WO2014010509A1 - 耐熱難燃性樹脂組成物及び絶縁電線、チューブ - Google Patents

耐熱難燃性樹脂組成物及び絶縁電線、チューブ Download PDF

Info

Publication number
WO2014010509A1
WO2014010509A1 PCT/JP2013/068393 JP2013068393W WO2014010509A1 WO 2014010509 A1 WO2014010509 A1 WO 2014010509A1 JP 2013068393 W JP2013068393 W JP 2013068393W WO 2014010509 A1 WO2014010509 A1 WO 2014010509A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
heat
tetrafluoroethylene
flame
random polypropylene
Prior art date
Application number
PCT/JP2013/068393
Other languages
English (en)
French (fr)
Inventor
太郎 藤田
堀 賢治
西川 信也
晃一 萩田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201380003383.1A priority Critical patent/CN103890084B/zh
Priority to JP2013545563A priority patent/JP5641497B2/ja
Publication of WO2014010509A1 publication Critical patent/WO2014010509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers

Definitions

  • the present invention provides a heat-resistant and flame-retardant resin composition that constitutes a coating material for electric wires used in a high-temperature environment, an insulated wire that is insulation-coated with the heat-resistant and flame-retardant resin composition, and the heat-resistant and flame-retardant resin composition.
  • a heat-resistant and flame-retardant resin composition that constitutes a coating material for electric wires used in a high-temperature environment
  • an insulated wire that is insulation-coated with the heat-resistant and flame-retardant resin composition
  • the heat-resistant and flame-retardant resin composition Related to the tube.
  • a resin composition which is a material for forming an insulating coating for these electric wires is required to have high heat resistance, high flame resistance, and high oil resistance in addition to high insulation properties.
  • the insulating coating is required to have a higher mechanical strength, for example, excellent so-called cut-through characteristics, which is a property that the coating is not broken by contact with the edge portion. Also, in order to prevent problems such as the occurrence of insulation cracks when crimping the ends of insulated wires with crimp terminals, there are cases where excellent crimping workability is desired.
  • Fluorine elastomer is known as a coating material for electric wires used in high temperature environments. Fluorine-based elastomers are electrically insulating materials having a good balance of heat resistance, mechanical strength, etc., but are generally expensive and have poor cost performance.
  • the fluororubber electric wire insulated and coated with the fluoroelastomer has a problem in mechanical strength as compared with the resin-coated electric wire insulated and coated with a resin such as polyethylene.
  • the cut-through characteristic is low.
  • an expensive rubber extrusion line that performs extrusion and vulcanization in tandem is required for the production of fluororubber electric wires.
  • silicone rubber wire insulated with silicone rubber Also known as a wire for wiring in a high temperature environment is a silicone rubber wire insulated with silicone rubber.
  • silicone rubber since silicone does not have a crystal component and the intermolecular force is very weak, silicone rubber has particularly low mechanical strength and cut-through characteristics compared to a resin-coated electric wire coated with a resin such as polyethylene. Further, since silicone rubber is not usually vulcanized immediately after extrusion, there is a problem that it is easily deformed by a load and is easily deformed when wound on a reel. Therefore, an expensive rubber extrusion line for extruding and vulcanizing in tandem is also required for the production of electric wires in which the insulating coating is formed of silicone rubber.
  • Patent Document 1 discloses 100 wt. Of a tetrafluoroethylene- ⁇ -olefin copolymer as a fluorine-containing elastomer composition having improved mechanical strength and excellent cost performance while maintaining the heat resistance inherent in a fluorine-based elastomer. 10 to 70 parts by weight of a polyolefin composition containing an ethylenically unsaturated polar component is added to the part, and the polyolefin composition contains 20 parts of polyethylene and an ethylene-ethylenically unsaturated polar monomer copolymer: A fluorine-containing elastomer composition that is mixed in a weight ratio of 80 to 98: 2 is disclosed.
  • the present invention relates to a resin composition that is well balanced and excellent in mechanical strength such as cut-through characteristics and crimping workability as well as insulation, heat resistance, oil resistance, and flame retardancy, and insulation comprising the resin composition. It aims at providing the tube which consists of an insulated wire which has a coating
  • the present inventors have blended random polypropylene with a fluororubber composition comprising a tetrafluoroethylene- ⁇ -olefin copolymer and a vinylidene fluoride-hexafluoropropylene copolymer.
  • a resin composition containing an inorganic filler such as calcium carbonate and / or a flame retardant such as bromine-based flame retardant or antimony trioxide, and having a composition ratio of components within a specific range is crosslinked. It has been found that the mechanical strength such as insulation, heat resistance, oil resistance, flame retardancy, cut-through characteristics and crimping workability can be balanced at a high level, and further low cost can be achieved. completed.
  • the invention according to claim 1 is an inorganic filler for 100 parts by mass of a mixture of a fluororubber composition comprising a tetrafluoroethylene- ⁇ -olefin copolymer and a vinylidene fluoride-hexafluoropropylene copolymer and random polypropylene.
  • the tetrafluoroethylene- ⁇ -olefin copolymer is a copolymer of tetrafluoroethylene and ⁇ -olefin.
  • the vinylidene fluoride-hexafluoropropylene copolymer is a copolymer of vinylidene fluoride represented by CH 2 CF 2 and hexafluoropropylene represented by C 3 F 6 .
  • the former is a known fluororubber, and the latter is a known fluororesin, but in the present invention, the mixing ratio of the tetrafluoroethylene- ⁇ -olefin copolymer and the vinylidene fluoride-hexafluoropropylene copolymer is 80: The range is from 20 to 40:60 (mass ratio).
  • Tetrafluoroethylene- ⁇ -olefin copolymer is a component necessary for imparting mechanical strength and heat resistance as well as high insulation properties, and the mixing ratio thereof is that of tetrafluoroethylene- ⁇ -olefin copolymer and vinylidene.
  • the amount is less than 40% by mass relative to the total of the fluoride-hexafluoropropylene copolymer, the mechanical strength, particularly tensile elongation, of the resin composition decreases.
  • Vinylidene fluoride-hexafluoropropylene copolymer is a component necessary for imparting high oil resistance.
  • the random polypropylene blended in the resin composition of the present invention is a copolymer in which ethylene and propylene are randomly copolymerized.
  • a random polypropylene having a melting point of 150 ° C. or lower is preferable.
  • the mixing ratio of the fluororubber composition comprising the tetrafluoroethylene- ⁇ -olefin copolymer and the vinylidene fluoride-hexafluoropropylene copolymer to the random polypropylene is 60:40 to 90:10 ( Mass ratio).
  • Mass ratio the mixing ratio of the random polypropylene is less than 10% by mass with respect to the total of the fluororubber composition and the random polypropylene, high cut-through characteristics cannot be obtained.
  • the mixing ratio of the fluororubber composition is less than 60% by mass (that is, when the mixing ratio of the random polypropylene exceeds 40% by mass), the mechanical strength such as tensile properties decreases, and particularly the heat resistance decreases. To do.
  • the object of the present invention is not achieved.
  • High tensile properties, heat resistance, oil resistance and cut-through properties are considered to be achieved by cross-linking of the resin constituting the resin composition, while random polypropylene is used to cross-link the resin by ionizing radiation irradiation. It is necessary that homopropylene and block polypropylene are decomposed by irradiation with ionizing radiation.
  • the inorganic filler blended in the resin composition of the invention described in claim 1 is inorganic particles blended for the purpose of reinforcement and increase in weight.
  • the inorganic filler include heavy and light calcium carbonates, magnesium silicate minerals, aluminum silicate minerals, zinc oxide, silica, carbon, metal hydroxides, and those subjected to surface treatment. Can be mentioned. These inorganic fillers may be used alone or in combination of two or more. By adding an inorganic filler, the heat resistance and flame retardancy of the resin composition can be improved. In addition, the addition of an inorganic filler has the effect of reducing the product price. That is, by adding an inorganic filler, high heat resistance, high flame retardance, and low cost can be balanced at a high level.
  • the present invention is also characterized in that the blending amount of the inorganic filler is in the range of 10 to 100 parts by mass with respect to 100 parts by mass of the mixture of the fluororubber composition and the random polypropylene.
  • the resin composition of the present invention has a “continuous heat resistance temperature” (insulator elongation rate of 100 in 10,000 hours) as defined in the automotive standards (JASO) D609: 2001 and D611: 2009, even when an inorganic filler is not blended. %) Has a heat resistance of 200 ° C. or higher, but by setting the blending amount of the inorganic filler to 10 parts by mass or more, further excellent heat resistance can be obtained.
  • the flame retardancy is improved by blending the inorganic filler, and the flame retardancy satisfying the standard usually required for insulated wires can be obtained without blending a flame retardant such as bromine-based flame retardant or antimony trioxide.
  • a flame retardant such as bromine-based flame retardant or antimony trioxide.
  • the invention according to claim 2 is characterized in that 10 parts by mass per 100 parts by mass of a mixture of a fluororubber composition composed of a tetrafluoroethylene- ⁇ -olefin copolymer and a vinylidene fluoride-hexafluoropropylene copolymer and random polypropylene.
  • a resin composition comprising an inorganic filler of less than part by mass and 3 to 20 parts by mass of a flame retardant, and further irradiated with ionizing radiation to crosslink the fluororubber composition and random polypropylene, wherein the tetrafluoro Mixing ratio of ethylene- ⁇ -olefin copolymer and vinylidene fluoride-hexafluoropropylene copolymer is 80: 20-40: 60 (mass ratio), and mixing of the fluororubber composition and random polypropylene Heat-resistant and flame-retardant resin group characterized in that the ratio is 60:40 to 90:10 (mass ratio) It is an adult.
  • the tetrafluoroethylene- ⁇ -olefin copolymer, vinylidene fluoride-hexafluoropropylene copolymer, random polypropylene, and inorganic filler constituting the resin composition of the present invention are those of the invention described in claim 1 described above. The same case is used.
  • the mixing ratio of tetrafluoroethylene- ⁇ -olefin copolymer and vinylidene fluoride-hexafluoropropylene copolymer, and tetrafluoroethylene- ⁇ -olefin copolymer and vinylidene fluoride-hexafluoropropylene copolymer is the same as in the case of the invention described in claim 1.
  • the present invention is characterized in that the blending amount of the inorganic filler is less than 10 parts by mass and that 3 to 20 parts by mass of a flame retardant is blended.
  • the blending amount of the inorganic filler less than 10 parts by mass, excellent crimping processability can be maintained, and problems such as the occurrence of insulation cracks when crimping the end of the wire with a terminal can be prevented. it can.
  • the inorganic filler may not be blended.
  • the flame retardant by blending 3 parts by mass or more of the flame retardant, flame retardancy that satisfies the standards normally required for insulated wires can be obtained even when the inorganic filler is little or not blended. On the other hand, blending 20 parts by mass or more of the flame retardant is not preferable because the mechanical strength is lowered.
  • the flame retardant include those that generate non-flammable gases such as halogen-containing compounds, those that endothermically decompose like metal hydroxides, and those that form a burning shell that shields oxygen such as phosphate esters. Can be mentioned.
  • brominated flame retardant Specifically, brominated flame retardant, antimony trioxide, chlorinated flame retardant, magnesium hydroxide, aluminum hydroxide, phosphate ester, ammonium polyphosphate, piperazine polyphosphate, red phosphorus, phosphinic acid metal salt, melamine cyanurate Etc.
  • the resin composition according to claim 1 or 2 is obtained by irradiating an ionizing radiation such as an electron beam or a gamma ray to a mixture of the above composition by a conventional method to crosslink the fluororubber composition and the random polypropylene. It will be.
  • an ionizing radiation such as an electron beam or a gamma ray
  • Irradiating the resin composition with ionizing radiation improves tensile properties, heat resistance, oil resistance, and cut-through properties.
  • ionizing radiation an electron beam that is widely used industrially, easily controlled, and capable of crosslinking at low cost is particularly preferable.
  • a known electron beam irradiation means usually used for resin crosslinking or the like can be used, and can be performed by a conventional method.
  • the irradiation dose of ionizing radiation is selected so that the resin can be crosslinked to obtain desired tensile properties, heat resistance, oil resistance and cut-through properties.
  • electron beam irradiation usually about 30 to 500 kGy is preferable.
  • the invention according to claim 3 is characterized in that the tetrafluoroethylene- ⁇ -olefin copolymer is a tetrafluoroethylene-propylene copolymer. It is a resin composition. Specific examples of the tetrafluoroethylene- ⁇ -olefin copolymer include a copolymer of tetrafluoroethylene and propylene.
  • the invention according to claim 4 is the heat-resistant and flame-retardant resin composition according to any one of claims 1 to 3, wherein the inorganic filler is calcium carbonate.
  • the inorganic filler calcium carbonate is preferable from the viewpoint of heat resistance, mechanical properties, and cost.
  • Examples of calcium carbonate include heavy calcium carbonate obtained by mechanically pulverizing and classifying natural raw materials mainly composed of CaCO 3 such as limestone, and chemically produced precipitated calcium carbonate (light calcium carbonate). Heavy calcium carbonate is preferred from the viewpoint of cost.
  • an insulated wire which has a coating layer which consists of a heat-resistant flame-retardant resin composition of any one of Claim 1 thru
  • an insulated wire is the meaning including not only a narrowly-defined insulated wire which consists of a conductor and an insulation coating but what is called a cable which further covers one or more of the narrowly-defined insulated wires with a protective coating.
  • This insulated wire can be manufactured by coating the resin composition of the present invention on a conductor to form an insulating coating, and further irradiating with ionizing radiation to crosslink the resin.
  • the coating method can be performed by a method used in the production of a conventional insulated wire, for example, a method of extruding a resin composition on a conductor.
  • the conductor it is possible to use a conductor such as a copper wire that constitutes an insulated wire or an insulated cable that is conventionally used also as an in-car wiring.
  • the present invention provides a resin tube comprising a resin composition formed into a tube shape in addition to the insulated wire. That is, the invention according to claim 6 is a heat shrinkable tube characterized in that the heat-resistant and flame-retardant resin composition according to any one of claims 1 to 4 is formed into a tube shape. is there.
  • the resin tube of the present invention include a heat-shrinkable tube that shrinks in the inner diameter direction when heated at the melting point or higher of the resin composition.
  • the resin composition of the present invention is a resin composition that balances mechanical strength such as insulation, heat resistance, oil resistance, flame retardancy, tensile properties and cut-through properties at a high level and has excellent cost performance. It is.
  • the resin composition according to claim 1 is excellent in heat resistance
  • the resin composition according to claim 2 is excellent in crimping processability. Therefore, the insulated wire of the present invention in which this resin composition is coated with insulation is excellent in the above-described characteristics, and is suitably used as a wire used in a high temperature environment such as wiring in an engine room of an automobile.
  • the tetrafluoroethylene- ⁇ -olefin copolymer is a copolymer of tetrafluoroethylene and an ⁇ -olefin such as polypropylene, but other copolymer components such as an acrylic copolymer are within the scope of the present invention.
  • Acid esters, hexafluoropropylene, vinyl fluoride, vinylidene fluoride, perfluoroalkyl vinyl ether, chlorotrifluoroethylene, ethylene, butene-1, and glycidyl (meth) acrylate may be copolymerized. *
  • Copolymerization for producing this copolymer can be carried out by a known method, but as tetrafluoroethylene-propylene copolymers, those having various copolymerization ratios and molecular weights are commercially available. It may be used.
  • the Mooney viscosity (ML 1 + 10 °: 121 ° C.) is preferably in the range of 30 to 300, and particularly preferably in the range of 50 to 200. When the Mooney viscosity is less than 30, the cut-through characteristics are deteriorated. When the Mooney viscosity is more than 300, the appearance when extruded is deteriorated.
  • Polyvinylidene fluoride is not mixed with tetrafluoroethylene- ⁇ -olefin copolymer, but is mixed by copolymerizing vinylidene fluoride with hexafluoropropylene.
  • the ratio of hexafluoropropylene in the vinylidene fluoride-hexafluoropropylene copolymer is preferably 3 to 20% by mass.
  • the ratio of hexafluoropropylene is less than 3% by mass, it is difficult to mix with the tetrafluoroethylene- ⁇ -olefin copolymer. On the other hand, if it exceeds 30% by mass, the oil resistance of the resin composition is lowered.
  • the vinylidene fluoride-hexafluoropropylene copolymer is usually preferably one having a melt flow rate (MFR) in the range of 1 to 100 measured under conditions of a load of 12.5 kg and a temperature of 230 ° C.
  • MFR melt flow rate
  • Random polypropylene is a polymer obtained by random copolymerization of propylene and ethylene.
  • the ethylene content is preferably 1 to 10% by weight or less. If it is less than 1% by weight, the crystallinity increases, and no cross-linking occurs even when irradiated with an electron beam. If it exceeds 10% by weight, the cut-through characteristics when the resin composition is made deteriorate.
  • a terpolymer (terpolymer) obtained by further copolymerizing butene-1 or the like with ethylene may be used.
  • a melt flow rate (MFR) measured under conditions of a load of 2.16 kg and a temperature of 190 ° C. is usually preferably in the range of 0.1 to 5. When the MFR is smaller than 0.1, the appearance when extruded is deteriorated, and when it is larger than 5, the cut-through characteristics are deteriorated.
  • the resin composition of claim 1 is a halogen-free flame retardant such as magnesium hydroxide, aluminum hydroxide, calcium hydroxide, and a phosphorus flame retardant, as long as the spirit of the invention is not impaired.
  • a halogen-free flame retardant such as magnesium hydroxide, aluminum hydroxide, calcium hydroxide, and a phosphorus flame retardant
  • the resin composition of claim 2 includes phenolic, amine-based, sulfur-based and phosphorus-based antioxidants, stearic acid, fatty acids, and the like within the scope of the invention.
  • Tetrafluoroethylene-propylene copolymer Afras 150C (Asahi Glass Co., Ltd.) Vinylidene fluoride-hexafluoropropylene copolymer: Kyner 2750 (manufactured by Arkema) -Random polypropylene: Novatec PP EG6D (melting point 145 ° C) (manufactured by Nippon Polypro) Block polypropylene: Nippon Polypro Novatec PP EC7 (melting point 160 ° C) (manufactured by Nippon Polypro) ⁇ Calcium carbonate: Softon 2200 (manufactured by Shiraishi Calcium Co., Ltd., heavy calcium carbonate) Bromine flame retardant: SAYTEX BT-93 (manufactured by Albemarle Corporation, ethylene bistetrabromophthalimide) Antimony trioxide: antimony trioxide MSA (man
  • Examples 1 to 3 and Comparative Examples 1 to 7 The composition shown in Table 1 or 2 (expressed in parts by mass in the table) is kneaded with an open roll, pelletized with a pelletizer, then supplied to the wire coating extruder, and TA12 / 0 by the extruder. .18 conductor was extruded and coated with an insulation outer diameter of 1.5 mm ⁇ (coating thickness: 0.375 mm). Thereafter, an electron beam of 100 kGy was irradiated with an electron beam irradiation apparatus, and an insulated wire covered with a crosslinked resin composition was manufactured.
  • the insulated wires thus obtained were evaluated for tensile properties (tensile strength, tensile elongation), heat resistance, flame retardancy, insulating properties, oil resistance, and cut-through properties by the following methods. The results are shown in Tables 1 and 2.
  • Cut-through characteristics were measured using the measuring apparatus shown in FIG.
  • 1 is a conductor
  • 2 is an insulation coating
  • 3 is an insulated wire.
  • the conductor 1 and the sharp edge are insulated by the insulating coating 2 and no current flows.
  • a current flows between the conductor 1 and the sharp edge.
  • a load is applied to the blade 4 to measure the maximum load that the insulating coating 2 can withstand without being cut.
  • the test atmosphere is a temperature of 23 ° C. and a humidity of 50% RH.
  • a load of 150 N or more was used as a standard (acceptable level).
  • the resin compositions of Examples 1 to 3 that satisfy the constituent requirements of the present invention have tensile properties, heat resistance, flame retardancy, insulation properties, oil resistance, and cut-through properties. It meets the criteria and shows that these properties are balanced at a high level.
  • the comparative example not satisfying the constituent requirements of the present invention as described in the following 1) to 6), any one of the tensile properties, heat resistance, flame retardancy, insulation properties, oil resistance and cut-through properties is present. The criteria of the present invention are not met, and the problems of the present invention are not achieved.
  • Example 4-7 The composition shown in Table 3 (expressed in parts by mass in the table) was kneaded with an open roll, pelletized with a pelletizer, then supplied to an extruder for covering electric wires, and TA12 / 0.18 The conductor was extrusion coated with an insulation outer diameter of 1.5 mm ⁇ (coating thickness: 0.375 mm). Thereafter, an electron beam of 100 kGy was irradiated with an electron beam irradiation apparatus, and an insulated wire covered with a crosslinked resin composition was manufactured. The insulated wires thus obtained were evaluated for tensile properties (tensile strength, tensile elongation), flame retardancy, insulating properties, oil resistance, and cut-through properties in the same manner as in Examples 1 to 3. . Moreover, the continuous heat-resistant temperature (heat resistance) and the crimping workability were measured by the following methods. The results are shown in Table 3.
  • the heat resistance was determined by the continuous heat resistance temperature of the automobile standard (JASO). Specifically, an aging test was performed at each temperature of 230 ° C., 250 ° C., 270 ° C., and 290 ° C., the time until the tensile elongation fell below 100% was determined, and the continuous heat resistant temperature was determined by performing an Arrhenius plot. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 テトラフルオロエチレン-α-オレフィン共重合体及びビニリデンフルオライド-ヘキサフルオロプロピレン共重合体からなるフッ素ゴム組成物とランダムポリプロピレンとの混合物に対して、無機充填剤及び/又は難燃剤を配合し、さらに電離放射線を照射して前記フッ素ゴム組成物及びランダムポリプロピレンを架橋してなる樹脂組成物であって、前記テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体との混合比及びフッ素ゴム組成物とランダムポリプロピレンとの混合比が所定の範囲内にあり、絶縁性、耐熱性、難燃性、耐油性とともにカットスルー特性や圧着加工性等の機械的強度がバランス良く優れかつ低価格である耐熱難燃性樹脂組成物、及びその樹脂組成物からなる絶縁被覆を有する絶縁電線及び当該耐熱難燃性樹脂組成物によりなるチューブを提供する。

Description

耐熱難燃性樹脂組成物及び絶縁電線、チューブ
 本発明は、高温環境で使用される電線の被覆材料を構成する耐熱難燃性樹脂組成物、当該耐熱難燃性樹脂組成物により絶縁被覆された絶縁電線及び当該耐熱難燃性樹脂組成物によりなるチューブに関する。
 自動車のエンジンルーム内のハーネス等は、高温の環境に曝され又油分と接することも多い。そこで、これらの電線の絶縁被覆を形成する材料である樹脂組成物には、高絶縁性とともに、高い耐熱性や高い難燃性、高い耐油性も求められる。絶縁被覆にはさらに高い機械的強度、例えばエッジ部との接触により被覆が破壊されない性質である所謂カットスルー特性に優れることが求められる。又、絶縁電線の末端を圧着端子でカシメ加工する際に絶縁の割れの発生等の問題を防ぐため、優れた圧着加工性も望まれる場合もある。すなわち、高耐熱性、高耐油性、高難燃性、高絶縁性、カットスルー特性や圧着加工性等の機械的強度に優れることなどの特性を高い次元でバランスさせ、かつ低価格な樹脂組成物が、絶縁被覆用の材料として求められている。
 高温の環境で使用される電線の被覆材料としては、フッ素系エラストマーが知られている。フッ素系エラストマーは、耐熱性、機械的強度等をバランス良く兼ね備えた電気絶縁材料であるが、一般的に高価でコストパーフォーマンスが悪いことが問題とされている。
 さらに、フッ素系エラストマーは結晶成分を有さないため、フッ素系エラストマーにより絶縁被覆されたフッ素ゴム電線は、ポリエチレン等の樹脂により絶縁被覆された樹脂被覆電線に比べて機械的強度に問題があり、特にカットスルー特性が低いとの問題がある。また、絶縁被覆を押出成型する際に、押出直後は加硫していないため荷重によって容易に変形しやすく、リールに巻き取ると変形しやすい問題がある。そこで、フッ素ゴム電線の製造には、押出と加硫をタンデムで行う高価なゴム押出専用ラインが必要となる。
 高温環境に配線される電線としては、シリコーンゴムにより絶縁被覆されたシリコーンゴム電線も知られている。しかし、シリコーンは結晶成分を有さず又分子間力が非常に弱いため、シリコーンゴムは、ポリエチレン等の樹脂により被覆された樹脂被覆電線に比べて機械強度、カットスルー特性が特に低い。又、シリコーンゴムも押出直後は通常は加硫していないため、荷重によって容易に変形しやすくリールに巻き取ると変形しやすい問題がある。そこで、絶縁被覆をシリコーンゴムにより形成する電線の製造にも、押出と加硫をタンデムで行う高価なゴム押出専用ラインが必要となる。
 特許文献1には、フッ素系エラストマーが本来有する耐熱性を保持したまま、機械強度を向上させかつコストパーフォーマンスに優れた含フッ素エラストマー組成物として、テトラフルオロエチレン-α-オレフィン共重合体100重量部に対して、エチレン性不飽和極性成分を含んだポリオレフィン組成物を10~70重量部添加してなり、上記ポリオレフィン組成物は、ポリエチレンとエチレン-エチレン性不飽和極性モノマー共重合体を20:80~98:2の重量比で混合したものである含フッ素エラストマー組成物が開示されている。
特開平10-316821号公報
 しかし、特許文献1に記載の含フッ素エラストマー組成物を構成するテトラフルオロエチレン-α-オレフィン共重合体とエチレン性不飽和極性成分を含んだポリオレフィン組成物との相溶性は十分ではない。そのためカットスルー特性は、改善されてはいるものの、未だ不十分であり、よりカットスルー特性に優れる絶縁被覆を形成できる樹脂組成物が望まれている。
 このように、従来の絶縁被覆用の樹脂組成物には、絶縁性、耐熱性、難燃性や、カットスルー特性等の機械的強度がバランス良く優れたものはなく、近年の要請を満たすものではなかった。さらに機械的強度としては、引張強度やカットスルー特性等とともに優れた圧着加工性も望まれている。
 本発明は、絶縁性、耐熱性、耐油性、難燃性とともにカットスルー特性や圧着加工性等の機械的強度がバランス良く優れかつ低価格である樹脂組成物、及びその樹脂組成物からなる絶縁被覆を有する絶縁電線及び当該耐熱難燃性樹脂組成物によりなるチューブを提供することを課題とする。
 本発明者は、上記課題を達成するために鋭意検討した結果、テトラフルオロエチレン-α-オレフィン共重合体及びビニリデンフルオライド-ヘキサフルオロプロピレン共重合体からなるフッ素ゴム組成物に、ランダムポリプロピレンを配合し、さらに炭酸カルシウム等の無機充填剤及び/又は臭素系難燃剤や三酸化アンチモン等の難燃剤を配合した樹脂組成物であって、構成成分の組成比が特定範囲にあるものを架橋することにより、絶縁性、耐熱性、耐油性、難燃性、カットスルー特性や圧着加工性等の機械的強度を高い次元でバランスさせることができ、さらには低価格も達成できることを見出し、本発明を完成した。
 請求項1に記載の発明は、テトラフルオロエチレン-α-オレフィン共重合体及びビニリデンフルオライド-ヘキサフルオロプロピレン共重合体からなるフッ素ゴム組成物とランダムポリプロピレンとの混合物100質量部に対して無機充填剤を10~100質量部を配合し、さらに電離放射線を照射して前記フッ素ゴム組成物及びランダムポリプロピレンを架橋してなる樹脂組成物であって、前記テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体との混合比が80:20~40:60(質量比)であり、かつ前記フッ素ゴム組成物とランダムポリプロピレンとの混合比が60:40~90:10(質量比)であることを特徴する耐熱難燃性樹脂組成物である。
 テトラフルオロエチレン-α-オレフィン共重合体とは、テトラフルオロエチレンと、α-オレフィンとを共重合させたものである。ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体とは、CHCFで表されるビニリデンフルオライドとCで表されるヘキサフルオロプロピレンとを共重合させたものである。前者は公知のフッ素ゴム、後者は公知のフッ素樹脂であるが、本発明は、テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体との混合比が、80:20~40:60(質量比)の範囲であることを特徴とする。
 テトラフルオロエチレン-α-オレフィン共重合体は、高絶縁性とともに機械的強度や耐熱性を付与するために必要な成分であり、その混合比が、テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体の合計に対し40質量%未満の場合は、樹脂組成物の機械的強度、特に引っ張り伸びが低下する。ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体は、高い耐油性を付与するために必要な成分である。従って、その混合比が、テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体の合計に対し20質量%未満の場合は、樹脂組成物の耐油性が低下する。
 本発明の樹脂組成物に配合されるランダムポリプロピレンとは、エチレンとプロピレンがランダムに共重合した共重合体である。ランダムポリプロピレンとしては、融点150℃以下のランダムポリプロピレンが好ましい。ランダムポリプロピレンを所定の比率で配合することにより、ゴム押出専用ラインでなくとも押出成型できるようになり、かつ高いカットスルー特性を得ることができる。さらに製品コストを低下する効果もある。
 本発明は、又、テトラフルオロエチレン-α-オレフィン共重合体及びビニリデンフルオライド-ヘキサフルオロプロピレン共重合体からなるフッ素ゴム組成物とランダムポリプロピレンとの混合比が、60:40~90:10(質量比)の範囲であることを特徴とする。フッ素ゴム組成物とランダムポリプロピレンの合計に対しランダムポリプロピレンの混合比が、10質量%未満の場合は、高いカットスルー特性が得られない。一方、フッ素ゴム組成物の混合比が60質量%未満の場合(すなわち、ランダムポリプロピレンの混合比が40質量%を超える場合)は、引張特性等の機械的強度が低下し、特に耐熱性が低下する。
 ランダムポリプロピレンの代わりにプロピレンの単独重合体であるホモポリプロピレンやエチレンとプロピレンのブロック共重合体であるブロックポリプロピレンを用いた場合は、引張特性、耐熱性、耐油性及びカットスルー特性が低い樹脂組成物しか得られず、本発明の課題は達成されない。高い引張特性、耐熱性、耐油性及びカットスルー特性は、樹脂組成物を構成する樹脂の架橋により達成されると考えられ、一方、当該樹脂を電離放射線照射により架橋するためには、ランダムポリプロピレンである必要があり、ホモプロピレンやブロックポリプロピレンは電離放射線照射により分解するためと考えられる。
 請求項1に記載の発明の樹脂組成物に配合される無機充填剤とは、補強、増量の目的で配合される無機粒子である。この無機充填剤としては、例えば、重質及び軽質炭酸カルシウム、ケイ酸マグネシウム系鉱物、ケイ酸アルミニウム系鉱物、酸化亜鉛、シリカ、カーボン、金属水酸化物、又はこれらに表面処理を施したものなどを挙げることができる。これらの無機充填剤は、単独で使用しても良いし、2種以上を併用しても良い。無機充填剤の添加により樹脂組成物の耐熱性、難燃性を向上させることができる。又、無機充填剤の添加により、製品価格を低下させる効果もある。すなわち、無機充填剤の添加により、高耐熱性、高難燃性、低コストを高い次元でバランスさせることができる。
 本発明は、又、無機充填剤の配合量が、フッ素ゴム組成物とランダムポリプロピレンとの混合物100質量部に対して、10~100質量部の範囲であることを特徴とする。本発明の樹脂組成物は、無機充填剤を配合しない場合でも、自動車規格(JASO)D609:2001及びD611:2009に規定される「連続耐熱温度」(絶縁体の伸び率が、10000時間で100%を確保できる温度)が200℃以上の耐熱性を有するが、無機充填剤の配合量を10質量部以上とすることにより、さらに優れた耐熱性が得られる。さらに無機充填剤の配合により難燃性も向上し、臭素系難燃剤や三酸化アンチモン等の難燃剤を配合しなくても絶縁電線に通常求められる規格を満たす難燃性が得られる。一方、100質量部を超える場合は、引張特性が低下し、柔軟性が劣る傾向がある。
 請求項2に記載の発明は、テトラフルオロエチレン-α-オレフィン共重合体及びビニリデンフルオライド-ヘキサフルオロプロピレン共重合体からなるフッ素ゴム組成物とランダムポリプロピレンとの混合物100質量部に対して、10質量部未満の無機充填剤及び3~20質量部の難燃剤を配合し、さらに電離放射線を照射して前記フッ素ゴム組成物及びランダムポリプロピレンを架橋してなる樹脂組成物であって、前記テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体との混合比が80:20~40:60(質量比)であり、かつ前記フッ素ゴム組成物とランダムポリプロピレンとの混合比が60:40~90:10(質量比)であることを特徴する耐熱難燃性樹脂組成物である。
 この発明の樹脂組成物を構成するテトラフルオロエチレン-α-オレフィン共重合体、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ランダムポリプロピレン及び無機充填剤としては、前記の請求項1に記載の発明の場合と同じものが使用される。又、テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体との混合比、及びテトラフルオロエチレン-α-オレフィン共重合体及びビニリデンフルオライド-ヘキサフルオロプロピレン共重合体からなるフッ素ゴム組成物とランダムポリプロピレンとの混合比の範囲も請求項1に記載の発明の場合と同じである。しかしこの発明は、無機充填剤の配合量が10質量部未満であること、及び、3~20質量部の難燃剤を配合することを特徴とする。
 無機充填剤の配合量を10質量部未満とすることにより、優れた圧着加工性を保持することができ、電線末端を端子でカシメ加工する際の絶縁の割れの発生等の問題を防ぐことができる。無機充填剤は配合されなくてもよい。
 又、難燃剤を3質量部以上配合することにより、無機充填剤の配合が少ない場合やない場合であっても、絶縁電線に通常求められる規格を満たす難燃性が得られる。一方、難燃剤を20質量部以上配合すると、機械的強度が低下するので好ましくない。ここで難燃剤としては、含ハロゲン化合物のように不燃性ガスを発生するもの、金属水酸化物のように吸熱分解するもの、リン酸エステルのように酸素を遮蔽する燃え殻を形成するもの等を挙げることができる。具体的には、臭素系難燃剤、三酸化アンチモン、塩素系難燃剤、水酸化マグネシウム、水酸化アルミニウム、リン酸エステル、ポリリン酸アンモニウム、ポリリン酸ピペラジン、赤リン、ホスフィン酸金属塩、メラミンシアヌレート等を挙げることができる。
 請求項1又は請求項2に記載の樹脂組成物は、上記の組成を常法により混合したものに、電子線、ガンマ線等の電離放射線を照射して、フッ素ゴム組成物とランダムポリプロピレンを架橋させてなるものである。絶縁電線の絶縁被覆に本発明の樹脂組成物を適用する場合は、押出し成形等により導体上に被覆した後、電離放射線の照射をすることが製造工程の容易さの点から好ましく、通常採用されている方法である。
 樹脂組成物に電離放射線を照射することにより、引張特性、耐熱性、耐油性及びカットスルー特性が向上する。電離放射線としては工業的に広く用いられ、制御も容易で、低コストでの架橋が可能な電子線が特に好ましい。電子線照射には、樹脂の架橋等に通常用いられている公知の電子線照射手段を用いることができ、常法により行うことができる。
 電離放射線の照射量は、樹脂が架橋して所望の引張特性、耐熱性、耐油性及びカットスルー特性が得られるように選択される。電子線照射の場合は、通常、30~500kGy程度が好ましい。
 請求項3に記載の発明は、テトラフルオロエチレン-α-オレフィン共重合体が、テトラフルオロエチレン-プロピレン共重合体であることを特徴とする請求項1又は請求項2に記載の耐熱難燃性樹脂組成物である。テトラフルオロエチレン-α-オレフィン共重合体の具体例としては、テトラフルオロエチレンとプロピレンの共重合体を挙げることができる。
 請求項4に記載の発明は、前記無機充填剤が、炭酸カルシウムであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の耐熱難燃性樹脂組成物である。無機充填剤としては、耐熱性、機械特性、コストの点から炭酸カルシウムが好ましい。炭酸カルシウムとしては、石灰石等CaCOを主成分とする天然原料を機械的に粉砕分級した重質炭酸カルシウムや化学的に製造される沈降炭酸カルシウム(軽質炭酸カルシウム)等を挙げることができるが、コストの点から重質炭酸カルシウムが好ましい。
 請求項5に記載の発明は、導体上に、請求項1ないし請求項4のいずれか1項に記載の耐熱難燃性樹脂組成物からなる被覆層を有する絶縁電線である。すなわち、本発明の耐熱難燃性樹脂組成物により形成されている絶縁被覆を備えた電線であり、従って高い耐熱性、難燃性、耐油性、カットスルー特性や高い圧着加工性等の機械的強度を有し、高温に曝される環境等で好適に使用される電線である。なお、絶縁電線とは、導体と絶縁被覆からなる狭義の絶縁電線のみではなく、狭義の絶縁電線の1本又は複数本を保護被覆でさらに覆ってなる所謂ケーブルも含む意味である。
 この絶縁電線は、本発明の樹脂組成物を導体上に被覆して絶縁被覆を形成し、さらに電離放射線照射して樹脂を架橋して製造することができる。被覆の方法は、従来の絶縁電線の製造において行われている方法、例えば、導体上に樹脂組成物を押出し成形する方法により行うことができる。導体としては、従来、自動車内配線としても用いられる絶縁電線や絶縁ケーブルを構成する銅線等の導体を使用することができる。
 本発明は前記の絶縁電線に加えてさらに、樹脂組成物をチューブ状に形成してなることを特徴とする樹脂チューブを提供する。すなわち、請求項6に記載の発明は、請求項1ないし請求項4のいずれか1項に記載の耐熱難燃性樹脂組成物がチューブ状に成形されてなることを特徴とする熱収縮チューブである。本発明の樹脂チューブとしては、樹脂組成物の融点以上で加熱した場合に内径方向に収縮する熱収縮チューブ等を挙げることができる。
 本発明の樹脂組成物は、絶縁性、耐熱性、耐油性、難燃性、引張特性やカットスルー特性等の機械的強度を高い次元でバランスさせ、かつコストパーフォーマンスにも優れた樹脂組成物である。特に、請求項1に記載の樹脂組成物は耐熱性に優れ、又請求項2に記載の樹脂組成物は圧着加工性に優れる。従って、この樹脂組成物を絶縁被覆した本発明の絶縁電線は、前記の特性に優れ、自動車のエンジンルーム内の配線等、高温環境下で使用される電線として好適に用いられる。
カットスルー特性の測定装置を模式的に示す模式断面図である。
 次に、本発明を実施するための形態について説明するが、本発明の範囲はこの形態に限定されるものではなく本発明の趣旨を損なわない範囲で種々の変更をすることができる。
 テトラフルオロエチレン-α-オレフィン共重合体は、テトラフルオロエチレンとポリプロピレン等のα-オレフィンとの共重合体であるが、本発明の趣旨を損ねない範囲で、他の共重合成分、例えば、アクリル酸エステル類、ヘキサフルオロプロピレン、フッ化ビニル、フッ化ビニリデン、パーフルオロアルキルビニルエーテル、クロロトリフルオロエチレン、エチレン、ブテン-1、グリシジル(メタ)アクリレートを共重合してもよい。 
 この共重合体を製造するための共重合は公知の方法により行うことができるが、テトラフルオロエチレン-プロピレン共重合体としては、様々な共重合比や分子量のものが市販されているのでそれらを用いても良い。
 テトラフルオロエチレン-α-オレフィン共重合体の、共重合比の範囲や、分子量の範囲は、特に限定されないが、共重合比がテトラフルオロエチレン:α-オレフィン=30:70~70:30(モル比)の範囲にあるものが好ましく、特に40:60~60:40の範囲にあるものが好ましい。テトラフルオロエチレンの比率が30%より少なくなると耐熱性が低下し、70%より多くなると柔軟性が損なわれる傾向がある。また、ムーニー粘度(ML 1+10 :121℃)が30~300の範囲にあるものが好ましく、特に50~200の範囲にあるものが好ましい。ムーニー粘度が30より小さくなるとカットスルー特性が低下し、又300より大きくなると押出した時の外観が悪化する。
 ポリビニリデンフルオライドはテトラフルオロエチレン-α-オレフィン共重合体と混ざらないが、ビニリデンフルオライドにヘキサフルオロプロピレンを共重合させることにより混ざるようになる。ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体中のヘキサフルオロプロピレンの割合は3~20質量%が好ましい。ヘキサフルオロプロピレンの割合が3質量%未満の場合は、テトラフルオロエチレン-α-オレフィン共重合体と混ざりにくくなる。一方、30質量%を超えると樹脂組成物の耐油性が低下する。ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体は、荷重12.5kg、温度230℃の条件で測定したメルトフローレート(MFR)が1~100の範囲のものが通常好ましい。MFRが1より小さくなると押出した時の外観が悪くなり、また、100より大きくなるとカットスルー特性が低下する。
 ランダムポリプロピレンとは、プロピレンとエチレンをランダムに共重合させたポリマーで、通常、エチレンの含有率は1~10重量%以下が好ましい。1重量%より小さくなると結晶性が増し、電子線照射しても架橋しなくなる。10重量%を超えると樹脂組成物にしたときのカットスルー特性が低下する。また、エチレンにさらにブテン-1等を共重合した三元共重合体(ターポリマー)を使用してもよい。又荷重2.16kg、温度190℃の条件で測定したメルトフローレート(MFR)が、0.1~5の範囲のものが通常好ましい。MFRが0.1より小さくなると押出した時の外観が悪くなり、又5より大きくなるとカットスルー特性が低下する。
 請求項1の樹脂組成物には、発明の趣旨を損ねない範囲で、上記の必須成分以外にも、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、リン系難燃剤等のハロゲンフリー難燃剤、臭素系難燃剤、塩素系難燃剤、三酸化アンチモン、フェノール系、アミン系、イオウ系及びリン系等の酸化防止剤、ステアリン酸、脂肪酸アミド、シリコーン、ポリエチレンワックス等の滑剤、着色顔料等の添加剤を加えてもよい。又、請求項2の樹脂組成物には、発明の趣旨を損ねない範囲で、上記の必須成分以外にも、フェノール系、アミン系、イオウ系及びリン系等の酸化防止剤、ステアリン酸、脂肪酸アミド、シリコーン、ポリエチレンワックス等の滑剤、着色顔料等の添加剤を加えてもよい。これらの添加剤は、単独で又は2種以上を併用して添加してもよい。
 先ず、実施例、比較例で用いた各材料を以下に示す。
・テトラフルオロエチレン-プロピレン共重合体:アフラス150C(旭硝子社製)
・ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体:カイナー2750(アルケマ社製)
・ランダムポリプロピレン:ノバテックPP EG6D(融点145℃)(日本ポリプロ社製)
・ブロックポリプロピレン:日本ポリプロ・ノバテックPP EC7(融点160℃)(日本ポリプロ社製)
・炭酸カルシウム:ソフトン2200(白石カルシウム社製、重質炭酸カルシウム)
・臭素系難燃剤:SAYTEX BT-93(Albemarle Corporation製、エチレンビステトラブロモフタルイミド)
・三酸化アンチモン:三酸化アンチモンMSA(山中産業社製、平均粒径1μm)
実施例1~3及び比較例1~7
 表1又は表2に示す配合(表中では質量部で表す。)をオープンロールにて混練し、ペレタイザによってペレット化した後、電線被覆用押出機に供給して、押出機により、TA12/0.18の導体に、絶縁外径1.5mmφ(被覆の厚み:0.375mm)で押出し被覆した。その後、電子線照射装置で100kGyの電子線を照射し、架橋された樹脂組成物で絶縁被覆された絶縁電線を製造した。このようにして得られた絶縁電線について、以下に示す方法で、引張特性(引張強度、引張伸び)、耐熱性、難燃性、絶縁性、耐油性、カットスルー特性の評価を行った。結果を表1及び表2に示す。
[引張特性(引張強度、引張伸び)]
 JIS C 3005(1986)に準拠して引張強度及び引張伸び測定した。(基準:引張強度≧8MPa、引張伸び≧100%)
[耐熱性]
 絶縁電線を、250℃に保持された恒温槽内に4日間放置した後取り出し、JIS C3005(1986)に準拠して引張強度及び引張伸び測定した、その測定値より引張強度残率、引張伸び残率をそれぞれ計算した。(基準:引張強度残率≧85%、引張伸び残率≧85%)
[難燃性]
 UL1581 1080.に準拠した垂直燃焼試験(UL VW-1 燃焼試験)により評価した。具体的には、絶縁電線を垂直に保持し、20度の角度でバーナの炎をあて15秒着火、15秒休止を5回繰り返した後、燃焼持続(残炎による燃焼)が、60秒以下のとき「合格」、60秒を超えるとき「不合格」とした。
[絶縁性]
 体積固有抵抗測定装置にて、体積固有抵抗値(Ω・cm)を測定した。(基準:≧10の15乗)
[耐油性]
 絶縁電線を、IRM902油に、70℃で4時間浸漬した後取り出し、JIS C3005(1986)に準拠して引張強度及び引張伸び測定した、その測定値より引張強度残率、引張伸び残率をそれぞれ計算した。(基準:引張強度残率≧50%、引張伸び残率≧50%)
[カットスルー特性]
 図1に示す測定装置を用いてカットスルー特性を測定した。図1中、1は導体を、2は絶縁被覆を、3は絶縁電線を表す。絶縁電線3の上に90°シャープエッジ(先端R=0.125mm、先端角度90°)を有する刃4(5mil刃)を当て、導体1とシャープエッジとの間に流れる電流値を測定する。初期状態では導体1とシャープエッジとは絶縁被覆2により絶縁されており電流は流れないが、絶縁被覆2が刃4によって切断されると導体1とシャープエッジとの間に電流が流れる。刃4に荷重を加え、絶縁被覆2が切断されないで耐える最大荷重を測定する。なお試験雰囲気は温度23℃、湿度50%RHとする。荷重150N以上を基準(合格レベル)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2に示された結果より、本発明の構成要件を満足する実施例1~3の樹脂組成物は、引張特性、耐熱性、難燃性、絶縁性、耐油性及びカットスルー特性が基準を充たしており、これらの特性が高い次元でバランスしていることが示されている。一方、本発明の構成要件を充たしていない比較例では、以下の1)~6)に述べるように、引張特性、耐熱性、難燃性、絶縁性、耐油性及びカットスルー特性のいずれかが基準を充たさず、本発明の課題が達成されていない。
1)テトラフルオロエチレン-α-オレフィン共重合体の混合比が、テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体の合計に対し40質量%未満の場合(比較例7)は、引張特性、特に引っ張り伸びが低い。
2)ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体の混合比が、テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体の合計に対し20質量%未満の場合(比較例6)は、耐油性(引張伸び残率)が低い。
3)フッ素ゴム組成物とランダムポリプロピレンの合計に対しランダムポリプロピレンの混合比が、10質量%未満の場合(比較例3)は、カットスルー特性が低い。
4)フッ素ゴム組成物の混合比が60質量%未満の場合(比較例1、すなわち、ランダムポリプロピレンの混合比が40質量%を超える場合)は、耐熱性が低い。
5)ランダムポリプロピレンの代わりにブロックポリプロピレンを用いた場合(比較例5)は、引張特性、耐熱性、耐油性及びカットスルー特性が低い。
6)無機充填剤(重質炭酸カルシウム)の配合量が10質量部未満の場合(比較例2)は、耐熱性、難燃性が低い。一方、100質量部を超える場合(比較例4)は、引張特性(引っ張り伸び)が低く又耐熱性(引張伸び残率)も低い。
実施例4~7
 表3に示す配合(表中では質量部で表す。)をオープンロールにて混練し、ペレタイザによってペレット化した後、電線被覆用押出機に供給して、押出機により、TA12/0.18の導体に、絶縁外径1.5mmφ(被覆の厚み:0.375mm)で押出し被覆した。その後、電子線照射装置で100kGyの電子線を照射し、架橋された樹脂組成物で絶縁被覆された絶縁電線を製造した。このようにして得られた絶縁電線について、実施例1~3と同様な方法で、引張特性(引張強度、引張伸び)、難燃性、絶縁性、耐油性、カットスルー特性の評価を行った。又、下記の方法で連続耐熱温度(耐熱性)及び圧着加工性を測定した。結果を表3に示す。
[連続耐熱温度(耐熱性)]
 前記の自動車規格(JASO)の連続耐熱温度により耐熱性を判定した。具体的には、230℃、250℃、270℃、290℃の各温度で老化試験を行い、引張伸びが100%を切るまでの時間を求め、アレニウスプロットを行うことにより連続耐熱温度を求めた。
[圧着加工性]
 日本圧着端子製造社製の圧着端子(型番SNAC3-A021T-M064)及び圧着機(型番AP-K2N)を用いて試作した電線の末端のカシメ加工を行い、顕微鏡で絶縁割れの有無を観察した。割れのあるものは不合格、割れのないものを合格とした。
Figure JPOXMLDOC01-appb-T000003
 表3に示された結果より、請求項2の発明の構成要件を満足し、重質炭酸カルシウムを配合せず又はその配合量が5質量部である実施例4、5の樹脂組成物は、引張特性、連続耐熱温度(耐熱性)、難燃性、絶縁性、耐油性及びカットスルー特性が基準を充たしており、さらに圧着加工性も合格でありこれらの特性が高い次元でバランスしていることが示されている。一方、重質炭酸カルシウムの配合量が10質量部である実施例6、7では、圧着加工性が基準を充たしていない。
1. 導体
2. 絶縁被覆
3. 絶縁電線
4. (シャープエッジの)刃

Claims (6)

  1.  テトラフルオロエチレン-α-オレフィン共重合体及びビニリデンフルオライド-ヘキサフルオロプロピレン共重合体からなるフッ素ゴム組成物とランダムポリプロピレンとの混合物100質量部に対して無機充填剤を10~100質量部を配合し、さらに電離放射線を照射して前記フッ素ゴム組成物及びランダムポリプロピレンを架橋してなる樹脂組成物であって、前記テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体との混合比が80:20~40:60(質量比)であり、かつ前記フッ素ゴム組成物とランダムポリプロピレンとの混合比が60:40~90:10(質量比)であることを特徴する耐熱難燃性樹脂組成物。
  2.  テトラフルオロエチレン-α-オレフィン共重合体及びビニリデンフルオライド-ヘキサフルオロプロピレン共重合体からなるフッ素ゴム組成物とランダムポリプロピレンとの混合物100質量部に対して、10質量部未満の無機充填剤及び3~20質量部の難燃剤を配合し、さらに電離放射線を照射して前記フッ素ゴム組成物及びランダムポリプロピレンを架橋してなる樹脂組成物であって、前記テトラフルオロエチレン-α-オレフィン共重合体とビニリデンフルオライド-ヘキサフルオロプロピレン共重合体との混合比が80:20~40:60(質量比)であり、かつ前記フッ素ゴム組成物とランダムポリプロピレンとの混合比が60:40~90:10(質量比)であることを特徴する耐熱難燃性樹脂組成物。
  3.  テトラフルオロエチレン-α-オレフィン共重合体が、テトラフルオロエチレン-プロピレン共重合体であることを特徴とする請求項1又は請求項2に記載の耐熱難燃性樹脂組成物。
  4.  前記無機充填剤が、炭酸カルシウムであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の耐熱難燃性樹脂組成物。
  5.  導体上に、請求項1ないし請求項4のいずれか1項に記載の耐熱難燃性樹脂組成物からなる被覆層を有する絶縁電線。
  6.  請求項1ないし請求項4のいずれか1項に記載の耐熱難燃性樹脂組成物がチューブ状に成形されてなることを特徴とする熱収縮チューブ。
PCT/JP2013/068393 2012-07-09 2013-07-04 耐熱難燃性樹脂組成物及び絶縁電線、チューブ WO2014010509A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380003383.1A CN103890084B (zh) 2012-07-09 2013-07-04 耐热阻燃树脂组合物、绝缘电线和管
JP2013545563A JP5641497B2 (ja) 2012-07-09 2013-07-04 耐熱難燃性樹脂組成物及び絶縁電線、チューブ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012153879 2012-07-09
JP2012-153879 2012-07-09

Publications (1)

Publication Number Publication Date
WO2014010509A1 true WO2014010509A1 (ja) 2014-01-16

Family

ID=49915966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068393 WO2014010509A1 (ja) 2012-07-09 2013-07-04 耐熱難燃性樹脂組成物及び絶縁電線、チューブ

Country Status (3)

Country Link
JP (1) JP5641497B2 (ja)
CN (1) CN103890084B (ja)
WO (1) WO2014010509A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713298A (zh) * 2016-04-21 2016-06-29 中山诗兰姆汽车零部件有限公司 一种用于车用波纹管的低铅阻燃材料、其制备方法及应用
CN106751931A (zh) * 2016-12-16 2017-05-31 佛山市顺德区宝斯特颜料有限公司 一种复合色饼及其制备方法
CN116102835A (zh) * 2023-01-08 2023-05-12 江苏中煜橡塑科技有限公司 一种钠电池用阻燃耐高温氟橡胶及其加工工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009272A (zh) * 2016-06-24 2016-10-12 贵州德江韫韬科技有限责任公司 一种热缩管材及其制备方法
CN110734609B (zh) * 2019-12-05 2022-07-12 万华化学(宁波)有限公司 高韧耐油型聚丙烯复合材料及其制备方法
JP6755569B1 (ja) * 2020-01-24 2020-09-16 株式会社Tbm 生分解性樹脂組成物及び成形品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316821A (ja) * 1997-05-20 1998-12-02 Kurabe Ind Co Ltd 含フッ素エラストマー組成物
JP2005239976A (ja) * 2004-02-27 2005-09-08 Fujikura Ltd 耐摩耗性難燃樹脂組成物及び絶縁電線
WO2010138172A1 (en) * 2009-05-29 2010-12-02 Milliken & Company Polymer compositions, articles made from such compositions, and methods for molding such compositions
JP2011222432A (ja) * 2010-04-14 2011-11-04 Riken Technos Corp 電線被覆用熱可塑性樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3962373A (en) * 1974-10-21 1976-06-08 Allied Chemical Corporation Compositions of 3,3,3-trifluoro-2-trifluoromethyl propene/vinylidene fluoride copolymer and polytetrafluoroethylene
JP4070006B2 (ja) * 2002-05-14 2008-04-02 株式会社クラベ 含フッ素エラストマー組成物
US20060100368A1 (en) * 2004-11-08 2006-05-11 Park Edward H Elastomer gum polymer systems
JP2007119515A (ja) * 2005-10-25 2007-05-17 Swcc Showa Cable Systems Co Ltd 電気絶縁性組成物および絶縁電線

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316821A (ja) * 1997-05-20 1998-12-02 Kurabe Ind Co Ltd 含フッ素エラストマー組成物
JP2005239976A (ja) * 2004-02-27 2005-09-08 Fujikura Ltd 耐摩耗性難燃樹脂組成物及び絶縁電線
WO2010138172A1 (en) * 2009-05-29 2010-12-02 Milliken & Company Polymer compositions, articles made from such compositions, and methods for molding such compositions
JP2011222432A (ja) * 2010-04-14 2011-11-04 Riken Technos Corp 電線被覆用熱可塑性樹脂組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713298A (zh) * 2016-04-21 2016-06-29 中山诗兰姆汽车零部件有限公司 一种用于车用波纹管的低铅阻燃材料、其制备方法及应用
CN105713298B (zh) * 2016-04-21 2018-06-08 中山诗兰姆汽车零部件有限公司 一种用于车用波纹管的低铅阻燃材料、其制备方法及应用
CN106751931A (zh) * 2016-12-16 2017-05-31 佛山市顺德区宝斯特颜料有限公司 一种复合色饼及其制备方法
CN106751931B (zh) * 2016-12-16 2017-12-01 佛山市顺德区宝斯特颜料有限公司 一种复合色饼及其制备方法
CN116102835A (zh) * 2023-01-08 2023-05-12 江苏中煜橡塑科技有限公司 一种钠电池用阻燃耐高温氟橡胶及其加工工艺
CN116102835B (zh) * 2023-01-08 2024-03-19 江苏中煜橡塑科技有限公司 一种钠电池用阻燃耐高温氟橡胶及其加工工艺

Also Published As

Publication number Publication date
JP5641497B2 (ja) 2014-12-17
CN103890084B (zh) 2016-05-18
JPWO2014010509A1 (ja) 2016-06-23
CN103890084A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5641497B2 (ja) 耐熱難燃性樹脂組成物及び絶縁電線、チューブ
JP5733352B2 (ja) ノンハロゲン架橋性樹脂組成物を用いた車両用絶縁電線及び車両用ケーブル
JP5563771B2 (ja) 含ふっ素エラストマ被覆電線
JP6229942B2 (ja) 鉄道車両用絶縁電線及び鉄道車両用ケーブル
JP5696956B2 (ja) 非ハロゲン難燃樹脂組成物を用いた電線およびケーブル
JP2014067657A (ja) ノンハロゲン難燃性絶縁電線
JP5907015B2 (ja) 鉄道車両用電線および鉄道車両用ケーブル
JP2015074709A (ja) 塩化ビニル系樹脂組成物、電線及びケーブル
JP5648985B2 (ja) 耐熱難燃性樹脂組成物及び絶縁電線、チューブ
JPH0554723A (ja) 難燃性電気絶縁組成物および難燃性電線・ケーブル
JP6065341B2 (ja) 耐熱難燃性ゴム組成物及び絶縁電線、ゴムチューブ
JP5858351B2 (ja) ハロゲンフリー難燃性樹脂組成物を用いた鉄道車両用絶縁電線及びケーブル
CN113265097B (zh) 阻燃性树脂组合物、阻燃性绝缘电线和阻燃性电缆
WO2020013187A1 (ja) 耐熱性架橋フッ素ゴム成形体及びその製造方法、並びに、耐熱性製品
JP2011001495A (ja) ノンハロゲン難燃性樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブル
JP5388158B2 (ja) 含ふっ素エラストマ被覆電線
JP5176510B2 (ja) 含ふっ素エラストマ被覆電線
JP6194842B2 (ja) 含フッ素エラストマー組成物、並びにこれを用いた絶縁電線及びケーブル
JP5454666B2 (ja) 含ふっ素エラストマ被覆電線
JP2000007852A (ja) 電線被覆用樹脂組成物および絶縁電線
JP6795481B2 (ja) 絶縁電線
JP2021187970A (ja) 樹脂組成物、樹脂被覆材、自動車用ワイヤーハーネス及び自動車用ワイヤーハーネスの製造方法
JP6766570B2 (ja) 絶縁電線
JP2009298831A (ja) ノンハロゲン難燃性熱可塑性エラストマ樹脂組成物及びその製造方法並びにこれを用いた電線・ケーブル
JP6816420B2 (ja) 絶縁電線およびケーブル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013545563

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817135

Country of ref document: EP

Kind code of ref document: A1