WO2014008865A1 - 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途 - Google Patents

一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途 Download PDF

Info

Publication number
WO2014008865A1
WO2014008865A1 PCT/CN2013/079212 CN2013079212W WO2014008865A1 WO 2014008865 A1 WO2014008865 A1 WO 2014008865A1 CN 2013079212 W CN2013079212 W CN 2013079212W WO 2014008865 A1 WO2014008865 A1 WO 2014008865A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
butadiene
fluidized bed
bed reactor
temperature
Prior art date
Application number
PCT/CN2013/079212
Other languages
English (en)
French (fr)
Inventor
芮果
甘永胜
张小莽
罗艳宁
Original Assignee
上海碧科清洁能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海碧科清洁能源技术有限公司 filed Critical 上海碧科清洁能源技术有限公司
Priority to SG11201408728UA priority Critical patent/SG11201408728UA/en
Priority to JP2015520810A priority patent/JP6304830B2/ja
Priority to KR1020157002056A priority patent/KR20150036205A/ko
Priority to US14/414,085 priority patent/US9764317B2/en
Priority to EP13816830.7A priority patent/EP2873458A4/en
Publication of WO2014008865A1 publication Critical patent/WO2014008865A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/862Iron and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/843Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/847Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/86Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/889Manganese, technetium or rhenium

Definitions

  • the invention relates to a butadiene catalyst for oxidative dehydrogenation of butene for use in a fluidized bed reactor, a preparation method thereof and a use thereof, and belongs to the technical field of catalysis. Background technique
  • the oxidation and dehydrogenation of butene is easy, the isothermal operation can be realized, the catalyst life is prolonged, the catalyst utilization rate is improved, the reactor structure is relatively simple, the manufacturing process is convenient, and the industrial scale is easy.
  • industrial fixed bed butene oxidative dehydrogenation catalysts are not suitable for fluidized beds due to their shape, mechanical strength and wear resistance. How to synthesize a catalyst for oxidative dehydrogenation of butene in a fluidized bed is essential for anti-wear, high activity and long-term operational stability.
  • CN 1184705A and CN1072110A disclose an oxidative dehydrogenation of butene to a butadiene iron system Catalyst, the catalyst has a certain activity or (and) selectivity for the fluidized bed of the baffle, but the catalyst has an irregular shape and a large particle size, resulting in a low butadiene yield and a serious catalyst loss.
  • a scanning electron micrograph of the irregularly shaped catalyst is shown in FIG.
  • CN101674883 A method for preparing 1,3-butadiene by using a zinc ferrite catalyst is disclosed. It is difficult to achieve a desired catalytic effect by using a simple zinc ferrite combination, and the catalyst is used in a fixed bed reactor, catalyst bed temperature. Severe rise and high energy consumption also do not solve the problem of catalyst wear on fluidized bed reactors.
  • US 8003840B2 discloses a process for the preparation of 1,3-butadiene using a bismuth molybdate catalyst which is used in a fixed bed reactor without addressing the problems of resistance to wear and high flow of the catalyst, and generally has catalytic activity. . Summary of the invention
  • the technical problem to be solved by the present invention is to improve the wear resistance and high fluidity of the catalyst in the fluidized bed reactor, thereby reducing catalyst loss and increasing the activity, conversion and selectivity of the catalyst.
  • One object of the present invention is to provide a process for the preparation of a catalyst for the oxidative dehydrogenation of butene to a butadiene catalyst for use in a fluidized bed reactor.
  • the catalyst prepared by spray drying granulation has higher wear resistance (mechanical strength) and higher butadiene yield than the catalyst prepared by the conventional method, and satisfies the modern industrial flow.
  • a performance requirement of a bed-synthesized butadiene catalyst another object of the present invention is to provide a high-yield preparation of 1,3-butyl by performing an oxidative dehydrogenation reaction of butene on a catalyst prepared by the process of the present invention. Diene.
  • the method provided by the invention comprises the following steps: (1) reacting a metal precursor with a basic substance to obtain a slurry containing an insoluble compound, filtering and washing the slurry; (2) adding an appropriate amount of binder, deionized water sufficiently Stirring, adjusting the solid content (mass percentage) of the slurry is 10% ⁇ 50% ; (3) spraying the slurry obtained in the step (2) by spray drying granulation equipment, and controlling the temperature of the feed inlet 200 °C -400 °C, the outlet temperature is 100 ° C ⁇ 160 ° C, to obtain catalyst microspheres; (4) the catalyst microspheres are dried, calcined, the catalyst is obtained by the general formula FeX a Y b Z e O d , Wherein X is one or more of Ni, Co, Zn, Cu, Sn, and Mn, and Y is one or more of Bi, Mo, Cr, V, La, and Zr, and Z is Mg or Ca. One or more of Sr and Ba, a is
  • the reaction of the metal precursor and the basic substance is carried out at 10 to 90 ° C, preferably 30 to 80 ° C, and at a pH of 5 to 1, preferably 6 to 10.
  • the slurry in step (1) is filtered and washed to a pH of from 7 to 7.5.
  • the drying condition of the catalyst microspheres in the step (4) is a drying temperature of 80 ° C to 200 ° C, preferably 80 to 180 ° C, and a drying time of 1 to 24 hours, preferably 4 to 16 hours.
  • the calcination conditions of the catalyst microspheres in the step (4) are calcination temperature of 500 ° C to 900 ° C, preferably 520 to 820 ° C, and calcination time of 4 to 24 h, preferably 4 to 18 h.
  • the method provided by the present invention comprises the following steps: (1) reacting a metal precursor and an alkaline substance at a temperature of 10 to 90 ° C and a pH of 5 to 1 1 to obtain a slurry containing an insoluble compound, and filtering the slurry.
  • the slurry obtained in the step (2) is spray-dried and granulated by a spray drying granulation apparatus, and the temperature of the feed inlet is controlled to be 200 ° C to 400 V, preferably 220 ° C to 350 ° C, and the discharge port temperature is 100.
  • the catalyst has the general formula FeX a Y b Z c O d , where X is Ni, Co, Zn, Cu, Sn, Mn One or more of them, Y is one or more of Bi, Mo, Cr, V, La, Zr, and Z is one or two of Mg, Ca, Sr, Ba Above, a is 0.1 ⁇ 3, b is 0 ⁇ 1, c is 0 ⁇ 1, and the value of d satisfies the requirements of the valence of other metal elements.
  • the metal precursor is one or a mixture of two or more of a nitrate, a chloride, a sulfate, a hydroxide, an oxide, and an ammonium metal phosphate.
  • the alkaline substance is one or two of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, ammonia water, urea. More than one mixture.
  • the metal precursor and the alkaline substance are reacted by dropping the metal precursor into the alkaline substance, and the alkaline substance is added to the metal precursor or the metal.
  • the body and the alkaline substance are added together, and finally the pH is controlled to 6 to 10.
  • the metal precursor and the alkaline substance are reacted at 30 to 80 V.
  • the binder is one or a mixture of two or more of silica gel, aluminum gel, methyl cellulose, polyvinyl alcohol, and phthalocyanine powder, and a binder.
  • the amount of addition is from 1% to 5%.
  • the solid content (mass percentage) of the slurry is from 20% to 45%.
  • the spray drying granulation apparatus is a pressure spray drying granulation apparatus, a gas flow spray drying granulation apparatus or a centrifugal spray drying granulation apparatus.
  • the feed port temperature is 220 ° C to 350 ° C
  • the discharge port temperature is 110 ° C to 150 ° C to obtain a particle size of 20 ⁇ ! ⁇ 600 ⁇ of microspheres.
  • the drying temperature is 80 to 180 V, and the drying is 4 to 16 hours.
  • the calcination temperature is 520 ⁇ 820
  • the present invention also provides a process for preparing 1,3-butadiene using the catalyst prepared by the present invention, which comprises water and butene mole at a temperature of 300 to 400 ° C under normal pressure and a catalyst prepared by the present invention.
  • the reaction was carried out under the conditions of a molar ratio of oxygen to butene of 0.4 to 1.0 and a volume velocity of butene of 100 ° OOlf 1 to obtain 1,3-butadiene.
  • the catalyst prepared by the invention has the following beneficial effects: (1) The catalyst has good catalytic performance due to selection of suitable raw material composition and operating conditions in the preparation process of the catalyst, and the activity, conversion rate and selectivity of the catalyst are high; (2) Spray-drying granulation molding method and suitable operating conditions are selected, and the obtained catalyst has higher wear resistance and high fluidity than the catalyst prepared by the conventional method, and is in accordance with industrial oxidative dehydrogenation of butene. The requirements of the olefinized fluidized bed reactor; (3) The yield of butadiene prepared by the catalyst is high, the catalyst runs for a long time, the wear is small, and the utilization rate is high.
  • DRAWINGS Figure 1 is a scanning electron micrograph of a prior art irregular shaped catalyst.
  • Figure 2 is a scanning electron micrograph of a spherical catalyst prepared by the process of the present invention. detailed description
  • a mixed solution of iron nitrate, manganese nitrate, zinc nitrate and cobalt nitrate is prepared, wherein the concentrations of Fe 3+ , Mn 2+ , Zn 2+ and Co 2+ ions are 1 mol/L, 1 mol/L, 1 mol/L, and 1 mol, respectively. /L, with a 0.5 mol/L sodium carbonate solution.
  • the solution A and the sodium carbonate solution were simultaneously added dropwise to the reaction vessel by cocurrently, and stirred vigorously, wherein the solution A dropped into the reaction vessel was 2000 ml, and the reaction temperature was controlled at 60 ° C, and the pH was 8 to 9 to obtain insolubleness.
  • the slurry of the compound is then filtered and washed to a pH of 7 to 7.5.
  • the washed slurry was thoroughly stirred with 2% methylcellulose and deionized water to adjust the solid content to 20%.
  • the well-stirred slurry was passed through a pressure spray drying granulation apparatus, and the feed port temperature was controlled at 280 ° C, and the discharge port temperature was 130 ° C to obtain catalyst microspheres.
  • the microspheres obtained by spray drying granulation were dried at 120 ° C for 14 h and then calcined at 700 V for 10 h to obtain a finished catalyst product.
  • a mixed solution A of ferric chloride, copper chloride, cobalt nitrate and barium chloride is prepared, wherein the concentrations of Fe 3+ , Cu 2+ , Co 2+ and Ba 2+ are respectively 1 mol/L, 1 mol/L, 1 mol/ L, lmol/L, with a 0.37 mol/L potassium hydroxide solution.
  • a potassium hydroxide solution is added dropwise to the reaction vessel and stirred vigorously to control the reaction temperature at 30 ° C, and the pH is 10 to 11, to obtain a slurry containing an insoluble compound, and then The slurry was filtered and washed to a pH of 7 to 7.5.
  • the washed slurry was added with 1.8% polyvinyl alcohol (molecular weight 6000), and deionized water was thoroughly stirred to adjust the solid content to 35%.
  • the well-stirred slurry was passed through a gas flow spray drying granulation apparatus, and the temperature of the feed port was controlled at 300 ° C, and the temperature at the discharge port was 140 ° C to obtain catalyst microspheres.
  • the microspheres obtained by spray drying granulation were dried at 80 ° C for 23 h and then calcined at 800 ° C for 9 h to obtain a finished catalyst product.
  • Example 3 560ml 65% concentrated nitric acid and steamed water to 2000ml, slowly add iron filings, nickel powder to be completely dissolved, add magnesium oxide, barium hydroxide, barium chloride and stir well to obtain mixed solution A, where Fe 3+ , Ni
  • concentrations of 2+ , Mg 2+ , Ba 2+ and Bi 3+ ions are 1 mol/L, 1 mol/L, 0.2 mol/L, 0.3 mol/L, and 1 mol/L, respectively, and 0.25 mol/L sodium bicarbonate is disposed.
  • Mixed solution B of 0.25 mol/L sodium hydroxide. First, 2000m solution B was added to the reaction vessel, and then solution A was added dropwise to the reaction vessel and stirred vigorously.
  • the reaction temperature was controlled at 50 ° C, and the pH was 5 to 6, to obtain a slurry containing an insoluble compound, and then the slurry was filtered. Wash to a pH of 7 to 7.5. The washed slurry was thoroughly stirred with 5% silica gel and deionized water to adjust the solid content to 50%.
  • the well-stirred slurry was passed through a gas flow spray drying granulation apparatus, and the temperature of the feed port was controlled at 350 ° C, and the temperature of the discharge port was 120 ° C to obtain catalyst microspheres.
  • the microspheres obtained by spray drying granulation were dried at 180 ° C for 6 h and then calcined at 520 ° C for 18 h to obtain a finished catalyst.
  • a molar solution of iron nitrate, manganese chloride, tin chloride, and calcium chloride wherein the concentration of Fe 3+ , Mn 2+ , Sn 4+ , and Ca 2+ ions is 1 mol/L, 0.1 mol/L, respectively. , 0.4mol/L, 0.6mol/L, with 18% ammonia water.
  • the solution A and the aqueous ammonia solution were added dropwise to the reaction vessel by cocurrently, and stirred vigorously, wherein the solution A dropped into the reaction vessel was 2000 ml, and the reaction temperature was controlled at 40 ° C, and the pH was 9 to 10 to obtain an insoluble compound.
  • the slurry is then filtered and washed to a pH of 7 to 7.5.
  • the washed slurry was thoroughly stirred by adding 1% of phthalocyanine powder, 1% of aluminum gel, and deionized water to adjust the solid content to 45%.
  • the well-stirred slurry was passed through a centrifugal spray-drying granulation apparatus to control the feed port temperature of 220 ° C and the discharge port temperature of 100 ° C to obtain catalyst microspheres.
  • the microspheres obtained by spray drying granulation were dried at 100 ° C for 16 h and then calcined at 900 ° C for 4 h to obtain a finished catalyst product.
  • a potassium carbonate solution was added dropwise to the reaction vessel and stirred vigorously to control the reaction temperature at 90 ° C, and the pH was 8 to 9 to obtain A slurry of the insoluble compound, which is then filtered and washed to a pH of 7 to 7.5.
  • the washed slurry was thoroughly stirred by adding 3% of methyl cellulose and deionized water to adjust the solid content to 25%.
  • the well-stirred slurry was passed through a centrifugal spray-drying granulation apparatus to control the feed port temperature of 400 V and the discharge port temperature of 160 ° C to obtain catalyst microspheres.
  • the microspheres obtained by spray drying granulation were dried at 200 ° C for 2 h and then calcined at 650 ° C for 15 h to obtain a finished catalyst product.
  • a mixed solution of iron nitrate, nickel nitrate, zinc chloride and barium chloride is prepared, wherein the ion concentrations of Fe 3+ , Ni 2+ , Zn 2+ and Sr 2+ are 1 mol/L, 0.8 mol/L, 0.7, respectively. Mol/L, 0.8 mol/L, with 0.45 mol/L urea solution.
  • 2000 ml of solution A was added to the reaction vessel, and then the urea solution was added dropwise to the reaction vessel and vigorously stirred to control the reaction temperature to 80 ° C, and the pH was 7 to 8, to obtain a slurry containing an insoluble compound, and then to slurry. Filter and wash to a pH of 7 to 7.5.
  • Example 7 The washed slurry was thoroughly stirred with 1% methylcellulose and deionized water to adjust the solid content to 10%.
  • the well-stirred slurry was passed through a pressure spray drying granulation apparatus to control the feed port temperature of 200 V and the discharge port temperature of 150 ° C to obtain catalyst microspheres.
  • the microspheres obtained by spray drying granulation were dried at 150 ° C for 12 h and then calcined at 500 ° C for 23 h to obtain a finished catalyst product.
  • a mixed solution A of ferric chloride, manganese nitrate, zirconium nitrate, and ammonium dimolybdate is disposed.
  • Fe 3+ , Mn 2+ , Zr 4+ , Mo 6+ , and ion concentrations are 1 mol/L, 2.2 mol/L, 0.5 mol/L, and 0.3 mol/L, respectively, and 0.6 mol/L of potassium hydrogencarbonate is disposed. Solution.
  • Example 8 A mixed solution A of ferric chloride, copper sulfate, and chromium chloride is disposed.
  • concentrations of Fe 3+ , Cu 2+ and Cr 3+ ions were 1 mol/L, 1.2 mol/L and 0.6 mol/L, respectively, and a 0.5 mol/L sodium hydroxide solution was placed.
  • a mixed solution A of ferric chloride, zinc chloride, and vanadium chloride is disposed.
  • concentrations of Fe 3+ , Zn 2+ and V 3+ ions were 1 mol/L, 0.9 mol/L and 0.7 mol/L, respectively, and 0.65 mol/L potassium hydrogen carbonate solution was disposed.
  • 2000 ml of potassium hydrogencarbonate solution was added to the reaction vessel, and then solution A was added dropwise to the reaction vessel and vigorously stirred to control the reaction temperature to 65 ° C, and the pH was 8 to 8.5, to obtain a slurry containing an insoluble compound, and then to slurry.
  • the material was filtered and washed to a pH of 7 to 7.5.
  • the washed slurry was thoroughly stirred by adding 2.2% of phthalocyanine powder and deionized water to adjust the solid content to 36%.
  • the well-stirred slurry was passed through a centrifugal spray-drying granulation apparatus, and the temperature of the feed port was controlled at 320 ° C, and the temperature at the discharge port was 120 ° C to obtain catalyst microspheres.
  • the microspheres obtained by spray drying granulation were dried at 190 ° C for 5 h and then calcined at 820 ° C for 8 h to obtain a finished catalyst product.
  • FIG. 2 A scanning electron micrograph of the finished spherical catalyst prepared by the method of the present invention is shown in Fig. 2.
  • the catalyst prepared by the method of the invention has a spherical shape, and the catalyst has good fluidity and strong abrasion resistance, and is obviously distinguished from the existing irregularly shaped catalyst.
  • Catalyst evaluation test method
  • the catalyst prepared in Examples 1-9 was subjected to tableting treatment and crushed, and sieved to 20 to 40.
  • the target was packed in a 10 ml fixed bed reactor, and the volume velocity of butene was 400 h" 1 , oxygen and butene molar.
  • the ratio is 0.67, the molar ratio of water to butene is 12, the reaction temperature is 340 ° C, the reaction is carried out under normal pressure, the evaluation time is 6 h, and the sample is taken every 2 h, and the result is averaged.
  • the product is detected by gas chromatography.
  • Catalyst I and Catalyst II which are commonly used in the market for the oxidative dehydrogenation of butene to butadiene, were tested under the same reaction conditions. The test results are shown in Table 1 below. Catalyst test results

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途,该方法包括:将金属前躯体和碱性物质反应得到含不溶性化合物的浆料,过滤并洗涤;加入粘结剂、去离子水搅拌,调节浆料固含量为10%~50%;然后进行喷雾干燥造粒,控制进料口温度200°C~400°C,出料口温度100°C~160°C,得到催化剂微球,然后在80°C~200°C干燥1~24h后,在500°C~900°C焙烧4~24h,得到催化剂的通式为FeXaYbZcOd,含Fe、Mg、Zn、Bi、Mo、Mn、Ni、Co、Ba、Ca等金属。所制得的催化剂颗粒流动性强、粒径分布合适,具有很高机械强度和催化活性,适合于工业化的流化床丁烯氧化脱氢制丁二烯反应。该催化剂用于丁烯氧化脱氢制丁二烯,丁二烯产率为76%~86%,丁二烯选择性94%~97%。

Description

一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂
及其制备方法和用途 技术领域
本发明涉及一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及 其制备方法和用途, 属于催化技术领域。 背景技术
橡胶及树脂行业的迅猛发展导致丁二烯市场需求的日益旺盛, 而通过 石脑油裂解所得到的 1, 3-丁二烯可虽占总丁二烯产量的 90%, 但由于国内 石脑油量和裂解装置的限制, 所需的丁二烯缺口只能通过丁烯氧化脱氢而 获得。
目前工业规模的丁二烯合成可以通过丁烯脱氢或氧化脱氢生产。而丁 烯直接脱氢是强吸热反应, 需要高温低压条件, 收率较低难以适合于商业 化。 而丁烯氧化脱氢的产物是丁二烯和水, 属于强放热反应, 可以适当降 低反应温度。
C4H8→ C4H6 + H2 AH298 K, i MPa = 113.6 kJ.mol"1
C4H8+l/2 O2→ C4H6 + H2O - AH298 κ, i Mpa = 127.9 kJ.mol"1 工业上丁二烯生产是将混合碳四、 水蒸汽、 空气在催化剂作用下通过 固定床或流化床的形式进行反应, 生产丁二烯。 由于丁烯氧化脱氢属于强 放热反应。 而固定床反应器移热比较困难, 导致催化剂床层温升过高, 不 利于温控, 传统丁烯氧化脱氢固定床反应器的入口与出口温差有 150〜250 V, 且需要二个反应器一备一开。
在流化床反应器内丁烯氧化脱氢移热容易、 可实现等温操作, 延长催 化剂寿命, 并提高催化剂利用率, 且反应器结构相对简单, 制造加工方便, 易于工业放大。 但工业固定床丁烯氧化脱氢催化剂由于形状、 机械强度及 耐磨性等原因并不适合于流化床。 如何合成出一种适合于流化床中丁烯氧 化脱氢催化剂, 并具有抗磨损、 高活性及长期运行稳定性等至关重要。
CN 1184705A及 CN1072110A公开了一种丁烯氧化脱氢制丁二烯铁系 催化剂, 该催化剂用于挡板流化床虽具有一定的活性或 (和)选择性, 但由于 催化剂是不规则形状且粒径较大, 导致丁二烯收率偏低及催化剂损耗较严 重, 该不规则形状的催化剂的扫描电镜照片如图 1所示。
CN101674883 公布了一种铁酸锌催化剂制备 1, 3-丁二烯的方法, 用 了简单的铁酸锌组合, 难以达到理想的催化效果, 而且该催化剂用于固定 床反应器, 催化剂床层温升严重, 且能耗高, 同样并不能解决催化剂在流 化床反应器上的磨损问题。
US 8003840B2 公布了一种利用钼酸铋催化剂制备 1,3-丁二烯的方法, 该系列催化剂是用于固定床反应器, 没有解决催化剂的抗磨损及高流动性 等问题, 且催化活性一般。 发明内容
本发明要解决的技术问题是提高流化床反应器中催化剂的抗磨损性和 高流动性, 从而减少催化剂损耗, 提高催化剂的活性、 转化率和选择性。
本发明的一个目的是提供一种用于流化床反应器的丁烯氧化脱氢制丁 二烯催化剂的制备方法。 通过本发明提供的方法, 采用喷雾干燥造粒制得 的催化剂与比传统方法制备的催化剂相比具有更高的抗磨损性能 (机械强 度)和更高的丁二烯收率, 满足现代工业化流化床合成丁二烯催化剂的性能 需求, 本发明的另一目的是提供一种通过在由本发明的方法制得的催化剂 上进行丁烯氧化脱氢反应, 从而高产率的制备 1,3-丁二烯。
本发明是通过以下技术方案实现的:
本发明提供的方法包括以下步骤: (1)将金属前躯体和碱性物质反应得 到含不溶性化合物的浆料, 将浆料过滤并洗涤; (2)加入适量的粘结剂、 去 离子水充分搅拌, 调节浆料固含量 (质量百分含量)为 10%〜50%; (3)将步骤 (2)所得的浆料通过喷雾干燥造粒设备进行喷雾干燥造粒, 控制进料口温度 200 °C -400 °C, 出料口温度 100°C〜160°C, 得到催化剂微球; (4)将催化剂 微球干燥, 焙烧, 得到催化剂的通式为 FeXaYbZeOd, 其中 X为 Ni、 Co、 Zn、 Cu、 Sn、 Mn中的一种或两种以上, Y为 Bi、 Mo、 Cr、 V、 La、 Zr中 的一种或两种以上, Z为 Mg、 Ca、 Sr、 Ba中的一种或两种以上, a为 0.1〜3, b为 0〜1, c为 0〜1, d的取值满足其它金属元素化合价的要求。
在一个优选的实施方式中, 金属前躯体和碱性物质的反应在 10〜90 °C、 优选 30〜80 °C, pH为 5〜1 1、 优选 6〜10的条件下进行。
在另一个优选的实施方式中,步骤 (1)中浆料过滤并洗涤至 pH为 7〜7.5。 在另一个优选的实施方式中, 步骤 (4)中催化剂微球的干燥条件为干燥 温度 80°C〜200 °C, 优选 80〜180°C, 干燥时间 l〜24h, 优选 4〜16h。
在另一个优选的实施方式中, 步骤 (4)中催化剂微球的焙烧条件为焙烧 温度 500°C〜900 °C, 优选 520〜820°C, 焙烧时间 4〜24h, 优选 4〜18h。
优选地, 本发明提供的方法包括以下步骤: (1)将金属前躯体和碱性物 质在 10〜90 °C、 PH为 5〜1 1 下反应得到含不溶性化合物的浆料, 将浆料过 滤并洗涤至 PH为 7〜7.5; (2)加入适量的粘结剂、 去离子水充分搅拌, 调节 浆料固含量 (质量百分含量)为 10%〜50%, 优选 20%〜45%; (3)将步骤 (2)所 得的浆料通过喷雾干燥造粒设备进行喷雾干燥造粒, 控制进料口温度 200 °C〜400 V, 优选 220 °C〜350 °C, 出料口温度 100 °C〜160 °C, 优选 1 10°C〜150 °C, 得到催化剂微球, 优选其粒径为 20μηι〜600μηι; (4)将催化剂微球在干 燥温度 80°C〜200 °C下干燥 l〜24h后,在焙烧温度 500 °C〜900°C下焙烧 4〜24h, 得到催化剂的通式为 FeXaYbZcOd, 其中 X为 Ni、 Co、 Zn、 Cu、 Sn、 Mn 中的一种或两种以上, Y为 Bi、 Mo、 Cr、 V、 La、 Zr中的一种或两种以上, Z为 Mg、 Ca、 Sr、 Ba中的一种或两种以上, a为 0.1〜3, b为 0〜1, c为 0〜1, d的取值满足其它金属元素化合价的要求。
在本发明方法的一个优选的实施方式中,所述的金属前躯体是硝酸盐、 氯化物、 硫酸盐、 氢氧化物、 氧化物、 金属酸铵中的一种或两种以上的混 合物。
在本发明方法的一个优选的实施方式中,所述的碱性物质是氢氧化钠、 氢氧化钾、 碳酸钠、 碳酸氢钠、 碳酸钾、 碳酸氢钾、 氨水、 尿素中的一种 或两种以上的混合物。
在本发明方法的一个优选的实施方式中, 所述的金属前躯体和碱性物 质的反应是将金属前躯体滴加到碱性物质中、 碱性物质滴加到金属前躯体 中或金属前躯体和碱性物质一同滴加, 并最终控制 PH为 6〜10。 在本发明方法的一个优选的实施方式中, 所述的金属前躯体和碱性物 质在 30〜80 V反应。
在本发明方法的一个优选的实施方式中, 所述的粘结剂是硅胶、 铝胶、 甲基纤维素、 聚乙烯醇、 田菁粉中的一种或两种以上的混合物, 粘结剂的 添加量 (质量百分含量)为 1%〜5%。
在本发明方法的一个优选的实施方式中, 所述的浆料固含量 (质量百分 含量)为 20%〜45%。
在本发明方法的一个优选的实施方式中, 所述的喷雾干燥造粒设备为 压力式喷雾干燥造粒设备、 气流式喷雾干燥造粒设备或离心式喷雾干燥造 粒设备。
在本发明方法的一个优选的实施方式中,所述的进料口温度 220°C〜350 °C, 出料口温度 110°C〜150°C, 得到粒径为 20μη!〜 600μηι的微球。
在本发明方法的一个优选的实施方式中, 所述的干燥温度为 80〜180 V, 干燥 4〜16h。
在本发明方法的一个优选的实施方式中, 所述的焙烧温度为 520〜820
V, 焙烧 4〜18h。
本发明还提供了采用本发明制备的催化剂用于制备 1,3-丁二烯的方 法, 该方法包括在温度 300〜400 °C, 常压和本发明制备的催化剂下, 水和 丁烯摩尔比 6〜16,氧气和丁烯摩尔比为 0.4〜1.0,丁烯体积空速为 lOO^OOlf1 的条件下进行反应, 得到 1,3-丁二烯。
本发明制备的催化剂具有以下有益的效果: (1)在催化剂制备过程中由 于选择了合适的原料组成、 操作条件使得该催化剂具有很好的催化性能, 催化剂的活性、 转化率和选择性高; (2)选用喷雾干燥造粒成型方式和合适 的操作条件, 得到的催化剂与传统方法制备的催化剂相比具有更高的抗磨 损性能和高流动性, 符合工业上丁烯氧化脱氢制丁二烯流化床反应器的要 求; (3)采用该催化剂制备的丁二烯收率高、 催化剂运行时间长、 磨损小、 利用率高。 附图说明 图 1 现有技术不规则形状催化剂的扫描电镜照片。
图 2 本发明方法制备的球状催化剂的扫描电镜照片。 具体实施方式
本发明将通过实施例来详细叙述本发明的特点。
实施例 1
配置硝酸铁、硝酸锰、硝酸锌、硝酸钴的混合溶液 A,其中 Fe3+、 Mn2+ 、 Zn2+ 、Co2+离子浓度分别为 lmol/L、 lmol/L、 lmol/L、 lmol/L,配置 0.5 mol/L 的碳酸钠溶液。 通过并流方式同时向反应釜中滴加溶液 A和碳酸钠溶液并 强烈搅拌, 其中向反应釜中滴加的溶液 A为 2000ml, 控制反应温度 60°C, PH为 8〜9, 得到含不溶性化合物的浆料, 然后将浆料过滤并洗涤至 PH为 7〜7.5。 将洗涤好的上述浆料添加 2%的甲基纤维素、 去离子水充分搅拌, 调节固含量为 20%。 将充分搅拌好的浆料, 通过压力式喷雾干燥造粒设备, 控制进料口温度 280°C, 出料口温度 130°C, 得到催化剂微球。 将喷雾干燥 造粒得到的微球在 120 °C干燥 14 h, 然后在 700 V焙烧 10 h, 得到催化剂 成品。 实施例 2
配置氯化铁、氯化铜、硝酸钴、氯化钡的混合溶液 A,其中 Fe3+ 、Cu2+ 、 Co2+、Ba2+离子浓度分别为 lmol/L、 lmol/L, lmol/L, lmol/L,配置 0.37 mol/L 的氢氧化钾溶液。先向反应釜中加入 2000 ml的溶液 A,然后向反应釜内滴 加氢氧化钾溶液并强烈搅拌, 控制反应温度 30°C, PH 为 10〜11, 得到含 不溶性化合物的浆料, 然后将浆料过滤并洗涤至 PH为 7〜7.5。 将洗涤好的 上述浆料添加 1.8%的聚乙烯醇 (分子量 6000)、 去离子水充分搅拌, 调节固 含量为 35%。 将充分搅拌好的浆料, 通过气流式喷雾干燥造粒设备, 控制 进料口温度 300°C, 出料口温度 140°C, 得到催化剂微球。 将喷雾干燥造粒 得到的微球在 80°C干燥 23h, 然后在 800°C焙烧 9h, 得到催化剂成品。 实施例 3 560ml 65%的浓硝酸并加蒸熘水至 2000ml, 缓慢加入铁屑、 镍粉待完 全溶解后, 加入氧化镁、 氢氧化钡、 氯化铋充分搅拌得到混合溶液 A, 其 中 Fe3+、 Ni2+、 Mg2+、 Ba2+、 Bi3+离子浓度分别为 1 mol/L、 lmol/L、 0.2 mol/L、 0.3mol/L、 lmol/L, 配置 0.25 mol/L的碳酸氢钠、 0.25 mol/L氢氧化钠的混 合溶液 B。 先向反应釜内加入 2000m 溶液 B, 然后向反应釜内滴加溶液 A 并强烈搅拌,控制反应温度 50°C, PH为 5〜6,得到含不溶性化合物的浆料, 然后将浆料过滤并洗涤至 PH为 7〜7.5。 将洗涤好的上述浆料添加 5%的硅 胶、 去离子水充分搅拌, 调节固含量为 50%。 将充分搅拌好的浆料, 通过 气流式喷雾干燥造粒设备, 控制进料口温度 350°C, 出料口温度 120°C, 得 到催化剂微球。 将喷雾干燥造粒得到的微球在 180 °C干燥 6 h, 然后在 520 °C焙烧 18h, 得到催化剂成品。 实施例 4
配置硝酸铁、氯化锰、氯化锡、氯化钙的混合溶液 A,其中 Fe3+、 Mn2+、 Sn4+、 Ca2+离子浓度分别为 1 mol/L、 0. lmol/L, 0.4mol/L、 0.6mol/L, 配置 18%的氨水。 通过并流方式同时向反应釜中滴加溶液 A和氨水溶液并强烈 搅拌, 其中向反应釜中滴加的溶液 A为 2000ml, 控制反应温度 40°C, PH 为 9〜10, 得到含不溶性化合物的浆料, 然后将浆料过滤并洗涤至 PH 为 7〜7.5。 将洗涤好的上述浆料添加 1%的田菁粉、 1%的铝胶、 去离子水充分 搅拌, 调节固含量为 45%。 将充分搅拌好的浆料, 通过离心式喷雾干燥造 粒设备, 控制进料口温度 220°C, 出料口温度 100°C, 得到催化剂微球。 将 喷雾干燥造粒得到的微球在 100 °C干燥 16 h, 然后在 900 °C焙烧 4 h, 得 到催化剂成品。 实施例 5
配置氯化铁、硝酸锌、硝酸镧、氯化钡的混合溶液 A, 其中 Fe3+、 Zn2+、 La3+、 Ba2+离子浓度分别为 1 mol/L, 0. lmol/L, 0.5mol/L、 0.3mol/L, 配置 0.4 mol/L的碳酸钾溶液。 先向反应釜中加入 2000 ml溶液 A, 然后向反应 釜中滴加碳酸钾溶液并强烈搅拌, 控制反应温度 90°C, PH为 8〜9, 得到含 不溶性化合物的浆料, 然后将浆料过滤并洗涤至 PH为 7〜7.5。 将洗涤好的 上述浆料添加 3%的甲基纤维素、 去离子水充分搅拌, 调节固含量为 25%。 将充分搅拌好的浆料, 通过离心式喷雾干燥造粒设备, 控制进料口温度 400 V, 出料口温度 160°C, 得到催化剂微球。 将喷雾干燥造粒得到的微球在 200 °C干燥 2 h, 然后在 650 °C焙烧 15 h, 得到催化剂成品。 实施例 6
配置硝酸铁、硝酸镍、氯化锌、 氯化锶的混合溶液 A, 其中 Fe3+、 Ni2+、 Zn2+、 Sr2+离子浓度分别为 1 mol/L、 0.8mol/L、 0.7mol/L、 0.8mol/L, 配置 0.45 mol/L的尿素溶液。 先向反应釜中加入 2000 ml溶液 A, 然后向反应釜 中滴加尿素溶液并强烈搅拌, 控制反应温度为 80°C, PH 为 7〜8, 得到含 不溶性化合物的浆料, 然后将浆料过滤并洗涤至 PH为 7〜7.5。 将洗涤好的 上述浆料添加 1%的甲基纤维素、 去离子水充分搅拌, 调节固含量为 10%。 将充分搅拌好的浆料, 通过压力式喷雾干燥造粒设备, 控制进料口温度 200 V, 出料口温度 150°C, 得到催化剂微球。 将喷雾干燥造粒得到的微球在 150 °C干燥 12 h, 然后在 500 °C焙烧 23h, 得到催化剂成品。 实施例 7
配置氯化铁、 硝酸锰、 硝酸锆、 二钼酸铵的混合溶液 A。 其中 Fe3+、 Mn2+、 Zr4+ 、 Mo6+、离子浓度分别为 1 mol/L、 2.2mol/L、 0.5mol/L、 0.3mol/L, 配置 0.6mol/L的碳酸氢钾溶液。 先向反应釜内加入 2000ml碳酸氢钾溶液, 然后向反应釜中滴加溶液 A并强烈搅拌,控制反应温度为 10°C, PH为 6〜7, 得到含不溶性化合物的浆料, 然后将浆料过滤并洗涤至 PH为 7〜7.5。 将洗 涤好的上述浆料添加 2%的铝胶、 去离子水充分搅拌, 调节固含量为 30%。 将充分搅拌好的浆料, 通过气流式喷雾干燥造粒设备, 控制进料口温度 230 V, 出料口温度 110°C, 得到催化剂微球。 将喷雾干燥造粒得到的微球在 160 °C干燥 8h, 然后在 600 °C焙烧 14 h, 得到催化剂成品。 实施例 8 配置氯化铁、 硫酸铜、 氯化铬的混合溶液 A。 其中 Fe3+、 Cu2+ 、 Cr3+ 离子浓度分别为 1 mol/L、 1.2mol/L、 0.6mol/L, 配置 0.5mol/L的氢氧化钠 溶液。 先向反应釜内加入 2000ml氢氧化钠溶液, 然后向反应釜中滴加溶液 A并强烈搅拌, 控制反应温度为 50°C, PH为 7.5〜8, 得到含不溶性化合物 的浆料, 然后将浆料过滤并洗涤至 PH为 7〜7.5。 将洗涤好的上述浆料添加 2%的铝胶、去离子水充分搅拌, 调节固含量为 40%。将充分搅拌好的浆料, 通过气流式喷雾干燥造粒设备,控制进料口温度 260°C,出料口温度 140°C, 得到催化剂微球。 将喷雾干燥造粒得到的微球在 130 °C干燥 10h, 然后在 750 °C焙烧 10 h, 得到催化剂成品。 实施例 9
配置氯化铁、 氯化锌、 氯化钒的混合溶液 A。 其中 Fe3+、 Zn2+、 V3+离 子浓度分别为 l mol/L、 0.9mol/L、 0.7mol/L, 配置 0.65mol/L的碳酸氢钾溶 液。 先向反应釜内加入 2000ml碳酸氢钾溶液, 然后向反应釜中滴加溶液 A 并强烈搅拌, 控制反应温度为 65°C, PH为 8〜8.5, 得到含不溶性化合物的 浆料,然后将浆料过滤并洗涤至 PH为 7〜7.5。将洗涤好的上述浆料添加 2.2% 的田菁粉、 去离子水充分搅拌, 调节固含量为 36%。 将充分搅拌好的浆料, 通过离心式喷雾干燥造粒设备,控制进料口温度 320°C,出料口温度 120°C, 得到催化剂微球。将喷雾干燥造粒得到的微球在 190 °C干燥 5h,然后在 820 °C焙烧 8 h, 得到催化剂成品。
采用本发明的方法制备得到的球状催化剂成品的扫描电镜照片如图 2 所示。 由图 1和图 2对比可以看出, 本发明的方法制备的催化剂呈球状, 催化剂流动性好、 抗磨损性强, 明显区别于现有的不规则形状的催化剂。 催化剂评价测试方法
将实施例 1-9中制备的催化剂进行压片处理并破碎, 筛分出 20〜40 目 的填装于 10 ml固定床反应器中, 丁烯体积空速 400 h"1 , 氧气和丁烯摩尔 比为 0.67, 水和丁烯摩尔比为 12, 反应温度 340°C, 常压下反应, 评价时 间为 6 h, 每隔 2 h取一次样, 结果取平均值。 气相色谱检测产物。 同时选 取市场上通用的用于丁烯氧化脱氢制丁二烯的催化剂 I、 催化剂 II在同样 反应条件下进行对比测试, 测试结果如下表 1。 各催化剂测试结果
Figure imgf000011_0001
由表 1可知, 相较于现有的催化剂, 本发明所得催化剂的丁二烯产率和选 择性都有一定提高, 尤其是丁二烯的产率提高明显。

Claims

权利要求书
1. 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂的制备方 法, 该方法包括以下步骤: (1)将金属前躯体和碱性物质反应得到含不溶性 化合物的浆料, 将浆料过滤并洗涤; (2)加入适量的粘结剂、 去离子水充分 搅拌, 调节浆料固含量 (质量百分含量)为 10%〜50%, 优选 20%〜45%; (3) 将步骤 (2)所得的浆料通过喷雾干燥造粒设备进行喷雾干燥造粒, 控制进料 口温度 200°C〜400°C, 优选 220°C-350°C, 出料口温度 100°C〜160°C, 优选 110°C-150°C, 得到催化剂微球, 优选微球粒径为 20μηι-600μηι; (4)将催化 剂微球干燥, 焙烧, 得到催化剂的通式为 FeXaYbZeOd, 其中 X为 Ni、 Co、 Zn、 Cu、 Sn、 Mn中的一种或两种以上, Y为 Bi、 Mo、 Cr、 V、 La、 Zr中 的一种或两种以上, Z为 Mg、 Ca、 Sr、 Ba中的一种或两种以上, a为 0.1〜3, b为 0〜1, c为 0〜1, d的取值满足其它金属元素化合价的要求。
2. 如权利要求 1所述的用于流化床反应器的丁烯氧化脱氢制丁二烯催 化剂的制备方法,其特征在于金属前躯体和碱性物质的反应在 10〜90°C、优 选 30-80°C、 pH为 5〜11下进行。
3. 如权利要求 1所述的用于流化床反应器的丁烯氧化脱氢制丁二烯催 化剂的制备方法, 其特征在于步骤 (1)中浆料过滤并洗涤至 pH为 7〜7.5。
4. 如权利要求 1所述的用于流化床反应器的丁烯氧化脱氢制丁二烯催 化剂的制备方法, 其特征在于步骤 (4)中催化剂微球的干燥条件为干燥温度 80°C〜200°C, 优选 80°C -180°C, 干燥时间 l〜24h, 优选 4-16h。
5. 如权利要求 1所述的用于流化床反应器的丁烯氧化脱氢制丁二烯催 化剂的制备方法, 其特征在于步骤 (4)中催化剂微球的焙烧条件为焙烧温度 500°C〜900°C, 优选 520°C -820°C, 焙烧时间 4〜24h, 优选 4-18h。
6. 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂的制备方 法, 该方法包括以下步骤: (1)将金属前躯体和碱性物质在 10〜90°C、 优选
30-80°C、 PH为 5〜11下反应得到含不溶性化合物的浆料, 将浆料过滤并洗 涤至 PH为 7〜7.5; (2)加入适量的粘结剂、 去离子水充分搅拌, 调节浆料固 含量 (质量百分含量)为 10%〜50%, 优选 20%〜45%; (3)将步骤 (2)所得的浆 料通过喷雾干燥造粒设备进行喷雾干燥造粒, 控制进料口温度 200°C〜400 °C, 优选 220°C - 350°C, 出料口温度 100°C〜160°C, 优选 110°C-150°C, 得 到催化剂微球, 优选微球粒径为 20μηι-600μηι; (4)将催化剂微球在干燥温 度 80°C〜200°C优选 80°C -180°C下、 干燥 l〜24h优选 4-16h后, 在焙烧温度 500°C〜900°C、 优选 520°C -820°C下焙烧 4〜24h、 优选 4-18h, 得到催化剂的 通式为 FeXaYbZcOd, 其中 X为 Ni、 Co、 Zn、 Cu、 Sn、 Mn中的一种或两 种以上, Y为 Bi、 Mo、 Cr、 V、 La、 Zr中的一种或两种以上, Z为 Mg、 Ca、 Sr、 Ba中的一种或两种以上, a为 0.1〜3, b为 0〜1, c为 0〜1, d的取 值满足其它金属元素化合价的要求。
7. 如权利要求 1或 6所述的用于流化床反应器的丁烯氧化脱氢制丁二 烯催化剂的制备方法, 其特征在于所述的金属前躯体是硝酸盐、 氯化物、 硫酸盐、 氢氧化物、 氧化物、 金属酸铵中的一种或两种以上的混合物。
8. 如权利要求 1或 6所述的用于流化床反应器的丁烯氧化脱氢制丁二 烯催化剂的制备方法, 其特征在于所述的碱性物质是氢氧化钠、 氢氧化钾、 碳酸钠、 碳酸氢钠、 碳酸钾、 碳酸氢钾、 氨水、 尿素中的一种或两种以上 的混合物。
9. 如权利要求 1或 6所述的用于流化床反应器的丁烯氧化脱氢制丁二 烯催化剂的制备方法, 其特征在于所述的金属前躯体和碱性物质的反应是 将金属前躯体滴加到碱性物质中、 碱性物质滴加到金属前躯体中或金属前 躯体和碱性物质一同滴加, 并最终控制 PH为 6〜10。
10. 如权利要求 1或 6所述的用于流化床反应器的丁烯氧化脱氢制丁 二烯催化剂的制备方法, 其特征在于所述的粘结剂是硅胶、 铝胶、 甲基纤 维素、聚乙烯醇、田菁粉中的一种或两种以上的混合物,粘结剂的添加量 (质 量百分含量)为 1%〜5%。
11. 一种采用权利要求 1 或 6所述的制备方法制得的用于流化床反应 器的丁烯氧化脱氢制丁二烯的催化剂, 其特征在于所述的催化剂的通式为 FeXaYbZcOd , 其中 X为 Ni、 Co、 Zn、 Cu、 Sn、 Mn中的一种或两种以上, Y为 Bi、 Mo、 Cr、 V、 La、 Zr中的一种或两种以上, Z为 Mg、 Ca、 Sr、 Ba中的一种或两种以上, a为 0.1〜3, b为 0〜1, c为 0〜1, d的取值满足其 它金属元素化合价的要求。
12. —种采用权利要求 1 1所述的催化剂制备 1,3-丁二烯的方法, 其特 征在于在温度 300〜400 °C, 常压和权利要求 17所述的催化剂下, 水和丁烯 摩尔比 6〜16, 氧气和丁烯摩尔比为 0.4〜1.0, 丁烯体积空速为 100〜600h— 1 的条件下进行反应, 得到 1,3-丁二烯。
PCT/CN2013/079212 2012-07-12 2013-07-11 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途 WO2014008865A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201408728UA SG11201408728UA (en) 2012-07-12 2013-07-11 Catalyst for preparation of butadiene by oxydehydrogenation of butene in fluidized bed reactor and method of preparing same and use of same
JP2015520810A JP6304830B2 (ja) 2012-07-12 2013-07-11 流動層反応器に使用されるブテンの酸化脱水素によるブタジエン製造用触媒およびその製造方法と用途
KR1020157002056A KR20150036205A (ko) 2012-07-12 2013-07-11 유동상 반응기에 사용되는 부텐의 옥시탈수소화에 의해 제조된 부타디엔 제조용 촉매 및 이의 제조방법 및 용도
US14/414,085 US9764317B2 (en) 2012-07-12 2013-07-11 Catalysts for preparation of butadiene by oxydehydrogenation of butene in fluidized bed reactor and method of preparing same and use of same
EP13816830.7A EP2873458A4 (en) 2012-07-12 2013-07-11 BY THE OXYDATION AND DEHYDRATION OF BUTYLENE PRODUCED BUTADIA CATALYST FOR SWIVEL LAYER REACTOR AND MANUFACTURING PROCESS AND USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210241468.0 2012-07-12
CN201210241468.0A CN102716754B (zh) 2012-07-12 2012-07-12 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2014008865A1 true WO2014008865A1 (zh) 2014-01-16

Family

ID=46942699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079212 WO2014008865A1 (zh) 2012-07-12 2013-07-11 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途

Country Status (7)

Country Link
US (1) US9764317B2 (zh)
EP (1) EP2873458A4 (zh)
JP (1) JP6304830B2 (zh)
KR (1) KR20150036205A (zh)
CN (1) CN102716754B (zh)
SG (1) SG11201408728UA (zh)
WO (1) WO2014008865A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130217568A1 (en) * 2012-02-20 2013-08-22 Saudi Basic Industries Corporation Oxidative dehydrogenation of olefins catalyst and methods of making and using the same
CN102716754B (zh) * 2012-07-12 2014-06-18 上海碧科清洁能源技术有限公司 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途
CN104968434A (zh) * 2012-12-06 2015-10-07 巴斯夫欧洲公司 用于将正丁烯氧化脱氢成丁二烯的催化剂和方法
CN104117373B (zh) * 2013-04-27 2016-06-01 上海碧科清洁能源技术有限公司 磷改性的混合金属氧化物催化剂及其制备方法和应用
CN104117364B (zh) * 2013-04-27 2016-05-11 上海碧科清洁能源技术有限公司 一种混合金属氧化物催化剂及其制备方法和应用
CN103483130B (zh) * 2013-09-23 2015-05-20 浙江大学 用Bi/Mo/La/Fe四组分复合氧化物催化剂合成1,3-丁二烯的方法
CN103736489B (zh) * 2013-12-24 2015-10-28 天津众智科技有限公司 丁烯氧化脱氢制备丁二烯流化床催化剂的制备方法
CN105562007B (zh) * 2014-10-13 2019-04-26 上海碧科清洁能源技术有限公司 一种铁基金属氧化物催化剂及其制备方法和应用
CN105618064B (zh) * 2014-11-26 2018-09-04 中国石油天然气股份有限公司 丁烯氧化脱氢催化剂的制备方法
CN105749930B (zh) * 2014-12-15 2018-11-16 中国石油天然气股份有限公司 用于丁烯氧化脱氢制丁二烯的催化剂及其制备方法
CN106881099B (zh) * 2015-12-16 2020-02-18 上海华谊新材料有限公司 丁烯氧化脱氢制备丁二烯的催化剂、其制备方法和用途
CN106944051B (zh) * 2016-01-07 2019-06-11 中国石油化工股份有限公司 一种加氢催化剂前驱物、加氢催化剂及其制备方法
EP3402770B1 (en) 2016-01-11 2024-07-10 SABIC Global Technologies B.V. Methods for the oxidative dehydrogenation of butene to produce butadiene
CN106964335A (zh) * 2016-01-13 2017-07-21 中国科学院大连化学物理研究所 一种负载型Mo-VMgO催化剂、其制备方法和应用
KR101902108B1 (ko) 2016-03-30 2018-09-28 주식회사 엘지화학 페라이트계 촉매, 이의 제조방법 및 이를 이용한 부타디엔의 제조방법
CN107970945A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 用于丁烯氧化脱氢制丁二烯的催化剂及其工艺方法
CN108014833B (zh) * 2016-11-04 2021-05-28 中国石油化工股份有限公司 丁烯氧化脱氢制丁二烯催化剂
CN108014831B (zh) * 2016-11-04 2021-05-28 中国石油化工股份有限公司 用于丁烯氧化脱氢制丁二烯催化剂
CN106807453A (zh) * 2017-01-23 2017-06-09 山东三维石化工程股份有限公司 丁烯氧化脱氢制备丁二烯催化剂的方法
KR102353147B1 (ko) 2018-03-13 2022-01-18 주식회사 엘지화학 페라이트계 코팅 촉매의 제조방법 및 이를 이용한 부타디엔의 제조방법
CN112569951B (zh) * 2019-09-30 2023-03-03 中国石油化工股份有限公司 一种脱氢催化剂及其制备方法和应用
CN114425364B (zh) * 2020-10-15 2024-03-29 中国石油化工股份有限公司 丁烯氧化脱氢制丁二烯催化剂及制备方法和应用
CN114632523B (zh) * 2022-04-25 2023-08-25 西南化工研究设计院有限公司 一种用于烷烃化学链脱氢制烯烃催化剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911039A (en) * 1974-01-23 1975-10-07 Standard Oil Co Ohio Process for the preparation of botadiene from N-butene
CN1033013A (zh) * 1986-11-27 1989-05-24 锦州石油化工公司锦州炼油厂 丁烯氧化脱氢催化剂
CN1072110A (zh) 1991-11-01 1993-05-19 中国科学院兰州化学物理研究所 流化床用丁烯氧化脱氢催化剂
CN1184705A (zh) 1996-09-25 1998-06-17 中国科学院兰州化学物理研究所 丁烯氧化脱氢制丁二烯铁系催化剂
CN101674883A (zh) 2007-05-10 2010-03-17 Sk能源株式会社 铁酸锌催化剂、其制备方法以及使用该铁酸锌催化剂制备1,3-丁二烯的方法
US8003840B2 (en) 2006-04-18 2011-08-23 Sk Innovation Co., Ltd. Bismuth molybdate-based catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
CN102391062A (zh) * 2011-07-27 2012-03-28 天津市泰旭物流有限公司 一种采用丁烯氧化脱氢生产1,3-丁二烯的生产方法
CN102716754A (zh) * 2012-07-12 2012-10-10 上海碧科清洁能源技术有限公司 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414631A (en) * 1965-06-10 1968-12-03 Standard Oil Co Oxydehydrogenation process
US3595810A (en) * 1969-06-24 1971-07-27 Gulf Research & Chemical Co Zinc chromium ferrite catalyst
US3716496A (en) * 1969-09-06 1973-02-13 Nitto Chemical Industry Co Ltd Catalyst composition for the oxidation and the oxidative dehydrogenation of olefins
US3843745A (en) * 1970-02-13 1974-10-22 Petro Tex Chem Corp Oxidative dehydrogenation process catalyzed by magnesium ferrite
US3644549A (en) * 1970-09-09 1972-02-22 Gulf Research Development Co Dehydrogenation of ethylbenzene to styrene using so2 and ferrite catalysis in the form of spinels or perovskites
FR2411169A1 (fr) * 1977-12-12 1979-07-06 Shell France Procede de deshydrogenation sans oxydation et composition catalytique pour la mise en oeuvre de ce procede
JPS5916817B2 (ja) * 1979-04-18 1984-04-18 宇部興産株式会社 アクリロニトリル製造用触媒
US4973793A (en) * 1989-06-08 1990-11-27 Texas Petrochemicals Corporation Oxidative dehydrogenation of amylenes
ATE163622T1 (de) * 1990-07-18 1998-03-15 Precision Valve Corp Mehrlagige dichtung für den abschluss von aerosol-behälten
CA2420547A1 (en) 2000-08-28 2002-03-07 Research Triangle Institute Attrition resistant bulk iron catalysts and processes for preparing and using same
JP5100551B2 (ja) * 2007-07-30 2012-12-19 日揮触媒化成株式会社 オキシクロリネーション用触媒組成物およびその製造方法
US10086365B2 (en) 2007-08-30 2018-10-02 Res Usa, Llc Strengthened iron catalyst for slurry reactors
KR100888143B1 (ko) * 2007-12-12 2009-03-13 에스케이에너지 주식회사 혼성 망간 페라이트 촉매, 이의 제조방법 및 이를 이용한1,3-부타디엔의 제조방법
KR101086731B1 (ko) * 2008-10-17 2011-11-25 금호석유화학 주식회사 1-부텐의 산화/탈수소화 반응에서 1,3-부타디엔 제조용 비스무스 몰리브덴 철 복합 산화물 촉매 및 제조방법
EA019875B1 (ru) 2009-06-03 2014-06-30 Рентек, Инк. Катализаторы синтеза фишера-тропша во взвешенном слое со структурными промоторами из диоксида кремния/оксида алюминия
JP5595005B2 (ja) * 2009-10-19 2014-09-24 日揮触媒化成株式会社 オキシクロリネーション用触媒の製造方法
JP5649849B2 (ja) * 2010-04-19 2015-01-07 日揮触媒化成株式会社 一酸化炭素還元触媒の製造方法および一酸化炭素還元触媒
JP2012067047A (ja) * 2010-09-27 2012-04-05 Asahi Kasei Chemicals Corp ブタジエンを製造する方法
JP2012072076A (ja) * 2010-09-28 2012-04-12 Asahi Kasei Chemicals Corp 共役ジオレフィンの製造方法
US20130217568A1 (en) * 2012-02-20 2013-08-22 Saudi Basic Industries Corporation Oxidative dehydrogenation of olefins catalyst and methods of making and using the same
CN103831114B (zh) * 2012-11-21 2016-08-24 上海华谊丙烯酸有限公司 铁酸盐催化剂、其制备方法和用途
US9399606B2 (en) * 2012-12-06 2016-07-26 Basf Se Catalyst and process for the oxidative dehydrogenation of N-butenes to butadiene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911039A (en) * 1974-01-23 1975-10-07 Standard Oil Co Ohio Process for the preparation of botadiene from N-butene
CN1033013A (zh) * 1986-11-27 1989-05-24 锦州石油化工公司锦州炼油厂 丁烯氧化脱氢催化剂
CN1072110A (zh) 1991-11-01 1993-05-19 中国科学院兰州化学物理研究所 流化床用丁烯氧化脱氢催化剂
CN1184705A (zh) 1996-09-25 1998-06-17 中国科学院兰州化学物理研究所 丁烯氧化脱氢制丁二烯铁系催化剂
US8003840B2 (en) 2006-04-18 2011-08-23 Sk Innovation Co., Ltd. Bismuth molybdate-based catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
CN101674883A (zh) 2007-05-10 2010-03-17 Sk能源株式会社 铁酸锌催化剂、其制备方法以及使用该铁酸锌催化剂制备1,3-丁二烯的方法
CN102391062A (zh) * 2011-07-27 2012-03-28 天津市泰旭物流有限公司 一种采用丁烯氧化脱氢生产1,3-丁二烯的生产方法
CN102716754A (zh) * 2012-07-12 2012-10-10 上海碧科清洁能源技术有限公司 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2873458A4

Also Published As

Publication number Publication date
KR20150036205A (ko) 2015-04-07
US20150165432A1 (en) 2015-06-18
CN102716754B (zh) 2014-06-18
EP2873458A4 (en) 2015-11-04
SG11201408728UA (en) 2015-02-27
JP6304830B2 (ja) 2018-04-04
CN102716754A (zh) 2012-10-10
EP2873458A1 (en) 2015-05-20
US9764317B2 (en) 2017-09-19
JP2015527190A (ja) 2015-09-17

Similar Documents

Publication Publication Date Title
WO2014008865A1 (zh) 一种用于流化床反应器的丁烯氧化脱氢制丁二烯催化剂及其制备方法和用途
JP7019813B2 (ja) アセトフェノンの水素化によってα-フェニルエタノールを製造するための触媒、その製造方法および応用
CN106040271B (zh) 一种丙烷脱氢制丙烯用催化剂及其制备方法
CN106391028B (zh) 一种用于流化床的甲烷化催化剂及其制备方法
CN110124729B (zh) 一种用于浆态床费托合成的包覆型催化剂及其制备方法
CN106512999B (zh) 一种甲烷干气重整催化剂及其制备方法
CN103736498B (zh) 丙烯氧化催化剂、制备方法及其用途
US20140141965A1 (en) Ferrite catalyst and preparation method thereof
CN100566829C (zh) 氨氧化法制丙烯腈催化剂
WO2021120928A1 (zh) 一种制备Ni-X基氧化物催化剂的方法及其在转移加氢中的应用
CN102500382B (zh) 一种合成甲醇的催化剂及其制备方法
CN107597125A (zh) 一种含固态钾的仲丁醇脱氢催化剂及其制备方法
CN101121130B (zh) 氨氧化法制不饱和腈催化剂
CN104117373B (zh) 磷改性的混合金属氧化物催化剂及其制备方法和应用
CN105749930B (zh) 用于丁烯氧化脱氢制丁二烯的催化剂及其制备方法
CN104923245B (zh) 丙烯酸催化剂及丙烯酸合成方法
CN108014833B (zh) 丁烯氧化脱氢制丁二烯催化剂
CN107952448A (zh) 一种复合金属氧化物催化剂及其制备方法和应用
CN103157484B (zh) 催化剂及其制备方法
CN112090427A (zh) 一种低汽气比一氧化碳高温变换催化剂
CN112642430B (zh) 一种丁烯氧化脱氢制丁二烯的微球催化剂的制备方法
CN108014831B (zh) 用于丁烯氧化脱氢制丁二烯催化剂
CN104549350B (zh) 丙烯酸催化剂及其制备方法
CN103769160A (zh) 丙烯选择氧化催化剂及其用途
CN113019444B (zh) 羰基化-除水双功能催化剂前驱体及其制备方法、羰基化-除水双功能催化剂及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013816830

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14414085

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015520810

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157002056

Country of ref document: KR

Kind code of ref document: A