及び第2バッテリB2からの出力電力の総和に対する要求に相当する総要求出力電力Ptot_outを算出し、S4に移る。
次にS4では、マネジメントECU71は、第2バッテリB2から出力される電力の上限(すなわち、後述の第2出力電力上限P2out_max)に対する基本値P2out_bsを算出し、S5に移る。より具体的には、マネジメントECU71は、第2バッテリECU75から送信される第2バッテリB2の内部状態を表すパラメータに関する情報に基づいて図示しないマップを検索することにより、基本値P2out_bsを算出する。
次にS5では、マネジメントECU71は、第2バッテリB2から出力される電力の上限(すなわち、後述の第2出力電力上限P2out_max)に対する出力開放率R2outを算出し、S6に移る。より具体的には、マネジメントECU71は、第2バッテリECU75から送信される第2バッテリB2の内部状態に関する情報に基づいて、第2バッテリB2の温度Tbat2を算出し、この温度Tbat2に基づいて図5に例示する開放率算出マップを検索することにより、出力開放率R2outを算出する。
図5に示すように、マネジメントECU71は、第2バッテリB2の温度Tbat2が第3温度閾値以下である場合、第2バッテリB2の出力開放率R2outを100[%]に設定し、第2バッテリB2の温度Tbat2が第3温度閾値T3より高く設定された第4温度閾値T4より高い場合、第2バッテリB2の出力開放率R2outを0[%]に設定する。すなわち、マネジメントECU71は、第2バッテリB2の温度Tbat2が第4温度閾値T4より高い場合、高温状態の第2バッテリB2が放電することによる劣化を防止するため、第2バッテリB2から出力される電力の上限を0に設定し、第2バッテリB2の放電を禁止する。
またマネジメントECU71は、第2バッテリB2の温度Tbat2が第3温度閾値T3より高くかつ第4温度閾値T4以下である場合、温度Tbat2が高くなるほど第2バッテリB2の出力開放率R2outを小さくする。すなわちマネジメントECU71は、第2バッテリB2の温度Tbat2が第3温度閾値T3より高い場合、温度Tbat2が高くなるほど後述の第2出力電力上限P2out_maxを0に近づける。すなわちマネジメントECU71は、高温状態の第2バッテリB2が放電することによる劣化を防止するため、第2バッテリB2の温度Tbat2が第3温度閾値T3より高い場合、温度Tbat2が高くなるほど第2出力電力上限P2out_maxを0に近づけることによって第2バッテリB2の放電を徐々に制限する。またマネジメントECU71は、第2バッテリB2の温度Tbat2が第4温度閾値T4より高い場合、第2出力電力上限P2out_maxを0にすることにより、第2バッテリB2の放電を禁止する。
図4に戻り、S6では、マネジメントECU71は、第2バッテリB2から出力される電力の上限に相当する第2出力電力上限P2out_maxを算出し、S7に移る。より具体的には、マネジメントECU71は、S4で算出した基本値P2out_bsにS5で算出した出力開放率R2outを乗算することにより、第2出力電力上限P2out_maxを算出する。
S7では、マネジメントECU71は、駆動モータMの力行時に電圧変換器5を第2電力回路3側から第1電力回路2側へ流れる通過電力(すなわち、第2バッテリB2の出力電力)に対する目標に相当する目標通過電力Pcnv_cmdを、第2出力電力上限P2out_max以下の範囲内で算出し、S8に移る。より具体的には、マネジメントECU71は、第1バッテリECU74から送信される第1バッテリB1の内部状態を表すパラメータに関する情報、第2バッテリECU75から送信される第2バッテリB2の内部状態を表すパラメータに関する情報、及び要求駆動電力Pout_d等に基づいて、第2出力電力上限P2out_maxを超えないように目標通過電力Pcnv_cmdを算出する。これにより第2バッテリB2の出力電力は、第2出力電力上限P2out_maxを上限とし0を下限とする範囲内に定められた目標通過電力Pcnv_cmdに制御される。
次にS8では、マネジメントECU71は、第1バッテリB1から出力される電力の上限である第1出力電力上限P1out_maxを算出し、S9に移る。なおこの第1出力電力上限P1out_maxを算出する具体的な手順については、後に図6を参照して説明する。
次にS9では、マネジメントECU71は、総要求出力電力Ptot_outから目標通過電力Pcnv_cmdを減算することによって得られる電力は、第1出力電力上限P1out_max以下であるか否かを判定する。ここで総要求出力電力Ptot_outから目標通過電力Pcnv_cmdを減算して得られる電力とは、第1バッテリB1の出力電力に対する要求に相当する。したがってS9の判定は、第1バッテリB1の出力電力が第1出力電力上限P1out_maxを超えることなく運転者による要求を満たすことができるか否かを判定することに相当する。マネジメントECU71は、S9の判定結果がYESである場合にはS10に移り、NOである場合にはS11に移る。
S10では、マネジメントECU71は、電力変換器43を介して第1電力回路2から駆動モータMへ供給する電力に対する目標に相当する目標駆動電力Pout_cmdを算出し、S12に移る。上述のようにS9の判定結果がYESである場合、第1バッテリB1の出力電力が第1出力電力上限P1out_maxを超えることなく運転者の要求を満たすことができることから、マネジメントECU71は、S2で算出した要求駆動電力Pout_dを目標駆動電力Pout_cmdとする。
S11では、マネジメントECU71は、目標駆動電力Pout_cmdを算出し、S12に移る。上述のようにS9の判定結果がNOである場合、運転者の要求を満たそうとすると、第1バッテリB1の出力電力が第1出力電力上限P1out_maxを超えてしまうことから、マネジメントECU71は、第1バッテリB1の出力電力が第1出力電力上限P1out_maxを超えないように、目標駆動電力Pout_cmdを算出する。より具体的には、マネジメントECU71は、例えば、第1出力電力上限P1out_maxと目標通過電力Pcnv_cmdとの和から要求補機電力Pauxを減算することによって目標駆動電力Pout_cmdを算出する。これにより、第1バッテリB1の出力電力は、第1出力電力上限P1out_maxとなり、この第1出力電力上限P1out_maxを超えることはない。
次にS12では、マネジメントECU71は、S7で算出した目標通過電力Pcnv_cmdに応じた通過電力指令信号を生成し、これをコンバータECU73へ送信し、S13に移る。コンバータECU73は、この通過電力指令信号に基づいて電圧変換器5を操作する。これにより、第2バッテリB2から第1電力回路2へ目標通過電力Pcnv_cmdに応じた電力が出力される。
次にS13では、マネジメントECU71は、目標駆動電力Pout_cmdに基づいてトルク指令信号を生成し、これをモータECU72へ送信し、電力マネジメント処理(力行時)を終了する。より具体的には、マネジメントECU71は、目標駆動電力Pout_cmdをトルクに変換することによって目標駆動トルクを算出し、この目標駆動トルクに応じたトルク指令信号を生成する。モータECU72は、このトルク指令信号に基づいて電力変換器43を操作する。これにより、第1電力回路2から駆動モータMへ、目標駆動電力Pout_cmdに応じた電力が出力される。このようにマネジメントECU71では、S10又はS11における処理を経て算出される目標駆動電力Pout_cmdに基づいてトルク指令信号を生成することにより、第1バッテリB1から出力される電力は第1出力電力上限P1out_maxを超えることはない。
図6は、マネジメントECU71によって第1バッテリB1に対する第1出力電力上限P1out_maxを算出する手順を示すフローチャートである。
始めにS21では、マネジメントECU71は、第1バッテリECU74から送信される第1バッテリB1の内部状態に関する情報に基づいて、第1バッテリB1の内部抵抗Rを算出し、S22に移る。
S22では、マネジメントECU71は、第1バッテリECU74から送信される第1バッテリB1の内部状態に関する情報に基づいて、第1バッテリB1の静的電圧OCVを算出し、S23に移る。
S23では、マネジメントECU71は、第1バッテリECU74から送信される第1バッテリB1の内部状態に関する情報に基づいて、第1バッテリB1の最大許容電流Imaxを算出し、S24に移る。この最大許容電流Imaxとは、第1バッテリB1を流れる電流の許容範囲の最大値である。すなわち、第1バッテリB1を流れる電流が最大許容電流Imaxを超えると、第1バッテリB1が劣化するおそれがある。
S24では、マネジメントECU71は、第2バッテリECU75から送信される第2バッテリB2の内部状態に関する情報に基づいて、第2バッテリB2の温度Tを算出し、S25に移る。従って本実施形態において、状態取得手段は、第2バッテリセンサユニット82、第2バッテリECU75、及びマネジメントECU71によって構成される。
S25では、マネジメントECU71は、第2バッテリB2の温度Tbat2が、図5を参照して説明した第3温度閾値T3より高いか否かを判定する。上述のようにマネジメントECU71は、第2バッテリB2の劣化を抑制するため、第2バッテリB2の温度Tbat2が第3温度閾値T3を超えると、出力開放率R2outを100%から0%へ向けて減少させることによって第2バッテリB2の放電を制限し始め、第2バッテリB2の温度Tbat2が第4温度閾値T4を超えると、出力開放率R2outを0%とすることによって第2バッテリB2の放電を禁止する。
S25の判定結果がNOである場合、マネジメントECU71は、S26に移る。S26では、マネジメントECU71は、第1バッテリB1の閉回路電圧に対する下限に相当する下限電圧Vlimを算出し、S28に移る。ここでS25の判定結果がNOである場合とは、第2バッテリB2の温度Tbat2が第3温度閾値T3以下である場合、すなわち第2バッテリB2の放電を制限する必要がない場合に相当する。よってS26では、マネジメントECU71は、第1バッテリECU74から送信される第1バッテリB1の内部状態に関する情報に基づいて、第1バッテリB1の閉回路電圧に対する劣化下限電圧を算出し、これを下限電圧Vlimとして設定する。
次にS28では、マネジメントECU71は、第1バッテリB1の電圧制限出力Pmax_vを算出し、S29に移る。ここで電圧制限出力Pmax_vとは、第1バッテリB1の出力電力に対する上限を下限電圧Vlimに基づいて設定したものに相当する。すなわちマネジメントECU71は、第1バッテリB1の閉回路電圧が下限電圧Vlim以上になるように電圧制限出力Pmax_vを算出する。そこでマネジメントECU71は、第1バッテリB1の内部抵抗Rと、第1バッテリB1の静的電圧OCVと、下限電圧Vlimと、に基づいて、下記式(1)によって電圧制限出力Pmax_vを算出する。
Pmax_v=(OCV-Vlim)/R×Vlim (1)
次にS29では、マネジメントECU71は、第1バッテリB1の電流制限出力Pmax_iを算出し、S30に移る。ここで電流制限出力Pmax_iとは、第1バッテリB1の出力電力に対する上限を最大許容電流Imaxに基づいて設定したものに相当する。すなわちマネジメントECU71は、第1バッテリB1を流れる電流が最大許容電流Imax以下になるように電流制限出力Pmax_iを算出する。そこでマネジメントECU71は、内部抵抗Rと、第1バッテリB1の静的電圧OCVと、最大許容電流Imaxと、に基づいて、下記式(2)によって電流制限出力Pmax_iを算出する。
Pmax_i=Imax×(OCV-Imax×R) (2)
次にS30では、マネジメントECU71は、電圧制限出力Pmax_v及び電流制限出力Pmax_iに基づいて第1出力電力上限P1out_maxを算出し、図4のS9に移る。より具体的には、マネジメントECU71は、下記式(3)に示すように、電圧制限出力Pmax_v及び電流制限出力Pmax_iのうち何れか小さい方(何れか0に近い方)を第1出力電力上限P1out_maxとして設定する。このようにして第1出力電力上限P1out_maxを算出することにより、第1バッテリB1の出力電力を電圧制限出力Pmax_v及び電流制限出力Pmax_i以下にし、第1バッテリB1の閉回路電圧を下限電圧Vlim以上にし、さらに第1バッテリB1を流れる電流を最大許容電流Imax_i以下にすることができる。
P1out_max=Min(Pmax_v,Pmax_i) (3)
またS25の判定結果がYESである場合、マネジメントECU71は、S27に移る。S27では、マネジメントECU71は、第1バッテリB1の下限電圧Vlimを算出し、S28に移る。ここでS25の判定結果がYESである場合とは、第2バッテリB2の温度Tbat2が第3温度閾値T3より高い場合、すなわち第2バッテリB2の放電を制限する必要がある場合に相当する。しかしながら図3を参照して説明したように、電圧変換器5には、第2電力回路3側から第1電力回路2側を順方向とする還流ダイオードが含まれていることから、第1電力線21p,21nの電圧、すなわち第1バッテリB1の閉回路電圧が、第2電力線31p,31nの電圧、すなわち第2バッテリB2の静的電圧よりも低くなると、第2バッテリB2が放電に転じ、還流ダイオードを介して正の通過電流が流れてしまう。そこでS27では、マネジメントECU71は、第2バッテリECU75から送信される第2バッテリB2の内部状態に関する情報に基づいて、第2バッテリB2の静的電圧を算出し、これを下限電圧Vlimとして設定する。これにより、マネジメントECU71は、第2バッテリB2の温度Tbat2が第3温度閾値T3より高い場合には、第1バッテリB1の閉回路電圧が第2バッテリB2の静的電圧以上になるように第1出力電力上限P1out_maxを算出することができる。
次に図7を参照しながら本実施形態に係る電源システム1の効果について説明する。
図7は、第2バッテリB2の温度が第3温度閾値より高い状態で加速したときにおける第1バッテリB1の電圧(太破線)、第2バッテリB2の電圧(太実線)、及び第2バッテリB2の充電率(太一点鎖線)の変化を示すタイムチャートである。図7の左側は第2バッテリB2の静的電圧が第1バッテリB1の劣化下限電圧より低い場合を示し、真ん中及び右側は第2バッテリB2の静的電圧が第1バッテリB1の劣化下限電圧より高い場合を示す。また図7の右側は、図6のフローチャートに従って第1出力電力上限P1out_maxを設定した場合を示し、図7の真ん中は、第1バッテリB1の下限電圧Vlimを常に第1バッテリB1の劣化下限電圧とする比較例を示す。
図7の左側に示すように、時刻t1において運転者がアクセルペダルを踏みこむことによって要求駆動電力が0から正の所定値まで増加すると、第1バッテリB1からこの要求に応じた電力を出力することにより、第1バッテリB1の閉回路電圧が低下する。しかしながら図7の左側の例では、第1バッテリB1の劣化下限電圧は第2バッテリB2の静的電圧よりも高いため、第1バッテリB1の閉回路電圧は常に第2バッテリB2の静的電圧よりも高く維持される。よって電圧変換器5をオフにしている限り、第2バッテリB2からは電力が出力されることもないため、その電圧は静的電圧に維持され、またその充電率も一定に維持される。
次に図7の真ん中に示すように、比較例では第1バッテリB1の下限電圧Vlimを常に劣化下限電圧とすることから、時刻t2において運転者がアクセルペダルを踏み込むと、第1バッテリB1の閉回路電圧が第2バッテリB2の静的電圧を下回ってしまう場合がある。このため比較例では、第2バッテリB2の放電を禁止したい状態であるにもかかわらず、時刻t2以降において、第2バッテリB2が放電に転じてしまう場合がある。
これに対し図7の右側に示すように、図6のフローチャートでは、第2バッテリB2の温度が第3温度閾値より高い場合には、第1バッテリB1の劣化下限電圧よりも高い第2バッテリB2の静的電圧を第1バッテリB1の下限電圧Vlimとする。このため時刻t3において運転者がアクセルペダルを踏み込んでも、第1バッテリB1の閉回路電圧は第2バッテリB2の静的電圧より低くなることがないので、電圧変換器5をオフにしている限り、第2バッテリB2が放電に転じることもない。
図8は、駆動モータMの回生時における電力マネジメント処理の具体的な手順を示すフローチャートである。この電力マネジメント処理(回生時)は、駆動モータMの回生時にマネジメントECU71において所定の周期で繰り返し実行される。
初めにS31では、マネジメントECU71は、図4のS1と同じ手順によって車両補機42における要求補機電力Pauxを算出し、S32に移る。
次にS32では、マネジメントECU71は、駆動モータMの回生時に電力変換器43を介して駆動モータMから第1電力回路2へ供給する電力に対する要求に相当する要求回生電力Pin_dを算出し、S33に移る。マネジメントECU71は、運転者によるアクセルペダルやブレーキペダル等のペダル類P(図1参照)の操作量に基づいて駆動モータMで発生させる回生制動トルクに対する要求に相当する要求回生制動トルクを算出し、この要求回生制動トルクを電力に換算することによって要求回生電力Pin_dを算出する。
次にS33では、マネジメントECU71は、S32で算出した要求回生電力Pin_dからS31で算出した要求補機電力Pauxを減算することにより、第1バッテリB1及び第2バッテリB2に供給される回生電力の総和に対する要求に相当する総要求回生電力Ptot_inを算出し、S34に移る。
次にS34では、マネジメントECU71は、第2バッテリB2に入力される電力の上限(すなわち、後述の第2回生電力上限P2in_max)に対する基本値P2in_bsを算出し、S35に移る。より具体的には、マネジメントECU71は、第2バッテリECU75から送信される第2バッテリB2の内部状態を表すパラメータに関する情報に基づいて図示しないマップを検索することにより、基本値P2in_bsを算出する。
次にS35では、マネジメントECU71は、第2バッテリB2に入力される電力の上限(すなわち、後述の第2回生電力上限P2in_max)に対する入力開放率R2inを算出し、S36に移る。より具体的には、マネジメントECU71は、第2バッテリECU75から送信される第2バッテリB2の内部状態に関する情報に基づいて、第2バッテリB2の温度Tbat2を算出し、この温度Tbat2に基づいて図5に例示する開放率算出マップを検索することにより、入力開放率R2inを算出する。
図5に示すように、マネジメントECU71は、第2バッテリB2の温度Tbat2が第3温度閾値T3より小さく定められた第1温度閾値T1以下である場合、第2バッテリB2の入力開放率R2inを100[%]に設定し、第2バッテリB2の温度Tbat2が第1温度閾値T1より高くかつ第3温度閾値T3より低く設定された第2温度閾値T2より高い場合、第2バッテリB2の入力開放率R2inを0[%]に設定する。すなわち、マネジメントECU71は、第2バッテリB2の温度Tbat2が第2温度閾値T2より高い場合、高温状態の第2バッテリB2が充電することによる劣化を防止するため、第2バッテリB2に入力される電力の上限を0に設定し、第2バッテリB2の充電を禁止する。
またマネジメントECU71は、第2バッテリB2の温度Tbat2が第1温度閾値T1より高くかつ第2温度閾値T2以下である場合、温度Tbat2が高くなるほど第2バッテリB2の入力開放率R2inを小さくする。すなわちマネジメントECU71は、第2バッテリB2の温度Tbat2が第1温度閾値T1より高い場合、温度Tbat2が高くなるほど後述の第2回生電力上限P2in_maxを0に近づける。すなわちマネジメントECU71は、高温状態の第2バッテリB2が充電することによる劣化を防止するため、第2バッテリB2の温度Tbat2が第1温度閾値T1より高い場合、温度Tbat2が高くなるほど第2回生電力上限P2in_maxを0に近づけることによって第2バッテリB2の充電を徐々に制限する入力制限制御を実行する。またマネジメントECU71は、第2バッテリB2の温度Tbat2が第2温度閾値T2より高い場合、第2回生電力上限P2in_maxを0にすることによって第2バッテリB2の充電を禁止する入力禁止制御を実行する。
図8に戻り、S36では、マネジメントECU71は、第2バッテリB2に入力される電力の上限に相当する第2回生電力上限P2in_maxを算出し、S37に移る。より具体的には、マネジメントECU71は、S34で算出した基本値P2in_bsにS35で算出した入力開放率R2inを乗算することにより、第2回生電力上限P2in_maxを算出する。
S37では、マネジメントECU71は、駆動モータMの回生時に電圧変換器5を第1電力回路2側から第2電力回路3側へ流れる通過電力(すなわち、第2バッテリB2に供給される回生電力)に対する目標に相当する目標通過電力Pcnv_cmdを、第2回生電力上限P2in_maxを上限とし0を下限とする範囲内で算出し、S38に移る。より具体的には、マネジメントECU71は、第1バッテリECU74から送信される第1バッテリB1の内部状態を表すパラメータに関する情報、第2バッテリECU75から送信される第2バッテリB2の内部状態を表すパラメータに関する情報、及び要求回生電力Pin_d等に基づいて、第2回生電力上限P2in_maxを超えないように目標通過電力Pcnv_cmdを算出する。これにより第2バッテリB2に供給される回生電力は、第2回生電力上限P2in_maxを上限とし0を下限とする範囲内に定められた目標通過電力Pcnv_cmdに制御される。
次にS38では、マネジメントECU71は、第1バッテリB1に供給される回生電力の上限である第1回生電力上限P1in_maxを算出し、S39に移る。より具体的には、マネジメントECU71は、第1バッテリECU74から送信される第1バッテリB1の内部状態を表すパラメータに関する情報、第2バッテリECU75から送信される第2バッテリB2の内部状態を表すパラメータに関する情報、及び要求回生電力Pin_d等に基づいて、第1回生電力上限P1in_maxを算出する。
なおS38においてマネジメントECU71は、第1バッテリECU74から送信される第1バッテリB1の内部状態を表すパラメータに関する情報に基づいて第1バッテリB1の充電率を算出し、この充電率が所定の充電率上限より高い場合には、第1回生電力上限P1in_maxを0とすることによって第1バッテリB1の充電を禁止する。これにより、第1バッテリB1の過充電を防止する。またマネジメントECU71は、第1バッテリB1の充電率が充電率上限以下である場合には、第1回生電力上限P1in_maxを0より大きな値とすることによって第1バッテリB1の充電を許容する。
次にS39では、マネジメントECU71は、総要求回生電力Ptot_inから目標通過電力Pcnv_cmdを減算することによって得られる電力は、第1回生電力上限P1in_max以下であるか否かを判定する。ここで総要求回生電力Ptot_inから目標通過電力Pcnv_cmdを減算して得られる電力とは、第1バッテリB1へ供給する回生電力に対する要求に相当する。したがってS39の判定は、第1バッテリB1への回生電力が第1回生電力上限P1in_maxを超えることなく運転者による要求を満たすことができるか否かを判定することに相当する。マネジメントECU71は、S39の判定結果がYESである場合にはS40に移り、NOである場合にはS41に移る。
S40では、マネジメントECU71は、電力変換器43を介して駆動モータMから第1電力回路2へ供給する電力に対する目標に相当する目標回生電力Pin_cmdを算出し、S42に移る。上述のようにS39の判定結果がYESである場合、第1バッテリB1の回生電力が第1回生電力上限P1in_maxを超えることなく運転者の要求を満たすことができることから、マネジメントECU71は、S32で算出した要求回生電力Pin_dを目標回生電力Pin_cmdとする。
S41では、マネジメントECU71は、目標回生電力Pin_cmdを算出し、S42に移る。上述のようにS39の判定結果がNOである場合、運転者の要求を満たそうとすると、第1バッテリB1への回生電力が第1回生電力上限P1in_maxを超えてしまうことから、マネジメントECU71は、第1バッテリB1への回生電力が第1回生電力上限P1in_maxを超えないように、目標回生電力Pin_cmdを算出する。より具体的には、マネジメントECU71は、例えば、第1回生電力上限P1in_maxと目標通過電力Pcnv_cmdと要求補機電力Pauxとを合算することによって目標回生電力Pin_cmdを算出する。これにより、第1バッテリB1への回生電力は、第1回生電力上限P1in_maxとなり、この第1回生電力上限P1in_maxを超えることはない。
次にS42では、マネジメントECU71は、S37で算出した目標通過電力Pcnv_cmdに応じた通過電力指令信号を生成し、これをコンバータECU73へ送信し、S43に移る。コンバータECU73は、この通過電力指令信号に基づいて電圧変換器5を操作する。これにより、第1電力回路2から第2バッテリB2へ目標通過電力Pcnv_cmdに応じた回生電力が供給される。
次にS43では、マネジメントECU71は、目標回生電力Pin_cmdに基づいてトルク指令信号を生成し、これをモータECU72へ送信し、電力マネジメント処理(回生時)を終了する。より具体的には、マネジメントECU71は、目標回生電力Pin_cmdをトルクに変換することによって目標回生制動トルクを算出し、この目標回生制動トルクに応じたトルク指令信号を生成する。モータECU72は、このトルク指令信号に基づいて電力変換器43を操作する。これにより、駆動モータMから第1電力回路2へ目標回生電力Pin_cmdに応じた回生電力が供給される。このようにマネジメントECU71では、S40又はS41における処理を経て算出される目標回生電力Pin_cmdに基づいてトルク指令信号を生成することにより、第1バッテリB1へ供給される回生電力は第1回生電力上限P1in_maxを超えることはない。
上述のようにマネジメントECU71は、第1バッテリB1の充電率が所定の充電率上限以下である場合には、第1回生電力上限P1in_maxを0より大きな値とすることによって第1バッテリB1の充電を許容する(S38参照)。したがってマネジメントECU71は、第2バッテリB2への回生電力を制限する入力制限制御の実行中又は第2バッテリB2の充電を禁止する入力禁止制御の実行中に要求回生電力Pin_dが第2回生電力上限P2in_maxを超えかつ第1バッテリB1の充電率が充電率上限以下である場合、要求回生電力Pin_dのうち第2バッテリB2で回収しきれなかった分の少なくとも一部を、第1回生電力上限P1in_maxを上限とし0を下限とする範囲内で第1バッテリB1に供給する。
また上述のようにマネジメントECU71は、第1バッテリB1の充電率が充電率上限より大きい場合には、第1回生電力上限P1in_maxを0とすることによって、第1バッテリB1の充電を禁止する(S38参照)。したがってマネジメントECU71は、第2バッテリB2への回生電力を制限する入力制限制御の実行中又は第2バッテリB2の充電を禁止する入力禁止制御の実行中でありかつ第1バッテリB1の充電率が充電率上限より大きい場合(P1in_max=0である場合)、目標回生電力Pin_cmdを目標通過電力Pcnv_cmdと要求補機電力Pauxとを合算することによって定められる総回生電力上限以下に制御する(S41参照)。また目標通過電力Pcnv_cmdの上限は、第2バッテリB2の温度Tbat2が高くなるほど小さくなるように算出される第2回生電力上限P2in_maxと等しい(S36及びS37参照)。すなわちマネジメントECU71は、第2バッテリB2への入力制限制御の実行中でありかつ第1バッテリB1の充電を禁止している場合、第2バッテリB2の温度Tbat2が高くなるほど上記総回生電力上限を0に近づける。
以上のような本実施形態に係る電源システム1によれば、以下の効果を奏する。
(1)電源システム1では、第1バッテリB1を有する第1電力回路2と、閉回路電圧に対する使用電圧範囲が第1バッテリB1と重複しかつ静的電圧が第1バッテリB1よりも低い第2バッテリB2を有する第2電力回路3とを電圧変換器5で接続し、第2電力回路3と駆動モータMとを電力変換器43で接続する。マネジメントECU71、モータECU72、及びコンバータECU73は、電圧変換器5及び電力変換器43を操作することにより、第1及び第2バッテリB1,B2と駆動モータMとの間の電力の授受を制御する。第1バッテリB1と第2バッテリB2とで使用電圧範囲が重複していると、駆動モータMにおける要求駆動電力Pout_dが大きくなり、第1バッテリB1を流れる電流が増加すると、第1バッテリB1の閉回路電圧が第2バッテリB2の静的電圧より低くなってしまう場合がある。このように第1バッテリB1の閉回路電圧が第2バッテリB2の静的電圧より低くなってしまうと、第2バッテリB2から意図せず電力が出力される場合がある。これに対し電源システム1では、第2バッテリB2の温度Tbat2が第1温度閾値T1より高い場合、第2バッテリB2に供給される回生電力を、第2回生電力上限P2in_maxを上限とし0を下限とする範囲内に制御する入力制限制御を実行するとともに、第2バッテリB2の温度Tbat2が高くなるほど第2回生電力上限P2in_maxを0に近づける。すなわち電源システム1によれば、第2バッテリB2の温度Tbat2が、第2バッテリB2の充放電を禁止する第4温度閾値T4より低く定められた第1温度閾値T1を超えた段階で第2バッテリB2への回生電力を制限することにより、その後第2バッテリB2がさらに高温になるまでの間に、第2バッテリB2の充電率及び静的電圧を徐々に下げ、第1バッテリB1と第2バッテリB2との電圧差を広げることができる。よって電源システム1によれば、高温状態における第2バッテリB2の意図しない放電による劣化を抑制することができる。また電源システム1によれば、第2バッテリB2の温度Tbat2が第1温度閾値T1を超えた段階で第2バッテリB2への充電を制限することにより、高温状態で充電が行われることによる第2バッテリB2の劣化を抑制することができる。また電源システム1によれば、第2バッテリB2の温度Tbat2が高くなるほど第2回生電力上限P2in_maxを0に近づけることにより、運転者に違和感を与えることなく第2バッテリB2の充電率を低下させることができる。
(2)マネジメントECU71、モータECU72、及びコンバータECU73は、入力制限制御の実行中に駆動モータMに対する要求回生電力Pin_dが第2回生電力上限P2in_maxを超えかつ第1バッテリB1の充電率が充電率上限未満である場合、第1バッテリB1に回生電力を供給する。よって電源システム1によれば、第2バッテリB2に供給しきれなかった回生電力を第1バッテリB1に供給することができるので、回生電力を無駄にすることなく第2バッテリB2の劣化を抑制することができる。
(3)マネジメントECU71、モータECU72、及びコンバータECU73は、入力制限制御の実行中でありかつ第1バッテリB1の充電率が充電率上限より大きい場合、駆動モータMから第1電力回路2へ供給される回生電力を、総回生電力上限(Pcnv_cmd+Paux)を上限とし0を下限とする範囲内に制御するとともに、第2バッテリB2の温度Tbat2が高くなるほど総回生電力上限を0に近づける。よって電源システム1によれば、第2バッテリB2への回生電力を制限している間に第1バッテリB1が過充電に至るのを防止することができるので、第1バッテリB1及び第2バッテリB2の両方の劣化を抑制することができる。また電源システム1では、第2バッテリB2の温度Tbat2が高くなるほど総回生電力上限を0に近づけることにより、急激に回生制動が小さくなるのを防止することができる。
(4)マネジメントECU71、モータECU72、及びコンバータECU73は、第2バッテリB2の温度Tbat2が第1温度閾値T1より高く定められた第3温度閾値T3よりも高い場合、第2バッテリB2の出力電力を、第2出力電力上限P2out_maxを上限とし0を下限とする範囲内に制御するとともに、第2バッテリB2の温度Tbat2が高くなるほど第2出力電力上限P2out_maxを0に近づける。すなわち電源システム1では、第2バッテリB2の出力電力の制限を開始する第3温度閾値T3を、第2バッテリB2への回生電力の制限を開始する第1温度閾値T1よりも高く定めることにより、第2バッテリB2の温度Tbat2が第1温度閾値T1から第3温度閾値T3までの間にある間では、第2バッテリB2への回生電力を制限しながら第2バッテリB2の放電を許容できるので、第2バッテリB2の温度Tbat2が第1温度閾値T1を超えた後における第1バッテリB1と第2バッテリB2との間の電圧差をさらに広げることができる。よって電源システム1によれば、高温状態における第2バッテリB2の意図しない放電による劣化をさらに抑制することができる。また電源システム1によれば、第2バッテリB2の温度Tbat2が高くなるほど第2出力電力上限P2out_maxを0に近づけることにより、運転者に違和感を与えることなく第2バッテリB2の充電率を低下させることができる。
(5)マネジメントECU71、モータECU72、及びコンバータECU73は、第2バッテリB2の温度Tbat2が第3温度閾値T3より高い場合、第1バッテリB1の出力電力を、第1出力電力上限P1out_maxを上限とし0を下限とする範囲内に制御するとともに、第1出力電力上限P1out_maxを第1バッテリB1の閉回路電圧が第2バッテリB2の静的電圧以上になるように設定する。よって電源システム1によれば、入力制限制御を実行しても第2バッテリB2の静的電圧が十分に低下しなかった場合であっても、第1バッテリB1の閉回路電圧が第2バッテリB2の静的電圧を下回らないように第1バッテリB1の出力電力を制限できるので、第2バッテリB1からの意図しない放電をより確実に抑制でき、ひいては第2バッテリB2の劣化を抑制することができる。
(6)マネジメントECU71、モータECU72、及びコンバータECU73は、第2バッテリB2の温度Tbat2が第1温度閾値T1よりも高く定められた第4温度閾値T4より高い場合、第2バッテリB2の充放電を禁止する。よって電源システム1では、第2バッテリB2の温度Tbat2が第2バッテリB2の充放電を禁止する第4温度閾値T4よりも低く定められた第1温度閾値T1を超えた段階で第2バッテリB2への回生電力を制限することにより、その後第2バッテリB2の温度Tbat2が第4温度閾値T4に到達するまでの間に、第2バッテリB2の充電率及び静的電圧を下げることができるので、第2バッテリB2の温度Tbat2が第4温度閾値T4に到達した時点では、第1バッテリB1と第2バッテリB2との間に十分な電圧差を確保することができる。よって電源システム1によれば、第2バッテリB2の温度Tbat2が第4温度閾値T4より高い状態における第2バッテリB2からの意図しない放電をより確実に抑制できる。
以上、本発明の一実施形態について説明したが、本発明はこれに限らない。本発明の趣旨の範囲内で、細部の構成を適宜変更してもよい。
V…車両
W…駆動輪
M…駆動モータ(回転電機)
1…電源システム
2…第1電力回路(高電圧回路)
21p,21n…第1電力線
B1…第1バッテリ(第1蓄電器)
81…第1バッテリセンサユニット(第1残量パラメータ取得手段)
3…第2電力回路(低電圧回路)
31p,31n…第2電力線
B2…第2バッテリ(第2蓄電器)
82…第2バッテリセンサユニット(第2蓄電器温度取得手段)
4…負荷回路
43…電力変換器
5…電圧変換器
7…電子制御ユニット群
71…マネジメントECU
72…モータECU
73…コンバータECU
74…第1バッテリECU(第1残量パラメータ取得手段)
75…第2バッテリECU(第2蓄電器温度取得手段)

Claims (6)

  1. 第1蓄電器を有する高電圧回路と、
    閉回路電圧に対する使用電圧範囲が前記第1蓄電器と重複しかつ静的電圧が前記第1蓄電器よりも低い第2蓄電器を有する低電圧回路と、
    前記高電圧回路と前記低電圧回路との間で電圧を変換する電圧変換器と、
    駆動輪と連結された回転電機と前記高電圧回路との間で電力を変換する電力変換器と、
    前記第2蓄電器の温度である第2蓄電器温度を取得する第2蓄電器温度取得手段と、
    前記電圧変換器及び前記電力変換器を操作することにより前記第1及び第2蓄電器と前記回転電機との間の電力の授受を制御する制御装置と、を備える電源システムであって、
    前記制御装置は、前記第2蓄電器温度が第1温度閾値より高い場合、前記第2蓄電器に供給される回生電力を、第2回生電力上限を上限とする範囲内に制御する入力制限制御を実行するとともに、前記第2蓄電器温度が高くなるほど前記第2回生電力上限を0に近づけることを特徴とする電源システム。
  2. 前記第1蓄電器の残量に応じて増加する第1残量パラメータを取得する第1残量パラメータ取得手段をさらに備え、
    前記制御装置は、前記入力制限制御の実行中に前記回転電機に対する要求回生電力が前記第2回生電力上限を超えかつ前記第1残量パラメータが第1残量閾値未満である場合、前記第1蓄電器に回生電力を供給することを特徴とする請求項1に記載の電源システム。
  3. 前記制御装置は、前記入力制限制御の実行中でありかつ前記第1残量パラメータが前記第1残量閾値より大きい場合、前記回転電機から前記高電圧回路へ供給される回生電力を、総回生電力上限を上限とする範囲内に制御するとともに、前記第2蓄電器温度が高くなるほど前記総回生電力上限を0に近づけることを特徴とする請求項2に記載の電源システム。
  4. 前記制御装置は、前記第2蓄電器温度が前記第1温度閾値より高く定められた第3温度閾値より高い場合、前記第2蓄電器の出力電力を、第2出力電力上限を上限とする範囲内に制御するとともに、前記第2蓄電器温度が高くなるほど前記第2出力電力上限を0に近づけることを特徴とする請求項1から3の何れかに記載の電源システム。
  5. 前記制御装置は、前記第2蓄電器温度が前記第3温度閾値より高い場合、前記第1蓄電器の出力電力を、第1出力電力上限を上限とする範囲内に制御するとともに、前記第1出力電力上限を前記第1蓄電器の閉回路電圧が前記第2蓄電器の静的電圧以上になるように設定することを特徴とする請求項4に記載の電源システム。
  6. 前記制御装置は、前記第2蓄電器温度が前記第1温度閾値より高く定められた第4温度閾値より高い場合、前記第2蓄電器の充放電を禁止することを特徴とする請求項1から5の何れかに記載の電源システム。
JP2020206740A 2020-12-14 2020-12-14 電源システム Active JP7469219B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020206740A JP7469219B2 (ja) 2020-12-14 2020-12-14 電源システム
US17/643,171 US20220185147A1 (en) 2020-12-14 2021-12-07 Power supply system
CN202111504909.7A CN114619895A (zh) 2020-12-14 2021-12-10 电源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020206740A JP7469219B2 (ja) 2020-12-14 2020-12-14 電源システム

Publications (2)

Publication Number Publication Date
JP2022093977A true JP2022093977A (ja) 2022-06-24
JP7469219B2 JP7469219B2 (ja) 2024-04-16

Family

ID=81898806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020206740A Active JP7469219B2 (ja) 2020-12-14 2020-12-14 電源システム

Country Status (3)

Country Link
US (1) US20220185147A1 (ja)
JP (1) JP7469219B2 (ja)
CN (1) CN114619895A (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195359A (ja) 2006-01-20 2007-08-02 Toyota Motor Corp 二次電池の充放電制御装置
JP2009005423A (ja) 2007-06-19 2009-01-08 Toyota Motor Corp ハイブリッド車両の制御装置
JP5267296B2 (ja) 2009-04-13 2013-08-21 トヨタ自動車株式会社 駆動装置およびその異常判定方法並びに車両
JP6979395B2 (ja) * 2018-10-09 2021-12-15 本田技研工業株式会社 電動車両
JP7069075B2 (ja) * 2019-03-26 2022-05-17 本田技研工業株式会社 電源システム

Also Published As

Publication number Publication date
CN114619895A (zh) 2022-06-14
US20220185147A1 (en) 2022-06-16
JP7469219B2 (ja) 2024-04-16

Similar Documents

Publication Publication Date Title
JP7041095B2 (ja) 電源システム
JP6979395B2 (ja) 電動車両
JP7039513B2 (ja) 電源システム
JP7069075B2 (ja) 電源システム
US11489329B2 (en) Power supply system
JP6186315B2 (ja) 電力システム
CN115158018A (zh) 电源系统
US11485234B2 (en) Power supply system
US11695292B2 (en) Power supply system for mobile body
US20220176823A1 (en) Power supply system
CN115107561A (zh) 电源系统
JP2021164188A (ja) 電源システム及び電動車両
JP2022093977A (ja) 電源システム
JP7433204B2 (ja) 電源システム
JP7428631B2 (ja) 電源システム
US20220297572A1 (en) Power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240404

R150 Certificate of patent or registration of utility model

Ref document number: 7469219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150