WO2014003127A1 - 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム - Google Patents

製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム Download PDF

Info

Publication number
WO2014003127A1
WO2014003127A1 PCT/JP2013/067675 JP2013067675W WO2014003127A1 WO 2014003127 A1 WO2014003127 A1 WO 2014003127A1 JP 2013067675 W JP2013067675 W JP 2013067675W WO 2014003127 A1 WO2014003127 A1 WO 2014003127A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
electric furnace
steelmaking slag
hot
amount
Prior art date
Application number
PCT/JP2013/067675
Other languages
English (en)
French (fr)
Inventor
俊哉 原田
新井 貴士
公基 福村
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2013550690A priority Critical patent/JP5541423B1/ja
Priority to BR112014011428A priority patent/BR112014011428B1/pt
Priority to US14/353,961 priority patent/US9238846B2/en
Priority to CN201380003825.2A priority patent/CN103930574B/zh
Priority to CA2852500A priority patent/CA2852500C/en
Priority to KR1020147012214A priority patent/KR101560513B1/ko
Priority to EP13808713.5A priority patent/EP2759606B1/en
Priority to IN7279DEN2014 priority patent/IN2014DN07279A/en
Publication of WO2014003127A1 publication Critical patent/WO2014003127A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5229Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/527Charging of the electric furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • F27B3/183Charging of arc furnaces vertically through the roof, e.g. in three points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5229Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
    • C21C2005/5235Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace with bottom electrodes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/04Avoiding foam formation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a steelmaking slag reduction treatment device that recovers valuable components by reducing slag (steelmaking slag) generated in a steelmaking process on an industrial scale, and modifies the properties of the steelmaking slag to suit various applications
  • the present invention relates to a steelmaking slag reduction treatment system.
  • This application includes Japanese Patent Application No. 2012-144473 filed in Japan on June 27, 2012, Japanese Patent Application No. 2012-144557 filed in Japan on June 27, 2012, and October 25, 2012.
  • Steelmaking slag contains metal components such as Fe and Mn, and P.
  • metal components such as Fe and Mn, and P.
  • due to expansion and disintegration caused by containing a large amount of CaO its use for roadbed materials and aggregates has been limited. .
  • recycling of resources has been actively promoted, and many methods for recovering valuable materials from steelmaking slag have been disclosed so far.
  • Patent Document 1 to steel melt stored in a melting furnace, steel slag generated at the time of steel melting is added, and further, heat and reducing material are added to transform the steel slag, while Fe, Mn, and A method for treating steel slag is disclosed in which P is transferred to a molten metal to obtain a metamorphic slag, and then Mn and P in the molten metal are transferred to the slag.
  • this processing method is poor in work efficiency because it is necessary to continuously perform several batch processes until a slag having a required component composition is obtained.
  • Patent Document 2 steel slag having an iron oxide content of more than 5 wt% is supplied to a steel bath having a carbon content of less than 1.5 wt%, and then carbon or a carbon carrier is introduced to carbonize the steel bath, A method is disclosed in which a reduction treatment is performed after obtaining a steel bath with a carbon content greater than 2.0 wt%.
  • the method of Patent Document 2 suppresses the generation of a large amount of gas by setting the C concentration (carbon concentration) in molten iron to less than 1.5 wt% when molten slag is charged, and the C concentration is 2.0 wt% when performing smelting reduction.
  • the desired reduction is carried out by raising it to a very high level. Therefore, since decarburization heating and carburization reduction are repeated, batch processing is performed and work efficiency is poor. Since the C concentration is increased to over 2.0 wt% during the reduction treatment, the method of Patent Document 2 promotes the reduction reaction mainly by the reaction between slag and metal. Conceivable.
  • Non-Patent Document 1 discloses a result of a reduction test in which steel-manufactured slag powder, carbonaceous material powder, and slag modifier powder are charged from a hollow electrode in an electric furnace.
  • the reduction test of Non-Patent Document 1 is a test in which cold steelmaking slag that has been solidified and pulverized is processed in an electric furnace, the energy intensity is large.
  • Patent Document 3 discloses a technique for recovering valuable metals by reducing molten slag generated by non-ferrous refining with a carbonaceous reducing material in an open DC electric furnace, separating it into a metal phase and a slag phase. Has been. However, since the method of Patent Document 3 is also batch processing of an electric furnace using cold slag as a processing object, the energy intensity is large.
  • any of the methods for recovering valuable components from slag has a problem that the working efficiency is low or the energy intensity is large.
  • the conventional method of recycling hot steelmaking slag by batch processing has poor work efficiency, and the conventional method of melting cold steelmaking slag and recycling it as a resource has the disadvantages of high energy intensity. I have it.
  • the present invention is a method of reducing the steelmaking slag as a method with good working efficiency and low energy intensity, recovering valuable components and adapting the properties of the steelmaking slag to various applications.
  • An object of the present invention is to provide a steelmaking slag reduction treatment apparatus and a steelmaking slag reduction treatment system that can be modified.
  • a first aspect of the present invention is a steelmaking slag reduction treatment apparatus for continuously reducing hot steelmaking slag using an electric furnace, wherein the hot steelmaking slag is poured into the electric furnace. And an electrode for heating the molten slag layer on the molten iron generated by the reduction of the hot steelmaking slag together with the molten iron, and an auxiliary material containing a reducing material to the molten slag layer.
  • a steelmaking slag reduction treatment apparatus comprising: an auxiliary raw material supply unit configured to tilt; and a tilting device that tilts the slag supply container to adjust an inflow amount of the hot steelmaking slag into the electric furnace.
  • the electric furnace may be a fixed closed electric furnace.
  • the sealed electric furnace may be a DC electric furnace.
  • the auxiliary raw material supply unit may be an auxiliary raw material supply pipe provided inside the electrode. .
  • an exhaust unit that exhausts exhaust gas from the electric furnace may be provided in the slag supply container.
  • a second aspect of the present invention is a steelmaking slag reduction treatment system using the reduction treatment device according to (1) above, and a measurement unit that measures the amount of electric power supplied to the electrode;
  • a calculation unit that calculates the amount of hot steelmaking slag that can be reduced based on the amount of electric power that has been reduced, and that calculates a predetermined amount of reducing material based on the amount of hot steelmaking slag that can be reduced;
  • the tilting device is driven to adjust the inclination angle of the slag supply container so that the inflow amount of the hot steelmaking slag into the electric furnace follows the amount of hot steelmaking slag that can be obtained,
  • a control unit that adjusts the supply amount of the auxiliary material from the auxiliary material supply unit so that the predetermined amount of reducing material is supplied.
  • the steelmaking slag can be modified into a material that can be used for various uses such as a cement raw material, an earthwork material, and a ceramic product with a low energy basic unit, and Fe, Mn, and Valuable elements such as P can be recovered in the molten iron. Then, Fe and Mn are recycled to the iron making process, and P can be used as a phosphate fertilizer or a phosphate raw material by performing an oxidation treatment.
  • hot steelmaking slag (hereinafter sometimes simply referred to as steelmaking slag). It is effective from the viewpoint of reduction.
  • steelmaking slag flows into molten iron contained in an electric furnace, a phenomenon occurs in which hot steelmaking slag rapidly reacts with molten iron and bumps (slag forming).
  • overflow overflow
  • a measure for preventing the bumping phenomenon is called “relaxation of the reaction rate by reducing the C concentration of molten iron”, but this method has poor working efficiency.
  • the present inventors have conducted intensive studies and found that, in an electric furnace, the reduction reaction is more dominant in the reaction between FeO and C in the slag than in the slag-metal reaction. I found out. Therefore, although there is a slight reduction in reducing power, it is possible to perform slag reduction treatment without carburizing even at a low C concentration of about 1.5% by mass, and work efficiency is improved. It turns out that you can.
  • the present invention is based on the technical idea that if the steelmaking slag is subjected to a reduction treatment while it is hot and fluid, the energy intensity can be suppressed low. Specifically, the present inventors reduced the steelmaking slag generated in the steelmaking process by flowing it into an electric furnace while it is hot and recovering valuable components and reforming the slag. The idea was that steelmaking slag could be recycled with low energy intensity.
  • the steelmaking slag (hot steelmaking slag 6 ') to be reduced by the steelmaking slag reduction treatment apparatus 100 according to the present embodiment is not limited to a specific steelmaking slag as long as it is slag generated in the steelmaking process.
  • the hot steelmaking slag 6 ′ only needs to have sufficient fluidity to be allowed to flow into the electric furnace 1 continuously or intermittently, and does not have to be completely melted.
  • the solid phase ratio of the hot steelmaking slag 6 ′ is not particularly limited. For example, if the solid phase ratio is about 30% or less at about 1400 ° C., the slag has fluidity that can flow into the electric furnace 1.
  • the solid phase ratio can be calculated using commercially available software.
  • FIG. 1 shows a steelmaking slag reduction treatment apparatus 100 according to a first embodiment of the present invention including an electric furnace 1 and a slag supply container 9 provided with a tilting device 3a.
  • the electric furnace 1 is, for example, a fixed hermetic DC electric furnace, and includes an electrode 2 in which an upper electrode 2a and a furnace bottom electrode 2b are paired in the vertical direction.
  • Molten iron 5 is accommodated in the bottom of the electric furnace 1, and a layer of molten slag 6 (molten slag layer) including hot steelmaking slag 6 ′ supplied from the slag supply container 9 is formed on the molten iron 5. ing.
  • the molten slag layer is heated by the electrode 2 together with the molten iron 5.
  • an auxiliary material supply unit 14 for supplying an auxiliary material containing a reducing material to the molten slag layer is provided as an auxiliary material supply pipe 14a inside the upper electrode 2a.
  • a slag supply part 4 for supplying hot steelmaking slag 6 'that is hot and fluid from a slag supply container 9.
  • FIG. 2 shows a comparison of the time course of (Total Fe) (mass%) of the molten slag 6 with and without an opening in the furnace wall of the electric furnace 1.
  • (Total) Fe) of the molten slag 6 is reduced (refer to the carbon material blowing period in the figure). If there is an opening in the furnace wall of 1, air is sucked and the inside of the electric furnace 1 becomes an oxidizing atmosphere, and reoxidation occurs on the surface of the molten slag 6. For this reason, after the blowing of the reducing material (carbon material) is completed, (Total Fe) of the molten slag 6 increases due to the effect of reoxidation.
  • the electric furnace 1 is preferably a sealed type in which outside air does not enter.
  • the slag supply container 9 is provided with an exhaust part 13 in the slag supply container 9 so as to serve as an exhaust path for the electric furnace exhaust gas.
  • the electric furnace 1 has a reducing atmosphere mainly composed of CO gas generated by the reduction reaction and H 2 generated from the supplied reducing material (carbon material).
  • a reducing atmosphere mainly composed of CO gas generated by the reduction reaction and H 2 generated from the supplied reducing material (carbon material).
  • the slag supply container 9 is used as an exhaust path for the electric furnace exhaust gas, since it is maintained in a reducing atmosphere, an oxidation reaction on the surface of the molten slag layer can be prevented.
  • the furnace side wall 1a of the electric furnace 1 is provided with a tap hole 7 for discharging the molten slag 6 to the tap (not shown).
  • a tapping hole 8 for feeding the molten iron 5 to tapping (not shown) is higher than the level (height) of the tapping hole 7. It is provided below.
  • furnace side wall 1a, the furnace side wall 1b, and the furnace ceiling 1c are cooled by jacket cooling or sprinkling cooling (not shown).
  • the electric furnace 1 may include a raw material supply device (not shown) for supplying iron raw materials such as small iron scraps and DRI (Direct Reduced Iron) into the electric furnace 1.
  • molten iron 5 can be produced by melting and reducing small lump iron scrap, reduced iron, powdered dust and the like.
  • the electric furnace 1 is provided with an auxiliary material supply unit 14 for supplying an auxiliary material such as a reducing material necessary for the reduction and a modified powder for improving the characteristics of the molten slag 6.
  • the auxiliary material supply unit 14 is provided in the furnace ceiling 1c of the electric furnace 1 so as to penetrate the furnace ceiling 1c, as in the steelmaking slag reduction treatment apparatus 200 according to the second embodiment of the present invention shown in FIG.
  • the auxiliary material supply pipe 14a may be used.
  • the upper electrode 2a of the electrode 2 may be a hollow electrode, and the hollow portion may be used as the auxiliary material supply pipe 14a. If the hollow electrode is used, auxiliary materials (reducing material, modified powder, etc.) can be directly blown into the arc spot.
  • assistant raw material blowing lance 14b is provided in the electric furnace 1, and the hollow part of a hollow electrode and the auxiliary
  • the auxiliary material blowing lance 14 b is provided in the furnace ceiling 1 c of the electric furnace 1 so as to penetrate the furnace ceiling 1 c.
  • the auxiliary raw material supply pipe 14 a is arranged near the electrode 2, but the auxiliary raw material supply pipe 14 a may be arranged at a position away from the electrode 2. Further, the auxiliary material blowing lance 14 b and the auxiliary material supply pipe 14 a may be provided in the furnace ceiling 1 c of the electric furnace 1.
  • the slag supply container 9 (see FIGS. 1, 3, and 4) is composed of an upper wall 11 and a lower wall 10, and is an opening for receiving supply of hot steelmaking slag 6 'from a slag pan (not shown). 13a and a lid 13b that closes the opening 13a.
  • An exhaust unit 13 may be provided on the upper portion of the slag supply container 9.
  • the lower wall 10 of the slag supply container 9 is preferably composed of a refractory lining wall
  • the upper wall 11 is preferably composed of a water-cooled refractory lining wall.
  • the slag supply container 9 can tilt at an arbitrary angle around the tilt axis z. Accordingly, the amount of hot steelmaking slag 6 ′ flowing into the electric furnace 1 from the slag supply unit 4 connected to the electric furnace 1 can be adjusted.
  • the atmosphere of the slag supply container 9 is always in a negative pressure state, which is preferable.
  • the high-temperature exhaust gas containing CO and H 2 generated in the electric furnace 1 enters the slag supply container 9 from the slag supply unit 4, and the inside of the slag supply container 9 is discharged into the discharge path.
  • the gas flows out from the exhaust part 13 to the dust collector (not shown) via the exhaust gas duct (not shown).
  • the outside air that has entered flows into the slag supply container 9, so that the atmosphere in the electric furnace 1 is always a high temperature. Maintained in a reducing atmosphere.
  • the inside of the slag supply container 9 is maintained in a high-temperature reducing atmosphere, like the inside of the electric furnace 1, and the hot steelmaking slag 6 'is kept warm and not oxidized.
  • the slag supply container 9 may be provided with a nozzle 12 for blowing oxygen or an oxygen-containing gas into the electric furnace exhaust gas containing CO and H 2 .
  • a nozzle 12 for blowing oxygen or an oxygen-containing gas into the electric furnace exhaust gas containing CO and H 2 .
  • the temperature in the slag supply container 9 may not rise to a temperature at which hot steelmaking slag does not adhere to the furnace wall of the slag supply container 9.
  • the slag supply container 9 may be provided with a combustion burner 12a to irradiate the slag supply container 9 with a flame.
  • the slag supply container 9 includes a slag modifier addition device (illustrated) for adding, to the hot steelmaking slag 6 ′, a slag modifier for reforming the hot steelmaking slag 6 ′ in the slag supply container 9. None) may be arranged. Further, the slag modifier may be melted and irradiated into the slag supply container 9 through the combustion burner 12a.
  • the slag supply container 9 is provided with a tilting device 3 a that tilts the slag supply container 9 about the tilt axis z and controls the amount of hot steelmaking slag flowing into the electric furnace 1. Next, the inflow of hot steelmaking slag 6 ′ into the electric furnace 1 by the slag supply container 9 will be described.
  • Hot steelmaking slag having hot fluidity is once accommodated in a device capable of adjusting the amount of inflow into the electric furnace 1, and hot steelmaking slag having hot fluidity is contained in the electric furnace 1. In order to prevent overflow, the amount of flow into the electric furnace 1 is adjusted to flow in.
  • the inflow mode of the hot steelmaking slag 6 ′ into the electric furnace 1 is adjusted by adjusting the tilt angle of the slag supply container 9 about the tilt axis z by driving the tilting device 3a. And you can choose freely.
  • the tilting device 3a tilts the slag supply container 9 about the tilting axis z to store and hold hot steelmaking slag 6 'supplied from a slag pan (not shown), and the stored heat While the steelmaking slag 6 ′ is directed toward the layer of the molten slag 6 on the molten iron 5 in the electric furnace 1, the inflow is adjusted so that the molten slag 6 does not overflow from the electric furnace 1 by forming, Let it flow intermittently.
  • the hot steelmaking slag 6 ′ is temporarily stored and held in the slag supply container 9, but the supply amount from the slag pan is small and it is not necessary to temporarily store and hold in the slag supply container 9.
  • the slag supply container 9 can be fixed at a fixed angle and used as a slag tank.
  • the hot surface layer of the hot steelmaking slag 6 ′ in the slag supply container 9 is updated, and the slag supply container The heat receiving efficiency of the hot steelmaking slag 6 ′ remaining in the steel 9 is improved.
  • the (FeO) concentration of the molten slag 6 is reduced, and the contact opportunity between the molten slag 6 and the molten iron 5 is also increased. Can be reduced. For this reason, forming of the molten slag 6 can be suppressed, and as a result, the overflow of the molten slag 6 from the electric furnace 1 can be prevented.
  • the amount of hot steelmaking slag 6 ′ flowing into the electric furnace 1 is basically determined by the amount of power supplied to the electrode 2. That is, the inflow amount of the hot steelmaking slag 6 ′ that is continuously or intermittently introduced is calculated based on the power intensity required for the reduction process of the steelmaking slag and the actual supply power amount.
  • the inflow speed of the hot steelmaking slag 6 ′ needs to match the power supply speed to the electrode 2 in the long term, but does not need to match the power supply speed to the electrode 2 in the short term. This is because when a predetermined amount of hot steelmaking slag 6 ′ is intermittently introduced into the electric furnace 1, the amount of inflow does not match the power supply speed to the electrode 2 in the short term. In this case, there is no problem in the long term by matching the power supply speed.
  • the electric power basic unit required for the reduction process of hot steelmaking slag can be calculated
  • the power consumption rate is an estimated value based on the heat balance calculation, the error appears as a temperature change of the molten slag 6 in the electric furnace 1.
  • the fluctuation of the molten slag temperature can be controlled by adjusting the supply power, the inflow amount of the hot steelmaking slag 6 ', and the reducing material supply amount.
  • the temperature in the electric furnace 1 can be controlled such that the molten iron temperature is 1400 to 1550 ° C. and the molten slag temperature is 1500 to 1650 ° C.
  • the inflow of the hot steelmaking slag 6 ' into the electric furnace 1 may be continuous or intermittent.
  • the amount of hot steelmaking slag 6' that is allowed to flow at a time is confirmed in advance by experiments or the like so that overflow does not occur due to slag forming. It is important to set it.
  • the reducing material may be supplied continuously or intermittently from an auxiliary material supply pipe 14a provided in the furnace lid, but the hollow portion of the hollow electrode or the auxiliary material injection lance 14b can also be supplied continuously or intermittently (see FIGS. 1 and 4). At this time, you may mix at least one of a slag modifier and an iron-containing raw material with a reducing material.
  • Carbon materials are usually used as reducing materials.
  • As the carbon material coke powder, smokeless coal powder, graphite powder, carbon-containing dust powder, fly ash, or the like can be used.
  • the slag modifier is mainly used for adjusting (SiO 2 ) and (Al 2 O 3 ), it is necessary to select an appropriate material.
  • the slag modifier preferably contains one or more of SiO 2 , CaO, Al 2 O 3 , and MgO.
  • a slag modifier coal ash, slag powder containing a large amount of SiO 2 , Al 2 O 3 , brick waste, aluminum dross, and the like can be used.
  • the iron-containing raw material is preferably one or more of iron scrap, reduced iron, and powdered dust.
  • the amount of reducing material (auxiliary material) supplied to the molten slag layer needs to be a stoichiometric equivalent in the reduction reaction between the steelmaking slag and the reducing material.
  • auxiliary material a stoichiometric equivalent in the reduction reaction between the steelmaking slag and the reducing material.
  • 1.1 to 1.6 times the stoichiometric amount required for the reduction reaction with the molten slag 6 is predetermined. It is preferable to suppress the slag forming by suspending it in the molten slag layer.
  • the reducing material Pulverized coal
  • the forming suppression effect due to the addition of the reducing material is less likely to be exhibited. If the reducing material exceeds 1.6 times the stoichiometric amount, the forming suppressing effect is Saturates.
  • (D) a method of reducing the C concentration of the molten iron 5 to 3% by mass or less, May be used in combination. It has been experimentally found that by reducing the C concentration of the molten iron 5 to 3% by mass or less, the molten slag 6 is in a forming state and it is easy to suppress overflowing from the electric furnace 1. Based on that.
  • hot steelmaking slag 6 ' is poured continuously or intermittently from the slag supply container 9 into the molten slag layer in the electric furnace 1, while the slag of the molten slag layer Is intermittently extracted from an extraction hole 7 provided in the side wall of the furnace bottom. For this reason, since the reduction process of the hot steelmaking slag 6 'can be continuously performed in the electric furnace 1, the processing efficiency of the steelmaking slag is extremely high.
  • the tap hole 7 is opened and the molten slag 6 is discharged out of the furnace.
  • the tap hole 8 below the tap hole 7 is opened and the molten iron 5 is discharged.
  • the interface between the molten slag 6 layer and the molten iron 5 is close to the tap hole 7, the separation performance of the molten slag 6 and the molten iron 5 is deteriorated.
  • the molten slag 6 discharged from the tap hole 7 is immediately subjected to a water granulation rapid cooling process or received in a container and subjected to a slow cooling process to obtain a product.
  • the molten iron 5 discharged from the tap hole 8 is received in a molten iron pan, and oxygen or iron oxide and a dephosphorizing material are mixedly supplied to the molten iron 5 to perform a dephosphorization process.
  • the target phosphorus concentration after dephosphorization is almost the same as the blast furnace phosphorus concentration, enabling use within the steelmaking process.
  • the molten iron 5 after dephosphorization is made into a mold or transferred to a kneading wheel or a molten iron pan and transferred to a steelmaking process.
  • the slag produced by the dephosphorization treatment contains P 2 O 5 at a high concentration, it is used as it is as a phosphoric acid fertilizer or as an industrial phosphoric acid raw material.
  • FIG. 5 shows a steelmaking slag reduction treatment apparatus 400 used in the steelmaking slag reduction treatment system according to this embodiment.
  • the power supplied to the electrode 2 of the electric furnace 1 is set, and the supply rate of hot steelmaking slag that can be reduced is calculated based on the set power. Then, a predetermined reducing material supply speed is calculated based on the calculated hot steelmaking slag supply speed. However, when the “actual power” deviates from the “set power”, the cumulative amount of hot steelmaking slag input is corrected based on the actual cumulative power supply amount.
  • the predetermined amount of reducing material is the stoichiometric amount necessary for the reduction reaction with the molten slag 6 in order to prevent the molten slag 6 from forming and overflowing from the electric furnace 1 as described above. It is preferable to set in the range of 1.1 to 1.6 times.
  • the calculated amount of hot steelmaking slag X that can be reduced is set as a target value, and the inflow amount Y of hot steelmaking slag to the electric furnace 1 is controlled to follow.
  • the inflow amount Y of hot steelmaking slag into the electric furnace 1 is measured by the weighing device 3b with the change in the amount of hot steelmaking slag in the slag supply container 9, and the measured value is input to the calculation unit 15b. Calculated.
  • the calculated amount of hot steelmaking slag inflow Y is compared with the amount of hot steelmaking slag X that can be reduced calculated based on the actual amount of supplied power in the calculation unit 15c. Then, the tilting device 3a is driven by the control device so that the inflow amount Y of the hot steelmaking slag follows the target amount of the hot steelmaking slag amount X that can be reduced, and the tilting axis Z is set as the center. Then, the inclination angle of the slag supply container 9 is adjusted. Incidentally, the inflow of the hot steelmaking slag can be performed continuously or intermittently.
  • the hot steelmaking slag amount X that can be reduced is set as a target value, and the inflow amount Y of hot steelmaking slag follows this target value.
  • the control method is not particularly limited, and for example, widely known PID control or the like can be used.
  • the hot steelmaking slag amount X that can be reduced is set as a target value, and the inflow amount Y of hot steelmaking slag follows this target value. Is the same as in the case of continuous inflow.
  • the inflow amount Y of hot steelmaking slag for example, when supplying a necessary amount of hot steelmaking slag at a predetermined time interval, a value converted into an inflow rate per hour is adopted. be able to.
  • the amount of hot steelmaking slag to be supplied collectively and a predetermined time interval are set in advance, and sequence control is performed. In that case, it is important to confirm in advance the amount of hot steelmaking slag that does not overflow even if hot steelmaking slag is supplied all at once.
  • the supply amount from the auxiliary material supply pipe 14a is adjusted with the predetermined amount of reducing material calculated by the calculation unit as a target value.
  • the supply amount is controlled by a device (not shown) that controls the supply amount of the auxiliary raw material supply pipe 14a.
  • the conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 In the steelmaking slag reduction processing apparatus 400 shown in FIG. 5, the hot steelmaking slag 6 ′ discharged from the converter is caused to flow into the slag supply container 9 in a molten state (solid phase ratio of 25% or less), and temporarily stored. Subsequently, the slag supply container 9 was tilted at a frequency of once every 10 minutes, and about 8 tons of hot steelmaking slag was caused to flow into the DC electric furnace 1 once.
  • a molten state solid phase ratio of 25% or less
  • hot steelmaking slag 6 ′ is allowed to flow into the electric furnace 1 on the condition that about 130 tons of pig iron and a molten slag layer reduced on the pig iron exist with a thickness of about 200 mm. It was. The reason why the inflow amount of the hot steelmaking slag 6 ′ was set to once: about 8 tons was because it was confirmed by the previous actual machine test that forming did not occur vigorously under the present conditions.
  • the inflow speed of the hot steelmaking slag 6 ' was set to 800 kg / min on average. As will be described later, this is calculated from the power intensity required for the reduction treatment of hot steelmaking slag obtained by the above-described method in order to continuously supply about 30 MW of power.
  • coke powder was supplied into the electric furnace 1 from the auxiliary raw material supply pipe 14a.
  • the supply rate was 85 kg / min corresponding to 1.5 times the stoichiometric supply rate.
  • the slag modifier has fly ash: 378 kg / t-slag, bauxite powder: 47 kg / t-slag in order to achieve the target basicity: 1.2 and the target (Al 2 O 3 ): 12% by mass.
  • the target (Al 2 O 3 ) 12% by mass.
  • the temperature in the electric furnace 1 was controlled to be a molten iron temperature: 1450 ⁇ 5 ° C. and a slag temperature: 1550 ⁇ 5 ° C. Since the electric furnace 1 has no opening leading to the atmosphere, the inside of the electric furnace 1 was maintained in a reducing atmosphere.
  • the composition and temperature of the molten slag 6 are shown in Table 1.
  • molten iron 5 (C; 3.0 mass%) having the composition shown in Table 2 was always present at 100 to 150 tons, and the molten slag layer was present at a thickness of about 100 to 300 mm. .
  • the electric furnace 1 was continuously supplied with about 30 MW of electric power from the electrode 2, and the hot steelmaking slag flowing into the molten slag layer could be reduced without causing slag forming.
  • Example 2 Reduction reforming was performed under the same conditions as in Example 1, except that the electrode 2 (upper electrode 2a) was a hollow electrode, and the hollow portion was used as the auxiliary material supply pipe 14a to supply the slag modifier and the reducing material. Processed.
  • the temperature in the electric furnace 1 was controlled to be a molten iron temperature: 1450 ⁇ 5 ° C. and a slag temperature: 1450 ⁇ 5 ° C.
  • the reduction treatment of the hot steelmaking slag could be continuously performed without causing an overflow of the molten slag 6 during the process.
  • the molten slag 6 does not overflow without reducing the molten slag 6 even under an inflow condition in which about 8 tons of hot steelmaking slag is caused to flow in a lump at an interval of 10 minutes. The process could be continued. And the inflow speed of hot steelmaking slag was 800 kg / min on average.
  • the reduction treatment of hot steelmaking slag can be continuously performed without interruption while intermittently producing steelmaking slag, it is possible to efficiently produce steelmaking slag with a low energy basic unit.
  • valuable elements such as Fe, Mn, and P can be recovered in the molten iron at the same time as modification to materials usable for various applications such as earthwork materials and ceramic products.
  • Fe and Mn can be recycled to the iron making process, and P can be used as a phosphate fertilizer or phosphoric acid raw material.
  • molten iron can be produced by dissolving and reducing small lump scraps, reduced iron, powdered dust and the like in the same electric furnace. Therefore, the present invention has extremely high applicability in the steel industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 この製鋼スラグ還元処理装置は、電気炉を用いて熱間製鋼スラグを連続還元処理する製鋼スラグ還元処理装置であって、前記電気炉内に熱間製鋼スラグを流し込むスラグ供給容器と、前記電気炉に設けられるとともに、前記熱間製鋼スラグの還元によって生成された溶鉄上の溶融スラグ層を加熱する電極と、前記溶融スラグ層に、還元材を含む副原料を供給する副原料供給部と、前記スラグ供給容器を傾動させて前記熱間製鋼スラグの前記電気炉への流入量を調整する傾動装置と、を備える。

Description

製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム
 本発明は、製鋼工程で発生するスラグ(製鋼スラグ)を工業的規模で還元して有価成分を回収するとともに、製鋼スラグの性状を各種用途に適合するように改質する製鋼スラグ還元処理装置と製鋼スラグ還元処理システムに関する。 本願は、2012年6月27日に、日本に出願された特願2012-144473号と、2012年6月27日に、日本に出願された特願2012-144557号と、2012年10月25日に、日本に出願された特願2012-235692号とに基づき優先権を主張し、その内容をここに援用する。
 製鋼工程では、大量の製鋼スラグが発生する。製鋼スラグは、Fe、Mn等の金属成分、及び、P等を含むが、CaOを多量に含むことに起因する膨張・崩壊性のため、路盤材、骨材等への利用が制限されていた。しかし、近年、資源のリサイクルが積極的に推進されており、製鋼スラグから有価物を回収する方法が、これまで数多く開示されている。
 特許文献1には、溶解炉に収納した鉄鋼溶湯に対し、鉄鋼溶製時に発生する鉄鋼スラグを加え、さらに、熱及び還元材を加えて、鉄鋼スラグを変成しつつ、Fe、Mn、及び、Pを溶湯に移行させて変成スラグを取得し、次に、溶湯中のMn及びPをスラグに移行させる鉄鋼スラグの処理方法が開示されている。しかし、該処理方法は、所要の成分組成のスラグを得るまで、数回のバッチ処理を連続的に行う必要があるので、作業効率が悪い。
 特許文献2には、炭素含有率1.5wt%未満の鋼鉄浴に、酸化鉄含有率5wt%超の鋼鉄スラグを供給し、その後、炭素又は炭素キャリアを導入して、鋼鉄浴を炭化し、炭素含有率2.0wt%超の鋼鉄浴を得た後に、還元処理を行う方法が開示されている。
 しかし、特許文献2の方法は、溶融スラグ装入時には溶鉄中のC濃度(炭素濃度)を1.5wt%未満として、多量のガス発生を抑制し、溶融還元実施時にはC濃度を2.0wt%超に上昇させることで、所望の還元を行う。従って、脱炭昇熱と加炭還元を繰り返すため、バッチ処理となり、作業効率が悪い。なお、還元処理の実施時に、C濃度を2.0wt%超に上昇させていることから、特許文献2の方法は、主にスラグ-メタル間の反応により、還元反応を促進させているものと考えられる。
 また、特許文献2の方法においては、炭材を、還元材として使用する他、熱源としても使用するので、排ガス量が増加する。その結果、熱効率の低下や、ダスト発生量の増加が想定される。
 非特許文献1には、電気炉内に、製鋼スラグ粉、炭材粉、及び、スラグ改質材粉を中空電極から装入し、還元試験を行った結果が開示されている。しかし、非特許文献1の還元試験は、固化して粉砕した冷間の製鋼スラグを電気炉で処理する試験であるので、エネルギー原単位が大きい。
 また、特許文献3には、開放型直流電気炉中で、非鉄精錬で発生した溶融スラグを炭素質還元材で還元して、金属相とスラグ相に分離し、有価金属を回収する技術が開示されている。しかし、特許文献3の方法は、同様に、冷間スラグを処理対象物とする電気炉のバッチ処理であるので、エネルギー原単位が大きい。
 このように、スラグから有価成分を回収する方法は、いずれも、作業効率が悪いか、又は、エネルギー原単位が大きいという難点を抱えている。
日本国特開昭52-033897号公報 日本国特表2003-520899号公報 オーストラリア特許AU-B-20553/95号明細書
Scandinavian Journal of Metallurgy 2003;32:p.7-14
 前述したように、熱間製鋼スラグをバッチ処理でリサイクルする従来法は、作業効率が悪く、また、冷間製鋼スラグを溶融して資源としてリサイクルする従来法は、エネルギー原単位が高いという難点を抱えている。
 そこで、本発明は、作業効率が良好で、かつ、エネルギー原単位が低い手法として、製鋼スラグの還元処理を行い、有価成分を回収するとともに、製鋼スラグの性状を、各種用途に適合するように改質することを可能とする製鋼スラグ還元処理装置と製鋼スラグ還元処理システムを提供することを目的とする。
 本発明の要旨は以下のとおりである。
(1)本発明の第一の態様は、電気炉を用いて熱間製鋼スラグを連続還元処理する製鋼スラグ還元処理装置であって、前記電気炉内に前記熱間製鋼スラグを流し込むスラグ供給容器と、前記電気炉に設けられるとともに、前記熱間製鋼スラグの還元によって生成された溶鉄上の溶融スラグ層を前記溶鉄と共に加熱する電極と、前記溶融スラグ層に、還元材を含む副原料を供給する副原料供給部と、前記スラグ供給容器を傾動させて前記熱間製鋼スラグの前記電気炉への流入量を調整する傾動装置と、を備える製鋼スラグ還元処理装置である。
(2)上記(1)に記載の製鋼スラグ還元処理装置では、前記電気炉が固定式の密閉型電気炉であってもよい。
(3)上記(2)に記載の製鋼スラグ還元処理装置では、前記密閉型電気炉が直流電気炉であってもよい。
(4)上記(1)~(3)のいずれか一項に記載の製鋼スラグ還元処理装置では、前記副原料供給部が、前記電極の内部に設けられた副原料供給管であってもよい。
(5)上記(1)~(4)のいずれか一項に記載の製鋼スラグ還元処理装置では、前記スラグ供給容器に前記電気炉からの排ガスを排出する排気部が設けられていてもよい。
(6)本発明の第二の態様は、上記(1)に記載の還元処理装置を用いた製鋼スラグ還元処理システムであって、前記電極に供給された電力量を測定する測定部と;測定された前記電力量に基づいて還元し得る熱間製鋼スラグ量を算出するとともに、算出された前記還元し得る熱間製鋼スラグ量に基づいて所定の還元材量を算出する演算部と;前記還元し得る熱間製鋼スラグ量に対して、前記熱間製鋼スラグの前記電気炉への流入量が追従するように、前記傾動装置を駆動して、前記スラグ供給容器の傾斜角を調整するとともに、前記所定の還元材量が供給されるように前記副原料供給部からの前記副原料の供給量を調整する制御部と;を備える製鋼スラグ還元処理システムである。
 上述の態様によれば、製鋼スラグを、低いエネルギー原単位で、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質することができるとともに、Fe、Mn、及び、P等の有価元素を、溶鉄中に回収することができる。そして、Fe及びMnは、製鉄プロセスへリサイクルし、Pは、酸化処理を施すことによって燐酸肥料や燐酸原料として利用することができる。
本発明の第一実施形態に係る製鋼スラグ還元処理装置100を示す模式図である。 電気炉1に開口部がある場合とない場合における溶融スラグの(Total Fe)の推移を比較して示す図である。 本発明の第二実施形態に係る製鋼スラグ還元処理装置200を示す模式図である。 本発明の第三実施形態に係る製鋼スラグ還元処理装置300を示す模式図である。 本発明の第四実施形態に係る製鋼スラグ還元処理システムを説明するための製鋼スラグ還元処理装置400を示す模式図である。
 本発明の目的である、作業効率が良好で、かつ、エネルギー原単位が低い手法を考えると、熱間製鋼スラグ(以下、単に製鋼スラグと呼ぶ場合がある)を用いることが、エネルギー原単位の低減の観点から有効である。しかし、熱間製鋼スラグを電気炉内に収容した溶鉄上に流入させる際、熱間製鋼スラグが溶鉄と急激に反応して突沸する現象(スラグフォーミング)が起き、これが激しくなるとスラグが電気炉から溢れ出る場合(オーバーフロー)がある。
 前述したように、特許文献2の方法においては、突沸現象の防止策を、「溶鉄のC濃度の低減による反応速度の緩和」に求めているが、この方法では作業効率が悪い。
 即ち、本発明においても、解決すべき課題として、同様の課題を抱えることになり、スラグ-メタル間の反応により、還元反応を促進させる還元炉(転炉等)では、溶鉄中のCが、スラグ中のFeOを還元する。このため、還元力を向上させるには、脱炭・加炭を繰り返し行う必要があり、その結果、作業効率は悪くなる。それ故、C濃度の低減策だけでは、充分な対策とは言えない。
 そこで、本発明者らは、鋭意検討したところ、電気炉では、還元反応は、スラグ-メタル間の反応よりも、スラグ中のFeOとCとの反応が支配的であることを実験により新たに知見した。それ故、若干の還元力の低下はあるが、1.5質量%程度の低いC濃度であっても、加炭なしで、スラグの還元処理を行うことが可能であり、作業効率を良好にできることが判明した。
 したがって、電気炉を用いることにより、熱間製鋼スラグの流入時に突発的に起きるスラグフォーミングを抑制でき、スラグのオーバーフローを防止する対策の一つとなり得る。
 しかし、溶鉄中のC濃度が高い場合もあり得るため、溶鉄中のC濃度が高くても、作業効率が良好で、かつ、エネルギー原単位が低い方法を検討した。そこで、本発明者らは、電気炉を用いて、上記課題を解決する製鋼スラグ還元処理装置と製鋼スラグ還元処理システムを構築することを試みた。
 その結果、熱間で流動性のある熱間製鋼スラグを、直接、電気炉に流入させる際、オーバーフローの発生を防止する具体的な手法として、
(a)熱間で流動性のある熱間製鋼スラグを、電気炉への流入量を調整できる装置に一旦収容してから、熱間製鋼スラグが電気炉内でオーバーフローしないように、電気炉への流入量を調整して流入させること、及び、
(b)溶鉄上に溶融スラグ層、好ましくは不活性な溶融スラグ層(還元スラグ層)を緩衝帯として予め形成し、その上に熱間製鋼スラグを流入させること、
の二点が溶融スラグの突沸現象を抑制し、オーバーフローを回避する点で好適であることが、実験的に見出された。
 また、
(c)溶融スラグに、予め、炭材を過剰に懸濁させて供給すること、及び、
(d)溶鉄のC濃度を3質量%以下に低減する(ただし、強還元を必要としない場合)こと、
も上記の(a)、(b)の方法と併用すると、オーバーフローを抑制する上で、より好適であることが見出された。
 本発明は、製鋼スラグを熱間で流動性のある間に還元処理を行えば、エネルギー原単位を低く抑制することができるとの技術思想に立脚するものである。
 具体的には、本発明者らは、製鋼工程で発生する製鋼スラグを、熱間で流動性のある間に、電気炉に流入させて還元し、有価成分を回収するとともに、スラグを改質して、製鋼スラグを低いエネルギー原単位で資源化できると発想した。
 以下、本発明の第1実施形態に係る製鋼スラグ還元処理装置100について説明する。
 本実施形態に係る製鋼スラグ還元処理装置100の還元処理対象の製鋼スラグ(熱間製鋼スラグ6’)は、製鋼工程で発生したスラグであればよく、特定の製鋼スラグに限定されない。
 また、熱間製鋼スラグ6’は、連続的又は間歇的に電気炉1内に流入させ得るに足る流動性を有していればよく、完全に溶融状態にある必要はない。熱間製鋼スラグ6’の固相率は、特に限定されないが、例えば、1400℃位で30%以下程度であれば、スラグは電気炉1に流入させ得る流動性を備えている。なお、固相率は、市販のソフトを用いて算出することができる。
 以下、図面に基づいて説明する。図1に、電気炉1と、傾動装置3aが設けられたスラグ供給容器9とを備える本発明の第1実施形態に係る製鋼スラグ還元処理装置100を示す。
電気炉1は、例えば固定式の密閉型直流電気炉であり、上部電極2aと炉底電極2bとが鉛直方向に対をなす電極2を備えている。電気炉1の底部には、溶鉄5が収容され、溶鉄5の上には、スラグ供給容器9から供給された熱間製鋼スラグ6’を含む溶融スラグ6の層(溶融スラグ層)が形成されている。溶融スラグ層は、溶鉄5と共に電極2で加熱される。
 本実施形態においては、溶融スラグ層に還元材を含む副原料を供給する副原料供給部14が、副原料供給管14aとして上部電極2aの内部に設けられている。
 電気炉1の炉天井1cの左部には、熱間で流動性のある熱間製鋼スラグ6’をスラグ供給容器9から供給するスラグ供給部4が設けられている。電気炉1に外気(酸素又は酸素含有ガス)が侵入すると、溶融スラグ層の表面で酸化反応が起きて、溶融スラグ層の(Total Fe)が上昇し、還元力が低下する。
 ここで、図2に、電気炉1の炉壁に開口がある場合とない場合における溶融スラグ6の(Total Fe)(質量%)の経時推移を比較して示す。
 還元材(炭材)を電気炉1内に吹き込み、溶融スラグ6を還元処理することにより、溶融スラグ6の(Total Fe)は減少するが(図中、炭材吹き込み期間、参照)、電気炉1の炉壁に開口部があると、空気が吸引されて電気炉1内が酸化性雰囲気となり、溶融スラグ6の表面で再酸化が起きる。このため、還元材(炭材)の吹込みが終了した後、再酸化の影響で、溶融スラグ6の(Total Fe)が増加する。
 一方、電気炉1の炉壁に開口部がないと、電気炉1内は還元雰囲気に維持されるので、溶融スラグ6の表面で再酸化は起きず、溶融スラグ6及び溶鉄5中のCによるFeOの還元反応が進行して、溶融スラグ6の(Total Fe)は減少し、所定の低水準に維持される。それ故、電気炉1は、外気が侵入しない密閉型とすることが好ましい。
 また、スラグ供給容器9は、電気炉排ガスの排気経路となるように、スラグ供給容器9に排気部13が設けられている。
 電気炉1内は、還元反応によって生じるCOガスと、供給される還元材(炭材)から生じるHを主成分とする還元雰囲気となる。しかし、スラグ供給容器9を、電気炉排ガスの排気経路とする場合には、還元性雰囲気に維持されるため、溶融スラグ層の表面での酸化反応を防止できる。
 電気炉1の炉側壁1aには、出滓樋(図示なし)に溶融スラグ6を出滓する出滓孔7が設けられる。電気炉1の炉側壁1aとは反対側の炉側壁1bには、出銑樋(図示なし)に溶鉄5を出銑する出銑孔8が、出滓孔7のレベル(高さ)よりも下方に設けられている。なお、炉側壁1aと炉側壁1bの溶損を防止するために、出滓孔7と出銑孔8は同じ炉側壁近傍に設けないことが好ましく、炉側壁1aと炉側壁1bの溶損を防止可能な距離だけ離間していればよい。
 なお、炉側壁1a、炉側壁1b、及び、炉天井1cは、ジャケット冷却又は散水冷却(図示なし)で冷却されている。
 電気炉1は、電気炉1内に小塊鉄屑、DRI(Direct Reduced Iron)等の鉄原料を供給する原料供給装置(図示なし)を備えていてもよい。電気炉1で、小塊鉄屑、還元鉄、粉状ダスト等を溶解・還元して、溶鉄5を製造することができる。
 電気炉1には、還元に必要な還元材、及び、溶融スラグ6の特性を改質する改質粉体等の副原料を供給する副原料供給部14が設けられている。この副原料供給部14は、図3に示す本発明の第2実施形態に係る製鋼スラグ還元処理装置200のように、電気炉1の炉天井1cに、炉天井1cを貫通するように設けられる副原料供給管14aであってもよい。副原料供給管14aから副原料(還元材、改質粉体等)を電気炉1内に供給すると、電気炉1内で発生するガス量が少ないので、副原料は、重力で溶融スラグ6の表面に落下して、溶融スラグ6と混合する。
 また、図1に示すように、電極2の上部電極2aを中空電極とし、中空部を副原料供給管14aとして使用してもよい。中空電極を用いれば、副原料(還元材、改質粉体等)を、直接、アークスポットに吹き込むことができる。
 また、図4に示す本発明の第3実施形態に係る製鋼スラグ還元処理装置300のように、電気炉1に副原料吹込ランス14bを設け、中空電極の中空部や副原料供給管14aを使わずに、飛散し易い粉体(副原料)を電気炉1内に供給しても良い。図4に示す態様では、電気炉1の炉天井1cに、炉天井1cを貫通するように副原料吹込ランス14bが設けられている。
 図3に示す製鋼スラグ還元処理装置200においては、副原料供給管14aを電極2の近くに配置しているが、副原料供給管14aは、電極2から離れた位置に配置してもよい。
 また、電気炉1の炉天井1cに、副原料吹込ランス14bと副原料供給管14aとを併設してもよい。
 <スラグ供給容器>
 スラグ供給容器9(図1、3、及び、4、参照)は、上壁11と下壁10から構成され、スラグ鍋(図示なし)から熱間製鋼スラグ6’の供給を受けるための開口部13aと、開口部13aを閉塞する蓋13bとを備える。スラグ供給容器9の上部には、排気部13が設けられてもよい。スラグ供給容器9の下壁10は、耐火物内張壁で構成され、上壁11は、水冷耐火物内張壁で構成されていることが好ましい。
 スラグ供給容器9は、傾動軸zを中心に任意の角度に傾動可能である。したがって、電気炉1と連結されているスラグ供給部4から、熱間製鋼スラグ6’の電気炉1への流入量を調整することができる。
 スラグ供給容器9が排気部13を備え、且つ、排気部13が集塵機(図示なし)に接続されている場合、スラグ供給容器9の雰囲気は、常に負圧状態になるため好ましい。このように負圧状態とすることで、電気炉1で発生したCO及びHを含む高温排ガスは、スラグ供給部4からスラグ供給容器9内に浸入し、スラグ供給容器9の内部を排出径路として、排気部13から、排ガスダクト(図示なし)を経由して集塵機(図示なし)へ流出する。
 この場合、スラグ供給容器9と電気炉1の連結部の隙間から外気が侵入しても、侵入した外気はスラグ供給容器9の内部へ流れるので、電気炉1内の雰囲気は、常に、高温の還元性雰囲気に維持される。一方、スラグ供給容器9の内部は、電気炉1の内部と同じように、高温の還元性雰囲気に維持されて、熱間製鋼スラグ6’は保温され、かつ、酸化されない。
 スラグ供給容器9には、CO及びHを含む電気炉排ガスに、酸素又は酸素含有ガスを吹き込むノズル12を設けてもよい。スラグ供給容器9内で、電気炉排ガスを燃焼させる場合、スラグ供給容器9内を高温に維持することができるため好ましい。これにより、熱間製鋼スラグ6’の凝固や、スラグ供給容器9の炉壁への付着を防止することができる。また、電気炉1へ流入させるために必要な流動性を熱間製鋼スラグ6’に付与することができる。
 排ガスの顕熱及び燃焼熱を利用しても、スラグ供給容器9内の温度が、熱間製鋼スラグがスラグ供給容器9の炉壁に付着しない温度まで上昇しない場合がある。この場合に備え、スラグ供給容器9に、燃焼バーナー12aを設けて、火炎を、スラグ供給容器9内に照射してもよい。
 また、スラグ供給容器9には、熱間製鋼スラグ6’をスラグ供給容器9内で改質するスラグ改質材を、熱間製鋼スラグ6’に添加するためのスラグ改質剤添加装置(図示なし)を配置してもよい。さらに、スラグ改質材を、燃焼バーナー12aを介してスラグ供給容器9内に溶融照射してもよい。
 スラグ供給容器9には、スラグ供給容器9を、傾動軸zを中心として傾動し、熱間製鋼スラグの電気炉1への流入量を制御する傾動装置3aが配備されている。
 次に、スラグ供給容器9による熱間製鋼スラグ6’の電気炉1への流入について説明する。
 <熱間製鋼スラグの流入>
 まず、手段(a)について、以下に詳述する。
(a)熱間で流動性のある熱間製鋼スラグを、電気炉1への流入量を調整できる装置に一旦収容してから、熱間で流動性のある熱間製鋼スラグが電気炉1内でオーバーフローしないように、電気炉1への流入量を調整して流入させる。
 電気炉1内に、予め、相当量(例えば、100~150トン程度)の溶鉄5を種湯として収容する。次に、電気炉1への電力供給速度に対して、還元し得る量の熱間製鋼スラグ6’を、スラグ供給容器9から、溶鉄5上の溶融スラグ6に供給し、溶融スラグ層を継続的に維持する。 
 製鋼スラグ還元処理装置100,200,300において、熱間製鋼スラグ6’の電気炉1への流入態様は、傾動装置3aの駆動で、傾動軸zを中心としてスラグ供給容器9の傾動角を調整して、自在に選択することができる。
 即ち、傾動装置3aで、スラグ供給容器9を、傾動軸zを中心として傾動させて、スラグ鍋(図示なし)から供給される熱間製鋼スラグ6’を貯留・保持し、また、貯留した熱間製鋼スラグ6’を、電気炉1内の溶鉄5上の溶融スラグ6の層に向けて、溶融スラグ6がフォーミングによって電気炉1からオーバーフローしないように、流入量を調整しつつ、連続的又は間歇的に流入させる。
 尚、熱間製鋼スラグ6’は、スラグ供給容器9で、一旦、貯留・保持するが、スラグ鍋からの供給量が少なく、スラグ供給容器9で、一旦、貯留・保持する必要がない場合は、スラグ供給容器9を一定の角度で固定して、スラグ樋として使用することもできる。
 スラグ供給容器9を傾動させて、熱間製鋼スラグ6’を電気炉1内に流入させることにより、スラグ供給容器9内の熱間製鋼スラグ6’の高温表面層が更新されて、スラグ供給容器9内に残留する熱間製鋼スラグ6’への着熱効率が向上する。
 熱間製鋼スラグ6’を間歇的に電気炉1内に流入させる場合、
(i)熱間製鋼スラグ6’の流入と中断を適宜繰り返しながら流入させる態様、又は、
(ii)所要量の熱間製鋼スラグ6’を、所定の時間間隔で、一括して流入させる態様
を採用し得る。
 熱間製鋼スラグ6’を電気炉1へ流入させているとき、流入速度が速すぎると、発生ガス量が一時的に増加してスラグフォーミング状態になり、スラグが電気炉1から溢れ出る(オーバーフロー)等の異常事態になりそうな場合がある。その場合は、スラグ供給容器9の傾動角を小さくして、熱間製鋼スラグ6’の電気炉1内への流入を一時停止するか、又は、還元材供給速度を増加させることが好ましい。
 なお、熱間製鋼スラグ6’を電気炉1内へ流入させる際、溶融スラグ層の泡立ち状態(スラグフォーミング)が過激になりオーバーフロー等の異常事態に至るか否かは、常時、(1)監視カメラによる炉内状況及び炉外状況の監視、(2)サウンドメーターによる熱間製鋼スラグの挙動の監視、(3)マイクロ波照射による溶融スラグ表面レベルの監視、等で検知し、閾値を超えそうな場合、熱間製鋼スラグの電気炉1への流入量を調整することが好ましい。
 溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出る(オーバーフロー)のを予防する手段として、スラグ供給容器9からの熱間製鋼スラグ6’の流入量の調整(前記手段(a)、参照)の他に、以下の手段(b)があるため、(a)と(b)を併用してもよい。
 (b)溶鉄5の上のスラグとして、還元されたスラグを存在させることで緩衝帯としての機能を持たせ、これにより流入させる熱間製鋼スラグ6’のFeO濃度を希釈低減するとともに、熱間製鋼スラグ6’と溶鉄5との接触機会を低減する。
 即ち、溶鉄5の上面に緩衝帯として還元処理後の溶融スラグ6を存在させることにより、この溶融スラグ6の(FeO)濃度が低減されているとともに、溶融スラグ6と溶鉄5との接触機会も低減できる。このため、溶融スラグ6のフォーミングを抑制し、結果的に、溶融スラグ6の電気炉1からのオーバーフローを防止することができる。
 熱間製鋼スラグ6’の電気炉1への流入量は、基本的には、電極2への供給電力量で決定される。即ち、製鋼スラグの還元処理に必要な電力原単位と、供給実績電力量に基づいて、連続的又は間歇的に流入させる熱間製鋼スラグ6’の流入量が計算される。
 熱間製鋼スラグ6’の流入速度は、長期的には、電極2への電力供給速度に合致させる必要があるが、短期的には、電極2への電力供給速度に合致させる必要はない。なぜなら、所定量の熱間製鋼スラグ6’を間歇的に電気炉1に流入させる場合、流入量は、短期的には、電極2への電力供給速度に合致していないからである。この場合、長期的には、電力供給速度に合致させることで問題はない。
 なお、熱間製鋼スラグの還元処理に必要な電力原単位は、反応熱および放熱を考慮した熱バランス計算により、求めることができる。但し、上記の電力原単位は、熱バランス計算による推定値であるため、その誤差は、電気炉1内の溶融スラグ6の温度変化となって現れる。
 溶融スラグ温度の変動は、供給電力、熱間製鋼スラグ6’の流入量、還元材供給量を調整することで制御できる。通常、電気炉1内の温度は、溶鉄温度:1400~1550℃、溶融スラグ温度:1500~1650℃となるように制御されることが例示できる。
 熱間製鋼スラグ6’の流入は、溶融スラグ6がオーバーフローしないように行う限り、熱間製鋼スラグ6’の電気炉1への流入は、連続的でもよく、間歇的でもよい。なお、熱間製鋼スラグ6’を間歇的に流入させる場合、1回に流入させる熱間製鋼スラグ6’の量は、スラグフォーミングによりオーバーフローが起こらない量であることを、事前に実験等で確認した上で設定することが重要である。
 <溶融スラグの処理>
 熱間製鋼スラグ6’が流入された溶鉄5上の溶融スラグ6を還元処理するためには、電気炉1に流入された熱間製鋼スラグ量に対応する量の還元材を、電気炉1内に流入させる必要がある。
 還元材(副原料)は、図3に示すように、炉蓋に設けた副原料供給管14aから、連続的又は間歇的に供給してもよいが、中空電極の中空部又は副原料吹込ランス14bから、連続的又は間歇的に供給することもできる(図1及び図4、参照)。このとき、還元材に、スラグ改質材と含鉄原料の少なくとも一方を混合してもよい。
 還元材として、通常、炭材を用いる。炭材としては、コークス粉、無煙炭粉、グラファイト粉、炭素を含むダスト粉、飛灰(フライアッシュ)などを用いることができる。
 スラグ改質材は、主として、(SiO)や(Al)の調整に用いるので、適切な材料を選択する必要がある。スラグ改質材は、SiO、CaO、Al、及び、MgOの1種又は2種以上を含むものが好ましい。また、スラグ改質剤として、石炭灰、SiO、Alを多く含むスラグ粉、レンガ屑、アルミドロスなども利用できる。含鉄原料は、鉄屑、還元鉄、及び、粉状ダストの1種又は2種以上が好ましい。
 また、溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出るのを予防する手段として、
(c)溶融スラグ層中に、炭材を還元処理に必要な量に対して過剰に懸濁させる手法、
を併用してもよい。
 製鋼スラグの還元のため、溶融スラグ層に供給する還元材(副原料)の量は、製鋼スラグと還元材との還元反応において化学量論的の当量は必要である。但し、溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出るのを予防するために、溶融スラグ6との還元反応に必要な化学量論量の1.1~1.6倍を、所定の還元材量とし、溶融スラグ層に懸濁させて、スラグフォーミングを抑制することが好ましい。
 還元材(粉炭)が化学量論量の1.1倍未満であると、還元材の添加によるフォーミング抑制効果が発現しにくく、化学量論量の1.6倍を超えると、フォーミング抑制効果が飽和する。
 また、溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出るのを予防する手段として、
(d)溶鉄5のC濃度を3質量%以下に低減する手法、
を併用しても良い。これは、溶鉄5のC濃度を3質量%以下に低減することにより、溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出ることを抑制し易くなることを、実験にて知見していることに基いている。
 製鋼スラグ還元処理装置100,200,300においては、熱間製鋼スラグ6’を、スラグ供給容器9から電気炉1内の溶融スラグ層に連続的又は間歇的に流し込み、一方、溶融スラグ層のスラグを、炉底側壁に設けた出滓孔7から間歇的に出滓する。このため、電気炉1内では、熱間製鋼スラグ6’の還元処理を継続的に行うことができるので、製鋼スラグの処理効率が極めて高い。
 電気炉1内の溶融スラグ層の厚みが、所定のレベルに上昇したときは、出滓孔7を開孔して、溶融スラグ6を炉外に排出する。また、溶融スラグ6の層と溶鉄5との界面が出滓孔7の近傍に近づいたときは、出滓孔7より下方にある出銑孔8を開孔して、溶鉄5を排出する。溶融スラグ6の層と溶鉄5との界面が出滓孔7に近いと、溶融スラグ6と溶鉄5の分離性能が低下する。
 <排出後の溶融スラグと溶鉄の処理>
 出滓孔7から排出された溶融スラグ6は、直ちに、水砕急冷処理するか、又は、容器に受けて徐冷処理をして、製品とする。出銑孔8から排出された溶鉄5は、溶鉄鍋に受け、該溶鉄5に、酸素又は酸化鉄と脱燐材を混合供給して、脱燐処理を施す。脱燐後の目標燐濃度は、高炉の出銑燐濃度とほぼ同等とし、製鋼プロセス内での利用を可能にする。
 脱燐後の溶鉄5は型銑にするか、又は、混銑車か溶鉄鍋に移し替えて、製鋼プロセスに移送する。一方、脱燐処理で生成したスラグは、高濃度でPを含有するので、そのまま、燐酸肥料として用いるか、又は、工業用燐酸原料として利用する。
 2)次に、本発明の第4実施形態に係る製鋼スラグ還元処理システムについて説明する。
 図5に、本実施形態に係る製鋼スラグ還元処理システムで用いられる製鋼スラグ還元処理装置400を示す。
まず、電気炉1の電極2に供給する電力を設定し、設定電力に基づいて、還元し得る熱間製鋼スラグの供給速度が算出される。そして、算出された熱間製鋼スラグ供給速度に基づいて所定の還元材供給速度が算出される。但し、「実績電力」が「設定電力」から乖離してきた場合には、実績累計供給電力量に基づいて熱間製鋼スラグの累計投入量を修正する。
 尚、所定の還元材量は、前述の通り、溶融スラグ6がフォーミング状態になり、電気炉1から溢れ出るのを予防するために、溶融スラグ6との還元反応に必要な化学量論量の1.1~1.6倍の範囲で設定することが好ましい。
 次に、算出された還元し得る熱間製鋼スラグ量Xを目標値として、電気炉1への熱間製鋼スラグの流入量Yが追従するように制御される。
 具体的には、電気炉1への熱間製鋼スラグの流入量Yは、スラグ供給容器9内の熱間製鋼スラグの量の変化が秤量器3bで測定され、測定値が演算部15bに入力されて算出される。
 算出された熱間製鋼スラグの流入量Yと、実績供給電力量に基づいて算出された還元し得る熱間製鋼スラグ量Xとを演算部15cで対比する。そして、制御装置により、上記還元し得る熱間製鋼スラグ量Xを目標値として、上記熱間製鋼スラグの流入量Yが追従するように、傾動装置3aを駆動して、傾動軸Zを中心にして、スラグ供給容器9の傾斜角を調整する。ちなみに、上記熱間製鋼スラグの流入は、連続的又は間歇的に行うことができる。
 まず、熱間製鋼スラグを連続的に流入させる場合は、上記還元し得る熱間製鋼スラグ量Xを目標値として、熱間製鋼スラグの流入量Yがこの目標値に追従するように制御すればよい。制御方法については、特に限定されないが、例えば、広く知られたPID制御等を用いることができる。
 一方、熱間製鋼スラグを間歇的に流入させる場合は、上記還元し得る熱間製鋼スラグ量Xを目標値として、熱間製鋼スラグの流入量Yがこの目標値に追従するように制御することは、連続的に流入させる場合と同様である。但し、熱間製鋼スラグの流入量Yとしては、例えば、所要量の熱間製鋼スラグを、所定の時間間隔で、一括して供給する場合は、時間当たりの流入速度に換算した値を採用することができる。
 この場合は、一括して供給する熱間製鋼スラグの量と、所定の時間間隔を、あらかじめ設定しておき、シーケンス制御を行うことで、実施することができる。その際には、熱間製鋼スラグを一括して供給しても、オーバーフローしない熱間製鋼スラグ量を、事前に確認しておくことが重要である。
 さらに、上記の還元し得る熱間製鋼スラグの流入量Xに基づいて、演算部で算出された所定の還元材量を目標値として、副原料供給管14aからの供給量が調整される。ここでは、副原料供給管14aの供給量を制御する装置(図示なし)で供給量が制御される。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例1)
 図5に示す製鋼スラグ還元処理装置400において、転炉から排出された熱間製鋼スラグ6’を溶融状態(固相率25%以下)で、スラグ供給容器9に流入させて、一旦貯留し、次いで、スラグ供給容器9を、10分に1回の頻度で傾動して、1回約8トンの熱間製鋼スラグを直流電気炉1に流入させた。
 この電気炉1には、銑鉄が約130トンと、その上に還元処理された溶融スラグ層が約200mmの厚みで存在している条件で、熱間製鋼スラグ6’を電気炉1に流入させた。なお、熱間製鋼スラグ6’の流入量を1回:約8トンと設定したのは、事前の実機試験により、今回の条件で、フォーミングが激しく起こらないことを確認していたためである。
 また、熱間製鋼スラグ6’の流入速度は平均して、800kg/minと設定した。これは、後述の通り、約30MWの電力を連続して供給するため、前述の方法により求めておいた熱間製鋼スラグの還元処理に必要な電力原単位から、算出したものである。
 電力を供給しながら、副原料供給管14aからコークス粉を電気炉1内に供給した。その供給速度は、化学量論的な供給速度の1.5倍に相当する85kg/minとした。また、スラグ改質剤は、目標塩基度:1.2、目標(Al):12質量%を達成するために、フライアッシュ:378kg/t-slag、ボーキサイト粉:47kg/t-slagを、副原料供給管14aから溶融スラグ層に連続的に供給した。
 電気炉1内の温度は、溶鉄温度:1450±5℃、スラグ温度:1550±5℃となるように制御した。電気炉1に、大気に通じる開口部はないので、電気炉1内は還元雰囲気に維持された。溶融スラグ6の組成及び温度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 電気炉1内には、表2に示す成分組成の溶鉄5(C;3.0質量%)を、常時、100~150トン存在させ、溶融スラグ層は約100~300mmの厚みで存在させた。電気炉1には、電極2から、約30MWの電力を連続して供給して、溶融スラグ層に流し込む熱間製鋼スラグの還元処理を、スラグフォーミングを起こすことなく行うことができた。
Figure JPOXMLDOC01-appb-T000002
 溶融スラグ層のスラグは、1時間に1回、約46トンを、出滓孔7から排出し、溶鉄5は、5時間に1回、約44トンを、出銑孔8から排出した。排出した溶融スラグ6の組成及び溶鉄5の組成を、表3及び表4に示す通り、スラグは還元されており、溶鉄5中にはPやMnが濃化されていることが判った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 溶融スラグ6の還元処理に必要な電力原単位は、1450℃の脱炭スラグの場合、607kWh/t-slagであった。一方、比較のために、同じ脱炭スラグを冷間で粉状にして流入させたところ、電力原単位は1314kWh/t-slagであった。
 (実施例2)
 電極2(上部電極2a)を中空電極とし、その中空部を副原料供給管14aとして用いてスラグ改質材と還元材を供給したこと以外は、実施例1と同様の条件で、還元改質処理を行った。
 電気炉1内の温度は、溶鉄温度:1450±5℃、スラグ温度:1450±5℃となるように制御した。熱間製鋼スラグの還元処理は、途中、溶融スラグ6のオーバーフローを起こすことなく連続的に行うことができた。
 還元処理中、溶融スラグ層のスラグは、1時間に1回、約46トンを、出滓孔7から排出し、溶鉄5は、5時間に1回、約44トンを、出銑孔8から排出した。排出した溶融スラグ6の組成及び溶鉄5の組成は、表3及び表4に示す組成とほぼ同じであった。
 実施例1~2においては、10分間隔で、1回当り、約8トンの熱間製鋼スラグを一括で流入させるという流入条件下でも、溶融スラグ6のオーバーフローを起こさず、溶融スラグ6の還元処理を継続することができた。そして、熱間製鋼スラグの流入速度は、平均すると、800kg/minであった。
 このことは、本発明装置においては、熱間製鋼スラグを、流入速度:800kg/min、又は、流入速度:800kg/min以下で連続的に流入させた場合には、フォーミングがより起こりにくい条件となるため、溶融スラグ6のオーバーフローを起こさず、溶融スラグ6の還元処理を継続することができることを意味している。即ち、間歇流入の実施例1~2は、本発明装置における熱間製鋼スラグの連続流入の実施可能性を実証する実施例でもある。
 (比較例)
 表1に示す成分組成の製鋼スラグを還元するため、表2に示す成分組成と温度の溶鉄5を収容した電気炉1内に、上記製鋼スラグ20トンを熱間状態で一括供給した。溶鉄5は、熱間製鋼スラグを電気炉1内に供給した直後、スラグフォーミングが急激に生じ、操業を中止せざるを得なかった。
 本発明によれば、熱間製鋼スラグの還元処理を、間歇的に出滓しつつ、中断することなく連続的におこなうことができるので、低いエネルギー原単位で、効率良く製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質すると同時に、Fe、Mn、及び、P等の有価元素を、溶鉄中に回収することができる。Fe及びMnは、製鉄プロセスへリサイクルし、Pは、燐酸肥料や燐酸原料として利用することができる。更には、本発明によれば、同一電気炉で、小塊鉄屑、還元鉄、粉状ダスト等を溶解・還元して、溶鉄を製造することができる。よって、本発明は、鉄鋼産業において利用可能性が極めて高いものである。
 100、200、300、400 製鋼スラグ還元処理装置
 1  電気炉
 1a、1b  炉側壁
 1c  炉天井
 2  電極
 2a  上部電極
 2b  炉底電極
 3a  傾動装置
 3b  秤量器
 4  スラグ供給部
 5  溶鉄
 6  溶融スラグ
 6’  熱間製鋼スラグ
 7  出滓孔
 8  出銑孔
 9  スラグ供給容器
 10  下壁
 11  上壁
 12  ノズル
 12a  燃焼バーナー
 13  排気部
 13a  開口部
 13b  蓋
 14  副原料供給部
 14a  副原料供給管
 14b  副原料吹込ランス
 15a、15b、15c  演算部
 X  設定電力量で還元し得る熱間製鋼スラグ量
 Y  電気炉への熱間製鋼スラグの流入量
 Z  傾動軸

Claims (6)

  1.  電気炉を用いて熱間製鋼スラグを連続還元処理する製鋼スラグ還元処理装置であって、
     前記電気炉内に前記熱間製鋼スラグを流し込むスラグ供給容器と、
     前記電気炉に設けられるとともに、前記熱間製鋼スラグの還元によって生成された溶鉄上の溶融スラグ層を前記溶鉄と共に加熱する電極と、
     前記溶融スラグ層に、還元材を含む副原料を供給する副原料供給部と、
     前記スラグ供給容器を傾動させて前記熱間製鋼スラグの前記電気炉への流入量を調整する傾動装置と、
    を備えることを特徴とする製鋼スラグ還元処理装置。
  2.  前記電気炉が固定式の密閉型電気炉である
    ことを特徴とする請求項1に記載の製鋼スラグ還元処理装置。
  3.  前記密閉型電気炉が直流電気炉である
    ことを特徴とする請求項2に記載の製鋼スラグ還元処理装置。
  4.  前記副原料供給部が、前記電極の内部に設けられた副原料供給管である
    ことを特徴とする請求項1に記載の製鋼スラグ還元処理装置。
  5.  前記スラグ供給容器に前記電気炉からの排ガスを排出する排気部が設けられている
    ことを特徴とする請求項1に記載の製鋼スラグ還元処理装置。
  6.  請求項1に記載の還元処理装置を用いた製鋼スラグ還元処理システムであって、
     前記電極に供給された電力量を測定する測定部と;
     測定された前記電力量に基づいて還元し得る熱間製鋼スラグ量を算出するとともに、算出された前記還元し得る熱間製鋼スラグ量に基づいて所定の還元材量を算出する演算部と;
     前記還元し得る熱間製鋼スラグ量に対して、前記熱間製鋼スラグの前記電気炉への流入量が追従するように、前記傾動装置を駆動して、前記スラグ供給容器の傾斜角を調整するとともに、前記所定の還元材量が供給されるように前記副原料供給部からの前記副原料の供給量を調整する制御部と;
    を備えることを特徴とする製鋼スラグ還元処理システム。
PCT/JP2013/067675 2012-06-27 2013-06-27 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム WO2014003127A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2013550690A JP5541423B1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム
BR112014011428A BR112014011428B1 (pt) 2012-06-27 2013-06-27 equipamento de processamento de redução para escória siderúrgica e sistema de processamento de redução para escória siderúrgica
US14/353,961 US9238846B2 (en) 2012-06-27 2013-06-27 Reduction processing apparatus for steel-making slag and reduction processing system for steel-making slag
CN201380003825.2A CN103930574B (zh) 2012-06-27 2013-06-27 炼钢炉渣还原处理装置和炼钢炉渣还原处理系统
CA2852500A CA2852500C (en) 2012-06-27 2013-06-27 Reduction processing apparatus for steel-making slag and reduction processing system for steel-making slag
KR1020147012214A KR101560513B1 (ko) 2012-06-27 2013-06-27 제강 슬래그 환원 처리 장치 및 제강 슬래그 환원 처리 설비
EP13808713.5A EP2759606B1 (en) 2012-06-27 2013-06-27 Steel slag reduction equipment and steel slag reduction system
IN7279DEN2014 IN2014DN07279A (ja) 2012-06-27 2013-06-27

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012144473 2012-06-27
JP2012144557 2012-06-27
JP2012-144473 2012-06-27
JP2012-144557 2012-06-27
JP2012235692 2012-10-25
JP2012-235692 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014003127A1 true WO2014003127A1 (ja) 2014-01-03

Family

ID=49783256

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2013/067665 WO2014003123A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理方法
PCT/JP2013/067675 WO2014003127A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム
PCT/JP2013/067660 WO2014003119A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理用電気炉のスラグ供給容器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067665 WO2014003123A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067660 WO2014003119A1 (ja) 2012-06-27 2013-06-27 製鋼スラグ還元処理用電気炉のスラグ供給容器

Country Status (9)

Country Link
US (3) US9238846B2 (ja)
EP (3) EP2759606B1 (ja)
JP (3) JP5541423B1 (ja)
KR (3) KR101531804B1 (ja)
CN (3) CN104039987B (ja)
BR (3) BR112014011428B1 (ja)
CA (3) CA2852500C (ja)
IN (3) IN2014DN07279A (ja)
WO (3) WO2014003123A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012354A1 (ja) * 2013-07-24 2015-01-29 新日鐵住金株式会社 排ガス処理方法および排ガス処理設備
JP2016074942A (ja) * 2014-10-06 2016-05-12 新日鐵住金株式会社 傾動式スラグ供給装置のスラグ付着抑制方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249567B (zh) * 2010-09-27 2013-12-04 山东焦化集团有限公司 利用熔融炉渣生产还原石材原料的方法
JP5541423B1 (ja) 2012-06-27 2014-07-09 新日鐵住金株式会社 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム
EP2843063B1 (de) * 2013-09-02 2016-07-13 Loesche GmbH Verfahren zur Aufbereitung von Stahlwerkschlacken sowie hydraulisches mineralisches Bindemittel
JP6446970B2 (ja) * 2014-10-06 2019-01-09 新日鐵住金株式会社 傾動式スラグ供給装置のスラグ付着抑制方法
JP6429190B2 (ja) * 2014-12-16 2018-11-28 新日鐵住金株式会社 製鋼スラグの溶融処理用の電気炉
CN105986054A (zh) * 2015-02-13 2016-10-05 鞍钢股份有限公司 一种对转炉终渣改性并还原的方法
FI127179B (fi) * 2015-09-15 2017-12-29 Outotec Finland Oy Menetelmä ja järjestely uuniprosessin ominaisuuksien seuraamiseksi ja prosessiseurantayksikkö
CN106702043B (zh) * 2015-11-17 2018-08-03 鞍钢股份有限公司 一种转炉终渣处理方法
CN106811566B (zh) * 2015-12-02 2019-02-26 鞍钢股份有限公司 一种含磷钢磷合金化方法
CN107012283B (zh) * 2016-01-27 2018-10-09 鞍钢股份有限公司 一种转炉留渣方法
KR102227326B1 (ko) * 2016-12-16 2021-03-12 닛폰세이테츠 가부시키가이샤 전기로
CN110073161B (zh) * 2016-12-16 2020-06-05 日本制铁株式会社 电炉
CN106755665A (zh) * 2017-02-20 2017-05-31 中冶赛迪上海工程技术有限公司 一种利用高温熔渣处理垃圾焚烧飞灰的装置及方法
DE102017105551A1 (de) 2017-03-15 2018-09-20 Scholz Austria GmbH Verfahren zur Behandlung metallurgischer Schlacken
DE102017119675B4 (de) 2017-08-28 2019-07-04 Voestalpine Stahl Gmbh Verfahren zur Behandlung von Schlacke
CN108558244B (zh) * 2018-05-15 2020-09-01 鞍钢股份有限公司 一种利用热态转炉渣制备水泥混合料的装置及制备方法
CN109500048A (zh) * 2018-10-09 2019-03-22 中冶南方工程技术有限公司 垃圾焚烧飞灰的固化处理方法以及处理系统
JP7095674B2 (ja) * 2019-11-29 2022-07-05 Jfeスチール株式会社 コンクリートの製造方法
JP7531274B2 (ja) * 2019-11-29 2024-08-09 Jfeスチール株式会社 副生成物の処理方法
JP7531273B2 (ja) * 2019-11-29 2024-08-09 Jfeスチール株式会社 副生成物の処理方法
CN113564297B (zh) * 2021-07-29 2022-06-21 广东韶钢松山股份有限公司 一种降低渣中氧化锰含量的方法
WO2023054345A1 (ja) 2021-09-30 2023-04-06 日本製鉄株式会社 溶銑製造方法
CN114111354B (zh) * 2021-11-03 2023-06-02 湖南博一环保科技有限公司 一种提锌回转窑铁渣的干法冷却装置及其工作方法
CN113913569A (zh) * 2021-11-10 2022-01-11 北京中冶设备研究设计总院有限公司 干法粒化储渣控流装置及储渣控流方法
CN115029488B (zh) * 2022-06-27 2023-10-03 北京崎基环保科技有限公司 钢渣处理系统及采用其处理钢渣的方法
EP4417713A1 (en) 2023-02-14 2024-08-21 Oterdoom, Harmen The novel two-step (semi-)continuous process for clean slag and steel or hot metal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233897A (en) 1975-09-10 1977-03-15 Nippon Steel Corp Method for treatment of iron slag
JPS57177911A (en) * 1981-04-27 1982-11-01 Kawasaki Steel Corp Treatment of molten bath to be subjected to dephosphorization regeneration of converter waste slag and recovery of valuable components
AU2055395A (en) 1994-06-10 1995-12-21 Mintek The recovery of metal values from slags
JP2002069520A (ja) * 2000-08-29 2002-03-08 Nippon Steel Corp スラグ中クロムの回収方法
JP2002069526A (ja) * 2000-08-28 2002-03-08 Nippon Steel Corp 脱燐スラグの再生処理方法
JP2003520899A (ja) 2000-01-28 2003-07-08 ホルシム リミティド 鉄浴でのスラグ又はスラグ混合物の処理方法
JP2006528732A (ja) * 2003-05-16 2006-12-21 ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ スラグの利用プロセス

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1291760B (de) 1963-11-08 1969-04-03 Suedwestfalen Ag Stahlwerke Verfahren und Vorrichtung zum diskontinuierlichen und kontinuierlichen Vakuum-Schmelzen und -Giessen von Staehlen und stahlaehnlichen Legierungen (Superiegierungen)
US3905589A (en) * 1972-03-27 1975-09-16 Pennsylvania Engineering Corp Steel production method and apparatus
US4149024A (en) 1974-07-23 1979-04-10 Asea Aktiebolag Arc furnace for reducing metal oxides and method for operating such a furnace
DE2522194A1 (de) 1975-05-17 1976-12-02 Vacmetal Gmbh Verfahren und vorrichtung zum herstellen von qualitaetsstaehlen
US4199350A (en) 1975-05-17 1980-04-22 Vacmetal Gesellschaft fur Vakuummetallurgie mbH Method for the production of quality steels
DE2847403A1 (de) * 1978-11-02 1980-05-14 Mannesmann Ag Verfahren zur herstellung von kohlenstoffarmem stahl aus vanadin- und/oder titanhaltigen eisenerzen
US4328388A (en) 1980-02-11 1982-05-04 Longenecker Levi S Electro furnace feeding and furnace fume utilization and control
JPS59189282A (ja) 1983-03-31 1984-10-26 新日鐵化学株式会社 高温溶融物の定量排出方法
FI72502C (fi) 1984-12-21 1987-06-08 Outokumpu Oy Saett och anordning foer framstaellning av vaermebestaendigt och/eller eldbestaendigt fibermaterial.
AT384669B (de) 1986-03-17 1987-12-28 Voest Alpine Ag Anlage zur herstellung von stahl aus schrott
US5173920A (en) 1989-08-21 1992-12-22 Asea Brown Boveri Ltd. Direct-current electric-arc furnace
AT395656B (de) * 1990-11-19 1993-02-25 Voest Alpine Ind Anlagen Anlage zur herstellung von fluessigen metallen
LU88517A7 (fr) 1993-12-15 1996-02-01 Wurth Paul Sa Dispositif de chargement d'un four électrique
FR2731712B1 (fr) 1995-03-14 1997-04-25 Usinor Sacilor Procede d'elaboration de l'acier dans un four electrique a arc, et four electrique a arc pour sa mise en oeuvre
JP3732561B2 (ja) 1995-09-29 2006-01-05 中央電気工業株式会社 電気炉における合金鉄製造及び焼却灰の溶融処理の同時実施方法
AT404942B (de) * 1997-06-27 1999-03-25 Voest Alpine Ind Anlagen Anlage und verfahren zum herstellen von metallschmelzen
LU90154B1 (fr) * 1997-10-17 1999-04-19 Wurth Paul Sa Procede pour la fusion en continu de produits metalliques solides
JP3796617B2 (ja) 1998-10-23 2006-07-12 日本坩堝株式会社 アルミニウムインゴット等の溶解保持炉
JP3644330B2 (ja) 1999-11-24 2005-04-27 住友金属工業株式会社 還元期スラグの処理方法
US6614831B2 (en) * 2000-02-10 2003-09-02 Process Technology International, Inc. Mounting arrangement for auxiliary burner or lance
ES2281384T3 (es) 2000-02-17 2007-10-01 John A. Vallomy Metodo para procesar de manera reductora la escoria liquida y el polvo de la camara de filtros del horno de arco electrico.
JP2002054812A (ja) 2000-08-08 2002-02-20 Nkk Corp 焼却灰の溶融処理方法
JP2002069626A (ja) * 2000-09-06 2002-03-08 Sumitomo Metal Mining Co Ltd スパッタリングターゲットおよびその製造方法
US6748004B2 (en) 2002-07-25 2004-06-08 Air Liquide America, L.P. Methods and apparatus for improved energy efficient control of an electric arc furnace fume extraction system
DE10335847A1 (de) * 2003-07-31 2005-02-17 Sms Demag Ag Elektroreduktionsofen
JP2005195224A (ja) * 2004-01-06 2005-07-21 Nippon Steel Corp 製鋼スラグの溶融改質炉および溶融改質方法
JP4654886B2 (ja) 2005-11-11 2011-03-23 Jfeスチール株式会社 製鋼スラグのリサイクル方法
ATE541950T1 (de) 2006-02-23 2012-02-15 Anton Dipl-Ing Hulek Verfahren und anlage zur kontinuierlichen weiterverarbeitung schmelzflüssiger hüttenschlacken
JP2008049206A (ja) 2006-03-30 2008-03-06 Daido Steel Co Ltd 排ガス処理方法
DE102006052181A1 (de) 2006-11-02 2008-05-08 Sms Demag Ag Verfahren zur kontinuierlichen oder diskontinuierlichen Gewinnung eines Metalls oder mehrerer Metalle aus einer das Metall oder eine Verbindung des Metalls enthaltenden Schlacke
JP5541423B1 (ja) 2012-06-27 2014-07-09 新日鐵住金株式会社 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233897A (en) 1975-09-10 1977-03-15 Nippon Steel Corp Method for treatment of iron slag
JPS57177911A (en) * 1981-04-27 1982-11-01 Kawasaki Steel Corp Treatment of molten bath to be subjected to dephosphorization regeneration of converter waste slag and recovery of valuable components
AU2055395A (en) 1994-06-10 1995-12-21 Mintek The recovery of metal values from slags
JP2003520899A (ja) 2000-01-28 2003-07-08 ホルシム リミティド 鉄浴でのスラグ又はスラグ混合物の処理方法
JP2002069526A (ja) * 2000-08-28 2002-03-08 Nippon Steel Corp 脱燐スラグの再生処理方法
JP2002069520A (ja) * 2000-08-29 2002-03-08 Nippon Steel Corp スラグ中クロムの回収方法
JP2006528732A (ja) * 2003-05-16 2006-12-21 ヴォエスト・アルピーネ・インデュストリーアンラーゲンバウ・ゲーエムベーハー・ウント・コ スラグの利用プロセス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCANDINAVIAN JOURNAL OF METALLURGY, vol. 32, 2003, pages 7 - 14
See also references of EP2759606A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012354A1 (ja) * 2013-07-24 2015-01-29 新日鐵住金株式会社 排ガス処理方法および排ガス処理設備
US10612104B2 (en) 2013-07-24 2020-04-07 Nippon Steel Corporation Exhaust gas treatment method and exhaust gas treatment facility
JP2016074942A (ja) * 2014-10-06 2016-05-12 新日鐵住金株式会社 傾動式スラグ供給装置のスラグ付着抑制方法

Also Published As

Publication number Publication date
CA2851963C (en) 2015-05-19
BR112014011250A2 (pt) 2017-05-09
US20140247856A1 (en) 2014-09-04
JPWO2014003119A1 (ja) 2016-06-02
KR20140079805A (ko) 2014-06-27
EP2767597B1 (en) 2016-11-02
CN103930573A (zh) 2014-07-16
CN103930574A (zh) 2014-07-16
JP5522320B1 (ja) 2014-06-18
WO2014003119A1 (ja) 2014-01-03
BR112014011858A2 (pt) 2017-05-16
US20150135896A1 (en) 2015-05-21
EP2759606B1 (en) 2016-11-16
CA2852500C (en) 2015-06-23
WO2014003123A1 (ja) 2014-01-03
CN103930574B (zh) 2015-08-19
KR20140085506A (ko) 2014-07-07
JP5574057B2 (ja) 2014-08-20
US9534266B2 (en) 2017-01-03
BR112014011428A2 (pt) 2017-05-02
KR101560513B1 (ko) 2015-10-14
KR101531804B1 (ko) 2015-06-25
BR112014011428B1 (pt) 2020-04-14
BR112014011858B1 (pt) 2019-06-25
EP2759606A4 (en) 2015-07-22
JPWO2014003127A1 (ja) 2016-06-02
KR20140085499A (ko) 2014-07-07
BR112014011250B1 (pt) 2019-07-02
IN2014DN07279A (ja) 2015-04-24
CN104039987B (zh) 2015-07-22
JPWO2014003123A1 (ja) 2016-06-02
EP2767597A4 (en) 2015-07-15
EP2757163A1 (en) 2014-07-23
JP5541423B1 (ja) 2014-07-09
IN2014DN07281A (ja) 2015-04-24
IN2014DN07659A (ja) 2015-05-15
US9238846B2 (en) 2016-01-19
CA2851604C (en) 2015-11-10
KR101560512B1 (ko) 2015-10-14
CA2851963A1 (en) 2014-01-03
EP2767597A1 (en) 2014-08-20
US9217185B2 (en) 2015-12-22
US20140291901A1 (en) 2014-10-02
EP2757163A4 (en) 2015-07-15
CA2851604A1 (en) 2014-01-03
CA2852500A1 (en) 2014-01-03
EP2757163B1 (en) 2017-03-08
CN103930573B (zh) 2017-04-05
CN104039987A (zh) 2014-09-10
EP2759606A1 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5541423B1 (ja) 製鋼スラグ還元処理装置及び製鋼スラグ還元処理システム
JP5408369B2 (ja) 溶銑の予備処理方法
JP5954551B2 (ja) 転炉製鋼法
JP6164151B2 (ja) 転炉型精錬炉による溶鉄の精錬方法
TWI609839B (zh) 熔鐵的脫磷劑、精煉劑及脫磷方法
JP2009102697A (ja) 溶鋼の製造方法
JP5170348B2 (ja) 溶銑の脱珪・脱リン方法
JP5408379B2 (ja) 溶銑の予備処理方法
JP5625654B2 (ja) 溶銑の製造方法
JP6992604B2 (ja) リン酸スラグ肥料の製造方法
JP4630031B2 (ja) 酸化鉄含有鉄原料の還元・溶解方法
JP2015110816A (ja) スラグ処理方法およびスラグ処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013550690

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2852500

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14353961

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013808713

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013808713

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147012214

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014011428

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112014011428

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140512