WO2014003127A1 - 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム - Google Patents
製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム Download PDFInfo
- Publication number
- WO2014003127A1 WO2014003127A1 PCT/JP2013/067675 JP2013067675W WO2014003127A1 WO 2014003127 A1 WO2014003127 A1 WO 2014003127A1 JP 2013067675 W JP2013067675 W JP 2013067675W WO 2014003127 A1 WO2014003127 A1 WO 2014003127A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slag
- electric furnace
- steelmaking slag
- hot
- amount
- Prior art date
Links
- 239000002893 slag Substances 0.000 title claims abstract description 393
- 230000009467 reduction Effects 0.000 title claims abstract description 68
- 229910000831 Steel Inorganic materials 0.000 title abstract description 17
- 239000010959 steel Substances 0.000 title abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 141
- 239000000463 material Substances 0.000 claims abstract description 72
- 229910052742 iron Inorganic materials 0.000 claims abstract description 69
- 238000009628 steelmaking Methods 0.000 claims description 186
- 238000012545 processing Methods 0.000 claims description 19
- 238000006722 reduction reaction Methods 0.000 description 63
- 239000010410 layer Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 28
- 239000002994 raw material Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 16
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 239000003575 carbonaceous material Substances 0.000 description 10
- 239000003607 modifier Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 238000007664 blowing Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000010079 rubber tapping Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000011946 reduction process Methods 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000002407 reforming Methods 0.000 description 3
- 238000010405 reoxidation reaction Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000002686 phosphate fertilizer Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000161 steel melt Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0087—Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
- C04B5/06—Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5229—Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/527—Charging of the electric furnace
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B19/00—Combinations of furnaces of kinds not covered by a single preceding main group
- F27B19/04—Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/18—Arrangements of devices for charging
- F27B3/183—Charging of arc furnaces vertically through the roof, e.g. in three points
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D15/00—Handling or treating discharged material; Supports or receiving chambers therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/14—Charging or discharging liquid or molten material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5229—Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
- C21C2005/5235—Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace with bottom electrodes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2300/00—Process aspects
- C21C2300/04—Avoiding foam formation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a steelmaking slag reduction treatment device that recovers valuable components by reducing slag (steelmaking slag) generated in a steelmaking process on an industrial scale, and modifies the properties of the steelmaking slag to suit various applications
- the present invention relates to a steelmaking slag reduction treatment system.
- This application includes Japanese Patent Application No. 2012-144473 filed in Japan on June 27, 2012, Japanese Patent Application No. 2012-144557 filed in Japan on June 27, 2012, and October 25, 2012.
- Steelmaking slag contains metal components such as Fe and Mn, and P.
- metal components such as Fe and Mn, and P.
- due to expansion and disintegration caused by containing a large amount of CaO its use for roadbed materials and aggregates has been limited. .
- recycling of resources has been actively promoted, and many methods for recovering valuable materials from steelmaking slag have been disclosed so far.
- Patent Document 1 to steel melt stored in a melting furnace, steel slag generated at the time of steel melting is added, and further, heat and reducing material are added to transform the steel slag, while Fe, Mn, and A method for treating steel slag is disclosed in which P is transferred to a molten metal to obtain a metamorphic slag, and then Mn and P in the molten metal are transferred to the slag.
- this processing method is poor in work efficiency because it is necessary to continuously perform several batch processes until a slag having a required component composition is obtained.
- Patent Document 2 steel slag having an iron oxide content of more than 5 wt% is supplied to a steel bath having a carbon content of less than 1.5 wt%, and then carbon or a carbon carrier is introduced to carbonize the steel bath, A method is disclosed in which a reduction treatment is performed after obtaining a steel bath with a carbon content greater than 2.0 wt%.
- the method of Patent Document 2 suppresses the generation of a large amount of gas by setting the C concentration (carbon concentration) in molten iron to less than 1.5 wt% when molten slag is charged, and the C concentration is 2.0 wt% when performing smelting reduction.
- the desired reduction is carried out by raising it to a very high level. Therefore, since decarburization heating and carburization reduction are repeated, batch processing is performed and work efficiency is poor. Since the C concentration is increased to over 2.0 wt% during the reduction treatment, the method of Patent Document 2 promotes the reduction reaction mainly by the reaction between slag and metal. Conceivable.
- Non-Patent Document 1 discloses a result of a reduction test in which steel-manufactured slag powder, carbonaceous material powder, and slag modifier powder are charged from a hollow electrode in an electric furnace.
- the reduction test of Non-Patent Document 1 is a test in which cold steelmaking slag that has been solidified and pulverized is processed in an electric furnace, the energy intensity is large.
- Patent Document 3 discloses a technique for recovering valuable metals by reducing molten slag generated by non-ferrous refining with a carbonaceous reducing material in an open DC electric furnace, separating it into a metal phase and a slag phase. Has been. However, since the method of Patent Document 3 is also batch processing of an electric furnace using cold slag as a processing object, the energy intensity is large.
- any of the methods for recovering valuable components from slag has a problem that the working efficiency is low or the energy intensity is large.
- the conventional method of recycling hot steelmaking slag by batch processing has poor work efficiency, and the conventional method of melting cold steelmaking slag and recycling it as a resource has the disadvantages of high energy intensity. I have it.
- the present invention is a method of reducing the steelmaking slag as a method with good working efficiency and low energy intensity, recovering valuable components and adapting the properties of the steelmaking slag to various applications.
- An object of the present invention is to provide a steelmaking slag reduction treatment apparatus and a steelmaking slag reduction treatment system that can be modified.
- a first aspect of the present invention is a steelmaking slag reduction treatment apparatus for continuously reducing hot steelmaking slag using an electric furnace, wherein the hot steelmaking slag is poured into the electric furnace. And an electrode for heating the molten slag layer on the molten iron generated by the reduction of the hot steelmaking slag together with the molten iron, and an auxiliary material containing a reducing material to the molten slag layer.
- a steelmaking slag reduction treatment apparatus comprising: an auxiliary raw material supply unit configured to tilt; and a tilting device that tilts the slag supply container to adjust an inflow amount of the hot steelmaking slag into the electric furnace.
- the electric furnace may be a fixed closed electric furnace.
- the sealed electric furnace may be a DC electric furnace.
- the auxiliary raw material supply unit may be an auxiliary raw material supply pipe provided inside the electrode. .
- an exhaust unit that exhausts exhaust gas from the electric furnace may be provided in the slag supply container.
- a second aspect of the present invention is a steelmaking slag reduction treatment system using the reduction treatment device according to (1) above, and a measurement unit that measures the amount of electric power supplied to the electrode;
- a calculation unit that calculates the amount of hot steelmaking slag that can be reduced based on the amount of electric power that has been reduced, and that calculates a predetermined amount of reducing material based on the amount of hot steelmaking slag that can be reduced;
- the tilting device is driven to adjust the inclination angle of the slag supply container so that the inflow amount of the hot steelmaking slag into the electric furnace follows the amount of hot steelmaking slag that can be obtained,
- a control unit that adjusts the supply amount of the auxiliary material from the auxiliary material supply unit so that the predetermined amount of reducing material is supplied.
- the steelmaking slag can be modified into a material that can be used for various uses such as a cement raw material, an earthwork material, and a ceramic product with a low energy basic unit, and Fe, Mn, and Valuable elements such as P can be recovered in the molten iron. Then, Fe and Mn are recycled to the iron making process, and P can be used as a phosphate fertilizer or a phosphate raw material by performing an oxidation treatment.
- hot steelmaking slag (hereinafter sometimes simply referred to as steelmaking slag). It is effective from the viewpoint of reduction.
- steelmaking slag flows into molten iron contained in an electric furnace, a phenomenon occurs in which hot steelmaking slag rapidly reacts with molten iron and bumps (slag forming).
- overflow overflow
- a measure for preventing the bumping phenomenon is called “relaxation of the reaction rate by reducing the C concentration of molten iron”, but this method has poor working efficiency.
- the present inventors have conducted intensive studies and found that, in an electric furnace, the reduction reaction is more dominant in the reaction between FeO and C in the slag than in the slag-metal reaction. I found out. Therefore, although there is a slight reduction in reducing power, it is possible to perform slag reduction treatment without carburizing even at a low C concentration of about 1.5% by mass, and work efficiency is improved. It turns out that you can.
- the present invention is based on the technical idea that if the steelmaking slag is subjected to a reduction treatment while it is hot and fluid, the energy intensity can be suppressed low. Specifically, the present inventors reduced the steelmaking slag generated in the steelmaking process by flowing it into an electric furnace while it is hot and recovering valuable components and reforming the slag. The idea was that steelmaking slag could be recycled with low energy intensity.
- the steelmaking slag (hot steelmaking slag 6 ') to be reduced by the steelmaking slag reduction treatment apparatus 100 according to the present embodiment is not limited to a specific steelmaking slag as long as it is slag generated in the steelmaking process.
- the hot steelmaking slag 6 ′ only needs to have sufficient fluidity to be allowed to flow into the electric furnace 1 continuously or intermittently, and does not have to be completely melted.
- the solid phase ratio of the hot steelmaking slag 6 ′ is not particularly limited. For example, if the solid phase ratio is about 30% or less at about 1400 ° C., the slag has fluidity that can flow into the electric furnace 1.
- the solid phase ratio can be calculated using commercially available software.
- FIG. 1 shows a steelmaking slag reduction treatment apparatus 100 according to a first embodiment of the present invention including an electric furnace 1 and a slag supply container 9 provided with a tilting device 3a.
- the electric furnace 1 is, for example, a fixed hermetic DC electric furnace, and includes an electrode 2 in which an upper electrode 2a and a furnace bottom electrode 2b are paired in the vertical direction.
- Molten iron 5 is accommodated in the bottom of the electric furnace 1, and a layer of molten slag 6 (molten slag layer) including hot steelmaking slag 6 ′ supplied from the slag supply container 9 is formed on the molten iron 5. ing.
- the molten slag layer is heated by the electrode 2 together with the molten iron 5.
- an auxiliary material supply unit 14 for supplying an auxiliary material containing a reducing material to the molten slag layer is provided as an auxiliary material supply pipe 14a inside the upper electrode 2a.
- a slag supply part 4 for supplying hot steelmaking slag 6 'that is hot and fluid from a slag supply container 9.
- FIG. 2 shows a comparison of the time course of (Total Fe) (mass%) of the molten slag 6 with and without an opening in the furnace wall of the electric furnace 1.
- (Total) Fe) of the molten slag 6 is reduced (refer to the carbon material blowing period in the figure). If there is an opening in the furnace wall of 1, air is sucked and the inside of the electric furnace 1 becomes an oxidizing atmosphere, and reoxidation occurs on the surface of the molten slag 6. For this reason, after the blowing of the reducing material (carbon material) is completed, (Total Fe) of the molten slag 6 increases due to the effect of reoxidation.
- the electric furnace 1 is preferably a sealed type in which outside air does not enter.
- the slag supply container 9 is provided with an exhaust part 13 in the slag supply container 9 so as to serve as an exhaust path for the electric furnace exhaust gas.
- the electric furnace 1 has a reducing atmosphere mainly composed of CO gas generated by the reduction reaction and H 2 generated from the supplied reducing material (carbon material).
- a reducing atmosphere mainly composed of CO gas generated by the reduction reaction and H 2 generated from the supplied reducing material (carbon material).
- the slag supply container 9 is used as an exhaust path for the electric furnace exhaust gas, since it is maintained in a reducing atmosphere, an oxidation reaction on the surface of the molten slag layer can be prevented.
- the furnace side wall 1a of the electric furnace 1 is provided with a tap hole 7 for discharging the molten slag 6 to the tap (not shown).
- a tapping hole 8 for feeding the molten iron 5 to tapping (not shown) is higher than the level (height) of the tapping hole 7. It is provided below.
- furnace side wall 1a, the furnace side wall 1b, and the furnace ceiling 1c are cooled by jacket cooling or sprinkling cooling (not shown).
- the electric furnace 1 may include a raw material supply device (not shown) for supplying iron raw materials such as small iron scraps and DRI (Direct Reduced Iron) into the electric furnace 1.
- molten iron 5 can be produced by melting and reducing small lump iron scrap, reduced iron, powdered dust and the like.
- the electric furnace 1 is provided with an auxiliary material supply unit 14 for supplying an auxiliary material such as a reducing material necessary for the reduction and a modified powder for improving the characteristics of the molten slag 6.
- the auxiliary material supply unit 14 is provided in the furnace ceiling 1c of the electric furnace 1 so as to penetrate the furnace ceiling 1c, as in the steelmaking slag reduction treatment apparatus 200 according to the second embodiment of the present invention shown in FIG.
- the auxiliary material supply pipe 14a may be used.
- the upper electrode 2a of the electrode 2 may be a hollow electrode, and the hollow portion may be used as the auxiliary material supply pipe 14a. If the hollow electrode is used, auxiliary materials (reducing material, modified powder, etc.) can be directly blown into the arc spot.
- assistant raw material blowing lance 14b is provided in the electric furnace 1, and the hollow part of a hollow electrode and the auxiliary
- the auxiliary material blowing lance 14 b is provided in the furnace ceiling 1 c of the electric furnace 1 so as to penetrate the furnace ceiling 1 c.
- the auxiliary raw material supply pipe 14 a is arranged near the electrode 2, but the auxiliary raw material supply pipe 14 a may be arranged at a position away from the electrode 2. Further, the auxiliary material blowing lance 14 b and the auxiliary material supply pipe 14 a may be provided in the furnace ceiling 1 c of the electric furnace 1.
- the slag supply container 9 (see FIGS. 1, 3, and 4) is composed of an upper wall 11 and a lower wall 10, and is an opening for receiving supply of hot steelmaking slag 6 'from a slag pan (not shown). 13a and a lid 13b that closes the opening 13a.
- An exhaust unit 13 may be provided on the upper portion of the slag supply container 9.
- the lower wall 10 of the slag supply container 9 is preferably composed of a refractory lining wall
- the upper wall 11 is preferably composed of a water-cooled refractory lining wall.
- the slag supply container 9 can tilt at an arbitrary angle around the tilt axis z. Accordingly, the amount of hot steelmaking slag 6 ′ flowing into the electric furnace 1 from the slag supply unit 4 connected to the electric furnace 1 can be adjusted.
- the atmosphere of the slag supply container 9 is always in a negative pressure state, which is preferable.
- the high-temperature exhaust gas containing CO and H 2 generated in the electric furnace 1 enters the slag supply container 9 from the slag supply unit 4, and the inside of the slag supply container 9 is discharged into the discharge path.
- the gas flows out from the exhaust part 13 to the dust collector (not shown) via the exhaust gas duct (not shown).
- the outside air that has entered flows into the slag supply container 9, so that the atmosphere in the electric furnace 1 is always a high temperature. Maintained in a reducing atmosphere.
- the inside of the slag supply container 9 is maintained in a high-temperature reducing atmosphere, like the inside of the electric furnace 1, and the hot steelmaking slag 6 'is kept warm and not oxidized.
- the slag supply container 9 may be provided with a nozzle 12 for blowing oxygen or an oxygen-containing gas into the electric furnace exhaust gas containing CO and H 2 .
- a nozzle 12 for blowing oxygen or an oxygen-containing gas into the electric furnace exhaust gas containing CO and H 2 .
- the temperature in the slag supply container 9 may not rise to a temperature at which hot steelmaking slag does not adhere to the furnace wall of the slag supply container 9.
- the slag supply container 9 may be provided with a combustion burner 12a to irradiate the slag supply container 9 with a flame.
- the slag supply container 9 includes a slag modifier addition device (illustrated) for adding, to the hot steelmaking slag 6 ′, a slag modifier for reforming the hot steelmaking slag 6 ′ in the slag supply container 9. None) may be arranged. Further, the slag modifier may be melted and irradiated into the slag supply container 9 through the combustion burner 12a.
- the slag supply container 9 is provided with a tilting device 3 a that tilts the slag supply container 9 about the tilt axis z and controls the amount of hot steelmaking slag flowing into the electric furnace 1. Next, the inflow of hot steelmaking slag 6 ′ into the electric furnace 1 by the slag supply container 9 will be described.
- Hot steelmaking slag having hot fluidity is once accommodated in a device capable of adjusting the amount of inflow into the electric furnace 1, and hot steelmaking slag having hot fluidity is contained in the electric furnace 1. In order to prevent overflow, the amount of flow into the electric furnace 1 is adjusted to flow in.
- the inflow mode of the hot steelmaking slag 6 ′ into the electric furnace 1 is adjusted by adjusting the tilt angle of the slag supply container 9 about the tilt axis z by driving the tilting device 3a. And you can choose freely.
- the tilting device 3a tilts the slag supply container 9 about the tilting axis z to store and hold hot steelmaking slag 6 'supplied from a slag pan (not shown), and the stored heat While the steelmaking slag 6 ′ is directed toward the layer of the molten slag 6 on the molten iron 5 in the electric furnace 1, the inflow is adjusted so that the molten slag 6 does not overflow from the electric furnace 1 by forming, Let it flow intermittently.
- the hot steelmaking slag 6 ′ is temporarily stored and held in the slag supply container 9, but the supply amount from the slag pan is small and it is not necessary to temporarily store and hold in the slag supply container 9.
- the slag supply container 9 can be fixed at a fixed angle and used as a slag tank.
- the hot surface layer of the hot steelmaking slag 6 ′ in the slag supply container 9 is updated, and the slag supply container The heat receiving efficiency of the hot steelmaking slag 6 ′ remaining in the steel 9 is improved.
- the (FeO) concentration of the molten slag 6 is reduced, and the contact opportunity between the molten slag 6 and the molten iron 5 is also increased. Can be reduced. For this reason, forming of the molten slag 6 can be suppressed, and as a result, the overflow of the molten slag 6 from the electric furnace 1 can be prevented.
- the amount of hot steelmaking slag 6 ′ flowing into the electric furnace 1 is basically determined by the amount of power supplied to the electrode 2. That is, the inflow amount of the hot steelmaking slag 6 ′ that is continuously or intermittently introduced is calculated based on the power intensity required for the reduction process of the steelmaking slag and the actual supply power amount.
- the inflow speed of the hot steelmaking slag 6 ′ needs to match the power supply speed to the electrode 2 in the long term, but does not need to match the power supply speed to the electrode 2 in the short term. This is because when a predetermined amount of hot steelmaking slag 6 ′ is intermittently introduced into the electric furnace 1, the amount of inflow does not match the power supply speed to the electrode 2 in the short term. In this case, there is no problem in the long term by matching the power supply speed.
- the electric power basic unit required for the reduction process of hot steelmaking slag can be calculated
- the power consumption rate is an estimated value based on the heat balance calculation, the error appears as a temperature change of the molten slag 6 in the electric furnace 1.
- the fluctuation of the molten slag temperature can be controlled by adjusting the supply power, the inflow amount of the hot steelmaking slag 6 ', and the reducing material supply amount.
- the temperature in the electric furnace 1 can be controlled such that the molten iron temperature is 1400 to 1550 ° C. and the molten slag temperature is 1500 to 1650 ° C.
- the inflow of the hot steelmaking slag 6 ' into the electric furnace 1 may be continuous or intermittent.
- the amount of hot steelmaking slag 6' that is allowed to flow at a time is confirmed in advance by experiments or the like so that overflow does not occur due to slag forming. It is important to set it.
- the reducing material may be supplied continuously or intermittently from an auxiliary material supply pipe 14a provided in the furnace lid, but the hollow portion of the hollow electrode or the auxiliary material injection lance 14b can also be supplied continuously or intermittently (see FIGS. 1 and 4). At this time, you may mix at least one of a slag modifier and an iron-containing raw material with a reducing material.
- Carbon materials are usually used as reducing materials.
- As the carbon material coke powder, smokeless coal powder, graphite powder, carbon-containing dust powder, fly ash, or the like can be used.
- the slag modifier is mainly used for adjusting (SiO 2 ) and (Al 2 O 3 ), it is necessary to select an appropriate material.
- the slag modifier preferably contains one or more of SiO 2 , CaO, Al 2 O 3 , and MgO.
- a slag modifier coal ash, slag powder containing a large amount of SiO 2 , Al 2 O 3 , brick waste, aluminum dross, and the like can be used.
- the iron-containing raw material is preferably one or more of iron scrap, reduced iron, and powdered dust.
- the amount of reducing material (auxiliary material) supplied to the molten slag layer needs to be a stoichiometric equivalent in the reduction reaction between the steelmaking slag and the reducing material.
- auxiliary material a stoichiometric equivalent in the reduction reaction between the steelmaking slag and the reducing material.
- 1.1 to 1.6 times the stoichiometric amount required for the reduction reaction with the molten slag 6 is predetermined. It is preferable to suppress the slag forming by suspending it in the molten slag layer.
- the reducing material Pulverized coal
- the forming suppression effect due to the addition of the reducing material is less likely to be exhibited. If the reducing material exceeds 1.6 times the stoichiometric amount, the forming suppressing effect is Saturates.
- (D) a method of reducing the C concentration of the molten iron 5 to 3% by mass or less, May be used in combination. It has been experimentally found that by reducing the C concentration of the molten iron 5 to 3% by mass or less, the molten slag 6 is in a forming state and it is easy to suppress overflowing from the electric furnace 1. Based on that.
- hot steelmaking slag 6 ' is poured continuously or intermittently from the slag supply container 9 into the molten slag layer in the electric furnace 1, while the slag of the molten slag layer Is intermittently extracted from an extraction hole 7 provided in the side wall of the furnace bottom. For this reason, since the reduction process of the hot steelmaking slag 6 'can be continuously performed in the electric furnace 1, the processing efficiency of the steelmaking slag is extremely high.
- the tap hole 7 is opened and the molten slag 6 is discharged out of the furnace.
- the tap hole 8 below the tap hole 7 is opened and the molten iron 5 is discharged.
- the interface between the molten slag 6 layer and the molten iron 5 is close to the tap hole 7, the separation performance of the molten slag 6 and the molten iron 5 is deteriorated.
- the molten slag 6 discharged from the tap hole 7 is immediately subjected to a water granulation rapid cooling process or received in a container and subjected to a slow cooling process to obtain a product.
- the molten iron 5 discharged from the tap hole 8 is received in a molten iron pan, and oxygen or iron oxide and a dephosphorizing material are mixedly supplied to the molten iron 5 to perform a dephosphorization process.
- the target phosphorus concentration after dephosphorization is almost the same as the blast furnace phosphorus concentration, enabling use within the steelmaking process.
- the molten iron 5 after dephosphorization is made into a mold or transferred to a kneading wheel or a molten iron pan and transferred to a steelmaking process.
- the slag produced by the dephosphorization treatment contains P 2 O 5 at a high concentration, it is used as it is as a phosphoric acid fertilizer or as an industrial phosphoric acid raw material.
- FIG. 5 shows a steelmaking slag reduction treatment apparatus 400 used in the steelmaking slag reduction treatment system according to this embodiment.
- the power supplied to the electrode 2 of the electric furnace 1 is set, and the supply rate of hot steelmaking slag that can be reduced is calculated based on the set power. Then, a predetermined reducing material supply speed is calculated based on the calculated hot steelmaking slag supply speed. However, when the “actual power” deviates from the “set power”, the cumulative amount of hot steelmaking slag input is corrected based on the actual cumulative power supply amount.
- the predetermined amount of reducing material is the stoichiometric amount necessary for the reduction reaction with the molten slag 6 in order to prevent the molten slag 6 from forming and overflowing from the electric furnace 1 as described above. It is preferable to set in the range of 1.1 to 1.6 times.
- the calculated amount of hot steelmaking slag X that can be reduced is set as a target value, and the inflow amount Y of hot steelmaking slag to the electric furnace 1 is controlled to follow.
- the inflow amount Y of hot steelmaking slag into the electric furnace 1 is measured by the weighing device 3b with the change in the amount of hot steelmaking slag in the slag supply container 9, and the measured value is input to the calculation unit 15b. Calculated.
- the calculated amount of hot steelmaking slag inflow Y is compared with the amount of hot steelmaking slag X that can be reduced calculated based on the actual amount of supplied power in the calculation unit 15c. Then, the tilting device 3a is driven by the control device so that the inflow amount Y of the hot steelmaking slag follows the target amount of the hot steelmaking slag amount X that can be reduced, and the tilting axis Z is set as the center. Then, the inclination angle of the slag supply container 9 is adjusted. Incidentally, the inflow of the hot steelmaking slag can be performed continuously or intermittently.
- the hot steelmaking slag amount X that can be reduced is set as a target value, and the inflow amount Y of hot steelmaking slag follows this target value.
- the control method is not particularly limited, and for example, widely known PID control or the like can be used.
- the hot steelmaking slag amount X that can be reduced is set as a target value, and the inflow amount Y of hot steelmaking slag follows this target value. Is the same as in the case of continuous inflow.
- the inflow amount Y of hot steelmaking slag for example, when supplying a necessary amount of hot steelmaking slag at a predetermined time interval, a value converted into an inflow rate per hour is adopted. be able to.
- the amount of hot steelmaking slag to be supplied collectively and a predetermined time interval are set in advance, and sequence control is performed. In that case, it is important to confirm in advance the amount of hot steelmaking slag that does not overflow even if hot steelmaking slag is supplied all at once.
- the supply amount from the auxiliary material supply pipe 14a is adjusted with the predetermined amount of reducing material calculated by the calculation unit as a target value.
- the supply amount is controlled by a device (not shown) that controls the supply amount of the auxiliary raw material supply pipe 14a.
- the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
- Example 1 In the steelmaking slag reduction processing apparatus 400 shown in FIG. 5, the hot steelmaking slag 6 ′ discharged from the converter is caused to flow into the slag supply container 9 in a molten state (solid phase ratio of 25% or less), and temporarily stored. Subsequently, the slag supply container 9 was tilted at a frequency of once every 10 minutes, and about 8 tons of hot steelmaking slag was caused to flow into the DC electric furnace 1 once.
- a molten state solid phase ratio of 25% or less
- hot steelmaking slag 6 ′ is allowed to flow into the electric furnace 1 on the condition that about 130 tons of pig iron and a molten slag layer reduced on the pig iron exist with a thickness of about 200 mm. It was. The reason why the inflow amount of the hot steelmaking slag 6 ′ was set to once: about 8 tons was because it was confirmed by the previous actual machine test that forming did not occur vigorously under the present conditions.
- the inflow speed of the hot steelmaking slag 6 ' was set to 800 kg / min on average. As will be described later, this is calculated from the power intensity required for the reduction treatment of hot steelmaking slag obtained by the above-described method in order to continuously supply about 30 MW of power.
- coke powder was supplied into the electric furnace 1 from the auxiliary raw material supply pipe 14a.
- the supply rate was 85 kg / min corresponding to 1.5 times the stoichiometric supply rate.
- the slag modifier has fly ash: 378 kg / t-slag, bauxite powder: 47 kg / t-slag in order to achieve the target basicity: 1.2 and the target (Al 2 O 3 ): 12% by mass.
- the target (Al 2 O 3 ) 12% by mass.
- the temperature in the electric furnace 1 was controlled to be a molten iron temperature: 1450 ⁇ 5 ° C. and a slag temperature: 1550 ⁇ 5 ° C. Since the electric furnace 1 has no opening leading to the atmosphere, the inside of the electric furnace 1 was maintained in a reducing atmosphere.
- the composition and temperature of the molten slag 6 are shown in Table 1.
- molten iron 5 (C; 3.0 mass%) having the composition shown in Table 2 was always present at 100 to 150 tons, and the molten slag layer was present at a thickness of about 100 to 300 mm. .
- the electric furnace 1 was continuously supplied with about 30 MW of electric power from the electrode 2, and the hot steelmaking slag flowing into the molten slag layer could be reduced without causing slag forming.
- Example 2 Reduction reforming was performed under the same conditions as in Example 1, except that the electrode 2 (upper electrode 2a) was a hollow electrode, and the hollow portion was used as the auxiliary material supply pipe 14a to supply the slag modifier and the reducing material. Processed.
- the temperature in the electric furnace 1 was controlled to be a molten iron temperature: 1450 ⁇ 5 ° C. and a slag temperature: 1450 ⁇ 5 ° C.
- the reduction treatment of the hot steelmaking slag could be continuously performed without causing an overflow of the molten slag 6 during the process.
- the molten slag 6 does not overflow without reducing the molten slag 6 even under an inflow condition in which about 8 tons of hot steelmaking slag is caused to flow in a lump at an interval of 10 minutes. The process could be continued. And the inflow speed of hot steelmaking slag was 800 kg / min on average.
- the reduction treatment of hot steelmaking slag can be continuously performed without interruption while intermittently producing steelmaking slag, it is possible to efficiently produce steelmaking slag with a low energy basic unit.
- valuable elements such as Fe, Mn, and P can be recovered in the molten iron at the same time as modification to materials usable for various applications such as earthwork materials and ceramic products.
- Fe and Mn can be recycled to the iron making process, and P can be used as a phosphate fertilizer or phosphoric acid raw material.
- molten iron can be produced by dissolving and reducing small lump scraps, reduced iron, powdered dust and the like in the same electric furnace. Therefore, the present invention has extremely high applicability in the steel industry.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Analytical Chemistry (AREA)
- Structural Engineering (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Details (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
(1)本発明の第一の態様は、電気炉を用いて熱間製鋼スラグを連続還元処理する製鋼スラグ還元処理装置であって、前記電気炉内に前記熱間製鋼スラグを流し込むスラグ供給容器と、前記電気炉に設けられるとともに、前記熱間製鋼スラグの還元によって生成された溶鉄上の溶融スラグ層を前記溶鉄と共に加熱する電極と、前記溶融スラグ層に、還元材を含む副原料を供給する副原料供給部と、前記スラグ供給容器を傾動させて前記熱間製鋼スラグの前記電気炉への流入量を調整する傾動装置と、を備える製鋼スラグ還元処理装置である。
(2)上記(1)に記載の製鋼スラグ還元処理装置では、前記電気炉が固定式の密閉型電気炉であってもよい。
(3)上記(2)に記載の製鋼スラグ還元処理装置では、前記密閉型電気炉が直流電気炉であってもよい。
(4)上記(1)~(3)のいずれか一項に記載の製鋼スラグ還元処理装置では、前記副原料供給部が、前記電極の内部に設けられた副原料供給管であってもよい。
(5)上記(1)~(4)のいずれか一項に記載の製鋼スラグ還元処理装置では、前記スラグ供給容器に前記電気炉からの排ガスを排出する排気部が設けられていてもよい。
(6)本発明の第二の態様は、上記(1)に記載の還元処理装置を用いた製鋼スラグ還元処理システムであって、前記電極に供給された電力量を測定する測定部と;測定された前記電力量に基づいて還元し得る熱間製鋼スラグ量を算出するとともに、算出された前記還元し得る熱間製鋼スラグ量に基づいて所定の還元材量を算出する演算部と;前記還元し得る熱間製鋼スラグ量に対して、前記熱間製鋼スラグの前記電気炉への流入量が追従するように、前記傾動装置を駆動して、前記スラグ供給容器の傾斜角を調整するとともに、前記所定の還元材量が供給されるように前記副原料供給部からの前記副原料の供給量を調整する制御部と;を備える製鋼スラグ還元処理システムである。
前述したように、特許文献2の方法においては、突沸現象の防止策を、「溶鉄のC濃度の低減による反応速度の緩和」に求めているが、この方法では作業効率が悪い。
(a)熱間で流動性のある熱間製鋼スラグを、電気炉への流入量を調整できる装置に一旦収容してから、熱間製鋼スラグが電気炉内でオーバーフローしないように、電気炉への流入量を調整して流入させること、及び、
(b)溶鉄上に溶融スラグ層、好ましくは不活性な溶融スラグ層(還元スラグ層)を緩衝帯として予め形成し、その上に熱間製鋼スラグを流入させること、
の二点が溶融スラグの突沸現象を抑制し、オーバーフローを回避する点で好適であることが、実験的に見出された。
(c)溶融スラグに、予め、炭材を過剰に懸濁させて供給すること、及び、
(d)溶鉄のC濃度を3質量%以下に低減する(ただし、強還元を必要としない場合)こと、
も上記の(a)、(b)の方法と併用すると、オーバーフローを抑制する上で、より好適であることが見出された。
具体的には、本発明者らは、製鋼工程で発生する製鋼スラグを、熱間で流動性のある間に、電気炉に流入させて還元し、有価成分を回収するとともに、スラグを改質して、製鋼スラグを低いエネルギー原単位で資源化できると発想した。
本実施形態においては、溶融スラグ層に還元材を含む副原料を供給する副原料供給部14が、副原料供給管14aとして上部電極2aの内部に設けられている。
また、スラグ供給容器9は、電気炉排ガスの排気経路となるように、スラグ供給容器9に排気部13が設けられている。
また、電気炉1の炉天井1cに、副原料吹込ランス14bと副原料供給管14aとを併設してもよい。
スラグ供給容器9(図1、3、及び、4、参照)は、上壁11と下壁10から構成され、スラグ鍋(図示なし)から熱間製鋼スラグ6’の供給を受けるための開口部13aと、開口部13aを閉塞する蓋13bとを備える。スラグ供給容器9の上部には、排気部13が設けられてもよい。スラグ供給容器9の下壁10は、耐火物内張壁で構成され、上壁11は、水冷耐火物内張壁で構成されていることが好ましい。
次に、スラグ供給容器9による熱間製鋼スラグ6’の電気炉1への流入について説明する。
まず、手段(a)について、以下に詳述する。
(a)熱間で流動性のある熱間製鋼スラグを、電気炉1への流入量を調整できる装置に一旦収容してから、熱間で流動性のある熱間製鋼スラグが電気炉1内でオーバーフローしないように、電気炉1への流入量を調整して流入させる。
(i)熱間製鋼スラグ6’の流入と中断を適宜繰り返しながら流入させる態様、又は、
(ii)所要量の熱間製鋼スラグ6’を、所定の時間間隔で、一括して流入させる態様
を採用し得る。
熱間製鋼スラグ6’が流入された溶鉄5上の溶融スラグ6を還元処理するためには、電気炉1に流入された熱間製鋼スラグ量に対応する量の還元材を、電気炉1内に流入させる必要がある。
(c)溶融スラグ層中に、炭材を還元処理に必要な量に対して過剰に懸濁させる手法、
を併用してもよい。
(d)溶鉄5のC濃度を3質量%以下に低減する手法、
を併用しても良い。これは、溶鉄5のC濃度を3質量%以下に低減することにより、溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出ることを抑制し易くなることを、実験にて知見していることに基いている。
出滓孔7から排出された溶融スラグ6は、直ちに、水砕急冷処理するか、又は、容器に受けて徐冷処理をして、製品とする。出銑孔8から排出された溶鉄5は、溶鉄鍋に受け、該溶鉄5に、酸素又は酸化鉄と脱燐材を混合供給して、脱燐処理を施す。脱燐後の目標燐濃度は、高炉の出銑燐濃度とほぼ同等とし、製鋼プロセス内での利用を可能にする。
次に、算出された還元し得る熱間製鋼スラグ量Xを目標値として、電気炉1への熱間製鋼スラグの流入量Yが追従するように制御される。
図5に示す製鋼スラグ還元処理装置400において、転炉から排出された熱間製鋼スラグ6’を溶融状態(固相率25%以下)で、スラグ供給容器9に流入させて、一旦貯留し、次いで、スラグ供給容器9を、10分に1回の頻度で傾動して、1回約8トンの熱間製鋼スラグを直流電気炉1に流入させた。
電極2(上部電極2a)を中空電極とし、その中空部を副原料供給管14aとして用いてスラグ改質材と還元材を供給したこと以外は、実施例1と同様の条件で、還元改質処理を行った。
表1に示す成分組成の製鋼スラグを還元するため、表2に示す成分組成と温度の溶鉄5を収容した電気炉1内に、上記製鋼スラグ20トンを熱間状態で一括供給した。溶鉄5は、熱間製鋼スラグを電気炉1内に供給した直後、スラグフォーミングが急激に生じ、操業を中止せざるを得なかった。
1 電気炉
1a、1b 炉側壁
1c 炉天井
2 電極
2a 上部電極
2b 炉底電極
3a 傾動装置
3b 秤量器
4 スラグ供給部
5 溶鉄
6 溶融スラグ
6’ 熱間製鋼スラグ
7 出滓孔
8 出銑孔
9 スラグ供給容器
10 下壁
11 上壁
12 ノズル
12a 燃焼バーナー
13 排気部
13a 開口部
13b 蓋
14 副原料供給部
14a 副原料供給管
14b 副原料吹込ランス
15a、15b、15c 演算部
X 設定電力量で還元し得る熱間製鋼スラグ量
Y 電気炉への熱間製鋼スラグの流入量
Z 傾動軸
Claims (6)
- 電気炉を用いて熱間製鋼スラグを連続還元処理する製鋼スラグ還元処理装置であって、
前記電気炉内に前記熱間製鋼スラグを流し込むスラグ供給容器と、
前記電気炉に設けられるとともに、前記熱間製鋼スラグの還元によって生成された溶鉄上の溶融スラグ層を前記溶鉄と共に加熱する電極と、
前記溶融スラグ層に、還元材を含む副原料を供給する副原料供給部と、
前記スラグ供給容器を傾動させて前記熱間製鋼スラグの前記電気炉への流入量を調整する傾動装置と、
を備えることを特徴とする製鋼スラグ還元処理装置。 - 前記電気炉が固定式の密閉型電気炉である
ことを特徴とする請求項1に記載の製鋼スラグ還元処理装置。 - 前記密閉型電気炉が直流電気炉である
ことを特徴とする請求項2に記載の製鋼スラグ還元処理装置。 - 前記副原料供給部が、前記電極の内部に設けられた副原料供給管である
ことを特徴とする請求項1に記載の製鋼スラグ還元処理装置。 - 前記スラグ供給容器に前記電気炉からの排ガスを排出する排気部が設けられている
ことを特徴とする請求項1に記載の製鋼スラグ還元処理装置。 - 請求項1に記載の還元処理装置を用いた製鋼スラグ還元処理システムであって、
前記電極に供給された電力量を測定する測定部と;
測定された前記電力量に基づいて還元し得る熱間製鋼スラグ量を算出するとともに、算出された前記還元し得る熱間製鋼スラグ量に基づいて所定の還元材量を算出する演算部と;
前記還元し得る熱間製鋼スラグ量に対して、前記熱間製鋼スラグの前記電気炉への流入量が追従するように、前記傾動装置を駆動して、前記スラグ供給容器の傾斜角を調整するとともに、前記所定の還元材量が供給されるように前記副原料供給部からの前記副原料の供給量を調整する制御部と;
を備えることを特徴とする製鋼スラグ還元処理システム。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013550690A JP5541423B1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム |
BR112014011428A BR112014011428B1 (pt) | 2012-06-27 | 2013-06-27 | equipamento de processamento de redução para escória siderúrgica e sistema de processamento de redução para escória siderúrgica |
US14/353,961 US9238846B2 (en) | 2012-06-27 | 2013-06-27 | Reduction processing apparatus for steel-making slag and reduction processing system for steel-making slag |
CN201380003825.2A CN103930574B (zh) | 2012-06-27 | 2013-06-27 | 炼钢炉渣还原处理装置和炼钢炉渣还原处理系统 |
CA2852500A CA2852500C (en) | 2012-06-27 | 2013-06-27 | Reduction processing apparatus for steel-making slag and reduction processing system for steel-making slag |
KR1020147012214A KR101560513B1 (ko) | 2012-06-27 | 2013-06-27 | 제강 슬래그 환원 처리 장치 및 제강 슬래그 환원 처리 설비 |
EP13808713.5A EP2759606B1 (en) | 2012-06-27 | 2013-06-27 | Steel slag reduction equipment and steel slag reduction system |
IN7279DEN2014 IN2014DN07279A (ja) | 2012-06-27 | 2013-06-27 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012144473 | 2012-06-27 | ||
JP2012144557 | 2012-06-27 | ||
JP2012-144473 | 2012-06-27 | ||
JP2012-144557 | 2012-06-27 | ||
JP2012235692 | 2012-10-25 | ||
JP2012-235692 | 2012-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014003127A1 true WO2014003127A1 (ja) | 2014-01-03 |
Family
ID=49783256
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067665 WO2014003123A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理方法 |
PCT/JP2013/067675 WO2014003127A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム |
PCT/JP2013/067660 WO2014003119A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理用電気炉のスラグ供給容器 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067665 WO2014003123A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067660 WO2014003119A1 (ja) | 2012-06-27 | 2013-06-27 | 製鋼スラグ還元処理用電気炉のスラグ供給容器 |
Country Status (9)
Country | Link |
---|---|
US (3) | US9238846B2 (ja) |
EP (3) | EP2759606B1 (ja) |
JP (3) | JP5541423B1 (ja) |
KR (3) | KR101531804B1 (ja) |
CN (3) | CN104039987B (ja) |
BR (3) | BR112014011428B1 (ja) |
CA (3) | CA2852500C (ja) |
IN (3) | IN2014DN07279A (ja) |
WO (3) | WO2014003123A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015012354A1 (ja) * | 2013-07-24 | 2015-01-29 | 新日鐵住金株式会社 | 排ガス処理方法および排ガス処理設備 |
JP2016074942A (ja) * | 2014-10-06 | 2016-05-12 | 新日鐵住金株式会社 | 傾動式スラグ供給装置のスラグ付着抑制方法 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102249567B (zh) * | 2010-09-27 | 2013-12-04 | 山东焦化集团有限公司 | 利用熔融炉渣生产还原石材原料的方法 |
JP5541423B1 (ja) | 2012-06-27 | 2014-07-09 | 新日鐵住金株式会社 | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム |
EP2843063B1 (de) * | 2013-09-02 | 2016-07-13 | Loesche GmbH | Verfahren zur Aufbereitung von Stahlwerkschlacken sowie hydraulisches mineralisches Bindemittel |
JP6446970B2 (ja) * | 2014-10-06 | 2019-01-09 | 新日鐵住金株式会社 | 傾動式スラグ供給装置のスラグ付着抑制方法 |
JP6429190B2 (ja) * | 2014-12-16 | 2018-11-28 | 新日鐵住金株式会社 | 製鋼スラグの溶融処理用の電気炉 |
CN105986054A (zh) * | 2015-02-13 | 2016-10-05 | 鞍钢股份有限公司 | 一种对转炉终渣改性并还原的方法 |
FI127179B (fi) * | 2015-09-15 | 2017-12-29 | Outotec Finland Oy | Menetelmä ja järjestely uuniprosessin ominaisuuksien seuraamiseksi ja prosessiseurantayksikkö |
CN106702043B (zh) * | 2015-11-17 | 2018-08-03 | 鞍钢股份有限公司 | 一种转炉终渣处理方法 |
CN106811566B (zh) * | 2015-12-02 | 2019-02-26 | 鞍钢股份有限公司 | 一种含磷钢磷合金化方法 |
CN107012283B (zh) * | 2016-01-27 | 2018-10-09 | 鞍钢股份有限公司 | 一种转炉留渣方法 |
KR102227326B1 (ko) * | 2016-12-16 | 2021-03-12 | 닛폰세이테츠 가부시키가이샤 | 전기로 |
CN110073161B (zh) * | 2016-12-16 | 2020-06-05 | 日本制铁株式会社 | 电炉 |
CN106755665A (zh) * | 2017-02-20 | 2017-05-31 | 中冶赛迪上海工程技术有限公司 | 一种利用高温熔渣处理垃圾焚烧飞灰的装置及方法 |
DE102017105551A1 (de) | 2017-03-15 | 2018-09-20 | Scholz Austria GmbH | Verfahren zur Behandlung metallurgischer Schlacken |
DE102017119675B4 (de) | 2017-08-28 | 2019-07-04 | Voestalpine Stahl Gmbh | Verfahren zur Behandlung von Schlacke |
CN108558244B (zh) * | 2018-05-15 | 2020-09-01 | 鞍钢股份有限公司 | 一种利用热态转炉渣制备水泥混合料的装置及制备方法 |
CN109500048A (zh) * | 2018-10-09 | 2019-03-22 | 中冶南方工程技术有限公司 | 垃圾焚烧飞灰的固化处理方法以及处理系统 |
JP7095674B2 (ja) * | 2019-11-29 | 2022-07-05 | Jfeスチール株式会社 | コンクリートの製造方法 |
JP7531274B2 (ja) * | 2019-11-29 | 2024-08-09 | Jfeスチール株式会社 | 副生成物の処理方法 |
JP7531273B2 (ja) * | 2019-11-29 | 2024-08-09 | Jfeスチール株式会社 | 副生成物の処理方法 |
CN113564297B (zh) * | 2021-07-29 | 2022-06-21 | 广东韶钢松山股份有限公司 | 一种降低渣中氧化锰含量的方法 |
WO2023054345A1 (ja) | 2021-09-30 | 2023-04-06 | 日本製鉄株式会社 | 溶銑製造方法 |
CN114111354B (zh) * | 2021-11-03 | 2023-06-02 | 湖南博一环保科技有限公司 | 一种提锌回转窑铁渣的干法冷却装置及其工作方法 |
CN113913569A (zh) * | 2021-11-10 | 2022-01-11 | 北京中冶设备研究设计总院有限公司 | 干法粒化储渣控流装置及储渣控流方法 |
CN115029488B (zh) * | 2022-06-27 | 2023-10-03 | 北京崎基环保科技有限公司 | 钢渣处理系统及采用其处理钢渣的方法 |
EP4417713A1 (en) | 2023-02-14 | 2024-08-21 | Oterdoom, Harmen | The novel two-step (semi-)continuous process for clean slag and steel or hot metal |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233897A (en) | 1975-09-10 | 1977-03-15 | Nippon Steel Corp | Method for treatment of iron slag |
JPS57177911A (en) * | 1981-04-27 | 1982-11-01 | Kawasaki Steel Corp | Treatment of molten bath to be subjected to dephosphorization regeneration of converter waste slag and recovery of valuable components |
AU2055395A (en) | 1994-06-10 | 1995-12-21 | Mintek | The recovery of metal values from slags |
JP2002069520A (ja) * | 2000-08-29 | 2002-03-08 | Nippon Steel Corp | スラグ中クロムの回収方法 |
JP2002069526A (ja) * | 2000-08-28 | 2002-03-08 | Nippon Steel Corp | 脱燐スラグの再生処理方法 |
JP2003520899A (ja) | 2000-01-28 | 2003-07-08 | ホルシム リミティド | 鉄浴でのスラグ又はスラグ混合物の処理方法 |
JP2006528732A (ja) * | 2003-05-16 | 2006-12-21 | ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ | スラグの利用プロセス |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1291760B (de) | 1963-11-08 | 1969-04-03 | Suedwestfalen Ag Stahlwerke | Verfahren und Vorrichtung zum diskontinuierlichen und kontinuierlichen Vakuum-Schmelzen und -Giessen von Staehlen und stahlaehnlichen Legierungen (Superiegierungen) |
US3905589A (en) * | 1972-03-27 | 1975-09-16 | Pennsylvania Engineering Corp | Steel production method and apparatus |
US4149024A (en) | 1974-07-23 | 1979-04-10 | Asea Aktiebolag | Arc furnace for reducing metal oxides and method for operating such a furnace |
DE2522194A1 (de) | 1975-05-17 | 1976-12-02 | Vacmetal Gmbh | Verfahren und vorrichtung zum herstellen von qualitaetsstaehlen |
US4199350A (en) | 1975-05-17 | 1980-04-22 | Vacmetal Gesellschaft fur Vakuummetallurgie mbH | Method for the production of quality steels |
DE2847403A1 (de) * | 1978-11-02 | 1980-05-14 | Mannesmann Ag | Verfahren zur herstellung von kohlenstoffarmem stahl aus vanadin- und/oder titanhaltigen eisenerzen |
US4328388A (en) | 1980-02-11 | 1982-05-04 | Longenecker Levi S | Electro furnace feeding and furnace fume utilization and control |
JPS59189282A (ja) | 1983-03-31 | 1984-10-26 | 新日鐵化学株式会社 | 高温溶融物の定量排出方法 |
FI72502C (fi) | 1984-12-21 | 1987-06-08 | Outokumpu Oy | Saett och anordning foer framstaellning av vaermebestaendigt och/eller eldbestaendigt fibermaterial. |
AT384669B (de) | 1986-03-17 | 1987-12-28 | Voest Alpine Ag | Anlage zur herstellung von stahl aus schrott |
US5173920A (en) | 1989-08-21 | 1992-12-22 | Asea Brown Boveri Ltd. | Direct-current electric-arc furnace |
AT395656B (de) * | 1990-11-19 | 1993-02-25 | Voest Alpine Ind Anlagen | Anlage zur herstellung von fluessigen metallen |
LU88517A7 (fr) | 1993-12-15 | 1996-02-01 | Wurth Paul Sa | Dispositif de chargement d'un four électrique |
FR2731712B1 (fr) | 1995-03-14 | 1997-04-25 | Usinor Sacilor | Procede d'elaboration de l'acier dans un four electrique a arc, et four electrique a arc pour sa mise en oeuvre |
JP3732561B2 (ja) | 1995-09-29 | 2006-01-05 | 中央電気工業株式会社 | 電気炉における合金鉄製造及び焼却灰の溶融処理の同時実施方法 |
AT404942B (de) * | 1997-06-27 | 1999-03-25 | Voest Alpine Ind Anlagen | Anlage und verfahren zum herstellen von metallschmelzen |
LU90154B1 (fr) * | 1997-10-17 | 1999-04-19 | Wurth Paul Sa | Procede pour la fusion en continu de produits metalliques solides |
JP3796617B2 (ja) | 1998-10-23 | 2006-07-12 | 日本坩堝株式会社 | アルミニウムインゴット等の溶解保持炉 |
JP3644330B2 (ja) | 1999-11-24 | 2005-04-27 | 住友金属工業株式会社 | 還元期スラグの処理方法 |
US6614831B2 (en) * | 2000-02-10 | 2003-09-02 | Process Technology International, Inc. | Mounting arrangement for auxiliary burner or lance |
ES2281384T3 (es) | 2000-02-17 | 2007-10-01 | John A. Vallomy | Metodo para procesar de manera reductora la escoria liquida y el polvo de la camara de filtros del horno de arco electrico. |
JP2002054812A (ja) | 2000-08-08 | 2002-02-20 | Nkk Corp | 焼却灰の溶融処理方法 |
JP2002069626A (ja) * | 2000-09-06 | 2002-03-08 | Sumitomo Metal Mining Co Ltd | スパッタリングターゲットおよびその製造方法 |
US6748004B2 (en) | 2002-07-25 | 2004-06-08 | Air Liquide America, L.P. | Methods and apparatus for improved energy efficient control of an electric arc furnace fume extraction system |
DE10335847A1 (de) * | 2003-07-31 | 2005-02-17 | Sms Demag Ag | Elektroreduktionsofen |
JP2005195224A (ja) * | 2004-01-06 | 2005-07-21 | Nippon Steel Corp | 製鋼スラグの溶融改質炉および溶融改質方法 |
JP4654886B2 (ja) | 2005-11-11 | 2011-03-23 | Jfeスチール株式会社 | 製鋼スラグのリサイクル方法 |
ATE541950T1 (de) | 2006-02-23 | 2012-02-15 | Anton Dipl-Ing Hulek | Verfahren und anlage zur kontinuierlichen weiterverarbeitung schmelzflüssiger hüttenschlacken |
JP2008049206A (ja) | 2006-03-30 | 2008-03-06 | Daido Steel Co Ltd | 排ガス処理方法 |
DE102006052181A1 (de) | 2006-11-02 | 2008-05-08 | Sms Demag Ag | Verfahren zur kontinuierlichen oder diskontinuierlichen Gewinnung eines Metalls oder mehrerer Metalle aus einer das Metall oder eine Verbindung des Metalls enthaltenden Schlacke |
JP5541423B1 (ja) | 2012-06-27 | 2014-07-09 | 新日鐵住金株式会社 | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム |
-
2013
- 2013-06-27 JP JP2013550690A patent/JP5541423B1/ja active Active
- 2013-06-27 CN CN201380003819.7A patent/CN104039987B/zh active Active
- 2013-06-27 CA CA2852500A patent/CA2852500C/en not_active Expired - Fee Related
- 2013-06-27 IN IN7279DEN2014 patent/IN2014DN07279A/en unknown
- 2013-06-27 BR BR112014011428A patent/BR112014011428B1/pt active IP Right Grant
- 2013-06-27 EP EP13808713.5A patent/EP2759606B1/en not_active Not-in-force
- 2013-06-27 WO PCT/JP2013/067665 patent/WO2014003123A1/ja active Application Filing
- 2013-06-27 US US14/353,961 patent/US9238846B2/en active Active
- 2013-06-27 WO PCT/JP2013/067675 patent/WO2014003127A1/ja active Application Filing
- 2013-06-27 US US14/352,529 patent/US9217185B2/en active Active
- 2013-06-27 CA CA2851604A patent/CA2851604C/en not_active Expired - Fee Related
- 2013-06-27 EP EP13809399.2A patent/EP2757163B1/en not_active Not-in-force
- 2013-06-27 KR KR1020147012820A patent/KR101531804B1/ko active IP Right Grant
- 2013-06-27 CA CA2851963A patent/CA2851963C/en not_active Expired - Fee Related
- 2013-06-27 IN IN7659DEN2014 patent/IN2014DN07659A/en unknown
- 2013-06-27 CN CN201380003875.0A patent/CN103930573B/zh active Active
- 2013-06-27 US US14/352,925 patent/US9534266B2/en active Active
- 2013-06-27 JP JP2013547433A patent/JP5522320B1/ja active Active
- 2013-06-27 BR BR112014011858-2A patent/BR112014011858B1/pt active IP Right Grant
- 2013-06-27 EP EP13810302.3A patent/EP2767597B1/en not_active Not-in-force
- 2013-06-27 KR KR1020147012214A patent/KR101560513B1/ko active IP Right Grant
- 2013-06-27 KR KR1020147011767A patent/KR101560512B1/ko active IP Right Grant
- 2013-06-27 IN IN7281DEN2014 patent/IN2014DN07281A/en unknown
- 2013-06-27 WO PCT/JP2013/067660 patent/WO2014003119A1/ja active Application Filing
- 2013-06-27 JP JP2013546469A patent/JP5574057B2/ja active Active
- 2013-06-27 BR BR112014011250-9A patent/BR112014011250B1/pt active IP Right Grant
- 2013-06-27 CN CN201380003825.2A patent/CN103930574B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233897A (en) | 1975-09-10 | 1977-03-15 | Nippon Steel Corp | Method for treatment of iron slag |
JPS57177911A (en) * | 1981-04-27 | 1982-11-01 | Kawasaki Steel Corp | Treatment of molten bath to be subjected to dephosphorization regeneration of converter waste slag and recovery of valuable components |
AU2055395A (en) | 1994-06-10 | 1995-12-21 | Mintek | The recovery of metal values from slags |
JP2003520899A (ja) | 2000-01-28 | 2003-07-08 | ホルシム リミティド | 鉄浴でのスラグ又はスラグ混合物の処理方法 |
JP2002069526A (ja) * | 2000-08-28 | 2002-03-08 | Nippon Steel Corp | 脱燐スラグの再生処理方法 |
JP2002069520A (ja) * | 2000-08-29 | 2002-03-08 | Nippon Steel Corp | スラグ中クロムの回収方法 |
JP2006528732A (ja) * | 2003-05-16 | 2006-12-21 | ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ | スラグの利用プロセス |
Non-Patent Citations (2)
Title |
---|
SCANDINAVIAN JOURNAL OF METALLURGY, vol. 32, 2003, pages 7 - 14 |
See also references of EP2759606A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015012354A1 (ja) * | 2013-07-24 | 2015-01-29 | 新日鐵住金株式会社 | 排ガス処理方法および排ガス処理設備 |
US10612104B2 (en) | 2013-07-24 | 2020-04-07 | Nippon Steel Corporation | Exhaust gas treatment method and exhaust gas treatment facility |
JP2016074942A (ja) * | 2014-10-06 | 2016-05-12 | 新日鐵住金株式会社 | 傾動式スラグ供給装置のスラグ付着抑制方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5541423B1 (ja) | 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム | |
JP5408369B2 (ja) | 溶銑の予備処理方法 | |
JP5954551B2 (ja) | 転炉製鋼法 | |
JP6164151B2 (ja) | 転炉型精錬炉による溶鉄の精錬方法 | |
TWI609839B (zh) | 熔鐵的脫磷劑、精煉劑及脫磷方法 | |
JP2009102697A (ja) | 溶鋼の製造方法 | |
JP5170348B2 (ja) | 溶銑の脱珪・脱リン方法 | |
JP5408379B2 (ja) | 溶銑の予備処理方法 | |
JP5625654B2 (ja) | 溶銑の製造方法 | |
JP6992604B2 (ja) | リン酸スラグ肥料の製造方法 | |
JP4630031B2 (ja) | 酸化鉄含有鉄原料の還元・溶解方法 | |
JP2015110816A (ja) | スラグ処理方法およびスラグ処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013550690 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13808713 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2852500 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14353961 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2013808713 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013808713 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147012214 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014011428 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112014011428 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140512 |